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ABSTRACT

The testing and development of existing global and detailed chemical kinetic models

for soot formation requires measmements of soot and radical concentrations in flames. A

clearer understanding of soot panicle inception relies upon the evaluation and refinement

of these models in comparison with such measurements.

We present measurements of soot formation and hydroxyl (OH) concentration in

sequences of flat premixed atmospheric-pressure C_I-_/O2/N2 flames and 80-torr C2H,/02

flames for a unique range of equivalence rati'os bracketing the critical equivalence ratio (Co)

and extending to more heavily sooting conditions. Soot volume fraction and number

density profiles are measured using a laser scattering-extinction apparatus capable of

resolving a 0.1% absorption. Hydroxyl number density profiles are measured using

laser-induced fluorescence (LIF) with broadband detection. Temperature profiles are

obtained from Rayleigh scattering measurements.

The relative volume fraction and number density profiles of the richer sooting flames

exhibit the expected trends in soot formation. In near-_c visibly sooting flames, particle

scattering and extinction are not detected, but an LIF signal due to polycyclic aromatic

hydrocarbons (PAHs) can be detected upon excitation with an argon-ion laser. A linear

correlation between the argon-ion LIF and the soot volume fraction implies a common

mechanistic source for the growth of PAils and soot particles. The peak OH number

density in both the atmospheric and 80-tort flames declines with increasing equivalence

ratio, but the profile shape remains unchanged in the transition to sooting, implying that the

primary reaction pathways for OH remain unchanged over this transition.

xxvi



Chemical kinetic modelling is demonstrated by comparing predictions using two

current reaction mechanisms with the atmospheric flame data. The measured and predicted

OH number density profiles show good agreement. The predicted benzene number density

profiles correlate with the measured trends in soot formation, although anomalies in the

benzene profiles for the richer and cooler sooting flames suggest a need for the inclusion

of benzene oxidation reactions.
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CHAPTER1:

INTRODUCTION

Sootis thecarbonaceousparticlesformed from the gas phase during the incomplete

combustion of a hydrocarbon fuel. This simple definition disguises the complexity of the

mechanism of soot formation. The effects of soot are the reason for seeking to unravel its

complex mechanism. These effects can be seen quite literally in the world around us. The

presence of soot is manifested by the yellow emission of a candle flame. Soot increases

the luminosity of the flame and, in general, increases the radiative heat transfer from a

combustion process. Thus, its presence can be desirable, for example, in a furnace.

The presence of soot can also be seen in the exhaust of a diesel truck or from the

smokestack of a powerplant. Thus, soot is also a visual pollutant and its emission

represents inefficient combustion because of the unburned carbon. Soot can remain

airborne for long periods of time because of its size and thus it can disperse widely from

its source and reduce atmospheric visibility.

The presence of soot was also identified as the first known cause of cancer. In 1775,

chimney soot was identified as causing cancer of the scrotum in chimney sweeps in

London (Pott, 1775). The carcinogenicity of soot is primarily caused by the polycyclic

aromatic hydrocarbons (PAHs) which condense on the soot during its formation.

Benzo(a)pyrene, fluoranthene, and cyclopenta(cd)pyrene arc carcinogenic PAHs found in

the soot emitted from practical combustors (Longwell, 1983).



developed

interactions

modelled.

These effects of soot are the motivation for seeking to understand the mechanism of

soot formation, so that its formation can be modelled, predicted or possibly controlled.

Studies of soot formation in a variety of combustion systems and for different fuels

suggest a common mechanism for soot formation (Glassman, 1988). Thus, an

understanding of the soot formation mechanism in complex combustion systems can be

from investigations in simpler laboratory combustion systems where

between transport processes and chemical kinetics can be more easily

From previous laboratory studies, the mechanism of soot formation consists of four

processes: particle inception, surface growth, coagulation, and oxidation (Haynes and

Wagner, 1981). Particle inception is the formation of the soot particles from the gas phase

through oxidation and pyrolysis of the fuel. Surface growth is the subsequent growth of

the particles from the reactions of gas phase species with the particles. Coagulation is the

growth of the particles through collision and fusion of the particles. Oxidation competes

with both the growth and formation of the particles through oxidation of the particles by

surface reactions or by oxidation of gas-phase species involved in particle inception.

The understanding of soot formation has advanced to the point where both

coagulation and surface growth can be described well by empirical models, although the

underlying mechanisms for these processes are still not fully understood. While

coagulation and surface growth account for most of the particle growth in size and mass,

the empirical models suggest that the number of particles formed initially is the

determining factor in the final amount of soot formed. Thus, particle inception is the

critical stage in soot formation.

Particle inception is a molecular growth process that is postulated to occur in three

stages: formation of single-ring aromatic species, growth of polycyclic aromatic

hydrocarbons, and coagulation of polycyclic aromatic hydrocarbons. The bottleneck in

2



theformation of soot from aliphatic fuels is thought to be the formation of single-ring

aromatic species by the pyrolysis of the fuel. Once formed, the single-ring aromatic

species grow through a sequence of addition and cyclization reactions to form larger

multiple-ring aromatic species, PAHs. These large PAHs can either grow further or

coagulate to form incipient soot particles, particles with a weight of about 2000 amu and

about 2 nm in diameter.

This model of the particle inception process is based on the development of detailed

chemical kinetic models that describe the formation reactions and on the comparison of

model predictions with measured species profiles in nonsooting and sooting flames.

However much remains unknown about the details of the individual steps. In particular,

the route to the formation of the single-ring aromatic species from aliphatic fuels is still

being debated. Models based upon this theory of particle inception arc successful in

predicting selected features of soot formation. However, further development will require

testing over a wider range of flame conditions for which the data is not yet available.

Global models for incipient soot formation have been used to predict the occurrence

of soot formation in flames. Specifically, these models correlate macroscopic properties

of the flame such as fuel type and mixture, maximum temperature, and equilibrium OH

concentration with the critical equivalence ratio, which is the equivalence ratio at which

the yellow emission of soot first becomes visible as the equivalence ratio is increased

from nonsooting conditions. The basis of these models is the assumption that the critical

equivalence ratio occurs when the rate of formation of soot precursors by pyrolysis is

balanced by their rate of oxidation by the hydroxyl radical. The success of these models

in correlating critical equivalence ratio data for a variety of fuels suggests that the

macroscopic properties are sufficient to describe soot formation near the onset of sooting.

However, the identity of the precursors is unknown and it is also unknown whether the

hydroxyl radical is directly involved as an oxidizer of precursors or if it is a marker for



other processes that occur. Further refinement of the global models is likely to come from

a better understanding of the details of soot formation and from measurements of species

profiles such as the hydroxyl radical near the critical equivalence ratio.

The objective of this study is to provide a set of data that can be used in the

development and testing of both global and detailed chemical kinetic models of soot

formation. Soot formation and hydroxyl radical concentration are measured in a series of

premixed fiat ethylene flames to serve as a basis for comparison with one-dimensional fiat

flame models describing the formation of aromatic species and soot.

The flame conditions were selected so that they ranged from a rich non-sooting

flame near the critical equivalence ratio to a visibly sooting flame at or near the critical

equivalence ratio to more heavily sooting flames. Three sequences of

ethylene/oxygen/nitrogen flames at atmospheric pressure were examined in which the

cold flow velocity (total flow rate of the fuel/oxidizer mixture divided by the burner

surface area) and the dilution ratio (ratio of nitrogen to oxygen mole fractions) were held

constant, while the equivalence ratio was varied through the range of sooting conditions.

Variation of the cold flow velocity and the dilution ratio between the sequences allowed

measurement of the effects of temperature and fuel mixture composition on soot

formation. Two sequences of ethylene/oxygen flames at 80 torr were also examined in

which the cold flow velocity was held constant, while the equivalence ratio was varied.

The 80-torr flames allowed the hydroxyl radical concentration profile to be measured in

greater detail, while the variation in cold flow velocity allowed the assessment of the

effect of temperature on soot formation.

These atmospheric and 80-torr flames serve as the basis for a systematic

investigation of both soot formation and hydroxyl radical concentration in the region

about the critical equivalence ratio, a region of soot formation that has not been previously



investigatedwith this combination of methods. Soot formation was quantified by

measurements of the soot volume fraction and particle number density profiles using the

laser scattering-extinction method. In addition, profiles of the argon-ion laser-induced

fluorescence were measured in one flame sequence as a relative measure of the polycyclic

aromatic hydrocarbon concentration. Temperature profiles were also obtained from the

scattering-extinction measurements.

These profiles of soot formation then serve as the basis for identifying trends in soot

formation with variation of major flame parameters. In particular, the profiles identify the

change in soot formation in the region near the critical equivalence ratio. Thus, these

profiles can serve as a basis for testing the ability of the models to predict both the amount

of soot formed and the relative trends between flames and also their ability to predict the

transition from nonsooting to sooting flames.

Hydroxyl radical concentration profiles were measured in a sequence of the

atmospheric-pressure flames and in a sequence of the 80-tort flames using the

laser-induced fluorescence method. These profiles can serve as the basis for testing

detailed chemical kinetic models for their ability to model the hydroxyl radical

concentration profile. In addition, the change in the hydroxyl radical concentration

profile as the equivalence ratio is varied through the critical equivalence ratio provides a

basis for evaluating the assumptions of the global models describing incipient soot

formation.

Chemical kinetic modelling of these flames was demonstrated using the Sandia

premixed one-dimensional flame code and two reaction mechanisms. The reaction

mechanism of Drake and Blint (1991) was used for initial modelling of the hydroxyl

radical concentration profiles, because the mechanism was not intended to model sooting

conditions and only includes hydrocarbon species of size C3 and smaller. The reaction

mechanism of Miller and Melius (1992) incorporates the most recent hypotheses for the



fonnafion of aromatic species in aliphatic flames and was used to model both the hydroxyl

radical concentration profiles and the benzene profiles. The hydroxyl radical

concenu'ation profiles predicted with both reaction mechanisms were compared with the

profiles to evaluate their ability to model these profiles. The trends of the

benzene conoentrations predicted with the Miller and Melius (1992) mechanism were

compared with the observed trends in soot formation. This preliminary modelling

demonstrat_ the use of the data in the evaluation of soot formation models.

L3.J2xglxie 

In Chapter 2, we review the literature on soot formation with a focus on SOOt

formation in premixed flames. We first da$crib¢ current global models for coagulation

and surface growth. We then discuss the three stages of particle inception, formation of

aromatic species, PAIl growth, and PAH coagulation, and their hypothetical mechanisms.

In particular, we focus on the chemical reaction mutes leading to the formation of the first

aromatic ring and the possible role of the 1-12-Oasystem radicals in that chemistry.

Detailed chemical kinetic models that have been developed to describe the formation of

aromatic species and also those that include the full range of soot formation are then

described. Finally, we discuss the global models that describe incipient SOot formation in

premixed flames.

In Chapter 3, we review the methods that have been used to measure soot and

hydroxyl radical concentrations in flames. We develop the theory for the laser

scattering-extinction measurements of soot formation and the laser-induced fluorescence

measurements of the hydroxyl radical. The possible interferences and concerns that may

affect the interpretation of the ngasurements in sooting flames are identified.

In Chapter 4, we describe the experimental apparatus and our specific

implementation of the measurement methods. The premixed flat flame burner system is

described and the flame conditions that we examined are listed. Then, for both the laser
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scattering-extinction measurements and the laseroinduced fluorescence measurements,

we describe the optical setup, the signal detection and data acquisition system, the

experimental procedure, and the subsequent data analysis. Finally, we describe our

implementation of the Sandia premixed one-dimensional flame code and the solution

procedure using two reaction mechanisms that can be used to describe the oxidation and

pyrolysis of ethylene.

In Chapter 5, we present the results of the laser scattering-extinction measurements

of soot formation in three sequences of atmospheric-pressure C2HdO2/Nz flames and two

sequences of 80-tort C_qH4/Oz flames. Relative volume fraction, number density, and

particle diameter profiles are presented for the more heavily sooting atmospheric-pressure

flames, while upper bounds are established for these parameters in the 80-torr flames and

the near-critical equivalence ratio atmospheric flames. These measured prof'des and

upper bounds are used to identify the trends in soot formation with changing equivalence

ratio, temperature, and dilution ratio.

In Chapter 6, we present the laser-induced fluorescence measurements of the

hydroxyl radical in a sequence of atmospheric-pressure C.2H4/Oz/N 2 flames and a

sequence of 80-tort czn4/o 2 flames, both spanning the transition from rich nonsooting to

sooting conditions. Absolute number density profiles are determined for the atmospheric

flames, while only relative number density profiles could be determined for the 80-torr

flames. We then examine the behavior of the OH number density profiles as the transition

is made from nonsooting to sooting flame conditions.

In Chapter 7, we present results from chemical kinetic modelling of the

atmospheric-pressure flames using the Sandia premixed one-dimensional flame code and

two reaction mechanisms, one modelling up to the formation of C3 hydrocarbons and one

modelling up to the formation of benzene. The predicted OH number density profiles

using both reaction mechanisms are compared with the measured OH number density



profiles to evaluate the ability of the mechanism to model the OH concentration over a

range of equivalence ratios. The predicted benzene prof'fles using the second mechanism

are compared with the _¢nds in measured soot formation.

Finally, in Chapter 8, we sumnutrize the results of this study, suggest improvements

that might be made our kinetic analysis and propose directions for future research.
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CHAFFER 2:

LITERATURE REVIEW - SOOT FORMATION

The literature covering the many aspects of soot formation is extensive. This

reflects the importance placed on understanding and controlling soot formation because

of its effect on the combustion process and its role as a pollutant. It also reflects the

complicated nature of soot formation, whereby a soot particle containing a million carbon

atoms forms in milliseconds during the combustion of a hydrocarbon fuel whose

molecules contain just a few carbon atoms.

The process of soot formation has not been completely described because it involves

fuel-rich hydrocarbon chemistry and because its formation is rate limited. Fuel-rich

hydrocarbon chemistry itself has not been completely described because of difficulties in

both identifying and measuring the large number of species present and also identifying

and modelling the myriad reactions that take place. Because of its chemical kinetic

rate-limited nature, the formation of soot in a combustion process depends on the

structure of the flow and the temperature in addition to the fuel and oxidizer composition.

The interactions between the transport processes and the chemical kinetics strongly

influence the formation of soot and thus complicate and confound the comparisons of

studies of soot formation that use different combustors. Thus, most of the knowledge on

soot formation comes from laboratory studies in laminar flames and shock tubes where

the interactions between the chemical kinetics and the transport processes can be reduced

or easily modelled.
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Frompreviouslaboratory studies, a general mechanism for the formation of soot has

been postulaled that consists of four processes - particle inception, surface growth,

coagulation, and oxidation (Haynes and Wagner, 1981; Calcote, 1981; Glassman, 1988).

Particle inception is concerned with the formation of the soot particles through the

oxidation and pyrolysis of fuel molecules. The initial step in particle inception is believed

to be the formation of single-ring aromatic species by the pyrolysis of fuel molecules.

These single-ring aromatic species grow into larger multiple-ring aromatic species,

polyCyclic aromatic hydrocarbons (PAHs), through a repeated sequence of additions of

acetyl_, dehydrogenation, and cyclization reactions (Frenldach and Wang, 1990). The

initial particles are formed from either further growth or from coagulation of these large

PAH molecules. The first panicles observed in a flame are small, less than 2 nm in

diameter, and they represent only a small fraction of the soot mass eventually formed in

a flame, even though they are present in great numbers (Haynes and Wagner, 1981).

Once they have formed, the soot particles grow through both surface growth and

coagulation simultaneously. Surface growth is the addition of gas phase species to the

particle surface. Acetylene is thought to be the primary growth species and may either

condense on the particle surface or may join to the particle through a reaction sequence

(Harris and Weiner, 1983a; 1983b). Surface growth generates the major fraction of the

soot mass, but does not change the number of soot particles in the flame. Coagulation is

the collision and fusion of the particles. In the early stages of soot formation, the small

particles appear to coalesce to form a single sphere. In the later stages of soot formation,

the particles collide and fuse together to form chains or clusters of spheres. Coagulation

increases the size and reduces the number of particles without changing the total soot

mass. Coagulation dominates in the later stages of soot formation as the particles age and

become less reactive. The spheroidal particles grow to a size of 10 to 50 nm; the chains

or clusters of the spheroidal particles can grow much larger (Haynes and Wagner, 1981).

10
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Oxidation competes with the formation of soot by removing soot from the system

through both heterogeneous and homogeneous oxidation. Heterogeneous oxidation is the

oxidation of the soot panicle at its surface and thus acts to remove the soot mass. It is

responsible for the bum-out of soot particles in the oxygen-rich side of a diffusion flame.

Homogeneous oxidation competes with particle formation by oxidizing gas-phase species

that are involved in either particle inception or surface growth (Olson, Keil, and Calcote,

1984).

Models of soot formation are being developed that include submodels

corresponding to the above stages of soot formation. Models describing both surface

growth (Harris and Weiner, 1983a; 1983b; Harris, 1990) and coagulation (Prado and

Lahaye, 1981; Harris and Kennedy, 1988; Megaridis and Dobbins, 1989) have been

developed that agree well with flame measurements, although the details of the

mechanisms are still being investigated. Particle inception models are more complicated

and are less mature in their development. These models incorporate detailed chemical

kinetics that describe the formation of aromatic species from the rich combustion of some

of the simpler hydrocarbon fuels such as methane, ethylene, and acetylene. Details of

these mechanisms are still being investigated (Frenklach and Wang, 1990). In particular,

the route to formation of the fast aromatic rings and subsequently to the fast soot particle

are still being debated (Westmoreland et al., 1989; Miller and Melius, 1992).

Global models have been developed that describe the sooting tendency of fuels

(Janssen and Senser, 1991). These global models typically describe the onset of soot

formation in terms of the temperature, fuel structure, and OH concentration. Their utility

is in investigating the parameters that influence the onset of soot formation. Although

they predict the onset of soot formation in premixed flames, they have not been developed

to the point where they can predict soot yield.

11



The literature pertaining to soot formation is voluminous. Early studies of carbon

formation were summarized by Palmer and Cullis (1965) and more specifically for

premixed flames by Honumn (1967). The comprehensive review by Haynes and Wagner

(1981) smmmrized the research to date on soot formation in both laminar and turbulent

premixed, diffusion, and spray flames. Calcote (1981) summarized the research on

particle inception in flames with an emphasis on ionic mechanisms. More recent reviews

have been published by Homann (1984), who reviewed the research on the formation of

PAIls and soot in premixed flames, and by Glassman (1988), who reviewed the

meclumism of soot formation and its application to understanding the sooting tendencies

of fuels.

An important goal of our research has been to investigate the role of the OH radical

in the formation of soot in premixed flames. Thus, we will focus on reviewing the aspects

of soot formation in premixed flames that are pertinent to that role and also the models of

soot formation that may be used to evaluate that role. We begin by describing the general

structure of a sooting premixed flame to identify the stages of soot formation. The

mechanism and model for the coagulation of the particles is then reviewed followed by

the discussion of a mechanism and model for the surface growth of the particle. An

understanding of these two processes leads to the conclusion that the particles formed in

the inception stage determine the final amount of soot formed in the flame. We then

review investigations of the pre-particle inception chemistry and hypotheses concerning

the formation of the first soot particles. Next, we review the detailed chemical kinetic

models that have been proposed to model the pre-particle inception chemistry. Global

models that describe the onset of soot formation are also described. Finally, we

summarize the review and suggest an approach for identifying the role of the hydroxyl

radical in soot formation.
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2.2 Structure of Premixed Sooting Flames

The visible structure of a fiat premixed sooting flame is illustrated in Figure 2.1. A

nonluminous zone directly above the burner is followed by the blue-green emission of the

main reaction zone. Further above the burner, a dark space appears between the main

reaction zone and the start of the yellow to orange emission of soot (Millikan, 1962;

Haynes, Jander, and Wagner, 1980). However, no dark zone is observed in benzene

flames as the luminous yellow emission of soot directly follows the main reaction zone

(Haynes, Jander, and Wagner, 1980). Similarly, Bonne, Homann, and Wagner (1965) did

not observe the dark space between the main reaction zone and the soot luminosity in any

of their ethylene, acetylene, propane, or benzene flames.

The yellow emission of a premixed sooting flame signals the presence of soot

particles. The two primary methods that have been used to measure soot particles are

laser scattering-extinction and direct sampling of the soot followed by examination with

an electron microscope. The soot particles are described by the soot volume fraction, fv

(cm 3 soot.cm 3 gas), the particle number density, Np (cm3), the radius of the soot particles,

r (nm), and the particle size distribution function, P(r). These parameters are related by

fv = N, . 4--_. fo'P(r) . r3 . dr (2.1)

Usually, the volume fraction and the number density are used to describe the soot particle

field. The particle size distribution is usually assumed to be either a monodisperse or

lognormal distribution, except when the particle size is measured explicitly such as by

direct sampling or by dynamic light scattering measurements. Non-spherical particles

and chainlike agglomerates of particles are usually described by an equivalent diameter

which is the diameter of a sphere with a volume equal to the particle volume.

Within a sooting premixed hydrocarbon flame, particle inception occurs in a narrow

region near the main reaction zone where the temperature and radical concentrations are
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high. Homann and Wagner (1967) observed that in a benzene flame carbon had already

formed by the end of the oxidation zone where the 02 concentration had dropped below

their detection limit (10 .7 mole fraction). Harris (1986) noted that particle inception

occurred in an ethylene flame where the 02 concentration was approximately 1 percent,

but inception ceased when the O2 concentration decreased below a few tenths of a percent.

The number density of the newly formed particles is typically Np > 1012 cm "3, but since

their size is small (typically d < 2 nm), the initial volume fraction is also small, e.g.,fv '_

10.9 cm 3 soot.cm 3 gas (Haynes and Wagner, 1982).

Particle inception ceases shortly after the start of surface growth and coagulation as

shown by the strong decrease in number density prior to the increase in volume fraction

(Bockhom et al., 1982; 1984; Haynes and Wagner, 1982; Prado and Lahaye, 1981).

Surface growth adds up to 97 percent of the final soot mass to the initial soot particles

(Bockhorn, Fetting, and Heddrich, 1986). The volume fraction increases rapidly

following particle inception, but the surface growth rate eventually declines to zero with

increasing height above the burner as the volume fraction asymptotically approaches a

final volume fraction, fv. In benzene flames, the volume fraction grows rapidly at first

and then remains constant (Homann and Wagner, 1967; Haynes, Jander, and Wagner,

1980), while the soot volume fraction increases more steadily with time in ethylene

flames (Haynes, Jander, and Wagner, 1980). The final soot volume fraction depends

strongly on fuel type, flame stoichiometry, pressure, and temperature (Haynes and

Wagner, 1982). Increasing temperature strongly decreases the final soot yield. Haynes

and Wagner (1982) report a negative activation energy of approximately 100 kcal.mole t

lorry in their ethylene and benzene flames at 1 atm. Bockhorn et al. (1984) found thatfv

increased by a factor of 1.5 if the maximum temperature decreased by only 20 K.

Coagulation begins once the particles form. The number density drops rapidly at

first, and then more slowly throughout the downstream regions of the flame. Flames with
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different final soot yields show a similar decrease in Np with increasing time as they

approsch a final number density of Np m 109 to I0 _° cm "3(Haynes and Wagner, 1982;

Bamngartncr et al., 1984). The f'mal number density depends weakly on the volume

fraction and not at all on the initial number density (Bockhorn, Fetting, and Heddrich,

1986).

The differences in the final volume fraction among flames are manifested as

differences in the final soot particle diameter since the final number densities are similar.

As the mean diameter of the soot particles increases with time or height above the burner,

the total surface area of the soot particles remains nearly constant. This phenomenon has

been observed by Haynes and Wagner (1982), Harris and Weiner (1983a; 1983b; 1984)

and Ramer et al. (1986). Apparently, a balance exists between surface growth and

coagulation that keeps the surface area constant. Harris and Weiner (1983b) found that

the total surface area of the particles increases substantially with C/O ratio (and thus fv)

in their ethylene flames.

Evidence for the coagulation of soot particles can be seen when soot collected from

a flame is examined with an electron microscope. The soot produced in flames consists

of spheroidal particles, so-called "elementary" soot particles, which range in diameter

from 10 to 50 nm and are clustered in chainlike or branched chainlike agglomerates

(Haynes and Wagner, 1981). Wersborg, Howard, and Williams (1973) collected soot

from a 20-tort acetylene flame at a sequence of heights above their burner to observe the

soot with an electron microscope. Particles in the early stages of formation were small

and spheroidal; the smallest observed size was 1.5 rim. The particles grew, while

remaining spheroidal, with increasing height until the later stages of soot formation where

the particles began to form chednlike agglomerates. They observed coagulated particles

at each burner height. Examination with a high-resolution electron microscope showed
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that the larger spheroidal particles in the chainlike agglomerates were themselves formed

from agglomerated particles. They hypothesized that the particles remained spheroidal

during the early stages because surface growth rapidly obscured the chainlike structure,

while the chainlike structure was not obscured in the later stages because of the larger

particles and slower surface growth rate.

An alternate mechanism proposed by Haynes and Wagner (1981) suggests that the

particles in the early stages of formation coalesce upon collision to form single spheroidal

particles rather than chains of particles. Graham (197"1) suggested that the early particles

are composed of liquid-phase PAHs which slowly turn into soot in the flame. Prado et al.

(1981) proposed that the early particles are highly reactive and rearrange after collision to

form a sphere, while older and larger particles do not coalesce because either their

viscosity has increased through dehydrogenation or the larger mass requires more time to

coalesce. When the volume fraction was small (fv< 107), and thus the particle size was

smaU (d < 18 rim), they did not observe agglomerated particles and thus they assumed that

only coalescent collisions occurred under these conditions.

The evolution of the number density and the size distribution of the soot particles

can be modelled with free molecular coagulation theory. If the soot particles are small

compared to the mean free path and coalesce upon every collision to form spherical

particles, the change in number density is given by

dNp 6 ks (2.2): .... #16./%/11/6

dt 5 Jv ",p

where the coagulation rate coefficient, ks (cm_a-sec'l), is given by

(3 _,,6 f 6kbTl,,25__
ks m _ (2.3)

12t,

and k_ is the Boltzmann constant (1.3804x10 z3 J.K4), T is the temperature (K), p, is the

density of soot (gm.cm3), G is an enhancement factor that accounts for the dispersion

17



forces between particles, and a is a collision integral which depends on the particle size

distribution (Graham, Homer, and Rosenfeld, 1975; Prado and Lahaye, 1981; Bockhom

et ai., 1984).

IfEq. (2.2) is integrated and then evaluated at long residence times for a large initial

particle number density, the number density is given by (Prado et al., 1981)

N, - (k,, -_v_. t) -¢s (2.4)

Thus, the model predicts that at long times the number density depends only weakly on

the volun_ fraction and temperature and does not depend at all on the initial number

density. This has been verified by the similarity of the final number densities measured

in flames by Haynes and Wagner (1982) and Prado et al. (1981).

Several studies have determined that the free molecular coagulation model fits their

measured number density profiles, if the coagulation rate coefficients are greater than the

theoretical rate coefficient for a hard sphere, i.e., if the enhancement factor, G, is greater

than one. The enhancement factor was determined to be in the range 1.5 < G < 2.5 by

Bockhorn et al. (1982), 0.6 < G < 5 by Baumgartner et al. (1984), and G ffi2 by Prado

et al. (1981). Harris and Kennedy (1988) calculated the enhancement factor, G, based on

the van der Waals forces between the particles. They determined that collisions between

small particles (1 to 15 urn) of the same size were enhanced by a factor of 2.2 to 2.4, while

collisions between particles of different sizes (for example, between a 15 nm particle and

a 1 nm particle) were enhanced by a factor of 1.2. An average enhancement factor of

G = 2.2 fit their nwasured number density profiles in an atmospheric sooting ethylene

flame.

The coagulation model does not fit measured number density profiles well in the

later regions of the flames owing to the formation of agglomerated particle chains. Both

the size and shape of the aggtomentted particles would invalidate the free molecular

coagulatioa assemption of spherical particles that are smaU with respect to the mean free
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path (Prado et al., 1981; Harris and Kennedy, 1988). Uncertainties in the optical

measurements of number density, in the temperature measurements, and in the calculation

of residence times all contribute to the uncertainty in the measured values of the

enhancement factor and may account for the different values determined by the different

investigators (Bockhom et al., 1982).

Coagulation of the particles affects the particle size distribution. Since laser

scattering-extinction methods measure moments of the particle size distribution,

knowledge of these moments is necessary to interpret the measurements and thus

determine the number density (Harris, Weiner, and Ashcraft, 1986; Dobbins and

Mulholland, 1984; Hodges and Foster, 1987). Numerical (Graham and Robinson, 1976)

and analytical (Frenldach, 1985) solutions of Eq.(2.2) predict that the size distribution

will asymptotically approach a self-preserving size distribution (SPSD) in which the

distribution of panicle sizes about the instantaneous mean size is constant. However,

Eq.(2.2) is based on the assumption that there is no source of particles or creation of mass

within the particle system. In sooting flames, panicle inception violates the fast

assumption and surface growth violates the second assumption. Models incorporating

both particle inception and surface growth along with coagulation have been solved

numerically for conditions that simulate premixed sooting flames. Both Dobbins and

Mulholland (1984) and Megaridis and Dobbins (1989) found that the moment ratios

during particle inception exceeded the moment ratios expected for an SPSD, but after

panicle inception the ratios began to approach asymptotic values close to those for an

SPSD. Harris and Kennedy (1988) found that the moment ratios approached those of the

SPSD faster when the collisional enhancement caused by van der Waals forces was

included. The models show that surface growth reduces the width of the size distribution,

while coagulation controls the time dependence of the number density. Hodges and

Foster (1987) determined from their model that an SPSD based on only coagulation is not
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likely, because surface growth and coagulation are strongly coupled. They suggest that a

two-pmmneter lognormal distribution be used to describe the particle size distribution

instead of an SPSD.

2.4 Surf_ Growth

While coagulation produces similar final number densities in sooting flames, as

predictod by Eq. (2.4), the difference in surface growth rates among sooting flames

p_ large differences in final soot volume fraction (Haynes and Wagner, 1982).

Surftw,¢ growth occurs through the addition of gas-phase species to the surface of the soot

particles. It generates from 90% to 97% of the final soot mass (Bockhorn, Fetting, and

Heddrich, 1986; Harris, Weinex, and Ashcraft, 1986). This added mass is reflected in the

growth of the soot volume fraction, which can be measured with laser

scattering-extinction methods. In premixed flames, the volume fraction grows rapidly

following particle inception. With increasing height above the burner, the volume

fraction grows more slowly until it asymptotically approaches a final soot volume

fraction, fv (Homann and Wagner, 1967; Haynes, Jander, and Wagner, 1980).

Haynes and Wagner (1982) found thatfv differed by an order of magnitude among

flames of different stoichiometry. However, if they normalized the volume fraction

profiles byfv, then the profiles became practically identical. The volume fraction profiles

could be empirically described by a pseudo first-order rate equation,

k,,.  -fv) , (2.s)

where k,s (sec "_) is a phenomenological rate coefficient for surface growth. The rate

coefficient depended on flame temperature but was independent of fuel type,

stoiehiometry, pressure, and the final soot volume fraction. The temperature sensitivity

was found to correspond to an activation energy of 40-50 kcal.mole "1by Haynes and

Wagner (1982) and 20-35 kcal.mole "1 by Bockhorn et al. (1984). Different methods of
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selecting the flame temperature may account for the different values of the activation

energy (Bockhorn et al., 1984). The final volume fraction was found to depend on the

fuel type, stoichiometry, pressure, and maximum flame temperature (Haynes and

Wagner, 1982; Bockhom et al., 1984).

The prirnary growth species has been found to be acetylene (Harris and Weiner,

1983a; 1983b), although diacetylene may contribute up to 10 to 15% of the growth (Harris

and Weiner, 1984). Acetylene and methane are the most abundant hydrocarbons found

beyond the oxidation zone in fuel-rich flames and they are found in excess of equilibrium

(Harris and Weiner, 1983a; Bittner and Howard, 1982). Methane may contribute to

surface growth, but not significantly, since its concentration undergoes little depletion in

the post-flame zone (Harris and Weiner, 1983a). In the region of the flame where particle

inception and surface growth overlap, PAHs may also contribute significantly to surface

growth (Harris and Weiner, 1988; Frenklach and Wang, 1990). Lam, Howard, and

Longwell (1988) identified tar species as contributing to surface growth in the early stages

of soot formation in a jet-stirred/plug-flow reactor. These tar species are large molecules

with molecular mass in the range from 200 to 800 amu, similar to large PAHs.

The mass growth of soot by acetylene addition is described by the empirical

relationship (Harris and Weiner, 1985)

dfv
p, .--_ = k(t) . S(t) . [C2H 2] (2.6)

where k(t) (gm.cm2.secl.molecules |) is the first order rate coefficient for surface growth,

S(t) (cm 2) is the surface area of the soot particles, and [CaH2] (molecules-cm 3) is the

acetylene concentration. Harris and Weiner (1983a; 1983b) determined from their laser

scattering-extinction measurements of soot in ethylene/oxygen/argon flames that the total

soot surface area, S(t), remained constant throughout the flame. Coagulation reduced the

total surface area, while surface growth increased the total surface area, so that the soot
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surfacearea remained constant and could be set equal to the soot surface area at particle

inception, So. The acetylene concentration also remained constant in the post-flame

regions of these sooting flames (Harris and Weiner, 1983a; 1983b). The decay of the

surface growth rate with time is then caused by a decay of the growth rate coefficient with

time. This decay can be accounted for by including an exponential decay term in the f'wst

order rate coefficient (Dasch, 1985). When this decay and the constancy of the soot

surface area are included, the mass growth rate from Eq.(2.6) can be written as (Harris,

1990)

dfv
p, .-_- =/co- exp(-t/z) • So- [CzH2] (2.7)

where ko (gm-cm_'sec'm'molecules '') is the growth rate coefficient at the end of the particle

inception zone and z (sec) is a time constant for the f_t order exponential decay.

Equation (2.7) successfully describes mass growth using very similar values of ko for

ethylene flames at different stoichiometries and temperatures (Harris and Weiner, 1983b),

ethylene/toluene flames (Harris and Weiner, 1984) and methane flames (Ramer et al.,

1986). The agreement among the rate coefficients for these different flames suggests that

the growth process is similar not only for these flames, but probably for all premixed

flames (Harris and Weiner, 1984; Ramer et al., 1986).

Specific surface growth rates (l/S.dfv/dt) were observed to be similar for a series of

sooting premixed ethylene/oxygen/argon flames (Harris and Weiner, 1983a; 1983b).

Thus, the more heavily sooting flames produced more soot because more surface area was

available for growth reactions. This dependence of the growth rate on surface area was

challengvd by Wieschnowfl_y, Bockhom, and Fetting (1988) who measured similar

surface growth rates in unseeded and seeded flames at the same flame conditions. In the

flames seeded with cesium chloride, coagulation was suppressed so that surface growth
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could increase the soot surface area to two to three times that of the soot in the unseeded

flames. The similarity of the surface growth rates in the unseeded and seeded flames

implied that the rates could not depend directly on the particle surface area.

Harris (1990) and Woods and Haynes (1991) have proposed that surface growth

instead depends on the number of active surface sites for the addition reactions. The mass

growth of the particles can then be expressed as

dry
p, .--_- = k,, . N,,(t) . [C2H21 (2.8)

where k_, (grn-sec'l.molecules _) is a rate coefficient per active site for acetylene addition

and N,,(t) is the number of active sites as a function of time. The decline in the surface

growth rate is then modelled as an exponential decay in the number of active sites by

N,,(t) = N °. exp(-//x) (2.9)

where N° is the number of active sites leaving the inception zone (Harris, 1990). Woods

and Haynes (1991) have developed a similar expression.

The active sites are thought to be mobile on the particle surface and regenerated by

the surface growth process, since their number is not affected by coagulation and surface

growth (Harris, 1990; Woods and Haynes, 1991). Harris (1990) proposed that the active

sites are edges or defects in the graphite-like structure of the particle that are lost through

a temperature-dependent annealing process. Thus, growth stops at long times because the

reactivity of the particle declines. Comparing Eqs. (2.6) and (2.7) with Eqs. (2.8) and

(2.9) and considering the similarity of ko amongst premixed flames, Harris (1990)

concluded that the number of active sites per unit surface area (N_/S °) leaving the particle

inception zone was the same for all flames.

The empirical equations for surface growth, Eqs. (2.7) and (2.8), can be written in

the form of Eq. (2.5) (Dasch, 1985), i.e.,
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d/*-!.
dt z

where the _ constant is related to the phenomenological rate coefficient by k, s = 1/'_.

Exlm_ions for the final volume fraction in terms of the initial surface area or the initial

number of active sites can be determined by integrating Eq. (2.7) to give (Dasch, 1985)

fv = fo + ko" [CsH_ "So. "c. i:)_l (2.1 la)

or by integrating F.,qs. (2.8) and (2.9) to give (Harris, 1990)

fly-fv ° +k,,. [C.aH2]- N °. 'c. p;t (2.11b)

where fv° is tit¢ vol_nac _tion leaving the inception zone. Since the initial volume

fraction is small, the final volume fraction of soot produced depends on the number of

active sites (or the surface at_a) leaving the inception zone.

Frenldach and Wang (1990) have developed a detailed kinetic model for surface

growth that is described by the following reactions:

C_ot-H + H 6-) Coot. + H2 (R1)

Coot" + H --> C_or- H (R2)

C_or" + C2H2 -') C_,,- H + H (R3)

C,ooe"+ O2 --) Products (R4)

C_-H+ OH , Products (R5)

where C.,.a--H represents an armchair site on the surface of the soot (Fig 2.2a) and Cu_.

is a radical site on the surface of the soot (Fig. 2.2b). In this model, the radical sites are

activated by a reaction with hydrogen atoms at the soot surface and thus the number of

radical sites depends on the hydrogen atom concentration. Acetylene adds to the soot

surface at a radical site. Oxidation of the soot proceeds by reaction of O_ with a radical

or OH with an armchair site. Their numerical simulations of premixed sooting flames
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showedthat the decline in surface growth rate was caused by a decline in hydrogen atom

concen_ation. The rate of surface growth was found to be similar to that of Harris and

Wciner (1983b). Also, they found that the rate of oxidation of the soot by Oz and OH was

not significant in the post-flame zone.

-H
+H,

Soot

(*)

H_c/H

II

• h //'c_'H

_ +C.H.(-H)// \\

$ooi Sool

(b) (©)

Figure 2.2 Detailed kinetic mechanism for surface growth. Armchair site (a) on the

surface of the soot particle reacts with hydrogen atom to generate a radical

site (b). Acetylene reacts with the radical site to add to the soot particle (c).

(Frenldach and Wang, 1990)

The detailed kinetic mechanism for surface growth is similar to a model for the

growth of PAHs discussed in Sec. 2.5.2. Surface growth by addition of acetylene to

radical sites on the surface of soot is supported by Howard (1990). He investigated the

reaction kinetics of acetylene addition to PAHs and to carbonaceous solids at radical sites

and determined that the predicted reaction rate coefficients agreed with experimentally

observed rates of growth.

The surface growth of soot can be successfully described by the addition of carbon

to radical sites with either the detailed kinetic mechanism (R1-R5) or by the above

empirical expressions (Eq. 2.6 or Eq. 2.8). The exact cause of the decay in surface growth
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rateis still in question. Harris (1990) suggests that the reactivity declines because of

temperature dependent annealing and not because of gas-phase chemistry. Frenklach and

Wang (1990) suggest that the reactivity declines because of the gas-phase chemistry,

specifically because of a decline in the hydrogen atom concemration. In either case, the

study of surface growth suggests that it is the number of particles formed in the inception

zone which determines the final volume fraction of soot formed.

2.5 Particle Inception

Our under.rating of coagulation and surface growth points to the particle inception

stage as being the determining factor in the amount of soot generated in premixed flames.

Particle inception is a molecular growth process that starts from the fuel molecules and

leads to the fwst particles observed in the flame. Although much research has been

devoted to the study of particle inception, the process is still not clearly understood.

Progress in understanding the process has been made through a combination of

measurement and modeUing. Measurement is complicated by the number of species

involved in the growth process and also by the difficulty in measuring the important

radicals associated with the growth process. Modelling is also complicated by the number

of species, but also by the uncertainties in the thermochemical properties of the species

and in the kinetic rates of the controlling elementary reactions. As a result, the

understanding of particle inception has been advanced not only by studies in premixed

flames, but also by studies in shock tubes where the chemical kinetics can be studied in a

simpler environment and specific reactions can be isolated.

The current understanding of particle inception can be modelled as occurring in

three steps (Frenklach and Wang, 1990). The f'LrSt stage is the pyrolysis of the fuel

molecules and the subsequent reactions to form single-ring aromatic species (for

example, benzene and phenyl radical). The second stage is the formation of larger

polycyclic aromatic hydrocarbons from the single-ring aromatics through addition
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reactions. These larger PAHs may then coagulate to form a particle in the third stage.

Coagulation and growth of the PAHs may proceed simultaneously. These stages in

particle inception - aromatic inception, growth, and coagulation - arc similar to the soot

particle processes - particle inception, surface growth, and coagulation. The three

particle-inception steps are discussed in reverse order beginning with coagulation of

PAHs, followed by the growth of PAHs and finally the formation of single-ring

aromatics. We then discuss the role of the H2-O2 system radicals in these processes.

2.5.1 PAH Coa_lation

Formation of soot particles by the coagulation of large molecular weight species has

been proposed by Harris and Weiner (1988). Their qualitative model of particle inception

considered three size classes of high molecular weight molecules: class A molecules with

a size on the order of 1000 amu, class B molecules with sizes ranging from 500 to 1000

ainu, and class C molecules with a size less than 500 ainu. These three classes of

molecules form in the oxidation zone of the flame through formation and then growth of

the aromatic species. Incipient soot particles are formed from the collisions of class A

molecules which have high sticking coefficients. Incipient soot particles are defined to

have a size of approximately 2000 ainu, corresponding to a 1.5 nm diameter particle. This

is the size of the smallest particle observed by Wersborg, Howard, and Williams (1973).

Class B and C molecules do not stick upon collision because their sticking coefficients

are too smaU. In the oxidation zone, these molecules are either oxidized or continue to

grow through addition reactions.

Particle inception ceases when the class A molecules are depleted which coincides

with the drop in 02 concentration. Growth rates of the class B molecules are not high

enough to produce more class A molecules. Instead, they are consumed by coagulation

with the incipient soot particles and contribute to the rapid initial growth of the particles.

27



Particle surfac_ growth by acetylene addition dominates once the class B molecules are

consumed. The smaller class C molecules persist into the post-inception zone and may

either grow through addition reactions or coagulate with the soot.

This model of particle inception is supported by experimental observations of higher

molecular weight species and PAHs in flames. Absorption measurements by Weiner and

Harris (1989) in a premixed sooting ethylene flame show that the absorption at 900 nm

and 800 nm peaks in the oxidation zone and then declines rapidly within the inception

zone. They attributed absorption at these wavelengths to molecules of the class B size.

Absorption at shorter wavelengths, corresponding to absorption by smaller molecules,

persisted into the post-inception zone. This supports the hypothesis that Class B

molecules are depleted, while class C molecules arc not.

Measurements of higher molecular weight species with a mass spectrometer also

support this hypothe, sis. Bittner and Howard (1981) measured the rate of formation of

higher molecular weight material in both a benzene and an acetylene flame. They

measured species as a group with MW > 700 in benzene flames and MW > 1000 in

acetylene flames. In both benzene and acetylene flames, the high MW species peaked as

the PAH concentrations experienced a rapid decline. As Bittner and Howard (1981)

increased the equivalence ratio past the sooting point, the peak concentration of the high

MW material increased by 100. They found that the concentration peaks for benzene and

the high MW material were very sensitive to changes in equivalence ratio. Bockhom,

Fetting, and Wenz (1983) also noticed that the concentration of the larger aromatics

increased significantly as the equivalence ratio was increased.

More evidence to support this model of incipient soot formation by PAH

coagulation comes from the structure of soot particles. The elementary spheroidal

particles in the chainlike agglomerates are formed from about 104 benzenoid arrays,

sometimes referred to as crystallites, randomly oriented in spherical annuli around a
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center. These benzenoid arrays have a characteristic dimension of ~ 2 nm and contain on

the order of 100 carbon atoms arranged in 5 to 10 layer planes with a structure similar to

the layer planes of graphite (Palmer and Cullis, 1965; Haynes and Wagner, 1981; Ebert,

Scanlon, and Clausen, 1988). The model of soot as a collection of stacked benzenoid

arrays, essentially large polynuclear aromatic hydrocarbons, is supported by its X-ray

diffi'action patterns (Ebert, Scanlon, and Clausen, 1988).

Frenklach and Wang (1990) included coagulation of PAHs in their detailed kinetic

model of soot formation. They assumed a sticking coefficient of unity for PAH collisions.

Their numerical simulations of premixed sooting flames showed that the incipient

particles were formed by coagulation of PAHs, but the average size of the PAIl was only

20 to 50 carbon atoms (~ 240-600 ainu). Miller (1990) calculated dimerization rate

coefficients for PAHs and determined that coagulation rates of PAHs in flames became

significant when the PAH molecules exceeded ~ 800 amu. In his global soot formation

model, McKinnon (1989) considered the coagulation of PAHs as the collision between a

PAH molecule and an aryl radical (a PAH radical formed by abstraction of a hydrogen

atom). He used a sticking coefficient in the range of 0.2 to 0.4 to fit his measured profiles

of PAH concentrations and soot.

Thus, modelling and measurements of sooting flames supports PAH coagulation as

the mechanism for formation of incipient particles. However, the size of the PAH

necessary for coagulation and the sticking coefficient remain uncertain.

2.5.2 PAH Growth

The high molecular weight PAHs in sooting flames are thought to be formed from

smaller PAHs by the sequential addition of aromatic rings. Frenklach et al. (1986) have

proposed that the mechanism for the addition of aromatic rings proceeds through a
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sequence of hydrogen abstractions from the aromatic, addition of acetylene, and then ring

closure. Bittner and Howard (1981) and Bockhom, Fetting, and Wcnz (1983) have also

proposed similar ring growth mechanisms through the addition of acetylene.

The general steps in the mechanism proposed by Frenklach ct al. (1986) are given

by the following set of reactions:

A i-H + H ¢¢ A i. + H 2 (R6)

Ai. + H --_ A_-H (RT)

A i • + C_ ¢O A i -Call + H (R8)

Ai- C2H + H ¢:_ A i -CzH" + H 2 (R9)

A,-C2H. + C.zH2 ¢:_ A_C.zHCaH 2 • (R10)

AiC2HC2H2. -_ Ai+ I • (Rll)

where A_ telx_sents an aromatic species with i fused rings and Al. represents the

corresponding aryl radical. The steps in this mechanism are shown in Figure 2.3. The

reaction of atomic hydrogen with the aromatic species removes a hydrogen atom to create

an aryl radical. Acetylene adds to the aryl radical to form an ethynyl substituted aromatic

species. A second hydrogen abstraction by atomic hydrogen creates an ethynyl

substituted aryl radical which subsequently adds a second acetylene molecule. The two

ethynyl groups close to form an aryl radical with an additional aromatic ring. Other routes

to add aromatic rings or five-membered rings have a similar mechanism and depend on

the slrucUa_ of the aryl radical. Howard (1990) notes that hydrogen abstraction can also

occur by reaction with atomic oxygen and the OH radical, but that their contributions can

be scaled to that of atomic hydrogen by partial equilibrium.

Stein and Fahr (1985) identified the most stable isomers of the possible PAH species

at 1500 to 3000 K based on their thermodynamic equilibrium with acetylene and

hydrogen. Under these conditions, condensed PAH structures were favored
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(a) I (b) (c)

Figure 2.3 Detailed kinetic mechanism for PAH growth. Hydrogen abstraction from

the initial PAH (a) generates an aryl radical (b). Acetylene reacts with the

radical to add to the PAH (c). A second hydrogen abstraction creates the

new aryl radical (d). A second acetylene molecule reacts with the radical

site to add to the PAH (¢). The two acetylenes cyclize to form an aryl

radical with an added ring (f). (Frenklach et al., 1984).

thermodynamically; moreover, their thermodynamic stability increased with the size of

the PAH. Thus, the formation of aromatics with an increasing number of rings proceeds

through these thermodynamically favored PAHs. The increasing thermodynamic

stability of the larger PAHs makes their formation by reaction (Rll) practically

irreversible and thus tends to displace the chain of reversible reactions (R6-R 10) towards

irreversible formation of larger PAHs (Frenklach et al., 1986).

Observations of PAH concentrations in sooting flames by McKinnon (1989),

Bittner and Howard (1981), and Bockhom, Fetting, and Wenz (1983) show similar trends

in PAH formation. The most abundant PAH species measured in flames appear to be the

stable isomers predicted by Stein and Fahr (1985). In particular, preference is given to

31



the fomcaion of substituted PAils. However, PAHs with a lower H content were

preferentially formed for compotmds with the same carbon number. Substituted PAH

mole fractions were about I00timeslewer than those for unsubstituted PAHs. McKinnon

(1989) observed that measured PAH species with five-membered rings and the existence

of ethyny| substituted napthaleee and acenaphthalene are consistent with the acetylene

atktttiza nzehaahn_

Me_tsof PAH concentration profiles show that one to four-ring PAHs form

rapidly ia the oxidation zeae and reach their maximum concentration at the end of the

oxidation _me befot'e the region of soot formation (Bittner and Howard, 1981; Delfau and

Vovelk, 1984). In ctanperison, the concentrations of larger PAHs decline sharply at the

end of _ oxidation zone anti then appt,oach a steady-state value or increase slowly in the

burned gases (Bockhora, Fetting, and Wenz, 1983). The largest PAHs such as coronene

do not show a la_ak, but iasteed increase rapidly within the oxidation zone and then more

slowly in the Imrned gases _ockhorn, Fetting, and Wenz, 1983; D'Alessio et al., 1972).

Benzen_ flames have peak PAIl concentrations that are 1 to 2 orders of magnitude larger

than that in alilphatic flames (Homann and Wagner, 1967; Bockbom, Fetting, and Wenz,

1983). _ eventual declb_ in PAIl concentration is also much larger in benzene flames

than ia atiphati¢ Ilames.

Frenkiach (1988) evaluated the factors that affect PAH growth with a lumped

kinetic model of a simplified version of the PAH growth mechanism (R6-R11). The three

re.action growth model consisted of reversible reaction (R6) and a reversible reaction

similar to (RS),

Ai" + C2I'I2 ¢:_ Ai-C2H2" (RSa)

and the im_e._ible reaction,

Ai-CqH2" + CaFI2 -* A,+_ + H (g12)
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The irreversibility of reaction (R12) allows a lumped kinetic model to be applied to model

the growth of Al up to an inf'mite size. Based on this model, Frenklach (1988) developed

a simple analytic expression relating the reaction rate coefficients, the species

concentrations, [H], [H_, [C2Hz], and the lumped species concentrations, ZIA, .],
i

Z[A,-CaH2 .], and Z[A_I. Frenklach (1988) determined that the rate of the initial PAIl
i i

formation (one or two-ring aromatics) controlled the total PAH concentration, E[A,], and
i

the rate of PAIl growth. The PAH growth was controlled by the superequilibrium of H

atoms at high temperatures. PAH growth at low temperatures in the presence of low

concentrations of H2 was proportional to the rate of hydrogen abstraction (R6), while at

high concentrations of Hz the growth rate was limited by the thermodynamics of hydrogen

abstraction and the rate of acetylene addition.

Mechanisms for the destruction or size reduction of large PAl-ls by oxidation and

pyrolysis are not well understood and have not been measured. Frenklach et al. (1986)

found that oxidation reactions were needed to properly fit measured soot yields in a shock

tube. Their modelling showed that the oxidation of aromatic radicals by O2 was

significant, while abstraction reactions and oxidation reactions by OH radicals and O

atoms were not. McKinnon and Howard (1990) suggest that oxidation of PAHs can occur

by radical recombination of an aryl radical and an OH radical. Howard (1990) analyzed

destruction rates of PAHs in a sooting benzene flame and estimated that the OH reaction

efficiency was 0.15 to 0.20 carbon atoms removed per collision of a PAH and an OH

radical. McKinnon and Howard (1990) note that the O2 concentration is much greater

than the OH concentration in the early regions of the flame and thus oxidation by O2 will

be dominant even though its reaction efficiency is much less than that for OH radical

oxidation. McKinnon (1989) concludes that the pyrolysis of the large PAHs at high

temperatures (1800 to 2000 K) must also occur to account for PAH destruction in his
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bcmzen¢ flames. He modelled the unimolecular pyrolysis reaction as the loss of

two carbon atoms from the PAIl, which is essentially the reverse of the acetylene addition

mechanism.

A related issue to the role of PAIl growth in panicle inception is the formation of

fullerc_s (closed spherical carbon dusters with a geodesic structure) and their possible

role in soot formation. Following the initial discovery by Kroto et al. (1985) of C60 and

the identification of the truncated icosahedron as its structure, the same research group

(Zhang et al., 1986) proposed that C._ and other spheroidal carbon clusters might grow

through addition of carbon to form successive shells around the initial cluster and thus

grow into the spheroidal soot particles observed in flames. Frenkiach and Ebert (1988)

rebutted this tn'oposal on the basis that the kinetics and thermodynamics of PAH growth

did not favor a route through growth of the spheroidal carbon clusters. However,

fullerenes are now manufactured by passing high electric currents through graphite rods

in a vacuum to generate a soot from which fullerenes are extracted (Huffman, 1991).

Fullerenes have also been observed to form with soot in premixed benzene/oxygen/argon

flames by Howard et al. (1991). They measured the yields of two fullerenes, C6o and C70,

in the soot extracted from the premixed benzene/oxygen/argon flames at different

pressmes and flame temperatures. The fuUerene yields increased with increasing

temtammm_ and decreasing pressure, both factors which tend to decrease soot yields. In

addition, fullerenes were deteoed in nonsooting flames. These observations led Howard

et al. (1991) to conclude that the mechanism for fullerene formation may be substantially

different from that for soot formation.

The modelling of PAH growth and the measurement of PAH concentrations in

premixod flames suggest 0_ PAils grow through a series of increasingly

thea_cdymm_ally stable, cou6enaed PAils by a sequence of hydrogen abstraction,

acetylene addition, and ring closure. The concentration of H atoms has a significant effect
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onthe growth rate. Both the total concentration of PAHs and their rate of growth depends

on the formation rate of the initial one and two-ring aromatics. The details of the

mechanism are uncertain because the addition reactions and the oxidation reactions have

not been measured for large PAHs and have only been extrapolated from the analogous

single-ring aromatic reactions.

2.5.3 Formation of Aromatic Hydrocarbons

The fast step in soot formation is the formation of the initial one-ring aromatic

species, which serve as the basis for PAH growth. The formation of the fast aromatic

rings may be the thermodynamic bottleneck in the formation of soot (Frenklach et al.,

1984), and thus it may also be the rate-limiting step. Frenklach (1988) noted that

formation of the one and two-ring aromatic species determines the total concentration of

the PAHs formed in a flame. Thus, to understand or model soot formation requires an

understanding of the mechanisms through which aromatic species are formed in flames,

and also an understanding of how they may be destroyed through either oxidation or

pyrolysis.

Our understanding of how aromatic species are initially formed is based upon

measured species concentrations in flames and the numerical simulation of those flames

with an elementary chemical kinetic reaction mechanism. The reaction pathways to form

aromatics are identified from the numerical simulation by calculating the fluxes of species

through the reactions (reaction pathway analysis) and the sensitivity of the species

concentrations to the individual rate coefficients (sensitivity analysis). The identified

pathways for the formation or destruction of a species depend on the reactions included

in the reaction mechanism. Thus, reaction mechanisms that include different reactions or

reaction rate coefficients may identify different pathways for the formation of a species

while simulating the same flame conditions.
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A number of mechanisms for the formation of benzene from smaller hydrocarbons

htv© been propose. Westmottland et al. (1989) identified 18 proposed routes in their

survey of the limrmme. However, they noted that only five studies had made quantitative

comparisons between the proposed reaction mechanism and data measured in flames or

shock tubes.

Westmoreland et al. (1989) identified the primary reactions that formed benzene in

a 20-tort sooting C.J_O2/Ar flame. The two primary reactions were

n-C4H, + CaI-I_ --+ c-C+H s , (R13)

the reactiea of l-lmmn-3-ynyl (C4H3), sometimes called the vinyl acetylene radical, and

acetylene (Call2) to form the phenyl radical (c-C6H5), and

n-C4Hs + C_H 2 --+ c-C+H_ + H , (R14)

the reaction of 1,3-butadienyl (C4Hs) with acetylene to form benzene (c-C+l-_ and an H

gtotn.

These two reacfiotts are similar to the overall mechanisms identifted as the main

routes to form benzene by Harris, Weiner, and Blint (1986) in ethylene flames, Frenklach

et al. (1986) and Bastin et al. (1988) in acetylene flames, and by Colket (1986) in the

shock tube pyroly._is of acetylene. Reaction (R13) was identified as the main route at high

temperatures (> 1000 K), while reaction (R14) was the main route at lower temperatures.

However, the reactions, (RI3) and (R14), proposed by Westmoreland et al. (1989)

proceed directly from the reactants through chemically activated intermediates that react

uninmlecularly and rapidly to form the cyclized structures. The mechanisms proposed by

the other researchers proceed through thermalized intermediates which then subsequently

cyclized. For example, the equivalent reactions for reaction (R13) as used by Frenldach

et al. (1986) were the formation of linear Cd-Is,

n-C4H3 + C_H2 --* n-C+H5 , (R13a)
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followed by the cyclization reaction,

n - CtH 5 -9 c - C6H 5 (R13b)

Westmoreland et al. (1989) noted that the other investigators considered their reactions to

be in the high-pressure limit and thus they did not properly account for the falloff in their

reaction rate coefficients. Frenldach and Wang (1990) subsequently used the rate

coefficient data of Westmoreland et al. (1989) in their detailed chemical kinetic

modelling of soot formation.

The recombination of propargyl radicals (C3H3) may be a more likely route to form

benzene than reactions (R13) and (R14). The recombination of propargyl radicals was

identified as a likely route by Alkemade and Homann (1989), Wu and Kern (1987), and

Kern, Singh, and Wu (1988) to explain the rapid rate of benzene formation in their

experimental observations. The recombination of propargyl radicals to form benzene is

given by the overall reactions

C3H3 + Call 3 -9 c-C6H6 (R15)

or

C3H 3 + Call 3 -9 c-C6H 5 + H (R16)

The intermediate steps in these reactions and their rate coefficients are not clearly known

and are being investigated by a number of researchers (Miller and Melius, 1992; Thomas,

Communal, and Westmoreland, 1991; Kern, Xie, and Chen, 1991; Tsang and Walker,

1991; Pfefferle, Boyle, and Bermudez, 1991). Stein et al. (1990) have proposed that

propargyl recombination forms 1,5-hexadiyne (CtH6) which then rapidly cyclizes to form

1,2-dimethylene cyclobutene. Benzene and fulvene are then the products of hydrogen

migration within 1,2-dimethylene cyclobutene. They found that the product ratio of

benzene to fulvene increased with temperature in their flow reactor studies of

1,5-hexadiyne pyrolysis. They also concluded that the reaction was almost irreversible,
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becauseit washighly exotl_rmic(AH= 100 kcal). Stein et al. (1990) calculated the

fzmmfion rate of benzene from the data of Westmoreland et al. (1989) and determined

that the _I recombine'on reactions matched the data better than reactions (R12)

and 01tl-_J_ Miller and Melius (1992) identify the recombination reactions of propargyl

(R15) and (R16),_ to be the most likely route for the formation of benzene and

phemyL _ note that the route through n-C4H3 (R13) is less likely, because its isomer,

i_ is more stable and thus the concentration of n-C4H3 will be too small to account

for ti_ abserced fonmtiaa _ benzeae.

meg°aanisms for tim oxidation and pyrolysis of benzene are almost as uncertain

as tlmse gorits fim_aKio_ and a_e still being investigated. Brezinsky (1986) reviewed the

general mechanism for _n of aromatic hydrocarbons and identified the general

pathways for benzene and_ phenyl destruction. Bittker (1991) and Chevalier and Warnatz

(t99t) &. eloped detailed mechanisms for the oxidation of benzene. Bittker (1991)

found qualitative agreemeat between his predictions and shock tube ignition delay data,

but quantitative agreement over the full range of conditions would require further

lmowtedge of the important reactions in the mechanism. Chevalier and Wamatz (1991)

the reactions of phenyl _dth oxygen and the reaction of benzene with O atoms

as needing fta'ther study to inga'ove their mechanism,

Vauglm, Howard, and Loagwell (1991) identified the main pathway for benzene

is their jet-stirredreactor as hydrogen abstraction by H atoms and OH radicals

to form phenyL i.e.,

C__H6 + H ¢, C_Hs + H (g17)

and

+ OH _ C_Hs + H20 (R18)
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The phenylradicalmaythenbe destroyed through reactions with oxygen or the OH

radical to form phenoxy radical (Bittker, 1991; Chevalier and Warnatz, 1991; Miller and

Melius, 1991), i.e.,

C+H5 + 02 ¢=_ C+HsO + O (R19)

C+H5 + OH ¢_ CtH_O + H (R20)

Phenoxy may then decompose to form cyclopentadienyl and carbon monoxide, i.e.,

C6H50 ¢:_ CsH 5 + CO (R21)

The further decomposition of cyclopentadienyl (CsH_) is not well understood, but it may

react with either an O atom or an OH radical through a radical-radical reaction, giving the

possible end products, C4H5 and CO (Brezinsky, 1986). At high temperatures, phenyl

may decompose unimolecularly to form 1-buten-3-ynyl and acetylene,

C+H 5 ¢_ C4H3 + C2H 2 (R22)

which is the reverse of reaction (R13) for the formation of phenyl.

The amount of benzene (or phenyl) formed depends on the difference between the

formation rate and the oxidation and pyrolysis rates. The benzene formation rate depends

on the concentrations of the molecular intermediates material to its formation. The

concentration of these molecular intermediates, C2H2, C4H3, C4Hs, and C3H3, in reactions

(R13) to (R16) will depend on the initial fuel structure and also on the local temperature

and species concentrations. As for the formation of benzene, the hypothetical reaction

pathways that form these intermediates will depend strongly on the reaction mechanism

used to simulate the flame structure.

The comprehensive reaction mechanisms developed to model the formation of

aromatics for the rich combustion of ethylene and acetylene are described in Section 2.6.

Flame simulations with these mechanisms suggest that in the pre-flame zone, the primary
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rmc_on is the reaction of the fuel molecule with a hydrogen atom, which has diffused

from the maina_m_tion zone. In an acetylene flame, the reaction of acetylene with H atom

creates the vinyl radical (Frenklach and Warnatz, 1987),

c2P + n (Pa3)

In an ethylene flame, hydrogen abstraction from ethylene creates the vinyl radical (Harris

et al., 1986),

C2I-I4 + H ¢:_ C2H3 + H 2 , (R24)

which can also occur by reaction with the OH radical,

Call 4 + OH ¢_ C.2H3 + H20 (R25)

Reaction of the vinyl radical with acetylene by

C H3+ ,

forms the butadienyl radical, the intermediate to aromatic formation at low temperatures

(Frenkl_h and Warnatz, 1987).

The vinyl radical may be oxidized by reaction with oxygen to decompose into

fonmld&yde and the formyl radical,

C_H 3 + 02 _ CI-120 "4- _]CO (R27)

The products of this reaction decompose further to form the major combustion products,

CO and CO2, and are also the major source of H atoms (Frenklach and Warnatz, 1987;

Harris et al., 1986). The formation of the primary radicals in the main reaction zone occur

through the two reactions (Frenklach and Warnatz, 1987),

H + O 2 _:¢ OH + O (R28)

and

CO +OH ¢, CO 2+ H (R29)
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The reaction of acetylene with either an OH radical or an H atom forms the ethynyl

radical,

C2H2 + OH ¢:_ C_H + H20 (R30)

C2H2+ H ¢:_ C2H + H 2 , (R31)

which can then react with acetylene,

czn _ + C_H ¢:_ C4H3 , (R32)

to form 1-buten-3-ynyl, which is the intermediate to aromatic formation at high

temperatures (Frenklach and Warnatz, 1987; Harris et al., 1986).

Miller et al. (1990) and Miller and Melius (1991; 1992) note that the dominant

mechanism for the removal of acetylene is by reaction with an O atom through the

reactions to form ketyl and H atom,

C2H2 + O ¢_ HCCO+ H , (R33)

and to form methylene (triplet) and carbon monoxide,

C2H2 + O ¢:_ 3CH 2 + CO (R34)

The further reaction of ketyl with hydrogen forms singlet methylene,

H + HCCO ¢:_ ICH2 + CO (R35)

Singlet methylene plays a significant role in the formation of higher hydrocarbons

through its reaction with acetylene,

ICH2 + C_H2 ¢_ C3H 3 + H , (R36)

to form the propargyl radical, which is the intermediate for the formation of aromatics by

the previous alternate route.

The difference between the mechanism of Miller et al. (1990) and the mechanisms

of Frenklach and Warnatz (1987) and Harris et al. (1986) illustrates how the mechanism

itself can influence the interpretation of species profiles and the possible reaction
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l_thways. The uncertainties in these mechanisms arise because the elementary reactions

associated with the mdieafl in_mr_iates and also their thermochemical properties are still

not fully or ac_m'_gly known. These uncm'tainties require further investigation both by

modelling Jmd by experimental measurement before a complete detailed mechanism of

l_Wdcie im_pfion can be form_ated.

2 s.4 of n._-o:Sv,m. R  :als

The species in the H2-O_ reaction mechanism, particularly the radicals H atom, O

atom, and OH radical, have significant roles in hydrocarbon combustion. They are also

h_ to play key roles in the formation of soot. These species are critical in the

abstraction reactions that from hydrocarbon radicals for further molecular growth or

oxidation. They are also involved in the oxidation reactions competing with the growth

processes.

The ini_al reactions of the hydrocarbon fuel in a rich premixed flame are dominated

by hydrogen abstraction by the H atom, which has diffused from the main reaction zone

into the ia'e-flan_ zone (Frenklaeh and Warnatz, 1987; Harris et al., 1986). The hydrogen

abstraction by the H atom is a significant reaction in the creation of hydrocarbon radicals

for furth_ growth. Frenidach and Warnatz (1987) find that aromatic ring growth in their

model is correlated with the overshoot of equilibrium by H atoms. The overshoot, f, is

defmedas

[HI 1
f = (2.13)

[H2] r,q

where K,_ is the equilibrium constant for the reaction H2 + M _ H + H + M. The

overshoot in the reaction zone is caused by the generation of H atoms through reactions

such as (R29) aad from _ lta'oducts of (R27). Aryl radicals are significant in the growth

reactimts. The_ conc, cnlnM_on can be related to the H atom concentration through

eqailibmm of the abstraction reaction Ai + H ¢:_ At" + H2, although OH radicals and O
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atomsmay also contribute to the aryl radical formation through abstraction reactions

(Howard, 1990). The decline in the rate of surface growth is thought to be caused by the

drop in H atom concentration in the post-flame gases (Frenklach and Wang, 1990).

Reaction with molecular oxygen is thought to be the major oxidation route for the

aromatic species (Frenklach et al., 1986). McKinnon and Howard (1990) note that O2 is

the dominant oxidizer in the early regions of the flame where the O: concentration is high,

but the OH radical becomes the significant oxidizer in the post-flame region. Harris et al.

(1986) note that, in their flames, the concentrations of O atom and OH radical are low and

the flame temperatures are low, so that 02 and HO2 are more important oxidizers.

Molecular oxygen may also enhance soot formation. Harris (1986) noted that particle

inception stopped when the 02 concentration dropped below 1% and suggested that 02

may be important in forming species leading to soot formation. In particular, the 02

concentration strongly influences hydrogen superequilibrium. Hura and Glassman

(1987) found that oxygen addition to ethylene in the fuel side of a counterflow diffusion

flame increased the formation of soot by increasing the radical pool. Frenklach et al.

(1986) found in their shock tube studies of acetylene oxidation that oxygen addition

resulted in rapid generation of H atoms, thus increasing the hydrogen superequilibrium

and molecular growth reactions.

The OH radical is involved in both abstraction and oxidation reactions, although

these reactions tend to occur later in the flame than those with H atoms and Oz, because

the OH concentration peaks later (McKinnon and Howard, 1990). The OH concentration

profiles decline in the region of particle inception. Measurements of the OH

concentration by Millikan (1962) and by Lucht, Sweeney, and Laurendeau (1985) show

that the OH concentration peaks near the end of the oxidation zone and then declines to

its equilibrium value before the visible emission of soot. Comparison of OH profiles in

nonsooting and sooting flames showed that the peak OH concentration decreased as the
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equivalence ratio increased, but no significant change in the profile shape occurred in the

transition from a nonsooting to sooting flame. Millikan (1962) proposed that soot

precursors were oxidized by the OH radical in regions where its concentration declined

and soot formed only when the OH radical had reached its equilibrium level.

The reaction of acetylene with O atom is the main route for the oxidation of

acetylene (Miller etal., 1990). This scavenging reaction reduces the O atom

concentration as equivalence ratio is increased in rich flames, because the C2H_

concentration increases with increasing equivalence ratio. Removal of O atoms decreases

both the OH radical and H atom concen_ations as equivalence ratio is increased, owing

to the fast equilibrium reached in the H2-O2 reactions (Burgess and Langley, 1991).

Because of the rapid equilibration among the radicals of the H2-O2 system, measurements

of a single radical profile may provide a measure of the other radicals in the system.

2.6 Modellinf of Soot Formatipn

Modelling of soot formation may take two approaches. The fast approach is to

analyze the mechanism of soot formation in detail for simple flow systems. The second

approach is to then take that basic understanding and apply it to the prediction of soot

formation in more complicated flow systems. Detailed chemical kinetic modelling takes

the first approach by modelling the elementary reactions of soot formation and evaluating

the model against experiments in simple flow systems. Global modelling takes the

second approach by modelling soot formation with global reactions and then using those

models, for exan_le, to predict sooting tendencies of fuels or to predict soot formation in

complex flow systems. We fast discuss detailed chemical kinetic models for soot

formation and then the global models.
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2.6.1 Chemical Kinetic Modelling of Soot Forrrl_tiQn

Since the formation of soot has been hypothesized to begin with the formation of

aromatics, the development of detailed chemical kinetic models describing soot formation

has been through reaction mechanisms which describe the formation of single-ring

aromatic species from the rich combustion of simple fuels such as acetylene and ethylene.

Further PAH growth and formation of soot particles can be modelled by a combination of

global reactions for growth and oxidation of PAHs and detailed numericai simulations of

particle coagulation and surface growth.

Frenklach and Wang (1990) have developed a detailed kinetic model for soot

formation in laminar premixed hydrocarbon flames. The basis of their model is a set of

337 elementary reactions with 70 species that described the oxidation and pyrolysis of

acetylene, including the formation of aromatic species and the growth of PAHs up to the

size of coronene. The acetylene combustion model was developed from an initial study

of the shock-tube pyrolysis of acetylene (Frenklach et al., 1984) which was subsequently

refined to model the shock-tube oxidation of acetylene (Frenklach et al., 1986) and then

adapted to model laminar premixed acetylene flames (Frenklach and Warnatz, 1987).

Their approach to developing the mechanism was to begin with a comprehensive set of

reactions describing the possible reaction pathways. Thermochemical parameters of the

PAH species and some of the hydrocarbon radicals were estimated based on the data of

Stein and Fahr (1985). Estimates of the reaction rate coefficients were either based on a

known rate from a prototype reaction or based on upper limits from collision theory. The

mechanism was then evaluated against the shock-tube or flame measurements. The size

of the mechanism was reduced by identifying significant and insignificant reaction

pathways through a reaction pathway analysis and a sensitivity analysis.

The full range of soot formation in a flame was modelled in two steps. In the first

step, the elementary reaction mechanism was used to obtain profiles of C2Ha, Ha, H, 05,
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OH,H20,and PAH for input to a global mechanism in which PAH and particle nucleation

and growth were modeUed. PAH growth was modelled with reactions (R6) to (R11)

(St.. 2.5.2). The PAIl were allowed to coagulate with unity sticking coefficients to form

soot 'particles'. Surface growth of tim particles was modelled with reactions (R1) to (R5)

(Sec. 2.4). The method of moments was used to model particle nucleation, surface

growth, and coagulation.

The model used by Frenklach and Warnatz (1987), which modelled the formation

of large PAils, but not the further steps of soot formation, predicted the general shape and

relative concentrations of the measured species profiles, but could not reproduce correctly

the decline in aromatic concentrations. They suggested that further data on the oxidation

reactions of the aromatic hydrocarbons and of the hydrocarbon radicals was needed.

Frenidach and Wang (1990) modelled the flame data of Wieschnowsky, Bockhom, and

Fetting (1988) and Harris et al. (1986). They obtained good agreement with the particle

profiles, but they predicted a nucleation rate that decayed more slowly than the measured

rate. In Mdition, they were unable to reproduce the H atom profile and the particle profile

of Harris et al. (1986) unless they used the measured H, OH, H2, 02, H20, and C_H6

profiles as inputs to their particle formation model.

An alternate approach to that of Frenklach and Wang (1990) has been to develop a

more accurate description of the oxidation chemistry in rich combustion and of the

reactions leading to the formation of one to two-ring aromatics, but not to model the

formation of larger PAils, since the thermodynamic properties of PAHs can only be

estimated and their reaction rates and pathways have not been measured.

Harris, Weiner, and Blint (1988) developed an elementary reaction mechanism for

the fro'marion of two-ring aromatic species in sooting ethylene flames. An initial model

for rich sooting ethylene flames was assembled based on previous work and then tested

against _ured species concentrations in a rich nonsooting and a sooting ethylene flame
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(Harris et al., 1986). The tested mechanism, which included up to (24 species, was then

expanded to consider the formation of single-ring aromatics by adding appropriate

reactions with estimated rate coefficients. This mechanism successfully modelled the

measured ¢oncenU'ations of single-ring aromatic species. Their sensitivity analysis

showed that the single-ring aromatic concentrations were controlled by the estimated rate

coefficient for the reaction C4H3 + C2H_ -o C6Hs.

Bastin et al. (1988) refined the general hydrocarbon oxidation mechanism of

Warnatz (1984) with the addition of the C4 species reactions of Frenldach and Warnatz

(1987) to predict the formation of benzene in a lightly sooting 20-torr

acetylene/oxygen/argon flame. They used a molecular beam mass spectrometer

technique to measure stable species profiles in the flames and also those of the radicals,

OH, H, C-all, C-.2H3,C4H3, and C4H5. Their mechanism agreed well with their measured

species concentrations including the radicals. In particular, their predicted benzene

profile shape and position agreed with their measured benzene profile.

Miller etal. (1990) adapted their reaction mechanism to describe the rich

combustion of acetylene by comparison with measurements in rich, nonsooting 25-torr

acetylene/oxygen/argon flames at equivalence ratios of _ = 1.03, _ = 1.67, and _ = 2.0.

They measured CH, H, OH, and temperature with laser-induced fluorescence and stable

species with a quartz microprobe. They found good agreement between their predictions

and measurements for the _ = 1.03 and _ = 1.67 flames. For the @= 2.0 flame, they found

good agreement with the CH and OH profiles, but poor agreement with the stable species

profiles, possibly because the flame may have attached to the probe. They identified the

reactions of singlet methylene (_CH2) as important in the destruction of acetylene and the

formation of the propargyl radical (C3H3). The thermochemical properties of the ethynyl

radical (C2H) also had a strong influence on hydrogen abstraction from acetylene by OH
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_ H atom. Miller and Melius (1992) updated this model to include the formation

benzene and pheayl. They found good agreement between the predictions of their

model amt the data of Bastin et al. (1988).

McKimmn (1989) developed a nmnerical model to describe the nucleation phase of

soot fmmttioQ in a laminm- _ flame. His model begins with already formed

aromatic species and so it does not model the formation of one-ring aromatics. Four basic

precesses in the fomnuion of soot were modelled based on prototype reactions for a

aromatic. Mass growth of soot or PAH was modelled as acetylene addition to

la aryl radical site by using the rate of acetylene addition to phenyl radical. Oxidation of

soot or PAH was considered as a reaction of an aryl radical with either OH or 02. The

coagulation of PAH was modelled as the reaction between an aryl radical and a PAH. The

fourth process was the thermal decomposition of aryl radicals. The pyrolysis rate for

phenyl was used for single-ring aromatics, while the rate for larger PAils was scaled to

the size of the PAll. Tbe pyrolysis rate was set to zero for a PAH with a size of 1000 amu

or larger, because the pyrolysis of soot had been observed to be almost zero. The

concentration of aryl radicals at a point in the flame was determined from the local

hydrogen concentration and equilibration of the reaction, Aryl + H2 ¢:_ PAH + H.

The system of differential equations describing coagulation, growth, oxidation, and

pyrolysis were solved numerically using profiles of temperature, C2H2, 02, H2, H, and OH

as inputs. Reaction efficiencies and rate coefficients for the prototype reactions were

adjusted to make the model fit measured PAIl and soot profiles in sooting benzene

flames. Disagreements between the coefficients obtained by fitting the flame profiles

were am'ibuted to the possibility that the OH, H, and aryl radical profiles were not correct,

because they were inferred from other species measurements. Another possibility was

that a significant process had been left out of the mechanism. The results of McKinnon
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(1989)aresimilar to those of Frenklach and Wang (1990) in that all the reaction pathways

may not have been described and measured profiles of the OH radical and H atom may be

needed to model the formation process.

Review of the detailed mechanisms suggests that while they may be used to predict

formation of benzene and perhaps even soot, uncertainties still abound in the mechanisms

and in the thermochemical properties and reaction rates of the species in the reaction

pathway to benzene. Thus far, the detailed chemical kinetic models have been applied to

premixed laminar fiat flames for a limited selection of fuels, primarily acetylene and

ethylene. Comparisons between predictions and experimental data have been made for a

small set of sooting flames. Uncertainties in the both thermochemical properties and

reaction rate coefficients limit their application beyond the conditions of the original

study. The size of the mechanisms also precludes their use in more complicated flows

such as diffusion flames because of computational limitations.

2.6.2 Models for Incipient Soot Formation in Premixed Flames

Global models can be used to model soot formation over a wider range of fuels and

conditions and for more complex flows than detailed chemical kinetic models. Global

models for incipient soot formation in premixed flames relate the onset of sooting to

macroscopic properties of the flame such as the fuel mixture, temperature, and

equilibrium OH concentration. Incipient soot formation, the onset of sooting, soot limit,

and soot threshold are all synonyms found in the literature that describe the point at which

soot is f'rrst emitted from a flame. In a premixed flame, this point is described by the

fuel/oxidizer ratio at which the yellow emission of soot particles first becomes visible as

the ratio is increased from a nonsooting condition. The fuel/oxidizer ratio is specified by

either the critical equivalence ratio, _¢, based on the final combustion products, CO2 and
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H=O, the modified critical equivalence ratio, ¥,, based on the final combustion products,

CO and 1-120, or the critical carbon to oxygen ratio, (C/O),, which would be based on the

final products, CO and 1-12.

The global models for incipient soot formation are derived from the initial model

proposed by Millikan (1962). His model was based on the observation that soot emission

first occurs in a premixed fiat ethylene/air flame at a height where the OH concentration

has drOpla_ to its equilibrium value. He proposed that pyrolysis of the acetylene formed

in the flame produe_s soot precursors. These precursors are oxidized by the OH radical.

Any precursors remaining in the flame when the OH radical concentration drops to its

equilibrium value form soot. Thus, the competition between the pyrolysis and oxidation

reactions determines whether or not soot is formed. The point of incipient soot formation

occurs when the pyrolysis and oxidation reaction rates are balanced.

The global model, in its general form (Figure 2.4), is based on three assumptions:

(1) pyrolysis of the fuel forms soot precursors, (2) soot precursors form soot through

growth or nucleation, and (3)soot precursors are removed by oxidation. The rate

equation describing the formation of precursors for nonsooting flames can be written as

d[Pr] = k,-[Fu]- ko.,," [_]" [OH] (2.14)
dt

where Bar] is the precursor concentration, [Fu] is the fuel concentration, [OH] is the

hydroxyl concentration, kp is the rate coefficient for pyrolysis, and k, is the rate

coefficient for oxidation. The rate coefficients are expressed in the Arrhenius form as

,.=A.oxp[ 1

(2.15)

(2.16)
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where Ap and Ao_ are the pre-cxponential factors for pyrolysis and oxidation, Ep and E=

arc the activation energies for pyrolysis and oxidation, T is the tempexature, and R is the

gas constant. At the point of incipient soot formation, the oxidation and pyrolysis rates

arc balanced and thus the rate of precursor formation is zero. Then combining Eqs. (2.14),

(2.15), and (2.16) gives

f mul
In _ _--_) = R_ + In (_. [Pr]) (2.17)

where AE = Ep - Eo_ is the difference between the pyrolysis and activation energies. This

is the general form of the equation used to correlate critical equivalence ratios in studies

of incipient soot formation.

pyrolysis
FUEL 1:> PRECURSORS

[FU] kp [PR]

SOOT

."C%.

GASEOUS PRODUCTS

Figure 2.4 Global model for incipient soot formation.

Table 2.1 (adapted and expanded from Janssen and Senser, 1991) summarizes six

studies of incipient soot formation. The type of burner and fuels studied are listed along

with the assumptions for [Fu], [OH], and [Pr]. The correlation equation obtained by each

of the studies can be written as

AE +ln_ (2.18)
lnot = _-_
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where the form of the coefficients ot and 13depend on the assumptions for [Fu], [OH], and

[Pr], and are listed in Table 2.1.

The six studies successively refined the correlation for incipient soot formation. In

the first study, Millikan (1962) measured the OH radical and C2H2 concentrations in a

series of ethylene/air flames. He assumed that the pyrolysis of acetylene produced

precursors; thus [Fu] was set to the measured [CaH_]. The oxidation reaction was

considered to be f'trst order in [OH] at its post-flame equilibrium value.

Takahashi and Glassman (1984) examined incipient sooting behavior of 21 fuels on

a Bunsen burner. Their correlation was based on the assumptions that fuel concentration

was proportional to the modified equivalence ratio, ¥c, and that the oxidizer concentration

was proportional to the OH equilibrium concentration calculated at the adiabatic flame

temperature.

Harris, King, and Laurendeau (1986) examined incipient soot formation for five

aliphatic fuels at varying dilution ratios and maximum temperatures. They assumed that

the fuel concentration was proportional to the critical equivalence ratio, _bc,and that the

oxidizer reaction was fast order in both the precursor concentration and the equilibrium

OH concentration at the measured maximum flame temperature. They also noted the

impoPamce of basing the correlation on the measured maximum temperature rather than

the calculated adiabatic flame temperature.

Cummings, Sojka, and Lefebvre (1987) investigated the critical equivalence ratio

dependence on pressure in turbulent premixed flames. They used the model of Harris,

King, and Laurendeau (1986), but accounted for pressure effects by expressing [Fu], [Pr],

and [OH]._ in terms of the mole fraction.

Janssen and Senser (1991) measured incipient soot formation in flames of

methane-dichlommethane mixtures. They used the correlation equation in the form used

by Cummings, Sojka, and Lefebvre (1987), but noted that the model should be evaluated
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in terms of the primitive variables, Oc and T, rather than the parametric variables,

_'T/Xom,¢ and 1/T. The large variation of OH mole fraction relative to _c and T may give

deceptively good correlatio_ when using the pin.metric variables.

Jaassen (1991) f_ analyzed the global model and noted that previous work did

not account for dilution of the precursor concentration. He proposed a more realistic

model in which precursor formation depended on the unoxidized carbon present in the

post-fl_me zone. The equilibrium CO concentration was used as a measure of the

unoxidi_:! carbon in the post-flame zone because the CO is proportional to the

unoxidized carbon and dilution affects the CO and the unoxidized carbon in the same

way. This modification of the correlation accounted for the variation in incipient soot

formation with fuel structure, but still did not fully account for dilution effects.

These global models for incipient soot formation do not identify the precursor or its

nature. The models also do not include a rate of growth from precursor to soot particles

that compotes with the oxidation rate. The implicit assumption is that the growth rate is

slow compared with the oxidation rate and can be neglected (Janssen, 1991). In fact, a

negligible growth rate also may imply that the precursors are actually incipient particles,

because the model presumes that precursors form soot if they are not destroyed by

oxidation.

McKinaon (1989) evaluated a simple model for the critical equivalence ratio by

using the assamption that the soot precursors are large PAHs (~ 900 amu). Soot particles

are formed by the coagulation of the PAHs, while oxidation of PAHs competes with soot

formation by removing mass from the incipient particles. The critical equivalence ratio

occurs when the rate of coagulation is balanced by the rate of oxidation. Based on his

analysis, he calculated that a critical [PAH]/[OH] ratio would have to be exceeded for soot

to form. His model did not include a rate expression for the formation of the PAHs.
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The success of these global models in describing incipient soot formation for a

variety of fuels and fuel mixtures in spite of the complex chemistry of soot formation

suggests that a common mechanism may exist for soot formation. The detailed picture of

soot formation suggests that formation of the aromatic ring is the controlling step in soot

formation (Glassman, 1988). The further growth and coagulation appear to be similar for

all fuels, and depend on the concentrations of acetylene and selected radicals. Thus, the

effect of fuel structure on the concentrations of acetylene and the radicals (particularly H

atoms) may be portrayed in the global model through a combination of the equivalence

ratio or equilibrium CO concentration and the OH equilibrium concentration. The

aromatic species are thought to be oxidized primarily by molecular oxygen (Frenklach

and Wamatz, 1987), but the OH concentration may also provide a measure for this

oxidation rate as the OH and O2 are linked through fast reactions of the Hz-O2 system.

Further understanding and refinement of these global models are likely to come from a

deeper understanding of the detailed models and from measurements in flames near the

critical equivalence ratio of the important species profiles, such as those for OH, _H_,

and CO (Janssen, 1991).

The pathway from hydrocarbon fuel to soot particles in a flame is complicated and

still not fully mapped. The stages in the formation of soot are particle inception followed

by surface growth and coagulation of the particles. Coagulation of soot particles can be

modelled empirically using free molecular coagulation theory, while surface growth can

be modelled as acetylene addition to active sites on the particle. These empirical models

describe well the measurements of soot particles in flames. However, details of the

underlying mechanisms are still not fully understood. In particular, it is not known

whether the decline in surface growth rate is caused by a decrease in the number of active

sites or by a decline in the H atom concentration in the post-flame region.
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Coagulation and surface growth begin as the soot panicles are formed and account

for almost all of the growth in panicle size and volume fraction. However, the final

volume fraction is controlled by the number of particles formed in the inception stage,

because the surface growth is proportional to the initial number of active sites, which can

be represented by the particle surface area. Incipient particles are thought to be about

1.5 nm in diameter with a molecular weight of about 2000 amu. They are hypothesized

to form from the coagulation and growth of large PAH molecules. These large PAHs

grow from single-ring aromatic species through a sequence of repeated hydrogen

absUaction and acetylene addition reactions. The coagulation of the large PAHs may be

through free molecular coagulation enhanced by van der Waals forces or by reactions

between large aryl radicals. While these mechanisms of PAH growth and coagulation are

still unconf'u'med, the rate-limiting step in particle inception may be the formation of the

single-ring aromatic species. Reaction pathways involving C2, C3, and (24 hydrocarbon

radicals have been la'oposed for the formation of these single-ring aromatic species. The

radicals in the l'la-O2 system play key roles in both the growth and oxidation reactions of

the intermediate and aromatic species.

Our understanding of soot formation rests on the development of both empirical and

detailed chemical kinetic models and on comparison of these model predictions with

measurements of species concenU'ations and soot in flames. Detailed chemical kinetic

mechanisms have been developed to describe the formation of single-ring aromatic

species based on the combustion of acetylene and ethylene. The mechanism of Frenklach

and Wang (1990) combined a detailed chemical kinetic model with a global model

inc_g particle inception, surface growth, and coagulation. McKinnon (1989)

developed a global model that described the growth, oxidation, coagulation, and pyrolysis

of PAHs in the nucleation stage of soot formation. These models are successful in

predicting the general shape and relative concentrations of the species profiles and also
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some of the features of the soot profdes for selected flame conditions. When applied to a

wider range of flame conditions, these models require either different rate coefficients for

some of the reactions or an input of the measured radical profiles. Refinements to these

models require further knowledge of thermochemical properties and the reaction rates of

the radical species. In addition, measurements of the radical species profiles, particularly

the H atom and the OH radical profiles, are required to test some of the hypotheses of

these kinetic mechanisms.

The onset of soot formation can be described by simple global models in which the

soot precursors are formed by pyrolysis of the fuel and are destroyed by oxidation with

the OH radical. The models successfully correlate critical equivalence ratio data for a

variety of fuels using such parameters as maximum temperature, equivalence ratio, and

equilibrium OH and CO concentrations. Their success suggests that these parameters

may be a good indicator of the soot formation process near the critical equivalence ratio.

However, the relation between the global models and the detailed mechanisms of soot

formation is not obvious because the precursors are not identified and the model

parameters do not clearly account for the pyrolysis and oxidation chemistry of soot

formation. Further refinement of the global models is likely to come from further

understanding of the connection between the detailed mechanism and the global models

and from measurements of species profiles near the critical equivalence ratio.

Measurements of radical species profiles and soot formation in nonsooting and

sooting flames at conditions near the critical equivalence ratio can provide data for the

evaluation of global and detailed chemical kinetic models. Measurements of OH radical

profiles in sequences of flames that span the transition from nonsooting to sooting can

provide data to establish the relationships between the OH radical concentrations and the

amount of soot formed in the flame. Such data may clarify the role of the OH

concentration in the global models. Models such as those of Frenklach and Wang (1990)
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andMcKianon (1989) also require more accurate information about OH radical profiles

in sooting flames. Soot and OH data measured in near-critical equivalence ratio flames

can provide a crucial test for the ability of a detailed mechanism to model the transition

from aoasooting to sooting flames. An understaading of the transition to sooting may

¢latif_ the mechanisms that initiate soot formation and may identify thermodynamic or

kineli¢ bottlera_cks in the soot formation process.
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CHAPTER 3:

LITERATURE REVIEW -

OPTICAL MEASUREMENTS OF SOOT AND HYDROXYL RADICAL

This investigation of the role of the hydroxyl radical in soot formation has taken the

approach of examining the transition from nonsooting to sooting conditions in premixed

flames. Profiles of soot volume fraction, number density, and particle size were measured

in sequences of premixed flames with increasing equivalence ratio at a constant dilution

ratio and total flow rate. Hydroxyl concentration profiles were also measured for

nonsooting and sooting conditions near the critical equivalence ratio in these same flame

sequences. These OH radical and soot profiles can then be used to evaluate global models

and detailed chemical kinetic models that are being developed to understand soot

formation in premixed flames.

In this chapter we review the methods used for measuring the soot and OH radical

concentrations. The laser scattering-extinction method was used to measure the soot

volume fraction and number density profiles. The OH radical concentration profiles were

measured with a broadband laser-induced fluorescence technique. For the soot and OH

radical measurements, we first review investigations that have reported these profiles in

flames. We then discuss the theory for the measurement methods. Finally, we identify

interferences and discuss specific concerns that may affect the interpretation of these

measurements in sooting flames.
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3_2 Measm'eznents of Soot Pmf'fles with Laser Scattering-Extinction

The change in the sooting behavior of flames with increasing equivalence ratio can

be ob_rvod through measurements of the soot volume fraction and number density

profiles. An analysis of these profiles can determine the final soot volume fraction and

the ratu= of surface growth and coagulation as a function of the equivalence ratio. In

addition, the vetiation of the volume fraction and number density profiles provides an

indirect measumn_nt of the particle inception rate as a function of equivalence ratio,

since the final soot volume fraction depends on the number of particles formed in the

inception zone. In particular, numerical simulations of these profiles using an aerosol

dynamics model have been used to infer the particle inception rates (Harris, Weiner, and

Ash_ 1986; Bockhom, Fetting, and Heddrich, 1986).

The three primary methods that have been used to measure soot in flames are probe

sampling, clusical light scatting, and dynamic light scattering. In the probe sampling

methods, soot particles are removed from a flame either through a probe or through

deposition onto a surface and are then examined with an electron microscope. Bonne,

Hom_n, and Wagner (1965), Wersborg, Howard, and Williams (1973), and Bockhom,

Fetting, and Heddrich (1986) all used molecular beam sampling to remove soot from a

flame with minimal change in the soot structure. They measured panicle size and panicle

size distribution as a function of height above the burner. Dobbins and Megaridis (1987)

used thermophoretic sampling to extract soot from a laminar ethylene diffusion flame.

They d_ned the overall particle size, the size of the primary panicles in the soot

aggregate,and the structureof the aggregatesincludingthe fractaldimension. The

sampling methods give direct measurements of the particle size and morphology and are

the _ source for h-fforn_on a_ut the structure of soot particles.

I_ comparison to probe sampling methods, the light scattering methods do not

the flame physically and are capable of greater spatial resolution. However, the
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light scattering methods measure the overall characteristics of an ensemble of particles.

Charalampopoulos (1992) reviews the applications, advantages, and limitations of these

light scattering methods. The classical techniques measure the extinction and the

elastically scattered light from a light beam passing through a volume containing the soot

particles. Typically, the volume fraction and the number density of the soot are

determined from the measurements. The angular variation of the scattered intensity and

the depolarization of the scattered light can provide information about the size

distribution and the shape of the larger agglomerated particles. A disadvantage is that

these measurements rely on an assumed value of the particle index of refraction. This

method has been used extensively to measure both soot volume fraction and number

density (e.g., Haynes, Jander, and Wagner, 1980; D'Alessio, 1981; Bockhom, Fetting,

and Heddrich, 1986; Harris, Weiner, and Ashcraft, 1986).

Dynamic light scattering techniques measure the particle diameter by using the

spectral broadening of the scattered light caused by the brownian diffusion of the

particles. If the dynamic light scattering is measured in the time domain it is termed

photon correlation spectroscopy, while if it is measured in the frequency domain it is

termed diffusion broadening spectroscopy. These methods are used to measure the

particle size and the particle size distribution, and have the advantage that they do not

depend on the particle index of refraction for small particles. Scrivner et al. (1986) and

Ramer et al. (1986) used photon correlation spectroscopy along with classical laser

scattering-extinction to measure particle size distribution, particle size, and number

density in premixed methane/oxygen flames. Charalampopoulos and Felske (1987) and

Charalampopoulos and Chang (1988) used photon correlation spectroscopy in

conjunction with laser scattering-extinction to deduce the particle index of refraction

along with the particle size, size distribution, and number density in premixed

methane/oxygen and propane/oxygen flames.

61



The laser scattering-extinction method was used to measure soot volume fraction

and number density in the sooting flames of this study. In this section, the theory for the

method is described and equatioas are developed that relate the measured data to the soot

volume fraction and number density. The interferences that may affect the scattered light

and extiactioa meastaen_nts are identified. Both the particle index of refraction and the

panicle size distribution must be known or assumed to interpret the scattering-extinction

_ments. These assumptions are discussed and then the relevant expressions are

derived for the number density and particle size.

The laser scattering-extinction method has been applied to the study of sooting

flames and its theory has been well developed. The fundamental theory of the absorption

and scattering of light by particles has been discussed by Kerker (1969) and more recently

by Bohren and H_ (1983). Jones (1979) reviewed the theory and also its diagnostic

applications. D'Alessio (1981)reviewed the application of the theory to the measurement

of soot in flames. Detailed examples of the apparatus, methods, and interferences

encountered in the measurement of soot in flames have been presented by

Milller-Dethlefs (1979), D'Alessio (1981), and Charalampopoulos and Felske (1987).

Our notation follows that used by D'Alessio (1981) and Charalampopoulos and Felske

(1987).

The application of the laser scattering-extinction method to the measurement of soot

particle volume fraction and number density in a sooting premixed flame is illustrated by

the diagram of a simplified laser scattering-extinction measurement system shown in

Figure 3.1. The transmittance, '_, of the flame is measured by the decrease in irradiance

of a laser beam as it passes through the flame. The incident irradiance, I0, of the laser
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beamis measured by reflecting a portion of the beam onto a detector with a beam splitter.

A detector placed after the flame measures the transmitted irradiance of the laser beam,

It. The transmittance is the ratio of the transmitted to incident irradiance,

Ir (3.2.1)
X=Too

The light scattered from the particles at an angle 0 with respect to the incident laser

beam is focussed onto another detector to measure the scattered light power, S_ The

effective aperture of the collection optics determines the collection solid angle, fie, of the

scattered light. The intersection of the laser beam and the image of the detector in the

flame defines the collection volume, Vc, from which the scattered light is gathered.

The parameters describing the soot particles in the flame are determined from the

transmittance and scattered light measurements. These parameters are the volume

fraction of the soot, fv (cm 3 soot.cm 3 gas), the number density of the particles, Np (cm3),

and the radius of the particles, r (cm). If there is a polydispersion of the particle sizes,

they are described by a normalized particle size distribution function P(r). These

parameters are related by

fv = Np . 4-_ff. fo'P(r) . r3 . dr (3.2.2)

The integral term in Eq. (3.2.2) is the third moment of the particle size distribution and is

proportional to the volume of the particles.

The parameters describing the particles can be determined from the transmittance

and scattered light measurements by using Mie scattering theory. Mie scattering theory

gives the solution of Maxwell's equations for scattering and absorption of light by a

homogeneous spherical absorbing particle (Kerker, 1969). If the particle size is small

compared to the wavelength of light, k, then the measurements can be interpreted using

Rayleigh scattering theory, a much simpler analysis than Mie scattering theory. Rayleigh

scattering theory is a good approximation to the Mie scattering theory for particle sizes
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Figure 3.1 Basic structure of a laser scattering-extinction measurement system.

with a < 0.3, where a = 2r,.rf_ is the particle size parameter (D'Alessio, 1981). This

approximation is valid for particle diameters up to 47 nm, when using an argon-ion laser

operating at 7_ = 488.0 nm. Both Rayleigh and Mie scattering theory require that the

complex index of refraction of the particles, tfi = n - ik, be known beforehand to interpret

the results. In this study, the interpretation of the transmittance and scattered light

measurements are based on Rayleigh scattering theory.

3.2.1.1 Interpretation of Transmittance Measummegt_

The transmittance of the laser beam through the flame is related to the integral of the

local extinction coefficient, K.,, (cml), along the path of the laser beam through the flame.

The relationship is given by

- Too= (3.2.3)
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wherex is the distance along the path. When the particle field is homogeneous and thus

the extinction coefficient is constant along the path, Eq. (3.2.3) simplifies to

IT
= Too= exp[-K_,,. L] (3.2.4)

where L (cm) is the pathlength of the laser through the flame.

The extinction coefficient is related to the extinction cross-section of the particles

and their number density by

x_=N.._._ (3.2.5)

where C_ (era 2) is the mean extinction cross-section defined as

= ('Jo'C,._(r). P(r). dr

When the particle size is within the

cross-section of a particle is given by

C _8_r 3 Imlrh2-1 l
=--Y- t - +2j

(3.2.6)

Rayleigh scattering regime, the extinction

(3.2.7)

where Im indicates the imaginary part of the complex index of refraction function,

(th_- 1)/(th2+2). If all the particles have the same complex index of refraction, then

substituting Eqs. (3.2.6) and (3.2.7) into Eq. (3.2.5) gives

f, 2-1
K_,=-'_" ,ml _--_+ 2 } " Up " fo'P(r)" r" dr

Substituting into Eq. (3.2.2) and rearranging gives an expression for the volume fraction

in terms of the extinction coefficient,

r,.,I,,,:-,ll-'
f_=-_'L {n_,+2ji -K_

(3.2.8)

(3.2.9)
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Thus the particle volume fraction can be determined from measurement of the extinction

coefficient and knowledge of the complex index of refraction. No knowledge is required

about the particle size distribution.

3.2.1.2 Interpretation of Scatteriw, Measurement_

The light power scattered by the particles and monitored by the detector is given by

Sm_=lo.p" V_. _.T L • QeP , (3.2.10)

where Sn (W) is the scattered light power and Ot_ (cm'_'srt) is the differential scattering

coefficient. For both of these parameters, the first subscript denotes the polarization of

the detected scattered light and the second subscript denotes the polarization of the

incident light, loy OV-cm 2) is the incident irradiance, where again the subscript denotes

the polarization of the incident light. V_ (cm "3)is the collection volume, f_ (sr) is the

acceptance solid angle of the collection optics, and _ is the efficiency of the collection

optics. If a significant extinction exists from the edge of the flame to the scattering

volume, both the incident irradiance and the scattered light power must be adjusted for the

extinction.

The differential scattering coefficient is given by

O._- N, "-Cm, (3.2.11)

where Ca, is the mean differential scattering cross-section (cm2.sr a) of the particles. It is

defined in terms of the differential scattering cross-section of the individual particles and

the particle size distribution as

= fo"Cpp. P(r). dr (3.2.12)

For Rayleigh scattering, the differential scattering cross-sections of a single particle for

the various combinations of incident and scattered polarizations are given by
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16x 4 H 2- 1 12

Cw = ...._4 H2+2 I r6 (3.2.13a)

C_m = Cw. cos20 (3.2.13b)

Cva = CHv = 0 (3.2.13c)

Typically, the scattered light is measured at right angles to the incident beam

(0 = 90") using vertically polarized incident light. The scattered light with horizontal

polarization (SHy) can be measured to determine the depolarization ratio, Pv, defined as

Car

Pv =_-'_ (3.2.14)

which should be equal to zero for Rayleigh scattering conditions. A non-zero

depolarization ratio could be caused by particle anisotropy or by non-spherical particles

such as the chainlike agglomerates formed as the soot particles coagulate.

Combining Eqs. (3.2.11), (3.2.12), and (3.2.13a) gives the differential scattering

coefficient of the particles as

LQw--'_i--"1694 H2 +---_H2- 1 . Np . "P(r). r 6.dr (3.2.15)

Thus, the scattering coefficient depends on the sixth moment of the particle size

distribution and is inversely proportional to the fourth power of the wavelength.

The expressions for the scattering coefficient (Eq. 3.2.15) and the extinction

coefficient (Eq. 3.2.8) can be used to determine the number density and particle size.

However, the number density and the particle size will depend on the shape of the particle

size distribution. Therefore, expressions for the number density and particle size for an

assumed particle size distribution are developed in Section 3.2.5 after a discussion of

particle size distributions in Section 3.2.4.
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3.2.2 InU_erences and Backt, round Corrections

The scattered light from from soot particles is collected along with background

contributions fi'om molecular scattering by flame gases and broadband fluorescence

excited ,at _ laser =wavelength. The gas-phase species which are the source of the

fluorescence may also cause an absorption which adds to the extinction by the soot

particles _-Dethlef_ 1979; Haynes, Jander, and Wagner, 1980; D'Alessio, 1981).

To determine the scattering and extinction caused by only soot particles, these

background contributkaw must be measured and subtracted from the overall

measmen_nts. The cause of each background interference and the development of an

expression describing each contribution follows.

3.2.2.1 Molecular Scatterin_

The scattered light contribution caused by molecular scattering from the flame gases

caa be expressed as a molexttlar scattering coefficient similar to that of the soot particles

Qw.s =Nz" C'_.s

(Eq. 3.2.11) so that

(3.2.16)

where N s (cm "s)isthe number densityof the gas molecules and _',,,(cm2.sr"_)isthe

averagedifferentialscatteringcross-sectionforthegas mixture.The averagedifferential

scatteringcross-sectionsforverticallyand horizontallypolarizedscatteredlightcan be

determined from the molar composition of the gas by

C-ws = Y_Xt" Cwk (3.2.17a)

Cnv.s = _ Xk" Pv.k" Cw.t (3.2.17b)

where Xk is the mole fraction of species k and Pv.t is the depolarization ratio of species k

(D'Alvssio, 1981). The differential scattering cross-section of gas species k for vertical

incident and detected polarization, Cw_ (cm2.sr_), can be calculated from
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4_a (nk- 1)z 3

Cvv., = Z4 N_ 3 - 4pv.k (3.2.18)

where nk is the refractive index of light for species k and No (crn 3) is a standard molecular

number density (Rudder and Bach, 1968; D' Alessio, 1981). Both the refractive index and

the number density are normally evaluated at 0*C and 1 atm. The measured

depolarization ratio Pv._ = Cnv.,ICw., accounts for the anisotropy of the gas molecules.

Typically, the molecular scattering contribution is small compared to that from soot

particles. Scattering cross-sections for the major combustion products are on the order of

10 .27cm2-sr "1,while those for 1 nm diameter soot particles are on the order of 10"_ cm2-sr "1

(D'Alessio, 1981). Thus, the molecular scattering contribution is likely to be significant

only in the inception region of sooting flames and in lightly sooting flames. The

molecular scattering coefficient in sooting flames can be estimated from the measured

scattering coefficient in rich but nonsooting flames at the same cold flow velocity and

dilution ratio (Harris, Weiner, and Ashcraft, 1986).

Molecular scattering from a gas with a known differential scattering cross-section

can be used to calibrate the scattering measurement system (D'Alessio, 1981). For

example, if the scattered signal from flowing nitrogen is measured, then the expression

for the scattered light power is obtained by combining Eq. (3.2.10) and (3.2.16) so that

Svv_2 = V c • t2c .rl_ .Ns 2• Cvv.N2 "/O,N 2 (3.2.19)

where the differential scattering cross-section for nitrogen, C_,.N,, can be found from the

literature (Rudder and Bach, 1968; Bogaard et al., 1978) and the number density can be

determined from the temperature and pressure. The optical system constants can then be

replaced in (Eq. 3.2.10) by substituting in Eq.(3.2.19) to give the scattering coefficient

Sw to.N2
Qw - •--y-•Nr_ •Cw, r_ (3.2.20)

Sw,N_ z0
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3.2.2.2 l_tiorescence

A broadband fluorescence has been observed in premixed sooting flames, when

laser scattering-extinction is measured with an argon-ion laser. Excitation at either

k ffi488.Onm or 514.5nm produced fluorescence spectra which were broad and

structureless and contained both Stokes and anti-Stokes components (Haynes, Jander, and

Wagner, 198_ D'Alessio, 1981). This fluorescence is thought to be caused by PAH

species. DiLorenzo et al. (1981) noted that the argon-ion excited fluorescence profiles in

their sooting methane flames coincided with their sampling probe measurements of

four-ring PAH concentrations. Several studies have identified acenaphthylene as the

species primarily responsible for the fluorescence excited at 488.0 nm (Coe and Steinfeld,

1980; Coe, Haynes, and Steinfeld, 1981; Beretta et al., 1985). Miller, Mallard, and Smyth

(1982) suggested that the argon-ion fluorescence is caused by two to four-ring PAH

species and not by a single species, because the fluorescence spectral structure varied

when they altered the flow structure of their diffusion flame. Since studies of PAH

spectra have not been made at flame temperatures, a definitive identification of the

species responsible for the argon-ion laser-induced fluorescence is not possible.

However, the fluorescence may provide a measure of the relative PAH concentration and

the location of PAH formation.

The argon-ion excited fluorescence is observed as a depolarized light component in

Rayleigh scattering measurements in sooting flames (Haynes, Jander, and Wagner, 1980;

Mflller-Dethlefs, 1979). Since the fluorescence also contributes to the measured

vertically-polarized scattered signal, the measured signal must be corrected for this

interference.

expressed as

This fluorescence contribution to the total scattered light power can be

sAgo,x) =to(go),v,. OAgo, ax (3.2.21)
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where S/(7%,k) (W) is the broadband fluorescence power incident on the detector, _ (nm)

is the incident (excitation) wavelength, _ (nm) is the collection wavelength, Qj(Xo,_.)

(cm'_.srt-nm _) is the monochromatic fluorescence coefficient, A_. (rim) is the spectral

bandwidth of the detector, and Io(_) (W'cm 2) is the incident irradiance at the excitation

wavelength (Beretta et al., 1985). Harris, Weiner, and Ashcraft (1986) measured the

fluorescence contribution to the Rayleigh scattered signal at 488.0 nm by excitation at the

476.5 nm and 514.5 nm argon-ion laser wavelengths. Their assumption was that the

fluorescence coefficients for all three excitation wavelengths were equivalent, i.e.,

Q/(ko--488.0, k=488.0) = Qz(ko--476.5, k=488.0) = Q/(ko=514.5, k=488.0).

The contributions to the scattered light power from particle scattering, molecular

scattering, and fluorescence are additive, if multiple scattering effects are not significant.

The total scattered power, S,¢o (W), incident on the detector can then be expressed as

S=a = lo,v" Vc" fl,. rio" (Ovv + Qw,, + Q/(ko, k). Ak) (3.2.22)

where the term lo.v.Vc.fl,.ri, is common to the three contributions. The scattering

coefficient determined from the total vertically polarized scattered power, Q,_o.v, is the

sum of the scattering coefficients of the individual contributions and is defined as

Q,_o.v = Qw + Qw., + Q/(2%, _.). A_ (3.2.23)

The scattering coefficient for vertically polarized particle scattering, Qvv, can be

determined by subtracting the scattering coefficients for molecular scattering and

fluorescence from the measured total scattering coefficient. Similarly, the scattering

coefficient determined from the horizontally polarized scattered power is defined as

O,c°.a = Qnv + Qnv., + O/(ko, _.)- Ak (3.2.24)

Likewise, the horizontally polarized particle scattering coefficient, Qav,

determined by subtracting the contributions from molecular scattering and fluorescence.

can be
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3.2.2.3 Gas-Phase Absorotion

A gas-phase absorption has been observed in sooting flames for extinction

measurements made at UV wavelengths and also at the visible wavelengths, 488.0 nm

and 514.5 am, of an argon-ion laser (Mtiller-Dethlefs, 1979; Haynes, Jander, and Wagner,

1980; Harris, Weiner, and Ashcraft, 1986). The absorption was strongest in the UV

regionand declinedtoward the visiblewith a wavelength dependence thatwas greater

than thatexpected from particleextinction.This absorptionwas attributedto large

gaseousmoleculesand may bc causedby thePAH specieswhich arcalsoresponsiblefor

the argon-ionexcitedfluorescence. This gas-phase absorptionwas observed in the

nonsooting and particleinceptionregionsof prcmixcd sootingflames and thus itcan

interferewith thedetectionof sootparticlesintheearlystagesof sootformation.

MUller-Dethlefs(1979),Haynes, Jandcr,and Wagner (1980),and Harris,Wcincr,

and Ashcraft (1986) correctedtheirmeasured extinctioncoefficientsto account for

gas-phaseabsorption.In particular,Harris,Weiner, and Ashcraft(1986)correctedtheir

extinctionmeasurements at488.0 nm by usingextinctionmeasurements at 1090 nm, for

which the sootparticleswere the solesourceof extinction.MUllcr-Dcthlcfs(1979)and

Haynes, lander,and Wagner (1980)estimatedthemagnitude ofthegas-phaseabsorption

at488.0 nm from themagnitude of thefluorescenceexcitedat488.0 nm. They assumed

thatthe fluorescenceand absorptionwere caused by the same speciesand thus by

estimatinga quantum yieldfor the fluorescence,they could calculatethe gas-phase

absorption.Haynes, Jander,and Wagner (I980)observedthatintheirflatprcmixed flame

the gas-phaseabsorptionwas significantonly below the pointwhere the sootscattcring

signal rose above the background, and thus it did not significantlyaffecttheir

scattering-extinction measurements of soot.
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3.2.3 Particle Index of Refraction

The calculation of the volume fraction, number density, and particle size from the

extinction coefficient (Eq. 3.2.8) and the scattering coefficient (Eq. 3.2.15) requires that

the particle index of refraction, _ - n - ik, be known or assumed. The assumed value of

the index of refraction can have a large effect on the parameters determined from the

measurements. Charalampopoulos (1992) showed that the calculated volume fraction can

vary by a factor of two as the real part of the refractive index is varied over the range

1.3 < n < 2.0 and by a factor of three when the imaginary part is varied over the range

0.3 < k < 1.0. Table 3.1 summarizes previous measurements of the index of refraction for

soot particles at wavelengths near 488.0 nm for various flame conditions and

measurement methods.

The index of refraction reported by Dalzell and Sarofim (1969) is used often in the

analysis of scattering-extinction measurements (e.g., M_iller-Dethlefs, 1979; D'Alessio,

1981; Harris, Weiner, and Ashcrafl, 1986). DalzeU and Sarofim (1969) measured the

index of refraction by extracting soot from a flame, compressing it into a pellet, and then

measuring the reflectance as a function of wavelength. The index of refraction was

determined from the reflectance by using the Fresnel equations. Janzen (1979) noted that

the results obtained with the reflectance method are likely to be artifacts of the surface

roughness and not a true measure of the particle index of refraction. Janzen (1979)

determined the index of refraction from light extinction measurements of carbon black

particles in a dilute liquid suspension. Mullins and Williams (1987) compared soot

refractive indices measured with the reflectance method for a soot pellet and the light

extinction method for a liquid suspension of soot. The real parts of the refractive indices

were similar, but the imaginary parts differed significantly because of a dependence on

the compaction of the soot in the pellet.
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Table 3.1 Summary of soot particle index of refraction data.

Dalzcll and

Sm'ofim (1969)

Chipper and Gray

(1978)

Janzen (1979)

Lee and Tien

(1981)

Mullins and

Williams (1987)

(extinction)

Twe of soot

Acetylene H/C = 0.068

Propane H/C = 0.22

Acetylene

Carbon black

Polystyrene, plexiglas,

iso-oetane

Toluene H/C = 0.153

Propane H/C = 0.106

Heptane H/C = 0.120

Methane H/C = 0.177

450 nm

550 nm

450 nm

550 nm

550 nm

visible

visible

450 nm

450 nm

450 nm

450 nm

Index of refraction

1.56 - i-0.48

1.56 - i.0.46

1.56 - i.0.50

1.57 - i.0.53

1.9(:1.'0.1)- i.0.35(i-0.05)

1.90 - i.0.42

1.90 - i.0.42

1.88 - i.0.44

1.91 - i.0.43

(reflectance)

CharLlampopoulos

and Felske (1987)

Habib and Verviseh

(1988)

Toluene H/C = 0.153

Propane H/C = 0.106

Heptane I-IR2= 0.120

Methane H/C = 0.177

Methane ¢_= 1.8

z=6mm

z= 11mm

z= 16mm

average

Methane, Ethylene,

Propane

H/C > 0.2

H/C <0.1

450 nm

450 nm

450 nm

450 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

500 nm

50Ohm

1.90 - i.0.54

1.90 - i.0.53

1.88 - i.0.51

1.91 - i.0.53

1.38 - i.0.42

1.81 - i.0.75

1.64 - i.0.63

1.60 - i.0.59
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Table3.1 continued

Charalampopoulos

and Chang

(1988)

T__vpe of soot

Propane ¢ = 1.8 z = 5 mm
z-9mm

z= 13mm

488.0 nm

488.0 nm

488.0 nm

Index of refraction

1.57 - i.0.65

1.82 - i.0.85

1.61 - i.0.68

Charalampopoulos,

Chang, and Stagg

(1989)

Dobbins, Santoro,

and Semerjian

(1990)

Propane 0 = 1.8 z = 8 mm

z= 15mm

0=2.1 z=8mm
z= 16ram

0=2.4 z=8mm
z= 16mm

Primary particle dp= 1.8

_p= 2.1

0 =2.4

Ethylene diffusion flame,

primary particle

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

488.0 nm

1.81 - i.0.84

1.64 - i.0.70

1.59 - i-0.66

1.54 - i.0.62

1.41 - i.0.51

1.51 - i.0.60

1.89 - i.0.89

1.84 - i.0.87

1.74 - i-0.79

2.10 - i-0.55
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The above refractive index measurements were made at room temperature. Both

Lee and Ticn (1981) and Charalampopoulos, Chang, and Stagg (1989) show that the

index of refraction changes significantly from room to flame temperatures. Their

conclusions ate based on calculations of the refractive index using the dispersion

equations. Tl_ k-Cy factor iS fl_at the damping constants of the electrons depend on the

square root of the temperature. Both studies note that the refractive index does not vary

significantly over the range from 1100 to 1500 K.

In sire measurements of the soot particle index of refraction have been made using

optical methods, ChippCtt _ Gray (1978) measured the transmitted light through a

sooting flame over the range from 400 nm to 800 nm and also the soot particle size and

size distribution by extracting the soot from the flame. They determined the refractive

index based on that value which gave the best agreement between the two measurements.

Lee and Tien (1981) me.asu_ the transmitted light through a sooting flame over a much

broader wavelength range. The index of refraction was determined by fitting the data

with the dispersion equations.

Habib and Vervisch (1988) measured extinction spectra over the range from 0.4 to

5.0 I_m and the particle size and size distribution with diffusion broadening spectroscopy

as a function of height above the burner in methane, propane, and ethylene flames. The

soot index of refraction was determined by fitting the extinction spectra with the

dispersion equations. Soot was extracted from the flame and analyzed to determine the

H/C ratio. They found that the refractive index varied with height above the burner and

also with the changing hydrogen content of the soot. They determined that increasing the

H/C ratio of the soot decreased the refractive index, especially in the imaginary

comimnent.

Chatalampopoulos and Felske (1987) also found a variation of refractive index with

height above the burner in a methane/oxygen flame. They used photon correlation
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spectroscopy to measure the panicle size and size distribution and laser

scattering-extinction to measure number density and volume fraction. Solution of the

relevant equations relating these parameters gave the value of the index of refraction. A

similar measurement of soot in a propane/oxygen flame by Charalampopoulos and Chang

(1988) was made using photon correlation spectroscopy and extinction measurements

over the range from 340 nm to 600 nm. The refractive index was determined by fitting

the extinction measurements with the dispersion equations. Again, the refractive index

was found to vary with height and thus probably with H/C ratio.

The effect of H/C ratio on the soot index of refraction was investigated theoretically

by both Lee and Tien (1981) and Charalampopoulos, Chang, and Stagg (1989) by using

a dispersion equation model with two bound electrons and one free electron. Increasing

the hydrogen content of the soot tends to decrease the concentration of free electrons. Lee

and Tien (1981) determined that decreasing the free electron number density by 30% only

changed the refractive index by 5%. Thus, they concluded that the optical properties of

soot were relatively independent of the H/C ratio. Charalampopoulos, Chang, and Stagg

(1989), however, came to a different conclusion. They calculated that an increase in the

number density of the second bound electron by a factor of two would increase the

imaginary part of the refractive index by 30% at 488 rim. Thus, the composition of the

soot should have a significant effect on the refractive index.

Charalampopoulos, Chang, and Stagg (1989) measured the variation of the particle

index of refraction with equivalence ratio in propane/oxygen flames using the method of

Charalampopoulos and Felske (1987). They found that both the real and imaginary parts

of the refractive index decreased with equivalence ratio. However, they noted that their

procedure only provided an 'effective' particle index of refraction, because photon

correlation spectroscopy measures a diffusional diameter, which for an agglomerated

particle may not be the same as the optical diameter measured with Rayleigh
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scattering-extinction.Theeffectofagglomerationonthesootindexof refractionchanges

with increasingequivalenceratio becausethe number of primary particles in the

agglomerates increases at higher equivalence ratios.

Dobbins, Santoro, and Semerjian (1990) made scattering-extinction measurements

of soot in an ethylene diffusion flame. They measured the scattered light at three angles

to obtain a measure of the aggregate structure of the soot particles. They then determined

allowable values of the index of refraction which gave the best fit between the optical

measurements of particle diameter and the diameter obtained from electron microscope

measurements of extracted soot particles. The index of refraction determined for the

primary particles in the aggregates was 2.10 - i.0.55 which is close to that determined by

Lee and Tien (1981).

Despite the number of investigations which have measured the soot particle index

of refraction, the choice of which index of refraction to use in the analysis of laser

scattering-extinction data is not clear. The variation of the index of refraction has been

measured as a function of height above the burner and may be a function of temperature,

the H/C ratio of the soot, and the agglomeration of the particles. The index of refraction

is apparently only slightly affected by the temperature at flame temperatures. The effect

of changing soot H/C ratio with height above the burner may be masked in part by the

agglomeration of the particles. Measurements by Charalampopoulos, Chang, and Stagg

(1989) and Dobbins, Santoro, and Semerjian (1990), which attempt to account for the

agglomeration, find an index of refraction for the primary particles that is close to that

measured by Lee and Tien (1981) and is also larger than that of the agglomerated

particles. These measurements suggest that an independent determination of particle size

and shape or particle index of refraction may be needed to assess the scattering-extinction

measurements. In the absence of these measurements, a good assumption for the index

of refraction would be the value used for the primary particles by Dobbins, Santoro, and
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Semerjian (1990), since similar values were also obtained by Charalampopoulos, Chang,

and Stagg (1989), Lee and Tien (1981), and for low H/C ratio by Habib and Vervisch

(1988). This assumption should be particularly appropriate for lightly sooting flames

where the agglomeration of the particles is reduced accordingly.

3.2.4 Particle Size Distributions

The determination of soot particle number density and particle size from the

extinction coefficient (Eq. 3.2.8) and scattering coefficient (Eq. 3.2.15) depends on the

moments of the particle size distribution function, P(r). Soot particle size distributions

have been measured by extracting the soot particles from the flame and then observing

them with an electron microscope. Wersborg, Howard, and Williams (1973) found that

soot particles at the early stages of soot formation had a near Gaussian size distribution.

They also observed that particles near the inception stage had a narrow size distribution

that could be assumed to be monodisperse. In the later stages of soot formation, as the

particles begin to agglomerate to form chains, a lognormal distribution best describes the

particle size distribution (Wersborg, Howard, and Williams, 1973; Prado et al., 1981).

Bockhorn, Fetting, and Heddrich (1986) determined that a lognormal size distribution

with 6g = 1.405 (where a s is the geometric width of the lognormal distribution) best fit

their measured particle sizes. The moment ratios of their particle size distribution

remained constant throughout the flame after particle inception and were close to those of

a self-preserving size distribution (SPSD). This experimental result agrees with the

aerosol dynamics modelling studies discussed in Section 2.3 which found that, following

particle inception, the particle size distribution approaches that of the SPSD for which the

dislribution of particle sizes about the instantaneous mean size is constant.

In situ measurements of the soot particle size distribution have been made with the

dynamic light scattering technique. Scrivner et al. (1986) used photon correlation

spectroscopy to measure the particle size distribution as a function of height in premixed
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methane/oxygen flames. Charalampopoulos and Felske (1987) used photon correlation

spectroscopy along with laser scattering-extinction to determine the particle size

distribution and complex index of refraction as a function of height in a methane/oxygen

flame. Charalampopoulos and Chang (1988) used the same method for a propane/oxygen

flame. The particle size distributions in these investigations was assumed to be a zeroth

order lognormal distzibution (ZOLD) given by

P(r)=(2g)_r_.ro.laaz ex 2 aa .ex 2(lnt_') 2 j (3.2.25)

where ro is the mean particle radius. The terms, r 0 and c s, are the first two moments of

the particle size distribution function and can be determined from photon correlation

spectroscopy.

Scrivner et al. (1986) observed a decrease in the geometric width of the distribution

from t_s - 1.285 at 8 mm above the burner to t_s = 1.214 to 1.150 at 16 mm above the

burner. Charalampopoulos and Felske (1988) observed an increase in t3a with height

above the burner from tys = 1.139 at 6 mm to t_s = 1.240 at 16 mm in a flame similar to

that of Scrivner et al. (1986). Charalampopoulos and Chang (1988) observed a s to

decrease and then level off at t_s _ 1.14 to 1.15 in a propane/oxygen flame. These in situ

measured values of t_s are lower than the t_s = 1.405 reported by Bockhorn, Fetting, and

Heddrich (1986) and the t_g = 1.33 for a SPSD. A possible reason for the differences in

t_a is that the soot particles in these flames are likely to be agglomerated and the dynamic

light scattering technique can only measure an average diffusional diameter for the soot

particles (Charalampopoulos, 1992).

3.2.5 Determination of the Number Density and Particle Size

The number density and particle size can be determined from the extinction

coefficient (Eq. 3.2.8) and the scattering coefficient (Eq. 3.2.15), once the particle size
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distribution and the index of refraction are known or assumed. We will use the notation

of Santoro, Semerjian, and Dobbins (1983) for the functions of the complex index of

refraction, E(th) and F(th), which are defined as

E(r_)=-Iml rfi2-1 l
Lr 2+2J

and

The number density

(3.2.26)

/fi2-1 12F(ch) = _ 2+--'--_ (3.2.27)

of the particles can be determined from the ratio of the

extinction coefficient squared to the scattering coefficient so that

1 F(th) (K,.,,) 2

Np = 4----_ • (E(rh))2 .fn. Q-----_ (3.2.28)

(3.2.29)

whereft_ is a dimensionless moment ratio (Megaridis and Dobbins, 1989) given by

o'P(r), r e. dr

[ fo'P(r), r3.dr] 2

The particle size can be determined from the ratio of the scattering coefficient to the

extinction coefficient. The particle diameter is given by (Santoro, Semerjian, and

(3.2.30)

Dobbins, 1983)

d63 =_'" "F(th) "_ )

where the mean diameter, d6a, is defined in terms of the sixth moment of the particle size

(3.2.31)

distribution divided by its third moment and is given by

]3P(r). r6.dr

d_3 = 2.

P(r). r 3. dr
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This diameter reflects the bias of the scattering coefficient measurement towards larger

particle sizes.

The two commonly assumed particle size distributions for the interpretation of laser

scattefing-exlinction measurements arc the monodisperse and ZOLD size distributions

The monodispers¢ particle size distribution function is P(r) = 1.0, so that from Eqs.

(3.2.29) and (3.2.31),

fn = 1.0 (3.2.32)

and

do3 =do (3.2.33)

where do = 2.1"0is the mean particle diameter. For the ZOLD distribution given by Eq.

(3.2.25) (Charalmnpopoulos, 1992),

/N = exp[9(ln or) 2]

and

ox  0no.,2]

(3.2.34)

(3.2.35)

The dimensionless moment ratio for a self-preserving size distribution was determined to

be/Nffi2.079 through numerical simulation by Graham and Robinson (1976). This

moment ratio corresponds to that for a ZOLD distribution with a geometric width of

o 8 = 1.33. Thus, the number density calculated for a SPSD distribution is twice that for a

monodispcrse distribution.

Another approach for determining the number density and particle size profiles in a

flame is to use an aerosol dynamics model to interpret the data. This approach has been

used by Bockhom, Fetting, and Heddrieh (1986) and Harris, Weiner, and Ashcraft (1986)

to interpret their laser scattering-extinction measurements. The aerosol dynamics models

include a description of particle inception, surface growth, and coagulation for discrete

sizes of soot particles. The numerical solution of the system of differential equations
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describing these processes for each particle size is an iterative procedure that matches the

model predictions to the flame measurements. The solution includes the number density

and particle size profiles and does not require prior knowledge of the particle size

distribution. The accuracy of the model depends on how well the coagulation and surface

growth processes are modelled and the results still depend on the assumed particle index

of refraction. These models primarily serve as a tool to infer the particle inception rates

and location from the scattering-extinction measurements which typically cannot resolve

the incipient particles.

3.3 Measurements of the Hydroxyl Radical in Sooting Flames

Measurements of the OH radical concentration profile as the equivalence ratio is

increased from nonsooting to sooting conditions are necessary to ascertain its role in soot

formation. Relative OH number density profiles can be used to evaluate either global or

detailed chemical kinetic models for relative comparisons, but absolute OH radical

concentration profiles are necessary to evaluate predicted OH radical concentrations from

detailed chemical kinetic models.

Hydroxyl concentrations have been measured in a variety of flame types and

conditions because of its significant role in both general combustion chemistry and in soot

formation. In particular, OH radical concentrations have been measured in rich

nonsooting and sooting premixed flames using three methods: molecular beam mass

spectrometry (MBMS), ultraviolet light absorption, and laser-induced fluorescence.

Measurements of the OH radical with the MBMS technique have been made in

low-pressure near-sooting and sooting laminar premixed flames. Typically, the flame

gases are extracted through a quartz probe, formed into a molecular beam, and then

detected with a mass spectrometer. An advantage of this method is that many species can

be detected simultaneously. Typically, the major stable species in hydrocarbon

combustion are detected along with some of the radicals such as H, OH, CH3, C__H_,C4H3,
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andC4/-Is. A disadvantage is that the probe physically perturbs the flame and the species

profiles are typically shifted 1 to 2 probe orifice diameters upstream to account for the

disturbance. Because of this perturbation, the MBMS technique cannot resolve steep

conc, ena'afion gradients and thus it is used primarily for low-pressure flame

measurements. The near-sooting and sooting flames in which OH profiles were measured

with the MBMS technique include a 20-torr, _ = 1.8 near-sooting benzen¢/O2/Ar flame

by Bittner and Howard (1981;1982), a 20-tort, _ = 2.4 lightly sooting C2H_/O2/Ar flame

by Westmoreland, Howard, and Longwell (1986), and a 20-tort, _ = 2.5 lightly sooting

C2H2/O_/Ar flame by Bastin et al. (1988). One comparison of OH radical profiles

between a 30-tort, _ = 1.6, nonsooting and a 60-torr, _ = 2.0 sooting CHd/O2/Ar flame

was made try Burgess and Langley (1991).

Optical methods for measuring OH concentration have a major advantage over the

MBMS methods because the optical methods do not physically perturb the flame.

Ultraviolet absorption has been used by Millikan (1962) to measure OH concentration

profiles in a series of nonsooting and sooting atmospheric CaH4/air flames and by

Warchold and Reuther (1984) to measure maximum OH number densities in a series of

nonsooting and sooting C_I_/air flames at pressures from 0.25 to 0.75 atm. The low OH

concentrations in rich and sooting flames can make absorption measurements difficult.

Millikan (1962) used a two-pass absorption arrangement and a large diameter (7 cm)

burner to increase the pathlength. A disadvantage of UV absorption measurements is that

the n_,asured concentration is an average over the pathlength. For example, Lucht,

Sweeney, and Laurendeau (1985) noted that low OH concentrations in the center of rich

premixed flat flames could be obscured by the high OH concentrations in the diffusion

flame that forms at the boundary between the rich flame and the surrounding air.

Laser-induced fluorescence methods have been used to measure local

concentrations in flames. Lueht, Sweeney, and Laurendeau (1985) used laser-induced
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fluorescence to measure OH concentration profiles in a _ = 1.68 nonsooting, a q = 1.85

nearly sooting, and a _ = 2.02 sooting atmospheric premixed CHd/O2/Nz flame. They

excited the Q!(8) transition of the (0,0) band in the A2_- X2I'I system and detected the

P1(9) transition with narrowband temporal detection. The dependence on electronic

quenching was reduced by saturating the transition. Absolute concentration profiles were

obtained by calibrating the OH fluorescence measurements in a lean CH4/O2/N2 flame

where the OH concentration was measured with UV absorption.

Harris, Weiner, and Blint (1986) measured relative OH concentration profiles with

laser-induced fluorescence in a t_ = 1.68 nonsooting and a _ = 2.76 sooting atmospheric

premixed C2Hd/Oz/Ar flame. They excited the R_(5) transition (~ 281 nm) of the (1,0)

band and detected fluorescence at 315 nm, the bandhead of the (1,1) band. Their profiles

were not corrected for electronic quenching.

Miller et al. (1990) measured absolute OH concentration profiles in three 25-torr

rich, nonsooting (t_ = 1.03, 1.67, and 2.0) C:H2/O:/Ar premixed flames. They excited the

OH transition by scanning across the (1,0) and (0,0) bands and detected the broadband

fluorescence from the (0,0) and (1,1) bands using a 10-nm bandpass. They calibrated the

fluorescence measurements by using an Hz/OJAr flame, for which they could accurately

calculate the OH concentration. They also determined the OH rotational temperature

from the spectral scans.

The spatial resolution of LIF measurements is crucial in determining the structure

of diffusion flames. Smyth et al. (1990) have used LIF to measure absolute OH

concentration measurements in a sooting laminar CH4/air diffusion flame. They excited

the P_(9) transition in the (1,0) band and detected the fluorescence in the (1,1) band with

a 4-nm bandpass at 314 nm. They corrected for quenching variations using previously

measured major species concentration profiles. An absorption measurement in a

nonsooting region of the flame was used to calibrate the fluorescence measurements.
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In this investigation, we used the laser-induced fluorescence method to measure

relative OH concentration profiles. We first develop the theory for the measurements.

The possible interferences with OH fluorescence measurements in sooting flames are then

discussed, along with methods for reducing them. Finally, we discuss the effect of

quenching variations and methods of calibration.

3.3.1 Theory

The OH fluorescence profiles were measured using laser-induced fluorescence

(LIF) with broadband spectral and temporal detection. We used the SPF(0,0) method

described by Laurendeau and Goldsmith (1989). The Qm(8) transition in the (0,0) band of

the A2_'_-XZFI system of OH was excited with the UV output of a frequency-doubled

Nd:YAG pumped dye laser. The OH fluorescence was detected over a spectral range

encompassing most of the (0,0) band and the fluorescence signal was temporally

integrated over the laser pulse. Broadband spectral and temporal detection were used to

measure OH fluorescence in these rich nonsooting and sooting flames to increase the

measured fluorescence signal and to obtain a better detection limit than would be possible

using saturated LIF which uses narrowband spectral and temporal detection. The general

theory and implementation of LIF to measure species concentrations has been presented

by Eckbreth (1988). The theory and method presented here follows that of Laurendeau

and Goldsmith (1989).

A basic laser-induced fluorescence system for the measurement of species

concentrations in a flame is illustrated in Figure 3.2. The LIF method can be understood

by considering a simple two-level energy model, as shown in Figure 3.3. The laser

wavelength is tuned to the energy difference between a rovibronic level in the ground

elec_'onic state (level 1) and a rovibronic level in the excited electronic state (level 2).

Absorption of laser energy produces a population in the excited state. The fluorescence
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Figure 3.2 A laser-induced fluorescence measurement system.

Level 2 (Excited State)

W12 W21 A21 Q21

Level 1 (Ground State)

Figure 3.3 Two-level model for the energy levels in laser-induced fluorescence. W_2

and Wz: are the rate coefficients for stimulated absorption and emission.

Azt is the spontaneous emission rate coefficient and Oat is the quenching
rate coefficient.
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emitted from molecules in the excited state is collected by a lens and focussed on a

detector. The collection optics fix both the collection volume, Vc (cm3), and the solid

angle, _ (st), over which the fluorescence is gathered.

The fluorescence emission, ¢¢ (W.cm'3.srl), at a single wavelength due to

spontaneous emission from level 2 to 1 is a measure of the number density of the

molecules in the excited level, N2 (cm'3). The emission is given by

hcv/
ef=--_-z . A2, . N 2 (3.3.1)

where v! is the wavenumber of the fluorescence (cm't), h is Planck's constant

(6.6256:,<10 "_ J.sec), c is the speed of light (2.998×101° era.seel), and A21 is the rate

coefficient for spontaneous emission (secl).

The number density in the excited level, N2, is related to the number density in the

ground level, NI, through the rate equation

dNa = N,. W,2 -N 2 • (W2, +A2, + Q2,) (3.3.2)
dt

where Wn and W21 arc the stimulated absorption and emission rate coefficients (seet),

respectively, and Q2t is the rate coefficient for coUisional quenching (sect). The number

density in the excited level prior to excitation will be negligible if the energy difference

between the two levels is large. Thus the number densities after excitation are related to

the initial number density in the ground level by

N O= NI +/V2 (3.3.3)

The population in the excited level can be assumed to be in steady-state when the

quenching rates are high enough so that the temporal behavior of the laser and

fluorescence pulses are nearly identical (Lanrendeau and Goldsmith, 1989). With this

assumption, the excited level number density from Eqs. (3.3.2) and (3.3.3) becomes
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1
(3.3.4)

1+ (W21+Azl + Q21)lWl2" _v,

When the laser irradiance is small, the terms Wn and W2_ are small (non-saturated

conditions) and Eq. (3.3.4) simplifies to

Nz= Wn .N° (3.3.5)
A21 + Q21

The stimulated absorption rate coefficient for single-photon absorption is given by

oIL
W_2 = _ (3.3.6)

hCVL

where o is the absorption cross-section (cm2), It. is the incident laser irradiance (W.cm'2),

and vt. is the wavenumber of the laser (cm_). The fluorescence emission is obtained by

combining Eqs. (3.3.1), (3.3.5) and (3.3.6) and is given by

Cf "" 0t, •

A21

A2_ + Q2_
•N O. It. (3.3.7)

where the constant a is defined by

V/ O
a =--. -- (3.3.8)

vt. 4_

When the species concentration is small (e.g., the OH concentration in a sooting

flame), the fluorescence emission captured with narrowband spectral and temporal

detection (Eq. 3.3.7) may not be measurable. However, the measured fluorescence signal

can be increased if the fluorescence emission is collected over the temporal width of the

laser pulse and also over a spectral range encompassing the manifold of transitions from

the rovibronic levels in the upper electronic state to the rovibronic levels in the lower

electronic state. The fluorescence emission for broadband spectral and temporal

detection, e_, is given by (Laurendeau and Goldsmith, 1989)

elB=a'[A-A-_].N°.fIt.(t).dt (3.3.9)
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where A and Q are the rate coefficients for spontaneous emission and quenching obtained

by integrating A2t and Q21 over the manifold of rovibronic levels in the excited and ground

electronic states. The fraction of the fluorescence emission gathered by the collection

optics and measured by the detector is then given by

Sf=rlo. t2c" Vc "e/s (3.3.10)

where S! is the fluorescence signal power (W) and rio is the optical efficiency of the

detection optics.

The initial number density in the ground state, NO, can be determined from the

fluorescence signal power through Eqs. (3.3.9) and (3.3.10). The optical system constants

in Eqs. (3.3.9) and (3.3.10) can be determined through calibration. The irradiance term

in Eq. (3.3.9) may be accounted for by either measuring a reference irradiance or by

calibration, if the laser irradiance is invariant with time. The quenching term may be

accounted for by either assuming constant quenching or by calculating the quenching rate

coefficient. These calibrations and corrections are discussed in Sections 3.3.2 to 3.3.4.

The object of the measurement, the total number density, Nr, can be determined

from the initial number density in the ground state, N o, by

NO
Nr = FI---_ (3.3.1 I)

where Fta is the Boltzmann fraction at the local flame temperature. The sensitivity to

temperature can be reduced by choosing a ground state rovibronic level whose population

depends only weakly on temlm'ature.

3.3.2 Interferences and Baekmround Corrections

OH fluorescence measurements in sooting flames are complicated by possible

interferences that can become significant because the OH concentrations are so low in

such flames. Possible interferences were identified by Lucht, Sweeney, and Laurendeau
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(1985)as fluorescence from the soot particles and PAHs, scattering from the flame gases

and soot particles, and background emission from the flame and soot. The major

limitation in their saturated fluorescence measurements in sooting methane flames was

the background contribution from rotational Raman scattering from nitrogen. Many of

the other potential interferences were reduced because of the narrowband spectral and

temporal detection used with laser-saturated fluorescence. However, narrowband

spectral or temporal detection reduces the fluorescence signal which can be

disadvantageous when monitoring small OH concentrations. For broadband detection,

scattering interferences may be eliminated by excitation of the OH radical in the (1,0)

band followed by fluorescence detection in the (1,1) band away from the laser

wavelength. Both Harris et al. (1986) and Smyth et al. (1990) used this method. They

also limited their spectral detection bandwidth to discriminate against fluorescence and

background emission from other species. Smyth et al. (1990) noted that excitation at

~ 286 nm in the (1,0) band can excite a broadband UV fluorescence in the pyrolysis

regions of diffusion flames.

In the SPF(0,0) method, the spectral bandwidth of the detector includes the laser

excitation along with the OH fluorescence from the (0,0) band. Thus, potential

interferences can arise from scattering of the laser by flame gases and particles and

possibly from broadband fluorescence from PAHs and soot particles. The Rayleigh

scattering profiles measured with the laser scattering-extinction method can be used to

identify where particulate scattering and PAH fluorescence might arise. Typically, in

premixed sooting flames, the OH concentration profile declines to its equilibrium value

before the region of visible soot emission (Millikan, 1962; Lucht, Sweeney, and

Laurendeau, 1985). Thus, measurements near the peak of the OH concentration profile

in the oxidation zone are unlikely to be affected by particulate scattering; the same is not

true for the near equilibrium OH concentrations in the post-flame zone. Since the
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particulate volume fractions in the near-critical equivalence ratio flames of this study are

low, the associated interferences tend to be insignificant. Thus, the principal interference

for the OH fluorescence measurements will be Rayleigh mattering from the flame gases.

The Rayleigh scattering background can be measured by tuning the laser

wavelength away from the OH transition. Possible interferences from PAH fluorescence

and particulate scattering are included in the background when it is measured in this way.

The power, SR (W), for Rayleigh scattering measured by the detector is given by

SR = rio" fie" Vc- Qw.s" It. (3.3.12)

where Qwz is the differential scattering coefficient of the gases (cm*.srt). From Sec.

3.2.1, the differential scattering coefficient is given by

Qvv,s =Ns" EXk" Cw k (3.3.13)
k

where N s is the number density of the gases (cm3), Xk is the mole fraction of species k,

and Cw.t is the differential scattering cross-section of species k. The fluorescence signal,

Sp is then determined by subtracting the Rayleigh background signal from the signal

measured when the laser wavelength is tuned to the OH transition.

The Rayleigh scattering interference can be reduced by one to two orders of

magnitude if the incident laser irradiance is horizontally polarized. The differential

scattering cross-sections for horizontally polarized incident light and for scattering

measured at 90" are Can = 0 (Eq. 3.2.13b) and Cav = pv'Cw (Eq. 3.2.14). The

depolarization ratio, Pv, for flame gases is in the range from 0.0 to 0.05 (D'Alessio, 1981;

Bogaard et al., 1978). Thus, the scattered signal from horizontally polarized incident light

would be at most 5% of the scattered signal from vertically polarized incident light.

Relative OH number density profiles can be determined from the measured OH

fluorescence profiles if the quenching rate coefficient is known throughout the flame. The
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optical system constants and the laser irradiance terms in the expression for the

fluorescence signal (Eqs. 3.3.9 and 3.3.10) are assumed to remain constant throughout the

flame or to be known from experimental measurement. Comparisons between relative

OH number density profiles measured in different flames can be made if the variation in

quenching rate coefficient between flames is known.

The total quenching rate coefficient can be calculated by (Garland and Crosley,

1986)

Q = _,N,,.oQk.v,, (3.3.14)
k

where Nk (cm 3) is the number density of species k, OQk (cm 2) is the quenching

cross-section for species k, and vk (cm.sec 1) is the relative velocity between species k and

the quenched species. The quenching rate coefficient depends on the flame environment

through the temperature and the local concentrations of the quenching species. In

addition, the quenching cross-sections vary with both rotational level and temperature

(Garland and Crosley, 1986). Since quenching cross-sections have been measured for

only a few major combustion species at flame temperatures, calculations of the quenching

rate coefficient using Eq. (3.3.14) can only be approximate.

Measurements suggest that the quenching rate coefficient for the OH radical

remains approximately constant throughout a single flame and among similar flames.

Stepowski and Cottereau (1981) measured the collisional lifetimes of OH in

propane/oxygen flames at pressures from 15 to 80 torr to determine profiles of the

quenching rate coefficient. They concluded that a mean constant quenching rate

coefficient could be used through the reaction and burnt gas zones in a given flame.

Anderson, Decker, and Kotlar (1982) suggested that the overall quenching rate coefficient

was constant in atmospheric pressure CH4/N20 flames based on agreement between OH

concentration profiles measured by absorption and fluorescence. Schwarzwald,
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Monkhouse, and Wolfrum (1988) measured collisional lifetimes of OH in atmospheric

pressure methane/air flames for equivalence ratios from 0.77 to 1.43. They found that the

lifetimes were constant throughout each flame and did not vary with equivalence ratio.

These studies suggest that the assumption of a constant quenching rate coefficient

can be justified for the flames of this study. If this assumption is correct, then the

measured fluorescence profiles can be considered to be relative OH number density

profiles.

alilaali 

Conversion of the relative OH number density profiles to absolute OH number

density profiles requires a calibration to determine the constants in the equations for the

fluorescence signal voltage, Eqs. (3.3.9) and (3.3.10). This calibration can be done by

measuring the fluorescence signal with the same optical and electronic detection system

for a flame with a known OH number density. Lucht, Sweeney, and Laurendeau (1985)

calibrated their fluorescence signal in a lean methane flame where the OH concentration

had been measured with UV absorption. Miller et al. (1990) calibrated their fluorescence

signal in a hydrogen/oxygen flame for which they could calculate the OH concentration

accurately with a numerical simulation of the flame using a detailed chemical kinetics

model. An OH number density could also be obtained in a rich flame by calculating the

equilibrium OH concentration in the post-flame region. This method of calibration may

be subject to error because the OH concentrations are low in the post-flame zone and thus

the signal to background ratio may be too low.

2a.4.. lamaa 

We have reviewed methods for measurement of the soot and OH radical

concentration profiles in the transition from nonsooting to sooting conditions in premixed

flames. The laser scattering-extinction method can be used to measure profiles of soot
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volume fraction, number density, and particle size in these flames. We have presented the

theory of the laser scattering-extinction method when the particle sizes are in the Rayleigh

regime. The volume fraction of the soot in the flame can be determined from the

extinction coefficient. The soot particle number density and particle size can be

determined from the extinction coefficient and the scattering coefficient. Molecular

scattering, fluorescence, and gas-phase absorption interfere with the measurement of

particle scattering and extinction in sooting flames. However, these background

interferences can be quantified and subtracted from the overall signal to obtain the

contributions caused by the soot particles alone. The relative concentration and location

of unidentified PAH species can be measured using argon-ion laser induced fluorescence.

Both the particle size distribution and the particle index of refraction must be

assumed in this analysis to determine the volume fraction, number density, and particle

size. The particle size distribution may be assumed to be lognormal, because previous

work indicates that this distribution fits the measured particle size distributions in

premixed sooting flames. Beyond the particle inception stage, the moment ratios of the

particle size distribution approach those of a self-preserving size distribution.

The appropriate particle index of refraction is not as clear-cut, because the index of

refraction depends on the H/C ratio of the soot and the degree of agglomeration. A good

assumption for the index of refraction is the value determined for the primary particles of

the agglomerate by Dobbins, Santoro, and Semerjian (1990), since agglomeration is

reduced in lightly sooting flames near the critical equivalence ratio. Comparison of

volume fraction profiles should consider the possible errors introduced by the assumption

of a particle index of refraction.

The OH radical concentration profiles can be measured with a broadband

laser-induced fluorescence technique. We have presented the equations that relate the

measured OH fluorescence signal to the OH concentration. Background interferences
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from laser scattering or broadband fluorescence from other species can be quantified and

subm_ted from the signal. The relative OH fluorescence profiles may be considered to

be relative OH concenntion profiles because the overall quenching rate coefficient

remains approximately constant throughout a premixed flame and also as a function of the

equivalence ratio. The absolute OH concentration can be determined from the relative

OH concentration by calibrating the measurement system using a known OH

concentration.
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CHAPTER 4:

EXPERIMENTAL APPARATUS AND METHODS

 A_Iamalagtm

Incipient soot formation was investigated by examining a set of laminar fiat

premixed ethylene flames at both atmospheric and subatmospheric (80 ton') pressures.

The equivalence ratio, total flow rate, and dilution ratio (f'N2/f'c_) were varied to produce

a sequence of flame conditions ranging from rich nonsooting to sooting. The laser

scattering-extinction method was used to measure the soot volume fraction and number

density profiles (i.e., as a function of height above the burner) in each flame.

Scattering-extinction measurements in nonsooting regions of the flames were used to

estimate

profiles were

concentrations.

The OH

the temperature profile.

used to estimate

Broadband argon-ion laser-induced fluorescence

relative polycyclic aromatic hydrocarbon (PAH)

radical concentration profiles were measured with a broadband

laser-induced fluorescence technique. These measurements were made in a subset of the

flames examined with the laser scattering-extinction method. The absolute concentration

profiles were determined from the measured relative fluorescence profiles by calibration

in a lean flame.

Chemical kinetic modelling of these flames was used to calibrate the OH

fluorescence measurements and to estimate the flame temperature profiles. For the initial

modelling studies, an existing reaction mechanism for ethylene oxidation was used with

the Sandia premixed one-dimensional flame code to predict the temperature and species
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concentration profiles. The initial modelling studies served as the basis for further

modelling using a reaction mechanism that modelled the formation of single-ring

aromatic species.

In this chapter, we f'wJt describe the premixed flat-flame burner system used in all

the experiments. This description includes the design of the fiat-flame burner, the

mounting of the burner in the computer-controlled two-axis translation system, and the

gas flow delivery system. The differences between the burner system configuration used

at atmospheric pressure and that used at subatmospheric pressure are also described. We

then summarize the flame conditions examined in this study.

Next, the laser scattering-extinction measurements and the broadband laser-induced

fluorescence measurements are described. For both techniques, the implementation of the

method is discussed, the optical and the electronic data acquisition setups are described,

and then the procedures used in the experiments and in the subsequent data analyses are

outlined.

Finally, we describe the implementation of the Sandia premixed one-dimensional

flame code and the solution procedure to obtain the species concentration profiles for our

flame conditions.

4.2 The Flat Flame Burner System
-

The flat-flame burner system consisted of (1) a premixed honeycomb frit burner, (2)

a mounting system for the burner with accurate computer-controlled positioning in both

the vertical and horizontal directions, (3) a gas delivery system to supply accurate metered

flow of the feed gases, (4) a pressure vessel and a vacuum-pump driven exhaust system

to operate the burner at subatmospheric pressures, and (5) a flame stabilizer and a

blower-driven exhaust system to operate the burner at atmospheric pressures. These

components of the burner system are described in order in the following sections.

98



4.2.1 The Flat Flame Bur_er

The premixed flat-flame burner consisted of a honeycomb flameholder within a

sintered bronze guard flow ring mounted in a stainless steel guard flow housing. The

burner and housing were mounted on a plenum tube which mixed and straightened the

flow of the feed gases before they entered the burner. A cutaway view of the burner is

shown in Figure 4.1.

The burner design was a modification of a burner used in a study of the critical

equivalence ratio of premixed flames (Harris, King, and Laurendcau, 1986) and in a set

of preliminary measurements of the OH concentration in subatmospheric sooting flames

(Inbody et al., 1986). The design was modified to operate leaktight at subatmospheric

pressures and to work with a new translation system to more accurately position the

burner.

The flameholder was a 5.9 cm diameter, 3.8 cm (1.5 in.) thick honeycomb plug cut

from a Hastelloy-X honeycomb fabricated by Kentucky Metals, Inc., New Albany, IN.

The honeycomb was made of 0.05 mm (0.002 in.) thick metal formed into a pattern of

0.8 mm (1/32 in.) hexagonal tubes (as measured across the flats of the hexagons). The

honeycomb plug was held in a stainless steel sleeve and was pressed against the upper lip

of the sleeve by a threaded retainer ring. The inside diameter of the sleeve's upper lip

(5.6 cm) defined the flow area of the burner (24.6 cm2), which was used for calculations

of the cold flow velocity and the mass fluxes required by the flame code.

The original purpose for using the honeycomb burner instead of a more commonly

used sintered-metal burner was so that the flame could be seeded with sodium chloride to

measure flame temperatures with the sodium d-line reversal technique. The honeycomb

burner also had a further advantage in that when used for sooting flames it would become

clogged with soot and could be easily cleaned. A disadvantage of the honeycomb plug

was that the flame could stabilize in the burner since the hole size was too large to quench
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Figure 4.1 Cutaway view of the honeycomb plug flat flame burner.
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the flame and thus the flame could flashback into the plenum chamber. To prevent

flashback, a 3.2 cm (118 in.) thick sintered stainless steel disk (100grn pore size) was

placed below the honeycomb plug and held in place by the threaded retainer ring. When

seeding flames, the sintered disk could easily be removed from the burner.

The guard flow around the flame was supplied through a 1.3 cm (1/2 in.) width

sintered bronze guard flow ring (McKenna Products, Inc., Pittsburg, CA). The guard

flow ring was held even with the burner surface by the stainless steel guard flow housing.

The lower half of the housing screwed onto the burner sleeve. The upper half screwed

into the lower half and thus pressed and sealed the guard flow ring against the burner

sleeve. The nitrogen flow through the guard ring was supplied through a 1/4 in. Swagelok

male connector into the plenum of the guard flow housing. The design of the guard flow

housing was similar to that of a 6.0 cm diameter McKenna Burner.

The head of the burner, consisting of the guard flow housing and the burner sleeve

containing the flameholder, screwed into the top of an aluminum plenum tube 33.0 cm

(13 in.) long with a 7.56 cm (2.975 in.) outside diameter and a 6.67 cm (2.625 in.) inside

diameter. A 2.23 cm (7/8 in.) thick aluminum plug screwed into the bottom of the plenum

tube and sealed the tube with an O-ring. The burner feed gases entered the plenum tube

through a 1/4 in. O-ring sealed Swagelok fitting in this bottom plug.

Within the plenum tube, four flow straightener disks mixed and smoothed the flow

of the burner feed gases. The 1.59 mm (1/16 in.) thick, 6.65 cm (2.620 in.) diameter brass

disks were held apart at 2.54 cm (1 in.) intervals with brass spacer rings starting at

2.54 cm (1 in.) above the bottom plug. The gases passed through 1.59 mm (1/16 in.)

diameter holes drilled in each disk. The number of holes in each disk increased from 4 to

8 to 17 to 33 holes from the bottom disk to the top disk. An 8.25 cm (3 1/4 in.) long spacer

ring placed above the top disk kept the plates from floating up to the base of the burner

plug during operation of the burner at subatmospheric pressures.
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4.2.2 Burner Mounting, and Translation System

The plenum tube connected the burner into the computer-controUed translation

system that moved the burner both vertically and horizontally relative to the optical

measurement axis. The translation system was designed to work within the constraints of

an existing pressure vessel for subatmospheric pressure experiments. The vertical

translation range was realized by translating the burner through a sliding O-ring seal

within the pressure vessel, while both the burner and the vessel were translated

horizontally to realize the necessary horizontal range. Both the horizontal and vertical

translation mechanisms used linear bearings riding on rigidly fixed bearing shafts to

reduce the friction and the required torque to move the burner and also to maintain the

rigidity of the system necessary for precision positioning. Computer-controlled stepper

motor-driven worm gear drives positioned the burner both vertically and horizontally. A

side view of the translation system in Figure 4.2 shows the elements of the vertical

translation mechanism. The elements of the horizontal translation mechanism are shown

in the top view of the translation system in Figure 4.3.

The mounting point for the translation mechanisms was the pressure vessel base

plate, a 25.4 cm (10 in.) by 30.5 cm (12 in.) by 1.91 cm (3/4 in.) thick aluminum plate.

The horizontal translation mechanism mounted the pressure vessel base plate on the

optical table. The vertical translation mechanism was attached to the bottom of the base

plate and thus moved with it when the base plate was translated horizontally.

The burner was moved vertically by moving the plenum tube through a double

O-ring seal in a flange bolted to the center of the base plate. Since the plenum tube was

the sliding surface in the O-ring seal, the aluminum tube was hard anodized to prevent

surface scratches that would defeat the seal and increase the sliding friction. The plenum

tube was rigidly constrained to be vertically aligned with the flange O-ring seal by fixing

the bottom of the tube to a bearing mount with three linear bearings riding on three
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parallel 1.91 cm (3/4 in.) diameter, 61.0 cm (24 in.) long shafts. These bearing shafts

formed a triangular frame held at the ends by bearing shaft mounts. The top of the frame

bolted to the flange in the base plate. The linear bearings constrained the lateral

movement while reducing the friction in the vertical direction so that the dominant

resistance to the vertical movement of the burner was the friction of the O-ring seal.

The plenum tube and the burner were positioned vertically with a precision ball

screw manufactured by Thomson Industries, Inc., Port Washington, NY. The Thomson

Star ball screw, 305 mm long with a 16 mm diameter and a 5 mm per revolution lead, was

used because of its lead accuracy (lead error: 50 _m per 300 mm length) and because its

ball screw nut could be preloaded to reduce backlash. The top end of the ball screw bolted

to the base of the bearing mount, while the bottom end floated free; the ball screw nut was

held between two angular contact bearings in the vertical drive housing. The ball screw

was moved vertically by rotating the ball screw nut with a 3/8-inch pitch Flex-E-Grip

timing belt-pulley mechanism (Winfred M. Berg, Inc., East Rockaway, NY). A 30-tooth

pulley was fixed to the ball screw nut with an adapter and was driven by the timing belt

with a 10-tooth pulley. A stepper motor (Superior Electric Slo-Syn model M061-FC08;

200 steps per revolution) drove the drive pulley through a precision four-thread worm and

a 100-tooth anti-backlash worm gear mounted in a drive box. This combination of gears

required 3000 steps of the stepper motor to move the burner vertically 1 mm for an

effective resolution of 0.33 ttm per step.

The ball screw vertical drive housing and the gear drive box were mounted on a plate

attached to the bearing shaft frame with adjustable clamps. The position of the plate could

be moved to adjust the center of the vertical translation range. The burner vertical

position was read from a dial indicator with a 150 mm range and a 0.01 mm resolution.

The dial indicator was clamped onto a bearing shaft and sensed the position of the bearing

mount holding the burner.
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The horizontal translation mechanism (Fig. 4.3) supported the pressure vessel base

plate on two 12 inch long, 1/2 inch diameter bearing shaft rails mounted on an aluminum

frame bolted to the optical table. The base plate rode on linear bearings on these rails, so

that the weight of the burner, pressure vessel, and the vertical translation mechanism was

supported with only a minimal frictional resistance to horizontal movement. The frame

was bolted to the optical table with the base plate centered over a 12 inch diameter hole

intheopticaltable,so thattheverticaltranslationmechanism hung down below thetable.

The burnerwas moved horizontallyby moving thebaseplaterelativetotheframe

with a rack and piniondrivesystem assembled from partsmanufactured by Winfrcd M.

Berg, Inc. Two precisionracks,each 4 incheslong with a 1/20inchpitchand mounted

on one end of the surfaceplate,were drivcnby piniongcars(40 tecth,1/20inch pitch)

mounted on a I/4inchdriveshaftrunningthelengthoftheframc. The shaftwas rotated

on one end by a stepper-motorworm-gear drivebox containinga steppermotor (Superior

ElectricSlo-Syn model M061-FC08; 200 stepsperrevolution),adouble-threadworm and

a 64-tooth,anti-backlashworm gear. Thc translationmechanism required126 stepsof

the steppermotor to move the burner I mm horizontallyfor an cffectivehorizontal

resolutionof$ grn per step.The effectivehorizontaltranslationrangewas 7.6cm (3 in.),

about thediameterof thepressurevesselwindows. The horizontalpositionof the base

plateand, thus,the burnerwas read from a dialindicatorwith a I00 mm rangc and a

0.01 rnm resolution.

4.2.3Gas Delivery and Metering System

The fuel,oxidizer,diluentand guard flows were suppliedto thcburnerby the gas

deliveryand meteringsystem. This system alsosupplieda nitrogenflow forpurgingof

thepressurevesselwindows duringsubatmosphcricoperationofthcburner.
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The gas delivery and metering system used electronic mass flow controllers to

achieve repeatable flow rates for the fuel, oxidizer, and diluent flows. In a set of

preliminary experiments, rotameters were used to control the flow rates.

Scattering-extinction measurements made in these flames showed significant variations

in the soot concentration in what were thought to be the same flame conditions (i.e., at the

same flow rate settings) despite care in setting the flow rates. These variations were

attributed to a lack of precision of the rotameters. To achieve the desired repeatability in

the flame conditions, electronic mass flow controllers were used to set the flow rates more

precisely and to achieve a better repeatability (+ 0.25%) in the flow rates compared to that

of the rotamcters (5: 1.0%). The schematic of the gas delivery and metering system is

shown in Figure 4.4. A description of the system follows.

In all the experiments, the fuel was ethylene, C.P. grade (99.5% pure, minimum), in

cylinders obtained from Matheson Gas Products, Inc.. The oxidizer was oxygen,

commercial grade (99.5% pure). The diluent and guard flows were supplied by nitrogen,

high purity dry (99.995% pure). Both the oxygen and nitrogen were supplied through the

Purdue University Materials Management and Distribution system.

Both the ethylene and oxygen flows were supplied and metered through similar

setups. The cylinder pressure regulators were typically set to 150-180 psig. From the

cylinders, the gases were supplied to a control panel through 1/4 inch stainless steel

tubing. At the control panel, a plug valve was used for positive on/off flow control.

Downstream from the plug valve, an instrument pressure regulator (Linde SG4820

0-200 psig single-stage low pressure instrument regulator) accurately regulated the inlet

pressure to the mass flow controller. A pressure gage downstream from the instrument

regulator was used to set the regulator outlet pressure to 120 psig. A 2-micron filter

(Nupro TF tee type removable filter) at the inlet to the mass flow controller trapped

particles that might otherwise clog the capillary tube in the mass flow controller. The
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mass flow controllers used were Linde Standard Mass Flow Control Modules controlled

by a Linde FM 4575 Mass Flowmeter/Flow Controller. The oxygen mass flow controller

was a module 13C rated and calibrated at a maximum of 5000 cm_.min t (STP) of oxygen.

The ethylene mass flow controller module was a module 13C rated and calibrated at a

maximum of 2000 cm3.min -_ (STP) of ethane. A check valve (Nupro inline check valve

1/3 psi) at the outlet of each mass flow controller prevented back flow from the other gas

supply lines. The gases then flowed through 1/4 inch stainless steel tubing to the burner.

The nitrogen for the diluent, guard, and window purge flows was supplied from a

6-cylinder manifold. The nitrogen was supplied to the control panel through 1/4 inch

stainless steel tubing at approximately 200 psig as set by the manifold pressure regulator.

At the control panel, a plug valve was used for positive on/offcontrol of the nitrogen flow.

A single-stage pressure regulator (Linde SG3800 single-stage low-flow regulator) was

used to control and set the inlet pressure at 140 psig to the diluent flow, guard flow, and

window purge flow lines. Downstream from the pressure regulator, the diluent flow,

guard flow, and window purge flow lines were split off from each other.

The diluent flow and the guard flow were supplied and metered through similar

setups. A plug valve was used to turn on and off the flow and to provide positive shut-off

of the flow. Downstream from the plug valves, pressure gages monitored the inlet

pressure to the mass flow controllers. At the inlet of the mass flow controllers, 2-micron

filters prevented particulates from entering the controller. A Linde Standard Flow

Control Module 16C rated at 0-20 1.min _ (STP) for nitrogen controlled the diluent flow

rate. A Standard Flow Control Module 18C rated at 0-50 1.min t (STP) for nitrogen

controlled the guard flow rate. Check valves at the outlet of the flow controllers prevented

backflow through the mass flow controllers. Similar to the oxygen and ethylene flows,

the diluent and guard flows were transported to the burner through 1/4 inch stainless steel

tubing.
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Before entering the burner, the diluent and oxygen flows were combined. The

ethylene flow passed through a flashback arrestor (Matheson series 6103 flash arrestor)

and then combined with the diluent and oxygen flows. The three combined flows then

flowed into the base of the burner plenum chamber through a stainless steel flexible hose.

The guard flow was routed in a 1/4 inch Tygon hose through the pressure vessel

base plate and then to the Swagelok connector on the burner guard flow housing. The

fvedliLrough in the base plate was a 1/4 inch Swagelok connector drilled out to a 1/4 inch

clearance. The Swagelok connector sealed against the Tygon hose backed by a 1/2 inch

long section of 3/16 inch outside diameter brass tube inserted into the Tygon hose.

The window purge flow was used only when the burner was operated at

subatmospheric pressures. The window purge flow was routed separately from the

diluent and guard flow lines to its own control panel. A plug valve at the inlet to the

control panel was used to turn on and off the flow to all four windows. The flow was then

sprit into a flow for each of the four windows. For each window flow, a shut-off valve

controlled the flow and a needle valve (Nupro S-series 1/8 inch fine-metering valve) set

the flow rate to the window. The flows from the control panel went through 1/4 inch

polyethylene tubing to each window.

The mass flow controllers were calibrated at the inlet and outlet pressure settings

and over the range of flow rates used in the experiments. This calibration was necessary

because the pressure settings used in the experiments were different from the factory

calibration settings and also because the fuel mass flow controller was originally

calibrated for ethane instead of ethylene, the fuel used in these experiments.

The flow controllers were calibrated with a dry test meter (Singer-American

DTM-115) for flow rates greater than 0.6 l-rain "_and with a 500 ml bubble flow meter

(Supelco) for flow rates less than 1.2 l-rain "_. The temperature of the gas flow was
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measuredwitha thermocouple and the exhaust pressure was measured with an absolute

pressure gauge. The measured temperature and pressure were used to correct the

measured flow rates to STP flow rates (at 25"C and 1 atm).

The calibrations obtained using the dry test meter and the bubble meter were

compared by measuring a series of flow rates from 0.6 1.min t to 1.2 1.min _ with both

meters. The calibrations showed that the dry test meter measured flow rates were

consistently 4% lower than the flow rates measured with the bubble flow meter. The dry

test meter flow rates were then adjusted based on the comparison between the bubble flow

meter and the dry test meter.

4.2.4 Subatmospheric Pressure Operation of the Burner

To examine flames at subatmospheric pressure conditions, the burner was enclosed

in a pressure vessel connected to a vacuum pump driven exhaust system. A cutaway view

of the pressure vessel is shown in Figure 4.5. Figure 4.6 is a schematic of the exhaust

system.

The pressure vessel was an aluminum tube, 45.1 cm (17.75 in.) tall with a 15.24 cm

(6 in.) inside diameter and a 20.32 cm (8 in.) outside diameter, welded to flanges at both

ends. The 24.13 cm (9 1/2 in.) diameter bottom flange bolted to the pressure vessel base

plate. A 27.94 cm (11 in.) diameter, 2.54 cm (1 in.) thick blind aluminum flange bolted

to the top flange of the vessel. The flange connections were sealed with O-ring seals. The

vessel exhaust exited through the top blind flange through a 1 in. stainless steel Swagelok

connector. Four 1/4 in. NPT threaded holes in the top blind flange allowed access to the

vessel chamber for two pressure gauges, a thermocouple, and a pressure relief valve.

The pressure vessel windows were mounted on four 7.62 cm (3.0 in.) diameter

access ports 90" apart and centered 22.23 cm (8.75 in.) above the base plane of the vessel.

A nitrogen purging system, based on a design by Crumley and Gole (1986), was built into

the window mounts to prevent deposition of soot or other condensates on the windows.
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Figure 4.5 Cutaway view of the pressure vessel showing sections of the pressure
vessel at 90" to each other to display the two types of window mounts.
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A cross-section of these window mounts can be seen in Figure 4.5. Each window mount

consisted of two circular flanges with their mating faces having matching conical

surfaces. A circumferential slot was cut into the inner conical surface to form a plenum

between the mating surfaces of the flanges. Nitrogen fed into this slot flowed to the

window surface through a 0.076 mm (0.003 in.) gap between the conical surfaces. The

angle of the conical faces directed the nitrogen flow toward the center of the window. The

windows were 90.8 mm (3.575 in.) diameter, 6.35 mm (1/4 in.) thick optical fiats made

of either A1 quartz or fused silica. Retainer rings held the windows in place against the

O-ring seals in the window mounts. The two windows where the laser beam entered and

exited the vessel were tilted at a 15* angle to reduce back reflections of the laser beam.

The nitrogen purging of the windows prevented soot build-up on three of the

windows, but could not prevent a deposit from forming on the window where the laser

beam exited from the vessel. This deposit may have been caused by an uneven flow

pattern which allowed soot to reach the window and might have been prevented by

significantly increasing the nitrogen flow, but that would also have disturbed the flame.

The exhaust from the pressure vessel was drawn through 1 in. O.D. brass tubing and

was routed to a control panel. A manually-operated stainless steel regulating valve with

an 0.437 in. orifice regulated the exhaust flow and thus controlled the pressure in the

vessel. Upstream from the regulating valve, a tee in the line allowed atmospheric pressure

air to bleed into the system. A regulating valve in this line controlled the amount of bleed

air let into the exhaust stream. A toggle shut-off valve in the bleed air line also was used

to bring the pressure vessel back up to atmospheric pressure.

Downstream from the exhaust regulating valve, a ball valve with a 0.406 in. orifice

provided positive shut-off of the vessel from the vacuum system. From the ball valve the
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exhaust passed through 1 in. O.D. tubing to the 2 in. piping of the inlet header and then

through an inlet gate valve to the vacuum pump. The vacuum pump was a Kinney

KDH-80 rotary piston vacuum pump.

Two pressure gauges monitored the pressure in the pressure vessel. A Wallace and

Tieman Series 300 absolute pressure gauge with a range of 0 to 800 torr monitored the

pressure through 1/4 in. tubing connected to the top of the pressure vessel. This gauge

had a specified accuracy of 0.33% full scale (2.6 ton.) and a specified sensitivity of 0.2%

full scale (1.6 ton'). The second pressure gauge, a Setra Model 205-2 Pressure transducer

with a range of 0 to 25 psia, was connected to a tap in the top of the pressure vessel

through a 6 in. length of 3/8 in. tubing. This transducer output was monitored with a

voltmeter. The specified accuracy of the pressure transducer was +0.11% full scale

(+ 1.4 ton') with a non-repeatability of + 0.02% (+ 0.3 torr).

The pressure in the vessel was controlled by adjusting the regulating valve and

observing the pressure with the pressure gauges. The pressure for the 80-torr flames was

set by adjusting the regulating valve until the Wallace and Tieman pressure gauge read

80 ton.. Then, at that pressure, the voltage output was read from the Setra pressure gauge

and used as the setpoint when the regulating valve was adjusted to maintain the pressure

at 80 torr. The nonsooting and lightly sooting flames usually did not require valve

adjustments to maintain the pressure. However, heavier sooting flames required frequent

adjustments of the valve as the soot depositing on the internal surfaces of the valve

effectively changed its orifice size. Control of the bleed air flow could be used to partly

alleviate the problem by diluting the exhaust stream passing through the valve.

During preliminary experiments, the scattering signal from sooting flames varied

significantly if the pressure varied by as little as two ton'. Because of this observed

pressure dependence, the pressure was controlled to keep it within + 0.5 ton" of the 80-torr
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setpoint.An automatic pressure control with an absolute accuracy better than + 0.5 tort

woatd circumvent this problem and would also improve the reproducibility of the

pre_ure setting from day to day.

The a_ for _pheric pressure operation of the burner was not well

adapted for handling sooting flames. Soot deposition within the exhaust system,

particularly in the constricted flow regions of the valves, made it difficult to hold the

pressure constant. Because of soot deposition, the exhaust system required frequent

cleaning. Since the soot was not removed from the exhaust, it contaminated the vacuum

pump oil, and caused additional wear on the vacuum pump.

During experiments on the more heavily sooting flames, a cloud of soot particles

would build up in the stagnant regions of the pressure vessel. This soot 'fog' would

increase the deposition of soot on the windows and would also contribute to the extinction

of the laser beam passing through the vessel, and thus interfere with the extinction

meAsuren'_nts.

Problems with the soot 'fog' and soot deposition could be alleviated through some

major modifications to the system. The soot 'fog' might be prevented if a bath flow of

nitrogen was added at the bottom of the pressure vessel. This extra flow would help

prevent buildup of soot on the windows, but it would place an extra load on the vacuum

pump.

Typical design practice for the inlet plumbing of vacuum pumps suggests that the

inlet piping should be the same diameter as that of the vacuum pump. To implement this,

the pressure vessel exhaust piping should be changed from 1 in. tubing to 2 in. piping.

Although this would make the system more physically cumbersome, it would decrease the

pressure losses and would also decrease the effects of soot deposition within the system.

Larger diameter piping would also require larger control valves.
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An obvious solution to prevent soot build-up within the piping, valves, and vacuum

pump oil would be to install a filter or trap to remove the soot from the exhaust. An

alternative might be to change to a liquid jet vacuum pump that would tolerate a

contaminated exhaust stream better than the rotary piston vacuum pump.

A final suggestion that would not improve the experiment itself, but that would

improve the environment outside the laboratory would be to include an oil mist eliminator

on the exhaust of the vacuum pump. During experiments, the pump would emit a cloud

of fine oil droplets much like the exhaust of a car that is burning oil. The oil mist could

be removed by installing an oil mist eliminator on the exhaust of the vacuum pump.

4.2.5 Atmosoheric Pressure Ooeration of the Burner

The configuration of the burner system was simpler for atmospheric pressure

operation than for subatmospheric pressure operation. The pressure vessel was removed

and the burner was operated open to the room. The burner exhaust gases were drawn into

a sheet metal duct by a blower (a portable fume exhauster) and then exhausted to the

outside of the laboratory.

To stabilize the atmospheric pressure flames, a 7.62 cm (3 in.) square by 1.27 cm

(1/2 in.) thick Hastelloy-X honeycomb (the same material as the burner's honeycomb

plug) was mounted 40 mm above the burner surface with a mounting fixture attached to

the burner guard flow housing. The fixture consisted of a mounting ring held in place by

bolts screwed against the guard flow housing. Four optical posts, 3 in. long, screwed into

the mounting ring. The honeycomb was suspended over the burner with hooks made from

piano wire which bolted to the four optical posts. The height of the stabilizer above the

burner could be varied by moving the position of the mounting ring on the guard flow

housing.
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4.3 Summary of Flame Conditions

In this study, a series of fiat, premixed, laminar ethylene/oxygen/nitrogen flames

was examined with conditions ranging from rich nonsooting to sooting at both

atmospheric and subatmospheric (80 ton') pressures. The flow rates of ethylene, oxygen,

and nitrogen were chosen to obtain a specific equivalence ratio, cold flow velocity, and

dilution ratio for each flame.

The equivalence ratio is defined as the actual ratio of the ethylene to oxygen flow

rates divided by the stoichiometric ratio. The cold flow velocity (Vo cm.sec _) is defined

as the totafl flow rate of the ethylene, oxygen, and nitrogen flows at 25 °C and at the

pressure of the experiment divided by the cross-sectional area of the burner (24.6 cm2).

The dilution ratio (D) is the ratio of the flow rate of nitrogen to the flow rate of oxygen.

The goal of the experiments was to measure the change in the soot and hydroxyl

concentration profiles as the flames changed from rich nonsooting to heavily sooting

conditions. To do this, the general approach was to examine a sequence of flames in

which the cold flow velocity and dilution ratio were held constant, while the equivalence

ratio was varied.

The equivalence ratios, cold gas flow rates, cold flow velocities, and dilution ratios

of the flames that were examined are listed in Tables 4.1 to 4.4. Table 4.1 lists the

atmospheric pressure flame conditions for which the soot concentrations were measured

with the laser scattering-extinction method. Three sequences of equivalence ratios were

examined. The first and second sequences had approximately the same cold flow

velocity, but different dilution ratios. The first and third sequences had approximately the

same dilution ratio, but _fferent cold flow velocities. Table 4.3 lists the atmospheric

presstwe flame conditions for which OH radical concentration profiles were measured.
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Table 4.1 Equivalence ratio, cold gas flow rates, cold flow velocity, and dilution ratio

for the atmospheric-pressure flames used in the scattering-extinction
meastLrements.

Equivalence
Flame Ratio

C H,

A-IA-R2 1.63 1.089

A-IA-C 1.70 1.126

A-IA-S 1 1.78 1.176

A-IA-S2 1.92 1.263

A-IA-S3 2.02 1.320

A-IA-S4 2.17 1.406

A-IA-S5 2.32 1.489

Flow Rates Cold Flow Dilution

(slpm) Velocity Ratio

02 N2 Total (cm.s "_)

2.002 8.32 11.41 7.73 4.15

1.991 8.29 11.41 7.73 4.16

1.984 8.25 11.41 7.73 4.16

1.968 8.20 11.43 7.75 4.17

1.958 8.14 11.42 7.74 4.16

1.943 8.09 11.43 7.75 4.16

1.929 8.03 11.44 7.75 4.16

A-IB-C 1.67 1.326

A-IB-S2 1.92 1.421

A-IB-S3 2.02 1.485

A-IB-S4 2.17 1.578

2.383 7.90 11.61 7.87 3.31

2.218 7.84 11.48 7.78 3.54

2.204 7.79 11.48 7.78 3.54

2.185 7.71 11.47 7.77 3.53

A-IIA-R2 1.63 1.432

A-IIA-S1 1.78 1.556

A-IIA-S2 1.92 1.667

A-IIA-S3 2.02 1.742

2.640 11.31 15.39 10.42 4.29

2.623 11.25 15.43 10.45 4.29

2.604 11.15 15.42 10.45 4.28

2.589 11.09 15.42 10.45 4.28
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The rich flames had the same cold flow velocity and dilution ratio as the first sequence

examined with the sea--g-extinction measurements. The lean atmospheric flame was

used in the calibration of the OH fluorescence measurements.

Soot concentrations were measured with the laser scattering-extinction method for

the 80-tort flames listed in Table 4.2. Two sequences of equivalence ratios with different

cold flow velocities were examined. These flames were not diluted with nitrogen and thus

the dilution ratio was zero. OH fluorescence profiles were measured in one subset of an

equivalence ratio sequence. These conditions are listed in Table 4.4.

An uncertainty analysis of the flow rates, equivalence ratios, dilution ratios, and

cold flow velocities is given in Appendix A. The precision of the mass flow controllers

cause an uncertainty in the flow rates that is less than 0.3%, but the uncertainty caused by

the calibration increases the uncertainty in the flow rates to approximately 0.90%. The

uncertainties in the equivalence ratios and dilution ratios are about 0.35% and are affected

only by the precision of the mass flow controllers. The uncertainties in the cold flow

velocities are somewhat larger, approximately 2.0%, because of the uncertainty in the

burner diameter.

The flames in the tables are labeled with a three part code to aid in identifying the

flames and to aid in comparing the measurements from the flames. The code consists of

three letter-number combinations separated by hyphens. The first letter indicates whether

the flame is an atmospheric (A) or an 80-torr (L) flame. For the second number-letter

combination, the roman numeral indicates a sequence of flames that have the same cold

flow velocity, while the letter indicates a sequence of flames that have the same dilution

ratio. Thus, at atmospheric pressure, flames with a cold flow velocity of 7.7 cm.sec _ are

designated with the numeral T and flames with a cold flow velocity of 10.4 cm.sec _ are

desi_FJ,ated with the numeral 'n'. Flames with a dilution ratio of 4.2 are designated with

the letter 'A' and those with a dilution ratio of 3.5 are designated with the letter 'B'. At
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Table 4.2 Equivalence ratio, cold gas flow rates, and cold flow velocity for the 80-torr
flames used in the scattering-extinction measurements.

Flame

L-I-R1

L-I-R2

L-I-S1

L-I-S2

L-I-S3

Equivalence Flow Rates Cold Flow
Ratio (slpm) Velocity

C_H4 02 Total (cm.s l)

2.03 1.132 1.675 2.807 18.1

2.17 1.179 1.629 2.808 18.1

2.32 1.222 1.584 2.806 18.1

2.46 1.265 1.541 2.806 18.1

2.60 1.303 1.502 2.806 18.1

L-II-R1 2.03 1.400 2.074 3.474 22.4

L-II-R2 2.16 1.460 2.023 3.483 22.4

L-II-S1 2.32 1.515 1.962 3.477 22.4

L-II-S2 2.46 1.567 1.913 3.480 22.4

L-II-S3 2.60 1.616 1.863 3.479 22.4
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80 torr, flames with a cold flow velocity of 18.1 cm-sec 1 are designated with the numeral

T and those with a cold flow velocity of 22.4 cm.sec -1 are designated with the numeral

9H_ °

The third letter-number combination indicates the equivalence ratio of the flame.

The letter indicates the nature of the flame; 'L' indicates a lean flame, 'R' a rich but

nonsootingflame,'S'a sootingflame,and 'C' a flame atthecriticalequivalenceratio.

The number increaseswiththeequivalenceratio.Flames withthesame number have the

same equivalenceratio.

Table 4.3 Equivalence ratio, cold gas flow rates, cold flow velocity, and dilution ratio
for the atmospheric-pressure flames used in the OH measurements.

Equivalence Flow Rates Cold Flow Dilution
Flame Ratio (slpm) Velocity Ratio

C2H 4 0 2 N 2 Total (cm.s "1)

A-0-L 0.97 0.627 1.941 10.52 13.08 8.86 5.42

A-IA-R1 1.49 1.001 2.020 8.39 11.41 7.73 4.15

A-IA-R2 1.63 1.089 2.002 8.32 11.41 7.73 4.15

A-IA-S1 1.78 1.176 1.984 8.25 11.41 7.73 4.16

A-IA-S2 1.92 1.263 1.968 8.20 11.43 7.75 4.17
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Table4.4 Equivalenceratio,coldgas flow rates, and cold flow velocity for the 80-tort
flames used in the OH measurements.

Flame

L-H-R1

L-H-R2

L-II-SI

L-II-S2

Equivalence Flow Rates Cold Flow
Ratio (slpm) Velocity

C2H4 02 Total (cm.s l)

2.03 1.400 2.074 3.474 22.4

2.16 1.460 2.023 3.483 22.4

2.32 1.515 1.962 3.477 22.4

2.46 1.567 1.913 3.480 22.4

4,4 Laser Scattering-Extinction Measurements

The laser scattering-extnction method was used to measure soot formation in

sequences of flames at both atmospheric and subatmospheric pressures. The laser

scattering-extinction apparatus was used to measure profiles of the scattering and

extinction coefficients. For the sooting flames, these profiles were used to calculate

profiles of the soot volume fraction, particle number density, and mean particle diameter.

For the nonsooting flames, the scattering coefficient profiles were a measure of the

background contribution from molecular scattering of the flame gases. In addition, the

scattering coefficient profiles for nonsooting flames and for nonsooting regions of sooting

flames were used to estimate temperature profiles. The depolarized component of the

scattered light was measured to determine the extent of anisotropic scattering by the

particles and particle agglomeration. The broadband fluorescence induced by the

argon-ion laser was measured to quantify its background contribution and also to monitor

the presence of PAH species or perhaps other soot-related species.
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The theory for the laser scattering-extinction method was presented in Section 3.2.

The implementation of the method is presented here by first describing the optical setup

and then the signal detection and data acquisition setup. We then describe the

experimental procedure used to calibrate the measurements and to acquire the raw data

for the scattering and extinction coefficient profiles. We conclude with a description of

the analysis procedures to determine the scattering and extinction coefficient profiles

from the raw data.

4.4.1 Optical _¢tup

The basic structure of a laser scattering-extinction measurement system was

described in Section 3.2.1 and was shown in Figure 3.1. The basic measurement system

consists of a laser, the output of which is directed through the flame parallel to the burner

surface, and three detectors to measure the laser irradiance and scattered light power. A

'reference' detector measures the incident laser irradiance on the flame, a 'transmittance'

detector measures the laser irradiance transmitted through the flame, and a 'scattering'

detector measures the scattered light power from the particles and gases in the flame. The

implementation of this laser scattering-extinction measurement system to measure

scattering and extinction coefficient profiles in flames near the critical equivalence ratio

is shown in Figure 4.7.

The light source was a Lexel Model 95 argon-ion laser tuned to 488.0 nm with a

vertically polarized output. The laser was set to run in the light control mode to provide

feedback stabilization of the output power. The output of the laser was directed to and

aligned with the optical axis of the burner by four beam-steering minors. The optical axis

of the burner was defined by two apertures placed on opposite sides of the burner

equidistant from the burner centerline. The height of the apertures was set to the

centerline height of the burner pressure vessel windows using a cathetometer.
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Figure 4.7 Schematic showing the optical setup for the laser scattering-extinction
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After the beam-steering mirrors, the laser beam was focussed onto an aperture by a

400 mm focal length lens to spatially filter the laser output. A second 400 mm focal

length lens recoUimated the laser beam. A Stanford Research Systems SR540 Optical

C_opper modulated the laser beam at 1.00 kHz for phase-sensitive detection of the signals

from the _ansmittance, reference, and scattering detectors.

After the chopper, the reference intensity of the laser beam was measured by

reflecting a portion of the lasm" beam onto a photodiode (henceforth called the 'reference

photodiode') using a 50.8 mm square 6.2 ram thick quartz plate placed in the laser beam.

A flashed opal diffuser was placed in the reflected beam in front of the photodiode to

reduce the laser intensity and also to reduce the sensitivity of the photo&ode signal to

beam wander.

The laser beam was focussed over the center of the burner by a 350 nun focal length

lens. After passing over the burner, the laser beam was recollimated by a 250 mm focal

length lens and then directed onto a flashed opal diffuser placed in front of the photo&ode

measuring the transmitted intensity of the laser beam (henceforth called the

'transmittance photodiode'). This diffuser reduced the sensitivity of the measured

intensity to beam wander and to beam steering by the flame. Two Schott neutral density

glass filters (NG-9 and NG-5) were placed between the diffuser and the photodiode to

further reduce the laser beam intensity to within the linear range of the photodiode. The

spot size at the center of the burner was measured by scanning a razor blade across the

laser beam and measuring the transmitted laser intensity. The spot size was measured to

be 0.104 mm between 10% and 90% of the full intensity.

The scattered light at a right angle to the incident laser beam was collected and

collimated by a 50.8 nun diameter 250 nun focal length lens. The collimated light was

reflected 90" by a 76.2 nun diameter mirror and focussed onto the entrance slit of a

monochromator by a 50.8 nun diameter 200 nun focal length lens. The monochromator
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was a Schoeffel GM252 0.25-m monochromator mounted vertically so that its entrance

slit was in the same plane as the laser beam. A Hamamatsu R955 photomultiplier tube

detected the light leaving the exit slit of the monochromator. The entrance and exit slit

widths were set to 0.15 mm giving a measured bandpass of 0.58 nm FWHM. For the

argon-ion fluorescence measurements, the entrance and exit slit widths were 0.15 mm and

0.20 mm, respectively, for a measured bandpass of 0.72 nm b'WHM. The entrance slit

height was generally set to 2.5 mm for the atmospheric pressure experiments. The slit

height was set to 6.5 mm for the subatmospheric pressure experiments and for the

atmospheric pressure horizontal polarization and fluorescence measurements.

The polarization of the detected scattered light was selected by a 50-mm diameter

dichroic sheet polarizer (mounted in a rotational translation stage) placed in the

collimated portion of the scattered light beam. The polarizer was removed for

measurements of the fluorescence excited by the argon-ion laser. Melles-Griot precision

metallic neutral density filters (50.8 mm square) were placed in front of the

monochromator entrance slit to reduce the scattered light intensity from the more heavily

sooting flames.

Several precautions were taken to minimize stray light that might be detected by the

scattered signal detection system. Apertures were placed along the laser beam path to

block scattering from lens surfaces and to block back reflections, therefore ensuring that

only the incident laser beam crossed over the burner. The scattering collection optics

were shielded from the rest of the optical system by dense black felt curtains. A hole in

the curtain at the collection lens allowed the scattered light from the collection volume to

pass through to the collection system.

The flashed opal diffusers were used to reduce the effects of beam steering because,

during preliminary experiments, steering of the laser beam by the flame moved the

incident laser beam position on the transmittance photodiode surface. The incident
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position shift would change the photodiodc signal measurably, indicating a false

extinction or, in some cases, indicating an increased transmittance. The transmittance

measureraents would have been impossible to make without the diffusers. To further

reduce the magnitude of any beam displacement, we also minimized the distance between

the transmittance photodiode and the burner.

The same optical setup was used for both the atmospheric and subatmospheric

pressure experiments. The pressure vessel was added for the subatmospheric pressure

experiments. The vessel windows at the entrance and exit of the laser beam were tilted

15" from the vertical to reduce back reflections from the laser into the scattering collection

volume. Although the windows were flushed with nitrogen, the transmittance signal was

monitored for soot deposition on the windows. The window through which the laser

beam exited was particularly susceptible to soot deposition.

4.4.2 Siznal Detection and Data Acouisition Semn

The signal detection and data acquisition setup is shown in Figure 4.8. All three

signals, the transmittance, reference, and scattered signals, were acquired electronically

with lock-in amplifier (phase-sensitive) detection of the chopper modulated signals.

The reference intensity was measured with a Hamamatsu S 1336-5BQ photodiode.

The transmittance intensity was measured with a Newport Research model 820

photodiode. Both the transmittance and reference photodiodes were wired in

transimpedance amplifier circuits (see Appendix B) to convert the photodiode current to

a voltage output. The reference voltage output was detected with a Stanford Research

Systems Model SR510 Lock-in amplifier. The transmittance voltage output was detected

with an EG&G PARC Model 128 Lock-in amplifier. Both of these lock-in amplifiers

were set using the input offset to null out the majority of the input signal so that the

detection sensitivity could be increased by a factor of 10.
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Figure 4.8 Schematic of the signal detection and data acquisition setup for the laser

scattering-extinction measurements.

129



The scattered light at the output of the monochromator was detected by a

Hamamatsu R955 photomultiplier. A transimpedance amplifier circuit (see Appendix B)

converted the photomultiplier current output into a voltage output which was detected by

a Stanford Research Systems Model SR510 Lock-in amplifier.

The three lock-in amplifier output signals were sent to a Stanford Research Systems

Model SR245 computer interface module for analog-to-digital conversion. A Stanford

Research Systems Model SR235 analog processor module amplified the output of the

transmittance lock-in amplifier with a gain of 20 to more closely match the + 1.0 volt

output range of the EG&G PARC Model 128 Lock-in amplifier to the + 10.24 volt input

range of the computer interface module.

An IBM PC computer controlled the data acquisition and the experiment through a

modified version of the Stanford Research Systems SR265 software program (Stanford

Research Systems, 1988) for controlling the computer interface module. Carter (1990)

added an interface for the stepper motor controller to the SR265 program, so that the data

acquisition could be coupled to the stepper motor-driven vertical and horizontal

translation of the burner and also to the wavelength translation of the monochromator.

Vertical profiles of the transmittance, reference, and scattering signals were

measured in flames by setting up the program to sample the signals for 10 seconds at a

100 Hz rate (1000 samples) at each height in a sequence of heights above the burner. The

signal voltage data acquired by the computer interface was stored on the hard disk of the

IBM PC in binary format for later analysis.

4A.3 Experimental Procedure

The general sequence of steps in the experimental procedure was alignment of the

optics, measurement of the calibration factors, setting of the flame conditions,

measurement of the transmittance and scattered light profiles, and at the end of the

130



experiment, a check of the calibration factors. The alignment and calibration were

repeated before each experiment to assure the repeatability and accuracy of the

measurements from day to day. A description of the experimental procedure follows.

The output power of the argon-ion laser was set to 800 roW. The laser beam was

centered on the alignment apertures on either side of the burner and then centered on the

reference and transmittance photodiodes by adjusting the position of the lenses and

mirrors in the reference and transmittance optics. This alignment assured the

reproducibility of the position of the laser beam relative to the burner surface.

The reference height of the burner, i.e., the burner height at which the laser beam

intersects the burner surface, was determined by sampling the transmittance and reference

signal voltages as the surface of the burner was scanned through the laser beam. The

height at which the midpoint occurred between the minimum and maximum of the

transmittance signal voltages was defined to be the reference height of the burner for

subsequent determinations of the height of the laser beam above the burner surface. For

the subatmospheric pressure experiments, the burner reference height was measured

while the pressure was at 80 torr or less, because the burner reference height would shift

slightly as the pressure was reduced below 1 arm.

Scattered light from a nitrogen flow from the burner was used to align the scattering

collection lenses and to tune the monochromator wavelength to the laser wavelength. The

transmittance, reference, and scattered light signals were then sampled to determine the

transmittance and scattering calibration factors. The number density of the nitrogen flow

was determined from the temperature measured with a K-type thermocouple in the flow

above the burner and from the pressure read from the Wallace & Tieman pressure gauge.

The calibration data were measured for each neutral density filter likely to be used to

reduce the scattered signal level. For the subatmospheric pressure experiments, the

calibration data were measured with the pressure set to 80 tom Because of the variation
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in traasw.ittance across the pressure vessel windows, the transmittance and scattering

calibrations were also repeated at horizontal positions 2.0 mm and 4.0 mm on either side

of the burner centerline.

After the calibcation data were measured, the start-up flows of nitrogen, oxygen, and

ethylene were set and the flame was ignited with a propane torch. The flow rates for a

particular flame were set by adjusting the flow rates in small increments from the previous

flame to prevent the flame from either blowing off or flashing back into the burner and

also to avoid large overshoots in the flow rates caused by the mass flow controllers. For

the subatmospheric pressure flames, the pressure was decreased from atmospheric

pressere in small increments for the same reasons.

For each flame, typically three profiles of the transmittance, reference, and scattered

signal voltages were measured with different height resolutions and ranges. A fine

resolution profile was measured near the burner surface to resolve the change in

temperature through the flame front. A larger range through the flame far downstream

from the flame front was measured with two successively coarser resolution profiles. The

starting height and height resolution and range of the three types of profiles are listed in

Table 4.5. Between the measurements of the successive profiles in a flame, the burner

was moved back to the starting height to monitor a reference point that could be compared

with previous measurements to check for signal drift or for deposition of soot on the

windows.

When switching between flame conditions, the calibration was checked by sampling

the three signal voltages at a condition for which there was no extinction. In the

atmospheric pressure experiments, the burner was moved horizontally so that the laser

beam passed through the guard flow gases. In the subatmospheric pressure experiments,

the flow rates were adjusted to a rich but nonsooting flame and the burner was moved to

the standard starting height (about 1.0 mm above the burner surface). If the calibration
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Table4.5 Heightinterval,heightrangeandinitial heightfor thescattering-extinction
profiles.

Experiment and Height Height Initial
Type of Profile Interval Range Height

(mm) (mm) (mm)

Fine resolution 0.25 5.0 0.5

Medium resolution 0.50 10.0 1.0

Coarse resolution 2.00 60.0 1.0

Depolarization 2.00 60.0 1.0

Atmosoheric oressure

Fineresolution 0.20 6.0 0.4

Medium resolution 0.50 15.0 1.0

Coarseresolution 1.00 20.0 1.0

Depolarization 0.50 20.0 1.0

Fluorescence 0.50 20.0 1.0

check suggested a soot build-up on the window, the burner was moved to a horizontal

position 2.0 or 4.0 mm from the previous position and the calibration was rechecked.

Subsequent profiles were measured at the new horizontal position.

After the flame was extinguished, the three signal voltages were measured to check

the transmittance calibration in a nitrogen flow through the burner. The burner head was

still cooling off from the flame and so the heated nitrogen flow was not suitable for

checking the scattered light calibration.
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The depolarization of the scattered light from the vertically polarized incident laser

light was measured in one sequence of atmospheric-pressure sooting flames (A-IA-S2,

$3, $4) and two sequences of 80-torr sooting flames (L-I-S I, $2, $3 and L-II-S I, $2, $3).

The horizontally polarized component of the scattered light was measured by rotating the

dichroic sheet polarizer in the scattering collection optics 90" from the setting used to

measure the ,vertically polarized component. For each flame examined, a profile was

measured of the vertically polarized scattered light and then a profile was measured of the

horizontally polarized scattered light. The starting height, height resolution and range for

the depolarization profiles are listed in Table 4.5.

The broadband fluorescence signal excited by the argon-ion laser was measured in

one sequence of atmospheric-pressure sooting flames (A-IA-P,2, S 1, $2, $3). In each

flame, a profile was measured of 1) the Rayleigh scattering at 488.0 rim, 2) the Stokes

fluorescenceat503 rim,and 3)theanti-Stokesfluorescenceat473 rim.The polarizerwas

removed from firescatteredlightcollectionopticstoincreasethelightthroughput.The

fluorescencewavelengths,473 nm and 503 nm, were selectedtoreduceinterferencefrom

theRayleigh scatteredlight.The rejectionof scatteredlightwas verifiedby measuring

thescatteredsignalfrom atmospheric,room-temperaturenitrogenatthesewavelengths.

4.4.4 Data Analysis

The scattering and extinction coefficient profiles were calculated from the voltage

outputs of the three detectors recorded as a function of height above the burner. The

reference photodiode measured the irradiance of the incident laser beam, I0 (W.cmZ). The

transmittance photodiode measured the irradiance of the laser beam after it passed

through the flame, IT (W-cm2). The scattering photomultiplier tube measured the

scattered light power, $_, (W), from the flame. The measured signal voltages of these

three detectors can be expressed as
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Vo(z)= rloo"rlEo"lo(Z)

Vr(z) = _or" tier" It(Z)

Vs(z) = rlos" ties" S,_,(z)

(4.4.1a)

(4.4.1b)

(4.4.1c)

where Vo, Vr, and Vs are the reference, transmittance, and scattering signal voltages (V),

respectively. These are written as a function of the height above the burner, z, to indicate

that they were recorded as profiles. The terms 11oo, rio, and rlos are optical efficiencies

(dimensionless) for the reference, transmittance, and scattering detection optics,

respectively. These efficiencies account for the transrnittances and reflectances of the

lenses, filters, and other optical elements within the detection optics. The terms Tleo

(V-cm2"W_), tier (V'cm2-W_), and _es (V'Wm) are electronic conversion efficiencies (or

gains) for the reference, transmittance, and scattering detectors, respectively. These

efflciencies account for the conversion from a light signal to an electronic signal and also

for the gains in the subsequent detection electronics.

The transmittance, x, is determined from the ratio of the transmittance signal voltage

(Eq. 4.4.1b) to the reference signal voltage (Eq. 4.4.1a), i.e.,

It(z) 1 Vr(z) (4.4.2)
z(z) lo(z) Fr Vo(z)

where the transmittance calibration factor, Fr, is def'med as

"[lOT" _ET

F r - (4.4.3)
lqoo" r leo

The total scattering coefficient, Q_,, is determined from the scattered light power. The

scattered light power can be expressed by combining Eqs. (3.2.22) and (3.2.23) as

S,_,(z ) = V c • f2c "tic" Q,_o(z ) . lo(z ) (4.4.4)

where V, is the collection volume, f2, is the solid angle of the collection optics, and 11, is

the efficiency of the collection optics. The total scattering coefficient can then be
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determinedfrom theratioof thescatteringsignalvoltage (Eq. 4.4.1c) to the reference

signal voltage (Eq. 4.4.1a). Combining Eqs. (4.4.1a), (4.4.1c), and (4.4.4) gives the

expression for the total scattering coefficient as

1 Vs(z)
Q,_,(z) = _---_ • Vo(z) (4.4.5)

where the scattering calibration factor, F,_, isdefined as

rlos . rl_s
F,_o = • Vc-f2c ._c (4.4.6)

rio0. riB0

The transmittance signal ratio profile, Vr(z)/V0(z), and the scattering signal ratio

profile, Vs(z)/Vo(z), were calculated from the voltage data recorded by the SR265

program during the measurement of the calibration factors and the scattering-extinction

profiles using a set of programs written in the ASYST version 3.10 scientific

programming language (ASYST Software Technologies, Inc., Rochester, NY). These

programs first read the stored binary-format voltage data acquired by the computer

interlace and then calculated the photodetector signal voltages, Vo, Vr, and Vs, based on

the measured gains and offsets of the lock-in amplifiers used to detect them. Since the

photodetector voltages were sampled for 10 seconds at each height, the means of the

voltages at each height were used to calculate the signal ratio profiles, Vr(z)/Vo(z) and

Vs(z)/Vo(z). The standard deviations of these signal ratios were also calculated to evaluate

their variation during the measurement. The details of this analysis are given in Appendix

B.

The transmittance and scattering calibration factors were calculated from the

transmittance and scattering signal ratios measured for nitrogen flowing through the

burner. The transmittance calibration factor can be determined from

(4.4.7)
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wherethesubscriptcal indicates the measurement made at the calibration conditions. We

assumed that _.j = 1 for the measurements made in the nitrogen flow and also in the rich

nonsooting flames. However, the transmittance calibration factors measured during the

course of a single day were found to vary. This variation was caused by a variation in the

laser intensity that did not cancel out of the transmittance voltage ratio because of

inaccuracies in determining the offsets of the lock-in amplifiers. Because of this drift, the

transmittance profiles were normalized by setting x = 1 at the maximum of the

transmittance signal ratio profile, i.e., the transmittance calibration factor is given by

,: V----777j (4.4.8)

The transmittance measurement is then calibrated based on the transmittance in the

nonsooting region of a sooting flame. Any absorption by gas-phase species in this

nonsooting region is then considered to be a background absorption that is not caused by

soot particles and is thus effectively cancelled out by the normalization.

The scattering calibration factor was determined from the scattering signal ratio

measured for flowing nitrogen by

R.T 1 /Vs )• (4.4.9)

where R (82.055 cm3.atm.gmol1.K i) is the gas constant and N_ (6.023xI0 _ gmol n) is

Avogadro's constant. The temperature, T (K), and the pressure, P (atm), of the flowing

nitrogen were measured during the calibration. The differential scattering cross-section

of nitrogen at 488.0 nm is Cw.N_ = 8.873xI0 _ cm2"sr _. This value was determined from

the data of Gm'diner, Hidaka, and Tanzawa (1981) and agrees well with

Cw.N2 = 8.69xI0 _ cm2.sr "_extrapolated from the data of Rudder and Bach (1968) at 694.3

nm, with Cw.N2 = 8.78xI0 _ cm2.sr n used by Mtiller-Dethlefs (19"]9) at 488.0 nm, and

with Cw._2 = 8.865xI0 _ cm2"sr n determined from the data of Bogaard et al. (19"]8) at
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488.0nm. The data of Gardiner, Hidaka, and Tanzawa (1981) was used to be consistent

with 1he calculations of the scattering coefficient and the cross-section using the flame

code. The scattering calibration factor was also determined for each neutral density filter

used to reduce file scattered light intensity in an experiment.

Ncmnafized transmiUanoe profiles were calculated from the Iransmittanoe signal

ratio profile using Eqs. (4.4.2) and (4.4.8). The extinction coefficient profiles were

calculaled from the normalized transmittance profdes by

1

K,.,_(z) = -_-. ln[_(z)] (4.4.10)

where L (cm) is the pathlength of the laser through the flame. The pathlength was not

measured in these flames and, instead, was assumed to be the diameter of the burner,

L =5.6 cm. The pathlength could have been determined from mmsmittance

measurements made at several horizontal positions (Harris, Weiner, and Ashcraft, 1986),

but the procedure would likely have been inaccurate, because the transmittances were

near unity in these lightly sooting flames. The pathlength could also have been

determined from a measurement of the scattering coefficient across the burner width at

the same height; however, this was not done. Nonetheless, the extinction coefficient

profiles remain valid on a relative basis, as the cold flow velocity and dilution ratio were

held constant while the equivalence ratio was varied in small increments for a given flame

sequence, thus ensuring similar pathlengths. An accurate measurement of the pathlength

would be warranted for a more accurate measurement of the extinction coefficient.

The measureA scattering coefficient (Q,_) profiles were determined from the

scattering signal ratio profiles and the scattering calibration factor using Eq. (4.4.5). The

measured scattering coefficient can be expressed as the sum of the particle scattering,

molecular scattering, and fluorescence coefficient (See. 3.2.2.2) and is given by

tTeq. 3.2.23),
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Q,_o = Qw + Qw,s + Ql(_o,_.) . A_ , (4.4.11)

where Qw (cmt'sr t) is the particle scattering coefficient, Qw_ (cma's r_) is the molecular

scattering coefficient, Q;(_,_.) (cm't.srl.nm 1) is the fluorescence coefficient, and AX (nm)

is the detector spectral bandwidth. The particle scattering coefficient was obtained by

subtracting the molecular scattering coefficient and the fluorescence coefficient from the

measured scattering coefficient.

The Stokes fluorescence at 503 nm and the anti-Stokes fluorescence at 473 nm were

measured in a sequence of atmospheric pressure flames (A-IA-R2, S1, $2, $3). At these

wavelengths, the measured signal from the scattering photodetector was solely caused by

the fluorescence and thus the fluorescence coefficient profiles could be determined from

Qj(_o,_).A_ = Q_o. A spectral scan of the fluorescence determined that it was featureless

and that the fluorescence signal rose approximately linearly from 473 nm to 503 nm. The

background contribution of the fluorescence at 488.0 nm could then be calculated from

the average of the fluorescence coefficients at 473 nm and 503 nm. The fluorescence

contribution was not more than 1% of the total scattering signal in the early regions of the

flames (less than 3 to 5 mm above the burner). In the lightly sooting flame (A-IA-S 1), the

fluorescence background reached a maximum of 2%, while the maximum contributions

reached 11% (A-IA-S2) and 15% (A-IA-S3) in the more heavily sooting flames. Thus,

in the atmospheric flames for which the fluorescence background was not measured, the

fluorescence background is not likely to be significant in the lightly sooting flames, but

could cause an overprediction of the scattering coefficient in the more heavily sooting

flames.

The background contribution caused by molecular scattering for a sooting flame

was estimated to have the same shape as the scattering coefficient profile of the

nonsooting flame within its sequence but with an offset equal to the minimum of the

scattering coefficient profile in the sooting flame. Equating the background to the
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minimum in the scattering coefficient profile accounts for the increase in the molecular

scattering coefficient as the peak temperature decreases with increasing equivalence ratio.

The assumption that the molecular scattering coefficient profiles of the sooting and

nonsooting flames had similar shapes was based on the similarity of their molecular

scattering coefficient profiles in the region near the surface of the burner. The molecular

scattering coefficient profile in nonsooting flames increased only slightly with height

above the burner as the flame gases cooled off. This increase was typically less than

0.3×lff 9 cm".sr l from a minimum of Qvv_" 4.0x109 cm"-sr". This increase was small

relative to the increases of -3 to ~100×10 "9cmt.sr "l observed in the sooting flames.

Finally, the soot volume fraction profiles can be calculated from the measured

extinction coefficient profiles and an assumed particle index of refraction. Once the

particle scattering coefficient profiles have been determined and corrected for the

background contributions they can be used along with the extinction coefficient profiles

to calculate the particle number density and particle diameter profiles. These further

analyses are described in Chapter 5.

The molecular scattering coefficient profile was also used to estimate a temperature

profile. In nonsooting flames and in the region of sooting flames where soot has not yet

formed, the measured scattering coefficient profile is that caused by molecular scattering

and is given by Eq. (3.2.16), i.e.,

Q_,(z ) = g,,,,.,(z ) = N,(z). _,,,,.,(z) (4.4.12)

where N s (cm "3)is the number density of the gas molecules and Cw, s (cm2"sr'l) is the mean

differential scattering cross-section of the gas mixture. The mean differential scattering

cross-section is determined from the molar composition of the gas by Eq. (3.2.17), so that

Cw.s(z) = Z Xk(z)" Cw.k (4.4.13)
k
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whereX, is the mole fraction of species k and Cw,_ (cmLsr "t) is the differential scattering

cross-section of species k. The temperature profile can be determined from Eq. (4.4.12)

by using the ideal gas law to express the number density in terms of the temperature. The

expression for the temperature profile, T (K), is then

p _.g(z)
(4.4.14)

The calculation of the temperature profile requires that the mean differential

scattering cross-section of the gases, Cw.s, be known or estimated. To do this, we must

know the molar composition of the gas and the differential scattering cross-sections of the

major species (Eq. 4.4.13). The molar compositions were estimated using the predictions

ofthe Sandia premixed one-dimensional flame code (Kee et al., 1985) with the reaction

mechanism of Drake and Blint (1991). The differential scattering cross-sections of the

major species were determined using Eq. (3.2.18). The refractive indices of the gas

species were calculated using the data and formulas of Gardiner, Hidaka, and Tanzawa

(1981).

An iterative procedure was used to estimate the flame temperature profile from the

measured scattering coefficient data. We first estimated the flame temperature profile.

The molar composition profile was then determined from the flame code solution for the

estimated temperature profile. The molar composition profile was in turn used to

calculate the mean differential scattering cross-section profile and the scattering

coefficient profile. The predicted scattering coefficient profile was then compared with

the measured scattering coefficient profile. If the profiles did not agree within a given

tolerance, the next estimate of the temperature profile was determined from the

comparison and the procedure was repeated. The details of this procedure and the

calculations are in Appendix C. The implementation of the flame code is discussed in

Section 4.6.
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4.5 LL_r-Indnced Fluorescence Mea_umrr_ntg of the Hydroxyl Radical

Laser-induced fluorescence was used to measure relative OH concentration profiles

in one sequence of flames at atmospheric pressure and in a sequence of flames at 80 tort.

The theory of the laser-induced fluorescence method to measure OH radical

concentrations in sooting flames was presented in Section 3.3. We present here the

implementation of this method by first describing the optical setup and the signal

detection and data acquisition setup. We then describe the experimental procedure and

the subsequent analysis of the data.

The experimental setup for the laser-induced fluorescence measurements of the

hydroxyl radical is shown in Figure 4.9. The setup was the same for the atmospheric

pressure and the subatmospheric pressure experiments, except that the burner was

enclosed in a pressure vessel for the subatmospheric pressure experiments.

The UV excitation source for the OH radical was a Nd:YAG-pumped dye laser

system. The Nd:YAG laser was a Molectron MY-34-10 laser retrofitted with a Laser

Photonics resonator. The typical output pulse energy ranged from 150 to 200 mJ at the

Nd:YAG second harmonic wavelength of 532 nm. The second harmonic output was

directed into the dye laser by two laser mirrors coated for maximum reflectivity at

532 rim.

The temporal pulse shape of the Nd:YAG laser output was monitored with a

specially-wired silicon avalanche photodiode (Texas Instruments TIED56; Harris et al.,

1980). The photodiode detected a portion of the 532 nm beam that passed through the

second laser mirror and fell on a flashed opal diffuser. The photodiode output was

observed with a Hewlett-Packard HP54502A digital sampling oscilloscope. The typical

pulse shape contained two or three lobes each with a FWHM of about 4 nsec. The relative
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Figure 4.9 Schematic of the hydroxyl radical fluorescence measurement setup.

Components: BS - beamsplitter, L - lens (focal length in ram); M - mirror;

NDF - neutral density filter, UVD - ultraviolet diffuser;, VD - visible
diffuser.
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height of the first lobe peak was adjusted to be about twice the height of the second lobe

peak by making slight adjuscnents to the input energy of the Nd:YAG osciUamr

flashlamps.

The Nd:YAG second harmonic output pumped a Molectron DL-18 dye laser to

produce an output wavelength at ~ 618 nm. The dye mixtures used in both the oscillator

and amplifier flowing dye cells were DCM in ethanol solutions to which a concentrated

SR640 (Sulfarhodamine 640) in ethanol solution was added to maximize the output at

~ 618 nm. The procedure described by Carter (1990) was followed to maximize the

output. The final oscillator dye solution was estimated to be 1.18 mM DCM and

0.236 mM SR640 in ethanol and the f'mal amplifier solution was estimated to be 29gM

DCM and 18 _tM SR640 in ethanol.

The dye laser output at - 618 nm was frequency doubled using a KDP crystal to

produce the UV laser beam output at ~ 309 nm. The frequency doubled output passed

through a Schott UG-11 UV-transmitting falter to attenuate the - 618 nm radiation. The

UG- 11 filter was oriented at 45" to reflect a portion of the ~ 618 nm light onto a Scientech

Model 301-020 high speed photodetector (the 'trigger photodiode') placed behind

another flashed opal diffuser. The output of this photodector triggered the detection

electronics.

The UV laser output was directed and aligned with the optical axis of the burner by

three 309 run dielectric mirrors. The optical axis of the burner was defined by two

apertures (closed down iris diaphragms) placed 40 cm from the burner centerline on either

side of the burner. The height of the apertures was set to the centerline height of the

burner pressure vessel windows using a cathemmeter.

The reference intensity of the UV laser beam was measured by reflecting a portion

of the beam onto a photodiode with a 50.8-ram square, l-ram thick fused silica optical

flat. The 'reference' photodiode was a Hamamatsu S1722-02 PIN photodiode wired for
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fast response.A UV diskdiffuserwasplacedin thereflectedbeamin front of the

photodiode tO reduce the sensitivity of the signal to the alignment of the UV beam. The

distance between the diffuser and the photodiode was adjusted to ensure that the

photodiode signal was within its linear range.

The UV laser beam was focussed over the center of the burner with a 500-mm focal

length fused silica lens. The spot size of the UV beam was measured to be 0.135 mm at

the center of the burner and 0.175 mm at the front edge of the burner by scanning a razor

blade vertically across the laser beam. The width was based on the 10% and 90% points

of the transmitted intensity.

After passing over the burner, the UV laser beam was recollimated with a 350-mm

focal length fused silica lens. The collimated UV beam was split with a 50-mm square,

5-ram thick quartz optical flat. The major portion of the UV beam passed through the

quartz flat and was monitored with a Scientech Model 36-0001 surface absorbing disc

calorimeter. This power meter was used to observe the average UV laser power. The

reflected portion of the UV beam was monitored with a Hamamatsu S1722-02 PIN

photodiode wired for fast response. This 'post-burner' photodiode was used to measure

the transmitted UV intensity when the burner surface was scanned to determine the burner

reference height.

The broadband fluorescence from the OH radical was collected at a right angle to

the incident UV laser beam and collimated by a 50.8-mm diameter, 250-ram focal length

fused silica collection lens. The collimated fluorescence was focussed onto the entrance

slit of the monochromator by a 50.8-mm diameter, 250-mm focal length lens. A 50.8-mm

diameter UV-enhanced reflectivity mirror was placed between the focussing lens and the

monochromator entrance slit to turn the optical path by 90 °. The mirror was used to fit

the fluorescence collection optics on the optical table.
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Themonochromatorwasa SchoeffelGM 252 0.25-m monochromator mounted

vertically so that its entrance slit was in the same plane as the laser beam passing through

the flame. The monochromator grating was blazed at 240 nm with 1180 lines/ram. For

the experiments with Qi(8) excitation, the monochromator entrance and exit slit widths

were set to 0,25 mm and 3.00 nun, respectively, to give a measured bandwidth of 9.4 nm

FWHM centered at 311rim. For the experiments with P1(8) excitation, the

rnonochromator entrance and exit slit widths were set to 0.25 nun and 2.00 ram,

respectively, to give a measured bandwidth of 6.4 nm FWHM centered at 308.6 nm. The

slit height was set to 15 mm for both experiments. An RCA 1P28B photomultiplier tube

wired in a fast response circuit (Harris, Lytle, and McCain, 1976) detected the light

leaving the exit slit of the monochromator. The photomultiplier voltage was set to

1150 V.

The voltage output of the photomultiplier tube was kept within its linear range by

attenuating the fluorescence with calibrated neutral density filters (Melles-Griot 50.8 mm

square precision metallic fused silica) placed in front of the monochromator entrance slit.

Vignetting of the fluorescence by the burner surface was observed when the incident UV

beam was less than 2 mm above the burner surface. The lower half of the collection lens

was blocked with an aluminum plate to avoid vignetting in profilcs measured near thc

burner surface.

Because the laser wavelength was within the detection bandwidth of the

monochromator, the interference from stray scattered light had to be reduced. Apertures

were placed along the beam to prevent stray light or back reflections from crossing the

burner surface. The fluorescence collection optics were shielded from the rest of the

experimental setup by dense black felt curtains. An entrance hole in the curtains at the

collection lens allowed the fluorescence to pass from the flame to the fluorescence

coUection optics.

146



4.5.2 Simaal Detection and Data Acouisition Setup

The output of the reference photodiode was measured with a Stanford Research

Systems Model SR250 gated integrator and boxcar averager module. A second Model

SR250 gated integrator and boxcar averager was used to measure the output of the

photomultiplier tube (PMT). For scans of the burner surface to determine the reference

height, the output of the post-burner photodiode was measured with the second gated

integrator and boxcar averager. Both gated integrators and boxcar averagers were

triggered by the trigger photodiode that monitored the dye laser output.

The delay and width of the boxcar gate were determined by observing the gate

output and either the photodiode and PMT signals on a Hewlett-Packard HP54502A

digital sampling oscilloscope. The gate width and delay were set to integrate over the

signal corresponding to the first lobe of the laser pulse.

The output of the two gated integrators and boxcar averagers were sent to a Stanford

Research Systems Model SR245 computer interface module for analog-to-digital

conversion. The same modified SR265 program used for the scattering-extinction

measurements (Sec. 4.4.2) was used to acquire the data for the OH LIF measurements.

Vertical profiles of the OH fluorescence or Rayleigh scattering were measured by setting

up the program to sample the reference photodiode and PMT signals for 600 samples

(equivalent to one minute at a 10 Hz repetition rate). The voltage data acquired by the

computer interface were stored on the IBM PC's hard disk in binary format for later

analysis.

The modified SR265 program was also used to measure both fluorescence

excitation and detection scans. For an excitation scan, the program was set up to drive the

dye laser grating through a stepper-motor gear box. The reference photodiode and the

PMT signals were sampled for each step of the stepper motor. The sampling and the

movement of the stepper motor were triggered by the trigger photodiode signal at the
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10 Hz laser repetition rate. The range of the wavelength scan was determined by the

number of samples recorded. Detection scans were set up in a similar manner, except that

the program moved the monochromator grating through a stepper-motor gear drive.

4.5.3 Exnerimental Procedure

Prior to the measurement of the OH fluorescence profiles in the flames, the

monochromator and the dye laser grating wavelengths were calibrated and the linear

range of the photomultiplier robe (PMT) voltage was verified. The monochromator

wavelength readout was calibrated using the spectral lines from a mercury lamp over the

range from 284.7 ran to 329.2 nm. The dye laser grating wavelength readout was

calibrated by using a laser excitation scan of the (0,0) band of OH in a rich nonsooting

flame. The monochromator was set to monitor a 1-nm bandwidth from 306.5 nm to

307.5 nm to capture the fluorescence from the major R-branch lines. The OH

fluorescence was measured as the dye laser grating was scanned over the wavelength

range from 305.0 nm to 316.75 nm. The measured OH fluorescence spectrum was

compared with a previously measured absorption spectrum from another experiment

(Carter, 1990) and the known OH wavelengths in the (0,0) band of OH (Dieke and

Crosswhite, 1962; Coxon, 1980) to determine the wavelengths of the spectral peaks. The

dye laser grating readouts were fit to their corresponding wavelengths with a linear least

squares curve fit to obtain the final calibration for the dye laser grating readout.

The linear range of the PMT output voltage was verified using Rayleigh scattering

from nitrogen flow and the calibrated neutral density filters to attenuate the scattering

signal. The spectral bandwidth of the monochromator was measured by scanning the

wavelength of the monochromator while measuring Rayleigh scattering from flowing

niU'ogen.
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The procedure for measurement of the OH fluorescence profiles began with

alignment of the dye laser beam by centering it on the alignment apertures on either side

of the burner and on the reference photodiode. The reference height of the burner was

measured by sampling the reference and post-burner photodiode signal voltages as the

burner was scanned through the laser beam. The reference height was chosen to be the

height at which the midpoint occurred between the maximum and minimum of the ratio

of the post-burner to reference signals. The reference height was measured while the

pressure was at 80 ton" for the subatmospheric experiments.

The fluorescence collection lenses were aligned to maximize the scattered signal

from nitrogen flowing from the burner. This alignment was satisfactory for the

fluorescence measurements since the monochromator spectral bandwidth included the

excitation wavelength. The PMT and reference photodiode signals were then sampled to

determine a Rayleigh scattering calibration factor. For the subatmospheric pressure

experiments, the Rayleigh scattering calibration factor was measured for flowing nitrogen

at 80 tort. Vertical profiles of the Rayleigh scattering signal from flowing nitrogen were

measured above the burner, one with the lower half of the collection lens blocked, and one

with the lens unblocked, to determine the calibration factors for both setups and also to

determine the magnitude and location of the vignetting by the burner surface.

Following the Rayleigh scattering calibration, the start-up flows of nitrogen,

oxygen, and ethylene were set and the flame was ignited with a propane torch. The flow

rates were adjusted for an atmospheric pressure lean flame with an equivalence ratio

= 0.97 (flame A-0-L in Table 4.2). This flame was used as the calibration standard for

the OH fluorescence measurements.

The dye laser wavelength was tuned to the peak of the Qi(8) line by scanning the

dye laser grating through a 0.25 nm range encompassing the Pl(3) (309.2089 nm), Qz(5)

(309.2260 nm), Qt(8) (309.3294 nm), and the Oa(6) (309.3688 nm) lines. For the set of

149



measureme, nts made with Pt(8) excitation, the dye laser wavelength was set to the peak of

the Pt(8) line by scanning the dye laser grating through a 0.25 nm range encompassing the

P2(7) (311.8098 rim) and the P_(8) (311.8793 nm) lines. Once the laser was tuned to the

Qt(8) line (or to the Pt(8) line), the fluorescence collection optics were aligned to obtain

the maximum fluorescence signal.

For ¢_ch flame, two vertical profiles of the broadband OH fluorescence voltage and

the reference photodiode voltage were measured with different height resolutions and

ranges. A fine resolution profile was measured near the burner surface to measure the

change in OH fluorescence through the flame front, A coarser resolution profile was

measured to observe the fall-off of the OH fluorescence signal in the post-flame region.

The parameters for these profiles are listed in Table 4.6.

Table 4.6 Height interval, height range and initial height for the OH fluorescence
profiles.

Experiment and
Type of Profile

Height Height Initial
Interval Range Height

(mm) (mm) (mm)

 d_T.ammm 

Fine resolution

Coarse resolution

0.50 10.0 0.5

1.00 30.0 0.5

Atmosnheric pressure

Fine resolution

Coarse resolution

0.25 5.0 0.5

1.00 20.0 0.5
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TheRayleigh scattering background was measured in the flame by tuning the laser

wavelength off of the Q_(8) (or the P_(8)) line. Vertical profiles of the Rayleigh scattering

voltage and the reference photodiode voltage were measured with the same height

resolution and range as the OH fluorescence profiles.

4.5.4 Data Analysis

The OH fluorescence and OH number density profiles were calculated from the

measured voltage outputs of the photomultiplier and reference photodiode recorded as a

function of height above the burner. The light detected at the output of the

monochromator by the photomultiplier contained contributions from the OH fluorescence

and from Rayleigh scattering by the flame gases, since the spectral bandwidth of the

detector included the laser excitation as well as OH fluorescence from the (0,0) band. If

the incident light is kept within the linear range of the photomultiplier, then the measured

output of the photomultiplier, V,, (V), can be expressed as the sum of the voltage caused

by the fluorescence, Vf(V), and a voltage caused by the Rayleigh scattering, VR (V). The

output of the photomultiplier is

V,(z) = V/(z) + VR(z ) = rie,_" (S/(z) + SR(z)) (4.5.1)

where rie,, is an electronic conversion efficiency (V.W _) that accounts for the conversion

from a light signal to an electronic signal and also for the gains in the subsequent detection

electronics. The voltages are written as a function of z to indicate that they are recorded

as profiles. Recall from Section 3.3 that the fluorescence signal, St (W), is given by

Eq. (3.3.10) as

Si(z) = 1"1o.f_c " Vc ' e.f_(z) (4.5.2)

where rio is the optical efficiency of the detector optics, f_c (sr) is the solid collection

angle, V c (cm 3) is the collection volume, and e/n (W-cm3.sr) is the fluorescence emission.

The Rayleigh scattering signal, SR (W), is given by Eq. (3.3.12) as
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SR(z) = rio. t2c . Vc . Qvv.s "IL(z) (4.5.3)

where Qw,s (cm_'sr'_) is the differential scattering coefficient of the gases and lj. (W.cm 2)

is the incident laser irradiance.

The incident laser irradiance was measured by the reference photodiode and its

measured output voltage, Vo (V), is given by

Vo(z ) = rloo- Tilt0" lt.(z ) (4.5.4)

where rloo is the optical efficiency of the reference detection optics and Tim (V-cm2.W l)

is the electronic conversion efficiency of the reference detector electronics.

The profiles of the measured photomultiplier voltage, V,(z), and the reference

photodiode voltage, Vo(z), were calculated from the voltage data recorded by the SR265

program during the measurement of the OH fluorescence profiles, the Rayleigh scattering

background profiles, and the calibration factors. These calculations were made using a

set of programs (similar to those written for the scattering-extinction data analysis)

written in the ASYST version 3.10 scientific programming language (ASYST Software

Technologies, Inc., Rochester, NY).

These programs ftrst read the stored binary-format voltage data acquired by the

computer interface and then calculated the photomultiplier voltage, V,,, and the reference

photodiode voltage, Vo, based on the gains and offsets of the gated integrators and boxcar

averagers used to detect them. Since these voltages were sampled for a minute (600

samples) at each height, the means of the sampled voltages at each height were calculated

to determine the profiles, Vm(z) and Vo(z). The standard deviations of the voltages at each

height were also calculated to evaluate their variation during the measurement.

4,5.4.1 Rayleigh Scattering Backffound Corrections

The fast step in the analysis of the OH fluorescence profiles was the correction for

the Rayleigh scattering background. The Rayleigh scattering background to the
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fluorescencesignalwascalculatedfrom the scattering coefficient of the flame gases,

which was measured by tuning the laser away from the OH transition. The measured

photomultiplier voltage was thus caused only by Rayleigh scattering and V,, = VR. From

Eqs. (4.5.1), (4.5.3), and (4.5.4), the molecular scattering coefficient can be determined

from the ratio of the photomultiplier to the reference photodiode voltages by

1 V,(z) (4.5.5)
Qw's(Z)=FR V0(z)

where the Rayleigh scattering calibration factor, FR, is defined as

tie,, •rio
FR - _" f_c" Vc (4.5.6)

rloo-Tko

The Rayleigh scatteringcalibrationfactorwas determined by measuring theratioofthe

photomultipliersignaltothereferencephotodiodesignalfrom anitrogenflowinthesame

manner as forthescattering-extinctionmeasurements (Eq.4.4.9).The calibrationfactor

was determined from

R.T 1 (Vm I (4.5.7)
FR--P "Nay CW,N 2 _0 cal

where R (82.055 cm3.atm.gmolS-K -l) is the gas constant, N,_ (6.023x1023 gmol t) is

Avogadro's constant and Cw.N2 is the differential scattering cross-section for nitrogen.

The temperature, T (K), and the pressure, P (atm), of the flowing nitrogen were measured

during the calibration. The differential scattering cross-section for nitrogen is

Cw.N2 = 5.882x10 27 cm2"sr _ at the Q_(8) wavelength, ;Z= 309.329 nm, and

Cw, N=5.681X1027cmLsr 4 at the P_(8) wavelength, _,=311.879 nm. Both

cross-sections were determined from the data of Gardiner, Hidaka, and Tanzawa (1981).

The Rayleigh scattering coefficient profiles were determined from the profiles of the

photomultiplier signal to the reference photodiode signal and the scattering calibration

factor using Eq. (4.5.5). Although the Rayleigh scattering coefficient profiles were
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measuredby tuningthedye laser away from the peak of the Q,(8) line, some of the

profiles contained a peak at the same location as the OH fluorescence peak. The behavior

of the profiles suggests that some fluorescence was still excited by the laser and thus, the

measured Rayleigh scattering coefficient profiles did not give a true _ure of the

background. Nevertheless, they were still used in the following manner to determine a

good estimate of the background signal. Rayleigh scattering coefficients measured far

downstream from the flame front in rich flames showed no significant interference from

OH fluorescence because the OH concentrations have dropped significantly. Scattering

coefficients predicted from an adiabatic solution of the flame equations agree well with

the measured scattering coefficients downstream. The scattering-extinction

measurements made at 488.0 nm show that the scattering coefficients of the flame gases

remain constant throughout the flame except for a small region near the surface of the

burner. Thus, the Rayleigh scattering coefficients measured far downstream were used as

an estimate of the mean Rayleigh scattering coefficient for the flame. The use of a mean

value should be valid except for the region near the burner surface, but there the OH

concentrations are high and the Rayleigh scattering background does not pose a

significant interference to the fluorescence signal.

The Rayleigh scattering background contribution to the measured fluorescence

signal was calculated using the measured scattering calibration factor, the estimated mean

scattering coefficient, and the reference photodiode voltage using the expression

VR(z) = FR "Qw,, " Vo(z) (4.5.8)

The fluorescence voltage profile was then determined by subtracting the calculated

Rayleigh scattering background contribution from the measured photomultiplier signal,

i.e.,

Vi(z) = Vm(z) - VR(z) (4.5.9)

154



4.5.4.2 Normalized Fluot'escence Profiles

The fluorescence voltage profile in a flame can be related to the fluorescence

emission profile by combining Eqs. (4.5.I) and (4.5.2) to obtain

v_(_,z) =n_, "_o" f_c"vc •e_(_, z) (4.5.10)

where the fluorescence voltage and emission have been written as a function of the flame

stoichiometry, _, and height above the burner, z. The dependence of the voltage profiles

on the optical constants and efficiencies can be removed by normalizing the fluorescence

voltage profile to a fluorescence voltage measured in a calibration flame with the same

optical setup. Then the fluorescence emission profiles are related to the normalized

voltage profiles by

EIB(*,Z) = V/(*,Z) (4.5.11)

From Section 3.3.1 the fluorescence emission for broadband spectral and temporal

detection is given by Eq. (3.3.9) as

0felB = _" .N 1 • IL(t).dt (4.5.12)

where a is a constant that depends on the laser and fluorescence wavenumbers and the

absorption cross-section, A and Q are integrated rate coefficients for spontaneous

emission and quenching, and N o is the ground state number density. Combining Eqs.

(4.5.11) and (4.5.12) and rearranging gives an expression for the ground state number

density profile as

A A -1 Vi(O,z)
(4.5.13)
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The influence on the laser irradiance was neglected by assuming that the temporal laser

irradiance remained the same between the calibration and measurement conditions. This

assumption is reasonable since the laser energy and pulse shape were observed to remain

constant over the period of the tests on a single day.

The relative fluorescence profiles measured in the atmospheric pressure flames were

normalized to the fluorescence signal voltage measured on the same day in the post-flame

region of the lean flame (flame A-0-L, 0 = 0.97). The relative fluorescence profiles

measured in the 80-torr flames were normalized to the fluorescence signal voltage

measured on the same day in the post-flame region of the leanest rich nonsooting flame

(flame L-II-R1, 0 = 2.03). The conversion of the normalized relative OH fluorescence

profiles to absolute OH number density profiles is discussed in Chapter 6.

4.6 Chemical Kinetic Modellin_

The flame chemistry in this study was modelled with the Sandia laminar premixed

one-dimensional flame code (Kee et al., 1985) and its associated programs. The flame

code was used to evaluate chemical kinetic reaction mechanisms describing the oxidation

and pyrolysis of ethylene. The chemical kinetic modelling studies were used to compare

the measured and predicted OH concentration profiles to evaluate postulated fuel-rich

reaction mechanisms. These studies were also used to estimate the molar composition

profdes of the flames, so that the temperature profiles could be estimated from the

measured scattering coefficient profiles. The results from the chemical kinetic modelling

studies could subsequently be used in a sensitivity analysis and a reaction pathway

analysis to identify the role of particular species and reactions in the creation and

destruction of other species, particularly PAHs and soot.

The Sandia flame code solved the mass, species, and energy equations for a

constant-pressure steady laminar premixed one-dimensional flame to determine the

species and temperature profiles. The equations were solved for a burner-stabilized flame
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with the following boundary conditions: fixed constant mass flow rate, specified

temperature and species mass flux fractions at the burner surface, and vanishing species

and temperature gradients at the hot boundary (far downstream from the flame front). The

production rates of the species were calculated by summing the production rates from the

rate expressions for the elementary reactions in the reaction mechanism. The thermal

conductivities and the diffusion coefficients were calculated from the thermodynamic and

transport properties of the species entered from the thermodynamic and transport property

databases.

The flame code program calculates the solution to the system of algebraic equations

generated from the finite difference approximation of the mass, species, and energy

conservation equations. A damped modified Newton algorithm was used to find the

solution. When the Newton algorithm failed to converge, the program used time

integration methods to calculate a better solution estimate for the Newton algorithm. The

program first found the solution on a coarse mesh of flame positions and then refined the

solution by adding positions to the profile where the solution or the gradients changed

most rapidly.

The flame code program required input from a keywords file that described the

flame problem to be solved and from two binary link files, one that contained the

thermodynamic properties of the species and the reaction rate data and one that contained

the transport properties of the species.

The binary link file containing the thermodynamic properties and reaction rates was

generated by the Chemkin-II Interpreter program (version 1.6 April 1990; Kee, Rupley,

and Miller, 1989) from two input files, a reaction mechanism description file and a

thermodynamic property database file. The reaction mechanism description file
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containeda list of the elements and species in the mechanism and a list of the elementary

reactions with their forward reaction rate coefficients. The forward reaction rate

coefficients were determined from the modified Arrhenius rate expression:

k/-a. r .ex (4.6.1)

where k/is the forward rate coefficient (moles.cm3.sec "' units), A is the pre-exponential

factor, [3 is the temperature exponent, E_ is the activation energy (cal.mole"), R is the gas

constant (1.987 cal.mole'l-K_), and T is the temperature (K). The thermodynamic

property database file contained the specific heat, enthalpy, and entropy of each species

in the form of two seven coefficient polynomial fits over an upper and lower temperature

range. Each species entry also contained the species name, its elemental composition, its

phase, and the temperature range for the polynomial fits. We used the Chemkin

thermodynamic database reported by Kee, Rupley, and Miller (1987).

The binary link file containing the transport properties was generated by the

Chemkin-II transport property fitting program (version 1.5 August 1989; Kee, Warnatz,

and Miller, 1983) from two input files, a transport property database file and the binary

link file generated by the Chemkin Interpreter. The transport property fitting program

calculated the polynomial fits for the viscosities, thermal conductivities, and binary

diffusion coefficients for each species from the molecular parmneters stored in the

transport property database file and the thermodynamic data in the interpreter link file.

The transport property database used in these calculations was supplied along with the

transport property subroutines by Kee et al. (1986).

The flame code program (version 1.6, February 1990) was compiled with the

Chemkin-II chemical kinetics subroutine library (version 2.0, January 1990; described by

Kee, Rupley, and Miller, 1989) and the Chemkin-II multicomponent transport subroutine

library (version 1.3 February 1990; described by Kee et al., 1986). The multicomponent
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transportsubroutineswere used to guarantee mass conservation and to calculate the

diffusion coefficients, viscosities, and thermal conductivities more accurately than

transport subroutines using approximate mixture averaging rules. The double precision

versions of the flame code program, the preprocessor programs, and the subroutine

libraries were compiled and run on a Sun Microsystems Sparcstation 1 and a Gould

PN9080. Both computers are 32-bit machines and use the UNIX operating system. The

calling programs for the flame code and the preprocessor programs were modified to

access files within the UNIX filesystem.

The species and temperature profiles calculated by the flame code were written to

an ASCII file and to two binary files. The formatted ASCII output contained the record

of the interim calculations in the solution procedure and then the final solution with the

position, temperature, velocity, and mass density profiles along with the mole fraction

profiles of each species. The binary files contained the pressure, mass flux, the number

of species and the number of grid points and an army containing the position, temperature,

and species mass fraction profiles. The binary 'restart' file was written when a final

solution was found. The binary 'recover' file was written every time an interim solution

was found. The binary restart and recover files could be read by the flame code program

to generate an initial solution estimate that typically converged faster to the final solution

than if the program guessed the initial solution. This feature could be used to refine the

mesh of a previous solution for a set of flame conditions or to start from an interim

solution should the computer fall in the middle of a solution calculation. It could also be

used as a starting point for solutions for different flame conditions or for solutions with

the same flame conditions but with a different reaction mechanism.

A set of computer programs were written to extract and analyze data from the flame

code solution. These programs were written using the Chemkin-II subroutine library

(Kee, Rupley, and Miller, 1989) to access the Chemkin interpreter link file and the binary
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restartfile. One set of programs was written to read the mass fraction profiles from the

binary restart file to generate a file containing the mole fraction profiles or a file

containing the number density profiles. Another program could then read these files and

then extract the species profiles for plotting.

To use a solution from one reaction mechanism as an initial solution for another

reaction mechanism, a program was written to convert the mass fraction profiles in the

restart file by either subWaeting species profiles not present in the new mechanism or by

adding zero mass fraction profiles for species in the new mechanism but not in the old

mechanism. Another program was written to calculate mattering cross-section and

mattering coefficient profiles from the temperature and species mole fraction profiles.

This program was used to estimate temperature profiles from the measured scattering

coefficient data as outlined in See. 4.4.4 and discussed in detail in Appendix C.

Preliminary temperature and species profiles for the flames in this study were

calculated with the flame code using the reaction mechanism of Drake and Blint (1991).

The nitrogen chemistry reactions (reactions 124 through 202 in Table I of Drake and

Blint, 1991) were removed to reduce the mechanism size to 32 species and 144 reactions

and, thus, speed the solution time. The Drake and Blint mechanism was derived from the

Glarborg, Miller, and Kee (1986) mechanism (henceforth called the GMK mechanism)

which was developed to model NO_ formation during methane combustion. Drake and

Blint modified the reaction rate coefficients for the methyl and ethyl recombination

reactions in addition to modifying some of the nitrogen chemistry. Vaughn et al. (1991)

found that the GMK mechanism predictions for the stable species concentrations showed

good agreement with their measurements of rich ethylene combustion in a jet-stirred

reactor. Thus, this mechanism was deemed to be a good starting point for the modelling

of these flames. It could be used to obtain the initial solutions for these flames and to

predict the major species profiles for the estimation of the scattering coefficient profiles.
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Thepreliminary temperature and species profiles for the sequences of flames were

calculated using the energy equation to determine the temperature profile. The solutions

were found in the following manner:

1. The solution was calculated on a coarse mesh of 16 to 23 grid points (positions in the

profile) for the leanest flame in a sequence of flames with the same cold flow velocity and

dilution ratio. This coarse mesh solution was saved in a binary restart file.

2. The solution for the flame was restarted from the coarse binary restart file and refined

to a final mesh of 80 to 125 grid points by setting the upper bounds on the solution

gradient and curvature to 0.10 and 0.20, respectively.

3. The solution for the next richer flame in the sequence was calculated on a coarse mesh

of 16 to 23 grid points. This solution used the previous flame's solution on a coarse mesh

(contained in the binary restart file) as the initial solution estimate. The final coarse mesh

solution was saved in a binary restart file to be refined further and to be used for the next

richer flame solution.

Steps 2 and 3 were repeated for each successively richer flame in a sequence to obtain the

refined solution for each flame. This procedure of using the previous flame's solution as

the starting point for the next flame's solution was much faster than if each solution had

been found from scratch.

These flame code solutions based on the Drake and Blint mechanism were used to

predict the major species profiles for estimation of the temperature profile from the

measured scattering coefficient profile as described in Sec. 4.4.4 and Appendix C.

Determination of the temperature profile for these flames can speed up subsequent flame

code calculations using different reaction mechanisms by removing the need to use the

energy conservation equation to calculate the temperature profile.
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The solutions obtained using the Drake and Blint mechanism were then used as the

starting point for flame code solutions using the reaction mechanism of Miller and Melius

(1992). Their mechanism models the rich combustion of acetylene and includes the

formation of the single-ring aromatic species, benzene and phenyl radical. The aromatic

formation mechanism includes the reaction pathways through both the C3 and C4

intermediate species. They report that the mechanism modelled well the measured

species profiles of Bastin etal. (1988) for a lightly sooting 20-torr

acetylene/oxygen/argon flame. The Miller and Melius mechanism containing 50 species

and 221 reactions was used without further modification to model the flames in this study.

Ulxiated Chemkin thermodynamic property and transport property databases (Miller and

Melius, 1992) were used because some of the C3 and C4 species were not present in our

earlier versions of these databases. The flame code solutions obtained with this

mechanism were used to compare the predicted with the measured OH concentration

profiles. They were also used to investigate the behavior of the aromatic species profiles

in the flames as the equivalence ratio was increased from nonsooting to sooting

conditions.
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CHAPTER 5:

LASER SCA'ITERING-EXTINCTION MEASUREMENTS
OF SOOT FORMATION IN PREMIXED ETHYLENE FLAMES

In this chapter, we report on measured vertical profiles of soot particle volume

fraction, number density, and particle size in sequences of flat flames as their equivalence

ratio is increased from nonsooting conditions to lightly sooting conditions near the critical

equivalence ratio through more heavily sooting conditions. These measurements of soot

formation can serve as a basis for evaluating chemical kinetic models that have been

developed to describe and predict soot formation in flat laminar premixed flames. When

combined with profiles of the OH radical concenla'ation measured in the same sequences

of flames (described in Chapter 6), such measurements can serve as a basis for

investigating the role of the OH radical in soot formation.

Three sequences of atmospheric pressure, flat C2H4/O2/N2 flames were examined in

which the equivalence ratio was varied within the sequence, while the cold flow velocity

(vc) and the dilution ratio (D = f'NJf'o) were held constant. Two of the flame sequences

had the same cold flow velocity (vc = 7.7 cm.sec_), but different dilution ratios (D = 4.2

for flames in the A-IA sequence and D = 3.5 for flames in the A-IB sequence). The third

flame sequence (A-IIA) had a higher cold flow velocity (vc = 10.4cm.sec_), but

approximately the same dilution ratio (D = 4.3) as the first sequence (A-IA). Two

sequences of 80-torr, flat C2H4/O2 flames were also examined in which the equivalence

ratio was varied while the cold flow velocity was held constant. Since no nitrogen diluent

was used in these sequences of flames, their dilution ratio was zero. The two sequences
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of 80-tort flames had different cold flow velocities (v c = 18.1 cm.sec t for the flames in

the L-I sequence and vc = 22.4 cm.sec "l for the flames in the L-II sequence). The flow

rates, equivalence ratios, cold flow velocities, and dilution ratios of these flames are listed

in Tables 4.1 and 4.2 in Section 4.3.

The profiles of soot volume fraction, particle number density, and particle size for

these flames were measured with the laser scattering-extinction method. The theory of

the laser scattering-extinction method and its application to sooting flames is described in

Section 3.2. Profiles of the scattering coefficient and the extinction coefficient were

measured with the experimental apparatus described in Section 4.4. The soot volume

fraction, particle number density, and particle size profiles were then calculated from the

measured scattering and extinction coefficient profiles. In addition to the scattering and

extinction coefficient profdes, the laser scattering-extinction apparatus was used to

measure profiles of the depolarized scattered light signal and the argon-ion laser-induced

fluorescence. These additional measurements were used to quantify background

contributions to the scattering and extinction measurements and also to interpret the

behavior of sooting flames near the critical equivalence ratio.

We first present and describe the features of the extinction coefficient and the

scattering coefficient profiles measured in the sequences of the atmospheric-pressure

flames. We then present and describe the scattering coefficient profiles measured in the

80-torr flames. Measurements of the argon-ion laser-induced fluorescence are described

next for the atmospheric sooting flames. Profiles of the horizontally polarized component

of the scattered light are then presented for both the atmospheric and subatmospheric

pressure flames.

Our interpretation of these results follows. We fast identify the considerations and

assumptions needed to calculate the volume fraction, number density, and panicle size

profiles from the extinction and scattering coefficient profiles. The volume fraction,
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number density, and particle size profiles are then shown for the atmospheric-pressure

flames. Based on these measurements, we then identify upper bounds on the soot formed

in the flames near the critical equivalence ratio. The extinction coefficient and the

fluorescence coefficient profiles are then compared. The temperature profiles estimated

from the molecular scattering contribution to the scattering coefficient are presented next.

Finally, we examine and discuss the behavior of the sooting flames based on these

measured profiles and suggest methods for improving the measurements.

5.2 Results of the Laser Scattering-Extinction Measurement_

The laser scattering-extinction method is used to measure two quantities, the

transmittance of the laser beam through the flame and the scattered light from the particles

and gases in the flame. From these measurements and the calibration, the two primary

quantities determined are the extinction coefficient and the scattering coefficient.

The extinction coefficient (K_, cm 1) profile was calculated from the transmittance

profile using

Ku,(z) = _1. ln[x(z)] (5.2.1)

where L (cm) is the pathlength of the laser through the flame. The extinction coefficient

profiles presented here are relative profiles based on the assumed pathlength, L = 5.6 cm,

equal to the diameter of the burner. The relative extinction coefficient profiles measured

in different flames within the same sequence can still be compared, however, because the

pathlength remains approximately the same, since the cold flow velocity and dilution ratio

were held constant while the equivalence ratio was varied in small increments. The

transmittance profiles were normalized to their maximums before the extinction

coefficient was calculated. This normalization is equivalent to subtracting an extinction

coefficient corresponding to the background extinction at the location of the maximum of

the transmittance profile.
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The measured scattering coefficient (Q_o cml.sr "l) is the sum of the possible

contributions from particle scattering (Qw), molecular scattering from the flame gases

(Qw_), and argon-ion laser-induced fluorescence (Q/) and thus, can be expressed as

Q,co(z) = Qw(z ) + Q,,v., (z)+ Q_, _.)(z) .aX (5.2.2)

These individual contributions cannot be identified from a single measurement of the

scattering coefficient. Estimates of the molecular scattering contribution were obtained

by measuring the scattering coefficient profiles of nonsooting flames with the same cold

flow velocity and dilution ratio. Estimates of the fluorescence contribution were obtained

by measuring the fluorescence at 473 nm and 503 nm excited by the argon-ion laser at

488.0 rim. The particle scattering contribution can then be calculated by subtracting the

estimates of the molecular scattering and fluorescence contributions from the measured

scattering coefficient.

The scattering and extinction coefficient profiles were measured in sequences of

flames whose range of equivalence ratios spanned the transition from nonsooting to

sooting. This systematic approach was undertaken to examine the change in the

scattering and extinction coefficient profiles through the soot threshold. Profiles of

nonsooting flames provided a baseline for comparison with the profiles of sooting flames.

The scattering coefficient profiles for the nonsooting flames were also used to quantify

the molecular scattering contribution. The profiles of the sooting flames near _c were

measured to identify how much soot is present in lightly sooting flames and to evaluate

the laser scattering-extinction method for measuring the critical equivalence ratio. The

profiles of sooting flames at richer equivalence ratios were measured to quantify the

trends of soot formation growth with equivalence ratio.

166



5.2.1 Extinction Coefficient Measurements

$.2.1.1 Atmospheric-Pressure Flames

The extinction coefficient profiles of the three sequences of atmospheric-pressure

C.2H4/O2/N2 flames are shown in Figures 5.1 to 5.5. The measured range in height above

the burner was from approximately 0.5 mm to 15 mm or 20 mm, approximately half the

distance from the burner surface to the flame stabilizer. The extinction coefficient

profiles presented here represent the average of multiple measurements, though the

number of measurements included in the average varies from one to five.

The extinction coefficient profiles of the A-IA sequence of flames are shown in

Figures 5.1 and 5.2. The equivalence ratios within this sequence were varied from

t_ = 1.63 to t_= 2.32, while the cold flow velocity was held constant at vc = 7.7 cm.sec _

and the dilution ratio was held constant at D = 4.2. Within this sequence, the critical

equivalence ratio was observed at t_c~ 1.70.

The behavior of the profiles as the equivalence ratio is increased from nonsooting to

lightly sooting conditions is shown in Figure 5.1, which displays a narrow range of the

extinction coefficient profiles corresponding to the transmittance range from ¢ = 1.000 to

= 0.989. Based on the error analysis of the transmittance measurements presented in

Appendix B, the detection limit for the extinction coefficient was estimated to be

K,_, = 1.8xl0 4 cm _, which corresponds to a detection limit for the transmittance of

= 0.999. The extinction coefficient profiles of both the nonsooting flame A-IA-R2

(_ = 1.63) and the lightly sooting flame A-IA-S1 (_ = 1.78, slightly greater than _c) are

approximately flat and fall below this detection limit. The extinction coefficient profile

of the next richer flame A-IA-S2 (_ = 1.92) is the first which shows a measurable increase

above the detection limit. However, the final extinction coefficient measured at 20 mm

above the burner is small, K,=,~ 11x10 4 cm 4, and corresponds to a change in the

transmittance of 0.6%.
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As the equivalence ratio within this sequence is increased still further, the measured

extinction coefficients at a given height increase significantly. The full range of the

extinction coefficient profiles for the A-IA sequence of flames is shown in Figure 5.2.

The extinction coefficient profiles of the richer sooting flames increase linearly with

height over the 20 mm range in height above the burner. In the richer flames (A-IA-S5

and A-IA-S4), the noise in the extinction coefficient measurement increases at heights

near 15 mm above the burner as indicated by the increase in the standard deviation of the

measurement. This increased noise was probably caused by the flame flicker observed in

the less stable richer flames.

The extinction coefficient profiles of the A-IB sequence of flames are shown in

Figures 5.3 and 5.4. The equivalence ratios within this sequence were varied from

= 1.67 to _ = 2.17, while the cold flow velocity was held constant at vc = 7.8 cm.sec 1,

approximately the same as that of the A-IA sequence, and the dilution ratio was held

constant at D = 3.5, 17% lower than that of the A-IA sequence. Within this sequence, a

flame at the critical equivalence ratio, _c ~ 1.67, was measured, although its

vc = 7.9 cm.se¢ l and D = 3.3 differ slightly from the remainder of the flames within the

sequence.

The behavior of the extinction coefficient profiles as the equivalence ratio is

increased from the critical equivalence ratio is shown in Figure 5.3, which shows the

narrow range of the extinction coefficient profiles corresponding to the transmittance

range from x = 1.000 to x = 0.989. The behavior of these extinction coefficient profiles

is similar to that of the A-IA flames. The extinction coefficient profile of the flame at the

critical equivalence ratio (A-IB-C _ = 1.67) is approximately flat and falls below the

detection limit. The extinction coefficient profile increases measurably above the

detection limit in the A-IB-S2 (_ = 1.92) flame, but the extinction coefficient at 15 mm is

still small, K_, ~ 9.5x10 _ cm _, and corresponds to a change in the transmittance of 0.5%.
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The full range of the extinction coefficient profiles of the A-IB flames is shown in

Figure 5.4. Again, as the equivalence ratio is increased above # = 1.92, the extinction

coefficient increases significantly at a given height. The extinction coefficient profiles

increase approximately linearly with height above the burner. The range of extinction

coefficients is not as great as that for the A-IA flames, because the richest equivalence

ratio investigated in the A-IB sequence was ¢ = 2.17, while that in the A-IA sequence was

¢ =2.32.

The extinction coefficient profiles of the A-HA flames are shown in Figure 5.5. The

equivalence ratios within this sequence were varied from _ = 1.63 to _ = 2.02. The cold

flow velocity was kept constant at vc = 7.7 cm.sec 1, which is 35% higher than that of the

A-IA sequence, while the dilution ratio was kept constant at D = 4.3, approximately the

same as that for the A-IA sequence. The A-I/A-S 1 flame (_ = 1.78) is at the critical

equivalence ratio for this flame sequence.

The full range of the extinction coefficient profiles for the A-IIA flame sequence is

shown in Figure 5.5 and falls within the transmittance range from x = 1.000 to x --0.989.

Compared with the A-IA flames (Fig. 5.2) and the A-IB flames (Fig. 5.4), the A-IIA

flames distinctly produce less soot over the same range of equivalence ratios. However,

the behavior of the profiles near the critical equivalence ratio is similar to that of the other

flame sequences. The extinction coefficient profiles of both the nonsooting flame

(A-IIA-R2) and the flame at or near ¢c (A-IIA-S 1) are approximately flat and fall below

the detection limit. Similar to the other flame sequences, the extinction coefficient profile

rises above the detection limit at # = 1.92 (A-IIA-S2), but only slightly, since

K,_, ~ 2.0×10 "_crn"t at 15 mm above the burner. The extinction coefficient increases

significantly in the next richer flame (A-IIA-S3 _ = 2.02). Further increases in the

equivalence ratio were not possible for this flame sequence since the flame lifted off the

burner as the equivalence ratio was increased beyond # = 2.02.
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The extinction coefficient profiles of the three atmospheric-pressure flame

sequences provide a range of sooting conditions to investigate the effects of equivalence

ratio, cold flow velocity, and dilution ratio on soot formation. Based on these three flame

sequences, the extinction coefficient profile does not increase above the estimated

detection limit of K,_ ~ 1.8×104 cm -_ until the equivalence ratio has been increased

beyond the critical equivalence ratio. The smoothness of the measured extinction

coefficient profiles, particularly in the lightly sooting flames (-$2 flames, _ ---1.92),

suggests that this detection limit may be too conservative.

5.2.1.2 Subatmospheric Flames

We were not able to measure extinction coefficient profiles for the two 80-tort flame

sequences. Similar to the atmospheric-pressure flames, we could not detect an extinction

coefficient profile in the flames near the critical equivalence ratio. At richer equivalence

ratios, false extinction coefficient profiles were observed that were caused by a buildup

of a brownish deposit on the window where the laser beam exited the pressure vessel.

This was confirmed by switching to a nonsooting flame and observing the same decrease

in transmittance as for the sooting flame. The brownish deposit on the window was

confined to the spot where the laser beam passed through the window. The exact cause

of this deposit is not known. All the windows of the pressure vessel were nitrogen-purged

to prevent soot buildup on the windows and with the exception of the exit window, no soot

buildup was observed on the windows after running the experiment for several hours. A

possible explanation is that the nitrogen purge flow pattern of the exit window may have

been uneven and may have blown soot towards the window instead of away from it.

A second difficulty encountered in measuring extinction coefficients for the 80-torr

sooting flames was that a soot 'fog' would build up in the stagnant regions within the

pressure vessel. The presence of the soot fog would render an extinction coefficient

measurement meaningless, because the extinction would no longer be confined to the
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flame. In fact, the extinction caused by the fog was likely to be greater than that caused

by the flame, because the fog was cooler and thus denser and also had a longer pathlength.

We restricted our measurements of the sooting flames to equivalence ratios less than those

which generated the soot fog and thus could not examine more heavily sooting flames that

might have had a detectable extinction coefficient profile.

Both the soot fog and the window deposits are related problems that would have

required a redesign of the pressure vessel and the vacuum exhaust system to solve, as was

discussed in Section 4.2.4.

_.2.2 Scattering Coefficient Measurements

5.2.2.1 Atmospheric-Pressure Flames

The scattering coefficient profiles of the three sequences of atmospheric-pressure

C_I-h/O2/N2 flames are shown in Figures 5.6 to 5.11. Since the scattering coefficient

profiles were measured coincident with the extinction coefficient profiles, the same range

in height above the burner was measured, i.e., from approximately 0.5 mm to 15 or

20 ram, approximately half the distance from the burner surface to the flame stabilizer.

The scattering coefficient profiles of the A-IA flames are shown in Figures 5.6 and

5.7. Figure 5.6 shows the details of the profiles over a narrow range of the scattering

coefficient as the equivalence ratio is increased from nonsooting to sooting conditions.

The scattering coefficient profile of the nonsooting flame, A-IA-R2 (_ = 1.63), serves as

a baseline for comparison with the sooting flame profiles, since its profile is caused solely

by molecular scattering. The scattering coefficient profile of the first visibly sooting

flame (A-IA-S1) has an identical shape to that of the nonsooting flame, except that it is

displaced by a small increase in the scattering coefficient. Thus, it shows no obvious

evidence of the presence of soot. As the equivalence ratio is increased further, the

presence of soot formation produces a steep increase in the scattering coefficient with
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height. For the A-IA-S2 flame, this steep increase begins at a height of about 18 ram. The

corresponding height for the remaining flames decreases as the equivalence ratio is

increased. This trend is shown more clearly in Figure 5.7 which shows the full range of

the scattering coefficient profiles. The steep increase in the scattering coefficient is

caused by its dependence on the sixth power of the particle radius.

The scattering coefficient profiles of the A-IB sequence of flames are shown in

Figures 5.8 and 5.9. Figure 5.8 shows the details of the profiles over a narrow range of

the scattering coefficient as the equivalence ratio is increased from the flame at the critical

equivalence ratio (A-IB-C) to more heavily sooting flames. The profile of the A-IB-C

flame is similar to that of the A-IA-R2 and A-IA-S 1 flames; the scattering coefficient is

caused primarily by molecular scattering and thus soot cannot be detected. Similar to the

A-IA flame sequence, the presence of soot can be detected beginning at an equivalence

ratio of 0 = 1.92 by a steep increase in the scattering coefficient profile beginning at a

height of 12 mm in the A-IB-S2 flame. The full range of the scattering coefficient profiles

of the A-IB flames is shown in Figure 5.9. The behavior of the scattering coefficient

profiles is similar to that of the A-IA flames, except that the steep increase in the

scattering coefficient begins at a lower height for the A-IB flames than for the A-IA

flames at the same equivalence ratio.

The scattering coefficient profiles of the A-IIA sequence of flames are shown in

Figures 5.10 and 5.11. The details of the scattering coefficient profiles over a narrow

range of the scattering coefficient are shown in Figure 5.10. Similar to the other two

atmospheric flame sequences, the scattering coefficient profile of the visibly sooting

flame near the critical equivalence ratio (A-IIA-S1) appears identical to that of the

nonsooting flame (A-IIA-R2) and thus does not show any evidence of soot formation.

When the equivalence ratio is increased to 0 = 1.92 (A-IIA-S2), the scattering coefficient

profile again increases steeply indicating the presence of soot particles. The full range of
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Figure 5.8 Scattering coefficient profiles of the A-IB sequence of flames
(vc -- 7.8 cm.sec _ and D = 4.3). The narrow range of the scattering
coefficient shows the details of the lightly sooting flame profiles. The error
bars show the standard deviation of the measurement.
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the scattering coefficient profiles is shown in Figure 5.11. The range of the A-IIA flames

is much less than that of the A-IA flames (Fig. 5.7) and the A-IB flames (Fig. 5.9). This

confirms our previous observation deduced from the extinction coefficient profiles that

the A-IIA flames produce less soot than the A-IA and A-IB flames at the same

equivalence ratio.

As for the extinction coefficient profiles, the scattering coefficient profiles for the

sooting flames near the critical equivalence ratio do not show the presence of soot.

However, when the equivalence ratio is increased further to _ = 1.92 and greater, the

presence of soot is clearly indicated by the steep increase in the scattering coefficient

profiles. The range in the scattering coefficient profiles for the three atmospheric flame

sequences provides a basis to investigate the effects of equivalence ratio, cold flow

velocity, and dilution ratio on soot formation.

5.2.2.2 Subatmospheric Flames

Although we were unable to measure extinction coefficient profiles for the two

80-torr flame sequences, we were able to measure the scattering coefficient profiles of

these flames. The scattering coefficient profiles of the L-I sequence of flames are shown

in Figures 5.12 and 5.13. Those of the L-II sequence of flames are shown in Figures 5.14

and 5.15. The only difference in these two flame sequences is that the cold flow velocity

of the L-I sequence is vc = 18.1 cm.sec -_and that of the L-II sequence is vc = 22.4 cm.sec _.

Within the flame sequences, both the _ = 2.03 (-R1) and _ =2.17 (-R2) flames are

nonsooting. The transition to a visibly sooting flame occurs between _ = 2.17 (-R2) and

= 2.32 (-S1) for each flame sequence. However, the critical equivalence ratio was not

measured because of difficulties associated with incrementing the flow rates while

keeping the total flow rate constant. More heavily sooting conditions were investigated

at equivalence ratios of _ = 2.46 (-$2) and t_ = 2.60 (-$3).
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The details of the scattering coefficient profiles as the equivalence ratio is increased

from nonsooting to sooting are shown in Figure 5.12 for the L-I sequence of flames and

in Figure 5.14 for the L-II sequence of flames. The measured range in height above the

burner for these scattering coefficient profiles was from 1.0 mm to 60 mm. The increase

in range reflects the expansion of the flame profile at 80 torr when compared to that at

atmospheric pressure. In these 80-torr flames, the decline of the scattering coefficient

profile in the region immediately above the burner surface is clearly measured. This

decline reflects the increase in temperature with height and also the formation of

combustion products with smaller scattering cross-sections than the parent fuel.

A comparison of the two visibly sooting flames at _ =2.32 (-S1) with the

nonsooting flames indicates the different sooting behavior of the two sequences. The

L-I-S 1 flame shows a significant increase in the scattering coefficient with height, while

the profile of the L-II-S 1 flame is basically identical in shape to that of the nonsooting

flames. This behavior suggests that the L-II-S1 flame may be closer to the critical

equivalence ratio than the L-I-S1 flame. This conclusion is further supported by the

scattering coefficient profiles of the richer sooting flames. The full range of these

scattering coefficient profiles is shown in Figure 5.13 for the L-I sequence of flames and

in Figure 5.15 for the L-II sequence of flames. The L-I sooting flames distinctly produce

more soot than the L-II flames as can be seen by comparing the magnitudes of the final

scattering coefficients in the flames.

Although the utility of the 80-tort scattering coefficient profiles is limited by the

absence of measured extinction coefficient profiles, the scattering coefficient profiles of

these two flame sequences do provide a basis for comparing the effects of equivalence

ratio and cold flow velocity on soot formation.
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5.2.3 Argon-ion Laser-Induced Fluorescence Measurements

We investigated the fluorescence excited by the argon-ion laser in five flames within

the A-IA flame sequence. The argon-ion laser-induced fluorescence was measured by

tuning the monochromator wavelength away from the laser excitation wavelength,

_, = 488.0 rim. The spectral detection bandpass of the monochromator was widened to

A_, = 0.72 nm FWHM and the entrance slit height of the monochromator was increased

to gather more light from the flame. The rejection of Rayleigh scattered light from the

laser was verified by measuring the scattering from a nitrogen flow at room temperature.

The rejection ratio was determined to be greater than 104 at wavelengths at least 5 nm

away from the laser excitation wavelength.

Figure 5.16 shows spectra of the argon-ion laser-induced fluorescence in three of the

sooting A-IA flames at a height of 12 mm above the burner, which is within the visibly

sooting region of all three flames. The spectra were measured by scanning the

monochromator detection wavelength from 448 to 528 rim. The spectra of all three

flames are broad, essentially featureless, and show both Stokes and Anti-Stokes

components. The magnitude of the fluorescence increases steadily with wavelength in

this measured wavelength range. The fluorescence signal also increases with equivalence

ratio at this height, which is similar to the increase of the extinction coefficient with

equivalence ratio in the same flames. However, the fluorescence spectrum is also

observed in the A-IA-S1 (_ = 1.78) flame, for which the scattering and extinction

coefficient profiles do not show evidence of soot formation.

Vertical profiles of the fluorescence were measured in four of the flames within the

A-IA flame sequence at two detection wavelengths, _. = 473 nm and _. = 503 nm, 15 nm

on either side of the excitation wavelength, _, = 488.0 nm. These profiles were measured

to observe the behavior of the fluorescence profiles in the transition from a nonsooting

flame (A-IA-R2) to more heavily sooting conditions (A-IA-S3) and also to quantify the
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fluorescencebackgroundcontributionto the scattering coefficient at 488.0 nm. The

fluorescence coefficient (QfA_. cm'l-sr 1) profiles measured at the detection wavelength

of g = 503 nm are shown in Figure 5.17. The fluorescence profiles measured at the

detection wavelength of 473 nm were identical in shape and their magnitude was half of

that measured at 503 nm.

The three sooting flames, A-IA-S1, A-IA-S2, and A-IA-S3, show distinctly

measurable fluorescence coefficient profiles which rise steadily with height in the flame

and also increase in magnitude with equivalence ratio. The observation of a measurable

profile in the A-IA-S 1 flame is striking, because, although the flame is visibly sooting, the

presence of soot was not indicated by either the extinction or scattering coefficient

profiles. To investigate this effect further, we measured the fluorescence at 503 nm at a

height of 20 mm above the burner at the critical equivalence ratio (A-IB-C) and were able

to measure a fluorescence coefficient above the estimated detection limit (Fig. 5.17).

Thus, a measurable fluorescence coefficient appears to correlate with the visible yellow

emission of soot from a flame.

We were not able to measure a fluorescence coefficient profile for the nonsooting

A-IA-R2 flame. However, a signal at the estimated detection limit of the experimental

apparatus was observed at heights of 15 mm and above, suggesting that the fluorescence

might be present and may be measurable if more fluorescence could be collected from the

flame. On the other hand, as might be expected, we were not able to detect a fluorescence

signal from the 80-torr sooting flames.

5,2.4 Depolarized Scattering Measurements

Profiles of the horizontally polarized scattered light from vertically polarized

incident light at 488 nm were measured in three sooting atmospheric-pressure flames in

the A-IA sequence and in the sooting 80-tort flames in both the L-I and L-II sequences.
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From these measurements, we determined profiles of the horizontal scattering coefficient,

Qav(Z). Profiles of the depolarization ratio were then calculated using

Q_(z)
pv(z) Qw(Z) (5.2.3)

The depolarization ratio provides a measure of the anisotropy of the scattering. The

scattering cross-section for horizontally polarized scattered light and vertically polarized

incident light is Cnv=0 for Rayleigh scattering (D'Alessio, 1981). A non-zero

depolarization ratio thus indicates a departure from Rayleigh scattering theory.

The horizontally polarized scattered light contains contributions from the same

sources as the vertically polarized scattered light. The measured scattering coefficient for

horizontally polarized scattered light, Q,,os_, is given by Eq. (3.2.24) as

Q,co,. = O_, + Q.v,_ + Qt(X_,_.). _. (5.2.4)

The horizontally polarized particle scattering coefficient, Q,v = pv'Qw, where 9v is the

depolarization ratio of the particles. The horizontally polarized scattering coefficient,

QHVj, is on the order of 1% of Qw¢, since the depolarization ratios of the major exhaust

gases are on the order of 1% (e.g., pv(CO) = 0.521%, pv(COz)=4.12%,

pv(Nz) = 1.042%; Bogaard et al., 1978). The fluorescence coefficient, Q/(Lo_)._3., is

the same for both vertically and horizontally polarized scattered light, since the argon-ion

laser-induced fluorescence is isotropic (Haynes, Jander, and Wagner, 1980).

5.2.4,1 Atmospheric-Pressure Flames

Profiles of the measured horizontal scattering coefficient, Q,co.H,are shown in Figure

5.18(a) for three sooting atmospheric-pressure flames, A-IA-S2, A-IA-S3, and A-IA-S4.

The calculated depolarization ratio profiles are shown in Figure 5.18Co). Profiles of the

fluorescence coefficient were measured in two of these flames, A-IA-S2 and A-IA-S3,

and the resulting horizontal scattering coefficient profiles after subtraction of the

fluorescence background are shown in Figure 5.18(a) by the filled symbols.
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The Q,co_ profile of the A-IA-S2 flame after correction for the fluorescence

background remains approximately constant with height above the burner. This constant

scattering coefficient corresponds to the horizontal molecular scattering coefficient,

Qav_ (z). Thus, fluorescence contributes the remainder of the depolarized scattered signal

and the horizontal scattering coefficient due to the particles is not detected.

The Q_°_ profile of the A-IA-S3 flame after correction for the fluorescence

background remains constant at the same value of Qav¢ as for the A-IA-S2 flame up to a

height of 15 mm. Above 15 mm, the steep increase in Q_o_ can be attributed to

depolarized scattered light from soot particles. Below 15 mm the fluorescence

contributes the major portion of the depolarized scattered light. The point at which the

relative contribution of particle scattering becomes significant occurs as an inflection

point in the uncorrected Qsc_ profile at ~ 17 ram.

Although the fluorescence coefficient was not measured for the A-IA-S4 flame, the

inflection point at ~ 12 mm suggests that above 12 mm depolarized particle scattering

contributes the major fraction of the depolarized light, while below 12 mm the

fluorescence is the major fraction of the depolarized light.

The effect of the fluorescence can be seen clearly in the depolarization ratio profiles

shown in Figure 5.18Co) for the same three flames. The Qav_ component was removed

so that the pv(Z) profiles contain only fluorescence and particle contributions. The

fluorescence contribution causes the peak in the Pv profile. Following the peak, Pv

declines with height because of the increasing contribution from particle scattering and

approaches a constant Pv -- 2% at a height of 20 mm. The solid symbols in Figure 5.18(b)

represent the Pv profile caused by the particles only. For the A-IA-S2 flame, Pv ~ 0

throughout the flame, while for the A-IA-S3 flame Pv increases above zero at 15 mm and

then approaches a constant Pv ~ 1.5% at 20 mm.
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The behavior of the depolarization profiles in these flames is similar to that observed

by Haynes, Jander, and Wagner (1980) in their atmospheric-pressure ethylene flames.

They concluded that the constant depolarization ratio caused by the particles was due to

an intrinsic aniso_opy in the particles and was not caused by anisolxopy in their shape

owing to agglomeration. If the depolarization ratio were caused by shape anisolxopy of

the particles, Pv would increase with height instead of remaining constant because the

degree of agglomeration of the particles increases with height.

5.2.4.2 Subatmospheric Flames

Horizontal scattering coefficient profiles were also measured for the sooting 80-tort

flame sequences, L-I and L-II. Figure 5.19(a) shows the horizontal scattering coefficient

profiles of the four more heavily sooting flames, L-I-S2, L-I-S3, L-II-S2, and L-II-S3.

The Q,_o_ profiles of the lightly sooting flames, L-I-S1 and L-II-S1, are not shown

because they remained at zero or below the detection limit of the scattering system.

Recall that the argon-ion laser-induced fluorescence was not detected in the 80-torr

flames. In addition, the contribution to the horizontal scattering coefficient from

molecular scattering was below the detection limit. Thus, the profiles shown in

Figure 5.19(a) only represent the contribution of the soot particles.

The profiles of the depolarization ratio for the four sooting flames are shown in

Figure 5.19(b). The Pv profiles of all four flames remain approximately constant at

Pv--1% above a height of 30mm. This behavior is similar to that of the

atmospheric-pressure flames and suggests a similar conclusion, i.e., the depolarization

ratio is caused by an intrinsic anisoa'opy in the particles rather than by a shape anisotropy.
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5.3 Interpretation of the Laser Scattering-Extinction Measurements

5.3.1 Calculation of Soot Profiles

The soot volume fraction, number density, and particle diameter profiles were

calculated from the mattering and extinction coefficient profiles for those flames for

which the scattering and extinction coefficients caused by the particles rose above the

detection limit. Thus, we were only able to calculate the profiles for those

atmospheric-pressure flames with equivalence ratios _ > 1.92 (the -$2, -$3, -$4, and -$5

flames).

The first step in the calculation of the various particle profiles was to determine the

extinction and scattering coefficients due to only the particles by accounting for the

background and interfering signals. We assumed that the extinction coefficient profile

calculated from the normalized transmittance profile was that caused by soot particles and

do not make any further corrections for gas-phase absorption. Thus we assume that the

absorption present at the maximum of the transmittance profile is equivalent to the

absorption created by the gas-phase species. Any further gas-phase absorption is included

in the extinction coefficient. Thus our measurement of the extinction at 488 nm will

include contributions from soot and also from larger molecular weight hydrocarbons

down to the size of acenaphthylene which absorbs slightly at 488 nm (Beretta et al., 1985;

Weiner and Harris, 1989).

The extent of gas-phase absorption could be determined by measuring the extinction

at longer wavelengths. Harris, Weiner, and Ashcmft (1986) determined the extent of

gas-phase absorption at 488 nm by measuring the extinction at 1090 rim. They assumed

that only soot particles absorbed light at 1090 nm and calculated the extinction due to soot

at 488 nm assuming a constant index of refraction and a 1/% dependence for the

extinction. Their assumption that soot particles absorb at 1090 nm effectively defines a

lower bound on the size of the particles which they estimate to be 2000 ainu.
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The particle scattering coefficients were obtained by subtracting the estimated

molecular scattering coefficient and the fluorescence coefficient (for those cases where

they were both measured) from the total scattering coefficient. The background caused

by the molecular scattering coefficient was subtracted from the measured scattering

coefficient by fast subtracting the minimum in the total scattering coefficient profile. We

assume that the minimum is still in the nonsooting region of the flame and thus represents

the molecular scattering coefficient background at the peak temperature. This procedure

also accounts for the increase in the molecular scattering coefficient caused by the

decrease in peak temperature at increasing equivalence ratio.

For each flame sequence, these subtracted profiles were then plotted and compared.

The nonsooting region of the profiles were similar. In addition, the profile of the

nonsooting (-R2) and the lightly sooting (-$1) flames of both the A-IA and A-HA

sequences overlaid each other, thus conf'a'ming that the scattering coefficient profiles for

the lightly sooting flames showed no evidence of particle scattering. Based on this

comparison, we identified the shape of the residual molecular scattering coefficient

profile as that for the nonsooting flame for all the flames in a given sequence. We then

subtracted the molecular scattering coefficient profile of the nonsooting flame from the

measured scattering coefficient profiles of the other flames within its sequence. This last

correction was minimal, since the subtracted portion of the molecular scattering

coefficient background reached a maximum of ~ 0.3×10 .9 cmLsr _ at a height of 20 mm

above the burner. Thus, the correction was only significant in the lightly sooting flames

for which the particle scattering coefficients remain small.

The measured scattering coefficient profiles were corrected for fluorescence only

for those flames in which the fluorescence profiles were measured. No attempts were

made to estimate the fluorescence background in the other flames. The fluorescence

coefficient background at 488.0 nm was calculated from the average of the fluorescence
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coefficients at 473 nm and 503 nm because the argon-ion laser-induced fluorescence

appeared to be linear over this wavelength range (Fig. 5.16). The subtraction process also

accounted for the difference in the spectral bandpass of the monochromator between the

fluorescence and the scattering measurements. The accuracy of the subu'action is

conf'mned by the depolarization ratio measurements.

Given the particle extinction and scattering coefficient profiles, the volume fraction,

number density, and particle diameter profiles were then calculated. These calculations

required two additional parameters, the particle index of refraction, n_, and the particle

size distribution, P(r), both of which were assumed, since they could not be measured

with our experimental apparatus. The equations to calculate these profiles were

developed in Section 3.2. Here we reiterate those equations to define a relative volume

fraction, number density, and particle diameter, which do not depend on the particle index

of refraction and the size distribution. The volume fraction is calculated from the

extinction coefficient and is determined from Eq. (3.2.9) and (3.2.25) to give

fv(Z ) = _-_ . (E (th ) )-' . K,_,(z ) = (E (rh ) )-' .fv(Z ) (5.3.1)

where f_ is the relative volume fraction given by

f_(z) = _-_. K_,(z) (5.3.2)

The number density is calculated from the ratio of the extinction coefficient squared to the

scattering coefficient and is determined from Eq. (3.2.27) to obtain

1 F(_) (K_,(z)) 2

NP(z)=4_) (E(rfi)) 2 f_ Qw(z)

where N_ is the relative number density given by

1 (K_,(z)) z

N_(z) = 4k? Ow(z)

F (tfi )

(E(rfi)) 2
• fs .Nrp(z) (5.3.3)

(5.3.4)

201



The particle diameter is calculated from the ratio of the scattering coefficient to the

extinction coefficient and is determined from Eq. (3.2.29) to give

= t,(z) ) (5.3.5)

where d_3 is the relative particle diameter given by

4 Qvv(Z)"_',3d_'_=2_, n_ K_fz)) (5.3.6)

We have taken the approach of calculating the relative profiles, f_(z), N_(z),and

d_3(z), because they can be calculated directly from the extinction coefficient and

scattering coefficient profiles. Assumptions for the particle refractive index and the

particle size distribution can then be applied as multiplicative factors to the relative

profiles. Also, any comparison of the relative profiles is equivalent to a comparison of

profiles evaluated at a constant index of refraction and particle size distribution.

An important reason for calculating relative profiles is that the choice of an index of

refraction for soot is not clear. Measurements of the index of refraction and the factors

affecting it were discussed in Section 3.2.3. Briefly, the index of refraction may depend

on the I-I/C ratio of the soot, the equivalence ratio of the flame, and also the height within

the flame. The latter two factors may result from the dependence of rh on the degree of

agglomeration of the soot particles.

Table 5.1 lists values of the index of refraction that have been assumed or measured

in previous studies and also the resulting factors used to calculate the fv, Np, and d_3

profiles from the corresponding relative profiles. The values of rh include that measured

by Dobbins, Santoro, and Semerjian (1990) for the primary particles within the soot

aggregates produced by an ethylene diffusion flame. The rh values of Lee and Tien

(1981) and Dalzell and Sarofim (1969) are often referenced. The rh = 1.57 - i.0.56 value

is that quoted from Dalzell and Sarofim (1969) and used by Harris, Weiner, and Ashcraft
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(1986), D'Alessio (1981), and Haynes, Jander, and Wagner (1980). The two th values of

Charalampopoulos, Chang, and Stagg (1989) represent the range of values they measured

in propane flames over a range of equivalence ratios and heights. The value of Habib and

Vervisch (1988) was measured for soot with a high H/C ratio and may be more applicable

for soot in the early stages of formation.

The range in the factors illustrates that the assumed value ofth can have a significant

effect on the calculated values of fv, Np, and d63. For the range of factors shown in

Table 5.1, the volume fraction can range over a factor of 2.2, the number density over a

factor of 6, and the particle diameter over a factor of 1.5.

For the evaluation of the profiles presented here, the th = 2.10 - i.0.55 measured by

Dobbins, Santoro, and Semerj ian (1990) is probably most appropriate. Since the resulting

factors lie near the upper extreme of the values in Table 5.1, the calculated profiles would

define upper bounds for the volume fraction and number density profiles and a lower

bound on the diameter profile. Since this rh is for the primary particles within the soot

aggregates, it should be more applicable for the lightly sooting flames we have examined

here, because the degree of agglomeration is small when the volume fraction and the final

diameters are small (Prado et al., 1981). Also, this rh is an upper bound because

agglomeration decreases the effective index of refraction (Dobbins and Megaridis, 1991).

The assumption of a particle size distribution also significantly affects the calculated

values of the number density and the mean particle diameter. These effects are discussed

in Section 3.2.4. Table 5.2 lists for three particle size distributions the equivalent

geometric width, the dimensionless moment ratio, and the factor (Eq. 3.2.35) relating the

mean diameter, do, to the diameter, d63, determined from the scattering-extinction

measurements. These factors are for a monodisperse distribution, a self-preserving size

distribution (SPSD) (Graham and Robinson, 1976) and for the zero-order lognormal

distribution measured by Bockhorn, Fetting, and Heddrich (1986). Here, the choice of the
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Table 5.1 Particle index of refraction and the resulting factors for the calculation of

1)

2)

3)

4)

5)

6)

7)

volume fraction, number density, and particle diameter.

rh
F(r_) / E(m) _1/3E(tfi) F(rfi) (E(tfi))" (E(rfi))2 _ ]

2.10 - i.0.55 0.163 0.352 6.15 13.3 0.773

1.90 - i.0.55 0.193 0.280 5.19 8.02 0.865

1.56 - i.0.48 0.226 0.185 4.43 3.64 1.07

1.57 - i.0.56 0.260 0.217 3.85 3.23 1.06

1.81 - i.0.84 0.303 0.389 3.30 3.77 0.953

1.41 - i.0.51 0.270 0.163 3.70 2.23 1.18

1.46 - i.0.27 0.138 0.102 7.23 5.32 1.11

1) Dobbins, Santoro, and Semerjian (1990)

2) Lee and Tien (1981)

3) Dalzell and Sarofim (1969)

4) Dalzell and Sarofim (1969) referenced by Haynes, Jander, and Wagner (1980),
D'Alessio (1981), and Harris, Weiner, and Ashcraft (1986)

5) & 6) Charalampopoulos, Chang, and Stagg (1989)

7) Habib and Vervisch (1988)

Table 5.2

1)

2)

3)

Particle size distribution, equivalent geometric
moment ratio, and factor relating do to d63.

Size Distribution og fN

width, dimensionless

Monodisperse 1.0 1.0 1.0

Self-preserving 1.33 2.079 0.639

Zeroth order lognormal 1.405 2.831 0.530

2) Graham and Robinson (1976)

3) Bockhom, Fetting, and Heddrich (1986)
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SPSDshould be appropriate, because the size distribution rapidly approaches that of the

SPSD following particle inception (Dobbins and Mulholland, 1984; Megaridis and

Dobbins, 1989; Harris and Kennedy, 1988). Typically, the number density and diameter

cannot be calculated until after particle inception, since the scattering coefficient does not

rise above the detection limit until then because of the small initial particle sizes.

5.3.2 Soot Volume Fraction. Number Density. and Particle Diameter Profiles

The relative volume fraction profiles of the atmospheric-pressure flames are shown

in Figures 5.20 and 5.21. Figure 5.20 shows the relative volume fraction profiles of the

A-IA sequence of flames. The volume fraction profile of the A-IB-S4 flame is included

for comparison with the A-IA-S4 flame. The volume fraction profiles of flames with the

same equivalence ratio from each of the flame sequences are compared for the -$2

(0 = 1.92) and the -$3 (0 = 2.02) flames in Figure 5.21. In both figures, the right axis has

been scaled to show the volume fraction for an assumed index of refraction,

rh = 2.0 - i.0.55, which should give an upper bound for the volume fraction profiles of

these flames.

Within all three flame sequences, the volume fraction increases with equivalence

ratio at a given height. The relative volume fraction profiles increase approximately

linearly with height above the burner over the range of heights investigated. The growth

in the volume fraction profiles for the A-IB and A-IIA flames declines slightly as the

profiles depart from linearity ~ 15 to 20 mm above the burner.

Comparing the A-IB flames with A-IA flames at the same equivalence ratio shows

that a decrease in dilution ratio increases the soot volume fraction significantly. However,

the volume fraction profiles of the A-IA-S3 and the A-IB-S3 flames reach the same

volume fraction above a height of 15 mm. Comparing the A-IIA flames with the A-IA
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flames at the same equivalence ratio shows that an increase in the cold flow velocity

decreases the volume fraction significantly, almost by a factor of three for these

conditions.

Relative number density profiles for the three flame sequences are shown in Figures

5.22 to 5.24. The relative number density profiles of the A-IA sequence of flames are

shown in Figure 5.22. As the equivalence ratio within the A-IA flame sequence increases,

the number density peaks at a lower height and then declines so that the number density

at a given height well above the burner decreases with increasing equivalence ratio. The

decline in number density following the peak appears to have a similar slope for all the

flames.

To show the effect of the argon-ion laser-induced fluorescence on the number

density profile, the profiles calculated from the scattering coefficient with and without the

fluorescence background subtracted are compared in Figure 5.22. The peaks in the

number density profile can be underestimated, if the fluorescence is not accounted for

properly. The magnitude of this underestimation decreases as the equivalence ratio

increases. The peak number densities should be considered with caution because the

number density is inversely proportional to the particle scattering coefficient, and the

peak number densities occur in a region where the particle scattering coefficient is small

relative to the molecular scattering background. Small errors in subtracting the estimated

molecular scattering coefficient background can thus produce large errors in the

calculated number density.

The relative number density profiles of the flames with the same equivalence ratio

from each flame sequence are compared in Figures 5.23 and 5.24. The decline in number

density again appears to have a similar shape for both the -$3 (_p= 2.02) and -$4

(_ = 2.17) flames. The decline in number density in the -$2 (_ = 1.92) flames is not as

well resolved because the scattering coefficient does not increase until above a height of
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~ 12 to 15 ram. The relative number density profiles of both the A-IB and the A-IIA

flames peak and decline at a lower height above the burner than the A-IA flames. The

decline in the relative number density profiles of the A-IB-S3 and A-IIA-S3 flames

overlay each other. The trends of the A-IB-S2 and A-fiA-S2 flames suggest that they may

also overlay each other. The argon-ion laser-induced fluorescence was not measured in

either the A-IB or A-IIA flames; thus the peak number densities may not be a true measure

of the peak particle number density. The uncorrected peak number densities of the A-IA

and A-IB flames are approximately the same, while those of the A-IIA flames are almost

a factor of two lower.

Figures 5.25 and 5.26 show the relative particle diameter profiles of the flame

sequences. The relative particle diameter profiles of the A-IA flames are shown in

Figure 5.25, which also includes the profile of the A-IB-S4 flame to compare with that of

the A-IA-S4 flame. The relative particle diameter profiles appear to remain flat at a

particle diameter of ~ 2.2 nm until the height at which the particle diameter begins to

increase linearly. The flat section of the profile is an artifact of the resolution of both the

extinction coefficient and the particle scattering coefficient. Smaller particle diameters

are observed with the fluorescence background correction because of a reduction in the

scattering coefficient.

Within a flame sequence, the final particle diameter increases with increasing

equivalence ratio. The relative particle diameters also appear to increase linearly with

height, a trend which is observed in all three flame sequences. Comparing the relative

particle diameter profiles of flames at the same equivalence ratio (Fig. 5.26) indicates that

the final particle diameter increases in the order, A-IA, A-HA, A-IB, for both the -$2 and

-$3 flames.

Since the factors relating the mean particle diameter, do, to the relative particle

diameter, d[3 in Table 5.2 are on the order of 1 or less, the relative particle diameter

212



35

30

25

i 20
ii

a

i

O
gl

15
13.

(D
>

"_ 10
rr

5

I

I

I

I

I

I

i

!

0

0 5 10 15 20 25

Height above Burner (mm)

Figure 5.25 Relative particle diameter profiles of the A-IA flame sequence. The solid
symbols represent the profiles that have been corrected for the fluorescence
background.

213



10

E
_" 8

v

I,,--

(9

E 6m
.m

ea
(9
O

4

a.
(9
.>

2
(9

rr

0

(.)
A-IA-S2

.... • .... A-IA-S2-Q_
A-IIA-$2 "
A-IB-S2

.i

3O

(b)
A-IA-S3

.... • .... A-IA-S3-Q;
A-IrA-S3J

•----B----- A-B-S3

0
0 5 10 15 20 25

Height above Burner (mm)

Figure 5.26 a) Comparison of the relative particle diameter profiles measured in the -$2
(0 = 1.92) flame of the three flame sequences, b) Comparison of the
relative particle diameter profiles measured in the -$3 (0 = 2.02) flame of
the three flame sequences.

214



represents an upper bound on the mean particle size. The particle diameters measured

here fall below the Rayleigh limit of do < 47 nm defined by the relation, ot = 2r,do/'g < 0.3

(D'Alessio, 1981). Thus, the assumptions of Rayleigh mattering are valid for the

mattering-extinction measurements in these flames.

5.3.3 Implications of the Detection Limits

Although the mattering and extinction coefficient profiles due to the soot could not

be measured in the atmospheric sooting flames near the critical equivalence ratio, an

upper bound on the soot volume fraction and number density within these flames can be

estimated from the detection limits of the experimental apparatus. Similarly, since the

extinction coefficient profile could not be detected in the 80-torr sooting flames, we can

estimate an upper bound for their volume fractions. As the mattering coefficient profile

due to the particles was measured in the 80-torr flames, we can also infer an upper bound

on their number density profiles.

The analysis to determine the detection limits for both the mattering and extinction

coefficients is presented in Appendix B. The detection limit for the extinction coefficient

was the same for both the atmospheric-pressure and the 80-torr flames. This detection

limit can be used to estimate an upper bound on the soot volume fraction present in those

sooting flames for which the extinction coefficient could not be measured.

The upper bounds on the volume fraction are listed in Table 5.3 for three values of

the index of refraction. The index of refraction of Dobbins, Santoro, and Semerjian

(1990) gives a conservative estimate of the volume fraction, which is likely to be

appropriate for a small degree of agglomeration. The limits on the volume fraction using

the refractive index value of Dalzell and Sarofim (1969) can be compared with results

from other studies which used that value. The index of refraction from Habib and

Vervisch (1988) was measured for soot with a higher hydrogen content and may be more

appropriate for defining the upper bounds during the early stages of soot formation.
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The upper bounds on the volume fraction imply an upper bound on the particle

number density for particles of a given diameter. The upper bounds on the number

density arc listed in Table 5.3 for three panicle diameters assuming a monodispcrse size

distribution and three refractive indices. The assumption of a self-preserving size

distribution reduces these calculated number densities by a factor of - 2. If incipient

particles have a 2-nm diameter, then an upper bound can b¢ placed on the number of

incipient particles formed when the extinction coefficient falls below the detection limit.

The detection limit for the scattering coefficient implies an upper bound on the

product of the number density and the sixth power of the particle diameter. Thus, for a

given particle diameter, the scattering coefficient detection limit implies an upper bound

on the number density of the panicles. Tables 5.4 and 5.5 list the scattering coefficient

detection limits for both the atmospheric and 80-torr flames and the resulting upper

bounds on the number densities for three particle diameters. The detection limit for the

scattering coefficient at 80 ton" was about half that at atmospheric pressure. We again

assume a monodisperse particle size distribution and employ the same refractive indices

as used in the extinction coefficient evaluation.

The detection limit for the number density based on the scattering coefficient is the

same order of magnitude as that based on the extinction coefficient for 2-nm panicles

(incipient particles), but the detection limit based on the scattering coefficient improves

by two orders of magnitude over that based on the extinction coefficient for 10-nm

particles. This decrease in the number density detection limit for the scattering coefficient

is the reason why the scattering coefficient could be detected while the extinction

coefficient could not for the 80-tort sooting flames.

The particle scattering coefficient profiles for the sooting 80-tort flames can be used

to calculate relative number density profiles that define upper bounds on the relative

number density profiles of these flames. These relative number density profiles were
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Table 5.3 Estimates of the volume fraction and number density detection limits based
on the extinction coefficient detection limit.

Index of refraction 2.10 - i.0.55 1.57 - i.0.56 1.46 - i.0.27

Extinction coefficient, K,_, (cm 1) 1.8x104 1.8x104 1.8x104

Relative volume fraction, f,_ 4.7x10 _° 4.7x10 -1° 4.7x10 1°

Volume fraction, fv 2.9× 10 9 1.8× 10.9 3.4x 10.9

Particle number density (cm 3)

Np(do = 1 rim) 5.5x1012 3.4×1012 6.4x1012

Np(do = 2 nm) 6.8× I0 n 4.3xI0 n 8.0× 1011

5.5x109 3.4×109 6.4x109Np(do = 10 nm)
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Table 5.4 Estimates of the particle number density detection limits based on the

scattering coefficient detection limit for the atmospheric-pressure flames.

Scattering Coefficient 4.2x10 n cm_.sr _

i

Index of refraction 2.10 - i.0.55 1.57 - i.0.56 1.46 - i.0.27

Number Density (cm a)

No(d o = 1 nm) 2.8x10 la 4.5x10 _3 9.6x1013

Np(do = 2 nm) 4.3x1011 7.0x10 n 1.5x1012

Ne(d o = 10 nm) 2.8x107 4.5×107 9.6x107

Table 5.5 Estimates of the particle number density detection limits based on the

scattering coefficient detection limit for the 80-torr flames.

Scattering Coefficient 1.9× 10H cm_.sr _

Index of refraction 2.10 - i.0.55 1.57 - i.0.56 1.46 - i-0.27

Number Density (cm 3)

No(do = 1 nm) 1.3x1013 2.1×1013 4.3x1013

Np(do = 2 rim) 2.0x10 H 3.2x10 _l 6.8x10 'l

No(d o = 10 rim) 1.3x107 2.0×107 4.3x107
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calculated from the scattering coefficient profile using Eq. (5.3.4) by assuming a constant

extinction coefficient profile at the detection limit, K_,, = 1.8x104 cm _. These relative

number density profiles for the five sooting 80-torr flames are shown in Figure 5.27.

These profiles can serve to identify the relative trends in soot formation for these flames.

These profiles exhibit similar trends to those of the atmospheric-pressure flames. As the

equivalence ratio increases, the decline in the number density moves closer to the burner

surface indicating that the location of particle inception moves closer to the burner

surface.

5.3.4 Comoarison of Fluorescence and Extinction Coefficients

The argon-ion laser-induced fluorescence coefficient was compared to the

extinction coefficient profiles for both the A-IA-S2 (_ = 1.92) and the A-IA-S3 (_ = 2.02)

flames, the only two flames for which both the fluorescence was measured and a

measurable particle extinction coefficient was observed. The correlation between the

fluorescence and extinction coefficients was investigated by plotting the fluorescence

coefficient detected at 503 nm against the extinction coefficient at the same height for the

A-IA-S2 and A-IA-S3 flames and then fitting the curves with a linear least squares curve

fit. The linear relationship between the fluorescence coefficient and the extinction

coefficient is shown in Figure 5.28 for both flames. The linear curve fit for the A-IA-S2

flame is given by

Q/(ko = 488nm, k = 503nm)- _(z) = 0.199-K,.,,,(z) (5.3.7)

and that for the A-IA-S3 flame is given by

Qs(ko = 488nm, _, = 503nm) • AL(z) = 0.141-K_,(z) (5.3.8)

The linear relationship also holds between the fluorescence coefficient detected at 473 nm

and the extinction coefficient; however, the slopes in this case are half those for the

fluorescence detected at 503 nm. A correlation could not be established between

219



10 3

10 2

%

m

ID
rr

10-_

10-2!,,,, I,,,,I,,,,I,,,,i,,,, I,,,,I,,

0 10 20 30 40 50 60

Height above Burner (mm)

Figure 5.27 Relative number density profiles representing the upper bounds on the
number density profiles of the 80-torr sooting flames.

220



mk, .

03

¢,3
O_

I

O

V

e-

.o
::1:::

0
c)
(P
0
t-"
(1)
0

0

LL.

6

5

4

3

2

1

0

I

i

l

l

i

i

i

1

i

m

1

l

i

i

i

l

1

i

i

,,,,I,,,,l,,,ll, I I

_7

I

l

m

I

I

i

m

I

i

i

I

10 20 30 40

Extinction Coefficient (10 -4 cm 1)

Figure 5.28 Fluorescence coefficient detected at 503 nm vs. the extinction coefficient
for the A-IA-S2 and A-IA-S3 flames. The linear curve fit for the A-IA-S2

flame was Qj(Zo = 488 nm, % = 503 nm)(z) = 0.199-K,.,(z) and for the
A-IA-S3 flame, Q/(go = 488 nm, % = 503 nm)(z) = 0.141.K=o(z).

221



thefluorescence coefficient and the extinction coefficient for the A-IA-S 1 flame because

the extinction coefficient remained below the detection limit throughout the measured

range in the flame.

If we assume the linear correlation between the fluorescence coefficient and the

extinction coefficient remains valid for the regions of the flame where the extinction

coefficient can not be detected, then we can extrapolate the extinction coefficient profile

into this region based on the fluorescence coefficient profile. The detection limit for this

extrapolated extinction coefficient can then be based on the detection limit for the

fluorescence coefficient, which we estimate conservatively at QI.A_, = 1.0xlff H cmLsr "_

(Appendix B). Hence, for the A-IA-S2 flame, the detection limit for the extinction

coefficient would be K,._, > 5.0x10 6 cm "1and for the A-IA-S3 flame, K,_ > 7.1x10 6 cm _.

These limits would correspond to an equivalent decrease in the transmittance of 0.0028%

and 0.0040%. Thus, the linear correlation between the fluorescence and extinction

coefficient allows the possibility of increasing the sensitivity of the extinction coefficient

by over an order of magnitude. Because the relationship between the extinction

coefficient and the fluorescence coefficient changes with equivalence ratio, we cannot

extrapolate these results to the A-IA-S 1 flame.

5.3.5 Temoerature Prof'des

The temperature profiles of the atmospheric-pressure flames were determined from

their scattering coefficient profiles. The theory relating the temperature to the molecular

scattering coefficient and the method to estimate the temperature profile are described in

Appendix C.

The determination of the temperature profile was an iterative procedure in which a

predicted scattering coefficient profile from the solution of the Sandia flame code was

matched to the measured scattering coefficient profile. The match between the predicted

and measured scattering coefficient profiles was sensitive to a variation of + 15 K in the
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estimated temperature. The method was thus very precise but its accuracy was not

checked by a comparison with another thermometric method. The accuracy depends on

how well the flame code and reaction mechanism model the actual molar composition

profile of the flame and also on the accuracy of the differential scattering cross-sections

of the major gas species. Since the reaction mechanism is most accurate in predicting the

major combustion gas products that comprise nearly all of the scattering cross-section, the

estimated temperatures are expected to be reasonably accurate and thus relative

comparisons between flame temperatures should be valid.

This thermometric method only works when the scattering coefficient is that caused

by the flame gases. Contributions from either particle scattering or fluorescence will

decrease the apparent temperature determined from the scattering coefficient. Thus, this

method is only valid for determining the temperature profiles for the nonsooting flames

and for nonsooting regions of the sooting flames, which is usually sufficient to resolve the

maximum in the temperature profile. The effect of particle scattering on the temperature

profile causes a rapid decline following the peak of the temperature profile in the more

heavily sooting flames.

The temperature profiles of the atmospheric-pressure flames are shown in Figures

5.29 to 5.31. The peak temperatures of the estimated profiles are listed in Table 5.6. For

comparison, the peak temperatures determined from the solution of the energy

conservation equation by the Sandia flame code for both the Drake and Blint (1991)

reaction mechanism and the Miller and Melius (1992) reaction mechanism are included

in Table 5.6 along with the adiabatic flame temperatures calculated with the NASA

equilibrium code (Gordon and McBride, 1971).

A comparison of the peak temperatures of the A-UA flames with the A-IA flames

shows that increasing the cold flow velocity while keeping the dilution ratio constant

increases the peak temperature. The A-IIA flames are 22 to 65 K hotter than the A-IA
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Table 5.6 Estimated peak temperatures, flame code energy-equation temperatures,

and adiabatic flame temperatures for the atmospheric-pressure flames.

Temperature (K)

Flame Estimated Peak

Energy Equation solution

Drake & Blint Miller & Melius Adiabatic

A-IA-R2 1617 1610 1604 2019

A-IA-S1 1554 1616 1603 1938

A-IA-S2 1550 1614 1598 1860

A-IA-S3 1505 1612 1593 1811

A-IA-S4 1472 1602 1578 1738

A-IA-S5 1430 1595 1572 1669

A-IB-C 1622 1646 1637 2206

A-IB-S2 1567 1636 1621 1998

A-IB-S3 1553 1634 1613 1941

A-IB-S4 1521 1627 1603 1863

A-HA-R2 1639 1656 1650 1993

A-HA-S1 1619 1665 1655 1911

A-HA-S2 1585 1667 1651 1839

A-HA-S3 1559 1665 1647 1790
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flames at the same equivalence ratio. Decreasing the dilution ratio while keeping the cold

flow velocity constant also increases the peak temperature. The peak temperatures of the

A-IB-S3 and A-IB-S4 flames are ~ 50 K hotter than the A-IA-S3 and A-IA-S4 flames,

while the peak of the A-IB-S2 flame is only 17 K greater than the A-IA-S2 flame.

The relative trends in the peak temperatures among the flame sequences are

reflected in the peak temperatures obtained by solving the energy equation with the flame

code. However, the peak temperatures of the flames within a sequence determined from

the flame code decrease only slightly (or not at all in the case of the A-HA flames) with

equivalence ratio. In contrast, the estimated peak temperatures decrease on the order of

100 K over the range of equivalence ratios. A related effect is that the peak temperatures

of the nonsooting flames are within 25 K of the flame code solution, while those of the

lightly sooting flames differ by 50 K. These temperature differences are caused by the

fact that the increased radiative heat loss from the soot is not modelled in the energy

equation of the Sandia flame code. Thus, only the nonsooting flames will be well

approximated by the energy equation solutions obtained from the flame code.

We measured the scattering and extinction coefficient profiles of the

atmospheric-pressure and the 80-torr flames to provide a wide range of sooting

conditions. Our intention was to develop a unique data set that can be used to test

predictions of soot formation models, including the amount of soot formed and the

transition from nonsooting to sooting flames. The experimental data were obtained by

measuring the scattering and extinction coefficient profiles of a rich nonsooting flame and

of a related sequence of sooting flames so that the critical equivalence ratio was bracketed

by a narrow range of equivalence ratios. The critical equivalence ratio is defined as that

for which the yellow emission from soot f'u_t becomes visible as the equivalence ratio is

increased from nonsooting conditions.
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5.4.1 Near-Critical Equivalence Ratio Flame,_

The yellow emission of soot was visible in the A-IA-S 1, A-m-C, and A-HA-S 1

flames. The A-IB-C (0 = 1.67) and the A-IIA-S 1 (0 = 1.78) flames were at or near the

critical equivalence ratio for their flame sequences, while the equivalence ratio for the

A-IA-S1 (0 = 1.78) flame was somewhat greater than the critical value for its flame

sequence (_c ~ 1.70). The extinction coefficient profiles for these flames showed no

evidence of particle extinction that was greater than the detection limit of

K_-- 1.8x104 cm _. The scattering coefficient profiles of the A-IA-S 1 and A-RA-S 1

flames were essentially equivalent to the molecular scattering coefficient profiles of their

associated nonsooting flames. A nonsooting reference flame was not measured for the

A-IB-C flame; however, its profile was nearly the same as the nonsooting profile for the

A-IA-R2 and the A-IIA-R2 flames. Thus, while the yellow emission attributed to soot

was visible within these flames, the scattering and extinction coefficient measurements

did not show the presence of soot.

The scattering and extinction coefficient measurements do begin to show the

presence of soot when the equivalence ratio is incremented about AO~0.14 to

approximately _ = 1.92 for the three atmospheric flame sequences. Based on this

behavior, we can crudely estimate that the scattering-extinction measurements can

resolve the critical equivalence ratio to within AO ~ 0.14.

The behavior of the scattering coefficient profiles for the 80-torr flames about the

critical equivalence ratio is similar to that of the atmospheric-pressure flames. The

critical equivalence ratio was not measured for these flames, but it was bracketed by the

nonsooting R2 (0 = 2.17) and the visibly sooting S1 flames (0 = 2.32). The scattering

coefficient profile of the L-II-S 1 flame showed no significant difference from that of its

associated nonsooting flame except for an overall increase in the scattering coefficient
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that may be attributed to a decrease in temperature. However, the L-I-S 1 flame did show

the presence of particle scattering when compared with the profile of the nonsooting

flame.

The detection limits for both the scattering and extinction coefficients define an

upper bound on the volume fraction and number density that may be present in the

atmospheric flames near the critical equivalence ratio. The detection limit for the

extinction coefficient defines the upper bound on the soot volume fraction to befv < 1.8

to 3.4×10 .9 cm 3 soot.era "3gas for typical values of the index of refraction. If we define an

incipient particle to be 2 nm in diameter, then the upper bound on the number density

defined by the extinction coefficient is Np(do = 2 rim) < 4.3 to 8.0×10 m_cm "3. The upper

bound on the number density of 2-nm particles defined by the detection limit for the

particle scattering coefficient is of the same magnitude. However, the scattering

coefficient is much more sensitive to larger particles, so that the upper bound on the

number density falls to Np(do = 10 nm) ~ 2.8 to 9.6×10 _ cm 3 for 10-nm diameter particles.

The 80-torr flames provide an example of this sensitivity. Although the number densities

in the 80-tort flames are insufficient to cause measurable extinction, the particle diameters

grow and can eventually be detected because of their increased scattering coefficient.

Thus, the absence of a measurable scattering coefficient implies that the particle

diameters remain too small for significant signal detection.

A possible reason that both the extinction and scattering could not be detected is that

the yellow emission is not caused by soot, but by other species. B6hm et al. (1988)

rejected this argument and attributed the yellow emission to a carbonaceous aerosol based

on their observations of the depolarization ratio and their measurements of PAH

concentrations in flames near the critical equivalence ratio. They suggest that the index

of refraction may differ for soot in near-_c flames because of its higher hydrogen content.

Habib and Vervisch (1988) note that the increase in the H/C ratio of the soot will reduce
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the imaginary component of the index of refraction and thus the volume fraction may be

underestimated, if a typical index of refraction is assumed. Thus, the upper bounds of

fv < 3.4×109 cm 3 soot-cm "3gas and Np(do = 2 nm) < 8.0x10 II cm "3 may be more

appropriate for our near-_bc flames. Because the measured extinction at 488 nm will also

include absorption from large hydrocarbons that may be precursors to soot (Weiner and

Harris, 1989), the concentrations of these species probably do not become large enough

to cause a measurable extinction.

The critical equivalence ratio, since it is defined as the equivalence ratio where the

yellow emission of soot In'st becomes visible, is based on a luminosity threshold that

depends on the response of the human eye (Janssen, 1991). Based on our

scattering-extinction measurements for these flames, the visibility of the emission is

more sensitive to the presence of soot than either the extinction coefficient or the

scattering coefficient. However, the luminosity will be a function of both the soot volume

fraction and the temperature (Janssen, 1991). Bthm et al. (1988) note that the volume

fraction varies by a factor of 40 to produce the same luminosity at both 1400 K and

1900 K. Janssen (1991) determined that the volume fraction at the visible threshold was

a function of T 11. Thus, the volume fraction of soot present in flames at the critical

equivalence ratio may differ depending on flame conditions and perhaps also on the

person judging the visibility. A more appropriate definition of the critical equivalence

ratio may be that equivalence ratio that produces a given volume fraction. Such a

definition would be more appropriate for comparison with chemical kinetic models which

predict species concentrations and are being adapted to model soot formation (Frenklach

and Wang, 1990).

Since we can observe yellow emission in the near-_c flames, an emission

measurement at a visible wavelength could also be used as a more objective measurement

of the critical equivalence ratio. In addition, a measurement of the emission spectrum in
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the region of visible yellow emission may identify whether the emission has the structure

of blackbody emission or has a more defined structure which might suggest a specific

species or combination of species. An additional suggested experiment would be to use

probe sampling to determine the nature of particles in these flames or whether such

particles are even present.

5.4.2 Ar_on-ion Lair-induced Fluorescence

Argon-ion laser-induced fluorescence is a more sensitive measure of the critical

equivalence ratio in the atmospheric-pressure flames than either the scattering or the

extinction measurements. The detectability of the fluorescence coincided with the visible

yellow emission in the A-IA-SI, A-IA-S2, and the A-IA-S3 flames and also with the

yellow emission in a flame adjusted to be at the critical equivalence ratio (A-IA-C). This

behavior with respect to the critical equivalence ratio is similar to that observed by

Haynes, Jander, and Wagner (1980). They were not able to detect fluorescence in their

nonsooting flat premixed benzene and ethylene flames. Our fluorescence spectra

(Fig. 5.16) are similar to those observed by Haynes, Jander, and Wagner (1980),

Miiller-Dethlefs (1979), and Miller, Mallard, and Smyth (1982).

The argnn-ion laser-induced fluorescence is thought to be caused by two to four-ring

PAH species (Miller, Mallard, and Smyth, 1982), although the primary species may be

acenaphthylene (Coe and Steinfeld, 1980; Coe, Haynes, and Steinfeld, 1981; Beretta

et al., 1985). Thus, the fluorescence profile is a relative measure of the formation of these

PAH species in the flames. The fluorescing species are also thought to be those species

which are responsible for gas-phase absorption at 488 nm (Haynes, Jander, and Wagner,

1980; Milller-Dethlefs, 1979). Both Haynes and Wagner (1980) and MUller-Dethlefs

(1979) measured a linear correlation between the fluorescence excited at 488 nm and the

absorption in nonsooting regions of diffusion flames.
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We observe a linear correlation between the fluorescence coefficient and the

extinction coefficient throughout the measured 20-mm range in the A-IA-S2 and A-IA-S3

flames. The slope of the linear least-squares curve fit is lower for the A-IA-S3 flame than

for the A-IA-S2 flame. Since the extinction in these flames will contain contributions

from both soot and gas-phase absorbing species, if we assume that the absorbing and

fluorescing species are the same and have a constant quantum yield for fluorescence, then

the difference in slopes for these two flames would imply different relative proportions of

soot and gaseous species. In this case, the soot concenlration relative to the

absorbing-fluorescing species concentration in the A-IA-S3 flame is larger than in the

A-IA-S2 flame.

The linearity of the fluorescence coefficient vs. the extinction coefficient throughout

the measured height range suggests that the number density of the fluorescing species

grows in proportion to the soot volume fraction (see Eq. 5.3.1). Hence, the linear

relationship between the fluorescence and extinction coefficients implies a similarity

between the surface growth rate and the increase in the number density of the fluorescing

species. This is not a surprising result, if the fluorescing species are PAils, because the

proposed growth mechanism for PAHs (Frenklach et al., 1986; discussed in Section 2.5.2)

and for soot particles (Frenldach and Wang, 1990; discussed in Section 2.4) is similar.

Both involve addition of acetylene to a radical site possibly created by abstraction via a

hydrogen atom. The growth of the fluorescing species may then provide an indirect

measure of the surface growth rate of the particles and may indicate the chemical

environment for surface growth. The presence of the fluorescing species at the critical

equivalence ratio may thus be related to the growth process required to form the f'L_St

particles and to the volume fraction of soot that produces the visible yellow emission.

These observations on the association between the fluorescence and extinction

coefficients are revelatory and further investigations should be made to check the linear
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relationship over a wider range of flame conditions. The extinction coefficient due to

only soot particles should be determined by measuring the extinction at a longer

wavelength where the gas-phase species are less likely to absorb. A more direct

relationship could then be made between the fluorescing species and the extinction

coefficient due to soot particles.

As an aside, the linear relationship between the fluorescence and the extinction

coefficient may provide the basis for an accurate measurement of the extinction

pathlength, which otherwise would be difficult to determine in a lightly sooting flame. A

horizontal profile of the fluorescence along the path of the laser through the flame would

identify the relative extinction coefficient profile along the laser path. The relative

extinction coefficient profile could then be integrated to calculate an effective pathlength

using the method used by Lucht, Sweeney, and Laurendeau (1985) to determine the

effective pathlength for OH absorption.

5.4.3 Sootimz Flames

We continued the measurements of the scattering and extinction coefficient profiles

to quantify the behavior of the sooting flames as the conditions changed from lightly

sooting to more heavily sooting flames. At atmospheric pressure, the equivalence ratios

were incremented in the order _ = 1.92, _b= 2.02, _ = 2.17 (and _ = 2.32 for the A-IA

sequence), while keeping the dilution ratio and cold flow velocity constant for each

sequence. Within these sequences, the peak temperature declined with increasing

equivalence ratio. The declining temperature complicates comparisons among flames

within a sequence, because of the strong temperature dependence of soot formation. A

more desirable approach might be to keep the maximum temperature constant while

varying the equivalence ratio. However, this would have been difficult, because we did

not have direct control over the flame temperature. We only have direct control over the

fuel, oxygen, and nitrogen flow rates and are limited to the range of flow rates that
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produce stable flat flames on our burner. However, we can make comparisons among

flames at the same equivalence ratio to see the effects of temperature and dilution on soot

formation. The variation in cold flow velocity between the A-IA and A-nA sequences,

while keeping the dilution ratio approximately constant, allows a comparison to be made

between flames with a similar composition, but with different peak temperatures. The

variation in dilution between the A-IA and A-IB sequences, while keeping the cold flow

velocity approximately constant, allows a comparison to be made between flames with

different compositions.

At 80 ton', the equivalence ratios were incremented from the near-_c flames at

O?= 2.32 to more heavily sooting conditions at _ = 2.46 and _ = 2.60. The difference in

cold flow velocity between the L-I and L-II sequences provides a comparison between

flames with similar compositions, but different peak temperatures.

The relative volume fraction profiles of the atmospheric sooting flames (Figs. 5.20

and 5.21) provide a basis for comparing the relative quantities of soot formed at different

flame conditions. In all three flame sequences, the volume fraction at a given height

increases with equivalence ratio. The temperature decrease with increasing equivalence

ratio will also affect the volume fraction, since decreasing temperature will increase the

final soot yield (Haynes and Wagner, 1982; Bockhom et al., 1984).

The relative volume fraction profiles increase linearly with height over much of the

20-mm measured range above the burner. This continued growth in the volume fraction

differs from the results of Haynes and Wagner (1982) who observe a decline in the growth

rate as the volume fraction approaches a final volume fraction in their ethylene/air flames.

However, Bengtsson and Alden (1991) report volume fraction profiles that remain linear

over a 15-ram range for C2H4/O2/N2 flames similar to ours on a porous plug burner.

Bthm et al. (1988) note that at lower temperatures (below 1600 K) the volume fraction

approaches the final volume fraction further above the burner surface. The continued
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growth of the volume fraction in our flames is consistent with the inverse temperature

dependence of the time constant for surface growth (Eq. 2.7; Dasch, 1985; Harris, 1990).

The peak temperatures in our flames are about 100 K to 200 K less than those in the

flames of Haynes and Wagner (1982). Thus, our volume fraction profiles may not curve

over until a height beyond 20 mm above the burner.

The relative volume fraction profiles assume a constant index of refraction

throughout the profile and among profiles. The effect of any variation in the refractive

index throughout a flame would be to change the shape of the profile. If the imaginary

component of the index of refraction is reduced in the early stages of soot formation

because of the higher hydrogen content of the soot (Habib and Vervisch, 1988), then the

profile would be increased near the burner surface relative to higher positions above the

burner.

The comparison between the volume fraction profiles of the A-IA and A-HA flames

shows primarily the effect of temperature on the profiles, since the molar composition of

the C2I-I4/0_/N2 mixtures are similar. The lower volume fractions in the A-IIA flames

result from the higher peak temperatures in these flames compared to the A-IA flames.

Again, this behavior is consistent with the observation that increasing temperature

strongly decreases soot yield (Haynes and Wagner, 1982; Bockhorn et al., 1984).

Similarly, the higher temperatures in the A-IIA flames may cause the slight decline in the

growth of the volume fraction observed above 15 mm, as the growth rate decays faster at

higher temperatures.

The comparison between the volume fraction profiles of the A-IA and A-IB flames

is not as straightforward because both the peak temperature and the mixture composition

are affected by the variation in dilution ratio. Although the peak temperatures are

somewhat higher in the A-IB flames than in the A-IA flames, the volume fractions are

also higher. This runs counter to the usual observation that increasing temperature
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decreases soot yield. However, the ethylene mole fraction in the A-IB flames is greater

than that in the A-IA flames because of the decreased dilution ratio of the A-IB flames.

The increase in ethylene concentration increases the pyrolysis rate, which is observed to

increase the volume fraction at a lower height than in the A-IA flames. The decline in the

growth rate above 15 mm in the A-IB-S3 flame relative to the A-IA-S3 flame may again

be caused by its higher temperature.

The relative number density profiles of the atmospheric-pressure flames (Figs. 5.22

to 5.24) provide a basis for comparing the number of particles formed in the flames and

also the relative locations of their formation. The slope of the number density profiles

following the peak number density is similar for those flames with _b> 2.02 and indicates

a similar coagulation rate. This behavior has been observed by other researchers (Haynes

and Wagner, 1982; Prado and Lahaye, 1981; Bockhom et al., 1984) in a variety of sooting

flame conditions. The change in panicle number density is predicted well by free

molecular coagulation theory and, for a large initial particle number density and long

residence times, the theory indicates that the number density is only a weak function of

the volume fraction and temperature (Prado et al., 1981). The behavior we observe is

consistent with that theory.

The peak number densities occur in a region where both the particle scattering and

extinction coefficients are small; thus the fluorescence and gas-phase absorption may

contribute errors that are magnified in the calculation of the number density. This effect

can be seen in our calculation of the number density with and without the fluorescence

correction for the A-IA flames. Although the peak number densities may be in error, the

increase in the uncorrected peak number density corresponds to the increase in the volume

fraction. This agrees with the hypothesis that the number of soot particles formed in the

inception zone (and thus the number of active sites for surface growth) determines the

final soot volume fraction (Harris, 1990).
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The errors due to fluorescence and gas-phase absorption are small relative to the

total extinction and scattering coefficients in the region of decreasing particle number

density and thus the decline can be more accurately measured than the peak. Within all

three flame sequences, the location of declining number density moves closer to the

burner surface as the equivalence ratio is increased. This implies that the peak of the

number density profile and the region of particle inception also move closer to the burner

surface with increasing equivalence ratio.

The comparison between the number density profiles of the A-IA and A-IIA flames

suggests that the increase in peak temperature at a fixed equivalence ratio moves the

particle inception region closer to the burner surface, as the decline in the number density

occurs at a lower height in the A-IIA flames than in the A-IA flames. The uncorrected

peak number densities are smaller in the A-IIA flames than in the A-IA flames and are

consistent with the smaller volume fractions in the A-HA flames. This relationship

between the peak number densities is likely to remain the same when corrected for the

fluorescence background because the smaller extinction coefficient in the A-IIA flames

implies a smaller fluorescence signal.

Similar to the A-IIA flames, the decline in the number density in the A-IB flames

occurs at a lower height than in the A-IA flames implying that the inception region also

occurs at a lower height. However, in this case, the effect may be caused by both the

increased temperature and by the greater ethylene concentration. The greater ethylene

concentration may have an effect similar to increasing the equivalence ratio which also

acts to move the particle inception region closer to the burner. The uncorrected peak

number densities of the A-IA and A-IB flames are of similar magnitude. However, the

fluorescence background might be expected to be larger for the A-IB flames since the

magnitude of their extinction coefficient profiles are larger.
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We can draw fewer conclusions about the behavior of the 80-torr sooting flames

because of a lack of extinction coefficient data. The lack of a measurable extinction

coefficient implies that the volume fraction remains small, below fv ~ 1.8 to 3.4x10 "9

cm _ soot.cm 3 gas, in all the flames. Thus, the relative quantities of soot formed cannot be

compared. The scattering coefficient profdes allow determination of an upper bound for

the number density profiles. Similar to the atmospheric-pressure flames, these can be

used to identify approximate regions for the location of particle inception. The trends

within the flame sequences are similar to the atmospheric flame sequences in that as the

equivalence ratio is increased the location of particle inception moves closer to the burner

surface.

Our detection limit of a 0.1% change in the transmittance is at the limit of prior

studies. Haynes, Jander, and Wagner (1980) reported that their absorption measurement

could resolve a 0.1% absorption using a tungsten strip lamp as the extinction light source.

In their case, the limit was defined by the stability of their light source. In our experiment,

the incident laser irradiance was monitored to account for any variations in the laser

irradiance with time. The resulting resolution in the transmittance has allowed us to use

the laser scattering-extinction method to investigate soot formation in flames at

equivalence ratios much closer to the critical equivalence ratio than those of previous

studies. The resolution in the transmittance also increases the resolution of the prof'de, so

that the location of soot formation can be more closely defined.

These particle number density and volume fraction profiles can be used as the basis

for testing models of soot formation. Global comparisons can be made between simpler

models and the trends in the volume fraction and number density profiles. For example,

detailed chemical kinetic models that predict the formation of single-ring aromatics

(Harris, Weiner, and Blint, 1988; Miller and Melius, 1992) could be examined quite easily

using our experimental data. Since the formation of these simple aromatics may be the
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bottleneck in soot formation, trends in the aromatic concentration profiles can be

compared with measured trends in soot volume fraction and with the location of the

panicle inception region. More direct comparisons can be made with the experimental

particle number density and volume fraction profiles using models such as that of

Frenldach and Wang (1990), which uses a detailed chemical kinetic scheme to model the

formation of PAHs and a global scheme to model the formation of particles and their

subsequent coagulation and growth. Both types of models can also be tested to see how

well they predict the transition from nonsooting to sooting flames.

We have used the laser scattering-extinction method to measure the scattering and

extinction coefficient profiles of sequences of atmospheric-pressure and 80-torr

C.2I'_/O2/N2 flames for equivalence ratios that span the transition from nonsooting to

sooting flames. Although the resolution of the extinction coefficient is high, equivalent

to an absorption of 0.1%, the extinction coefficient and also the scattering coefficient

profiles do not show evidence of panicle formation in flames at or near the critical

equivalence ratio.

The argon-ion laser-induced fluorescence correlates with the visible yellow

emission and may provide a more sensitive measure of the critical equivalence ratio than

the scattering and extinction measurements. The linear correlation between the

fluorescence and the extinction coefficient also offers a more sensitive measure of the

extinction coefficient and could provide further insight into the PAH and surface growth

mechanisms.

Scattering and extinction coefficient profiles caused by particles can be resolved in

the atmospheric-pressure flames at the higher equivalence ratios and these are used to

calculate relative volume fraction, number density, and particle diameter profiles. In the

80-tort flames, the scattering coefficient profiles are used to calculate upper bounds on the
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particle number density profiles. The trends in these profiles can be explained based on

our current understanding of soot formation. The trends in volume fraction and the

location of particle inccption can also be compared with the predictions of detailed

chemical kinetic models that model aromatic formation. More specific comparisons can

be made using combined detailed-global models that include particle formation and

evolution.
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CHAPTER6:

LASER-INDUCED FLUORESCENCE MEASUREMENTS OF
HYDROXYL RADICAL IN PREMIXED ETHYLENE FLAMES

gLIamatug.ti 

In this chapter, we report on the laser-induced fluorescence measurements of the

hydroxyl radical under near-sooting conditions in a sequence of atmospheric-pressure

C2H4/O2/N2 flames and a sequence of 80-torr C2H4/O2 flames. Vertical relative profiles

of the OH fluorescence were measured to observe the change in the OH concentration,

both within the flames and between flames as the equivalence ratio was varied from rich

nonsooting to sooting conditions near the critical equivalence ratio. In conjunction with

the measurements of soot formation in the same flames (Chapter 5), the OH fluorescence

profiles can serve as a test for detailed chemical kinetic models of soot formation and also

as a test for the assumptions of the global models for incipient soot formation.

In this chapter, we first identify the flame conditions and then briefly review the

theory and method of the measurements. The effects of quenching and the calibration

method are discussed. We then present and discuss the relative OH concentration profiles

for both the atmospheric and 80-torr flames.

6.2.1 Flame Conditions

The equivalence ratio, cold flow velocity (vc), and dilution ratio (t;'NJt;'o) for the

sequence of atmospheric flames and the sequence of 80-tort flames are listed in Table 6.1.

The three richest flames (-R2, -S 1, and -$2) of the atmospheric-pressure sequence were
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examined in the laser scattering-extinction experiments. A fourth flame (A-IA-R1) was

added to this sequence with the same cold flow velocity and dilution ratio to extend the

range of equivalence ratios farther to the lean side of the critical equivalence ratio. A lean

atmospheric-pressure flame (A-0-L) was also added for calibration of the OH

fluorescence measurements. For this flame, a higher cold flow velocity and dilution ratio

than that for the rich atmospheric flames were necessary to produce a stable flat flame

above the burner surface. The four 80-torr flames were also examined in the laser

scattering-extinction experiments.

From our laser scattering-extinction measurements and observations (Chapter 5),

we know that within the atmospheric flame sequence (A-IA) with cold flow velocity,

vc = 7.7 cm-sec t, and dilution ratio, D = 4.2, the critical equivalence ratio occurs at

0c = 1.70. The visible yellow emission attributed to soot was observed in the A-IA-S 1

(0 = 1.78) flame, but the presence of soot could not be detected by the scattering and

extinction measurements. However, an argon-ion laser-induced fluorescence profile was

measured that suggests that PAHs are present, although the extinction coefficient profile

remains below the detection limit. The richer A-IA-S2 (0 = 1.92) flame had measurable

scattering and extinction coefficient profiles and thus in this case volume fraction and

number density profiles could be determined for the soot particles.

At 80 ton', the critical equivalence ratio within the L-II sequence was bracketed by

the L-II-R2 (0 = 2.16) and the L-II-S1 (¢p= 2.32) flames. Similar to the visibly sooting

atmospheric flame A-IA-S1, the yellow emission from soot could be observed in the

L-II-S 1 flame, but the scattering and extinction coefficient measurements did not show

evidence of soot. A particle scattering coefficient profile, but not an extinction coefficient

profile, was measured in the L-II-S2 flame, indicating that soot particles were present, but

that their volume fraction was still small.
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Table6.1 Equivalence ratio, cold flow velocity, and dilution ratio for the flames used

in the OH measurements. Flames not duplicated in the scattering-extinction
measurements are marked with an asterisk.

Flame

Cold Flow

Equivalence Velocity,
Pressure Ratio (cm.sec") Dilution Ratio

A-0-L" 1 atm 0.97 8.86 5.42

A-IA-RI" 1 atm 1.49 7.73 4.15

A-IA-R2 1 atm 1.63 7.73 4.15

A-IA-S1 1 atm 1.78 7.73 4.16

A-IA-S2 1 atm 1.92 7.75 4.17

L-II-R1

L-II-R2

L-II-S 1

L-II-S2

80 torr 2.03 22.4 0.0

80 torr 2.16 22.4 0.0

80 torr 2.32 22.4 0.0

80 torr 2.46 22.4 0.0
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Temperature profiles for the A-IA-R2, A-IA-S1, and A-IA-S2 flames were

determined from the measured scattering coefficient profiles. Although temperature

profiles for the 80-tort flames might be determined from their measured scattering

coefficient profiles, we were not able to calculate such profiles due to difficulties in

modelling these flames in the region below the peak temperature.

6.2.2 l_¢view Qf Theory_ and Measurements

The OH fluorescence profiles were measured using the SPF(0,0) laser-induced

fluorescence method described by Laurendean and Goldsmith (1989). Specifically, the

Qm(8) transition in the (0,0) band of the A2Z- X2H system of OH was excited with the

UV output of a frequency-doubled Nd:YAG pumped dye laser. The OH fluorescence was

detected over a spectral range encompassing most of the (0,0) band and the fluorescence

signal was temporally integrated over the laser pulse. Broadband spectral and temporal

detection were used to increase the measured fluorescence signal over that obtained with

methods such as laser-saturated fluorescence which uses narrowband spectral and

temporal detection. The increased sensitivity was desirable because of the small OH

concentrations in these rich nonsooting and sooting flames. However, the sensitivity is

compromised to some extent by the increased background signal caused by Rayleigh

scattering, since the spectral detection bandwidth includes the laser excitation

wavelength. The theory for the laser-induced fluorescence measurements and the

SPF(0,0) method are reviewed in Section 3.3. The experimental apparatus, procedure,

and data analysis are described in Section 4.5.

The measured fluorescence voltage profiles were corrected for the Rayleigh

scattering background. The resulting fluorescence profiles, V/(_,z), are proportional to

the fluorescence emission profile, e_ (_,z) (W.cm3.sfl), through the relationship given by

Eq. (4.5.10) as
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VI( ¢, z) = TI_," %- tic" Vc- _(0, z) (6.2.1)

where TI_, and TIoare the electronic and optical efficiencies, _c (sr) is the solid collection

angle, and V# (cm 3) is the collection volume. The fluorescence emission for broadband

spectral and temporal detection is given by Eq. (3.3.9) as

a A flL(t) (6.2.2) fB= •[ •N,°. .dr

where ct (cm 2) is a constant that depends on the laser and fluorescence wavenumbers plus

the absorption cross-section, A and Q (sec a) are integrated rate coefficients for

spontaneous emission and quenching, N o (cm 3) is the ground state number density, and l_

(W.cm 2) is the incident laser irradiance as a function of time. By normalizing the profile

with respect to the fluorescence voltage measured in a reference or calibration flame with

the same optical and electronic setup, the dependence of the profiles on the optical

constants and efficiencies can be removed. The resulting expression for the ground state

number density profile is given by F_,q.(4.5.13) as

A A -l

Vi(¢,,,, z**t) (6.2.3)

where the subscript cai indicates the parameters for the location in the calibration flame.

The dependence on the laser irradiance was neglected by assuming that the temporal laser

irradiance remained the same between the calibration and measurement conditions. This

assumption is reasonable since the laser energy and pulse shape were observed to remain

constant over the period of the tests on a single day.

The relative fluorescence profiles measured in the atmospheric-pressure flames

were normalized to the fluorescence signal voltage measured on the same day in the

post-flame region of the lean flame (A-0-L, 0 = 0.97). The relative fluorescence profiles
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measured in the 80-torr flames were normalized to the fluorescence signal voltage

measured on the same day in the post-flame region of the leanest rich nonsooting flame

(L-II-R1, _ = 2.03).

The total number density, Nr (cm3), is determined from the initial number density

in the ground state, N °, from Eq. (3.3.11) as

N° (6.2.4)

where Fw is the Boltzmann fraction at the local flame temperature. We reduced the

sensitivity to temperature variation by exciting the Q1(8) transition, whose ground state

population varies by only +5% over the temperature range from 1000 to 2600 K (Drake

and Pitz, 1985). The sensitivity to temperature is further reduced by the small temperature

range (< 200 K) between the calibration conditions and the measured flame conditions.

The normalized fluorescence profiles given by Eq. (6.2.3) can represent relative OH

number density profiles if both the quenching variation within the profile and the

quenching variation between the calibration condition and the measured condition can be

accounted for or assumed constant. A subsequent determination of the number density in

the calibration flames can then be used to determine absolute number density profiles

from the relative number density profiles.

6.2.30uenching Calculations

Previous investigations that have measured the variation in quenching rate

coefficient for hydrocarbon flames (Stepowski and Cottereau, 1981; Anderson, Decker,

and Kotlar, 1982; Schwarzwald, Monkhouse, and Wolfrum, 1988; reviewed in Section

3.3.3) suggest that the quenching rate coefficient remains constant throughout the profile

of the flame and also between fames over a range of equivalence ratios. However, Drake

and Pitz (1985) note that the quenching rate coefficient varies significantly from lean to

rich conditions in H2/air diffusion flames. We investigated the validity of the assumption
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of a constant quenching rate coefficient by calculating the variation in the quenching rate

coefficient among the flames and also within the flames relative to the mean quenching

rate coefficient.

The variation in the quenching terms of Eq. (6.2.3) was evaluated by fh'st

recognizing that at atmospheric pressure, Q _ A (Eckbreth, 1988). Thus, we assume

QO, z) A A

where Q(_,z) represents the quenching rate coefficient for a given flame condition and

Q(_c_,zco_) represents the quenching rate coefficient at the calibration condition. The total

quenching rate coefficient can be calculated from (Garland and Crosley, 1986)

Q = E Nk. aQk" Vk (6.2.6)
k

where Nk (cm 3) is the number density of species k, CQk (cm 2) is the quenching

cross-section for species k, and vk (cm'sec l) is the relative velocity between species k and

the quenched species. To calculate the ratio of the quenching rate coefficients (Eq. 6.2.5),

we use the approach of Drake and Pitz (1985) and assume that the relative quenching rate

coefficient is proportional to

Q o_ k [, T J [,_ J "t_ek(T) (6.2.7)

where Xk is the mole fraction of species k, T is the temperature, and MWk is the molecular

weight of species k.

The quenching cross-sections of the species as a function of temperature, ffQk(T),

were evaluated from the data of Garland and Crosley (1986) for the temperature range

from 500 K to 2500 K for the species H2, N2, 02, H20, CO, CO2, and CH4. The

quenching cross-sections for the species C-.2H2, C2FL, and C2H6 measured at 1100 K
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(Smith and Crosley, 1986) were also included in the calculation, since these species are

present in rich flames. However, for our approximate calculations, no further temperature

corrections were made to the quenching cross-sections of these last three species.

To calculate approximate profiles of the relative quenching rate coefficient, we used

the temperature profiles and the molar composition profiles determined from the

modelling of these flames using the Sandia premixed one-dimensional flame code (Kee

et al., 1985) and the reaction mechanism of Miller and Melius (1992). The details of the

setup and solution procedure for the flame code are described in Section 4.6. The

application of the model of Miller and Melius (1992) to these flames is disussed in

Chapter 7.

Profiles of the relative quenching rate coefficient in the five atmospheric-pressure

flames were calculated for the height range from 1.0 mm to 20 mm. The variation in the

relative quenching rate coefficient over the profile was calculated by ratioing the

quenching rate coefficient profile to its mean value. The change in quenching rate

coefficient relative to the lean flame was calculated at the height at which the profiles

were normalized (5.0 mm) by using the ratio of the relative quenching rate coefficient in

the rich flame to that in the lean flame. These results are summarized in Table 6.2 for the

atmospheric-pressure flames.

Within a flame, the ratio of the quenching rate coefficient to the mean of the

quenching rate coefficient profile varies in the range from + 6% to - 3% for the four rich

atmospheric-pressure flames. Thus, we can assume that the quenching rate coefficient

remains approximately constant over the measured range of the profile and that the

profiles represent relative profiles of the OH number density. The relative quenching rate

coefficients of the rich flames are 28% to 40% higher than those in the lean flame. Thus,

if the relative number density profiles of the rich flames are to be calibrated based on the
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leanflame, then a quenching correction is necessary or the number density in the rich

flames will be underpredicted.

Profiles of the relative quenching rate coefficient in the 80-torr flames were

calculated for the height range from 1 mm to 30 mm. Since the temperature profiles for

these flames were not available, the molar composition profdes were obtained from the

flame code solution with the temperature profile based on the solution of the energy

conservation equation. Thus, only approximate comparisons can be made, as the

temperature profile from the energy-equation solution is thought to exceed the actual

temperature profile. Since a lean 80-tort flame was not investigated, the quenching rate

coefficients are compared to the L-II-R1 (0 = 2.03) flame.

The results of the quenching rate coefficients for the 80-torr flames are summarized

in Table 6.3. The variation of the quenching rate coefficient within the profile is much

larger than at atmospheric pressure. However, much of this variation occurs below 5 mm

above the burner, in the reaction zone and below, where the molar composition of the

flame is changing significandy. Above 5 mm, the variation in the quenching rate

coefficient falls in the range from +6% to -5% and the quenching rate coefficient can be

assumed to be constant in this range. The variation in the quenching rate coefficient

among the flames is small, less than 8% between the L-II-R1 (0 = 2.03) and L-II-S2

(0 = 2.46) flames. However, the actual variation is likely to be greater than that estimated

using the temperature from the solution of the energy equation because the actual

temperature difference between flames is likely to be larger due to the increased radiative

heat loss from the sooting flames.
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Table6.2 Summary of the quenching rate coefficient calculations for the

atmospheric-pressure flames.

Flame A-IA-R1 A-IA-R2 A-IA-S 1 A-IA-S2

Variation within profile

maximum 1.05

minimum 0.97

Variation relative to A-0-L

Q (_, 5.0mm)/Q (_ca_,5.0mm) 1.28

1.05 1.06 1.06

0.97 0.97 0.97

1.31 1.38 1.40

Table 6.3 Summary of the quenching rate coefficient calculations for the 80-torr

flames.

Flame

Variation within profile

a(t_,z)/Q(t_,z)

(1 mm to 30 mm)

maximum 1.60

minimum 0.87

variation within profile

(5 mm to 30 mm)

maximum 1.05

minimum 0.95

Variation relative to L-II-R1

Q (_, 10mm)/Q (_c_,, 10mm) --

L-II-R 1 L-II-R2 L-II-S 1 L-II-S2

1.69 1.75 1.81

0.89 0.89 0.89

1.06 1.05 1.05

0.96 0.97 0.97

1.02 1.05 1.08
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The relative OH number density profiles of the atmospheric-pressure flames were

calibrated based on a comparison of the OH fluorescence profiles of the A-0-L (_ = 0.97)

flame with the OH number density profile predicted using the Sandia premixed

one-dimensional flame code (Kee et al., 1985) and the reaction mechanism of Drake and

Blint (1991).

Since the temperature profile of the A-0-L flame was not measured, we used the

flame code solution obtained when the energy conservation equation was solved for the

temperature profile. The temperature profile obtained from the energy equation solution

is a good approximation to the actual temperature profile for atmospheric nonsooting

flames on this burner. Comparison of the energy equation temperature profile and the

estimated temperature profile from the scattering coefficient profile of the A-IA-R2

(_ = 1.63) flame showed agreement within 20 K over the region from about 2 to 7 mm

(Appendix C, Figure C.4). The difference between the profiles increased to 50 K at

15 ram. This agreement is within the accuracy that could be measured by a thermocouple.

The relative OH number density profiles of the A-0-L flame were matched to the

predicted OH number density profiles by ratioing the values over the region from 4.0 to

6.0 mm to obtain the calibration factor. Figure 6.1 shows a comparison of the relative OH

number density profiles with the predicted OH number density profile when the profiles

are matched in this way. The agreement between the profiles is good from about 3 mm

to 20 mm above the burner. The peak values differ because the actual temperature profile

peaks closer to the burner surface than the energy-equation temperature profile

(Appendix C). The peak values may also differ because the measured OH number density

represents a spatial average over the collection volume, while the flame code solution

gives the number density at a point.
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Figure 6.1 Compaxison of the normalized OH fluorescence profiles of the A-0-L

(_ = 0.97) flame with the OH number density profile predicted by the flame

code solution. The OH fluorescence profiles were matched to the predicted

OH number density profile over the region from 4.0 to 6.0 ram.
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The 80-tort flames were not calibrated because an OH fluorescence profile was not

measured in a lean 80-torr flame. A possible calibration method similar to the

atmospheric-pressure flames was investigated using the flame code energy equation

solution for the L-II-R1 (0 = 2.03) flame. However, comparison of the estimated

scattering coefficient profile from the flame code energy-equation solution and the

measured scattering coefficient profile showed that the estimated temperature was

significantly higher (> 100 K) than the flame temperature. Furthermore, the shapes of the

OH profiles also differed in the post-flame regions suggesting that the energy-equation

solution is not a good approximation for the temperature profiles of the 80-torr flames.

Thus, we abstained from calibrating the OH fluorescence profiles of the 80-torr flames.

6.2.5 OH Fluorescence Profiles

The OH number density profiles of the four rich atmospheric-pressure flames are

shown in Figure 6.2. The number densities shown are based on the calibration of the

number density in the A-0-L flame and the correction for the variation of the quenching

rate coefficient given in Table 6.2. A logarithmic scale is used to display the declining

region of the profiles and also the similarity in profile shapes. The OH number densities

for all four flames peak near 1 mm above the burner.

The relative OH fluorescence profiles of the four 80-torr flames are shown in

Figure 6.3. The profiles were normalized with respect to the fluorescence signal of the

L-II-R1 (_b= 2.03) flame at a height of 10 ram. A logarithmic scale is again used to show

the declining region of the profiles and also the similarity in profile shapes. The OH

fluorescence peaks in the region from 4 to 5 mm above the burner for all four flames.

For both the atmospheric-pressure and 80-torr flames, the peak fluorescence signal

or number density declines with increasing equivalence ratio. The ratio of the peak

heights for all flames to that of the leanest flame in each sequence for both the
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atmospheric-pressureand80-torrflames is listed in Table 6.4. The range in the relative

peaks of the OH fluorescence is about a factor of five for the atmospheric-pressure flames

and about a factor of two for the 80-torr flames.

The OH fluorescence profiles scale with the peak fluorescence signal. If the

fluorescence profiles are normalized to their maximum, then the profiles overlay each

other. This feature of the OH fluorescence profiles is shown in Figure 6.4, which shows

the normalized fluorescence profiles for the atmospheric-pressure flames, and in

Figure 6.5, which shows the normalized fluorescence profiles for the 80-tort flames.

Thus, the magnitude of the OH fluorescence decreases, but the overall shape of the profile

does not change significantly as the equivalence ratio is increased through the transition

to a sooting flame.

Table 6.4 Relative maxima of the fluorescence profiles for the rich atmospheric

flames and the 80-torr flames.

Relative

Flame Equivalence Ratio Maximum

A-IA-R1 1.49 1.000

A-IA-R2 1.63 0.545

A-IA-S 1 1.78 0.334

A-IA-S2 1.92 0.210

L-II-R1 2.03 1.000

L-II-R2 2.16 0.694

L-II-S1 2.32 0.531

L-II-S2 2.46 0.435

Maximum OH

Number Density
( 10t4 cm "3)

5.03

2.74

1.68

1.06
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We have measured relative OH fluorescence profiles in both atmospheric and

80-torr flames to measure the change in the OH number density profile as the transition

is made from a rich nonsooting flame to a sooting near-critical equivalence ratio flame

and then to a more heavily sooting flame. Since the variation in the quenching rate

coefficient is either small or can be accounted for, relative OH number density profiles

can be determined from the measured relative OH fluorescence profiles. Absolute OH

number density profiles were obtained for the atmospheric-pressure flames by calibration

with an atmospheric lean flame.

The peak OH number density declines with increasing equivalence ratio for both the

atmospheric and 80-torr flames. The declining number density is a function of decreasing

temperature as well as increasing equivalence ratio since the maximum temperature

declines with increasing equivalence ratio for these flames, while the cold flow velocity

and dilution ratio are held constant.

The relative OH number density profiles scale with the maximum OH number

density, so that the profiles have a similar shape. Thus, only the magnitude of the OH

number density profile, but not its shape or peak location, changes in the transition from

nonsooting to sooting flames. Lucht, Sweeney, and Laurendeau (1985) observed a

similar behavior for the OH number density profiles in the transition from nonsooting to

sooting CH4/O2/N2 flames.

The similarity of the OH number density profiles through the transition to sooting

implies that the mechanisms for the formation and destruction of OH do not change

significantly during that transition. In other words, the formation of higher molecular

weight hydrocarbons that accompanies the transition to a sooting flame does not open up

a significant new reaction pathway for removal of OH by reaction with these higher

molecular weight hydrocarbons. If such a path were to be present, we would expect the
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OHnumberdensitytodeclineatafasterrate.Instead,thesmoothchangein profile would

imply that the main flux of OH is through reactions with species whose behavior also does

not change significantly as the transition to sooting occurs. Smaller hydrocarbons such

as acetylene and methane are formed in rich nonsooting flames and their concentration

also changes smoothly in the transition to sooting (Harris and Weiner, 1983a; Harris et al.,

1986). The smooth change in the OH profiles would then suggest that the major reaction

pathways for OH involving hydrocarbons are with these smaller hydrocarbons.

The global model f'LrStproposed by Millikan (1962) hypothesized that incipient soot

formation is a balance between the rate of formation of soot precursors by fuel pyrolysis

and their rate of oxidation by OH. The supposed implication that OH primarily reacts

with smaller hydrocarbons such as acetylene would either imply that acetylene is a

precursor or that reactions of OH with acetylene or small hydrocarbons directly affects

soot formation. /anssen (1991) proposed that the precursor formation rate may depend

on the difference between the concentration of acetylene and OH, based on his analysis

of global models for incipient soot formation in hydrocarbon flames and halogenated

hydrocarbon flames. A key link between the acetylene concentration and the formation

of soot is to be expected because of its proposed role in the formation of aromatics

(Westmoreland et al., 1989), growth of PAHs (Frenklach et al., 1986), and the surface

growth of soot panicles (Harris and Weiner, 1983a; 1983b).

The identification of the main reaction pathways for OH, their relationship to the

smaller hydrocarbons, and how these may change in the transition to sooting conditions

may be accomplished through the application and analysis of detailed chemical kinetic

models that have been developed to model aromatic formation (Harris, Weiner, and Blint,

1988; Miller and Melius, 1992) or soot formation (Frenldach and Wang, 1990). The

relative OH number density profiles presented here provide a basis for verification of

detailed chemical kinetic models and for exploration of the mechanism over the range of
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equivalence ratios bracketing the critical equivalence ratio. These measurements are

unique in their examination of the range of equivalence ratios spanning the transition to

sooting for similar cold flow velocities and dilution ratios. They are also unique because

of their combination with scattering-extinction measurements of soot formation. Prior

OH concentration measurements in premixed flames have either been made in a few

select flame conditions or have not been accompanied with soot measurements (Bitmer

and Howard, 1981; 1982; Westmoreland, Howard, and Longwell, 1986; Bastin et al.,

1988; Millikan, 1962; Lucht, Sweeney, and Laurendeau, 1985; Harris, Weiner, and Blint,

1986).

A possible improvement to the design of the experiment would be to isolate the

effects of temperature and equivalence ratio on the OH number density profile.

Maintaining a constant maximum temperature while varying the equivalence ratio is

difficult, since the temperature can only be controlled indirectly through variation of the

flow rates. However, varying the temperature while holding equivalence ratio constant

can be accomplished by varying the total flow rate. This method was used in the laser

scattering-extinction measurements, i.e., the total flow rate was varied while dilution ratio

and equivalence ratio were kept constant for the comparison between the A-IA and A-IIA

sequences and between the L-II and L-I sequences. A logical extension to these

fluorescence measurements would be to include OH measurements of the L-I and A-IIA

flame sequences.

Several improvements are possible in the method for measuring OH number density

in these near-critical equivalence ratio flames. The detection limit for the OH

fluorescence could be lowered and the sensitivity improved in the sooting flames by

changing to a horizontally polarized incident UV beam to reduce the Rayleigh scattering

background by over a factor of 10. This improvement would be necessary before

extending these measurements to more heavily sooting flames where particle scattering

would become significant.
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An alternateapproachto improving the detection limit and removing the

interferencedue to Rayleighscatteringwould be to use the SPF(1,1) laser-induced

fluorescence method described by Laurendeau and Goldsmith (1989). In this method, the

excitation of the OH is in the (1,0) band at ~ 281 nm with broadband detection of the

fluorescence from the (1,1) band in the region of 312-326 nm. The separation of the

excitation and detection wavelengths would eliminate interferences from Rayleigh

scattering.

Calibration of the relative number density profile in the lean atmospheric-pressure

flame by a UV absorption method would provide a check on the estimated number density

determined from the flame code. A similar approach could be investigated using a lean

80-torr flame for calibration of the number density profile of the 80-torr flames.

We have measured relative OH number density profiles in a sequence of

atmospheric-pressure CaH4/O2/N2 flames and a sequence of 80-torr C_al-h/O2 flames. At

both pressures, the equivalence ratio was varied from nonsooting to sooting conditions to

examine the change in OH number density profile over this transition. The measured OH

number density profiles decline in magnitude, but retain their profile shape and location,

as the equivalence ratio is increased and the transition to sooting occurs. The similarity

of the profiles over this transition may imply that the role of Ott in soot formation is

primarily through reactions with smaller hydrocarbons such as acetylene. However, this

conjecture can only be investigated through detailed chemical kinetic models. The OH

number density profiles presented here in conjunction with the scattering-extinction

measurements for the same flames presented in Chapter 5 provide a unique set of

measurements for testing of detailed chemical kinetic models in the equivalence ratio

range bracketing the critical equivalence ratio.
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CHAPTER7:

CHEMICALKINETICMODELLINGOFPREMIXEDETHYLENEFLAMES

.LLlagadar, ii_

In this chapter, we provide results from a chemical kinetic modelling study based on

three sequences of atmospheric-pressure C2H4/O2/N2 flames in which the cold flow

velocity and dilution ratio were held constant, while the equivalence ratio was varied from

nonsooting through sooting conditions. The laser scattering-extinction measurements

presented in Chapter 5 identify both the location and amount of soot formed in these

flames. The same measurements also define upper bounds on the soot volume fraction

and number density for the near-critical equivalence ratio flames. In addition, the

argon-ion laser-induced fluorescence measurements provide a measure of the relative

PAH concentrations. The OH number density profiles described in Chapter 6 were

obtained using laser-induced fluorescence in four flames from one sequence of the

atmospheric-pressure C2H4/O2/N2 flames. These profiles indicate the behavior of the OH

number density profiles through the transition from nonsooting to sooting conditions.

Although the soot and OH measurements might be used to evaluate global soot formation

models such as those describing incipient soot formation, our focus will be on comparison

of these profiles with the predictions of detailed chemical kinetic models.

Comprehensive chemical kinetic models for soot formation describe the elementary

reactions occurring in the rich combustion of hydrocarbon fuels (e.g., acetylene and

ethylene) that lead to the formation of aromatic species, the first step in particle inception.

Models developed by Bastin et al. (1988) and Miller and Melius (1992) describe the

formation of single-ring aromatics, e.g., benzene and phenyl radical. The formation of



multiple-ring aromatic species (PAHs) has been modelled by Harris, Weiner, and Blint

(1988), whose mechanism includes formation of two-ring PAHs, and by Frenklach and

Warnatz (1987), whose mechanism includes formation of six-ring PAHs. The extension

of detailed chemical kinetic models to the formation of larger PAHs and then to panicle

formation through growth and coagulation of PAHs becomes too computationally

intensive to be modelled fully because of the large number of reactive species. Frenklach

and Wang (1990) couple a detailed chemical kinetic model describing PAH formation

with a global model describing both growth and coagulation of PAHs to form incipient

soot particles and then the subsequent growth and coagulation of these particles.

Since the route to the formation of the single-ring aromatic species is still under

investigation (Westmoreland et al., 1989; Miller and Melius, 1992) and the reactions and

thermodynamic properties of PAHs must be estimated, the above models may not

accurately describe the reactions leading to soot formation. However, a comparison of

model predictions with measured species concentrations combined with both a reaction

pathway and sensitivity analysis can identify both key species and elementary reactions

for subsequent refinement of the model and for development of further experiments.

In this study, we compare our measurements with the predictions of two detailed

chemical kinetic models. The model of Drake and Blint (1991) includes the formation of

C3 species and was used primarily for preliminary modelling studies which included

calibration of the OH number density profiles (Chapter 6) and estimation of the

temperature profiles (Appendix C). Our primary attention was focused on the model of

Miller and Melius (1992) which describes the formation of the single-ring aromatics,

benzene and phenyl radical, starting from the rich combustion of simple aliphatic fuels.

We compare the measured OH number density profiles with the predictions of both

models. A less direct comparison can be made between the predictions of the Miller and

Melius (1992) model and the measured profiles of soot formation. However, since the
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formation of the single-ring aromatic species is the f'LrStstep in panicle inception, the

trends in predicted aromatic species concentrations can be compared with the trends in the

experimental volume fraction profiles. In particular, the behavior of the aromatic species

concentrations can be examined in the transition from nonsooting to sooting flames.

In this chapter, we f'wst describe the flame code, the two reaction mechanisms, and

the solution procedure to obtain the predicted profiles. We next compare the predicted

OH number density profiles of both reaction mechanisms with the measured OH number

density profiles. The predicted trends in the aromatic species profiles using the Miller and

Melius (1992) mechanism are then compared with the measured trends in the soot volume

fraction and the relative PAH concentration profiles. These comparisons are discussed

and possible analyses are outlined for the model results.

7.2 Implementation of the Models

7.2.1 Sandia Flame Code

The predicted species concentration profiles for the two reaction mechanisms were

computed with the Sandia laminar premixed one-dimensional flame code (Kee et al.,

1985). The Sandia flame code solves the mass, species, and energy conservation

equations for a constant-pressure steady laminar premixed one-dimensional flame to

determine the species and temperature profiles. The detailed implementation of this

computer program is described in Section 4.6. Briefly, the flame code was compiled with

the Chemkin-II chemical kinetics subroutine library (Kee, Rupley, and Miller, 1989) and

the Chemkin-lI multicomponent transport subroutine library (Kee et al., 1986). The

multicomponent transport subroutines were used to guarantee mass conservation and to

calculate the diffusion coefficients, viscosities, and thermal conductivities more

accurately than transport subroutines using approximate mixture-averaging rules. The

program was compiled using the double precision version and was run on two 32-bit
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computers using the UNIX operating system, a Sun Microsystems Sparcstation 1 and a

Gould PN9080. The solution of the flame problem is stored as a binary format file

containing the pressure, mass flux, and an array of the position, temperature, and species

mass fraction profiles. A set of Fortran programs were written using subroutines from the

Chemkin-II chemical kinetics subroutine library (Koe, Rupley, and Miller, 1989) to

analyze the stored flame code solutions, to generate species mole fraction and number

density profiles, and also to estimate scattering coefficient profiles (Appendix C).

7.2.2 Reaction Mechanism of Drake and Blint (1991)

We used the reaction mechanism of Drake and Blint (1991) for prediction of the OH

number density profiles and also to estimate temperature profiles from the scattering

coefficient profiles measured using laser scattering-extinction. We implemented a

reduced version of their mechanism by removing the nitrogen reactions (reactions 124

through 202 in Table I of Drake and Blint, 1991), so that our version contained 32 species

and 144 reactions. Removing the nitrogen reactions reduced the solution time without

affecting either predicted OH concentrations or the estimated temperature profiles.

The Drake and Blint (1991) mechanism was derived from the Glarborg, Miller, and

Koe (1986) mechanism which was originally developed to model NO, formation during

methane combustion. Drake and Blint (1991) modified the reaction rate coefficients for

the methyl and ethyl recombination reactions, modified some of the nitrogen chemistry,

and included oxidation reactions of propane. The Drake and B lint (1991) mechanism was

used to model NO formation in premixed CH(/air flames and also to model NO formation

and superequilibrium OH concenlrations in premixed C2HJO2/N2 flames over the range

from 1 to 9 atm (Drake et al., 1990). Drake et al. (1990) reported that their mechanism

predicted the peak location and shape of the OH concentration profile well, but noted that

the peak OH concentrations were 50% higher than the measured peak OH concentrations.
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Vaughn et al. (1991) found that predicted stable species profiles using the Glarborg,

Miller, and Kee (1986) mechanism showed good agreement with their measurcn_nts of

rich ethylene combustion in a jet-stirred reactor.

Since the Drake and Blint (1991) mechanism is expected to model the stable species

profiles well, it is well suited for estimating the temperature profiles because the

scattering coefficient is determined from the stable species profiles (Appendix C).

However, based on the results of Drake et al. (1990), we expect the OH number density

profiles to be overpredicted.

7.2.3 Reaction Mechanism of Miller and Melius (1992)

We used the reaction mechanism of Miller and Melius (1992) to predict OH number

density profiles for direct comparison with the measured OH number density profiles and

also to predict benzene profiles for comparison with the measured trends in soot

formation. We implemented the mechanism containing 50 species and 221 reactions

without modification. The mechanism was used with an updated thermodynamic and

transport properties database (Miller and Melius, 1992) because some of the C3 and C4

species were not present in our older versions of these databases.

The mechanism was developed to model the rich combustion of simple aliphatic

fuels (e.g., acetylene and ethylene) and includes hydrocarbon growth reactions up to the

formation of the single-ring aromatic species, benzene and phenyl radical. Their

mechanism differs from those of others who have modelled the formation of aromatics,

such as Bastin et al. (1988), Frenklach and Warnatz (1987), and Harris, Weiner, and Blint

(1988). One significant difference is that the Miller and Melius mechanism includes

reactions of singlet methylene, ICH2, which they identify as a key species in the

formation of C3H3 and C4H3, which in turn are key intermediates in the formation of

aromatic species. In addition, they identify the reactions of the propargyl radical (C3H3)

to form benzene,
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and to form phenyl radical,

C3H 3 + C3H3 _ CtH_

C_H3 + C_H, _ C_Hs + H

as the most likely routes to formation of aromatic species. Oxidation of the aromatic

species is only modelled by reaction of phenyl with 02 and OH to produce the phenoxy

radical, C_HsO. Further decomposition of the phenoxy radical is not included in the

mechanism.

Miller and Melius (1992) note that they obtain favorable agreement with the

measured stable species and radical species profiles of the lightly sooting, _ = 2.5, 20-torr

C2H2/O2/Ar flame of Bastin et al. (1988). The peak location of their predicted OH mole

fraction profile agrees with the measured OH mole fraction profile, but overpredicts the

magnitude of the peak mole fraction by a factor of two. In addition, Miller et al. (1990)

used the same mechanism to model stable species profiles plus OH and CH radical

profiles measured in _ = 1.03, _ = 1.67, and _ = 2.00 nonsooting 25-torr C2H2/O_/Ar

flames. They found good agreement with their predictions for the 0 = 1.03 and _ = 1.67

flames. For the _ = 2.00 flame, they found good agreement for the CH and OH profiles,

but not with the stable species profiles, possibly because the flame may have attached to

the probe.

7.2.4 Flames Studied and Solution Procedure

Flame code solutions were obtained using both reaction mechanisms for the 15

flames listed in Table 7.1. These flame conditions include the atmospheric-pressure

flames in which measurements of soot formation were made with laser

scattering-extinction and also the atmospheric-pressure flames in which OH number

densities were measured with laser-induced fluorescence. The equivalence ratio, flow

rates, cold flow velocity and dilution ratio for these flames are given in Table 7.1.
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Flame code solutions were fast computed using the Drake and Blint (1991)

mechanism because of its smaller size. The iterative procedure described in Appendix C

was used to match the predicted scattering coefficient profile from the flame code solution

to the measured scattering coefficient profiles, so that the temperature profile could be

determined. The resulting temperature profiles for these flames are shown in Section

5.3.5.

Once the temperature profile and the flame code solution using the Drake and Blint

(1991) mechanism were obtained, the flame code solutions using the Miller and Melius

(1992) mechanism were then computed. For a given flame, the flame code solution using

the Drake and Blint mechanism was used as the fast estimate for the flame code solution

using the Miller and Melius mechanism. The mass fraction profiles were set to zero for

those species in the Miller and Melius mechanism that were not in the Drake and Blint

mechanism. This procedure greatly reduced the overall time spent in computing the

solution. The estimate of the temperature profile was checked with the flame code

solutions using the Miller and Melius mechanism. The predicted scattering coefficient

profiles agreed with the measured scattering coefficient profiles within the tolerance of

+ 20 K used in the calculation of the temperature profile.

Once obtained, the flame code solutions containing the temperature and mass

fraction profiles can be further analyzed. Possibilities for further analysis include a

reaction pathway analysis, in which the key reactions involved in the creation and

destruction of a species can be identified, and a sensitivity analysis, which identifies the

reaction rate coefficients which have the greatest impact on a species concentration. In

this study, our analysis is limited to tl',e calculation of number density and mole fraction

profiles from the mass fraction profiles for comparison with the measured OH number

density profiles and the trends in soot formation.
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Table 7. I Equivalence ratio, flow rates, cold flow velocity and dilution ratio for the

atmospheric flames used for the model comparisons.

Equivalence
Flame Ratio

A-IA-R1 1.49 1.001

A-IA-R2 1.63 1.089

A-IA-SI 1.78 1.176

A-IA-S2 1.92 1.263

A-IA-S3 2.02 1.320

A-IA-S4 2.17 1.406

A-IA-S5 2.32 1.489

Flow Rates Cold Flow Dilution

(slpm) Velocity Ratio

02 N2 Total (cm.s "l)

2.020 8.39 11.41 7.73 4.15

2.002 8.32 11.41 7.73 4.15

1.984 8.25 11.41 7.73 4.16

1.968 8.20 11.43 7.75 4.17

1.958 8.14 11.42 7.74 4.16

1.943 8.09 11.43 7.75 4.16

1.929 8.03 11.44 7.75 4.16

A-IB-C 1.67 1.326

A-IB-S2 1.92 1.421

A-IB-S3 2.02 1.485

A-IB-S4 2.17 1.578

2.383 7.90 11.61 7.87 3.31

2.218 7.84 11.48 7.78 3.54

2.204 7.79 11.48 7.78 3.54

2.185 7.71 11.47 7.77 3.53

A-HA-R2 1.63 1.432

A-IZA-S1 1.78 1.556

A-ILA-S2 1.92 1.667

A-IIA-S3 2.02 1.742

2.640 11.31 15.39 10.42 4.29

2.623 11.25 15.43 10.45 4.29

2.604 11.15 15.42 10.45 4.28

2.589 11.09 15.42 10.45 4.28
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7.3.1 Comparison of OH Number Density Profiles

The comparison of the measured OH number density profiles with the predicted

profiles using the Drake and Blint (1991) mechanism and the Miller and Melius (1992)

mechanism are shown in Figures 7.1 and 7.2. Figure 7.1 shows a comparison for the two

rich nonsooting flames, A-IA-R1 (_ = 1.49) and A-IA-R2 (_ = 1.63), over the first 6 mm

above the burner. Figure 7.2 shows a comparison for the two sooting flames, A-IA-S 1

(_ = 1.78) and A-IA-S2 (_ = 1.92), over the same range.

The predicted OH number density profiles were calculated using temperature

profiles obtained from the measured scattering coefficient profiles. These temperature

profiles are shown in Figure 7.3. Because the scattering coefficient profile of the

A-IA-R1 flame was not measured, its temperature profile was set equal to that of the

A-IA-R2 flame as an approximation. Setting the two profiles equal is a reasonable

approximation because both are nonsooting flames and thus their radiative heat losses are

likely to be similar. Also, the temperature profiles for both flames determined from the

flame code solution of the energy conservation equation are within 10 K of each other,

thus indicating that the flame chemistry does not significantly change the temperature

between the two flames. Although both the A-IA-S 1 and A-IA-S2 flames are sooting,

significant particle scattering is not observed until a height of about 15 mm in the

A-IA-S2 flame and not at all in the A-IA-S 1 flame. The molecular scattering coefficient

profiles of both flames were corrected for the fluorescence background so that the

corrected molecular scattering coefficient profile should reflect the temperature profile in

these flames.

The comparison of the measured and predicted OH number density profiles

indicates that the peak OH number density is overpredicted in all four flames, but that the

difference decreases with increasing equivalence ratio. A comparison of the measured

and predicted peak OH number densities is listed in Table 7.1. The ratio of the predicted
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peak number density to the measured number density decreases significantly from about

2.5 in the nonsooting flames to about 1.85 to 1.7 in the sooting flames. The maximum

temperature also decreases about 60 K in the transition from nonsooting to sooting

conditions.

The peak of the measured number density profiles occurs in the range of ~ 0.9 nun

to ~ 1.0 ram. The resolution of the peak is limited by the resolution of the profile, which

was measured at 0.25 mm intervals, and by the spatial averaging over the laser beam

diameter, which was 0.135 mm. The predicted OH number density profiles peak lower

in the flame at ~ 0.5 to ~ 0.7 mm above the burner.

The agreement between the measured and predicted OH number density profiles

improves at heights greater than 1.4 ram. The measured and predicted profiles agree

closely in this region. As equivalence ratio increases, the comparison of the predicted to

the measured OH number density in this region progresses from an overprediction to an

underprediction of the OH number density.

Comparing the predictions of the two mechanisms, the OH number density profiles

predicted using the Miller and Melius mechanism are lower and also peak at a lower

height above the burner. The difference between the predicted peak number densities of

the two mechanisms is greatest at about 16% in the A-IA-R1 flame and is less than 10%

for the other flame conditions.

7,3.2 Comparison of Predicted Benzene Profiles with Profiles of Soot Formation

The predicted benzene number density profiles using the Miller and Melius (1992)

mechanism are compared with the measured trends for soot formation in Figures 7.4

through 7.6. The change in the predicted benzene number density profiles as the

equivalence ratio is varied from nonsooting to sooting conditions is shown in Figure 7.4.
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Table7.2 Peak measuredand predicted OH number densities for the four
atmospheric-pressure flames.

Flame A-IA-R1 A-IA-R2 A-IA-S1 A-IA-S2

Equivalence Ratio 1.49 1.63 1.78 1.92

Maximum Temperature 1617 K 1617 K 1554 K 1550 K

Peak OH Number Density

(cm-3)

Measured 5.03x10 t( 2.74x101( 1.68x10 I( 1.06x10 t4

Drake and Blint 1.02×10 ts 5.21×10 _( 2.25x1014 1.31x10 I(

i

Miller and Melius 8.81x10 _4 5.05x1014 2.13x1014 1.22x1014

Ratio of Predicted to Measured

Drake and Blint 2.6 2.48 1.85

Miller and Melius 2.24 2.41 1.75

1.73

i,

1.60
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The predictedbenzenenumberdensityprofiles (Fig.7.4b) are also compared with

measured profiles of the argon-ion laser-induced fluorescence (Fig. 7.4a) for four flames

with the same cold flow velocity and dilution ratio.

The profiles of argon-ion laser-induced fluorescence are thought to provide a

measure of the relative PAH concentration. In addition, they have been shown to be a

more sensitive measure of the presence of soot and also have been shown to be

proportional to the soot volume fraction (Chapter 5). Within this sequence of flames, the

A-IA-R2 (_ = 1.63) flame was observed to be nonsooting, the A-IA-S1 (_ = 1.78) flame

was visibly sooting, but did not have a measurable particle scattering and extinction

coefficient, and both the A-IA-S2 (_ = 1.92) and A-IA-S3 (_ = 2.02) flames were visibly

sooting and had measurable particle scattering and extinction coefficient profiles.

The predicted benzene number density profiles for these same four flames show an

initial high concentration near the burner surface followed by a decline to a minimum

number density about 2 to 5 mm above the burner and then a slower growth in number

density with increasing height. The minimum number density in the nonsooting flame

(A-IA-R2) is over an order of magnitude smaller than that in the first visibly sooting flame

(A-IA-S1). However, their respective number densities at a height of 25 mm differ by a

factor of only 2.5. The minimum number density increases by an order of magnitude with

each increment in equivalence ratio, but the growth rate of the number density following

the minimum declines so that in the richest flame (A-IA-S3) the benzene number density

remains almost constant throughout the profile. Hence, for these four flames, the

minimum benzene number densities vary by over three orders of magnitude while at

25 mm the number densities vary by little more than an order of magnitude.

The profiles of benzene number density are compared with the profiles of soot

volume fraction for flames with the same equivalence ratio, but different cold flow

velocities and dilution ratios, in Figures 7.5 and 7.6. The three atmospheric-pressure
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Figure 7.4 Comparison of the argon-ion laser-induced fluorescence profiles (a) with
the predicted benzene number density profiles (b) for four
atmospheric-pressure flames: A-IA-R2, _p= 1.63, nonsooting; A-IA-S 1,

= 1.78, lightly sooting; A-IA-S2, _ = 1.92, sooting; A-IA-S3, _ = 2.02,
sooting.
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flames with equivalence ratio, $ = 1.92, are compared in Figure 7.5, while the three

atmospheric flames with equivalence ratio, $ = 2.02, are compared in Figure 7.6.

The volume fraction profiles of the _ = 1.92 (-$2) flames (Fig. 7.5a) show that these

are lightly sooting flames. The predicted benzene number density profiles of these flames

have a similar profile shape and, in fact, have similar number densities at 25 mm above

the burner. The difference in the proftles is in the magnitude and position of the minimum

number density. The comparison between flames A-IA-S2 and A-IIA-S2, which have

different cold flow velocities but a similar dilution ratio, shows that the flame, A-IIA-S2,

with the higher cold flow velocity (and also higher temperature) has a smaller minimum

benzene number density and also a smaller soot volume fraction. The comparison

between flames A-IA-S2 and A-IB-S2, which have the same cold flow velocity but

different dilution ratios, shows that their minimum number densities are of similar

magnitude, but that the minimum of the A-IB-S2 flame occurs earlier and its subsequent

growth rate is greater. This corresponds to the greater volume fraction in the A-IB-S2

flame which has a smaller dilution ratio and thus a larger fuel mole fraction than the

A-IA-S2 flame.

The behavior of the benzene number density profiles is quite different for the

comparison of the $ = 2.02 (-$3) flames in Figure 7.6. The trends in volume fraction for

these flames (Fig. 7.6a) are similar to those of the $ = 1.92 flames, but the trends in the

benzene volume fraction profiles (Fig 7.6b) differ significantly. The number density

profiles show an order of magnitude variation in the minimum number density and also a

significant variation in the number density at 25 ram. The A-IIA-S3 flame, which has the

same dilution ratio but higher cold flow velocity than the A-IA-S3 flame, has a minimum

benzene number density an order of magnitude smaller than the A-IA-S3 flame and also
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a smaller volume fraction. The A-IB-S3 flame, which has the same cold flow velocity but

a smaller dilution ratio than the A-IA-S3 flame, has a minimum benzene number density

which is a factor of three smaller than the A-IA-S3 flame. However, its soot volume

fraction profile remains greater than that of the A-IA-S3 flame throughout the first 15 mm

above the burner.

The predicted and measured OH number density profiles of the four flames,

A-IA-RI, A-IA-R2, A-IA-SI, and A-IA-S2, agree closely at heights above 1.4 mm,

which is greater than the height corresponding to the peak OH number density. The

agreement between the predicted and measured peak OH number densities is not as good.

The predicted OH number density profiles overpredict the measured peak by a factor of

~ 2.5 in the nonsooting flames and by a factor of ~ 1.7 in the sooting flames. However,

this difference between the measured and predicted peak OH number densities may still

be considered reasonable agreement because of the uncertainties in the model and also

because similar agreement between measured and predicted profiles is observed by other

researchers (Miller et al., 1990; Drake et al., 1990). Spatial averaging over the laser beam

diameter may account in part for the smaller measured OH number density compared to

the predicted OH number density.

Recall that the measured OH number densities were calibrated (Chapter 6) based on

a comparison between the measured relative OH number density profile for a lean flame

(A-0-L, # = 0.97) and the predicted OH number density profile using the Drake and Blint

(1991) mechanism. The agreement between the measured and predicted profiles in the

rich flame implies that the reaction mechanisms describe well the relative behavior of the

OH number density over this range of equivalence ratios. However, the accuracy of the

prediction for the rich flames depends on the accuracy of the prediction for the lean flame.
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Theagreementbetweenthepredicted and measured peak OH number densities

improves significantly in the sooting flames over that in the nonsooting flames. This

improvement corresponds with the ~ 60 K decrease in maximum temperature in the

sooting flames compared to that in the nonsooting flames. The relative change between

the measured and predicted OH number densities through this transition may indicate that

the reaction mechanisms have a different sensitivity to temperature than the actual

mechanism creating or destroying OH in the flame. The slight disagreement between the

location of the peak OH number densities for the predicted and measured profiles may be

caused by the estimated temperature profile near the burner surface. The location of the

predicted peak number density and, to a lesser extent, the magnitude of the peak depend

on the shape of the estimated temperature profile in the region below the peak. The

temperature profile is difficult to measure by any means in this region (<1 mm) because

of the proximity to the burner surface. Thus, a small difference between the predicted and

measured peak locations may not be significant for these atmospheric-pressure flames.

The similarities in the predicted OH number density profiles for both mechanisms

suggests that the chemistry of OH formation and destruction is similar for both

mechanisms. The addition of the C3, C4, and aromatic formation reactions in the Miller

and Melius (1992) mechanism apparently does not affect the OH number density profile

significantly. However, to state conclusively that the mechanisms for OH formation and

destruction are similar for both mechanisms would require a reaction pathway analysis to

identify the reactions through which the main flux of OH passes.

The trends in the minimum of the predicted benzene number density correlate with

the observed trends for soot formation as shown in Figures 7.4 and 7.5. As the predicted

minimum benzene number density increases, the measured soot volume fraction

increases. An exception to this trend is the _ = 2.02 (-$3) flames shown in Figure 7.6.

This correlation of benzene number density with soot volume fraction is consistent with
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the hypothesized mechanism of soot formation discussed in Chapter 2. The formation of

single-ring aromatics such as benzene is the f'Lrststep in particle inception. If we consider

that the benzene number density at the minimum is related to the number density of soot

particles leaving the inception stage, then the minimum benzene number density is likely

to be related to the volume fraction because the final volume fraction depends on the

number of particles leaving the inception stage. Consequently, this correlation is only

likely to apply for benzene number densities in the immediate region of the minimum,

where the benzene number density varies by over an order of magnitude for an increment

in the equivalence ratio of AO = 0.15. The variation in the benzene number density at a

height of 25 mm is much smaller.

The process of benzene formation can still occur in the post-flame region as can be

seen in the profile for the nonsooting flame A-IA-R2 in Figure 7.4. The further growth

of the benzene in the region above 10 mm to form PAHs would account for the

observation of argon-ion laser-induced fluorescence signals at the detection limit in this

flame.

The initial high concentrations of benzene near the burner surface are in part caused

by the lower temperatures there, and thus the greater overall number density of the gases.

However, the presence of the benzene concentrations near the burner surface suggest that

benzene is formed initially from pyrolysis of the fuel because of the relatively steep

increase in the temperature profile near the burner surface. This behavior may have been

rncasured in the extinction coefficient profiles, but not noted in the discussion of these

measurements in Chapter 5. The extinction coefficient profile (this can be best seen in

Figure 5.5) shows an initial extinction near the burner surface that is too far above the

burner to be caused by clipping from the burner surface. Gas-phase absorption by PAHs

would account for this initial extinction. The extinction coefficient profile declines to a

minimum at approximately the same height as the predicted benzene number density

profiles.
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The exception to the observed correlation between minimum benzene number

density and the measured soot volume fraction is the _ = 2.02 (-$3) flames (Fig. 7.6). The

A-IB-S3 flame has a much smaller minimum benzene number density, but a larger

volume fraction than the A-IA-S3 flame. In addition, the shape of the benzene number

density profile is significantly different for the A-IA-S3 flame than for either the A-IB-S3

or the A-IIA-S3 flame. The A-IA-S3 flame exhibits a slight peak in the number density

profile whereas the other flames have a minimum. This change in behavior implies that

a significant route for the destruction of benzene has been shut off in this flame that is

present in the A-IB-S3 and the A-IIA-S3 flames. A major difference among these flames

is that the peak temperatures of the A-IB-S3 and A-IIA-S3 flames are both about 50 K

higher than that of the A-IA-S3 flame. Since the oxidation reactions of benzene are not

fully modelled in the Miller and Melius reaction mechanism (e.g., the reaction of benzene

with oxygen is not included), the larger benzene number density in the A-IA-S3 flame

may be overpredicted because of the missing oxidation reactions. The benzene number

densities of the A-IB-S3 and A-IIA-S3 flames may be more accurately modelled since

pyrolysis of benzene may be the dominant path for benzene destruction in these flames

because of their higher temperatures. However, a reaction pathway analysis would be

required to investigate this conjecture.

In this study, we have made qualitative comparisons between the predicted benzene

number density profiles and the trends in soot formation. More direct comparisons with

the trends in soot formation could be made using a model such as that of Frenklach and

Wang (1990) which combines a detailed chemical kinetic model for PAH formation with

global models to describe the formation of soot from the PAHs.

7.5 Summary

We have used the Sandia flame code and two reaction mechanisms to model the

species and temperature profiles of the atmospheric-pressure flames. The Drake and Blint
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(1991) reaction mechanism was used to estimate the temperature profiles and to calculate

OH number density profiles for these flames. Similarly, OH number density and benzene

number density profiles were calculated for these flames using the Miller and Melius

(1992) mechanism.

The comparison between the predicted and measured OH number density profiles

showed good agreement for heights above 1.4 ram; however, the peak OH number

densities were overpredicted. Both reaction mechanisms predict similar OH number

density profiles, implying that their description of the OH chemistry is similar.

The trends in the predicted benzene number density profiles correlate with the

observed trends in soot formation. The increase in the minimum benzene number density

correlates with the increase in measured soot volume fraction in accordance with the

hypothesis that the number of particles formed in the inception zone determines the final

soot volume fraction. An exception to the observed correlation occurs in the richer and

cooler sooting flames for which the mechanism of benzene destruction appears to stop.

The apparent disagreement with the trends in soot formation may imply that benzene

oxidation reactions must be included in the Miller and Melius (1992) reaction mechanism

to more accurately model these flames. Further analysis of the data would require a

reaction pathway analysis to investigate the mechanisms for the formation and des_uction

of both OH and benzene.
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CHAPTER8:

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In this study, we have provided a set of data which can be used in the development

and testing of global and detailed chemical kinetic models for soot formation. Profiles of

soot and hydroxyl concentrations were measured for sequences of fiat premixed

atmospheric-pressure C2H4/O2/N2 flames and 80-torr C2H+/O_ flames. The measured

profiles were compared with the predictions of detailed chemical kinetic models

including the formation of aromatics. The accomplishments and conclusions related to

the measurement, analysis, and modelling of this data follow.

First, we have developed and refined a laser scattering-extinction measurement

system capable of resolving a 0.1% change in the transmittance, which is at the limit of

prior studies. This increased resolution was applied to more closely define the location

of soot formation in a flame, and, more importantly, to allow the measurement of soot

formation at conditions much closer to the critical equivalence ratio than those of previous

flame studies.

Scattering and extinction coefficient profiles were measured in three sequences of

atmospheric-pressure fiat premixed C2H+/O2/N2 flames and two sequences of 80-torr flat

premixed C2H4/O_ flames. Within a sequence, the cold flow velocity and dilution ratio

were held constant, while the equivalence ratio was varied from a rich nonsooting

condition to a sooting condition either at the critical equivalence ratio or near the critical

equivalence ratio to sequentially more heavily sooting conditions. The cold flow velocity

and dilution ratio were varied between sequences of the atmospheric flames and the cold
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flow velocity was varied between sequences of the 80-tort flames. The variation in cold

flow velocity and dilution ratio allowed measurements of the effects of temperature and

reactant composition on soot formation. These measurements in a sequence of flames

near the critical equivalence ratio provide a unique data set that can be used to evaluate

models of soot formation with respect to their predictions of the onset of soot formation

and also the amount of soot formed in sooting flames.

The measured scattering and extinction coefficient profiles for both the 80-tort and

atmospheric-pressure flames at or near the critical equivalence ratio did not show

evidence of particle scattering or extinction, even though the yellow emission attributed

to soot was visible. Thus, the scattering-extinction method could not resolve the critical

equivalence ratio to closer than A_ ~ 0.15. However, the detection limits could be used

to determine upper bounds on both the volume fraction and number density of particles

present in the near-sooting flames.

The detection of argon-ion laser-induced fluorescence coincided with the visible

yellow emission of soot and thus was a more sensitive measure of the critical equivalence

ratio than the scattering-extinction method in the atmospheric-pressul'¢ flames. The linear

correlation between the fluorescence and the extinction coefficients implies that the

concentration of PAHs is related to the soot volume fraction and also grows at the same

rate, possibly because the growth mechanism for soot is the same as that for the PAHs

causing the fluorescence. The fluorescence signal thus offers the possibility of a more

sensitive diagnostic for measuring changes in the soot volume fraction.

For atmospheric-pressure flames at equivalence ratios richer than the critical

equivalence ratio, volume fraction, number density and particle diameter profiles were

calculated from the extinction and scattering coefficient profiles. The observed trends in

the relative profiles are in accord with the existing theories of soot formation. In

particular, the volume fraction increases with increasing equivalence ratio. At the same
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equivalence ratio, the volume fraction decreases at higher temperatures for the same

reactant composition, while for a higher fuel mole fraction the volume fraction can

increase at higher temperatures. The relative particle number density profiles decline

similarly beyond their peaks indicating that they are governed by the same coagulation

rate as has been observed by other researchers. The peak number density occurs at

particle inception and although the location of the peak cannot be measured directly, its

relative location can be inferred from the location of the subsequent decline in the profile.

In these flames, the particle inception region moves closer to the burner surface with

increases in either the equivalence ratio or the peak temperature.

Profiles of OH number density were measured using broadband laser-induced

fluorescence in a sequence of four atmospheric-pressure C_H4/O2/N_ flames and in a

sequence of four 80-tort C2H4/Oz flames. These flames were a subset of the flames

examined with the laser scattering-extinction method. The equivalence ratios within each

sequence bracketed the critical equivalence ratio so that the change in the OH number

density profile could be measured as the equivalence ratio was changed from nonsooting

to sooting.

For both atmospheric pressure and 80 torr, the peak in the OH number density

profile declines with increasing equivalence ratio. However, each profile scales with the

maximum number density so that the normalized profiles overlay each other. Thus, the

OH number density profiles do not change shape during the transition to sooting. This

behavior implies that the reaction pathways for OH do not change significantly in the

transition from nonsooting to sooting flames. Therefore, the major reaction pathways for

OH are probably limited to smaller hydrocarbons such as acetylene which are present in

rich nonsooting flames and whose concentration also does not change significantly in the

transition to sooting flames. Since OH is identified as the oxidizer of soot precursors in
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the global models describing incipient soot formation, the implied precursor may then be

acetylene. On the other hand, the reactions of OH with acetylene could also indirectly

influence soot formation.

These implications about the major reaction pathways for OH and the role of OH in

the global models can be investigated through the application and analysis of detailed

chemical kinetic models describing those reactions leading to aromatic or soot formation.

The OH number density profiles measured in conjunction with the scattering-extinction

measurements in the same flames provide a unique basis for testing such detailed

chemical kinetic models over the range of equivalence ratios bracketing the critical

equivalence ratio.

We have demonstrated the application of detailed kinetic models to the measured

OH number density profiles and also to the prediction of benzene number density profiles

for comparison with the measured trends in soot formation. The Sandia premixed

one-dimensional flame code was used to obtain the predicted species profiles for the

atmospheric-pressure flames using two reaction mechanisms. The reaction mechanism of

Drake and Blint (1991) models rich combustion only up to the formation of C3

hydrocarbons and was used to predict OH number density profiles and to obtain

temperature profiles. The second reaction mechanism, that of Miller and Melius (1992),

also models rich combustion, but includes the formation of single-ring aromatics such as

benzene and phenyl radical. It also incorporates the most recent reaction rate coefficients,

thermodynamic properties, and hypothesized reactions leading to the formation of

aromatics. This second mechanism was used to predict OH and benzene number density

profiles.

29O



• _ _ V,(/,__.,_ • i: _ ! /i i_

Tl_pn_md_ nmsurc_ OH numberdensity promcs using both reaction

mechanisms agree closely f_r i_l_li_above that_sponding to the peak OH number

density, although the peak OH number d_nsideS __cted by about a factor of

two. Overall, the agreement in the shape of the profiles is quite:good.

The trends in the predicted benzene number density profiles correlate with the

measured trends in soot formation. Typically, the benzene number density profiles

display an initial high conceneration at the burner surface followed by a decline to a

minimum at around 2 to 5 nun above the bm'ner and then a subsequent slow growth

throughout the remainder of the flame. The magnitude of the minimum benzene number

density appears to correlate with the measureA soot volume fraction. The minimum

number density increases by an order of magnitude in the tran_tion from a nonsooting

flame to a sooting flame and then increases by another order of magnitude with further

increases in equivalence ratio. The proposed correlation between soot formation and

benzene number density appears to fail in richer and cooler sooting flames for which the

benzene number dcnsity pmfde changes shape and no longer exhibits a defined minimum.

A possible cause for this change in the profile is that the benzene destruction mec_

°' .....stops atlowa"

,LV;,
. _,-te-"__,rlit_¢_Itr_¢.

theselower-temperatureflames.

_'_._ "-_ " , _' "_"'_'"r_ %7.(

vcmcnts to the mcasurcments and appmsms have been suggested in previous

more heavily _oting flames to be inve_li_ted to coafmn the behavior of the OH profile

at mvely richer equdvalmce n/re. Calibration of the OH number demip] with a

UV absorption rngasmmt_nt at both 8smoaphe_ and su_mo_c immures would

a_oO, '_ "_._i " _" "'_'
w a more direct evaluation of the lszdictaf OH numberdendty profiles.
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For the measurements of soot formation, an extension of the extinction

measurement to longer wavelengths in the near-IR region (700 - 1100 nm) could be used

to identify incipient particles or high molecular weight hydrocarbons of different sizes

0Veiner and Harris, 1989). Such measurements should be used to explore the relationship

between the soot volume fraction and the argon-ion laser-induced fluorescence attributed

toPAHs. A betterunderstandingofthesourceforthefluorescenceand itsrelationshipto

the sootvolume fractioncould be used to developthe fluorescenceas a more sensitive

diagnosticforpointmeasurements of the volume fraction.A similarmethod has been

proposedbyBenison and Alden (1991) using the fluorescence of C2radicals produced

by thelaservaporizationofsoot.

An extensionoftherangeofflame conditionstoincludesootingflameswithhigher

maximum temperatureswould be valuableforthe testingof mechanisms because of the

stronginfluenceof temperatureon soot formation. The currentset of atmospheric

pressure data has a relatively narrow range of maximum temperatures (~ 50 K) among

flames with the same equivalence ratio. The maximum temperatures of these flames

(~ 1500 to 1(300 K) are also at the low end of the range of temperatures that have been

investigated for sooting flames. Additional measurements in flames with peak

temperatures in the range of 1700 to 1800 K would provide a basis for testing different

aspects of the soot mechanism such as pyrolysis reactions that may become more

significant with an increase in temperature.

Perhaps the most fruitful area for expanding on this work is to use the measured data

for its intended purpose, i.e., the evaluation of existing detailed chemical kinetic models

and global models for soot formation. The most immediate possibility is to continue the

application and analysis of the Miller and Mefius (1992) reaction mechanism to our flame

conditions. Since the reaction n_..h_nism is current, it has only been applied to a few

2R92 ,
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flame conditions at pressures of 20 to 25 tort. Here, we have a range of flame conditions

at both atmospheric pressure and 80 tort that span the U'ansition from nonsooting to

sooting conditions.

Two methods are typically used in analyzing a mechanism. A sensitivity analysis is

used to identify the sensitivity of a given species concentration to variations in selected

reaction rate coefficients. A reaction pathway analysis identifies the main reactions

through which the flux of a particular species passes. A reaction pathway analysis could,

for example, be used to identify the main route for the formation of benzene. A sensitivity

analysis could then be used to identify the sensitivity of the benzene concentration to the

rate of acetylene oxidation by OH.

Since the flame code solutions for the atmospheric-pressure flames have already

been obtained with the Miller and Melius (1992) mechanism, the groundwork for such

analyses is already in place. One possibility would be to examine the change in the

reaction pathways as the equivalence ratio is changed from nonsooting to sooting

conditions. A reaction pathway analysis could also be used to determine the cause for the

predicted change in the benzene profile shape as the equivalence ratio increases to more

heavily sooting conditions.

The modelling study could be extended further to consider models such as that of

Frenklach and Wang (1990) which incorporates the full range of soot formation by

combining a reaction mechanism for combustion of acetylene, including the formation of

PAHs, with global models for particle inception, growth and coagulation. The predictions

of such a model could be compared directly with the measured profiles of soot number

density. The range of sooting conditions in this study could provide an exhaustive test of

such mechanisms. The evaluation of comprehensive models for soot formation could

then be used to identify experiments that might further clarify the mechanism of soot

formation.
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APPENDICES



Appendix A: Flow Rate Uncertainty Analysis

Our experimental approach was to measure soot and hydroxyl concentrations in

sequences of flames where we varied the equivalence ratio from nonsooting to sooting

while keeping the cold flow velocity and dilution ratio constant. The equivalence ratio,

cold flow velocity, and dilution ratio for a flame were set by setting the flow rates of the

fuel (ethylene), oxidizer (oxygen), and diluent (nitrogen). These flow rates along with the

pressure were the variables that could be controlled directly. The uncertainties in these

flow rates and also in the equivalence ratio, cold flow velocity, and dilution ratio are

important when comparing the results from the flames. They are equally important in the

flame code simulations, because they can also be used to establish the uncertainties in

those results.

Because the measurements of the hydroxyl concentration and the soot concentration

were made on different days, the uncertainty in reproducibility of the flow rates indicates

the extent to which the separate measurements were made in the same flame. This

uncertainty depends on the precision of the flow rates set by the electronic mass flow

controllers. We selected the mass flow controllers for their high precision to achieve a

better reproducibility of the flow rates than was possible using rotameters. We are also

interested in the accuracy of the flow rates set by the mass flow controllers. The mass

flow controllers were calibrated for the conditions of our experiments which were not the

same as the conditions of the factory calibration. The accuracy of the flow rates will then

depend on the uncertainty in the calibration at the conditions of our experiments.

However, since the flow controllers were calibrated against the same standard, the

accuracy of the individual flow rates has only a minimal effect on the accuracy of the

equivalence ratio and the dilution ratio, because they are ratios of flow rates.

306



The uncertainty (or error) in an experimental result can be evaluated by considering

the uncertainties of its independent variables. An experimental result can be expressed as

a function,f, of the independent experimental variables, xt, xa ..... x,, i.e.,

f =f(xt, _, ...,x,,) (A.1)

If the variables xi and the uncertainties in those variables are independent of each other,

then the uncertainty in the experimental result, _, is (Coleman and Steele, 1989)

2 ¥71a

where fixi, i = 1..... n, are the uncertainties in the variables evaluated at the same confidence

level.

We define the total flow rate through the burner, l/rot, as the sum of the fuel flow

rate, I;Iv, the oxidizer flow rate, 1;'o, and the diluent flow rate, 17o, and, thus,

Vror= Vp+ '/Io+ Vo (A.3)

These flow rates (l.min 4) are at standard temperature (25 "(2) and pressure (760 ton'). The

uncertainty in the total flow rate is then

_if'ror= [(8_'v)2+ (_i¢o)_+ (_if'o)2]ia . (A.4)

The cold flow velocity is defined as the total flow rate at standard temperature (25 "C) and

the pressure of the experiment divided by the cross-sectional area of the burner. The cold

flow velocity, vc (cm.sec t) is given by

vc = l?ro r Psrr
Ptxp

4

r"d 2 (A.5)

where Psre is the standard pressure (760 torr), P,_ (tort) is the pressure of the experiment,

and d (cm) is the diameter of the burner. The uncertainty in the cold flow velocity can be

expressed in terms of the fractional uncertainties as

&,o r(s_,,,,,Y (,_.., ? (__ _q"
,,-;-=LLJ+L.-=..J+('-zjj (A.6)
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The equivalence ratio is the actual ratio of the fuel to oxidizer flow rates divided by

the stoichiometri¢ ratio and is given by

[, Vo )_ [ Vo , (A.7)

where the stoichiometric ratio for ethylene,

Vo , 3

is based on the stoichiometric equation for ethylene combustion,

C2H ++ 30_ =_ 2 H20 + 2 CO S (A.9)

The uncertainty in the equivalence ratio when expressed as a fractional uncertainty is

Y-B, v, ) +1,-_o) ] (a.,o>

we have defined the dilution ratio to be the ratio of the diluent flow rate to the oxidizer

flow rate, and thus,

vo
D =-_-- (A.11)

Vo '

where D is the dilution ratio. The fractional uncertainty in the dilution ratio is

l+. o)q'°
-_-- = L/-_o )' + IVo)J (A.11)

The flow rates are also used to determine the inlet boundary conditions for the

differential equations solved by the Sandia premixed one-dimensional flame code (Kee et

al., 1985). The mole fractions of the reactants and the mass flux through the burner axe

the required inputs to determine the boundary conditions. The mole fractions for the

reactants are given by

X_ = f,-_ (A.12)
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where Xp isthefuelmole fraction,

Xo =-_----
VTor

where Xo is theoxidizer mole fraction,and

(A.13)

Xa =-_---- (A.14)
Vror

where Xo is the diluent mole fraction. The fractional uncertainty in the fuel mole fraction

is

(A.15)

The fractional uncertainties for the oxidizer and diluent mole fractions are similar. The

mass flux through the burner is the total mass flow rate of the reactants divided by the area

of the burner and is given by

4 Psrp

q- =_'R--_'t_'r" Wn + f/o" Wo + rio"Wa) (A.16)

where q,,isthemass flux(gm-cm'2-sec'_),Psre(aim)isthestandardpressureand Tsre(K)

isthestandardtemperature,R isthegas constant(cm3.alm.K'_.gmolc'_),and Wp, Wo, and

Wo arethemolecularweights(gm.gmol©"_)ofthefuel,oxidizer,and diluent,respectively.

Thc uncertaintyinthemass fluxisthengivenby

. w,,+ f,'o. wo+ . 2

+(Wt_ " 8_'p) 1+ (Wo . 8Vo)' + (W o • 81Ya)2]'n (A. 17)

The mass flow controllers were calibrated by measuring the volume flow rates with

a Singer-American DT-115M dry-test meter for flow rates gxeater than 1.0 l.min "_and

with a 500 nil Supelco bubble flow meter for flow rates less than 1.0 l.min "_. Each mass

flow controller was calibrated at a flow rate setting by measuring the time for a given
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volume to flow through the meter. The flow rates were corrected to STP conditions by

measuring the temperature and pressure of the gas flow during the calibration. The flow

rate determined from the calibration, Vsrr (l'min_), is given by

_'srr = n. V_, Pc . Tsrp (A. 18)
t Psre Tc

where V_, is the volume of the flow meter (1), n is the number of flow meter volumes

measured (revolutions of the flow meter), t is the time (min), Pc and Tc are the pressure

(ton') and temperature (K) of the gas flow during calibration, and Psre and Tsrp are the

standard pressure (760 torr) and temperature (298 K). Expressing the flow rate in this way

allows us to calculate the uncertainty of the flow rate based on the uncertainty in the flow

meter volume. The fractional uncertainty in the calibrated flow rate is given by

(A.19)

Although the flow rates may have an error caused by the flow meter volume, the ratios of

the flow rates will not as shown by the expression for the equivalence ratio in terms of the

calibrated flow rates,

np to  'cp
no tp P_o T_ (A.20)

where the F subscript indicates the fuel and the O subscript indicates the oxidizer. Since

most of the calibrations were made using the same number of flow meter revolutions, the

terms np and no also cancel out. In addition, since the calibrations were made at very

similar pressures and temperatures, the fractional uncertainties in those terms are

approximately the same. The fractional uncertainty in the equivalence ratio caused by the

flowmeter calibration is then given by

{,.,,)'-- - + 2. + 2 (A.22)
I Lt,to) t, tp t, Tc)J

The fractional uncertainty in the dilution ratio will be similar.
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We will consider the uncertainty in the precision of the above flow rate parameters

separately from the uncertainty in the accuracy of those parameters. The uncertainty in

the precision of the flow rates is a measure of the reproducibility of the experiments and

is directly related to the precision of the flow rates set by the mass flow controllers. The

manufacturer's specification for the repeatability of the flow rates is 0.25% of the mass

flow controller reading and this is used as an estimate of the fractional uncertainty in the

flow rates. The uncertainty in the experiment pressure is estimated to be 0.5 ton" and is

based on the ability to control the experiment pressure as stated in $ec. 3.2.4. The

uncertainty in the burner diameter is set to zero for the precision calculation, because the

same burner was used in all the experiments.

The flow rate parameters for three typical flames are listed in Table A. 1 along with

the uncertainty in the precision of those parameters. The three flames are the atmospheric

lean flame (A-0-L) used for the OH fluorescence calibration, an atmospheric lightly

sooting flame (A-IA-S1) and an 80-torr lightly sooting flame (L-II-SI). The uncertainties

for the other flames will be similar to these typical flames, because the total flow rates and

dilution ratio were held constant, while the equivalence ratio was varied. For these

flames, the uncertainties in the precision of the flow rates are equal to or less than 0.25%.

The uncertainties in the parameters calculated from the flow rates such as the equivalence

ratio and the dilution ratio are equal to or less than 0.35%. The uncertainty in the cold

flow velocities of the low pressure flames is higher (- 0.65%) because the fractional

uncertainty of the pressure is larger at lower pressures.

The uncertainties in the calibration of the flow rates are calculated from Eq. (A. 19).

The estimated uncertainties in the required independent variables are listed in Table A.2.

The dry test meter was calibrated against the bubble flow meter by measuring a series of

flow rates from 0.6 1.rain "_to 1.2 l.min "_with both meters. The results of the calibration

are shown in Figure A. 1 and show that the dry test meter measured flow rates that were

consistently 4% lower than those measured with the bubble flow meter. The volume of
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thebubbleflow meter was verified and thus the dry test meter flow rates were suitably

corrected. The uncertainty in this correction is the root-sum-square of the uncertainties

in the flow rate measurements of the two meters. This uncertainty is used as the

uncertainty in the volume of the flow meter, Vt.,.

The flow rate parameters of the three typical flames are listed again in Table A.3

along with the uncertainty in the accuracy of those parameters. The uncertainty in the

accuracies of the flow rates are equal to or less than 0.90%. The uncertainty in the

accuracy of the equivalence ratio and dilution ratio calculated from Eq. (A.22) is slightly

less than the uncertainty in the precision of those terms (~ 0.35%). Since the accuracy

cannot be better than the precision, the precision of the equivalence ratio and dilution ratio

are listed in Table A.3. The accuracy uncertainties of the cold flow velocities and the mass

fluxes are approximately 2.0%, because of the large uncertainty in the burner diameter.

In summary, the precision of the mass flow controllers ensured the reproducibility

of the experiments. The accuracy of the flow rates, however, was not as good as the

precision, primarily because of uncertainties in the calibration. The uncertainties in the

calibration could be reduced by calibrating the mass flow controllers over the full range

of flow rates with a more accurate flow meter such as a wet-test meter.
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Table A. 1 Flow rate parameters with their calculated precision uncertainties for three
typical flames. The fractional uncertainties are given in parentheses.

Fla/llc

Flow Rates
(1.rain q)

Fuel

Oxygen

Diluent

Total

A-O-L A-IA-S 1 L-II-S 1

0.627 + 0.002 1.176 + 0.003 1.515 + 0.004

(0.25%) (0.25%) (0.25%)

1.941 + 0.005 1.984 + 0.005 1.962 ::1:0.005

(0.25%) (0.25%) (0.25%)

10.52 -t- 0.026 8.25 + 0.021 0.0

(0.25%) (0.25%)

13.08 + 0.027 11.41 + 0.022 3.477 + 0.006
(0.20%) (0.19%) (0.18%)

Cold flow velocity 8.86 + 0.02 7.73 + 0.02 22.4 + 0.2
(cm.sec q) (0.21%) (0.21%) (0.65%)

Equivalence ratio

Dilution ratio

Mass flux
(gm.cm'a.sec q)

Mole fractions

Fuel

Oxidizer

Diluent

0.969 + 0.003 1.778 + 0.006 2.317 + 0.008

(0.35%) (0.35%) (0.35%)

5.42 + 0.02 4.16 + 0.02 0.0
(0.35%) (0.35%)

0.01036 + 0.00002 0.009061 :l: 0.002916 +

(0.20%) 0.000017 0.000005
(0.18%) (0.19%)

0.0479 :l: 0.0002 0.1031 :l: 0.0003 0.4357 + 0.0013

(0.32%) (0.32%) (0.30%)

0.1483 + 0.0005 0.1739 + 0.0006 0.5643:1:0.0017

(0.32%) (0.32%) (0.30%)

0.8038 + 0.0026 0.7230 + 0.0023 0.0
(0.32%) (0.32%)
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TableA.2

Variable

n (rev)

t (_c)

Pc (ton)

L(K)

vf., (l)

d (cm)

Estimates of the uncertainties in the independent variables in the calibrated
flow rates.

Typical value Estimated Fractional

Uncertainty Uncertainty

16.0 0.02 0.00125

90 to 1530 0.1 0.0011 to 0.000065

749 to 754 1.5 0.002

295 0.2 0.00068

1.0 0.008 0.008

5.6 0.05 0.0089

1.2

o
u.

o.e

_E

Q
0.6

"''1 .... I .... I .... I _

, , i .... i .... i .... I
0.6 0.8 1.0 1.2

Bugle M_er Flow R_e (l_e_min)

Figure A.1 Calibration of the dry test flow meter flow rates against the bubble meter
flow rates.
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Table A.3 Flow rate parameten with their calculated accuracy uncertainties for three
typical flames. The fractional uncertainties are given in parentheses.

Flame

Flow Rates
(1.rain a)

Fuel

A-O-L A-IA-S 1 L-II-S 1

0.627 + 0.006 1.176+ 0.011 1.515+ 0.014
(O.9O%) (O.9O%) (O.9O%)

Oxygen 1.941 + 0.017 1.984 + 0.018 1.962 + 0.018
(0.9O%) (0.90%) (0.9O%)

Diluent 10.52 + 0.045 8.25 + 0.074 0.0

(0.9O%) (0.9O%)

Total 13.08 + 0.097 11.41 + 0.077 3.477 ± 0.023

(0.74%) (0.67%) (0.66%)

Cold flow velocity 8.86 ± 0.18 7.73 ± 0.15 22.4 + 0.6
(cm.sec "_) (2.03%) (2.00%) (2.67%)

Equivalenoe ratio

Dilution ratio

Mass flux

(gm.cm2.se¢ "l)

Mole fractions

Fuel

Oxidizer

Diluent

0.969 ± 0.003 1.778 ± 0.006 2.317 + 0.008

(0.35%) (0.35%) (0.35%)

5.42±0.02 4.16±0.02 0.0
(0.35%) (0.35%)

0.01036 ± 0.0002 0.009061 ± 0.002916 +
(1.92%) 0.00017 0.000055

(1.9o%) (1.9o%)

0.0479 ± 0.0006 0.1031 ± 0.0016 0.4357 ± 0.0049
(1.17%) (1.12%) (1.12%)

0.1483 ± 0.0017 0.1739 ± 0.0020 0.5643 + 0.0063

(1.17%) (1.12%) (1.12%)

0.8038 ± 0.0094 0.7230 + 0.0081 0.0

0.17%) (1.12%)
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Appendix B: Details of the Lair Scattering-Extinction Measurements

_-12amalur, li_

In this appendix, we present the details of the laser scattering-extinction

experimental apparatus and the data analysis. We first describe the photodetectors and

the electronic circuits used to convert their current outputs to voltage outputs. We then

describe the signal conditioning applied to the photodetector signals and then the

acquisition of those signals by the computer. The analyses of the voltage signals to

determine the extinction and scattering coefficients are presented next. Finally, we

present the uncertainties and detection limits for the extinction and scattering coefficients.

B.2 Photodetectors and Photodetector Electroni¢,s

Three detectors were used in the laser scattering-extinction measurements. A

'reference' photodiode monitored the incident laser irradiance. A 'mmsmittance'

photodiode monitored the transmitted laser irradiance. A photomultiplier detected the

scattered light at the output of the monochromator. Photodiodes were used to measure the

laser irradiance because a photodiode has a greater linear range than a photomultiplier. A

photomultiplier was used to measure the scattered light because of its greater sensitivity

to lower light levels compared to a photodiode.

The reference photodiode was a Hamarnatsu S 1336-5BQ silicon photodiode with an

effective photosensitive area of 5.6 mm z. The transmittance photodiode was a Newport

Research Model 820 silicon photodiode with an effective photosensitive area of 1.0 cm 2.

The photodiode with a larger effective area was used in an effort to reduce the effects of

beam steering on the transmittance signal. During initial experiments with the laser

scattering-extinction measurement system, the location of the incident laser spot on the

transmittance photodiode varied depending on the pressure within the vessel, the presence

of a flame, and the height within the flame. This beam steering was attributed to slight

movements in the vessel and its windows as the pressure within the vessel changed and
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to index of refraction gradients caused by the flame gases. A larger area photodiode

reduces the possibility that beam steering will move the laser spot away from the active

area. However, the U'ansmittance photodiode output was still found to vary even if the

spot remained in the active area, but moved to a slightly different location. Our final

solution to reduce the sensitivity to beam steering was to place a flashed opal diffuser

(Oriel Model No. 48010) in front of the photodiode to diffuse the incident laser beam.

A Hamamatsu R955 photomulfiplier was used to detect scattered light at the output

of the monochromator. This Hamamatsu R955 photomultiplier was used instead of the

RCA 1P28B photomultiplier we typically use for fluorescence measurements because the

Hamamatsu R955 photomultiplier has a greater responsivity at 488 nm than the RCA

1F28B (~ 60 mA.W t vs. ~ 30 mA.Wl). The responsivity of the Hamamatsu R955

photomultiplier also extends further into the red, so it would have been more suitable for

possible scattering measurements using a helium-neon laser at 632.8 nm. The

photomultiplier was wired into a conventional voltage divider network to supply the

voltage to the dynodes. The supply voltage was 900 V.

The output of all three detectors, the two photodiodes and the photomultiplier, is a

current that is proportional to the incident irradiance. The current output of each detector

is given by

where ish (A) is the short circuit current (the current produced with no load across the

photodetector terminals), t_ (W.cm a) is the incident irradiance, A_ (cm 2) is the effective

photosensitive area, and r_,(A.W _) is the responsivity of the photodetector, which is a

function of the incident wavelength.

The output currents of the three detectors were converted to voltage using

transimpedance amplifier circuits. A schematic of the transimpedance amplifier circuit

used for conversion of the photodiode output current to voltage is shown in Figure B. 1.
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The transimpedance amplifier circuit for the photomultiplier was the same as that for the

photodiodes except that the photomultiplier output was connected into the amplifier

circuit through a BNC coaxial connector in place of the photodiode.

The operational amplifier used in all three circuits was an Analog Devices

AD549KH with ultralow input bias current. The data sheets for this operational amplifier

identify it as an excellent preamplifier for photodiodes and photomultipliers. The

suggested circuit configuration for a photodiode transimpedance amplifier was used as a

basis for the circuit used here. The configuration of the power supply connections and the

power supply component values (not shown in Figure B. 1) were as suggested by the data

sheets (Analog Devices, 1991). The component values used in the U'ansimpedance

amplifier circuits are listed in Table B. 1.

The voltage divider was added at the output of the transimpedance amplifier to

reduce the output signal voltage and to place a constant load on the output of the op-amp.

The feedback resistor and the voltage divider resistors were selected to keep the output

signal voltage within the input voltage range of the lock-in amplifiers. The feedback

capacitor was included to add a high-pass filter. The cutoff frequencies were selected

using available capacitor values to be at least ten times greater than the 1.0 kHz

modulation of the laser beam.

Metal film resistors (1%) were used for precise selection of resistor values and

because they have better stability with temperature and humidity variations than carbon

composition resistors (Horowitz and Hill, 1989). Mica capacitors were used because they

were available through the campus stores and they have good accuracy, although either

polycarbonate or Teflon capacitors would provide better temperature stability (Horowitz

and Hill, 1989).

The voltage output, Vo,,, (V), of the transimpedance amplifier circuit as shown in

Figure B. 1 is given by
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Figure B. 1 Transimpedance amplifier circuit used to convert the photodiode current
output to a voltage output.

Table B. 1 Component values used in the transimpedance amplifier circuits.

Detector

Feedback Feedback Voltage
Resistor Capacitor Cutoff Divider

RF CF Frequency Resistors
(k_) (pF) (kHz) (kD)

Photodiodes 20.0 500 15.9 10.2

Photomultiplier 22.1 220 32.7 10.2
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-Rp R l

V_=I+j'co'Rp'CF RI+R2 i_, (B.2)

where co (rad.sec l) is the angular frequency and j = -_-]. Combining Eqs. 03.1) and (B.2)

gives

-RF Rt
r_,. l,_ . A,eV_=I+j'co'Rp'C_ Ri+R2 ' (B.3)

which relates the incident in'a ance on the photodetector to the voltage output of the

photodetector circuit. The output offset of the amplifier circuit has been neglected in

Eq. (B.2) because it can be adjusted to be near zero; moreover, since it is a small DC

voltage, it will be filtered out by the lock-in amplifiers.

We assume that the resistor and capacitor values remain constant over the time of

the experiment (i.e., we let the circuit warm up), that the frequency of the chopper

modulation remains constant, and that we operate within the linear range of the

photodetector at a constant laser wavelength. With these assumptions, the voltage output

of the photodetector is linearly proportional to the laser irradiance and Eq. (B.2) can be

written as

V_ = Tie"rlo.I_ (B.4)

where ri_isan electronicconversionefficiency(V.cmZ.W _)which includestheresistance

and capacitancetermsalongwiththeresponsivityand theactiveareaofthephotodetector.

The opticalefficiency,rio(dimensionless),accountsforthetransmittanceand reflectance

of the optical elements within the detection optics as well as the fraction of the total light

that is incident on the photodetector active surface.

voltage outputs of the three photodetectors are then

V0 = rieo"rio0" I0

Vr = tier" Tlor" lr

Vs =Tles"Tlos "S_o

The equations that describe the

(B.Sa)

(B.Sb)

(B.Sc)
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whereVo(V) is thereferencephotodiodevoltage,VT(V) is the transmittance photodiode

voltage, and Vs (V) is the scattering photomultiplier voltage, l0 (W.cm 2) is the incident

laser irradiance, IT (W'cm 2) is the transmitted laser irradiance, and S_, (W) is the scattered

light power. The optical and electronic efficiencies are denoted with a T subscript to

indicate transmittance, 0 to indicate reference, and S to indicate scattered. Since the

scattered light power is measured, the scattering electronic efficiency, Tl_s, does not

include the area term from Eq. (B.3) and thus its units are V.W 1. Equations (B.5a-c) are

the source for equations (4.1a-c) in Section 4.4.4 on the laser scattering-extinction data

analysis.

B.3 Signal Conditionin_ and Data Aco_uisition

The photodetector voltage outputs were acquired with the signal conditioning and

computer-controlled data acquisition system shown in Figure B.2. Lock-in amplifiers

were used to detect the chopper-modulated photodetector voltage outputs to eliminate the

flame and room light background. Both the reference photodiode and scattering

photomultiplier voltage outputs were detected with Stanford Research Systems Model

SR510 Lock-in amplifiers. The transmittance photodiode voltage output was detected

with an EG&G PARC Model 128 lock-in amplifier. The output voltages of the lock-in

amplifiers were acquired and converted to digital signals by a Stanford Research Systems

Model SR245 computer interface module for subsequent computer storage and analysis.

The computer interface module has an input range of + 10.24 V with a 13-bit

analog-to-digital converter and a maximum conversion rate of 2 kHz. The resolution of

the analog-to-digital conversion was 2.5 mV.
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The output voltage range of the SR510 lock-in amplifiers was + 10.24 volts per full

scale input, while that of the PARC 128 lock-in amplifier was 5:1.0 volts per full scale

input. The output of the PARC 128 lock-in was amplified by a Stanford Research

Systems Model SP,235 Analog Processor module to more closely match the :l: 10.24 V

input range of the computer interface.

The object of the transmittance measurement is to monitor the small change in the

laser irradiance caused by absorption and scattering of the beam as it passes through the

flame. To measure this change, which may be as small as 0.1% of the photodiode signal

produced by the laser beam, the major fraction of the measured transmittance and

reference signal voltages were subtracted out using the input offsets of the lock-in

amplifiers. This allowed the sensitivity of the lock-in amplifiers to be increased by a

factor of 10. The combination of lock-in amplifier sensitivity and output voltage gain

were set for both the transmittance and reference lock-in amplifiers so that the overall

sensitivity to variation in the laser irradiance was the same for both the transmittance and

reference measurements. The scattering signal was not superimposed on a large

background and thus did not require an input offset to increase the sensitivity of the

lock-in amplifier to the signal.

The SR245 computer interface module was controlled by a modified version of the

Stanford Research Systems SR265 software program (Stanford Research Systems, 1988)

running on an IBM PC computer. The SR265 program was modified by Carter (1990) to

add an interface to the stepper-motor controller, so that data acquisition could be coupled

to the stepper-motor driven vertical and horizontal translation of the burner and also to the

wavelength translation of the monochromator.

Vertical profiles of the transmittance, reference, and scattering signal voltages were

measured in flames by setting up the SR265 program to sample the three signals for 10

seconds at a 100 Hz rate (1000 samples) at each height in a sequence of heights above the

burner. The signal voltage data acquired by the computer interface was stored on the hard
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Figure B.2 Schematic of the signal detection and data acquisition setup for the laser

scattering-extinction measurements.
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disk of the IBM PC in binary format. The storage format for a vertical profile was such

that the data from each height was stored in a data file. Each file then contained 1000

samples of the signal voltage for each of the three signals with 4 bytes required to

represent each sample of the voltage. Thus, the data from each height in a profile

produced a 12,000 byte file.

The calibration measurement, in which the three signal voltages were measured with

nitrogen flowing through the burner, was made with the same program setup as the

vertical profiles, except that the measurements were all made at a single height above the

burner.

B.4 Data Analysis

The objective of the laser scattering-extinction measurements is to measure the

scattering and extinction coefficients as a function of height above the burner. These

profiles ate calculated from the voltage data acquired and stored in binary format by the

SR265 program during the experiments.

The extinction coefficient, K,_, (cm"), is determined from the transmittance, z, as a

function of the height above the burner, z, by

1

K_(z) = - _. ln[z(z)] (B.6)

where L (cm) is the pathlength of the laser beam through the flame. The transmittance

is determined from the ratio of the transmittance photodiode voltage to the reference

photodiode voltage by

It(z) 1 Vr(Z)
=to(z--5=FT"Vo(z)

where the transmittance calibration factor, Fr, is defined as

(B.7)

110 T •I]_¢T

F r - (B.8)
1]oo- rico
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The total scattering coefficient, Q_o (cm_.sr-_), is determined from the ratio of the

scattering photomultiplier voltage to the reference photodiode voltage by

1 Vs(z)

Q,,,(z) = F_:'-_"Vo(z) (B.9)

where the scattering calibration factor, F,_o, is def'med as

_os" Tles
F,c, = "L" _, "n_ (n.lo)

rloo" _eo

and Vc (cm 3) is the collection volume, t'lc (sr) is the solid angle of the collection optics,

and rL is the efficiency of the collection optics.

Both the transmittance and scattering calibration factors were determined by

measuring the three photodetector voltages for a nitrogen flow from the burner. The

transmittance calibration is determined from

Fr = "c_--_" _,a

where x_u is the transmittance at the calibration conditions and the subscript cal indicates

that the measurement was made at the calibration conditions. We assume that x_a = 1 for

a nitrogen flow. The scattering calibration factor is determined from

R.T l(Vs]. (B.12)

where R (82.055 cm3.atm.gmol1.K-_)is the gas constant,N,,,(6.023xI023gmol 1) is

Avogadro's number, T (K) isthetemperature,P (atm)isthepressure,and Cw.N2(cm2"sr_)

isthedifferentialscatteringcross-sectionofnitrogenforverticallypolarizedincidentand

scatteredlight.The temperatureand pressureof thenitrogenflow aremeasured during

calibration,so that its number density is P.N_/RT. The differentialscattering

cross-sectionof agas isgivenby Eq. (3.2.18)as

4_ (ns- 1) 2 3

Cvv's=--_-" N2o "3-4.pv (a.13)
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where _. (cm) is the wavelength, ns is the refractive index of light for the gas, No (cm 3) is

a standard molecular number density (evaluated at the same temperature and pressure as

the refractive index), and Pv is the depolarization ratio (Rudder and Bach, 1968;

D'Alessio, 1981). This expression was evaluated for nitrogen at a wavelength,

_. = 488.0 nm, with the index of refraction term, ns - 1 = 301.2x10 6, at 0* C and 1 atm

(Gardiner, Hidaka, and Tanzawa, 1981) and the depolarization ratio, Pv = 1.042x10 2

(Bogaard et al., 1978), to obtain the differential scattering cross-section for nitrogen,

Cvv.N= 8.873xI0 _ cmLsr 1. Since the scattering calibration factor is inversely

proportional to CW.N:, the subsequently calculated scattering coefficient profiles are

directly proportional to Cw.N_.

The transmittance and transmittance calibration factor are calculated from the ratio

of the transmittance photodiode voltage to the reference photodiode voltage

(transmittance signal ratio), VT/Vo. The scattering coefficient and scattering calibration

factor axe calculated from the ratio of the scattering photomultiplier voltage to the

reference photodiode voltage (scattering signal ratio), Vs/Vo. These signal ratios were

determined from the voltages sampled at the computer interface. However, calculation of

the individual signal voltages required that account be taken of the gains and offsets

applied by the lock-in amplifiers in the detection of all three signals.

These gains and offsets are shown schematically in the block diagrams for the

reference (Fig. B.3), transmittance (Fig. B.4), and scattering (Fig. B.5) signal detection.

The parameters in the block diagrams are defined as follows. The magnitude of the

photodetector voltage is given by V (mV). This voltage signal is detected by a lock-in

amplifier. The gain applied by the lock-in amplifier to the photodetector voltage is K

which is defined as

1

K = cos (B.14)
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whereS (mV signal/fuU scale inpu0 is the sensitivity of the lock-in amplifier, and 0 is the

phase angle between the input signal and the lock-in reference. We adjust the phase angle

to obtain the maximum signal, so that cos 0 = 1. The input offset that can be applied to

the signal is V_, (fraction of full scale input). This offset was used to subtract out the

majority of the transmittance and reference signals. The output gain of the lock-in

amplifier is G (voltage out/full scale inpu0. The output offset voltage of the lock-in

amplifier is Va. (V), which is the output voltage when the lock-in amplifier inputs are

shorted and the input offset is set to zero. The voltage measured at the computer interface

is Vc (V). For the transmittance signal detection, the gain of the SR235 analog processor

is GA (voltage output/voltage input) and its output offset voltage is VoA (V). The

subscripts are defined as before, 0 for reference, T for transmittance, and S for scattering.

Given that the sensitivities, gains, and offsets are known or measured, then the

photodetector voltages can be determined from the voltages sampled at the computer

interface by the following equations for the reference photodiode voltage,

V°=S°" _o" (Vc'o-Va"°)-V°"° ' (B.15)

for the transmittance photodiode voltage,

I 1 "[V_r-(Gar'Va.,r+Voar)]-Vo, r) , (B.16)Vr =ST" GT" GA,T ....

and for the scattering photomulfiplier voltage,

E1 ]Vs = Ss " -ffss"(V,.s - Vg.s)- Vo,.s (B.17)

The data files containing the sampled voltage data from the calibration and profile

measurements were analyzed with a series of programs written in the ASYST version

3.10 scientific programming language (ASYST Software Technologies, Inc., Rochester,

NY). In the first stage of the data analysis, the sampled voltages were read from the
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Figure B.3 Block diagram showing the gains and offsets applied for detection of the
reference photodiode voltage.
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Figure B.4 Block diagram showing the gains and offsets applied for detection of the
transmittance photodiode voltage.

r I

Vs
Scattering I l I I C°mputer
PhotomultiplierI I I I interface

Output I Vos.s VoL,S I Input
I I

Scattering Lock-in Amplifier

Figure B.5 Block diagram showing the gains and offsets applied for detection of the
scattering photomultiplier voltage.
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sequences of data files containing the calibration or profile data and then the transmittance

and scattering signal ratio profiles were calculated and stored for the next stage of the data

analysis. The steps in the first stage data analysis program were as follows:

1) The sequence of data files containing the particular profile or calibration data was

specified.

2) The gains and offsets applied to the photodetector voltages were entered.

3) The starting height above the burner and height interval between measurements

was entered, so that the height above the burner for each point in the profile could

be calculated.

4) For each data file in the sequence of the profile or calibration:

a) The 1000 samples of the reference, transmittance, and scattering voltages

measured at the computer interface were read from the file and placed in

arrays.

b) From these arrays, the arrays of photodetector voltages were calculated using

Eqs. (B.15) to (B.17).

c) From these photodetector voltage arrays, the arrays of the transmittance and

the scattering signal ratios were calculated.

d) The mean and standard deviation of the photodetector signal voltages and

signal ratios in the arrays were calculated.

5) The mean and standard deviation data for each point in the profile were then

written to both ASCII and ASYST binary format data files for subsequent data

analysis. Thus, all of the data for the profile was consolidated into two smaller

data files.

From the calibration data, the transmittance calibration factor was calculated from

the transmittance signal ratio using Eq. (B.11) and the scattering calibration factor was
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calculated from the scattering signal ratio using Eq. (B.12). With the calibration factors

determined, the profiles of the scattering and extinction coefficients were determined in

the second stage of the data analysis. The steps in this second stage were as follows:

1) The data file containing the profile data calculated in the first stage was specified.

2) The transmittance and scattering calibration factors and the pathlength were

entered.

3) The transmittance and scattering signal ratio profile data were read from the data

file.

4) The transmittance profile was calculated from the transmittance signal ratio

profile using Eq. (B.7) and then the extinction coefficient profile was calculated

using Eq. (B.6).

5) The scattering coefficient profile was calculated from the scattering signal ratio

profile using Eq. (B.9).

6) The extinction and scattering coefficient profile data were written to an ASCII

data file.

The extinction and scattering coefficient profile data were then imported into a

spreadsheet program to do the further calculations needed to determine the volume

fraction, number density, and particle radius profiles.

B.5 Error Analysis and Detection Limits

Since the goal of this study is to develop a set of data for comparison with models

of soot formation, the uncertainties and detection limits of the extinction coefficient and

the scattering coefficient are necessary to make those comparisons. Knowledge of the

uncertainties in these parameters allows comparisons to be made between flames and with

predictions from models. Knowledge of the detection limits allows us to specify the

minimum amount of soot that can be detected in flames near the critical equivalence ratio.
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In this section, we fhst evaluate the uncertainty in the extinction coefficient and then its

detection limit. Then we evaluate the uncertainty and detection limit for the scattering

coefficient.

B.5.1 Error Analysis and Detection Limit for the Extinction Coefficient

Since the extinction coefficient is calculated from the transmittance profile using

Eq. (B.6), we will first evaluate the uncertainty in the transmittance measurement. The

transmittance at a height is calculated from the transmittance signal ratio (Eq. B.7). This

ratio is calculated for each of the 1000 samples of the photodetector voltages recorded at

a given height and the mean of this ratio is used to calculate the transmittance. Since the

transmittance is normalized to the maximum of the transmittance profile, the calibration

factor, F r, is simply the transmittance signal ratio at the height corresponding to the

maximum in the transmittance profile. The equation for the transmittance at any height

is then

/volfv /Too, (B.18)

The transmittance and reference signal voltages are calculated from the measured

voltages using Eqs. (B.16) and (B.15). Substituting these expressions into Eq. (B.18)

gives the expression for the transmittance as

So" [((Vc.o)c,t - Vd..o)/Go - Vo,.o] St" [((Vc.r), - Vn.r)/G_ - Vo,.r]

x(z) = Sr" [((V_.r)_°t - VB,r)/G_- Vo,.r] "So" [((V_.o)z - V_,o)/Go - Vo,.o] (B. 19)

where the subscript cal indicates the voltages measured at the calibration point (or the

maximum of the profile) and z indicates the voltages measured at any height in the profile.

We have defined the terms, G_ = Gr'Ga.r and VB.r = Ga,r'V_z + V,_.r, to simplify the

expression from Eq. (B.16). The uncertainty in the transmittance then depends on the

uncertainties in the sensitivities, gains, and offsets of the lock-in amplifiers and could be

evaluated using the general expression for the uncertainty given in Eq. (A.2) (Appendix
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A). However, the resulting expression would be cumbersome to derive and evaluate.

Instead, we will use an approximation suggested by Coleman and Steele (1989). They

suggest that when the function is sufficiently complex such that the partial derivatives of

the experimental result, f, with respect to the independent variables, xl, x2 .... ,x,, are

difficult to evaluate, then the partial derivatives can be approximated by the

forward-difference f'mite-difference equation given by

_f l ,,_--t,_ Af f(xl+Axl,x2,...,x,)-f(xl,x2,...,x,) (B.20)...... = 11=

The uncertainty in the experimental result is then approximated by

The uncertainty in the transmittance (Eq. B.19) was evaluated using the

finite-difference approach (Eqs. B.20 and B.21) with the data acquired for a transmittance

profile of Flame A-IA-S2, an atmospheric-pressmre sooting flame at _ = 1.92 with a

measurable extinction coefficient profile. The parameters and results of this uncertainty

analysis are listed in Table B.2.

The input offsets, gains, and output offsets used to calculate the signals are listed in

Table B.2. The input offsets and gains were each varied by 1% to evaluate the variation

in the transmittance, At, produced by each parameter. The variation in the input offsets,

Vo,.0and V_o., produced the largest variations in the transmittance. However, both offsets

were measured to better than 0.5%, so the 1% variation is a conservative estimate. The

variation in the gains, Go and G,, is also conservative, but the resulting variation in

transmittance is small. The output offsets, Vot0 and Voa.r, were varied by 50%, because

their magnitude was close to that of the computer interface resolution and thus their

measurements had a larger standard deviation. Their effect on the transmittance

calculation was miniscule and thus they probably could have been neglected. The total
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TableB.2 Transmittanceuncertainty calculation based on the variation in the lock-in
parameters.

l.,ock-in Parameter

Parameter Value Variation

Variation in Transmittance

gr,gr,tral 

Input Offset V,_.o = -0.5808 AVo_.o = 0.0581 1.09x10 4 1.20x10 -8

Gain Go = 101.4 AGo = 1.0 9.65x10 6 9.30xi0 -H

Output Offset Vot.o= 0.0136 V AVol.o = 0.007 V 1.17x10 7 1.38x10 -j'_

Zammimalm

Input Offset Vo,z = -3.248 AVo_a-= 0.0325 3.16x10 -s 9.98x10 -:o

Gain G_ = 19.94 AG_ = 0.2 3.1 lxl0 5 9.67x10 "1°

Output Offset Vot.r = 0.0551 V AVo_.r = 0,028 V 1.35×10 6 1.83x10 12

Combined Uncertainty 15_= 1.19x104
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uncertainty produced by the sum of these variations is small, _ = 1.19x104, and thus,

uncertainties in the values of the lock-in parameters are not a significant source of

uncertainty in the calculation of the transmittance.

The uncertainty in the U'ansmittance was also evaluated based on the variation in the

transmittance and reference voltages, Vc.r and Vc.o, measured at the computer interface.

During the lO-second sampling of the voltages at each height, the sampled voltages

exhibited variations caused by drift of the laser intensity and other unidentified noise

sources. These variations were quantified during the data analysis by calculating the

standard deviation of the sampled voltages at each height. The uncertainty in the

transmittance produced by these variations was calculated using the finite-difference

approach (Eqs. B.20 and B.21) for the voltage data at each height in the transmittance

profile (the same profile as used for the calculation of Table B.2). The mean of these

measured voltages in the profile, their variation, and the resulting variation produced in

the transmittance are listed in Table B.3. The variation in the voltages used in the

calculation was twice the standard deviation of the sampled voltages. The combined

uncertainty caused by the voltage variation is _ = 5.5x10 4, about five times larger than

that caused by the variation in the lock-in parameters.

An alternate way to calculate the uncertainty in the transmittance is to calculate the

fractional uncertainty based on the expressions for the transmittance in Eq. (B.7) and the

observed variation in the transmittance signal ratio at a single height. The expression for

the uncertainty in the transmittance is

(B.22)

where 8(Vr/Vo) represents the uncertainty in the transmittance signal ratio at a single

height. For this analysis, we set the uncertainty at twice the standard deviation of the

transmittance signal ratio determined at a single height. The factor of two in Eq. (B.22)
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accounts for the uncertainty in the calibration factor, since it is also determined from a

transmittance signal ratio. The results of this uncertainty analysis are listed in Table B.4

for the same transmittance profile as in the previous analyses. The mean of the

transmittance signal ratio profile and the mean of the standard deviations of the signal

ratios are listed. The uncertainty in the transmittance, q$x= 3.68×104, is of the same order

as that for the other methods.

Table B.3 Effect of variation in voltage measured at the computer interface on the
variation and uncertainty in the transmittance.

Computer
Signal Interface Voltage Voltage Variation Transmittance Variation

Reference Vc.0 = 1.2482 V AVc.o = 0.0175 V

Transmittance V_.r = 7.3123 V AV_.r = 0.0136 V

Combined Uncertainty 8x = 5.50x104

A'_ = 2.03x10 4

At = 5.11x104

Based on these uncertainty analyses, a conservative estimate for the uncertainty in

the transmittance is of the order of _i'c- 0.001, i.e., we could measure a change in

transmittance of 0.1%. This detection limit is illustrated in Figures B.6 and B.7 which

show the variation in the transmittance profiles measured in the same flames on different

days. Figure B.6 shows the transmittance profile measured on two days for a lightly

sooting flame (A-IA-S 1, t_ = 1.78). Figure B.7 shows the transmittance profiles measured

on three days for a more heavily sooting flame (A-IA-S2, _ = 1.92).
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Table B.4 Transmittance uncertainty based on the variation in the transmittance
signal ratio.

Parameter

Mean Transmittance Signal Ratio

Mean standard deviation

Transmittance Uncertainty

V7
= 1.21537

Vo

o = 1.58x104

At = 3.68x104

In the lightly sooting flame (A-IA-S1, Fig. B.6), no change in the transmittance

occurs that is larger than the uncertainty and the measured transmittances vary within

0.001. The more heavily sooting flame (A-IA-S2, Fig. B.7) has a measurable, but still

small change (- 0.005% at 20 mm above the burner) in transmittance. For this flame, the

variation in the transmittance is quantified in Table B.5 which lists the mean, standard

deviation, and the range of transmittances measured at four heights for the profiles

recorded on the three days. The standard deviation of the transmittance increases with

height, but remains on the order of the uncertainty in the transmittance measurements. An

additional factor involved in the variation of the transmittance from day to day is the

reproducibility of the flame conditions. Although the reproducibility of the flames was

shown to be excellent in Appendix A, the sensitivity of soot formation to slight variations

in the flame conditions, particularly near the critical equivalence ratio, is not known.

Thus, the increased variation in transmittance observed in the A-IA-S2 flame may be

caused in part by variations in the amount of observed soot.
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Figure B.6 Transmittance profiles for a lightly sooting flame (A-IA-S1, ¢ = 1.78,
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Figure B.7 Transmittance profiles for a sooting flame (A-IA-S2, _b=1.92,
vc = 7.73 cm.sec l, N2/O2 = 4.16) measured on three days. The error bars
indicate a variation of two standard deviations in the transmittance

recorded at a given height.
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Table B.5

Height above
Burner

(mm}

Mean, standard deviation, and range of the transmittances measured at four
heights on three days for flame A-IA-S2 (_ =1.92, v<= 7.73 cm.sec t,

NJO2 = 4.16).

Transmittance

Number of Standard

Measurements Mean Deviation Range

5.4 8 0.9994 0.00034 0.0011

10.4 7 0.9978 0.00038 0.0011

15.4 7 0.9961 0.00075 0.0021

20.4 6 0.9943 0.00078 0.0019

Given the uncertainty in the transmittance, the uncertainty in the extinction

coefficient can then be calculated. The fractional uncertainty in the extinction coefficient

can be derived using Eqs. (A.2) and (B.6) and is given by

:tz-J+ (B.23)

Table B.6 lists the transmittances, the extinction coefficient, the fractional uncertainty,

and the uncertainty in the extinction coefficient obtained from Eq. (B.23) for a range of

transmittances from x = 0.999 to x = 0.90. The uncertainty in the transmittance was

assumed to be 6x = 0.001.

The pathlength for all flames was assumed to be L = 5.6 cm, the diameter of the

burner. Since the pathlength was not directly measured, the extinction coefficient profiles

can be considered to be relative profiles. For purposes of the uncertainty calculation, the

uncertainty in the pathlength was assumed to be _ = 0.2 cm. Any uncertainty in the

pathlength appears as a constant fractional uncertainty in the extinction coefficient. In
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contrast, the effect of uncertainty in the transmittance is to produce an almost constant

uncertainty in the extinction coefficient because of the in z term in Eq. (B.23). Thus, for

the transmittance range, _=0.999 to _=0.99, the uncertainty, 8K,.,, remains

approximately constant, while the fractional uncertainty decreases from 100% to ~ 10%.

As the transmittance decreases below z = 0.99, the significance of the pathlength

uncertainty increases, so that the fractional uncertainty approaches a constant, _ff.dL.

These results imply that to measure K,,,, to within 10% for a transmittance of "c= 0.999,

the uncertainty in the transmittance would have to be reduced to 8_ = 0.0001.

Based on the results of the uncertainty analysis, the resolution in the transmittance

is Ax = 0.001, and thus the detection limit for the transmittance is _ = 0.999. The

resolution and detection limit for the extinction coefficient is then K_ = 1.8x10 -4cm t for

the assumed pathlength of L = 5.6 cm.

B.5.2 Error Analysis and Detection Limit for the Scattering Coefficient

The fractional uncertainty in the scattering coefficient is derived from the

expression for the scattering coefficient (Eq. B.9) and the general uncertainty equation

(Eq. A.2) and is given by

The fractional

manner from Eq. (B.12) and is given by

(B.23)

uncertainty in the scattering calibration factor is derived in a similar

(B.24)
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Table B.6 Transmittance, extinction coefficient, fractional uncertainty and

uncertainty of the extinction coefficient for a range of transmittances. The
assumed quantifies in the uncertainty analysis are: L=5.6cm;
8/_, = 0.2 era; 51; = 0.001.

Extinction Fractional

Transmittance Coefficient Uncertainty Uncertainty

1; K,._ (cm q) 8K,.,.t/K,._ _K_ (cm -1)

0.999

0.998

0.9975

0.995

0.9925

0.990

0.985

0.980

0.975

0.950

0.925

0.900

1.79x 104 1.00 1.79× 10.4

3.58x10.4 0.502 1.79×10.4

4.47x 10.4 0.402 1.79x 10.4

8.95x10.4 0.204 1.82x10.4

1.34x10 3 0.139 1.86x10.4

1.79x10 3 0.107 1.91x104

2.70x 10.3 0.076 2.05x 10.4

3.61x10 3 0.062 2.23x10 4

4.52X10 "3 0.054 2.44×104

9.16x10 3 0.041 3.77x10.4

1.39x 10.2 0.038 5.33× 10.4

1.88x 102 0.037 7.0 lx l04
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These uncertainties are evaluated in terms of the uncertainty in the calculated scattering

signal ratio, Vs/V0, instead of considering the uncertainties in the individual signal

voltages, Vs and V0, or the uncertainties in the lock-in parameters used to calculate them.

We can make this simplification because the analysis of the uncertainties in the

transmittance (See. B.5.1) showed that the uncertainties calculated using the final signal

ratio (Eq. B.22) were of the same magnitude as those calculated with the individual signal

voltages (Eq. B.19). The uncertainty of the differential scattering cross-section of

nitrogen is also not considered in the uncertainty of the scattering calibration factor

(Eq. B.24) because the scattering cross-section of nitrogen is based on literature values

and serves as a reference for the scattering measurements.

The uncertainties in the scattering calibration factors and the quantities used in their

calculation are listed in Table B.7 for the measurements at both atmospheric and

subatmospheric pressure. The estimates for the uncertainties in the temperature and

pressure are the same as those used for the flow rate error analysis in Appendix A and are

based on the manufacturer's specifications for those instruments. The uncertainty in the

scattering signal ratio was estimated to be twice the standard deviation of the scattering

signal ratio recorded during the calibration. The resulting fractional uncertainty in the

calibration factor is small, ~ 0.5% at atmospheric pressure and - 2.0% at 80 torr. The

larger uncertainty at 80 torr is caused by the increase in the fractional uncertainty of the

pressure at subatmospheric pressures.

Typical values of the scattering coefficient and its uncertainties are listed in Table

B.8 for profiles of the vertically polarized scattered light and the horizontally polarized

scattered light measured in both the atmospheric and subatmospheric pressure

experiments and also for the profiles of the argon-ion laser-induced fluorescence

measured in the atmospheric pressure experiments. Mean values of typical profiles are

presented to show the order of magnitude of the uncertainty for these measurements. The

uncertainty in the scattering signal ratio, Vs/Vo, was estimated to be twice the standard

342



Table B.7 Uncertainties in the scattering calibration factors and the quantifies used in
their calculation for both the atmospheric and subatmospheric pressure
measurements.

Factor
Atmospheric Subatmospheric

Symbol Pressure Pressure

Temperature T (K) 295.0 295.0

Uncertainty 8T (K) 0.2 0.2

Pressure P (torr) 750. 80.

Uncertainty 8P (torr) 1.5 1.5

Scattering signal ratio Vs/Vo 0.5642 0.1425

Standard deviation o 1.33x10 3 5.75×104

Calibration factor Fsca (cm.sr) 2.575x107 5.957x107

Fractional uncertainty 5Fsca/F_, 5.20x10 3 2.04x10 "2

Uncertainty _F,_ (cm.sr) 1.34x10 _ 1.22x106
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deviation of the scattering signal ratio measured at a given height. For the atmospheric

pressure experiments, the uncertainty in the scattering coefficient for vertically polarized

light is ~ 1% and is larger, ~ 3 to 5%, for horizontally polarized scattered light and

laser-induced fluorescence. For the subatmospheric pressure experiments, the

uncertainty in the scattering coefficient for vertically polarized scattered light is ~ 3% and

that for horizontally polarized scattered light is ~ 10%. The increased uncertainty for the

horizontally polarized scattered light and for the fluorescence profiles is caused in part by

their lower signal levels. The larger uncertainty in the scattering calibration factor also

contributes to the larger uncertainty in the scattering coefficient for the subatmospheric

pressure measurements compared to the atmospheric pressure measurements.

The panicle scattering coefficients were obtained by subtracting the molecular

scattering coefficient, Qw¢, from the measured scattering coefficients, i.e.,

Qw = Q,co - Qvv.s (B.25)

The uncertainty in the particle scattering coefficient is then given by

(_Qw) 2 = 05Q,,o) 2 + 05Qw.,) 2 (B.26)

Since the molecular scattering coefficients were determined from the measured scattering

coefficients in the rich nonsooting flame or from the nonsooting region of a sooting flame,

the uncertainty in the molecular scattering coefficient is the same as that for the measured

scattering coefficient. Thus, the uncertainty in the particle scattering coefficient is given

by

qSQw = 1.41. _SQ,_o (B.27)

If we consider the uncertainty in the scattering coefficient to be the limit on the

experimental resolution, then the resolution in the scattering coefficient for vertically

polarized scattered light at atmospheric pressure is 4.2x101' cml.sr t. The resolution in

the scattering coefficient for vertically polarized scattered light at 80 torr is

1.9x10 It cmt.sr 1. The background for the horizontally polarized scattered light and
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fluorescence measurements is small, so the above uncertainty is also a measure of the

detection limit. The resolution of the scattering coefficient for horizontally polarized

scattered light is 1.3×10"' cml.sr 1 at atmospheric pressure and 1.2×10 11 cml.sr 1 at 80

torr. The resolution and detection limit for the fluorescence measurements is

~ 6.0x10 -_ cm-%r -1.
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Anoendix C: Determination of Temoerature from the Scattering Coefficient

Measurement of Rayleigh scattering from the flame gases can be used to determine

the local temperature (Eckbreth, 1988). The method is complicated by the dependence of

the scattered signal on both the total number density and the mean scattering cross-section

which is a function of the gas composition. Since determining the gas composition is an

additional and sometimes complicated procedure, the gas composition can either be

estimated or the experiment can be designed to reduce its effects on the variation in

scattering cross-section. Dibble and Hollenbach (1981) demonstrated the application of

Rayleigh scattering to measurement of temperatures in turbulent flames. They reduced

the sensitivity of the method to variations in the gas scattering cross-section by adjusting

the stoichiometry of the flame, so that the mean scattering cross-section variation was less

than 2%. Rajan, Smith, and Rambach (1984) used Rayleigh scattering to investigate

flame-turbulence interactions in a rod-stabilized propane-air flame. They used a detailed

chemical kinetics code to estimate the species composition and thus the mean scattering

cross-section as a function of the progress of reaction.

We take a similar approach to determine the temperature in our premixed laminar

flames. We use the Sandia premixed one-dimensional flame code to solve a detailed

chemical kinetic model and to determine the flame gas composition, which can then be

used to calculate the scattering coefficient. The temperature is determined from a trial and

error procedure which matches the predicted scattering coefficients from the solution of

the flame code with the measured scattering coefficients. In this appendix, we fhst

describe the theory for determining temperature from a Rayleigh scattering measurement.

We then describe the calculation of the scattering cross-sections for the individual gas

species. The implementation of the flame code to determine the gas composition and the

subsequent calculation of the mean scattering cross-section and the scattering coefficient
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are then discussed. We illustrate the _'ial-and-error procedure for a flame temperature

profile and then show temperature profiles for some of our flames. Finally, we discuss

possible errors in the temperature estimation and make suggestions for improving the

method.

C.2 Theory_ and Method

The theory for Rayleigh scattering is discussed in Chapter 3. Here, we only restate

those portions of the theory that are pertinent to the temperature measurement. The

temperature profile can be calculated from the measured scattering coefficient profile if

the scattered light is from the flame gases and not from soot particles. The scattering

coefficient for the flame gases is given by

Qw, s(z ) = Ns(z ) . Cw, s(z ) (C. 1)

where Qw_ (cmt's ri) is the molecular scattering coefficient, Ns (cm s) is the local gas

number density, and C'w,s (cmz'sr') is the mean differential scattering cross-section. The

subscript VV indicates that both the incident and scattered light are vertically polarized.

The molecular scattering coefficient, the local gas number density, and the mean

differential scattering cross-section are functions of the height above the burner, z (cm).

We can assume that the scattering is from molecules, and not from particles, in

nonsooting flames and in regions of sooting flames where soot has not yet formed.

However, in fiat premixed sooting flames, the height where particle scattering becomes

significant is ill-defined. Fortunately, the location of significant particle scattering occurs

after the peak temperature and thus, the temperature profile can at least be determined

through the reaction zone.

The temperature profile can be determined from the local gas number density profile

using the ideal gas law and is given by

e
r(z ) = . N,(z) (C.2)
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whereT (K) is the temperature, P (arm) is the pressure, R (82.055 cm3.atm.gmor'.K 1) is

the gas constant, and N_ (6.02252x10 _ gmol ') is Avogadro's number. The temperature

profile can then be calculated from the measured scattering coefficient profile by

combining Eqs. (C.1) and (C.2) to obtain

,p _'_,_(z)
r(z ) -_ . N,,, . Qw,,(z ) (C.31

The mean differential scattering cross-section, required to calculate the temperature in Eq.

(C.3), can be determined from the molar composition of the gas by

Cw, g(z) = T. Xk(z ) • Cw,, (C.4)
k

where X, is the mole fraction and Cw,, (cmLsr _) is the differential scattering cross-section

of species k, respectively (D'Alessio, 1981). The differential scattering cross-section of

species k is given by

4_ (nk- 1) 2 3

Cw'*= k4 No2 3 - 4pv., (C.5)

where k (cm) is the wavelength of the incident light, nk is the refractive index of the gas,

No (cm 3) is the number density of the molecules, and Pv_ is the depolarization ratio

(Rudder and Bach, 1968; D'Alessio, 1981). The index of refraction and the number

density must be evaluated at the same temperature and pressure. The depolarization ratio

is the ratio of the horizontally polarized scattered light to the vertically polarized light and

is given by Pv_ = Cwc_lCvv_.

We calculated the index of refraction for the individual gas species in the chemical

kinetic mechanism using the data for common combustion gases compiled by Gardiner,

Hidaka, and Tanzawa (1981) from their survey and analysis of literature data. Their data

is presented as the molar refractivity of the gas, RL (cm3.moll), defined as

n2-1 1
RL - (C.6)

n2+2 p
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where p (mol.cm 3) is the molar density of the gas at the temperature and pressure of the

refractive index measurement. For species that were common to both our reaction

mechanism and the Gardiner, Hidaka, and Tanzawa (1981) compilation, we used their

molar refractivity data at _. = 488.0 nm to calculate the index of refraction. For species in

our reaction mechanism, but not in their compilation, we calculated the molar

refractivities by summing up the atomic and bond refractivities at _. = 488.0 nm according

to the structure of the species (Gardiner, Hidaka, and Tanzawa, 1981). Since the species

not included in their compilation were present in only minor concentrations in the flame

simulations, these species will not contribute significantly to the mean mattering

cross-section and thus, any inaccuracy in the molar refractivity will be insignificant. The

index of refraction is then determined from the molar refractivity by

(1 +2p'RL/'r_n = 1 -p'R L (C.7)

We evaluated the index of refraction at 0 "C and 1 atm (p = 4.4615x10 -s mol.cm 3) to be

consistent with previous scattering-extinction measurements (Mtiller-Dethlefs, 1980;

D'Alessio, 1981). Gardiner, Hidaka, and Tanzawa (1981) also present the index of

refraction data in the form of a curve-fitted expression

a

n - 1 - b - _-2 (C.8)

where a and b are the curve-fit coefficients. This equation and their curve-fit coefficients

can be used to evaluate the index of refraction at wavelengths not in their table. We used

this expression to estimate the index of refraction at _, = 309 nm, the wavelength used in

the OH fluorescence measurements.

The depolarization ratios were based on data from four sources: Bogaard et al.

(1978), Bridge and Buckingham (1966), Rudder and Bach (1968), and D'Alessio (1981).

Data was not available for all of the species we considered in the reaction mechanisms.

The depolarization ratio is a function of the electronic structure of the molecule and of
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intermolecular forces in the gases. It is weakly dependent on the wavelength through the

wavelength dependence of the index of refraction (Rudder and Bach, 1968). The weak

dependence on wavelength allows us to estimate Pv at X = 488 nm from measurements at

other wavelengths. Measured depolarization ratios also include contributions caused by

Rarnan scattering (Bridge and Buckingham, 1966). Most of the depolarization ratios are

less that 5% and so their contributions to the scattering cross-sections are typically less

than 7%. Missing depolarization data for minor combustion species is thus unlikely to

affect the accuracy of the calculated mean differential scattering cross-sections.

Tables C.1 to C.3 list the molar refractivities, index of refraction, depolarization

ratio, and the calculated differential scattering cross-sections for the species in our

reaction mechanisms. Table C. 1 lists the data for which Gardiner, Hidaka, and Tanzawa

(1981) reported molar refractivities based on experimental measurements. Table C.2 lists

the data for species for which they calculated the molar refractivities based on atomic and

bond refractivities. Table C.3 lists the data for species which are not in their compilation

and for which we calculated the molar refractivities based on the atomic and bond

refractivities.

C.3 Calculation Procedure

The procedure to determine the temperature profile of a flame from its scattering

coefficient profile used the Sandia premixed one-dimensional flame code (Kee et al.,

1985) to determine the molar gas composition profile. Given the reactant composition,

the mass flow rate of the reactants, the pressure, and a temperature profile, the Sandia

flame code solves the conservation of mass, species, and energy equations for a

constant-pressure, steady laminar, premixed one-dimensional flame to determine the

species profiles. The reaction rates and properties of the species are specified through a

chemical kinetic reaction mechanism. Our implementation of the flame code is described

in Chapter 4 (Section 4.6). We adopted a chemical kinetic reaction mechanism reported
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TableC.1

Species

Molarrefractivity,index of refraction, depolarization ratio, and scattering
cross-section at _, = 488.0 nm for major combustion species. The molar

refractivities are taken from Table I of Gardiner, Hidaka, and Tanzawa

(1981).

Molar Index of Depolarization Cross-Section

Refractivity Refraction Ratio Cw

(mol.cm 3) (n- 1).106 100. Pv (102s cm2"sr'l)

O: 4.085 273.4 3.02 b 7.51

CO 5.062 338.8 0.521' 11.14

CO2 6.720 449.8 4.12' 20.64

H20 3.804 254.6 1.0 d 6.33

H2 2.097 140.3 0.339 c 1.91

N2 4.500 301.2 1.042' 8.868

CH4 (methane) 6.665 446.1 0.0 19.18

CzH2 (acetylene) 8.975 600.7 1.897" 35.69

Cat'I4 (ethylene) 10.864 727.1 1.266' 51.85

C21-16(ethane) 11.424 764.6 0.190" 56.51

C3l-h (allene) 16.034 1073.2 4.22' 117.67

C31-16(propylene) 15.948 1067.5 109.87

C3H8 (propane) 16.254 1088.0 0.214' 114.44

CeH_ (benzene) 26.901 1800.8 1.98" 321.15

OH (hydroxyl) 5.665 379.1 - 13.86

H (hydrogen atom) 1.752 117.3 - 1.32

O (oxygen atom) 1.902 127.3 1.56

"Bogaard et al. (1978), bBridge and Buckingham (1966), CRudder and Bach (1968),
aD'Alessio (1981)
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Table C.2 Molar refractivity, index of refraction, depolarization ratio, and scattering

cross-section at X = 488.0 tun for combustion species. The refracfivities

are calculated from atomic and bond refractivities (Table II, Gardiner,

Hidaka, and Tanzawa, 1981).

Species

Molar Index of

Refractivity Refraction

Depolarization Cross-Section
Ratio Cw

(mol.cm 3) (n- 1).106 100. Pv (102a c m2"srt)

C (carbon atom) 2.617 175.1 - 2.96

CH (methylidyne) 3.654 244.5 5.77

CH2 (methylene) 4.691 313.9 9.50

CH3 (methyl) 5.728 383.4 14.17

Call (ethynyl) 8.314 556.4 29.85

C-all3 (vinyl) 9.999 669.2 43.18

C2H_ (ethyl) 10.420 697.4 - 46.90
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Table C.3

Species

Molar refractivity, index of refraction, depolarization ratio, and scattering
cross-section at _, = 488.0 nm for combustion species not in the Gardiner,

Hidaka, and Tanzawa (1981) compilation. The refractivities are calculated
from atomic and bond refractivifies (Table II, Gardiner, Hidaka, and
Tanzawa, 1981).

Molar Index of Depolarization Cross-Section

Refractivity Refraction Ratio Cw

(mol-cm 3) (n- 1)'106 100. Dv ( 102s cme'srt)

H202 (hydrogen 5.282 353.5

peroxide)

HO 2 (hydroperoxy) 4.245 284.1

CH20 (formaldehyde) 7.173 480.1

HCO (formyl) 6.136 410.7

CH30 (methoxy) 7.433 497.5

CH2CO (ketene) 11.120 744.3

HCCO (ketyl) 10.083 674.9

C3['_ 2 11.968 801.0

C3HT(i) 15.110 1011.4

C3HT(n) 15.110 1011.4

12.05

7.78

22.22

16.26

23.86

53.41

43.91

61.87

98.62

98.62
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by Drake and Blint (1991) to describe the oxidation and pyrolysis reactions of ethylene.

We reduced the size of their mechanism to 32 species and 144 reactions by removing

those reactions involving nitrogen chemistry. Removing these reactions and species

decreased the computational time without affecting the concentrations of the major

combustion species. We specified a temperature profile as an input to the flame code,

instead of using the flame code to solve the energy equation to determine the temperature

profile. The solutions obtained by the flame code contained the temperature and species

mass fraction profiles and were stored in a binary format file for later analysis.

The temperature estimation procedure used a computer program which extracted the

temperature and mass fraction profiles from the file containing the flame code solution

and then calculated the predicted scattering coefficient profile. This program was written

using subroutines from the Chemkin-ll subroutine library (Kee, Rupley, and Miller,

1989), which read the Chemkin interpreter link file for information about the reaction

mechanism and also the binary file containing the flame code solution for the temperature

and molar composition profiles. This program reads the molar refractivity and

depolarization ratio data for each species, calculates the index of refraction for each

species using Eq. (C.7), and then calculates the differential scattering cross-section for

each species using Eq. (C.5). The mean differential scattering cross-section profile,

Cw(z), is then calculated from the molar composition profile, X_(z), and the differential

scattering cross-section for each species using Eq. (C.4). The temperature profile and the

molar composition profile are then used to calculate the number density profile. Finally,

the predicted scattering coefficient profile is calculated from the number density profile

and the mean differential scattering cross-section profile using Eq. (C. 1).

We determine the temperature profile for a flame through a trial-and-error

procedure in which we use successively refined estimates of the input temperature profile

until we closely match the predicted scattering coefficient profile to the measured

scattering coefficient profile. A sequence of successive estimates for the temperature
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profile and the resulting predicted scattering coefficient prof'des are shown for the

A-IA-S1 flame (0 = 1.78) in Figure C.1. The match of the predicted to measured

scattering coefficient profiles for the A-IA-R2 (0 = 1.63) and A-IA-S 1 (_ = 1.78) flames

are shown in Figure C.2. Figure C.2 also shows the predicted scattering coefficient

profiles for both flames when the temperature profile is adjusted proportionally to an

increase and decrease by 20 K in the peak temperature.

The initial estimate of the temperature profile for a flame can be determined by

calculating the temperature profile from the measured scattering coefficient profile using

Eq. (C.3) and a constant scattering cross-section for the burnt gas region determined from

a solution of the energy equation. This procedure was used for the initial temperature

profile estimate, (A), in Figure C. 1. An alternate initial estimate can be obtained by using

the temperature profile from a leaner flame at the same total flow rate and dilution ratio.

After the flame code solution with the initial estimate is determined, the next estimate of

the temperature prof'de can be obtained by comparing the predicted scattering coefficient

profile to the measured scattering coefficient profile. We judged the fit of the predicted

to the measured scattering coefficient profile by plotting both profiles using a logarithmic

scale for the height above the burner as in Figure C.2. Using a logarithmic scale made it

easier to compare the profiles in the region below the minimum of the scattering

coefficient profile, where the decline in the scattering coefficient is steep when shown on

a linear scale. Because of the scatter in the measured scattering coefficient data, we fit the

measured scattering coefficient profile with a polynomial of the form

Qw(z) =a_l. z -_ +ao+at. z +a 2. Z 2 (C.9)
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where a.l, ao, al, and a2 are the curve fit coefficients to obtain a smooth profile. A visual

judgment of the discrepancy between the predicted and measured scattering coefficient

profile was deemed sufficient because of the scatter of the measured scattering

coefficients and because of the relatively narrow temperature range (5:20 K) over which

the predicted profiles bracket the measured data (Figure C.2).

When the predicted profile did not match the measured profile, the next estimate of

the temperature profile was estimated from the previous temperature profile by using the

equation

r(z)= r (z) (C.lO)
Qw.,(z)

where Tp(z) is the previous estimate of the temperature profile, Qw.o(z) is the previous

predicted scattering coefficient profile, and Qw.,,,(z) is the measured scattering coefficient

profile. This equation was obtained from Eq. (C.3) by assuming little variation in the

mean scattering cross-section. Thus, this method worked well for estimating

temperatures at the peak of the temperature profile and higher, where the scattering

cross-section varies little with height. However, good estimates are not always obtained

in the region below the peak of the temperature profile where the scattering cross-section

varies significantly. Figure C.3 shows the variation of cross-section with height for four

atmospheric pressure flames with increasing equivalence ratio, but with the same cold

flow velocity and dilution ratio. We used our best judgment to estimate the temperature

profile in the region of the flame below the peak temperature. A more sophisticated

approach might take into account the variation of cross-section with temperature and

include that in a temperature estimation equation.
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C.4 Results and Discussion

The temperature profiles estimated from the scattering coefficient profiles are

shown in Figures C.4 to C.7 for four atmospheric pressure flames with the same cold flow

velocity (v¢ = 7.73 cm-sec a) and dilution ratio (D = 4.16). The first flame in the sequence,

flame A-IA-R2, is a nonsooting flame, while the remainder of the flames are visibly

sooting. For each flame, the solid line is the temperature profile obtained by fitting the

predicted scattering coefficient profile from the flame code solution to the measured

scattering coefficient profile. The dashed line is the temperature profile obtained by the

flame code when it solved the energy equation to determine the temperature. The circular

symbols correspond to the temperatures calculated using Eq. (C.3) with the measured

scattering coefficient and the calculated mean differential scattering cross-section

obtained from the flame code solution at the peak of the temperature profile (see Fig. C.3).

The estimated temperature profiles of all four flames rise to a peak temperature

closer to the burner surface than the temperature profiles from the flame code solution of

the energy equation. In each of the flames, the temperature profile of the energy equation

rises rapidly in the first few millimeters above the burner surface and then rises only

~ 10 K over the next 20 mm above the burner. The estimated temperature profiles decline

steadily with height above the peak of the temperature profile. The temperature decline

is caused by radiative losses that are not modelled in the flame code. The estimated

temperature profile also peaks at a lower height than the profile of the energy equation

solution. The likely cause for this difference is that the boundary conditions applied in

the flame code do not accurately model the flame conditions for the honeycomb plug

burner used in this experiment. The boundary conditions at the burner surface are

specified to be the mass fluxes of the reactants at a fixed temperature, usually 300 K.

Since the honeycomb plug burner is not cooled, preheating of the gases may occur so that

the initial temperature and reactant composition may differ from the model assumptions.
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Radicalspeciessuchasthehydrogenatom may also diffuse from the reaction zone back

into the burner honeycomb and initiate reactions before the reactants reach the burner

surface.

The estimated temperature in the A-IA-R2 flame (Fig. C.4) declines from a peak of

1617 K to 1547 K at 15 mm above the burner, a 60 K difference. The estimated

temperature in the lightly sooting A-IA-S1 flame (Fig. C.5) declines from a peak of

1554 K to 1489 K at 15 mm above the burner, a 65 K difference. The scattering

coefficient profile of this lightly sooting flame does not show a significant difference from

the molecular scattering coefficient background, as evidenced by the similarity of its

profile to the nonsooting flame, A-IA-R2. The estimated temperature declines more

steeply with height after the peak in the two more heavily sooting flames. The estimated

temperature of the A-IA-S2 flame (Fig. C.6) declines from the peak at 1546 K to 1375 K

at 15 mm above the burner, while that of the A-IA-S3 flame (Fig. C.7) declines from

1489K to 1117 K over the same interval. The measured scattering coefficient profiles in

these two flames have an inflection point, beginning at about 15 mm in the A-IA-S2 flame

and at 12 mm in the A-IA-S3 flame, where the scattering coefficient begins to increase

significantly because of scattering from the particles. However, below this inflection

point, the height where particle scattering begins to contribute significantly to the overall

scattering coefficient is not clear.

The steeper estimated temperature decline in the A-IA-S2 and A-IA-S3 flames

could be caused by two factors: (1) an increase in the radiative heat loss caused by

emission from soot particles and (2) an increase in the scattered light caused by incipient

soot particles and higher molecular weight species such as PAHs that have larger

scattering cross-sections than the major combustion products.
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The high molecular weight hydrocarbons will cause an increase in the scattered light

only if they are present in relatively large concentrations. For example, a benzene mole

fraction in the range of 2.5-2.9x104 would be required to produce an increase in the

scattering coefficient on the order of 4×10 n cmLsr -_, which is the uncertainty estimated

for the scattering coefficient in Appendix B. Harris et al. (1986) measured peak

concentrations of benzene at 170 ppm for a _ = 2.76 and 5 ppm for a _ =1.68 atmospheric

ethylene/oxygen/argon flame. Thus, the benzene concentrations are not likely to be large

enough to produce a significant increase in the scattering coefficient. Harris and Weiner

(1988) note that the same will be true for larger aromatics, because, even though their

cross-sections are larger than that of benzene, their concentrations are one to two orders

of magnitude smaller than that of benzene.

Since their scattering cross-sections are about three orders of magnitude larger than

that of benzene, incipient soot particles are more likely to contribute significantly to the

scattered signal. Incipient particles 1.5 nm in diameter have a scattering cross-section of

Cw ~ 1-2x10 z3 cm2.sr _ and would require a number density of Nv ~ 2-4x1012 cm "3 to

increase the scattering coefficient on the order of its uncertainty. Particles 2 nm in

diameter (Cw~6-11x1023cm2.sr i) would only require a number density of

Np ~ 4-7x10 u cm 3 to produce a similar increase in the scattering coefficient. These

number densities are of the same order of magnitude as the number of incipient particles

identified in sooting ethylene/oxygen/argon flames (Harris, Weiner, and Ashcraft, 1986).

Thus, incipient soot particles could increase the scattering coefficient in these

flames and their effect would be to produce an apparent temperature decline. Since this

same effect is also likely to occur because of the increased emission of soot particles,

these two effects will be difficult to separate. Separation would require an independent

measure of temperature, such as with a thermocouple or with optical methods, e.g.,

absorption-emission or two-color emission. Comparison of the measured temperature
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with the estimated temperature would then identify whether the apparent temperature

decline is real or not. An independent measure of temperature would also be valuable in

verifying this temperature estimation method.

The variation of the mean differential scattering cross-section with height above the

burner is shown in Figure C.3 for these four atmospheric pressure flames. Above a 1 mm

height, the scattering cross-section remains almost constant within a flame. The variation

in scattering cross-section with height from 1 mm to 15 mm above the burner is less than

0.75% for these four atmospheric pressure flames. The validity of assuming a constant

cross-section for this range is shown in Figures C.4 to C.7 which testify to the agreement

between the temperature profile calculated from the measured scattering coefficient using

a constant cross-section and the estimated temperature profile which accounted for the

variation in cross-section. The scattering cross-section at the peak of the temperature

profile (also, the minimum of the scattering coefficient profile) was chosen for these

calculations because it lies in the middle of the range of cross-sections between 1 mm and

15 mm and thus provides a scattering cross-section that is easy to identify and that reduces

the error over the cross-section range.

The scattering cross-section remains approximately constant above a height of

1 mm because the concentrations of the major species, Ns, CO, COs, HzO, and Hz, remain

approximately constant above this height and these species are responsible for 95% of the

molecular scattering cross-section. Table C.4 lists the major species and the percentage

fraction of their contribution to the scattering cross-section in the four flames at 3 mm

above the burner, the approximate height at which the peak temperature occurs.

Below the height of 1 mm above the burner, the scattering cross-section increases

significantly, because the scattering cross-section of the fuel, CsH4, and its pyrolysis

products are typically two to three times larger than those of the oxidation products, CO,

COs, and H20 (see Tables C.1 to C.3). Thus, in the reaction zone and below it, the

assumption of a constant cross-section fails. This is not critical in the atmospheric
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pressure flames, since the reaction zone is close to the burner surface and the scattering

coefficient profile cannot be resolved much below 1 mm above the burner because of

interference from the burner surface.

However, in the 80-torr flames, the scattering coefficient profile can be resolved

through the reaction zone and below it because the flame is lifted off the burner and the

reaction zone is expanded because of the low pressure. Thus, the constant cross-section

assumption was not valid throughout this region of the low-pressure profiles. An

additional factor in the variation of the cross-section is that no nitrogen diluent was used

in most of the 80-torr flames. The nitrogen diluent in the atmospheric flames damps out

variations in the scattering cross-section because its mole fraction is over 60% and thus it

contributes a major fraction of the cross-section. Without this diluent to reduce the

variation in cross-section, the temperature profiles in the 80-torr flames were difficult to

estimate by matching the predicted to the measured scattering coefficient profiles. In this

case, the predicted scattering coefficient becomes more sensitive to how well the flame

chemistry model describes the oxidation and pyrolysis of the fuel up to the reaction zone.

In the 80-torr flames without nitrogen diluent, the predicted profile could not match the

measured profile without assuming an unrealistic temperature profile for the region below

the reaction zone (less than 5 mm above the burner). However, similar to the atmospheric

pressure flames, the region around the peak of the temperature profile and higher in the

flame could be modelled, because then the major combustion products dominate the

contributions to the scattering cross-sections. This suggests that the reaction mechanism

(Drake and Blint, 1991) does not model well the oxidation and pyrolysis of ethylene for

these particular conditions in the pre-reaction zone of the 80-torr flames.

The accuracy of the Rayleigh scattering method depends on how well the flame

chemistry model predicts the actual species concentrations. For purposes of temperature

measurement, the accuracy of the model could be checked by measuring the major

combustion products in the post-flame zone. For the atmospheric-pressure flames, such
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Table C.4 Percentage contributions by the principal species to the mean differential

scattering cross-section at a height of 3 mm above the burner.

F]alTIe

Species

A-IA-R2

(0 = 1.63)

X t • CV.,/) k

_VV

(%)

A-IA-S1

(, = 1.78)

A-IA-S2

(t = 1.92)

X t "CW, t Xt 'Cw,t

A-IA-S3

(, = 2.02)

Xk •Cw,t

(%)

N2 64.77 64.08 63.17 62.60

CO 15.01 17.82 19.77 21.37

CO2 10.66 7.89 6.16 4.92

H20 7.16 6.96 6.57 6.27

H2 1.48 1.78 2.08 2.31

CH4 0.16 0.31 0.47

C2H, - - 0.10

C2H2 0.83 1.24 1.79 1.80

C-w (cm2"sr'l) 900.7x103° 885.9x10"3° 877.7x103° 872.8x103°

Temperature (K) 1616 1553 1546 1488
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a measurement could be used to calculate a scattering cross-section that, because of the

constancy of the cross-section, could be used to calculate the temperature from the

scattering coefficient through at least the peak of the profile.

The plot of the predicted and measured scattering coefficient profiles for the two

flames shown in Figure C.2 illustrates the sensitivity of the molecular scattering

coefficient to temperature. The bracketing of the measured scattering coefficient profile

by the predicted scattering coefficient prof'de when the peak of the temperature profile is

varied by + 20 K indicates the potential resolution of the method. Given the uncertainty

of r)Q,co = 4.2x10 n cm't'sr _ estimated for the scattering coefficient measurement in

Appendix B, the corresponding uncertainty in the temperature is :l: 15 K for the range of

temperatures in the four atmospheric pressure flames shown here. This uncertainty does

not include any uncertainty in the scattering cross-section. An evaluation of the

uncertainty of the Rayleigh scattering method would require an separate measure of the

gas composition and a finite-difference approximation approach similar to that in

Appendix B.

C.5 Conclusions and Recommendations

We have demonstrated the theory and application of a procedure to determine the

temperature profiles of the flames in this study by matching the predicted Rayleigh

scattering coefficient profile obtained with the Sandia flame code to the measured

Rayleigh scattering coefficient profile. Temperature profiles were estimated for four

atmospheric pressure ethylene flames. For these flames, a constant scattering

cross-section can be assumed to calculate the temperature from the scattering coefficient

for heights greater than 1 mm above the burner. This assumption is sufficient to

determine the peak of the temperature profile. Below the reaction zone in the

atmospheric-pressure flames and in the 80-tort flames, the variation of the scattering

cross-section must be considered when calculating the temperature.
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The molecular scattering coefficient has a high sensitivity to temperature and thus

the method has the potential for high resolution. The resolution of the temperature

measurement is estimated to be 4- 15 K for the experimental setup of this study. The

accuracy of the method, however, was not evaluated or measured. The technique should

be verified by measuring the temperature of the flame with a second method such as with

other optical techniques or with a thermocouple. The accuracy of the measurement will

also depend on how well the flame chemistry model predicts the actual gas composition.

Again, an independent measure of the gas composition in the post-flame zone could be

used to verify the accuracy of the flame chemistry model or actually eliminate the need to

use the model if a constant scattering cross-section assumption should prove valid.

Measurements in flames that have a significant nitrogen diluent mole fraction will be less

sensitive to the accuracy of the flame chemistry model.

The interference from particle scattering in sooting flames limits the usefulness of

this thermometric method because the contributions from molecular scattering and

panicle scattering cannot be separated. The temperature can then be estimated only in the

regions of the flame that can be identified as nonsooting. Measurement of the temperature

profile by a second method would be useful for sooting flames because the molecular

scattering coefficient background could be predicted and then subtracted from the

measured scattering coefficient profile to obtain the particle scattering coefficient.
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Appendix D: Summary_ of Scattering-Extinction Data for the Atmospheric-Pressure
Flames

We present here the data obtained from the scattering-extinction measurements for

the atmospheric-pressure flames. The extinction and scattering coefficient profiles

presented in Figures 5.1 to 5.11 are tabulated to facilitate their use for modelling. In

addition, we tabulate the profiles of the argon-ion laser-induced fluorescence coefficients

presented in Figure 5.17. We also list the temperature profiles determined from the

scattering coefficient profiles. These temperature profiles were subsequently used for the

chemical kinetic modelling.

Tables D.1 to D.14 list the normalized transmittance and extinction coefficient

profiles for the atmospheric-pressure flames. The data analysis to determine these

profiles is described in Sections 4.4.4 and B.4. The normalized transmittance was

calculated using Eqs. (4.4.2) and (4.4.7) from the transmittance signal ratio. The standard

deviation of the transmittance was calculated from the measured samples of the

transmittance signal ratio as described in Section B.4. The extinction coefficient was

calculated from the normalized transmittance using Eq. (4.4.10) with the pathlength,

L = 5.6 cm. The standard deviation of the extinction coefficient was calculated from the

standard deviation of the transmittance using Eq. (B.23) and assuming no error in the

pathlength.

Tables D.15 to D.28 list the scattering coefficient profiles for the

atmospheric-pressure flames. The total scattering coefficient profiles, Q_,,(z), are listed

for all the flames. The total scattering coefficient was calculated from the scattering

signal ratio using Eq. (4.4.5). The standard deviation was calculated from the measured

samples of the scattering signal ratio as described in Section B.4. For the sooting flames,

we also list the particle scattering coefficient. The particle scattering coefficient was

calculated from the total scattering coefficient by subtracting the molecular scattering
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coefficient as described in Sections 4.4.4 and 5.3.1. For the flames in which the argon-ion

laser-induced fluorescence background could be determined, the 'corrected' particle

scattering coefficient determined by subtracting the fluorescence coefficient is listed.

Tables D.29 to D.32 list the profiles of the argon-ion laser-induced fluorescence

detected at both 473 nm and 503 nm. The fluorescence profiles detected at 503 nm are

shown in Figure 5.17. The fluorescence profiles detected at 473 nm are not presented in

the text because of their similarity to the profiles detected at 503 rim, but are tabulated

here for reference. The standard deviation was calculated from the measured samples of

the fluorescence signal ratio as described in Section B.4.

Tables D.33 to D.36 list the temperature profiles determined from the scattering

coefficient profiles for the atmospheric-pressure flames. The temperature data presented

here are shown in Figures 5.29 to 5.31. These temperature profiles were determined using

the procedure described in Appendix C. For the sooting flames, the temperatures are

listed only up to the height at which particle scattering becomes significant.
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Table D. 1 Normalized transmittance and extinction coefficient profiles of the
A-IA-R2 flame (_ = 1.63, vc = 7.73 cm.sec 1, D = 4.15).

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm "_) Devialion

1. 0.875 9.9940E- 1 1.4056E-4 1.0753E-4 2.5115E-5
2. 1.375 9.9951 E- I 1.2549E-4 8.6807E-5 2.2419E-5
3. 1.875 9.9949E- 1 7.0418E-5 9.1452E-5 1.2581E-5
4. 2.375 9.9953E- 1 8.6276E-5 8.3591E-5 1.5414E-5
5. 2.875 9.9949E- I 1.0796E-4 9.1988E-5 1.9289E-5

6. 3.375 9.9956E-1 9.2893E-5 7.8589E-5 1.6595E-5
7. 3.875 9.9959E- 1 1.1276E-4 7.2872E-5 2.0144E-5
8. 4.375 9.9960E-1 1.0181E-4 7.1800E-5 1.8188E-5
9. 4.875 9.9951 E- 1 9.2506E-5 8.7164E-5 1.6527E-5
10. 5.375 9.9950E- 1 1.3316E-4 8.9487E-5 2.3790E-5

11. 5.875 9.9956E- 1 6.9957E-5 7.8053E-5 1.2498E-5
12. 6.375 9.9962E- 1 1.1207E-4 6.7691E-5 2.0019E-5
13. 6.875 9.9956E- 1 1.1086E-4 7.8410E-5 1.9805E-5
14. 7.375 9.9956E- 1 1.1786E-4 7.8946E-5 2.1056E-5
15. 7.875 9.9958E-1 1.2722E-4 7.5909E-5 2.2728E-5

16. 8.375 9.9960E-1 1.1004E-4 7.2157E-5 1.9658E-5
17. 8.875 9.9967E- 1 1.0079E-4 5.8402E-5 1.8003E-5
18. 9.375 9.9961 E- 1 1.3642E-4 6.9299E-5 2.4370E-5
19. 9.875 9.9956E- 1 8.6347E-5 7.8589E-5 1.5426E-5
20. 10.375 9.9966E- 1 1.1869E-4 6.1618E-5 2.1203E-5

21. 10.875 9.9966E-1 8.7938E-5 6.1261E-5 1.5709E-5
22. 11.375 9.9970E-1 5.6357E-5 5.4473E-5 1.0067E-5
23. 11.875 9.9971E-1 1.3241E4 5.1079E-5 2.3651E-5
24. 12.375 9.9979E-1 9.2706E-5 3.7861E-5 1.6558E-5
25. 12.875 9.9973E- 1 8.9632E-5 4.7864E-5 1.6010E-5

26. 13.375 9.9977E- 1 9.9963E-5 4.1433E-5 1.7855E-5
27. 13.875 9.9984E- 1 1.0755E-4 2.8752E-5 1.9209E-5
28. 14.375 1.0000 1.0008E4 0.0 --
29. 14.875 9.9982E- 1 9.9755E-5 3.2324E-5 1.7817E-5
30. 15.375 9.9986E- 1 1.1055E-4 2.4823E-5 1.9744E-5

31. 15.875 9.9985E- 1 1.1595E-4 2.6966E-5 2.0708E-5
32. 16.375 9.9984E- 1 9.4534E-5 2.8574E-5 1.6884E-5
33. 16.8'75 9.9994E- 1 9.3062E-5 1.0000E-5 1.6619E-5
34. 17.375 9.9995E- 1 1.3285E-4 9.8217E-6 2.3725E-5
35. 17.875 9.9992E- 1 1.2653E-4 1.3929E-5 2.2596E-5

36. 18.375 9.9996E- 1 8.9329E-5 6.6073E-6 1.5952E-5
37. 18.875 1.0000 1.0333E-4 0.0 --
38. 19.375 1.0000 9.4107E-5 0.0 --
39. 19.875 9.9995E-1 8.1275E-5 9.1074E-6 1.4514E-5
40. 20.375 1.0000 1.1642E-4 0.0 --
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TableD.2 Normalized transmittance and extinction coefficient profiles of the
A-IA-S1 flame (_b = 1.78, vc = 7.73 cm.sec _, D = 4.16).

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm") Deviation

1. 0.875 9.9961E-1 8.8665E-5 6.9835E-5 1.5839E-5
2. 1.375 9.9982E- 1 7.9252E-5 3.1789E-5 1.4155E-5
3. 1.875 9.9985E-1 1.0486E-4 2.6431E-5 1.8727E-5
4. 2.375 9.9983F.,-1 9.5641E-5 2.9824E-5 1.70821/-5
5. 2.875 9.9984E- 1 9.7442E-5 2.7859E-5 1.7403E-5

6. 3.375 9.9978E- 1 1.02471/,4 3.9469E-5 1.8302E-5
7. 3.875 9.9990E- 1 1.1840E-4 1.8037E-5 2.1145E-5
8. 4.375 9.9984E- 1 6.8076E-5 2.7859E-5 1.2158E-5
9. 4.875 9.9987E-1 1.0002E-4 2.3394E-5 1.7863E-5
10. 5.375 9.9974E- 1 8.7945E-5 4.7149E-5 1.5709E-5

1 I. 5.875 9.9992E- 1 7.5503E-5 1.4286E-5 1.3484E-5
12. 6.375 9.9985E- I 1.1270E-4 2.7145E-5 2.0128E-5
13. 6.875 9.9998E- 1 8.5856E-5 4.2858E-6 i .5332E-5
14. 7.375 9.9994E- 1 1.0958E-4 1.0893E-5 1.9569E-5
15. 7.875 9.9988E- 1 8.4869E-5 2.125 IE-5 1.5157E-5

16. 8.375 9.9982E- 1 9.6295E-5 3.2860E-5 1.7199E-5
17. 8.875 1.0000 6.8945E-5 0.0 --
18. 9.375 9.9993E- 1 9.8758E-5 1.21431/-5 1.7637E-5
19. 9.875 9.9993E- 1 1.08221/-4 1.23221/-5 1.9326E-5
20. 10.375 9.9987E- 1 1.0098E-4 2.3037E-5 1.80ME-5

21. 10.875 9.99841/- 1 9.25621/-5 2.8217E-5 1.6532E-5
22. 11.375 9.9994E- 1 8.9671E-5 1.14291/-5 1.6014E-5
23. 11.875 9.9994E- 1 9.0450E-5 1.0536E-5 1.6153E-5
24. 12.375 9.99861/- 1 9.3283E-5 2.50021/-5 1.6660E-5
25. 12.875 9.9990E- 1 6.4700E-5 1.75011/-5 1.1555E-5

26. 13.375 9.9988E-1 7.4337E-5 2.2144E-5 1.3276E-5
27. 13.875 1.13000 9.03831/-5 0.0 --
28. 14.375 1.0000 1.2001E-4 0.0 --
29. 14.875 9.9997E- 1 1.0790E-4 6.0715E-6 1.9269E-5
30. 15.375 1.0000 1.10171/-4 0.0 --

31. 15.875 9.9992E- 1 9.3529E-5 1.4465E-5 1.6703E-5
32. 16.375 9.9987E- 1 8.8367E-5 2.26801/-5 1.5782E-5
33. 16.875 9.99871/- 1 1.1287E-4 2.2859E-5 2.0159E-5
34. 17.375 1.01300 1.22711/-4 0.0 --
35. 17.875 1.0000 1.1226E-4 0.0 --

36. 18.375 9.9991E- 1 1.309 IE-4 1.6251E-5 2.3379E-5
37. 18.875 9.9999E- 1 5.7143E-5 1.0714E-6 1.0204E-5
38. 19.375 1.0000 8.0484E-5 0.0 --
39. 19.875 1.0000 8.2116E-5 0.0 --
40. 20.375 9.9998E- 1 1.3908E-4 3.3929E-6 2.4837E-5

376



Table D.3 Normalized transmittance and extinction coefficient profiles of the
A-IA-S2 flame (_ = 1.92, vc = 7.75 cm.sec "I, D = 4.17).

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm "1) Deviation

1. 0.894 9.9957E- 1 8.3502E-5 7.6802E-5 1.4917E-5
2. 1.394 1.0000 6.5712E-5 0.0 --
3. 1.894 9.9994E- 1 6.6569E-5 1.0000E-5 !.1888E-5
4. 2.394 1.0000 7.3544E-5 0.0 --
5. 2.894 9.9990F_,-1 9.0604E-5 1.7501E-5 1.6181E-5

6. 3.394 9.9990E- 1 9.2355F,-5 1.7501E-5 1.6494E-5
7. 3.894 9.9987E- 1 8.2620E-5 2.3216E-5 1.4756E-5
8. 4.394 9.9985E- 1 9.3341E-5 2.6966E-5 1.6671E-5
9. 4.894 9.996 IF,-1 7.7977E-5 7.037 IE-5 1.3930E-5
10. 5.394 9.9946E- 1 8.6244E-5 9.6633E-5 1.5409E-5

11. 5.894 9.9937E- 1 7.4677E-5 1.1289E-4 1.3344E-5
12. 6.394 9.9924F_,- 1 8.2658E-5 1.3505E-4 1.4772E-5
13. 6.894 9.9906E- 1 8.6185E-5 1.6794E-4 1.5405E-5
14. 7.394 9.9896E- 1 9.7037E-5 1.8599E-4 1.7346E-5
15. 7.894 9.9884E- 1 1.0317E-4 2.0691E-4 !.8445E-5

16. 8.394 9.9872E- 1 7.4009E-5 2.2800E-4 1.3233E-5
17. 8.894 9.9845E- 1 9.2043E-5 2.7700E-4 1.6462E-5
18. 9.394 9.9829E- 1 1.0416E-4 3.0490E-4 1.8631E-5
19. 9.894 9.9819E- 1 9.5034E-5 3.2279E-4 1.7001E-5
20. 10.394 9.9783E- 1 9.6984E-5 3.8828E-4 1.7356E-5

21. 10.894 9.9760E- 1 9.3168E-5 4.2927E-4 1.6677F-,-5
22. 11.394 9.9742E- 1 1.0903E-4 4.6059E-4 1.9521E-5
23. 11.894 9.9726E- 1 1.3127E-4 4.9014E-4 2.3505E-5
24. 12.394 9.9714E- 1 1.2964E-4 5. 1127E-4 2.3217E-5
25. 12.894 9.9679E- 1 7.4268E-5 5.7467E-4 1.3305E-5

26. 13.394 9.967 IE- 1 1.0550E-4 5.8793E-4 1.8902E-5
27. 13.894 9.9644E-1 1.2467E-4 6.3685E-4 2.2343E-5
28. 14.394 9.9637E- 1 8.7631E-5 6.4886E-4 1.5705E-5
29. 14.894 9.9608E- 1 1.3263E-4 7.0227E-4 2.3777E-5
30. 15.394 9.9608E- 1 9.5874E-5 7.0138E-4 1.7188E-5

31. 15.894 9.9545E-1 1.1369E-4 8.1382E-4 2.0395E-5
32. 16.394 9.9536E- 1 1.3250E-4 8.2978E-4 2.3771E-5
33. 16.894 9.9522E- 1 1.4028E-4 8.5508E-4 2.5171E-5
34. 17.394 9.9497E- 1 1.6718E-4 9.0084E-4 3.0005E-5
35. 17.894 9.9481 E- 1 1.4794E-4 9.2974E-4 2.6556E-5

36. 18.394 9.9479E-1 1.7526E-4 9.3225E-4 3.1459E-5
37. 18.894 9.9439E-1 1.7955E-4 1.0046E-3 3.2244E-5
38. 19.394 9.9434E- 1 1.4511E-4 1.0132E-3 2.6060E-5
39. 19.894 9.9422E-1 1.7797E-4 1.0351E-3 3.1964E-5
40. 20.394 9.9407E- 1 1.3562E-4 1.0617E-3 2.4363E-5

377



Table D.4 Normalized transmittance and extinction coefficient profiles of the
A-IA-S3 flame (_ = 2.02, vc = 7.74 cm.sec _, D = 4.16).

Extinction
Height Standard Coefficient Standard
(ram) Transmittance Deviation (cm "1) Deviation

1. 0.875 9.9980E- 1 7.8827E-5 3.5897E-5 1.4079E-5
2. 1.375 9.9997E- 1 8.7657E-5 5.0001E-6 1.5654E-5
3. 1.875 1.0000 7.9697E-5 0.0 --
4. 2.375 1.0(_00 6.3190E-5 0.0 --
5. 2.875 9.9986E-1 7.8295E-5 2.50021/-5 1.3983E-5

6. 3.375 9.997 IF,- 1 8.5991E-5 5.1079E-5 1.5360E-5
7. 3.875 9.9934E- 1 7.4329E-5 1.1736E-4 1.3282E-5
8. 4.375 9.9902E- 1 6.8752E-5 1.7509E-4 1.2289E-5
9. 4.875 9.9878E- 1 9.3649E-5 2.1799E-4 1.6743E-5
10. 5.375 9.9836E- 1 8.3737Eo5 2.9346E-4 1.4978E-5

11. 5.875 9.9792E- 1 9.5210E-5 3.727 IE-4 1.7037E-5
12. 6.375 9.9731E- 1 9.3026E-5 4.8136E-4 1.6657E-5
13. 6.875 9.969 IF,,-1 8.2509E-5 5.5282E-4 1.4780E-5
14. 7.375 9.9625E- 1 8.3557E.-5 6.7054E-4 1.4977E-5
15. 7.875 9.9568E- 1 9.4657E-5 7.7346E-4 1.6976E-5

16. 8.375 9.9507F,,- 1 9.6586E-5 8.8325E-4 1.7333E-5
17. 8.875 9.9434E- 1 1.3281E-4 1.0143E-3 2.3851E-5
18. 9.375 9.9385E- 1 1.1386E-4 1.1025E-3 2.0459E-5
19. 9.875 9.9287E- 1 1.1216E-4 1.2772F_,-3 2.0172E-5
20. 10.375 9.9234E- 1 9.1260E-5 1.3724E-3 1.6422E-5

21. 10.875 9.9182E- 1 1.3647E-4 1.4664E-3 2.4570E-5
22. 11.375 9.9097E- 1 1.1349E-4 1.6202E-3 2.0451E-5
23. 11.875 9.9018E-1 1.2231E-4 1.7630E-3 2.2059E-5
24. 12.375 9.8964E- 1 1.2749E-4 1.8600E-3 2.3005E-5
25. 12.875 9.892 IE- 1 1.3959E-4 1.9374E-3 2.5199E-5

26. 13.375 9.8839E-1 1.8396E-4 2.0861E-3 3.3235E-5
27. 13.875 9.8789E-1 1.6451E-4 2.1752E-3 2.9736E-5
28. 14.375 9.8729E- 1 1.5394E-4 2.2851E-3 2.7844E-5
29. 14.875 9.8669E- 1 1.8340E-4 2.3927E-3 3.3191E-5
30. 15.375 9.861 IE-I 1.7359E-4 2.4972E-3 3.1435E-5

31. 15.875 9.8524E- I 1.853 IE-4 2.6557E-3 3.3587E-5
32. 16.375 9.8492E- 1 1.8514E-4 2.7137E-3 3.3568E-5
33. 16.875 9.8437E- 1 3.08761/-4 2.8131E-3 5.6012E-5
34. 17.375 9.8374E- 1 2.9598E-4 2.9269E-3 5.3728E-5
35. 17.875 9.8305E-1 2.1698E-4 3.05201/-3 3.9413E-5

36. 18.375 9.8291E- 1 2.6557E-4 3.0787E-3 4.8248E-5
37. 18.875 9.8240E- 1 4.2268E-4 3.1707E-3 7.6830E-5
38. 19.375 9.8153E- 1 3.2920E-4 3.3283E-3 5.9891E-5
39. 19.875 9.8092E- 1 2.7110E-4 3.4399E-3 4.9351E-5
40. 20.375 9.8054E- 1 3.8231E-4 3.5094E-3 6.9624E-5
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Table D.5

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Normalized transmittance and extinction coefficient profiles of the
A-IA-S4 flame (_ = 2.17, vc = 7.75 cm-sec _, D = 4.16).

Extinction
Height Standard Coefficient Standard
(nun) Transmittance Deviation (cm 1) Deviation

0.534 9.9867E- 1 1.1247E-4 2.3766E--4 2.0111E-5
0.734 9.9928E- 1 7.6378E-5 1.2862E--4 1.3649E-5
0.924 9.9942E- 1 5.6205E-5 1.0396E-4 1.0043E-5
0.934 9.9985E- 1 9.2799E-5 2.7324E-5 1.6574E-5
1.134 9.9984E-1 7.7530E-5 2.8752E-5 1.3847E-5

1.334 1.0000 6.6453E-5 0.0 --
1.424 1.0030 6.2781E-5 0.0 --
1.534 9.9996E- 1 5.1396E-5 8.0359E-6 9.1782E-6
1.734 9.9998E- 1 6.8689E-5 3.5715E-6 1.2266E-5
1.924 9.9986E- 1 7.0044E-5 2.5538E-5 1.2510E-5

1.934 9.9992E- 1 5.1711E-5 1.3751E-5 9.2348E-6
2.1 34 9.9990E- 1 7.8277E-5 1.7858E-5 1.3979E-5
2.334 9.9969E- 1 1.2373E-4 5.6259E-5 2.2102E-5
2A24 9.9959E- 1 5.6647E-5 7.2515E-5 1.0120E-5
2.534 9.9965E- 1 9.8180E-5 6.2154E-5 1.7538E-5

2.734 9.9930E- 1 5.8013E-5 1.2594E-4 1.0367E-5
2.924 9.9890E- 1 1.2134E-4 1.9618E-4 2.1691E-5
2.934 9.9917E- 1 5.8653E-5 1.4917E-4 1.0483E-5
3.134 9.9870E- 1 7.0525E-5 2.3158E4 1.2610E-5
3.334 9.9828E- 1 5.7023E-5 3.0777E-4 1.0200E-5

3.424 9.9790E-1 4.2732E-5 3.7539E-4 7.6468E-6
3.534 9.9774E- 1 7.6355E-5 4.0367E-4 1.3666E-5
3.734 9.9734E- 1 4.1571E-5 4.7492E-4 7.4432E-6
3.924 9.9650E- 1 6.364 IE-5 6.2592E-4 1.1404E-5
3.934 9.9649E- 1 6.4795E-5 6.2878E-4 1.1611E-5

4.134 9.9585E- 1 8.3662E-5 7.426 1E-4 1.5002E-5
4.334 9.9502E- 1 7.798 IE-5 8.9187E-4 1.3995E-5
4.424 9.9468E- 1 7.8293E-5 9.5218E-4 1.4056E-5
4.534 9.9411 E- 1 1.6110E-4 1.0556E-3 2.8939E-5
4.734 9.9325E-1 7.9472E-5 1.2087E-3 1.4288E-5

4.924 9.9234E-1 7.2603E-5 1.3740E-3 1.3065E-5
4.934 9.9247E- 1 5.4137E-5 1.3503E-3 9.7407E-6
5.134 9.9146E- 1 8.8787E-5 1.5317E-3 1.599 IE-5
5.334 9.9049E- 1 4.2311E,-5 1.7056E-3 7.6281E-6
5.424 9.8984E- 1 6.7275E-5 1.8230E-3 1.2137E-5

5.534 9.8942E- I 9.9261E-5 1.8994E-3 1.7915E-5
5.734 9.8828E- 1 5.7448E-5 2.1045E-3 1.0380E-5
5.924 9.8710E- 1 8.4662E-5 2.3191E-3 1.5316E-5
5.934 9.8721 E- 1 8.8927E-5 2.2996E-3 1.6086E-5
6.134 9.8575E- 1 6.0667E-5 2.5635E-3 1.0990E-5

6.424 9.8379E- 1 1.1769E-4 2.9191E-3 2.1363E-5
6.924 9.8047E-1 1.9075E-4 3.5229E-3 3.4740E-5
7.424 9.7686E- 1 2.8232E-4 4.1813E-3 5.1609E-5
7.924 9.7287E- 1 3.8501E-4 4.9108E-3 7.0669E-5
8.424 9.6929E- 1 2.4206E-4 5.5701E-3 4.4594E-5
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Table D.5 continued

Height
(mm)

46. 8.924
47. 9A24
48. 9.924
49. 10.424
50. 10.924

51. 11.424
52. 11_24
53. 12A24
54. 12.924
55. 13A24

Transmittance
Standard
Deviation

Extinction
Coefficient

(cm")
Standard
Deviation

9.6421E-1
9.6032E-1
9.5745E-1
9.5246E-1
9Ag41E-I

2.5656E-4
1.5232E-4
1.0144E-3
4.3860E-4
9.5512E-4

6.5082E-3
7.2305E-3
7.7655E-3
8.6979E-3
9A579E-3

4.7515E-5
2.8323E-5
1.8920E-4
8.2232E-5
1.7983E-4

9A520E-1
9AI09E-I
9.3837E-1
9.3379E-1
9.2673E-1

1.2038E-3
4.3974E-4
6.36321/.4
5.8298E-4
1.3776E-3

1.0065E-2
1.0842E-2
1.1359E-2
1.2233E,-2
1.3589E-2

2.2743E-4
8.3440F,-5
1.2109E-4
1.1149E-4
2.6546E-4

56. 13.924 9.249 IE- 1 1.0176E-3 1.3938E-2 1.9646E-4
57. 14.424 9.1970E- I 1.1114E-3 1A949E-2 2.1580E-4
58. 14.924 9.1627E- 1 1.6763E-3 1.5616E-2 3.2669E-4
59. 15.424 9.1209E- 1 2.5267E-3 1.6432E-2 4.9469E-4
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Table D.6

I.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Normalized transmittance and extinction coefficient profiles of the
A-IA-S5 flame (_ = 2.32, vc = 7.75 cm.sec _, D = 4.16).

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm t ) Deviation

0.534 9.9867E- 1 1.1247E-4 2.3766E-4 2.011 IE-5
0.734 9.9928E- 1 7.6378E-5 1.2862E4 1.3649E-5
0.924 9.9942E- 1 5.6205E-5 1.0396E-4 1.0043E-5
0.934 9.9985E- 1 9.2799E-5 2.7324E-5 1.6574E-5
1.134 9.9984E-1 7.7530E-5 2.8752E-5 1.3847E-5

1.334 1.0000 6.6453E-5 0.0 --
1.424 1.0000 6.2781E-5 0.0 --
1.534 9.9996E- 1 5.1396E-5 8.0359E-6 9.1782E-6
1.734 9.9998E- 1 6.8689E-5 3.5715E-6 1.2266E-5
1.924 9.9986E- 1 7.0044E-5 2.5538E-5 1.2510E-5

1.934 9.9992E- 1 5.1711E-5 1.3751E-5 9.2348E-6
2.1 34 9.9990E- 1 7.8277E-5 1.7858E-5 1.3979E-5
2.334 9.9969E- 1 1.2373E-.4 5.6259E-5 2.2102E-5
2.424 9.9959E- 1 5.6647F_,-5 7.2515E-5 1.0120E-5
2.534 9.9965E- 1 9.8180E-5 6.2154E-5 1.7538E-5

2.734 9.9930E-1 5.8013E-5 1.2594E-4 1.0367E-5
2.924 9.9890E-1 1.2134E-4 1.9618E-4 2.1691E-5
2.934 9.9917E- 1 5.8653E,-5 1.4917E-.4 1.0483E-5
3.134 9.9870E- 1 7.0525E-5 2.3158E4 1.2610E-5
3.334 9.9828E-1 5.7023E-5 3.0777E-4 1.0200E-5

3.424 9.9790E- 1 4.27321/,-5 3.7539E-4 7.6468E-6
3.534 9.9774E- 1 7.6355E-5 4.0367E-4 1.3666E-5
3.734 9.9734E- 1 4.1571E-5 4.7492E-4 7.4432E-6
3.924 9.9650E- 1 6.3641E-5 6.2592E-4 1.1404E-5
3.934 9.9649E- 1 6.4795E-5 6.2878E-4 1.1611E-5

4.134 9.9585E-1 8.3662E-5 7.4261E-4 1.5002E-5
4.334 9.9502E- 1 7.7981E-5 8.9187E-4 1.3995E-5
4.424 9.9468E- 1 7.8293E-5 9.5218E-.4 1.4056E-5
4.534 9.9411E-1 1.6110F__,-4 1.0556E-3 2.8939E-5
4.734 9.9325E- 1 7.9472E-5 1.2087E-3 1.4288E-5

4.924 9.9234E- 1 7.2603E-5 1.3740E-3 1.3065E-5
4.934 9.9247E-1 5.4137E-5 1.3503E-3 9.7407E-6
5.134 9.9146E-1 8.8787E-5 1.5317E-3 1.599 IE-5
5.334 9.9049E-1 4.2311E-5 1.7056E-3 7.628 IE-6
5.424 9.8984E- 1 6.7275E-5 1.8230E-3 1.2137E-5

5.534 9.8942E- 1 9.9261E-5 1.8994E-3 1.7915E-5
5.734 9.8828E- 1 5.7448E-5 2. llM5E-3 1.0380E-5
5.924 9.8710E- 1 8.4662E-5 2.3191E-3 1.5316E-5
5.934 9.8721 E- 1 8.8927E-5 2.2996E-3 1.6086E-5
6.134 9.8575E- 1 6.0667E-5 2.5635E-3 1.0990E-5

6.424 9.8379E- 1 1.1769E-4 2.9191E-3 2.1363E-5
6.924 9.8047E-1 1.9075E-4 3.5229E-3 3.4740E-5
7.424 9.7686E- 1 2.8232E-4 4.1813E-3 5.1609E-5
7.924 9.7287E- 1 3.8501E-4 4.9108E-3 7.0669E-5
8.424 9.6929E- 1 2.4206E-4 5.5701E-3 4.4594E-5
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Table D.6 continued

Height
(nun)

46. 8.924
47. 9.424
48. 9.924
49. 10.424
50. 10.924

Transmittance
Standard
Deviatioa

Extinction
Coefficient

(cm")

9.6421B-1
9.6032E-1
9.5745E-1
9.5246E- 1
9A841E-I

2.5656E-4
1.5232E.4
1.0144E-3
4.3860E-4
9.5512E-4

6.5082E-3
7.2305E-3
7.7655E-3
8.6979E-3
9.4579E-3

Standard
I_viation

4.7515E-5
2.8323E-5
1.8920E-4
8.2232E-5
1.7983E-4

51. 11.424 9A520E- 1 1.2038E-3 1.0065E-2 2.2743E-4
52. 11.924 9A 109E- 1 4.3974E-4 1.0842E-2 8.3440E-5
53. 12A24 9.3837E-1 6.3632E-4 1.1359E-2 1.2109E-4
54. 12.924 9.3379E- 1 5.8298E-4 1.2233E-2 1.1149E-4
55. 13A24 9.2673E-1 1.3776E-3 1.3589E-2 2.6546E-4

56. 13.924 9.249 IE- 1 1.0176E-3 1.3938E-2 1.9646E-4
57. 14A24 9.1970E- 1 1.1114E-3 1A949E-2 2.1580E-4
58. 14.924 9.1627E- 1 1.6763E-3 1.5616E-2 3.2669E-4
59. 15A24 9.1209E- 1 2.5267E-3 1.6432E-2 4.9469E-4
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Table D.7 Normalized transmittance and extinction coefficient profiles of the
A-IB-C flame (_ = 1.67, vc = 7.87 cm.sec _, D = 3.31).

I.

2.
3.
4.
5.

Extinction
Height Standard Coefficient Standard
(ram) Transmittance Deviation (cm _) Deviation

0.672 9.9954E- 1 5.6438E-5 8.1983E-5 1.0083E-5
0.872 9.9977E- 1 5.9698E-5 4.0362E-5 1.0663E-5
0.872 9.9942F_,-1 7.7776F_,-5 1.0360E-4 1.3897E-5
1.072 1.0000 5.5184E,-5 0.0 --
1.272 9.9993E-1 8.7728E-5 1.1965E-5 1.5667E-5

o

7.
8.
9.
10.

1.372 9.9972E- 1 7.1288F_,-5 4.9293E-5 1.2734E-5
1.472 9.9990E- 1 6.2782E-5 1.7679E-5 1.1212E-5
1.672 1.0000 5.4731E-5 0.0 --
1.872 9.9971E-1 9.1027E-5 5.1615E-5 1.6260E-5
1.872 1.0000 9.4202E-5 0.0 --

11.
12.
13.
14.
15.

2.072 9.9991 E- 1 5.3685E-5 1.60721/-5 9.5874E-6
2.272 1.0000 5.6803E-5 0.0 --
2.372 1.0000 6.4542E-5 0.0 --
2.472 1.0000 5.6848E-5 0.0 --
2.677 1.0000 5.7434E-5 0.0 --

16.
17.
18.
19.
20.

2.872 9.9970E-1 6.6716E-5 5.3222E-5 1.1917E-5
2.872 1.0000 4.7341E-5 0.0 --
3.072 9.9994E- 1 5.7410E-5 1.1608E-5 1.0253E-5
3.272 1.0000 8.7050E-5 0.0 --
3.372 9.9994E- 1 7.0603E-5 1.1072E-5 1.2609E-5

21.
22.
23.
24.
25.

3.472 9.9998E- 1 6.2063E-5 3.9286E-6 1.1083E-5
3.672 1.0000 5.1548E-5 5.3572E-7 9.2051E-6
3.872 9.9979E-1 7.8048E-5 3.7683E-5 1.3940F,-5
3.872 9.9992E- 1 4.9542E-5 1.3751E-5 8.8475E-6
4.072 1.00_ 1.0073E-4 0.0 --

26.
27.
28.
29.
30.

4.272 1.0000 5.7134E-5 0.0 --
4.372 9.9993E- 1 7.0234E-5 1.232ZE-5 1.2543E-5
4.472 1.00120 6.0041E-5 0.0 --
4.672 9.9999E- 1 4.5038E-5 1.6072E-6 8.0425E-6
4.872 9.9991E- 1 5.7590E-5 1.5715E-5 1.0285E-5

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

4.872 9.9967E- 1 9.7320E-5 5.8581E-5 1.7384E-5
5.072 9.9993E-1 8.1M99E-5 1.3393E-5 1.4376E-5
5.272 9.9999E-1 5.1732E-5 1.6072E-6 9.2379E-6
5.372 1.00120 8.6888E-5 0.0 --
5.472 9.9981 E- 1 8.9502E-5 3.3217E-5 1.5986E-5

5.672 1.0000 4.6952E-5 0.0 --
5.872 9.9996E- 1 8.7016E-5 7.8573E-6 1.5539E-5
5.872 9.9973E- 1 1.1861E-4 4.8399E-5 2.1187E-5
6.072 1.0000 8.0526E-5 0.0 --
6.372 9.9991 E- 1 8.1503E-5 1.6608E-5 1.4556E-5

6.872 9.9982E- 1 6.0085E-5 3.1610E-5 1.0731E-5
7.372 9.9985E- I 8.4099F,-5 2.6252E-5 1.5020E,-5
7.872 9.9960E- 1 1.0086E--4 7.1979E-5 1.8017E-5
8.372 9.9976E- 1 1.1683E-4 4.3220F_,-5 2.0868E-5
8.872 9.9989E-1 6.9955E-5 1.8930E-5 1.2493E-5
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Table D.7 continued

6,

47.
48.
49.
50.

Bxtinction
Height Standard Coefficient
(mm) _ Deviation (¢m, I)

9.372 9.99891_1 1.15441_ 1,.9108E-5
9.872 9.99881_1_ 8AI64B-5 2.I787E-5
10.372 9.999_'1_1_ 7.9396E-5, 9.8217E-6
10.872 9.99771_1 L6746B-4' 4,1076E-5
11.372 9,9998F_1 &8241B-5 3.2143E,-6

Standard
Deviation

2.0617E-5
t.5031E-5
1.4179E-5
2.9910E-5
1.5758E-5

51. 21.872 9.9981B-1 9,2166E-5 3.3217E-5 1.646 IE-5
52. 12.372 9.9988B-1 9.5060B-5 2.1430D5 1.6977E-5
53, 12.872 9.9998E-1 7.3182F,,-5 3.3929E-6 1.3069E-5
54. 13.372 9.9993_1 1.2392E4 1.3215E-5 2.2130E-5
55. 13.872 9.9997E- 1 9.1848F,,-5 5.5358E-6 1.6402E- 5

14.372 9,9995"I_I 1.0148E-4 8.7502E-6
14.872 1,0000 5.6155E-5 0.0
15.372 1.0000, 7.1567F:5 0.0
16.372 1.0000 9.8789E-5 0.0
17.372 1.0000 6.88701_5 0.0

6,

57.
58.
59.
60.

1.8121E-5

61. 18.372 9.9999E- 1 1.2489E-4 1A286E-6 2.2303E-5
62. 19.372 9.9994E- 1 7'.6646E-5 1.1250E-5 1.3688E-5
63. 20.372 1.0000 1.2288E-4 0.0 --

384



TableD.8 Normalized transmittance and extinction coefficient profiles of the

A-IB-S2 flame (_ = 1.92, vc = 7.78 cm.sec 1, D = 3.54).

.

2.
3.
4.
5.

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm I) Deviation

0.668 9.9944E- 1 8.8539E-5 9.9492E-5 1.5819E-5
0.858 9.9980E-1 1.0093E-4 3.5539E-5 1.8027E-5
0.868 9.9976E- 1 6.3965E,-5 4.3041E-5 1.1425E-5
1.068 9.9989E-1 6.4947E-5 1.9823E-5 1.1599E-5
1.268 9.9987E- 1 6.4693E-5 2.3037E-5 1.1554E-5

.

7.
8.
9.
10.

1.358 1.0000 8.0432E-5 0.0 --
1.468 9.9972E- 1 6.4020E,-5 5.0364E-5 1.1435E-5
1.668 1.0000 7.3440E-5 0.0 --
1.858 9.9997E- 1 5.3896E-5 5.7144E-6 9.6247E-6
1.868 9.9983E-1 9.5098E-5 3.0360E-5 1.6985E-5

11.
12.
13.
14.
15.

2.068 9.9983E- 1 6.9898E-5 3.0717E-5 1.2484E-5
2.268 9.9985E- 1 6.4069E-5 2.7324E-5 1.1443E-5
2.358 9.9987E-1 9.1361E-5 2.3216E-5 1.6317E-5
2.468 9.9976E- 1 8.5633E-5 4.3398E-5 1.5295E-5
2.668 9.9979E- 1 9.4412E-5 3.8040E-5 1.6863E-5

16.
17.
18.
19.
20.

2.858 9.9978E- 1 1.4004E-4 3.8933E-5 2.5013E-5
2.868 9.9978E- 1 7.8339E-5 3.8576E-5 1.3992E-5
3.068 9.9975E- 1 6.2032E-5 4.4113E-5 1.1080E-5
3.268 9.9969E-1 6.6087E-5 5.4830E-5 1.1805E-5
3.358 9.9980E- 1 6.5102E-5 3.6611E-5 1.1628E-5

21.
22.
23.
24.
25.

3A68 9.998 IE- 1 9.8939E-5 3.4468E-5 1.7671E-5
3.668 9.9975E- 1 7.2777E-5 4.3755E-5 1.2999E-5
3.858 9.9966E- 1 6.8208E-5 6.1261E-5 1.2184E-5
3.868 9.9985E-1 1.2874E-4 2.6252E-5 2.2993E-5
4.068 9.9966E- 1 5.7449E-5 6.1082E-5 1.0262E-5

6.

27.
28.
29.
30.

4.268 9.9958E- 1 8.0815E-5 7.4301E-5 1.4437E-5
4.358 9.9951E-1 1.0293E-4 8.7879E-5 1.8389E-5
4.468 9.9953E- 1 8.4360E-5 8.3948E-5 !.507 IE-5
4.668 9.9932E- 1 6.9571E-5 1.2183E-4 1.2432E-5
4.858 9.9928E- 1 4.4294E-5 1.2790E-4 7.9154E-6

31.
32.
33.
34.
35.

4.868 9.9926E- ! 8.3143E-5 1.3 ! 83E-4 ! .4858E-5
5.068 9.9919E- 1 8.4596E-5 1.4524E-4 i .5119E-5
5.268 9.9910E- 1 1.9640E-4 1.6150E-4 3.5104E-5
5.358 9.9925E- 1 1.0743E-4 1.3434E-4 1.9198E-5
5.468 9.9916E- 1 9.5865E-5 1.4935E-4 1.7133E-5

36.
37.
38.
39.
40.

5.668 9.9891 E- 1 1.3420E-4 1.9421E-4 2.3990E-5
5.858 9.9887E- 1 8.2803E-5 2.0136E-4 1.4803E-5
5.868 9.9876E- 1 6.7496E-5 2.2139E-4 1.2068E-5
6.068 9.9886E- 1 1.2173E-4 2.0387E-4 2.1763E-5
6.358 9.9883E- 1 1.3409E-4 2.0977E-4 2.3973E-5

41.
42.
43.
44.
45.

6.858 9.9854E- 1 7.9260E-5 2.6073E-4 1.4174E-5
7.358 9.9818E-1 2.0226E-4 3.2548E-4 3.6183E-5
7.858 9.9810E- 1 7.0716E-5 3.4015E-4 1.265ZE-5
8.358 9.9799E- 1 1.5758E-4 3.6001E-4 2.8195E-5
8.858 9.9782E- 1 1.2886E-4 3.9025E-4 2.3062E-5
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TableD.8 continued

Height
(nun)

46. 9.3358
47. 9.858
48. 10.358
49. 10.858
50. 11.358

Transmittance
Standard

Deviation

Extinction
Coefficient

(cm °1)

9.9742E-1
9.9729F.,- 1
9.9701E-1
9.96771/- 1
9.9659E- 1

4.9472E-5
8.1157F,-5
6.4637B-5
1.6959E-4
6.8929F.,-5

Deviation

4.6131E-4
4.8405E,-4
5.3509E-4
5.7862E-4
6.1051E-4

51. 11.858 9.9616E- 1 8.2978E-5 6.8757E4
52. 12.358 9.9614E- 1 1.0825E-4 6.8990E-4
53. 12.858 9.9600E- 1 5.1592E-5 7.1572E-4
54. 13.358 9.9564E- i 7.9649F.,-5 7.8045E4
55. 13.858 9.9539E- 1 9.3020E-5 8.7.A94E-4

56. 14.358
57. 14.858
58. 15.358

2.0602E-4
8A575E-5
8.6244E-5

9.9523E-1
9.9517E-1
9.9472E-1

8.5382E-4
8.6441E-4
9.4571E-4

8.857 IE-6
IA532E-5
1.1577E-5
3.0382E-5
1.2351E-5

1A875E-5
1.9405E-5
9.7.A98E-6
1.4285E-5
1.6688E-5

3.6965E-5
1.5176E-5
1.5483E-5
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Table D.9

.

2.
3.
4.
5.

6.
7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

Normalized transmittance and extinction coefficient profiles of the

A-IB-S3 flame (_ = 2.02, vc = 7.78 cm.sec t, D = 3.54).

Extinction

Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm1) Deviation

0.877 9.9976E- 1 6.682 IE-5 4.2684E-5 1.1935E-5
1.377 1.01300 7.9098E-5 0.0 --
1.877 9.999 IE- 1 7.134 IE-5 1.6072E-5 1.2741E-5
2.377 9.9963E- 1 5.8814E-5 6.6441E-5 1.0506E-5
2.877 9.9961 E- 1 4.2103E-5 6.8942E-5 7.5213E-6

3.377 9.9909E- 1 5.7092E,-5 1.6347E-4 1.0204E-5
3.877 9.9888E-1 7.1468E-5 1.9958E-4 1.2776E-5
4.377 9.9804E- 1 6.5566E-5 3A963E-4 1.1731E-5
4.877 9.9791 E- 1 6.1347E-5 3.7289E-4 1.0978E-5
5.377 9.9701E-1 5.9115E-5 5.3509E-4 1.0588E-5

5.877 9.9650E- 1 7.1463E-5 6.2681E-4 1.2806E-5
6.377 9.9576E- 1 9.2408E-5 7.5804E-4 1.6572E-5
6.877 9.9516E- 1 6.8182E-5 8.6728E--4 1.2235E-5
7.377 9.9433E- 1 8.0768E-5 1.0148E-3 1A505E-5
7.877 9.9371E-1 7.2526E-5 1.1275E-3 1.3033E-5

8.377 9.9264E- 1 8.0753F_.-5 1.3193E-3 1.4527E-5
8.877 9.9216E- 1 5.4636E-5 1.4059E-3 9.8336E-6
9.377 9.9137E-1 7.3692E-5 1.5470E-3 1.3274E-5
9.877 9.9131E-1 1.0357E-4 1.5591E-3 1.8657E-5
10.377 9.9018E- 1 1.0403E-4 1.7622E-3 1.8761E-5

10.877 9.8998E- 1 1.0047E-4 1.7981E-3 1.8122E-5
11.377 9.8893E- 1 9.2837E-5 1.9882E-3 1.6764E-5
11.877 9.8918E- 1 9.7624E-5 1.9436E-3 1.7624E-5
12.377 9.8778E-1 7.9266E-5 2.1960E-3 1.4330E-5
12.877 9.8798E- 1 7.4096E-5 2.1587E-3 1.3392E-5

13.377 9.8693E- 1 6.4234E-5 2.3500E-3 1.1622E-5
13.877 9.8680E-1 1.3772E-4 2.3730E-3 2.4922E-5
14.377 9.8627E-1 1.0614E-4 2.4691E-3 1.9218E-5
14.877 9.8596E- 1 2.1439E-.4 2.5255E-3 3.8829E-5
15.377 9.8519E- 1 1.8323E-4 2.6642E-3 3.3211E-5

16.377 9.8408E- 1 2.908 IE-4 2.8666E-3 5.2770E-5
17.377 9.8327E-1 1.0847E-4 3.0121E-3 1.9698E-5
18.377 9.8245E- 1 7.8115E-5 3.1616E-3 1.4198E- 5
19.377 9.8225E-1 1.4952E-4 3.1974E-3 2.7182E-5
20.377 9.8094E- 1 2.1338E-4 3 A370E-3 3.8844E-5
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Table D.10 Normalized transmittance and extinction coefficient profiles of the

A-IB-S4 flame (_b = 2.17, vc = 7.77 cm.sec l, D = 3.53).

Extinction
Height Slandard Coefficient Standard
(ram) Tnmsmittanee Deviation (cm") Deviation

1. 0.504 9.9899F_,-1 5.5604F,,-5 1.8045E-4 9.9394E-6
2. 0.704 9.9961E-1 5.1981E-5 6.9121E-5 9.2859E-6
3. 0.894 9.9993E-1 5.6015F_,-5 1.3215E-5 1.0003E-5
4. 0.904 9.9990F_,- 1 9.8934E-5 1.7858E-5 1.7669E-5
5. 1.104 9.9993E- 1 7.4278E-5 1.1786E-5 1.3265E-5

6. 1.304 1.0000 6.0483E-5 0.0 --
7. 1.394 1.0000 7.5256E-5 0.0 --
8. 1.504 9.9991F_,-I 5.6615E-5 1.6429E-5 1.0111E-5
9. 1.704 9.9983E- 1 1.3538E-4 2.9645E-5 2.4179E-5
I0. 1.894 9.9975E-I 5.4546E-5 4.4648E-5 9.7428E-6

11. 1.904 9.9962E- 1 5.9544E-5 6.7156E-5 1.0637E-5
12. 2.104 9.9944E- 1 4.4678F,-5 1.0039E-4 7.9827E-6
13. 2.304 9.9922E- 1 1.0748E-4 1.4023E-4 1.9208E-5
14. 2.394 9.9911E-I 5.5432E-5 1.5846E-4 9.9073E-6
15. 2.504 9.9904E- 1 7.6095E-5 1.7205E-4 1.3601E-5

16. 2.704 9.9872E- 1 6.7655E-5 2.2836E-4 1.2097E-5
17. 2.894 9.9816E- 1 1.2467E-4 3.2870E--4 2.2303E-5
18. 2.904 9.9815E- 1 1.0797E-4 3.3138E-4 1.9316E-5
19. 3.104 9.9779E- 1 6.4114E-5 3.9562E-4 1.1474E-5
20. 3.304 9.973 IE- 1 4.9273E-5 4.8083E-4 8.8225E-6

21. 3.394 9.9704E- 1 5A546E-5 5.2900E-4 9.7693E-6
22. 3.504 9.9674E- 1 6.0232E-5 5.8381E-4 1.079 IE-5
23. 3.704 9.9605E- 1 6.2699E-5 7.0747E-4 1.1241E-5
24. 3.894 9.9559E- 1 5.5485E-5 7.8870E-4 9.9518E-6
25. 3.904 9.9547E- 1 8.3917E-5 8.1166E-4 1.5053E-5

26. 4.1 04 9.9503E- 1 8.2422E-5 8.9061E-4 1A792E-5
27. 4.304 9.94 17E- 1 8.5397E-5 1.0450E-3 1.5339E-5
28. 4.394 9.9383E-1 5.7225E-5 1.1047E-3 1.0282E-5
29. 4.504 9.9330E- 1 7.1246F,,- 5 1.2006E-3 1.2808E-5
30. 4.704 9.9252E-I 9.5601E-5 1.3415E-3 1.7200E-5

31. 4.894 9.9174E- 1 8.1927E-5 1.4806E-3 1.4752E-5
32. 4.904 9.9181E- 1 5.7702E-5 1.4678E-3 1.0389E-5
33. 5.104 9.9089E- 1 7.8378E-5 1.6350E-3 1.4125E-5
34. 5.304 9.8998E- 1 6.7690E-5 1.7978E-3 1.2210E-5
35. 5.394 9.8952E-1 8.831 IE-5 1.8806E-3 1.5937E-5

36. 5.504 9.8893E-1 6.9679E-5 1.9884E-3 1.2582E-5
37. 5.704 9.8799E- I 6.6662E-5 2.1582E-3 1.2049E-5
38. 5.894 9.8700E-1 9.1224E-5 2.3367E-3 1.6505E-5
39. 5.904 9.8693E- 1 1.0842E-4 2.3500E-3 1.9617E-5
40. 6.1 04 9.8600E- 1 9.8472E-5 2.5173E-3 1.7834E-5

41. 6.394 9.8443E- 1 1.5628E-4 2.8024E-3 2.8349E-5
42. 6.894 9.8178E- ! 7.9879E-5 3.2841E-3 1.4529E-5
43. 7.394 9.7914E- 1 8.4308E-5 3.7646E-3 1.5376E-5
44. 7.894 9.7666E-1 7.5761E-5 4.2171E-3 1.3852E-5
45. 8.394 9.7431 E- 1 1.7476E-.4 4.6478E-3 3.2031E-5
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TableD.IO continued

Height
(ram)

46. 8.894
47. 9.394
48. 9.894
49. 10.394
50. 10.894

51. 11.394
52. 11.894
53. 12.394
54. 12.894
55. 13.394

Transmittance
Standard
Deviation

Extinction
Coefficient

(cm"I)
Standard
Deviation

9.7187E-1
9.6954E- 1
9.6704E- 1
9.6482E-1
9.6283E-1

9.6033E-1
9.5759E-1
9.5536E-1
9.5369E-1
9.5160E- 1

7.9648E-5
1.9352E-4
6.8832E-5
9.5762E-5
2.5699E-4

8.0878E-5
1.4340E-4
2.3341E-4
5.1464E-4
2.6338E-4

5.0945E-3
5.5248E-3
5.9858E-3
6.3948E-3
6.7640E-3

7.2279E-3
7.7391E-3
8.1552F_,-3
8.4671E-3
8.8588E-3

1.4634E-5
3.5642E-5
1.2711E-5
1.7724E-5
4.7663E-5

1.5039E-5
2.674IE-5
4.3629E-5
9.6362E-5
4.9424E-5

56. 13.894 9A992E- I 3.8932F_.-4 9.1749E-3 7.3186E-5
57. 14.394 9.4680E-I 5.7147E-4 9.7615E-3 1.0778E-4
58. 14.894 9.4528E- 1 3.9409E-4 1.0049E-2 7.4447E-5
59. 15.394 9.4381E-I 4.6013E-4 1.0327E-2 8.7057E-5
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TableD.11 Normalizedtransmittance and extinction coefficient profiles of the
A-IIA-R2 flame (_ = 1.63, vc - 10.42 cm.sec _, D = 4.29).

Extinction
Height Standard Coefficient Standard
(mm) Transmittance Deviation (cm _) Deviation

1. 0.880 9.9943E- 1 4.8189E-5 1.0199E-4 8.6101E-6
2. 1.380 9.9965E- 1 7.6458E-5 6.2690E-5 1.3658E-5
3. 1.880 9.9966E- 1 4.748 IF_.-5 6.1082E-5 8.4817E-6
4. 2.380 9.9972E,- 1 7.8142E-5 4.9650F_.-5 1.3958E-5
5. 2.880 9.9974E- 1 7.9047E-5 4.697 IE-5 1.4119E-5

6. 3.380 9.9981E- 1 6.6708E-5 3.3217E-5 1.1914E-5
7. 3.880 9.9970E- 1 7.1120E-5 5.4294E-5 1.2704E-5
8. 4.380 9.9983E- 1 9.5739E-5 3.1253E-5 1.7099E-5
9. 4.880 9.9968E- 1 5.9685E-5 5.6616E-5 1.0661E-5
10. 5.380 9.9983E- 1 6.451 IE-5 3.0003E-5 1.1522E-5

11. 5.880 9.9967F_.-1 1.0011E-4 5.8581E-5 1.7883E-5
12. 6.380 9.9979E- 1 7.2360E-5 3.7683E-5 1.2924E-5
13. 6.880 9.9990E- 1 7.5493E-5 1.8215E-5 1.3482E-5
14. 7.380 9.9985E- 1 8.3009E,-5 2.6788E-5 1.4825E-5
15. 7.880 9.9981E-1 1.6017E-4 3.3753E-5 2.8607E-5

16. 8.380 9.9964E- 1 5.6460E-5 6.4297E-5 1.0086E-5
17. 8.880 1.0000 1.2597E-4 0.0
18. 9.380 9.999 IE.- 1 1.2438E-4 1.6608E-5 2.2214E-5
19. 9.880 9.998 IE,-1 9.6087E-5 3.3217E-5 1.7162E-5
20. 10.380 9.9989E- 1 9.1737E-5 2.0001E-5 1.6383E-5

21. 10.880 9.9992E- 1 8.1910E-5 1.5001E-5 1.4628E-5
22. 11.380 9.9990E,- 1 1.0600E.-4 1.7858E-5 1.8931E-5
23. 11.880 9.9994E- 1 8.9582F_,-5 1.0357E-5 1.5998E-5
24. 12.380 9.9994E- 1 8.0365E-5 1.0357E-5 1.4352E-5
25. 12.880 9.9983E- 1 1.5766E-4 2.9645E-5 2.8158E-5

26. 13.380 9.9987E-1 1.0104E-4 2.2501E-5 1.8046E-5
27. 13.880 9.9988E- 1 9.2832E-5 2.0716E-5 1.6579E-5
28. 14.380 9.9997E- 1 7.3384E-5 5.7144E-6 1.3105E-5
29. 14.880 9.9992E- 1 6.3020E-5 1.4644E-5 1.1255E-5
30. 15.380 9.9992E- 1 7.6695E-5 1.48221/-5 1.3697E-5

31. 16.380 9.9991E- 1 7.8823Eo5 1.5358F_,-5 1.4077E-5
32. 17.380 9.9988E- 1 6.3918F,,-5 2.2144E-5 1.1415E-5
33. 18.380 9.9991E-1 7.8245E-5 1.6429E-5 1.3974E-5
34. 19.380 9.9997E-1 1.3066E-4 4.4643E-6 2.3332E-5
35. 20.380 1.0000 8.4895E-5 0.0 --
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Table D.12 Normalized transmittance and extinction coefficient profiles of the

A-IIA-S1 flame (_ - 1.78, vc = 10.45 cm-sec 1, D = 4.29).

Extinction

Height Standard Coefficient Standard
(mm) Transmittance Deviatioa (cm "1) Deviation

1. 0.680 9.9940E- 1 6.272 IE,-5 1.0718E-4 1.1207E-5
2. 0.880 9.9940E- 1 8.3683E,-5 1.0735E-4 1.4952E-5
3. 0.880 9.9940F.,- 1 8.5160E-5 1.0789E.-4 1.5216E-5
4. 1.080 9.9958E- 1 5.1623E,-5 7.5730E-5 9.2223E-6
5. 1.280 9.9964E- 1 9.4772E-5 6.519 IE-5 1.6930E-5

6. 1.380 9.9963E-1 7.5304E-5 6.6798E-5 1.3452E-5
7. 1.480 9.99721/- 1 7.4799E-5 4.9293E-5 1.3361E-5
8. 1.680 9.99701/,- I 1.0325E-4 5.3580E-5 1.8443E-5
9. 1.880 9.9971E-1 8.3275E-5 5.19721/-5 1.4875E-5
10. 1.880 9.9973E- 1 6.73021/-5 4.7685E-5 1.2021E-5

11. 2.080 9.997 IE- 1 7.5628E-5 5.1972E-5 1.3509E-5
12. 2.280 9.9986E- 1 6.7593E-5 2.4287E-5 1.2072E-5
13. 2.380 9.9975E- 1 6.7220E,-5 4.4470E-5 1.2007E-5
14. 2.480 9.9985E- 1 9.4682E,-5 2.6609E-5 1.6910E-5
15. 2.680 9.9983E-1 5.8579E-5 3.0717E-5 1.0462E-5

16. 2.880 9.9979E- 1 5.9985E-5 3.6968E-5 1.07 14E-5
17. 2.880 9.9973E- 1 7.425 IE-5 4.8042E-5 1.3263E-5
18. 3.080 9.9982E-1 6.5804E-5 3.1967E-5 1.1753E-5
19. 3.280 9.9988E- 1 7.3044E-5 2.0716E-5 1.3045E-5
20. 3.380 9.9983E- 1 7.0921E-5 3.0538E-5 1.2667E-5

21. 3.480 9.9991 E- 1 8.7016E-5 1.6251E-5 1.5540E-5
22. 3.680 9.9989E- 1 6.3359E-5 1.9823E-5 1.1315E-5
23. 3.880 9.9980E- 1 1.1066E-4 3.5182E-5 1.9764E-5
24. 3.880 9.9988E- 1 6.9891E-5 2.1609E-5 1.2482E-5
25. 4.080 9.9982E- 1 9.7488E-5 3.2503E-5 1.7412E-5

26. 4.280 9.9979E-1 6.7201E-5 3.7325E-5 1.2003E-5
27. 4.380 9.9994E- 1 6.4189E.-5 1.1429E-5 1.1463E-5
28. 4.480 9.9994E- 1 5.8673E-5 1.1608E-5 1.0478F.,-5
29. 4.680 9.9988E-1 9.2703E-5 2.0894E-5 1.6556E-5
30. 4.880 9.9988E- 1 8.8128E.-5 2.1251E-5 1.5739E-5

31. 4.880 9.9997E- 1 5.5413E-5 5.0001E-6 9.8954E-6
32. 5.080 9.9989E- 1 8.9044E-5 1.9108E-5 1.5902E-5
33. 5.280 9.9993E- 1 6.7347E-5 1.3393E-5 1.2027E-5
34. 5.380 1.0000 7.4337E-5 0.0 --
35. 5.480 9.9999E- 1 8.3083E-5 1.6072E-6 1A836E-5

36. 5.680 9.9999E-1 7.6082E-5 1.6072E-6 1.3586E-5
37. 5.880 9.9997E- 1 8.1053E-5 5.1787E-6 1.4474E-5
38. 5.880 1.0000 5.6987E-5 0.0 --
39. 6.080 9.9991 E- 1 6.4139E-5 1.6608E-5 1.1454E-5
40. 6.380 1.0000 6.5535E-5 0.0 --

41. 6.880 1.00130 1.5504E-4 0.0 --
42. 7.380 9.9997E- 1 7.8791E-5 5.0001E-6 1.4070E-5
43. 7.880 1.0000 8.8143E-5 0.0 --
44. 8.380 9.9994E- 1 1.1799E-4 1. i250E-5 2.1071E-5
45. 8.880 1.0000 8.8975E-5 0.0 --
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Table D.12 continued

6.

47.
48.
49.
50.

51.
52.
53.
54.
55.
56.

57.
58.
59.
60.
61.
62.
63.

Height
(ram) Transmi_

9.380
9.880
10.380
10.880
11.380

11.880
12.380
12.880
13.380
13.880
14.380

14.880
15.380
16.380
17.380
18.380
19.380
20.380

1.0000
9.9996E-1
9.9994E-1
9.9984E-1

1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

9.9994E-1
1.0000
1.0000
1.0000
1.0(300
1.0000
1.0000

6.1532F,-5
1.1068E4
1.2746E-4
1.2265E-4
9.26231/-5

1.0041E-4
1.07461/,-4
1.1146E-4
7.0647E-5
1.0297E-4
9.2842E-5

7.3549E-5
9.3487E-5
1.1191E-4
6.9497E-5
1.1544E-4
9.4148E-5
7.8730E-5

Extinction
Coefficient

(cm")

0.0
6.6073E.6
1.0179E-5
2.8752E-5

0.0

0.0
0.0
0.0
0.0
0.0
0.0

1.0000E-5
0.0
0.0
0.0
0.0
0.0
0.0

Standard
Deviatioa

1.9765E-5
2.2762E-5
2.1905E-5

°.

1.3134E-5
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Table D. 13 Normalized transmittance and extinction coefficient profiles of the

A-IIA-S2 flame (_ = 1.92, v c = 10.45 cm.sec t, D = 4.28).

Extinction

Height Standard Coefficient Standard
(ram) Transmittance Deviation (cm "t) Deviation

1. 0.693 9.9892E- 1 6.6583E-5 1.9368E-4 1.1903E-5
2. 0.893 9.9929E- 1 4.6209E-5 1.2665E-4 8.2575F_,-6
3. 0.893 9.9910F,- 1 7.0005F-,-5 1.6150E4 1.2512F_,-5
4. 1.093 9.9952E- 1 4.8822F_,-5 8.5914E-5 8.7224E-6
5. 1.293 9.9963E- 1 5.0996E-5 6.5905E-5 9.1099E-6

6. 1.393 9.9960E- 1 4.5872E-5 7.1086E-5 8.1947E-6
7. 1.493 9.9972E- 1 5.3378F_,-5 4.9293E-5 9.5343E-6
8. 1.693 9.9976E- 1 4.8505F,-5 4.2684E-5 8.6638E-6
9. 1.893 9.9967E- 1 4.8527E-5 5.9832E-5 8.6684F-,-6
10. 1.893 9.9981E- 1 5.1362E-5 3.4825E-5 9.1737E-6

11. 2.093 9.9971 E- 1 4.2580E-5 5.1257E-5 7.6058E-6
12. 2.293 9.9978E- 1 4.6556E-5 3.9469E-5 8.3154E-6
13. 2.393 9.9972E- 1 4.2274E-5 5.0900E-5 7.5510E-6
14. 2.493 9.9988E- 1 4.5349E-5 2.2144E-5 8.0991E-6
15. 2.693 9.9991 E- 1 4.1417E-5 1.5894E-5 7.3965E-6

16. 2.893 9.9985E- 1 5.9197E-5 2.6966E-5 1.0572E-5
17. 2.893 1.0000 1.0134E-4 0.0 --
18. 3.093 1.0000 4.3499E-5 0.0 --
19. 3.293 9.9993E-1 7.4085E-5 1.2500E-5 1.3230E-5
20. 3.393 9.9978E- 1 6.6941E-5 4.0183E-5 1.1956E-5

21. 3.493 9.9983E-1 5.7527E-5 3.0003E-5 1.0275E-5
22. 3.693 9.9984E- 1 7.5532E-5 2.9110E-5 1.3490E-5
23. 3.893 9.9982E- 1 7.7927E-5 3.1789E-5 1.3918E-5
24. 3.893 9.9979E-1 4.8690E-5 3.7147E-5 8.6965E-6
25. 4.093 9.9978E- 1 5.0340E-5 3.8754E- 5 8.9913E-6

26. 4.293 9.9984E-1 7.5184E-5 2.9288E-5 1.3428E-5
27. 4.393 9.9986E- 1 5.7698E-5 2.4287E-5 1.0305E-5
28. 4.493 9.9986E- 1 7.4255E-5 2.5895E-5 1.3262E-5
29. 4.693 9.9970E-1 5.3027E-5 5.3044E-5 9.4720E-6
30. 4.893 9.9978E- 1 8.5891E-5 3.9647E-5 1.5341E-5

31. 4.893 9.9980E-1 6.3038E-5 3.6075E-5 1.1259E-5
32. 5.093 9.9978E-I 1.0015E-4 4.0183E-5 1.7888E-5
33. 5.293 9.9973E- 1 5.8263E-5 4.7506E-5 1.0407E-5
34. 5.393 9.9984E-1 5.1814E-5 2.9288E-5 9.2541E-6
35. 5.493 9.9971E- 1 6.8789E-5 5.1257E-5 1.2287E-5

36. 5.693 9.9962E- 1 4.5112E-5 6.8227E-5 8.0588E-6
37. 5.893 9.9973E- 1 7.4827E-5 4.9114E-5 1.3366E-5
38. 5.893 9.9965E- 1 7.2825E-5 6.2511E-5 1.3009E-5
39. 6.093 9.9957E-1 7.0772E-5 7.7696E-5 1.2643E-5
40. 6.393 9.9959E-1 5.5469E-5 7.3229E-5 9.9092E-6

41. 6.893 9.9952E- 1 4.5230E-5 8.5735E-5 8.0807E-6
42. 7.393 9.9965E- 1 1.1163E-4 6.3226E-5 1.9941E-5
43. 7.893 9.9961 E- 1 1.3509E-4 7.0192E-5 2.4133E-5
44. 8.393 9.9945E-1 1.0638E-4 9.8241E-5 1.9007E-5
45. 8.893 9.9927E-1 1.1338E-4 1.2969E-4 2.0261E-5
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Table D.13 continued

Height
(ram)

46. 9.393
47. 9.893
48. 10.393
49. 10.893
50. 11.393

Transmittance

9.9931E-1
9.9930E- 1
9.9926E- 1
9.9920E- 1
9.9904E-1

Standard
Deviation

6.3237E-5
1.1057E-4
8.5251E-5
6.6241E-5
1.1336E-4

Extinction
Coefficient

(cm "1)

1.2344E-4
1.2594E-4
1.3255E-4
1A238E-4
1.7187E-4

Standard
Deviation

1.1300E-5
1.9758E-5
1.5235E-5
1.1838E-5
2.0262E-5

51. 11.893 9.9902E- 1 3.7221E-5 1.7562E-4 6.6532E-6
52. 12.393 9.9887E- 1 1.2929E-4 2.0262E-4 2.3113E-5
53. 12.893 9.9894E-1 6.607 IE-5 1.8867E-4 1.1811E-5
54. 13.393 9.9882E-1 1.1244E-4 2.1048E-4 2.0102E-5
55. 13.893 9.9865E-1 1.0273E-4 2.4,159E-4 1.8370E-5

56. 14.393 9.9860E- 1 1.0201E-4 2.5053E-4 1.8242E-5
57. 14.893 9.9893E- ! 5.9625E-5 1.9153E-4 !.0659E-5
58. 15.393 9.9877E-1 4.7952E-5 2.2014E-4 8.5734E-6

394



Table D. 14 Normalized transmittance and extinction coefficient profiles of the

A-IIA-S3 flame (_ = 2.02, vc = 10.45 cm.sec _, D = 4.28).

Extinction

Height Standard Coefficient Standard
(ram) Transmittance Deviation (era "1) Deviatitm

1. 0.542 9.9802F_,-1 4.6934E-5 3.5428E-4 8.3977E-6
2. 0.742 9.9869E- 1 4.2824E-5 2.3462E-4 7.657 IE-6
3. 0.942 9.9911 E- 1 5.9972E-5 1.5936E-4 1.0719E.-5
4. 0.942 9.9933E-1 5.6101E,-5 1.2040E-4 1.0025E-5
5. 1.142 9.9930E- 1 4.6396E-5 1.2522E-4 8.2907E-6

6. 1.342 9.9950E- 1 8.8684E-5 8.9487E-5 1.5844E-5
7. 1.442 9.9973E- 1 6.7800E-5 4.7506E-5 1.2110E-5
8. 1.542 9.9965E- 1 6.6947E-5 6.2154E-5 1.1959E-5
9. 1.742 9.9974E- 1 5.1062E-5 4.6971E-5 9.1206E-6
10. 1.942 9.9999E- 1 8.4067E-5 1.7857E-6 1.5012E-5

11. 1.942 9.9978E- 1 7.3612E-5 3.8754E-5 1.3148E-5
12. 2.142 9.9982E-1 7.3542E-5 3.1967E-5 1.3135E-5
13. 2.342 1.0000 5.8816E-5 0.0
14. 2.442 9.9997E- 1 6.3826E-5 5.1787E-6 1.1398E-5
15. 2.542 9.9984E- 1 6.2183E-5 2.9467E-5 1.1106E-5

16. 2.742 9.9993E- 1 6.1516E-5 1.3215E-5 1.0986E-5
17. 2.942 9.9996E- 1 5.7657E-5 6.4287E-6 1.0296E-5
18. 2.942 9.9987E- 1 6.2150E-5 2.3216E- 5 1.1100E-5
19. 3.142 9.9980E-1 5.0729E-5 3.5718E-5 9.0605E--6
20. 3.342 9.9981E-1 4.6790E-5 3.3932E-5 8.3569E-6

21. 3.442 9.9995E-1 5.7207E-5 9.8217E-6 1.0216E-5
22. 3.542 9.9972E- 1 5.44 14E-5 4.9293E-5 9.7194E-6
23. 3.742 9.9973E- 1 7.549 IE-5 4.8757E-5 1.3484E-5
24. 3.942 9.9974E- 1 6.088 IE-5 4.697 IE-5 1.0874E-5
25. 3.942 9.9967E- 1 1.1528E-4 5.8938E-5 2.0593E-5

26. 4.142 9.9961 E- 1 6.7070E-5 6.9121E-5 1.1982E-5
27. 4.342 9.9952E- 1 6.2389E-5 8.6271E-5 1.1146E-5
28. 4.442 9.9947E- 1 5.9531E-5 9.5561E-5 1.0636E- 5
29. 4.542 9.9950E- 1 6.7260E-5 8.9844E-5 1.2017E-5
30. 4.742 9.9941E-1 5.6881E-5 1.0557E-4 1.0163E-5

31. 4.942 9.9920E- 1 6.8198E-5 1.4363E-4 1.2188E-5
32. 4.942 9.9940E- 1 5.6344E-5 1.0646E-4 1.0067E-5
33. 5.142 9.9907E-1 5.8172E-5 1.6615E-4 1.0397E-5
34. 5.342 9.9903E-1 5.8992E-5 1.7330E-4 1.0545E-5
35. 5.442 9.9915E- 1 5.5994E-5 1.5131E-4 1.0008E-5

36. 5.542 9.9888E-1 6.8372E-5 2.0029E-4 1.2223E-5
37. 5.742 9.9885E-1 6.1955E-5 2.0583E-4 1.1076E-5
38. 5.942 9.9862E- 1 4.5527E-5 2.4749E-4 8.1411E-6
39. 5.942 9.9899E-1 6.5621E-5 1.8063E--4 1.1730E-5
40. 6.142 9.9842E- 1 4.7025E-5 2.8183E-4 8.4105E-6

41. 6.442 9.9863E- 1 6.5246E-5 2.4499E-4 1.1667E-5
42. 6.942 9.9833E- 1 6.8994E-5 2.9882E-4 1.2341E-5
43. 7.442 9.9788E-1 7.0965E-5 3.7915E-4 1.2699E-5
44. 7.942 9.9756E- 1 6.6263E-5 4.3553E-4 1.1862E-5
45. 8.442 9.9713E- 1 7.1777E-5 5.1413E-4 1.2854E-5
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Table D.14 continued

Height
(nun)

46. 8.942
47. 9.442
48. 9.942
49. 10.442
50. 10.942

51. 11.442
52. 11.942
53. 12.442
54. 12.942
55. 13.442

Transmittance

9.9686E-1
9.9643E- 1
9.9620E- 1
9.9571E-1
9.9545E-1

9.9515E-1
9.9510E-1
9.9475E-1
9.9463E-1
9.9442E_1

Standard
Deviation

7.0827E-5
8.5493E-5
8.80301/,-5
1.0205E-4
9.8727E-5

8.3182E-5
7.3543E-5
1.0456E-4
1,2452E-4
1.12AOE.4

56. 13.942 9.9443E-1 8_.333E-5
57. 14.442 9.9403E-1 8.437 IE-5
58. 14.942 9.9392E- 1 8.2467E-5
59. 15.442 9.9366E-1 1.09ff7F_
60. 16.442 9.9322E- 1 1.2695E-4

Extinction
Coefficient

(cm")

5.6213E-4
6.3954E-4
6.7915E-4
7.6790E-4
8.1435E-4

8.6854E-4
8.7715E-4
9.3961E-4
9.6079E-4
9.9886E-4

9.9742E-4
1.0695E-3
1.0887E-3
1.1363E-3
1.2154E-3

Standard
Deviation

1.2688E-5
1.5321E-5
1.5780E-5
1.8302E-5
1.7710E-5

1.4926E-5
1.3197E-5
1.8769E-5
2.2356E-5
2.0185E-5

1.4785E-5
1.5157E-5
1.4816E-5
1.9600E-5
2.2825E-5

61. 17.442 9.9296E- 1 2.8958E-4 1.2618E-3 5.2077E-5
62. 18.442 9.9263E- 1 7.7644E-5 1.3218E-3 1.3968E-5
63. 19.442 9.9284E- 1 1.1617E-4 1.2837E-3 2.0894E-5
64. 20.442 9.9187E- 1 3.1682E-4 1.4586E-3 5.7040E-5
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Table D. 15 Profile of the total scattering coefficient for the A-IA-R2 flame (_ = 1.63,
vc = 7.73 cm.sec _, D = 4.15).

l°

2.
3.
4.
5.

°

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Total
Scattering

Height Coefficient Standard
(mm) (cm "t.a "l) Deviation

0.68 4.150E-9 1.585E- 11
0.88 4.156E-9 2.709E-11
0.88 4.117E-9 2.097E- 11
1.08 4.107E-9 2.442E- 11
1.28 4.097E-9 2.55213.- 11

1.38 4.115E-9 1.786E- 11
1.48 4.121E,-9 2.552E-11
1.68 4.125E-9 2.545E- 11
1.88 4.112E-9 1.889E- 11
1.88 4.107E-9 1.051E-11

2.08 4.117E-9 2.037E- 11
2.28 4.112E-9 7.357E- 12
2.38 4.135E-9 1.747E- 11
2.48 4.117E-9 8.985E- 12
2.68 4.109E-9 1.913E- 11

2.88 4.119E-9 7.755E- 12
2.88 4.097E-9 2.318E- 11
3.08 4.123E-9 2.024E- 11
3.28 4.104E-9 9.317E-12
3.38 4.130E-9 1.466E- 11

3.48 4.113E-9 7.963E- 12
3.68 4.130E-9 1.640E- 11
3.88 4.126E-9 1.335E- 11
3.88 4.143E-9 9.949E-12
4.08 4.128E-9 1.464E- 11

4.28 4.123E-9 2.001 E- 11
4.38 4.119E-9 1.223E- 11
4.48 4.163E-9 2.375E- 11
4.68 4.151E-9 2.556E- 11
4.88 4.150E-9 1.982E- 11

4.88 4.151E-9 1.449E- 11
5.08 4.169E-9 7.701E- 12
5.28 4.153E-9 1.796E- 11
5.38 4.146E-9 8.589E- 12
5.48 4.157E-9 1.677E- 11

5.68 4.167E-9 9.207E-12
5.88 4.151E-9 1.867E-11
5.88 4.157E-9 2.483E- 11
6.08 4.179E-9 1.615E-11
6.38 4.15 IE-9 1.052E- 11

6.88 4.165E-9 1.321E-11
7.38 4.193E-9 2.044E- 11
7.88 4.196E-9 1.317E-11
8.38 4.184E-9 1.593E-11
8.88 4.217E-9 1.489E- 11
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Table D.15 continued

6.

47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.

Height
tram)

9.38
9.88
10.38
10.88
11.38

11.88
12.38
12.88
13.38
13.88

14.38
14.88
15.38

Total
sc.ate 
Coefficient
(cm

4.244E-9
4.255E-9
4.230D9
4.281E-9
4.267E-9

4.258E-9
4.266E-9
4.273E,-9
4.306E-9
4.284E-9

4.297E-9
4.307E-9
4.314E-9

Standard
Deviation

1.488E- 11
2.035E- 11
1.372F_,-11
1.781F,-11
2.724E- 11

2.527E- 11
2.466E- 1I
1.705E- 1I
2.084F,,- 11
1.059E- 11

1.090E- 11
1.592E- 11
9.447E- 12
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TableD.16 Profile of the total scattering coefficient and the corrected scattering
coefficient for the A-IA-S1 flame (_ = 1.']8, vc = 7.73 cm.sec _, D = 4.16).

Total Corrected
Scattering Scattering

Height Coefficient Standard Coefficient
(mm) (cm"-sr") Deviation (cm "l.sr"l)

1. 0.90
2. 1.41
3. 1.90
4. 2A1
5. 2.90

6. 3.41
7. 3.90
8. 4.41
9. 4.90
10. 5.41

11. 5.90
12. 6.41
13. 6.90
14. 7.41
15. 7.90

16. 8.41
17. 8.90
18. 9.41
19. 9.90
20. 10A1

21. 10.90
22. llAI
23. 11.90
24. 12.41
25. 12.90

26. 13.41
27. 13.90
28. 14.41
29. 14.90
30. 15.41

31. 16.41
32. 17.41
33. 18.41
34. 19.41
35. 20.41

4.310E-9 1.62 IE- 11 4.310E-9
4.237E-9 4.189E-11 4.237E-9
4.202E-9 1.274E- 11 4.202E-9
4.190E-9 2.570E- 11 4.190E-9
4.196E-9 1.438E-11 4.196E-9

4.199E-9 2.098E- 11 4.198E-9
4.183E-9 1.464E-11 4.181E-9
4.208E-9 2.519E- 11 4.204E-9
4.200E-9 1.400E- 11 4.195E-9
4.219E-9 1.811E- 11 4.213E-9

4.248E-9 1A76E- 11 4.241E-9
4.236E-9 2.249E- 11 4.228E-9
4.243E-9 1.500E- 11 4.232E-9
4.263E-9 2.887E- 11 4.250E-9
4.261E-9 2.648E- 11 4.247E-9

4.281E-9 2.038E- I 1 4.265E-9
4.312E-9 1.895E- 11 4.295E-9
4.299E-9 1.612E- 11 4.279E-9
4.277E-9 1.758E- 11 4.255E-9
4.318E-9 3.555E-11 4.294E-9

4.292E-9 1.350E- 11 4.266E-9
4.334E-9 2.578E- 11 4.305E-9
4.343E-9 1.920E- 11 4.312E-9
4.350E-9 2.649E- 11 4.316E-9
4.356E-9 2.096E- 11 4.320E-9

4.370E-9 2.144E-11 4.331E-9
4A04E-9 2.300E- 11 4.362E-9
4.396E-9 2.69 IE- 11 4.352E-9
4.389E-9 1.102E- 11 4.341E-9
4.383E-9 2.495E- 1 ! 4.332E-9

4A21E-9 1.978E- 11 4.365E-9
4A20E-9 8.054E-12 4.357E-9
4.464E-9 1.005E- 11 4.393E-9
4.480E-9 2.402E- 11 4.403E-9
4.517E-9 1.258E-11 4.432E-9
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Table D. 17 Profile of the total scattering coefficient, the particle scattering
coefficient, and the corrected particle scattering coefficient for the
A-IA-S2 flame (_ = 1.92, vc = 7.75 cm.sec _, D = 4.17).

I.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.
28.
29.
30.

31.
32.
33.
34.
35.

Corrected
Total Particle Particle

Scattering Scattering Scattering
Height Coefficient Standm'd Coefficient Coefficient
(mm) (cm "1.st"_) Deviation (cml-sr_) (cml.sr_)

0.90 4.315E-9 1.355E- 11 8.904E- 11 1.469E- 10
1.40 4.225E-9 1.961E- 11 3.431E-I 1 9.413E- 11
1.90 4.190E-9 1.088E- 11 1.205E- 11 7.196E- 11
2.40 4.201E-9 2.656E- 11 2.739E- 11 8.555E- 11
2.90 4.182E-9 1.100F_,-I 1 8.707E- 12 6.337E- 11

3.40 4.176E-9 3.600D 11 0.000 4.948E- 11
3.90 4.203E-9 2.05 IE- 11 2.355E- 11 6.626E- 11
4.40 4.187E,9 1.7761/- 11 3.169E- 12 3.758E- 11
4.90 4.222E-9 1.858E- 11 3.230E- 11 5.695E- 11
5.40 4.253E-9 2.383E- I 1 5.683E- 11 7.034E- 11

5.90 4.245E-9 1.904E- 11 4.312E- 11 4.420E- 11
6.40 4.270E-9 3.922E- 11 6.095E- 11 4.837E- 11
6.90 4.288E-9 1.232E- 11 7.268E- 11 4.530E- 11
7.40 4.314E-9 2.585E-11 9.104E-11 4.777E-11
7.90 4.335E-9 1.653E-11 1.057E- 10 4.557E-11

8.40 4.348E-9 2.514E- 11 1.113E- 10 3.333E- 11
8.90 4.374E,-9 1A 16E- 11 1.298E- 10 3.314E- 11
9.40 4.401E-9 3.280E- 11 1.489E- 10 3.276E- 11
9.90 4.452E-9 2.661E-11 1.928E- 10 5.653E- 11

10.40 4.453E-9 3.226E- 11 1.862E- 10 2.915E- 11

10.90 4.482E-9 1.462E- 11 2.070E- 10 2.862E- 11
11.40 4.506E-9 1.904E-11 2.237E-10 2.349E-11
11.90 4.530E-9 2.282E-11 2.403E-10 1.789E- 11
12.40 4.566E-9 1.714E-I 1 2.682E- 10 2.323E- 11
12.90 4.616E-9 2.756E- 11 3.110E- 10 4.323E- 11

13.40 4.604E-9 2.677E- 11 2.907E- 10 .000e+(g)0
13.90 4.639E-9 2.086E- 11 3.183E- 10 4.53 IE- 12
14.40 4.670E-9 2.35 IE-I 1 3.413E- 10 4.43 IE- 12
14.90 4.703E-9 9.376E- 12 3.666E- 10 6.731 E- 12
15.40 4.737E-9 1.960E- 11 3.921 E- 10 9.215E- 12

16A0 4.800E-9 2.360E- 11 4.395E- 10 1.153E- I 1
17A0 4.923E-9 2.098E-11 5.466E- 10 7A74E- ! 1
18A0 5.027E-9 2.548E- 11 6.35 IE- 10 1.215E- 10
19.40 5.319E-9 5.425E- 11 9.114E- 10 3.585E- 10
20.40 5.748E-9 4.539E- 11 1.324E-9 7.351 E- 10

40O



Table D. 18 Profile of the total mattering coefficient, the particle scattering
coefficient, and the corrected particle scattering coefficient for the
A-IA-S3 flame (0 = 2.02, vc = 7.74 cm-sec a, D = 4.16).

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

Corrected
Total Particle Particle

Scattering Scattering Scattering
Height Coefficient Standard Coefficient Coefficient
(mm) (cm"-sr "1) Deviation (an "l.sr"1) (cm "1.st"1)

0.89 4.484F,-9 1.679E- 11 1.866F_,-10 2A25E- 10
1.39 4.364E-9 3A 16E- 11 1.025E- 10 1.584E- 10
1.89 4.308E-9 2.17 IE- 11 5.988E- 11 1.157E- 10
2.39 4.263F_,-9 2.999E- 11 1.895E- 11 7.480E- 11
2.89 4.266E-9 1.466F,,- 11 2.225E- 11 6.649E- 11

3.39 4.246E-9 2.174E- 11 0.000e+00 2.796E- 11
3.89 4.275E-9 4.395E- 11 2.466E- 11 3.286E- 11
4.39 4.289E-9 2.832E- 11 3.423E- 11 1.935E- 11
4.89 4.337E-9 2.136E- 11 7.648E- 11 3.538E- 11
5.39 4.352E-9 2.298E- 11 8.535E- 11 1.507E- 11

5.89 4.398E-9 i.293E- 11 1.250E- 10 2.276E- 11
6.39 4.424E-9 3.676E- 11 1A52E- 10 8.355E- 12
6.89 4.460E-9 1.781E-11 1.738E-10 0.000e+00
7.39 4.521E-9 3.310E- 11 2.281E- 10 1.498E- 11
7.89 4.569E-9 7.966E- 12 2.682E- 10 1.375E- 11

8.39 4.640E-9 3.308E-11 3.322E- 10 3.440E- 11
8.89 4.707E-9 1.688E- 11 3.920E- 10 4.921 E- 11
9.39 4.734E-9 3.230E- 11 4.118E- 10 2.244E- 11
9.89 4.811E-9 1.035E- 11 4.814E- 10 4.398E- 11
10.39 4.824E-9 3.741E-11 4.870E-10 4.161E-13

10.89 4.956E-9 2.559E- 11 6.109E- 10 7.407E- 11
11.39 5.003E-9 4.593E- 11 6.508E- 10 6.281 E- 11
11.89 5.102E-9 2.860F_,-11 7.412E-10 1.014E- 10
12.39 5.267E-9 3.374E- 11 8.984E- 10 2.063E- 10
!2.89 5.502E-9 3.243E- 11 1.126E-9 3.810E- 10

! 3.39 5.834E-9 4.703E- 11 1.450E-9 6.523Eo 10
13.89 6.447E-9 7.000E- 11 2.055E-9 ! .205E-9
14.39 7.246E-9 ! .484E- 10 2.846E-9 1.943E-9
14.89 8.831E-9 2.873E- 10 4.423E-9 3.468E-9
15.39 1.129E-8 3.071 E- 10 6.876E-9 5.869E-9

16.39 2.01 IE-8 2.982E- 10 1.567E-8 1.457E-8
17.39 3.898E-8 6.863E- 10 3.453E-8 3.332E-8
18.39 7.122E-8 3.207E-9 6.676E-8 6.546E-8
19.39 1.233E-7 1.287E-8 1.188E-7 1.174E-7
20.39 1.995E-7 3.752E-9 1.950E-7 1.936E-7
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Table D. 19

.

2.
3.
4.
5.

°

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

Prof'fle of the total scattering coefficient, the particle scattering
coefficient, and the corrected particle scattering coefficient for the
A-IA-S4 flame (_ = 2.17, vc = 7.75 cm.sec "l, D = 4.16).

Corrected
Total Particle Particle

Scattering Scattering Scattering
Height Coefficieat Standard Coefficient Coefficient
(ram) (cm"l.sr"1) Deviation (¢m".sr "j) (cm"l.sr"1)

0.90 4.629E-9 1.2751/- 11 2.088F_,-10 2.371 E- 10
1.40 4.446E-9 5.205E-11 6.070E-11 8.895E-11
1.90 4.406E-9 3.886E-11 3.407E-11 6.232E-11
2.40 4.4081/-9 9.662E- 11 4.035E- 11 6.860E- 11
2.90 4.385E-9 1.472E- 11 1.679E- 11 3.315E- 11

3.40 4.37 IE-9 5.564E- 11 0.000e+_ 0.000e4430
3.90 4.41 IE-9 2.67 IE-I 1 3.638E- 11 1.655E- 11
4.40 4.497E-9 6.709E- 11 1.179E- 10 7.489E- 11
4.90 4.535E-9 3.240E- 11 1.501 E- 10 8.081E- 11
5.40 4.602E-9 8.91 IE-I 1 2.115E-10 1.130E-10

5.90 4.700E-9 3.325E- 11 3.03 IE- 10 1.726E- 10
6.40 4.772E-9 1.214F,,-10 3.680E- 10 2.029E- 10
6.90 4.909E-9 3.715E- 11 4.987E- 10 2.965E- 10
7.40 4.974E-9 8.890E- 11 5.568E- 10 3.153E- 10
7.90 5.056E-9 4.188E,-11 6.310E-10 3.481E-10

8.40 5_220E-9 5.990E- 11 7.885E- 10 4.623E- 10
8.90 5.469E-9 3.975E- 11 1.030E-9 6.588E- 10
9.40 5.608E-9 1.164E-10 1.1621/-9 7.437E-10
9.90 6.140E-9 4.340E- 11 1.685E-9 1.219E-9
10.40 6.655E-9 7.687E- 11 2.193E-9 1.678E-9

10.90 8.717E-9 1.046E-10 4.247E-9 3.682E-9
1IA0 1.220E-8 1.577E-10 7.724E-9 7.107E-9
11.90 2.085E-8 1.924E- 10 1.636E-8 1.569E-8
12.40 3.363E-8 1.023E-9 2.914E-8 2.842E-8
12.90 6.212E-8 8.253E-10 5.762E-8 5.685E-8

26. 13.40 1.005E-7 7.070E-9 9.603E-8 9.52 IE-8
27. 13.90 1.802E-7 3.649E-9 1.757E-7 1.748E-7
28. 14.40 2.762E-7 1.952E-8 2.717E-7 2.707E-7
29. 14.90 4.300E-7 5.260E-9 4.255E-7 4.245E-7
30. 15.40 6.171E-7 1.575E-8 6.126E-7 6.115E-7

31.
32.
33.

16.40 1.127E-6 2.167E-8 1.123E-6 1.122E-6
17.40 2.065E-6 5.842E-8 2.061E-6 2.059E-6
18.40 3.498E-6 2.699E-7 3.494E-6 3.492E-6
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Table D.20 Profile of the total scattering coefficient and

coefficient for the A-IA-S5 flame (_ = 2.32,

.

2.
3.
4.
5.

the particle scattering

vc = 7.75 cm.sec _, D = 4.16).

Total Particle

Scattering Scattering
Height Coefficient Standard Coefficient
(mm) (era"l.sr"t) Deviatioli (cm a.sr "l)

.

7.
8.
9.
10.

0.53 4.841F_,-9 2.115E- 11 3.309E- 10
0.73 4.587E-9 2.778E- 11 1285E- 10
0.92 4.614E-9 2.913E- 11 1.829E- 10
0.93 4.544E-9 2.403E- 11 1.138E- 10
1.13 4.541E-9 4.770E- 11 1.288E- 10

11.
12.
13.
14.
15.

1.33 4A91E-9 2.407E- 11 8.954E- 11
1.42 4.495E-9 3.386E- 11 9.768E- 11
1.53 4.446E-9 2.234F_,-11 5.257E- 11
1.73 4.428F_,-9 1.861F_,-11 3.960E- 1 I
1.92 4.457E-9 1.634E- 11 7.159E- 11

16.
17.
18.
19.
20.

1.93 4.447E-9 1.561 E- 11 6.164E- 11
2.13 4.393E-9 2.237E- 11 1.074E- 1 !
2.33 4.402E-9 1.340E- 11 2.015E- I 1
2.42 4.420E-9 2.066E- 11 3.880E- 11
2.53 4.395E-9 1.369E- 11 1.203E- 11

21.
22.
23.
24.
25.

2.73 4A07E-9 1.365E- 11 1.936E- 11
2.92 4.394E-9 3.104F,,- 11 0.000e+00
2.93 4.406E-9 2.939F,- 11 1.147F_,-11
3.13 4.415E-9 1.303E- 11 1.428E- 11
3.33 4.430E-9 3.685F_,-11 2.064E- 11

26.
27.
28.
29.
30.

3.42 4.427E-9 3.591 E- 11 1.394E- 11
3.53 4.444E-9 1.915E-11 2.610E-11
3.73 4.457E-9 1.901F_,-11 2.956E- 11
3.92 4.506E-9 3.407E- 11 6.932E- 11
3.93 4.519E-9 1.854E-11 8.128E-11

31.
32.
33.
34.
35.

4.13 4.526E-9 1.932E-11 7.824E- 11
4.33 4.552E-9 1.948E- 11 9.292E- 11
4.42 4.552E-9 7.192E- 11 8.748E- ! 1
4.53 4.595E-9 2.731E-11 1.230E-10
4.73 4.647E-9 3.264E- 1 ! 1.632E- 10

36.
37.
38.
39.
40.

4.92 4.667E-9 3.784E- 11 1.706E- 10
4.93 4.686E-9 1.663E- 11 1.888E- 10
5.13 4.708E-9 3.098E- 11 1.969E- 10
5.33 4.788E-9 2.437E- 11 2.627E- 10
5.42 4.767E-9 3.665E- 11 2.344E- 10

41.
42.
43.
44.
45.

5.53 4.828E-9 1.652E- 11 2.872E- 10
5.73 4.882E-9 3.0521/-11 3.259E-10
5.92 4.923E-9 5.426E-11 3.526E-10
5.93 4.963E-9 2.086E- 11 3.911 E- 10
6.13 4.982E-9 3.371 E- 11 3.947E- 10

6.42 5.121E-9 4.882E- 11 5.085E- 10
6.92 5.348E-9 1.544E- 10 6.915E- 10
7.42 5.488E-9 9.369E- 11 7.85 IE- 10
7.92 5.747E-9 7.281 E- 11 9.957E- 10
8.42 6.089E-9 6.401 E- 11 1.287E-9
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Table D.20 continued

Height
(ram)

46. 8.92
47. 9.42
48. 9.92
49. 10A2
50. 10.92

Total
Scattering
Coefficient
(era"1.st'')

6.613E-9
8.191E-9
1.177E-8
2320E-8
4.922E-8

Standard
Deviat_

i i

5.875E- I1
5.543E- 11
4A89E-10
2.286E- !0
!.573E-9

5 I. 11A2 1.334E-7 6.230E-8
52. 11.92 1.972E-7 2.153E-9
53. 12A2 3.642E-7 1.969E-8
54. 12.92 6.746E-7 1.171B-8
55. 13A2 1.162E-6 2A57E-8

Particle
Scattering

Coefficient
(cm".sr")

i

1.759E-9
3.283E-9
6.810E-9
1.818E-8
4.414E-8

1.283E-7
1.920E-7
3.590E-7
6.693E-7
1.156E-6

56. 13.92 1.785E-6 1.119E-8 1.779E-6
57. 14.42 2.743E-6 2.921E-8 2.738E-6
58. 14.92 3.919E-6 8.421E-8 3.913E-6
59. 15.42 5.39 IE-6 1.638E-7 5.386E-6
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Table D.21 Profile of the total scattering coefficient for the A-IB-C flame (_b = 1.67,
vc = 7.87 cm.sec 1, D = 3.31).

Total
Scattering

Height Coefficient Standard
(ram) (cm".sr "1) Deviation

.

2.
3.
4.
5.

0.87 4.150E-9 2.750E- 11
1.37 4.086E-9 2.097E- 11
1.87 4.096E-9 8.285E- 12
2.37 4.085E-9 1.808E- 11
2.87 4.095E-9 1.085E- 11

.

7.
8.
9.
10.

3.37 4.085E-9 2.133E- 11
3.87 4.104E-9 1.919E- 11
4.37 4.092E-9 1.879E- 11
4.87 4.132E-9 1.505E- 11
5.37 4.095E-9 2.126E-11

11.
12.
13.
14.
15.

5.87 4.148E-9 2.601Eo I 1
6.37 4.133E-9 2.752Eo I 1
6.87 4.129E-9 1.968E- 11
7.37 4.144E-9 1.470E- 11
7.87 4.169E-9 1.644E-11

16.
17.
18.
19.
20.

8.37 4.179Eo9 3.101E-11
8.87 4.194E-9 1.339E- 11
9.37 4.181E-9 3.524E-11
9.87 4.214E-9 1.233E- 11

10.37 4.212E-9 2.022E- 11

21.
22.
23.
24.
25.

10.87 4.220E-9 2.025E- 11
11.37 4.234E-9 2.638E- 11
11.87 4.24 IE-9 3.214E- 11
12.37 4.233E-9 2.757E- 11
12.87 4.268E-9 1.818E- 11

26.
27.
28.
29.
30.

13.37 4.274E-9 3.170E- 11
13.87 4.250E-9 1.2481/- 11
14.37 4.283E-9 2.466E- 11
14.87 4.304E,-9 1.979E- 11
15.37 4.294E-9 2.572E- 11

31.
32.
33.
34.
35.

16.37 4.310E-9 2.564E- l 1
17.37 4.340E-9 1.652E- 11
18.37 4.326E-9 1.711E- 11
19.37 4.334E-9 2.001E-I 1
20.37 4.374E-9 1.314E- 11
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Table D.22 Profile of the total scattering coefficient and the particle scattering
coefficient for the A-IB-S2 flame (_ = 1.92, vc = 7.78 cm.sec !, D = 3.54).

Total Particle
Scattering Scattering

Height CoeATtcient Standard Coefficient
(ram) (cm "l.sr"1) Deviation (cm "_.sr1)

1. 0.67
2. 0.86
3. 0.87
4. 1.07
5. 1.27

4.303E-9 1.3701/- 11 1.020E- 10
4.218E-9 3.MOE- 11 5.342F_,-11
4.205E-9 2.164E-11 4.255E-11
4.179E.-9 2.362E- 11 3.836E- 11
4.184E-9 1.25 IE- 11 5.758E- 11

6. 1.36
7. 1.47
8. 1.67
9. 1.86
10. 1.87

4.155E-9 1.702E- 11 3.364E- 11
4.176F_,-9 1.279E- 11 5.922E- 11
4.144F,,-9 1.791E-11 3.334E- 11
4.131E-9 1.845E-11 2.502E-11
4.136E-9 1.785E- 11 3.032t/-11

11. 2.07
12. 2.27
13. 2.36
14. 2.47
15. 2.67

4.128E-9 6.673E-12 2.467E-11
4.152E-9 2.937E- 11 4.996E- 11
4.116E-9 1.975E- 11 1.443E- 11
4.102E-9 2.850E- 11 1.048E- 12
4.120E-9 1.515E-11 1.945E-11

16. 2.86
17. 2.87
18. 3.07
19. 3.27
20. 3.36

4.134E-9 9.029E- 12 3.263E- I 1
4.106E-9 1.84 IF,-11 4.856E- 12
4.141E-9 8.541E-12 3.872E- 11
4.149E-9 1.761E-11 4.52 IE-11
4.117E-9 1.560E- 11 1.335E- 11

21. 3.47
22. 3.67
23. 3.86
24. 3.87
25. 4.07

4.117F,,-9 1.177E- 11 1.242E- 11
4.148E-9 1.807E- 11 4.200E- 11
4.156E-9 1.105E- 11 4.769E- 11
4.140E-9 1.3388-11 3.161E-11
4.154E-9 1.643E- 11 4.351E- 11

26. 4.27
27. 4.36
28. 4.47
29. 4.67
30. 4.86

4.155E-9 2.093E- 11 4.248E- 11
4.113E-9 1A57E- 11 0.000e+00
4.157E-9 2.150E-I 1 4.261E- 11
4.148E-9 1.801E-11 3.097E- 11
4.166E-9 1.961E-11 4.641E-11

31. 4.87
32. 5.07
33. 5.27
34. 5.36
35. 5.47

4.170E-9 1.959E-11 5.003E- 11
4.194E-9 2.321E-11 7.173E-11
4.186E-9 1.780E- 11 6.178E- 11
4.195E-9 8.304E- 12 6.876E- 11
4.220E-9 1.821E-11 9.295E- 11

36. 5.67
37. 5.86
38. 5.87
39. 6.07
40. 6.36

4.234E,-9 2.119E- 11 1.040E- 10
4.232E-9 2.170E- 11 9.927E- 11
4.216E-9 2.567E- 11 8.316E- 11
4.222E-9 2.509E- 11 8.626E- 11
4.256E-9 1.739E- 11 1.160E- 10

41. 6.86
42. 7.36
43. 7.86
44. 8.36
45. 8.86

4.257E-9 1.918E- 11 1.098E- 10
4.252E-9 1.742E- 11 9.726E- 11
4.312E-9 2.330E- 11 1.4921/- 10
4.343E-9 1.445E- 11 1.719E- 10
4.402E-9 1.278E- 11 2.236E- 10
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TableD.22 continued

Height
(ram)

46. 9.36
47. 9.86
48. 10.36
49. 10.86
50. 11.36

51. 11.86
52. 12.36
53. 12.86
54. 13.36
55. 13.86

56. 14.36
57. 14.86
58. 15.36

Total
Scattering
Coefficient
(eraq._-q)

4.412E-9
4.446E-9
4.491E-9
4.530E-9
4.534E-9

4.622E-9
4.714E-9
4.781E-9
4.971E-9
5.163F_.-9

5.474E-9
5.98 ! E-9
6.732E-9

Standard
Deviatim

Particle
Scattering
Coefficient

(cm "t.sr'')

1.599E- 11
2.516E-11
2.759E- 11
2.862E- 11
1.517E-11

1.695E- 11
1.533E- 11
2.151E-11
1.952E- 11
3.269E- 11

3.416E-11
2.895E-11
8.298E-11

2.256E-10
2.507E-10
2.878E-10
3.185E-10
3.137E-10

3.933E-10
4.778E- 10
5.358E-10
7.176E-10
9.010E-10

1.204E-9
1.702E-9
2.444E-9
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Table D.23

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Profile of the total scattering coefficient and the particle scattering
coefficient for the A-IB-S3 flame (0 = 2.02, vc = 7.78 cm.sec 1, D = 3.54).

Total Particle

Scattering Scattering
Height Coefficient Standard Coefficient
(mm) (cm".sr") Deviation (cm"_-sT'')

0.67 4.445E-9 1.006E- 11 1.323E- 10
0.87 4.370E-9 1.077E-11 9A80E-11
0.87 4.373E-9 1.317E- 11 9.816E- ! !
1.07 4.338E-9 1.245E- 11 8.561E- 11
1.27 4.306E-9 1.009E- 11 6.787E- 11

1.37 4.273E-9 12246E- 11 3.992E- 11
1.47 4.287E-9 1.778E- 11 5.800E- 11
1.67 4.295E-9 2.053E- 11 7.192E- 11
1.87 4.249E-9 1.763E- 11 3.001E-I !
1.87 4.264E-9 2.138E-I 1 4.539E- I I

2.07 4.240E-9 2.294E- 11 2.420E- 11
2.27 4.242E-9 1.660E- 11 2.692E- 11
2.37 4.241E-9 1.070E- 11 2.697E- 11
2.47 4.256E-9 2.972E- 11 4.162E- 11
2.67 4.229E-9 1.953E- 11 1.537E- 11

2.87 4.214E-9 1.687E- 11 0.000e+00
2.87 4.216E-9 2.040E- 11 2.090E- 12
3.07 4.233E-9 1.295E- 11 1.809E- 11
3.27 4.24 IE-9 1.459E- 11 2.432E- 11
3.37 4.223E-9 1A72E- 11 5.867E- 12

3.47 4.242E-9 2.143E- 11 2.482E- 11
3.67 4.257E-9 1.740E-11 3.823E-11
3.87 4.286E-9 1.396E- 11 6.453E- 11
3.87 4.295E-9 1.461 E- 11 7.378E- 11
4.07 4.298E-9 2.168E- 11 7.457E- 11

4.27 4.307E-9 1.876E-11 8.184E-11
4.37 4.326E-9 1A64E- 11 9.929E- 1I
4.47 4.283E-9 1.333E- 11 5.588E- 11
4.67 4.354E-9 1.632E- 11 1.238E- 10
4.87 4.366E-9 2.798E- 11 1.331 E- 10

4.87 4.362E-9 1.784E- 11 1.299E- 10
5.07 4.393E-9 3.099E- 11 1.576E- 10
5.27 4.388E-9 1.765E- 11 1.503E- 10
5.37 4.390E-9 2.906E- 11 1.514E- 10
5.47 4.422E-9 1.207E- 11 1.819E- 10

5.67 4.440E-9 1.Sff'/E- 11 1.967E- 10
5.87 4.461E-9 1.007E-I 1 2.150E-10
5.87 4.470E-9 1.224E- 11 2.244E- 10
6.07 4.484E-9 1.120E- 11 2.356E- 10
6.37 4.509E-9 2.587E- 11 2.563E- 10

6.87 4.599E-9 1.738Eo I 1 3.388E- 10
7.37 4.651E-9 1.243E- 11 3.831 E- 10
7.87 4.761E-9 2.201 E- 11 4.854E- 10
8.37 4.848E-9 2.045E- ! 1 5.639E- 10
8.87 5.021E-9 2.242E- 11 7.295E- 10
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Table D.23 continued

6.

47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.

Height
(mm)

Total
Scattering

Coefficient
(cm-1sr -I)

9.37
9.87

10.37
10.87
11.37

5.310F_,-9
5.827E-9
6.666E-9
8.472F,,-9
1.136E-8

11.87
12.37
12.87
13.37
13.87

1.592E-8
2.370E-8
3.324E-8
4.840E-8
7.132E-8

14.37
14.87
15.37

1.136E-7
1.566E-7
2.085E-7

Standard
Deviation

6.202E- 11
2.118E-11
2.676E- 11
6.200E-11
1.179E-10

1.016E-10
3.661E-10
4.534E-10
5.003E- 11
5.391E-10

2.147E-9
2.822E-9
5.224E-9

Particle
Scattering

Coefficient
(cm".sr")

1.011E-9
1.519E-9
2.350E-9
4.147E-9
7.029E-9

1.158E-8
1.935E-8
2.888E-8
4.403E-8
6.695E-8

1.092E-7
1.523E-7
2.041E-7
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Table D.24 Profile of the total scattering coefficient and
coefficient for the A-IB-S4 flame (¢_= 2.17,

the particle scattering
vc = 7.77 cm.sec _, D = 3.53).

.

2.
3.
4.
5.

Total Particle
Scattering Scattering

Height Coefficient Standard Coefficient
(nun) (cma.sr"1) Deviation (cma.sr"1)

,

7.
8.
9.
10.

0.50 4.534E-9 1.899E- 11 1.922E-10
0.70 4A 19E-9 1.875E-11 1A24E-10
0.89 4.364E-9 1.87 IE-11 1.204E-10
0.90 4.326E-9 1.816E- 11 8.408E- 11
1.10 4.260E-9 1.773E-11 3.902E- 11

II.
12.
13.
14.
15.

1.30 4.243E-9 2.116E- 11 3.532E- 11
1.39 4.224E-9 3.160E- 11 2.065E- 11
1.50 4.245E-9 1.835E-11 4.549E- 11
1.70 4.238E-9 3.163E- 11 4.426E- 11
1.89 4.195E-9 1.973E-11 5.561E-12

16.
17.
18.
19.
20.

1.90 4.215E-9 2.011E-11 2.579E- 11
2.10 4.187E-9 1.808E-11 0.000e+00
2.30 4.216E-9 1.905E- 11 3.029E- 1l
2.39 4.230E-9 3.259E- 11 4.456E- 1l
2.50 4.209E-9 1.958E- 11 2.345E- l I

21.
22.
23.
24.
25.

2.70 4.240E-9 1.230E-11 5.503E- 11
2.89 4.225E-9 3.318E- 11 3.954E- 11
2.90 4.256E-9 1.555E-11 7.012E- 11
3.10 4.276E-9 1.538E-11 8.977E- 11
3.30 4.277E-9 9.6261/-12 8.892E- 11

6.

27.
28.
29.
30.

3.39 4.317E-9 3.206E- 11 1.290E- 10
3.50 4.284F,-9 1.673E-11 9.487E- 11
3.70 4.303E-9 3.294E- 11 I. 122E-10
3.89 4.352E-9 2.84 IE- 11 1.597E- 10
3.90 4.350E-9 3.595E- 11 1.569E- 10

31.
32.
33.
34.
35.

4.10 4.412E-9 2.484E- 11 2.171E-10
4.30 4AI4E-9 3.927E- 11 2.175E-10
4.39 4.448E-9 2.616E- l I 2.503E- l0
4.50 4.457E-9 1.614E- 11 2.579E- l0
4.70 4.506E-9 1.744E- 11 3.048E- 10

36.
37.
38.
39.
40.

4.89 4.553E-9 4.786E- 11 3.488E- 10
4.90 4.548E-9 3.031E-11 3A37E- 10
5.10 4.594E-9 2.074E- 11 3.870E- 10
5.30 4.618E-9 3.791E-11 4.087E- 10
5.39 4.642E-9 3.940E- 11 4.313E- 10

41.
42.
43.
44.
45.

5.50 4.728E-9 2.561E-11 5.165E- 10
5.70 4.717E-9 2.443F_,-11 5.020E- 10
5.89 4.821E-9 7.401E-I 1 6.040E- 10
5.90 4.813E-9 2.592E- 11 5.957E- 10
6.10 4.855E-9 2.317E- 11 6.347E- 10

6.39 5.055E-9 4.674E- 11 8.307E- 10
6.89 5.221E-9 3.921E-11 9.889E- 10
7.39 5.796E-9 4.024E- 11 1.557E-9
7.89 7.556E-9 3.819E- 11 3.308E-9
8.39 I. 198E-8 8.068E- l 1 7.723E-9
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Table D.24 continued

Height
(ram)

46. 8.89
47. 9.39
48. 9.89
49. 10.39
50. 10.89

51. 11.39
52. 11.89
53. 12.39
54. 12.89
55. 13.39

56. 13.89
57. 14.39
58. 14.89
59. 15.39

Total
Scattering
Coefficient
(cm".sr")

Standard
Dcviatim

Particle
Scattering
Coefficient
(cm "l-sr')

2.296E-8
3.728F,,-8
9.600E-8
1.821E,-7
3.290E-7

1.049E-10
3.937E- 11
8.232E-10
1.366E-9
4.508E-9

1.870E-8
3.301E-8
9.1721/-8
1.778E-7
3.247E-7

5.473E-7
1.124E-6
1.328E-6
1.917E-6
2.685E-6

3.186E-9
5.089E-7
1.568E-8
2.108E-8
2.178E-8

5.430E-7
I. 120E-6
1.324E-6
1.913E-6
2.681E-6

3.661E-6
4.723E-6
6.051E-6
7.602E-6

3.390E-8
7.753E-8
5.623E-8
2.566E-8

3.657E-6
4.719E-6
6.046E-6
7.598E-6
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Table D.25 Profile of the total scattering coefficient for the A-IIA-R2 flame
(_ = 1.63, vc = 10.42 cm.sec "t, D = 4.29).

Total

Scat_ing
Height Coefficient Standard
(mm) (cm "_.sr"_) Deviation

.

2.
3.
4.
5.

0.88 4.106E-9 9.843E-12
1.38 4.066F,,-9 2.785E- 11
1.88 4.065E-9 1.485E- 11
2.38 4.05 IF_,-9 1.449F_,-11
2.88 4.062E-9 1.35 IF_,-11

.

7.
8.
9.
10.

3.38 4.057E,-9 2.286E- I I
3.88 4.0601/-9 1.522F,- 11
4.38 4.066F,-9 2.391 E- 11
4.88 4.078E-9 7.525E,-12
5.38 4.092E-9 2.005E- 11

11.
12.
13.
14.
15.

5.88 4.0951/-9 1.456E- 11
6.38 4.1001/-9 1.990E- 11
6.88 4.103E-9 1.745E- 11
7.38 4.123E-9 2.756E- 11
7.88 4.137E-9 1.064E- 11

16.
17.
18.
19.
20.

8.38 4.116E-9 2.844E- 11
8.88 4.146E-9 3.550E- 11
9.38 4.126E-9 2.739E- 11
9.88 4.142E-9 1.8621/- 11

10.38 4.145E-9 2.887E- 11

21.
22.
23.
24.
25.

10.88 4.1381/-9 1.497E- 11
11.38 4.160E-9 2.314E- 11
11.88 4.1651/-9 1.379E- 11
12.38 4.168E-9 2.538E-11
12.88 4.183E-9 1.903E- 11

6.

27.
28.
29.
30.

13.38 4.177E-9 2.0781/-11
13.88 4.170E-9 6.628E-12
14.38 4.185E-9 1.8261/- 11
14.88 4.182E-9 1.833E- 11
15.38 4.195E-9 2.064E- 11

31.
32.
33.
34.
35.

16.38 4.208E-9 1.252E- 11
17.38 4.202E-9 I.MOE- 11
18.38 4.230E-9 8.999E- 12
19.38 4.235F,-9 1.589E- 11
20.38 4.263E-9 7.401F_,-12
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TableD.26 Profileof the total scattering coefficient for the A-IIA-S 1 flame ((_ = 1.78,
vc = 10.45 cm.sec q, D -- 4.29).

Total

Scattering
Height Coefficient Standard
(rain) (cm "t-St"t) Devialioll

1. 0.68
2. 0.88
3. 0.88
4. 1.08
5. 1.28

4.092E-9 1.183E- 11
4.056E-9 2.770E- 11
4.090E-9 1.626E- 11
4.062E-9 2.372E- 11
4.052E-9 2.539E- 11

6. 1.38
7. 1.48
8. 1.68
9. 1.88
10. 1.88

4.052E-9 2.338E- 11
4.059E-9 2.208E- 11
4.079E-9 2.442F_,-11
4.082F,-9 2.876E- 11
4.072F_,-9 2.832E- 11

11. 2.08
12. 2.28
13. 2.38
14. 2.48
15. 2.68

4.061E-9 1.720E- 11
4.065F_,-9 4.067F_,-11
4.1M8E,-9 2.411E-11
4.058E-9 3.090E- 11
4.043E-9 2.971E- 11

16. 2.88
17. 2.88
18. 3.08
19. 3.28
20. 3.38

4.075E-9 2.624E- 11
4.074E-9 2.941E- 11
4.051E-9 1A24E- 11
4.065E-9 2.289E- 11
4.059E-9 2.356E- 11

21. 3.48
22. 3.68
23. 3.88
24. 3.88
25. 4.08

4.072E-9 4.152E-11
4.078E-9 3.043E- 11
4.076E-9 3.093E- 11
4.068E-9 3.571 E- 11
4.075E-9 2.091 E- 11

26. 4.28
27. 4.38
28. 4.48
29. 4.68
30. 4.88

4.059E-9 1.718E- 11
4.060E-9 1.796E- 11
4.063E-9 2.957E- 11
4.062E-9 2.197E- 11
4.089E-9 3.927E- 11

31. 4.88
32. 5.08
33. 5.28
34. 5.38
35. 5.48

4.072E-9 2.702E- 11
4.076E-9 1.570E-11
4.074E-9 2.304E- 11
4.072E-9 3.438E- 11
4.070E-9 2.214E- 11

36. 5.68
37. 5.88
38. 5.88
39. 6.08
40. 6.38

4.078E-9 3.257E-11
4.084E-9 2.698E- 11
4.081E-9 2.400E- 11
4.070E-9 2.348E- 11
4.091E-9 2.701E-11

41. 6.88
42. 7.38
43. 7.88
44. 8.38
45. 8.88

4.093E-9 2.248E- 11
4.094E-9 2.509E- 11
4.106E-9 2.051E-11
4.091E-9 2.814E-11
4.109E-9 1.864E- 11
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Table D.26 continued

Height
(mm)

46. 9.38
47. 9.88
48. 10.38
49. 10.88
50. 11.38

51. 11.88
52. 12.38
53. 12.88
54. 13.38
55. 13.88

56. 14.38
57. 14.88
58. 15.38
59. 16.38
60. 17.38

61. 18.38
62. 19.38
63. 20.38

Total
Scattering
Coeffleient
(cm "_.sr')

Standard
Deviation

4.119E-9
4.132E-9
4.136E-9
4.142E-9
4.145E-9

4.121E-9
4.124E-9
4.148E-9
4.158E,-9
4.145F.,-9

4.152E-9
4.150E-9
4.173E-9
4.175E-9
4.199E-9

4.205E-9
4.200E-9
4.199E-9

2.870E- 11
2.584E- 11
3.755E- 11
2.249E- 11
2.088E- 11

2.298E- 11
3.406E-11
1.531E-11
3.021E-11
2.191E-11

2.39 IE- 11
2.113E-11
2.281E- 11
1.351E- 11
1.714E-11

1.526E-!1
1.103E-ll
1.228E-11
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TableD.27

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19,
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45,

Profile of the total scattering coefficient and the particle scattering
coefficient for the A-IIA-S2 flame (_ = 1.92, vc = 10.45 cm.sec l,

D = 4.28).

Total Particle
Scattering Scalterin8

Height Coeffa:ient Standard Coefficient
(ram) (cm "1-sr "t) I)¢vialioli (cm "1-sr"t)

0,52 4.366F_,-9 2.047F_,-11 2.436E- 10
0.72 4.268E-9 1.682E- 11 1.790E- 10
0.92 4.247E-9 2.027E- 11 1.741 E- 10
0.92 4.224E-9 2,042E,- 11 1.508E- 10
1.12 4.170E-9 1.254E- 11 1.058E- 10

1.32 4.182E-9 1.245E- 11 1.222E- 10
1.42 4.139E-9 2.11 IE-I 1 8.140E- 11
1.52 4.133E-9 1.526E- 11 7.669E- 11
1.72 4.133E-9 1.400E- 11 7.815E- 11
1.92 4.114E-9 1.21ME- 11 6.097E- 11

1.92 4,121E-9 2.183E-11 6.786E- 11
2.12 4.115E-9 6.06 IE- 12 6.185E- 11
2.32 4.101E-9 1.320E- 11 4.762E- 11
2.42 4.059E-9 2.588E- 11 5.655E- 12
2.52 4.082E-9 8.756E- 12 2.860E- 11

2.72 4.101E-9 2.513E- 11 4.707E- 11
2.92 4.062E-9 1.751 E- 11 6A72E- 12
2.92 4.081E-9 2.846E- 11 2.578E- 11
3.12 4,090E-9 1.793E- 11 3.434E- 11
3,32 4.064E-9 6.893E- 12 7.088E- 12

3.42 4.059E-9 2.786E- 11 6.856E- 13
3.52 4.092E-9 1.728E- 11 3.372E- 11
3.72 4.079E-9 1.495E-11 1.885E-11
3.92 4.063E-9 1.997E- 11 2.165E- 12
3.92 4,087E-9 1.777E- 11 2.539E- 11

4.12 4.077E-9 7.314E-12 1A36E-I 1
4.32 4.097E-9 1.553E- 11 3.242E- 11
4.42 4.074E-9 1.914E- 11 8.448E- 12
4.52 4.079E-9 3.444E- 11 1.273E- i 1
4.72 4.068E-9 2.106E- 11 0.000e+00

4.92 4.113E-9 1.431E- 11 4.322E- 11
4.92 4.090E-9 2.389E- 11 2.116E-11
5.12 4.097E-9 2.087E- 11 2.560E- 11
5.32 4.105E-9 1.818E- 11 3.273E- 11
5.42 4,082E-9 2.372E- 11 8.007E- 12

5.52 4.110E-9 1.199E-11 3.584E- 11
5.72 4.108E-9 1.815E-11 3.14 IE-11
5.92 4.088E-9 3.331 E- 11 9.474E- 12
5.92 4.095E-9 1.546E- 11 1.723E- 11
6.12 4.109E-9 1.578E- 11 2.922E- 11

6.42 4.111E-9 3.019E- 11 2.830E- 11
6.92 4.120E-9 3.003E- 11 3.288E- 11
7.42 4.105E-9 1.546E- 11 1.302E- 11
7.92 4.139E-9 1.649E- 11 4.226E- 11
8,42 4.143E-9 3.980E- 11 4.157 E- 11
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Table D.27 continued

Height
(nun)

46. 8.92
47. 9.42
48. 9.92
49. 10.42
50. 10.92

51. ! IA2
52. 11.92
53. 12A2
54. 12.92
55. 13A2

56. 13.92
57. 14A2
58. 14.92
59. 15.42
60. 16A2

61. 17.42
62. 18.42
63. 19A2
64. 20.42

Total
Scattering

Coefficient
(cm"1.st'')

4.149E-9
4.178E-9
4.131E-9
4.175E-9
4.186E-9

4.209E-9
4.217E-9
4.227E-9
4.223E-9
4.251E-9

4.241E-9
4.281E-9
4.312E-9
4.349E-9
4.446E-9

4.601E-9
4.814E-9
5.181E-9
5.776E-9

Standard
Deviation

1.297E- 11
2330E- 11
1.009E- 11
1.812E-11
1.706E- II

2.462E- 1 !
1.918E-! !
4.145E- 11
2.241E-11
2.213E-11

1.292E- 11
3.168E-11
1.557E- 11
1.984E-11
1.912E-I 1

2.487E- 11
1.983E- 11
2.787E- 11
2.492E- 11

Particle
Scattering

Coefficient
(cm"-sr")

4.237E- 11
6.657E- 11
1.498E- 11
5.357E-11
5.915E-I 1

7.779E- I 1
8.067E- 11
8.515E-11
7.638E- 11
9.912E-11

8.428E- 11
1.197E-10
1.455E-10
1.767E-10
2.635E-10

4.087E-10
6.115E-10
9.686E- 10
1.553E-9
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Table D.28 Profile of the total scattering coefficient and the particle scattering
coefficient for the A-IIA-S3 flame (_ = 2.02, vc = 10.45 cm.scc t,

D = 4.28).

Total Particle

Sca[tering Scattering
Height Coefficient Standard Coefficient
(mm) (cm "l.sr"1) Deviation (cm".sr "l)

1. 0.54
2. 0.74
3. 0.94
4. 0.94
5. 1.14

4.572E-9 9.049E- 12 4.408E- 10
4.395E-9 1.556E- 11 2.936E- 10
4.274E-9 1.659E- 11 1.879E- 10
4.282E-9 1.98 IF_,-11 1.951 E- 10
4.248E-9 2.180E- 11 1.696E- 10

6. 1.34
7. 1.44
8. 1.54
9. 1.74
10. 1.94

4.197E-9 1.345E- 11 1.237E- 10
4.148E-9 3.559E- 11 7.683E- 11
4.163E-9 1.848E- 11 9.311 E- 11
4.157E-9 1.343E- 11 8.877E- 11
4.113E-9 1.032E- 11 4.53 IE-11

11. 1.94
12. 2.14
13. 2.34
14. 2.44
15. 2.54

4.129E-9 1.965E-11 6.151E-11
4.124E-9 1.043E- 11 5.692E,- 11
4.128E-9 8.948E- 12 6.019E- 11
4.068E-9 5.57 IF_,-11 0.000e+00
4.108E-9 6.857E- 12 4.027E- 11

16. 2.74
17. 2.94
18. 2.94
19. 3.14
20. 3.34

4.110E-9 2.505F_,,-I 1 4.145E- 11
4.090E-9 1.758E-11 2.083E-11
4.087E-9 9.273E- 12 1.799E- 11
4.108E-9 1.883E- 11 3.771 E- 11
4.120E-9 2.412E- 11 4.824E- 11

21. 3.44
22. 3.54
23. 3.74
24. 3.94
25. 3.94

4.107E-9 2.781E-11 3.480E- 11
4.138E-9 2.612Eol I 6.515E-I 1
4.104E-9 1.809E- 11 3.014E-11
4.089E-9 1.549E-- 11 1.349E- 11
4.113E-9 9.947E- 12 3.700E- 11

26. 4.14
27. 4.34
28. 4.44
29. 4.54
30. 4.74

4.109E-9 8.420E-12 3.196E-11
4.130E-9 1.801E- 11 5.137E- 11
4.094E-9 4.054E- 11 1.473E- 11
4.122E-9 6.213E-12 4.201E-11
4.156E-9 1.930E- 11 7.369E- 11

31. 4.94
32. 4.94
33. 5.14
34. 5.34
35. 5.44

4.149E-9 1.698E- 11 6.50'7E- 11
4.133E-9 1.334E- 11 4.940E- 11
4.140E-9 1.384E- 11 5.449E- 11
4.143E-9 9.633E- 12 5.577E- 11
4.163E-9 3.787E- 11 7.474E- 11

36. 5.54
37. 5.74
38. 5.94
39. 5.94
40. 6.14

4.162E-9 1.535E- 11 7.265E- 11
4.174E-9 1.33 IE- 11 8.35 IE- 11
4.184E-9 1.435E- 11 9.123E- 11
4.157E-9 2.69 IE- 11 6.434E- 11
4.164E-9 2.167E- 11 6.93 IE- 11

41. 6.44
42. 6.94
43. 7.44
44. 7.94
45. 8.44

4.204E-9 5.193E- 11 1.072E- 10
4.22 IE-9 2.523E- 11 1.192E-10
4.242E-9 4.375E- 11 1.3 50E- 10
4.272E-9 1.370E- 11 1.609E- 10
4.313E-9 3.070E- 11 1.972E- 10
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Table D.28 continued

Height
(nun)

46. 8.94
47. 9.44
48. 9.94
49. 10.44
50. 10.94

51. 11.44
52. 11.94
53. 12.44
54. 12.94
55. 13.44

56. 13.94
57. 14.44
58. 14.94
59. 15.44
60. 16.44

Total
Scatlering
Coefficient
(cm".sr")

4.338E-9
4.370E-9
4.447E-9
4.599E-9
4.745E-9

5.079E-9
5.504E-9
6.231E-9
7.287E-9
8.990E-9

1.072E-8
1A74E-8
1.722E-8
2.321E-8
3.883E-8

Standard
Deviation

1.595E-11
5.006E-11
2.097E- 11
3.723E- 11
2.775E- 11

Particle
Scattering
Coefficient
(¢m".sr")

3.800E- 11
1.616E- 11
3.926E- 11
5.373E- 11
1.163E-10

5.981E-11
2.229E-9

2.104E-10
3.525E-10
9.372E-10

61. 17.44 5.977E-8 9.462E-10
62. 18.44 9.180E-8 6.864E- 10
63. 19.44 1.258E-7 3.177E-9
64. 20.44 1.836E-7 1.078E-9

2.165E-10
2A37E-10
3.163E-I0
4.635E-10
6.041E-10

9.336E-10
1.353E-9
2.075E-9
3.126E-9
4.824E-9

6.552E-9
1.057E-8
1.304E-8
1.902E-8
3.463E-8

5.556E-8
8.759E-8
1.216E-7
1.794E-7
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Table D.29 Profiles of the fluorescence coefficient detected at 503 nm and 473 nm

for the A-IA-R2 flame (_ = 1.63, vc = 7.73 cm.sec -1, D = 4.15).

Fluorescence Fluorescence
Coefficient Coefficient

Heighl _.= 503 nm Standard _, = 473 nm Stan 'dard
(mm) (cm1.st "_) Deviation (cm"t-st -_) Deviation

1. 0.88
2. 1.38
3. 1.88
4. 2.38
5. 2.88

6. 3.38
7. 3.88
8. 4.38
9. 4.88
10. 5.38

11. 5.88
12. 6.38
13. 6.88
14. 7.38
15. 7.88

16. 8.38
17. 8.88
18. 9.38
19. 9.88
20. 10.38

21. 10.88
22. 11.38
23. 11.88
24. 12.38
25. 12.88

26. 13.38
27. 13.88
28. 14.38
29. 14.88
30. 15.38

31. 15.88
32. 16.38
33. 16.88
34. 17.38
35. 17.88

36. 18.38
37. 18.88
38. 19.38
39. 19.88
40. 20.38

-9.032E- 12 2.726E,- 12 1.141E-11 8.981E-12
2.270E-13 4.036E-12 -4.553E-12 2.001E-12
2.199E- 12 2.045E- 12 2.984E- 12 1.960E- 12
7.776E-13 1.107F_,-12 -2.921E-13 1.158F_,-12
1.368E- 12 7.735E- 13 1.285E- 12 7.888E- 13

-8.293E- 13 1.422F_,-12 1.638E- 12 1.23 IE- 12
2.025E- 12 1.398E- 12 8.350E- 13 1.030E- 12

-2.811E-13 1.322F_,-12 7.309E-13 9.557E-13
9.785E-13 8.315E-13 1.009E-12 7.476E-13
1.176E-12 1.495E-12 2.969E-13 1.395E-12

7.838E-13 1.695E-12 -1.084E-13 7.555E-13
7.420E-13 1.860E-12 3.701E-13 1.755E-12
1.193E-12 1.653E-12 9.567E-13 1.564E-12
1.068E-12 6.306E-13 6.617E-13 7.814E-13
5.629E-13 1.520E-12 4.559E-13 8.230E-13

1.563E-12 6.463E-13 2.388E-12 1.298E-12
1.453E-12 1.674E-12 -4.958E-14 1.235E-12
1.501E-12 1.343E-12 -6.137E-13 1.002E-12
1.292E-13 1.551E-12 2.697E-13 1.067E-12
1.323E-12 6.874E-13 -1.503E-13 1.709E-12

1.195E- 12 2.020E- 12 -9.229E- 13 2.601E- 12
1.599E-12 7.516E-13 -7.681E-13 9.814E-13
2.425E-12 1.188E-12 1.521E-12 8.851E-13
3.357E-12 8.301E-13 1.600E- 12 1.554E-12
2.634E-12 1.298E-12 1.113E-12 1.716E-12

3.516E-12 1.088E-12 2.553E-13 1.010E-12
3.891E-12 1.410E-12 9.976E-13 1.439E-12
2.359E-12 9.966E-13 3.016E-12 6.704E-13
1.368E- 12 1.797E- 12 1.226E- 12 1.106E- 12
2.705E-12 9.015E-13 7.565E-13 1.103E-12

3.837E- 12 1.543E- 12 4.126E- 12 1.035E- 12
-1.134E-15 1.242E-12 2.515E-12 7.149E-13
3.670E-12 7.286E-13 1.152E-12 1.221E-12
3.620E- 12 8.621E- 13 3.206E- 12 1.029E- 12
3.480E- 12 1.689E- 12 1.204E- 12 1.478E- 12

4.256E-12 1.118E-12 5.092E-12 1.475E-12
2.224E- 12 8.712E- 13 1.808E- 12 1.304E- 12
3.969E- 12 8.623E- 13 1.769E- 12 4.375E- 13
4.608E- 12 1.966E- 12 6.176E- 13 1.272E- 12
4.501E-12 1.085E-12 3.092E-12 8.382E-13
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Table D.30 Profiles of the fluorescence coefficient detected at 503 nm and 473 nm

for the A-IA-SI flame (_b = 1.78, vc = 7.73 cm.sec _, D = 4.16)

Fluorescence Fluorescence
Coefficient Coefficient

Height g = 503 nm Standard _, = 473 nm Standard
(mm) (cm "1.st'') Deviation (cm".sr "1) Deviation

1. 0.87
2. 1.37
3. 1.87
4. 2.37
5. 2.87

6. 3.37
7. 3.87
8. 4.37
9. 4.87
10. 5.37

11. 5.87
12. 6.37
13. 6.87
14. 7.37
15. 7.87

16. 8.37
17. 8.87
18. 9.37
19. 9.87
20. 10.37

21. 10.87
22. 11.37
23. 11.87
24. 12.37
25. 12.87

26. 13.37
27. 13.87
28. 14.37
29. 14.87
30. 15.37

31. 15.87
32. 16.37
33. 16.87
34. 17.37
35. 17.87

36. 18.37
37. 18.87
38. 19.37
39. 19.87
40. 20.37

-5A32E-12 4.263E-12 -2A54E-12 7.248E-12
1.402E-12 3.896E-12 -8.154E-12 3.246E-12
1.099E-12 3.025E-12 1.744E-12 3.510E- 12
1.600E-12 1.570E-12 9.247t/- 13 2.203E- 12
3.81 IE-12 1.639E-12 2.809E-12 2.568E- 12

2.364E-12 1.143E-12 2.747E-12 1.239E-12
3.592E-12 2.117E-12 4.918E-12 1.679E-12
1.056E- 11 1.640E-12 6.866E- 12 1.978E- 12
1.387E-11 1.374E-12 7.369E-12 8.135E-13
1.615E-11 1.425E-12 9.417E-12 1.401E-12

2.006E-11 1.973E-12 1.157E-11 1.710E-12
2.499E-11 9.917E-13 1.556E-11 1.712E-12
2.906E-11 4.104E-12 !.552E-11 1.869E-12
3.326E-11 6.138E-13 1.896E-11 1.270E-12
4.410E-11 2.871E-12 2.426E-11 1.479E-12

4.156E-11 3.640E- 12 2.578E-11 1.815E-12
5.569E-11 2.554E- 12 2.993E- 11 2.758E-12
6.216E- 11 2.102E- 12 3.372E- 11 1.889E- 12
7.188E-11 1.861E-12 3.565E-11 1.380E-12
7.878E-11 2.985E-12 4.328E-11 3.443E- 12

8.319E-11 2.136E-12 4.626E-11 1.668E-12
9.446E-11 1.749E-12 4.85 IE-11 1.315E- 12
9.519E-11 1.680E- 12 5.580E-11 1.870E- 12
1.205E-10 3.887E-12 5.727E-11 1.396E-12
1.146E- 10 2.995E- 12 6.743E- 11 2.675E- 12

1.200E-10 3.235E-12 7.116E-11 1.973E-12
1.389E-10 1.891E-12 7.593E-11 2.025E-12
1.350E-10 !.607E-12 8.204E-11 4.081E-12
!.503E-10 2.536E-12 8.253E-!1 2.298E-12
1.728E-10 i.547E-12 8.795E-I! 1.916E-12

1.779E- 10 2.784E-12 9.539E- 11 3.403E- 12
1.920E- 10 4.957E-12 9.828E-11 5.290E- 12
2.064E-10 3.278E-12 1.081E-10 3.053E-12
2.175E-10 3.200E-12 1.093E-10 3.560E-12
2.161E-10 3.899E-12 1.165E-10 2.090E-12

2.210E-10 3.2471/-12 1.211E-10 2.822E-12
2.428E-10 3.848E-12 1.243E-10 5.205E-12
2.503E-10 2.831E-12 1.380E-10 2.788E-12
2.650E-10 6.351E-12 1.340E-10 3.981E-12
2.765E-10 1.118E-12 1.362E-10 4.101E-12
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TableD.31 Profiles of the fluorescence coefficient detected at 503 nm and 473 nm

for the A-IA-S2 flame (_ = 1.92, vc = 7.75 cm.sec m, D = 4.17).

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

2t.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

F]UOl'CSccncc Fh.lorcsc._ncc
Coefficient Coefficient

Height 7t-- 503 nm Standard _, = 473 nm Standard
(ram) (cm _.sr "j) Deviation (cm t .st "1) Deviation

0.88 4.198E-12 5.671E-12 9.440E-12 9.937E-12
1.38 3.898E- 13 3.49 IE- 12 - 1.495E- 12 2.573E- 12
1.88 3.474E-12 1.687E-12 1.732E-12 3.425E- 12
2.38 1.101E-I 1 2.454E-12 5.595E- 12 2.195E-12
2.88 2.226E- 11 3.002E- 12 1.085E- 11 2.25 IE- 12

3.38 3.777E- 11 1.892E- 12 2.030E- 11 1.499E- 12
3.88 5.699E- 11 3.346E- 12 3.250E- 11 1.741 E- 12
4.38 8.333E- 11 3.456E- 12 4.513E-11 2.359E- 12
4.88 1.106E- 10 4.020E- 12 6.013E-11 3.107E-12
5.38 1.456E-10 8.221E-12 7.422E-11 4.677E-12

5.88 1.894E-10 7.899E-12 9.874E-11 7.010E-12
6.38 2.36 IE- 10 3.834E- 12 1.183E- 10 4.219E- 12
6.88 2.798E- 10 1.010E- 11 1.507E- 10 6.254F_,-12
7.38 3.412E- 10 5.093E- 12 1.770E- 10 7.801 E- 12
7.88 3.986E- 10 1.345E- 11 2.107E- 10 2.84 IE-12

8.38 4.528E- 10 3.745E- 12 2.333E- 10 7.797E- 12
8.88 5.276E- 10 6.964E- 12 2.667E- 10 5.306E- 12
9.38 5.979E- 10 5.123E- 12 2.988E- 10 2.45 ZE- 12
9.88 6.616E- 10 7.442E- 12 3.326E - 10 6.769E- 12
10.38 7.320E- I0 5.090E- 12 3.700E-10 1.192E- 11

10.88 7.822E-10 8.464E-12 3.969E-10 6.177E- 12
11.38 8.795E- 10 1.395E- 11 4.362E- 10 6.897E- 12
11.88 9.591 E- 10 9.297E- 12 4.732E- 10 8.802E- 12
12.38 9.430E-10 8.229E-12 5.013E-10 4.986E-12
12.88 1.073E-9 9.286E-12 5.473E-10 7.156E-12

13.38 1.140E-9 1.249E- 11 5.879E- 10 9.146E- 12
13.88 1.221E-9 9.112E-12 6.374E-10 5.662E- 12
14.38 1.435E-9 1.938E- 11 6.470E- 10 8.866E- 12
14.88 1.413E-9 2.048E- 11 6.990E- 10 4.334E- 12
15.38 1.504E-9 7.943E- 12 7.395E- 10 5.442E- 12

15.88 1.552E-9 4.825E- 12 7.758E- 10 6.989E- 12
16.38 1.650E-9 1.556E- 11 7.986E- 10 8.552E- 12
16.88 1.714Eo9 2.009E- 11 8.432E-10 1.555E- 11
17.38 1.738E-9 3.414E- i I 8.980E° 10 9.964E- 12
17.88 ! .853E-9 1.667E-11 9.327E- 10 1.577E- I 1

18.38 1.865E-9 3.388E-12 9.308E- 10 1.636E- 11
18.88 1.965E-9 3.984E- 11 9.858E- 10 9.263E- 12
19.38 2.087E-9 1.029E- 11 9.947E- 10 1.634E- 11
19.88 2.126E-9 1.833E- 11 1.038E-9 1.95 IE- 11
20.38 2.185E-9 1.397E- 11 1.098E-9 1.109E- 11
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Table D.32 Profiles of the fluorescence coefficient detected at 503 nm and 473 nm

for the A-IA-S3 flame (_ = 2.02, vc - 7.74 cm.sec -_, D = 4.16).

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

Fluorescence Fluorescence
Coefficient Coefficient

Height Z = 503 nm Standard _ = 473 nm Standard
(nun) (cm*.sr "t) Deviation (cm"-sr") Deviation

0.88 -7.528E- 13 3.541 E- 12 5.835E- 12 4.(_3E- i2
1.38 -3.456E- ! 2 5.236E- 12 9A78E- 13 2.(F/4E- 12
1.88 7.792E- 12 2.022E- !2 7.067 E- !2 3.235E- 12
2.38 2.264E-11 3.314E- 12 1.143E- 11 2.455E- 12
2.88 5.048E-11 3.245E-12 2.591E- 11 3.164E- 12

3.38 7.605E-11 6.917E-12 5.366E- 11 3.151E-12
3.88 1.283E- 10 4.039E- 12 7.585E- 11 3.962E- 12
4.38 2.120E-10 5.524E-12 1.184E-10 5.567E-12
4.88 2.822E- 10 5_73E- 12 1.556E- 10 2.203E- 12
5.38 3.844E- 10 9.906E- 12 2.089E- 10 5.546E- 12

5.88 4.714E- 10 1.296E- 11 2.546E- 10 6.136E- 12
6.38 5.986E-10 1.329E-11 3.132E-10 5.641E-12
6.88 7.332E-10 2.867E-12 3.675E-10 9.516E-12
7.38 8.513E- 10 1.490E- 11 4.517E- 10 8.240E- 12
7.88 1.013E-9 1.180E- 11 5.322E- 10 7.005E- ! 2

8.38 1.136E-9 1.563E- 11 6.148E- 10 5.827E- 12
8.88 1.338E-9 2.320E- 11 6.914E- 10 1.915E- ! 1
9.38 1.453E-9 1.746E- 11 7.330E- 10 1.249E- ! 1
9.88 1.672E-9 1.250E- 11 8.538E- ! 0 5.287 E- i 2

10.38 1.799E-9 1.041E-I! 9.169E-10 1.041E-II

10.88 2.019E-9 1.424E- 11 9.757E- 10 4.765E- 12
11.38 2.182E-9 2.310E-I 1 1.127E-9 1.329E- 11
11.88 2.334E-9 2.981 E- 11 1.185E-9 7.29 IE- 12
12.38 2.535E-9 6.588E- 11 1.266E-9 7.789E- 12
12.88 2.715E-9 5.850E- 11 1.349E-9 1.379E- 11

13.38 2.856E-9 1.432E- 11 1.503E-9 2.127E- 11
13.88 3.018E-9 1.495E- 11 1.512E-9 1.005E- 11
14.38 3.224E-9 1.334E- 11 1.595E-9 8.256E- 12
14.88 3.336E-9 2.472E- 11 1.681E-9 1.112E- 11
15.38 3.516E-9 1.331E-11 1.785E-9 2.265E- 11

15.88 3.719E-9 2.094E,-11 1.859E-9 1.834E- 11
16.38 3.817E-9 1.990E- 11 1.908E-9 2.831E- 11
16.88 3.818E-9 2.947E- 11 2.002E-9 ! .072E- 11
17.38 4.243E-9 1.613E- 11 2.103E-9 2.006E- 11
17.88 4.387E-9 1.999E- 11 2.135E-9 2.151E-! 1

18.38 4.427E-9 2.285E- 11 2.289E-9 2.685E- 11
18.88 4.663E-9 8AI IE-I 1 2.349E-9 3.115E-11
19.38 4.801E-9 1.778E- 11 2.387E-9 1.333E- 11
19.88 4.914E-9 4.639E- 11 2.472E-9 1.180E- 11
20.38 5.093E-9 3.511E-11 2.617E-9 2.449E-11
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Table D.33 Temperature profiles determined from the scattering coefficient profiles
for the A-IA flames (Vc = 7.73 cm.sec _, D = 4.15).

Temperature (K)

Height A-IA-R2 A-IA-S 1 A-IA-S2

(mm) (_ = 1.63) (_-- 1.78) (¢ = 1.92)

1. 0.250 1507.7 1397.7 1382.7
2. 0.375 1541.3 1438.2 1425.1
3. 0.500 1562.6 1462.3 1446.5
4. 0.625 1577.3 1480.8 1463.3
5. 0.750 1587.9 1495.4 1477.6

6. 0.875 1595.6 1506.9 1489.7
7. 1.000 1601.4 1516.0 1499.7
8. 1.125 -- 1523.3 1508.0
9. 1.250 1609.0 1529.1 1514.8
10. 1.500 1613.4 1537.8 1525.2

11. 1.750 1615.9 1543.7 1532.6
12. 2.000 1617.1 1547.8 1537.8
13. 2.250 -- 1550.6 1541.1
14. 2.500 1617.4 1552.5 1544.4
15. 3.000 1616.0 1554.5 1547.8

16. 3.500 1613.5 1554.5 1548.7
17. 4.000 1610.9 1554.5 1549.7
18. 4.500 1607.8 1553.2 1549.0
19. 5.000 1604.6 1551.9 1548.4
20. 6.000 1597.9 1548.1 1545.5

21. 7.000 1591.3 1543.7 1541.6
22. 7.500 1588.0 1541.5 1539.7
23. 8.750 1579.9 1535.5 1534.0
24. 10.000 1572.3 1529.5 1528.3
25. 12.500 1558.4 1517.6 1516.2

26. 15.000 1546.5 1506.2 1504.0
27. 17.500 1536.7 1495.6 1492.0
28. 20.000 1528.9 1485.8 --
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Table D.34 Temperature profiles determined from the scattering coefficient profiles
for the A-IA flames (vc = 7.73 cm.sec _, D = 4.15).

Temperature (K)

Height A-IA-S3 A-IA-S4 A-IA-S5
(ram) (, = 2.02) (, = 2.17) (¢ = 2.32)

1. 0.250 1323.2 1275.9 1350.5
2. 0.375 1369.1 1338.2 1371.8
3. 0.500 1387.9 1363.4 1376.1
4. 0.625 1401.0 1378.3 1378.1
5. 0.750 1412.5 1390.0 1381.4

6. 0.875 1423.0 1400.4 1385.6
7. 1.000 1432.6 1410.7 1390.4
8. 1.125 1441.0 1419.5 1395.4
9. 1.250 1448.5 1427.5 1400.7
10. 1.500 1460.7 1441.0 1410.3

11. 1.750 1470.2 1451.6 1418.5
12. 2.000 1477.5 1459.5 1424.5
13. 2.250 1483.4 1465.2 1428.5
14. 2.500 1488.0 1469.1 1430.1
15. 3.000 1494.6 1472.1 --

16. 3.125 .... 1425.2
17. 3.500 1499.2 1469.9 --
18. 3.750 -- 1468.2 1408.0
19. 4.000 1501.9 1463.2 --
20. 4.500 1503.4 1453.2 --

21. 5.000 1504.9 1443.1 1375.9
22. 6.000 1502.4 1413.5 --
23. 7.000 1500.0 ....
24. 7.500 1498.7 ....
25. 8.750 1489.9 ....

26. 10.000 1481.1
27. 12.500 1454.6
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Table D.35 Temperature profiles determined from the scattering coefficient profiles
for the A-IB flames (vc = 7.87 cm-sec "_,D = 3.31).

Temperature (K)

Height A-IB-C A-IB-S2 A-IB-S3 A-IB-S4

(mm) (_ = 1.67) (¢ = 1.92) (¢ = 2.02) (_ = 2.17)

1. 0.250 1496.4 1431.4 1406.8 1361.9
2. 0.375 1530.7 1468.0 1434.3 1416.2
3. 0.500 1553.8 1490.1 1450.4 1441.1
4. 0.625 1570.3 1506.7 1463.5 1453.8
5. 0.750 1582.4 1519.5 1474.8 1461.5

6. 0.875 1591.5 1529.5 1484.5 1467.0
7. 1.000 1598.3 1537.3 1492.8 1472.1
8. 1.125 1603.6 1543.6 1500.0 --
9. 1.250 1607.8 1548.6 1506.1 1483.6
10. 1.500 1613.6 1555.9 1515.8 1493.5

11. 2.000 1619.5 1563.9 1527.9 1505.2
12. 2.250 -- 1565.8 1530.4 1506.9
13. 2.500 1621.5 1566.8 1533.0 1506.2
14. 2.750 -- 1566.9 1533.0 1503.2
15. 3.000 1621.6 1566.9 1533.0 1497.9

16. 3.250 ...... 1489.5
17. 3.500 1620.2 1564.5 1526.7 1481.2
18. 3.750 ...... 1469.2
19. 4.000 1618.9 1562.1 1520.4 1457.1
20. 4.500 1616.7 1557.5 1507.3 1424.0

21. 5.000 1614.5 1553.0 1494.1 1390.9
22. 5.500 1611.8 ......
23. 6.000 1609.2 1541.0 1456.5 --
24. 7.000 1603.5 1526.6 1409.6 --
25. 7.500 1600.5 1518.7 1383.4 --

26. 8.750 1592.9 1496.9
27. 10.000 1585.1 1472.7
28. 11.25 -- 1445.6
29. 12.500 1569.4 1418.5
30. 15.000 1553.6 --

31. 17.500 1538.0
32. 20.000 1522.6
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Table D.36 Temperature profiles determined from the scattering coefficient profiles
for the A-IIA flames (vc = 10.42 em.sec _, D = 4.29).

Temperature (K)

Height A-IIA-R2 A-IIA-S 1 A-IIA-S2 A-IIA-S3
(ram) (_ = 1.63) (t = 1.78) (, = 1.92) (_ = 2.02)

1. 0.250 1578.0 1566.5 1458.7 1371.8
2. 0.375 1588.0 1577.8 1485.3 1420.5
3. 0.500 1594.5 1585.0 1502.8 1441.9
4. 0.625 1600.2 1590.6 1517.1 1458.9
5. 0.750 1605.7 1595.6 1528.8 1474.7

6. 0.875 1610.3 1600.5 1538.2 1488.9
7. 1.000 1613.9 1604.5 1545.8 1501.1
8. 1.250 1619.1 1610.2 1557.1 1519.9
9. 1.500 1622.3 1613.8 1564.9 1532.9
10. 2.000 1625.7 1617.5 1574.6 1548.1

11. 2.250 1626.5 -- 1577.3 1552.2
12. 2.500 1626.9 1618.7 1580.0 1554.8
13. 2.750 1627.0 .... 1555.8
14. 3.000 1627.0 1618.6 1583.0 1556.7
15. 3.250 ...... 1555.6

16. 3.500 1626.4 1617.8 1584.0 1554.5
17. 4.000 1625.4 1616.6 1585.0 1552.3
18. 4.500 1624.2 1615.1 -- 1546.7
19. 5.000 1622.7 1613.4 1584.0 1541.1
20. 6.000 1619.5 1609.8 1581.0 1525.6

21. 7.000 1616.1 1605.9 1576.6 1506.8
22. 7.500 1614.3 1604.0 1573.9 1496.4
23. 8.750 1609.6 1599.3 1565.9 1467.9
24. 10.000 1604.9 1594.6 1556.3 1436.5
25. 12.500 1595.3 1586.1 1533.1 --

26. 15.000 1585.7 1578.6 1505.0
27. 17.500 1576.1 1572.2 --
28. 20.000 1566.7 1567.0 --
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Appendix E: Scattering Coefficient Profiles for the 80-Torr Flames

In this appendix, we present the scattering coefficient profiles measured in the

80-tort flames. These profiles were shown in Figures 5.12 to 5.15 and are tabulated here

to facilitate their use for modelling. Tables E.1 to E.10 list the scattering coefficient

profiles for the 80-torr flames. The total scattering coefficient profiles, Q_o(z), are listed

for all the flames. The total scattering coefficient was calculated from the scattering

signal ratio using Eq. (4.4.5). The standard deviation was calculated from the measured

samples of the scattering signal ratio as described in Section B.4. For the sooting flames,

the particle scattering coefficient is also listed. The particle scattering coefficient was

calculated from the total scattering coefficient by subtracting the molecular scattering

coefficient as described in Sections 4.4.4 and 5.3.1.
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Table E.1 Profile of the total scattering coefficient for the L-I-R1 flame (_ = 2.03,
v_--- 18.1 cm.sec't).

l°

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Total
Scattering

Height Coefficient Standard
(nun) (cm "l-st"l) Deviation

1.00 5.984B- 10 2.982E- 13
1.25 6.600E- 10 2.125E- 13
1.50 6.627E- 10 3.325E- 13
1.75 6.666E- 10 1.892E- 13
2.00 6.092E-10 3.902E-13

2.25 6.124E-10 1.709E-13
2.50 5.826B-10 4.121E-13
2.75 5.805B-10 3.161E-13
3.00 5.374B- 10 7.154E- 13
3.25 5.607E- 10 3.009E- 13

3.50 5.200E- 10 7.148E- 13
3.75 5.232E-10 2.195E-13
4.00 5.023E-10 5.217E-13
4.25 5.113E-10 2.372E- 13
4.50 4.849E-10 3.191E-13

4.75 4.855E-10 3.693E-13
5.00 4.610E-10 2.992E-13
5.25 4.539E-10 1.894E-13
5.50 4.472E-10 2.410E-13
5.75 4.502E- 10 2.275E- 13

6.00 4.455E- 10 2.238E- 13
6.50 4.328E- 10 2.447E- 13
7.00 4.229E-10 3.048E-13
7.50 4.113E-10 1.035E-13
8.00 4.163E-10 1.125E-13

8.49 4.180E-10 1.194E-13
8.99 4.142E-I0 2.503E-13
9.49 4.161E,-I0 1.312E-13
9.99 4.073E,-I0 1.588E-13
10.50 4.117E-I0 1.186E-13

I1.00 4.170E-I0 1.657E-13
13.00 4.135E-I0 1.768E-13
15.00 4.007E-I0 8.327E-14
17.00 3.972E-I0 1.345E-13
19.00 4.003E-10 1.067E-13

21.00 4.102E-10 9.427E-14
25.00 4.089E-l0 1.723E-13
27.00 4.151E-I0 1.924E-13
29.00 4.234E-10 8.917E-14
31.00 4.270E-10 1.803E-13

33.00 4.297E-I0 1.304E-13
35.00 4.337E- 10 7.265E- 14
37.00 4.418E- l0 1.488E- 13
39.00 4.461E-10 1.484E-13
41.00 4.511E-10 8.779E-14
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Table E. 1 continued

46.
47.
48.
49.
50.

51.
52.
53.
54.
55.

Height
(ram)

43.00
45.00
47.00
49.00
51.00

53.00
55.00
57.00
59.00
61.00

Total
Scattering
Coefficient
(cm-l.sr"1)

4.576E-10
4.687E-10
4.703E-10
4.783E-10
4.916E-10

4.994E-10
5.087E-10
5.082E- 10
5.219E-10
5.265E-10

Standard
Deviation

1.464E-13
1.211E-13
8A39E-14
1.619E-13
1.350E-13

2.148E-13
1.393E-13
1.818E-13
2.152E-13
3A85E- 13
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TableE.2 Profile of the total scattering coefficient for the L-I-R2 flame (_ = 2.17,

vc = 18.1 cm.sec").

ToUt]
Scattering

Height Coefficient Standard
(nun) (cm i.sr I) Deviation

I. 1.00
2. 1.25
3. 1.50
4. 1.75
5. 2.00

6. 2.25
7. 2.50
8. 2.75
9. 3.00
10. 3.25

11. 3.50
12. 3.75
13. 4.00
14. 4.25
15. 4.50

16. 4.75
17. 5.00
18. 5.25
19. 5.50
20. 6.00

21. 6.50
22. 7.00
23. 7.50
24. 8.00
25. 8.49

26. 8.99
27. 9.49
28. 9.99
29. 10.50
30. 11.130

31. 13.00
32. 15.00
33. 17.00
34. 19.00
35. 21.00

36. 25.00
37. 27.00
38. 29.00
39. 31.00
4O. 33.OO

41. 35.00
42. 37.00
43. 39.00
44. 41.00
45. 43.00

7.583E-10 4.337E-13
7.228F.,- 10 1.501I?,-13
6.739E- 10 2.939E- 13
6.440E-10 3.069E-13
6.262E- 10 4.202E- 13

6.066E- ! 0 3.220E- 13
5.854E-10 3.783E-13
5.785E- 10 4.598E.-13
5.618E-10 5.642E-13
5.615E-10 3.217E-13

5.33 IB-10 2.582E- 13
5.293E-10 2.103E-13
5.162E-10 4.881E-13
4.936E-10 2.792E-13
4.813E-10 4.455E-13

4.898E- 10 3.094E- 13
4.762E- 10 5.098E- 13
4.765E-10 2.536E-13
4.616E- 10 2.894E- 13
4.415E-10 3.147E-13

4AME-10 2.028E-13
4AI6E-10 2.011E-13
4.304E- 10 1.997E- 13
4.226E- 10 2.110E-13
4.265E- 10 1.223E- 13

4.209E- 10 2.355E- 13
4.216E-10 1.528E-13
4.240E-10 2A32E-13
4.258E-10 1.263E-13
4.294E-10 1.341E-13

4.255E- 10 9.254E- 14
4.142E-10 1.385E-13
4.131E-10 1.295E-13
4.183E-10 2.053E-13
4.232E- 10 2.331E- 13

4.252E-10 1.183E-13
4.305E- 10 1A55E- 13
4.363E-10 1.509E-13
4.391E-10 1.799E-13
4.450E-10 1.081E-13

4.519E-10 1.294E-13
4.575E-10 2.119E-13
4.626E-10 1.559E-13
4.750E-10 1.935E-13
4.760E-10 1329E-13
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Table E.2 continued

46.
47.
48.
49.
50.

51.
52.
53.
54.

Height
(mm)

45.00
47.00
49.00
51.00
53.00

55.00
57.00
59.00
61.00

Total

Scattering
Coefficient
(cm "l-sr')

Standard
Deviation

4.793E-10
4.894E-10
4.917E-10
4.998E-10
5.116E-10

5.1lIE-10
5.278E-10
5.248E-10
5.365E-10

2.146E-13
IA2AE-13
1.194E-13
1.011E-13
2.251E-13

1.714E-13
1.355E-13
1.586E- 13
3.187E-13
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TableE.3 Profile of the total scattering coefficient and the particle scattering
coefficient for the L-I-S 1 flame (_b = 2.32, vc = 18.1 cm.sec_).

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Total Particle

Scattering Scattering
Height Coefficient Standard Coefficient
(mm) (cm "l.sr"1) Deviation (cm "l.sr"l)

1.00 8.309E- 10 3.514E- 13 7.374E-11
1.25 7.805E-10 1.366E- 13 2.186E-11
1.50 7.332E-10 2.511E-13 1.847E-12
1.75 6.988E- 10 2.184E- 13 - 1.292E- 12
2.00 6.668E-10 3.216E-13 -4.181E-12

2.25 6.540E, 10 2.11 IE-13 8.744E- 12
2.50 6.305E-10 3.064E-13 7AI9E-12
2.75 6.177E-10 1.166E-13 1.374E-11
3.00 5.908E-10 5.141E-13 3.441E-12
3.25 5.708E-10 3.933E-13 -2.211E-12

3.50 5.741 E- 10 3.329E- 13 1.368E- 11
3.75 5.568E- 10 2.098E- 13 7.434E- 12
4.00 5.427E- 10 2.770E- ! 3 3.032E- 12
4.25 5.283E-10 3.603E-13 -2.728E-12
4.50 5.0761/- 10 3.892E- 13 - 1.570E- 11

4.75 5.033E- 10 2.086E- 13 - 1.319E- 11
5.00 4.959E- 10 7.43 IF-,-13 - 1.436E- 11
5.25 4.905E- 10 1.596E- 13 - 1.417E- 11
5.50 4.920E- 10 2.959E- 13 -7.736E- 12
6.00 4.808E- 10 1.801E-13 -I.020E-I 1

6.50 4.650E- 10 IA96E-13 -1.889E-11
7.00 4.623E- 10 3.581E- 13 - 1.558E- 11
7.50 4.569E- 10 1.887E- 13 - 1.600E- 11
8.00 4.559E- 10 5.350E-14 -1.278E-11
8.49 4.502E- 10 1.965E- 13 - 1.492E- 11

8.99 4.510E- 10 1.729E- 13 -1.11 IE-11
9.49 4.479E-10 1.504E- 13 -1.163E-11
9.99 4.432E- 10 1.925E- 13 - 1.426E- 11
10.50 4.456E- 10 1.451 E- 13 - 1.005E- 11
11.00 4.566E- 10 3.168E-13 2.414E-12

13.00 4.526E-10 1.651E-13 1.990E-12
15.00 4.515E- 10 1.705E- 13 1.883E- 12
17.00 4.658E- 10 1.355E- 13 1.540E- 11
19.00 4.704E- 10 1.521E-13 1.803E-11
21.00 4.911E-10 1.006E- 13 3.594E-I 1

25.00 5.302E- 10 2.519E- 13 6.760E- 11
27.00 5.443E- 10 9.083E- 14 7.744E- 11
29.00 5.668E- 10 2.487E- 13 9.524E- 11
31.00 5.825E- 10 1.238E- 13 1.061E- 10
33.00 6.096E- 10 1.097E- 13 1.282E- 10

35.00 6.255E-10 3.339E-13 1.388E-10
37.00 6.446E- 10 1.068E- 13 1.527E- 10
39.00 6.764E- 10 1.479E- 13 1.790E- 10
41.00 6.923E- 10 2.1M8E-13 !.893E-10
43.00 7.084E- 10 1.268E- 13 1.997E- I0
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Table E.3 continued

Height
(mm)

46. 45.00
47. 47.00
48. 49.00
49. 51.00
50. 53.00

51. 55.00
52. 57.00
53. 59.00
54. 61.00

Total
Scattering
Coefficient
(cm".sr")

Standard
Deviation

7.275E-10
7.421E-10
7.634E-10
7.796E- 10
8.098E-10

8.272E- 10
8.430E-10
8.448E-10
8.554E-10

1.797E-13
1.274E-13
1.842E-13
1.880E- 13
2.690E- 13

1.910E-13
4.357E-13
2.169E-13
2.295E-13

Particle
Scattering
Coefficient
(cm".sr l)

2.131E-10
2.219E-10
2.374E-10
2.477E-10
2.719E-10

2.834E-10
2.931E-10
2.889E-10
2.934E-10
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Table E.4 Profile of the total scattering coefficient and the particle scattering
coefficient for the L-I-S2 flame (_ = 2.46, vc = 18.1 cm.sec-_).

Total Panicle
ScaUe_ng Scattering

Height Coefficient Standard Coefficient
(mm) (cm".st") I)evialio. (cm"j.sr')

1. 1.00
2. 1.50
3. 2.00
4. 2.50
5. 3.00

6. 3.50
7. 4.00
8. 4.50
9. 5.00
10. 5.50

11. 6.00
12. 6.50
13. 7.00
14. 7.50
15. 8.00

16. 8.49
17. 8.99
18. 9.49
19. 9.99
20. 10.50

21. 11.00
22. 13.00
23. 14.00
24. 15.00
25. 16.00

26. 17.00
27. 18.00
28. 19.00
29. 20.00
30. 21.00

31. 22.00
32. 24.00
33. 25.00
34. 26.00
35. 27.00

36. 28.00
37. 29.00
38. 30.00
39. 31.00
40. 33.00

41. 35.00
42. 37.00
43. 39.00
44. 41.00
45. 43.00

1.074E-9 4.029E- 13 2.033E- 10
9.938E- 10 2.235E- 13 1.492E- 10
9.718E-10 2.705E-13 1.876E-10
8.931F,-10 1.391E-13 1.568E-10
8.11612-10 5.058E-13 1.110E-10

7.505E- 10 2.933E- 13 7.685E-11
7.285E-10 2.773E-13 7.559E-11
6.826E-10 3.993E-13 4.608E-11
6.586E- 10 5.257E- 13 3.505E-11
6.204E- 10 2.599E- 13 7.440E- 12

5.991E-10 4.119E-13 -5.168E-12
5.779E- 10 1.837E- 13 - 1.920E- 11
5.679E- 10 3.412E- 13 -2.3 20E- 11
5.564E- 10 2.430E- 13 -2.969E- 11
5.593E- 10 1.908E- 13 -2.255E- l 1

5.630E-10 2.316E-13 -1.536E-11
5.585E-10 3.932E-13 -1.680E-11
5.593E-10 1.465E-13 -1.345E-I1
5.702E-10 4.605E-13 -4.223E-13
5.805E-10 2.044E-13 1.162E-il

6.293E- 10 4.247F_,-13 1.851 E- 10
6.730E- 10 4.242E- 13 1.091 E- 10
6.790E-10 2.154E-13 1.159E-10
7.022E-10 3.545E-13 1.393E-10
7.773E-10 2.599E-13 2.142E-10

8.652E-10 2.007E-13 3.015E-10
9.622E- 10 4.021E- 13 3.977E- 10
1.080E-9 5.115E- 13 5.143E- 10
1.205E-9 1.525E-13 6.384E-10
1.369E-9 4.370E- 13 8.006E- 10

1.521E-9 3.038E-13 9.505E-10
1.868E-9 3.792E-13 1.294E-9
1.94 IE-9 8.633E- 13 1.366E-9
2.289E-9 6.852E- 13 1.711E-9
2.34 1E-9 8.574E- 13 1.761E-9

2.957E-9 5.625E- 13 2.374E-9
2.760E-9 5.679E- 13 2.175E-9
3.464E-9 6.829E- 13 2.877E-9
3.221E-9 1.390E- 12 2.631E-9
3.682E-9 5.111E- 13 3.087E-9

4.219Eo9 1.624E-12 3.619E-9
4.706E-9 1.168E- 12 4.101E-9
6.468E-9 3.359E- 11 5.858E-9
6.337E-9 2.963E- 12 5.72 IE-9
6.915E-9 2.029E-12 6.293E-9
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Table E.4 continued

Height
(ram)

46. 45.00
47. 47.00
48. 49.00
49. 51.00
50. 53.00

51. 55.00
52. 57.00
53. 59.00
54. 61.00

Total
Scattering
Coefficient
(cm "_.sr'')

7.351E-9
7.869E-9
8.238E-9
8.891E-9
9.267E-9

9.257E-9
9.520E-9
9.510E-9
9.062E-9

Standard
Deviation

2.663E-12
2.112E-12
2.54212-12
2.967E-12
6.00612-12

2.266E-12
5.217E-12
4.931E-12
7.376E-12

Particle
Scattering
Coefficient
(cm".sr l)

6.723E-9
7.236E-9
7.599E-9
8.246E-9
8.615E-9

8.599E-9
8.857E-9
8.840E-9
8.387E-9
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TableE.5 Profile of the total scattering coefficient and the particle scattering
coefficient for the L-I-S3 flame (_ -- 2.60, v_ = 18.1 cm-seca).

°

2.
3.
4.
5.

Total Particle
Scattering Scattering

Height Coefficient Standard Coefficient
(ram) (cm a.sr "n) Deviation (cm "t.sr"°)

1.00 1.004E-9 2.370E- 13 1.602E- 10
1.28 9.989E- 10 2.410E-13 1.573E-10
1.50 8.773E- 10 2.673E- 13 5.955E- I 1
1.78 8.839E- 10 3.011 E- 13 1.022E- 10
2.00 7.954E- 10 2.577E- 13 3.807E- 11

,

7.
8.
9.
10.

2.28 8.107E-10 3.949E-13 8.272E-11
2.5O 7.299E- 10 3.471E-13 2.045E-11
2.78 7.562E- 10 3.455E- 13 6.868E- 11
3.00 6.912E-10 3.982E-13 1.746E-11
3.28 7.194E-10 5.930E- 13 6.214E-11

II.
12.
13.
14.
15.

3.5O 6A74E-10 2.678E-13 5.953E-13
3.78 6.732E- 10 4.416E- 13 3.911E-11
4.00 6.217E- 10 3.974E- 13 -4.332E- 12
4.28 6.484E- 10 4.194E- 13 3.23 IE-11
4.50 5.816E- 10 3.271E- 13 -2.805E- 11

16.
17.
18.
19.
20.

4.78 6.210E-10 4.371E-13 1.922E-11
5.00 5.972E- 10 4.503E- 13 5.363E- 13
5.28 6.329E- 10 3.874E- 13 4.258E- 11
5.50 5A86E- 10 4.435E- 13 -3.748E- 11
6.00 5.723E- 10 4.506E- 13 -5.120E- 12

21.
22.
23.
24.
25.

6.50 5.295E- 10 3.329E- 13 -4.069E- 11
7.00 5A98E-10 4.145E-13 -1.441E-11
7.50 5.5OOE- 10 3.959E- 13 -9.230E- 12
8.00 5.609E-10 5.796E-13 5.910E-12
8.49 5.556E- 10 2.360E- 13 4.174E-12

6.

27.
28.
29.
30.

8.99 5.931E-10 3.849E-13 4.460E-11
9.49 6.152E-10 2.591E-13 6.924E- 11
9.99 6.673E- 10 5.176E- 13 1.235E-10

10.50 7.325E- 10 5.155E- 13 1.905E- 10
11.{30 8.160E- 10 5.265E-13 2.755E-10

31.
32.
33.
34.
35.

12.00 1.088E-9 4.059E-13 5.500E-10
13.00 1.458E-9 5.169E-13 9.215E-10
14.00 2.02 IE-9 3.353E- 13 1.484E-9
15.00 2.800E-9 5.202E-13 2.264E-9
16.00 3.797E-9 1.301E- 12 3.261E-9

36.
37.
38.
39.
40.

17.00 5.026E-9 7.464E- 13 4.489E-9
18.00 6.374E-9 8.574E- 13 5.836E-9
19.00 7.953E-9 1.160E- 12 7.414E-9
20.00 9.746E-9 2.376E- 12 9.206E-9
21.00 1.175E-8 2.537E-12 1.121E-8

41.
42.
43.
44.
45.

22.00 1.378E-8 2.542E- 12 1.323E-8
23.00 1.626E-8 2.573E- 12 1.571E-8
25.00 2.136E-8 3.445E- 12 1.795E-8
25.03 2.008E-8 1.858E- 12 1.953E-8
26.00 2.414E-8 4.486E- 12 2.359E-8
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Table E.5 continued

6.

47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.
59.
60.

61.
62.
63.
64.
65.

6,

67.
68.

Height
(mm)

Total
Scattering
Coefficient
(cm".sr")

27.00
27.03
28.00
29.00
29.03

30.00
31.00
31.03
33.03
35.03

37.03
39.03
41.03
43.03
45.03

47.03
49.03
51.03
53.03
55.03

2.677E-8
2.558E-8
2.960E-8
3.268E-8
3.072E-8

3.632E-8
3.998E-8
3.641E-8
4.247E-8
4.873E-8

5.695E-8
6.227E-8
6.878E-8
7.226E-8
7.900E-8

8.358E-8
8.547E-8
9.057E-8
9.754E-8
1.034E-7

57.03
59.03
61.03

1.060E-7
1.142E-7
1.213E-7

Standard
Deviation

1.290E-I1
6.358E,-12
5.958E-12
1.249E-II
2.229E-12

9.838E-12
7.543E-12
3.104E-12
5.3421_12
5.265E-12

4.504E-12
1.994E- 11
8.325E-12
5.269E- 11
8.311E-12

7.860E-12
8.982E-12
1.222E-I1
9.584E-12
1.028E- II

1.914E-11
2.109E-11
5.907E- 11

Particle
Scattering

Coefficient
(cm"I.sr "1)

2.622I/-8
2.503E-8
2.904E-8
3.2121/-8
3.016E-8

3.576E-8
3.941E-8
3.585E-8
4.190E-8
4.815E-8

5.637E-8
6.169E-8
6.819E-8
7.167E-8
7.840E-8

8.298E-8
8.486E-8
8.995E-8
9.692E-8
1.028E-7

1.054E-7
1.135E-7
1.206E-7
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TableE.6 Profileof thetotalscatteringcoefficientfor theL-II-R1 flame (_ = 2.03,

vc = 22.4 em.see'_).

.

2.
3.
4.
5.

.

7.
8.
9.
10.

11.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.
43.
44.
45.

Total
Scat_ring

Height Coefficient Standard
(mm) (era l.sr l) Deviation

1.03 6.147E-10 6.691E-13
1.28 5.779E- 10 5.473E- 13
1.53 5.366E,- 10 8.662E-13
1.78 5.336E- 10 4.571 E- 13
2.03 5.228E- 10 9.455E- 13

2.28 4.950E- 10 7.233E- 13
2.53 4.964E-10 8.401E-13
2.78 4.972E-10 3.284E-13
3.03 4.873E- 10 9.829E- 13
3.28 4.809E-10 4.613E-13

3.53 4.646E- 10 7.072E- 13
3.78 4.682E- 10 3.019E- 13
4.03 4A8OE-10 8.580E-13
4.28 4.478E-10 3.758E-13
4.53 4.267E- 10 7.066E- 13

4.78 4.126E-10 4.787E-13
5.03 4.163E-10 6.369E-13
5.28 4.080E-10 2.687E-13
5.53 4.083E-10 5.094E-13
6.03 3.974E- 10 3.259E- 13

6.53
7.03
7.53
8.03
8.53

k915E-10 1.361E-13
L950E-10 3.624E-13
3.968E- 10 2.232E- 13
3.861E-10 3.353E-13
3.928E-10 1.099E-13

9.03 3.945E- 10 4.262E- 13
9.53 3.857E- 10 2.894E- 13

10.03 3.865E- 10 1.705E- 13
10.53 3.827E- 10 2.147E- 13
15.03 3.828E-10 1.299E-13

17.03 3.819E- 10 1.647E- 13
19.03 3.845E-10 1.299E-13
21.03 3.895E- 10 1.887E- 13
25.03 3.963E- 10 1.676E- 13
27.03 3.975E-10 1.651E-13

29.03 3.994E- 10 1.357E- 13
31.03 4.017E-10 1.116E-13
33.03 4.113E- 10 2.208E- 13
35.03 4.096E-10 1.793E-13
37.03 4.106E-10 1.417E-13

39.03 4.222E- 10 2.035E- 13
41.03 4.220E- 10 2.006E- 13
43.03 4.234E- 10 2.168E- 13
45.03 4.374E- 10 1.831 E- 13
47.03 4.368E-10 1.855E-13
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Table E.6 continued

6.

47.
48.
49.
50.

51.
52.

Height
(ram)

49.03
51.03
53.03
55.03
57.03

59.03
61.03

Total
Seatta'ins
Codl'icient
(an 4._4)

4AS1F.-10
4.44 IF.,-10
4.493F.,-10
4.5 I'/F.,-10
4.588F.,- 10

Standard
Deviation

1.605E- 13
1.694E- 13
9.625E-14
1.997E-13
1.537E- 13

2.093E-13
1.693E-13
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Table E.7 Prof'de of the total scattering coefficient for the L-II-R2 flame (_ = 2.16,
vc = 22.4 cm.secl).

Total
Suang

Height COefficient Standard
(mm) (cm "t.sr"t) Deviation

1. 1.03
2. 1.28
3. 1.53
4. 1.78
5. 2.03

6. 2.28
7. 2.53
8. 2.78
9. 3.03
10. 3.28

11. 3.53
12. 3.78
13. 4.03
14. 4.28
15. 4.53

16. 4.78
17. 5.03
18. 5.28
19. 5.53
20. 6.03

21. 6.53
22. 7.03
23. 7.53
24. 8.03
25. 8.53

26. 9.03
27. 9.53
28. 10.03
29. 10.53
30. 15.03

31. 17.03
32. 19.03
33. 21.03
34. 25.03
35. 27.03

36. 29.03
37. 31.03
38. 33.03
39. 35.03
40. 37.03

41. 39.03
42. 41.03
43. 43.03
44. 45.03
45. 47.03

7.757E-10 5.148E-13
6_959E- 10 3.282t/- 13
6.696E-10 5.516E-13
6.332E-10 5.243E-13
6.1lIE-10 7.509E-13

5.803E-10 5.539E- 13
5.925E-10 1.106E-12
5.4525-10 5.4311/-13
5.738E- 10 9.638E- 13
5.377E-10 5.511E-13

5.413E-10 7.7981/-13
5.096E- 10 4.334E- 13
5.313E- 10 5.307I/- 13
5.044E-10 4.221E-13
4.924E- I 0 5.533E- 13

4.981E-10 5.282E-13
4.879E-10 8.299E-13
4.756E-10 3.418E-13
4.750E-10 5.137E-13
4.817E-10 2.006E-13

4.584E-10 2.798E-13
4.667E- 10 6.357E- 13
4A89E-10 2.190E-13
4.520E- 10 1.763E- 13
4.364E-10 2.894E-13

4.414E-10 3.586E-13
4.337E-10 2.660E-13
4.392E-10 1.892E-13
4.430E-10 2.084E-13
4.176E-10 2.033E-13

4.128E- 10 1.634E- 13
4.033E-10 1.354E-13
4.142E-10 1.028E-13
4.089E-10 2.735E-13
4.150E-10 2.399E-13

4.138E-10 1.370E-13
4.190E-10 2.238E-13
4.158E-10 1.738E-13
4.246E-10 1.527E-13
4.308E-10 1.670E-13

4.303E- 10 1.097E- 13
4.337[/-10 1.458E-13
4.380E- 10 3.442E- 13
4.456E-10 1.528E-13
4.518E-10 1.664E-13

44O



Table E.7 continued

46.
47.
48.
49.
50.

51.
52.

Height
(ram)

49.03
51.03
53.03
55.03
57.03

59.03
61.03

Total
scam 

I I

4..qSS8-|O
4.5S6E,.10
4.607E-10
4.61I_10
4.7"39E-I0

Standard
Deviation

1.547E-13
1.886E-13
IA79E-13
1.729E- 13
1.709E- 13

1.608E-13
1.313E-13
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Table E.8 Profile of the total scattering coefficient and the particle scattering
coefficient for the L-II-S1 flame (_ = 2.32, vc = 22.4 cm.sec-l).

Total Particle
Scattering Scattering

Height Coefficient Standard Coefficient
(nun) (cm".sr "1) Deviation (cm".sr")

1. 1.03
2. 1.28
3. 1.53
4. 1.78
5. 2.03

6. 2.28
7. 2.53
8. 2.78
9. 3.03
10. 3.28

11. 3.53
12. 3.78
13. 4.03
14. 4.28
15. 4.53

16. 4.78
17. 5.03
18. 5.28
19. 5.53
20. 6.03

21. 6.53
22. 7.03
23. 7.53
24. 8.03
25. 8.53

26. 9.03
27. 9.53
28. 10.03
29. 15.03
30. 17.03

31. 19.03
32. 21.03
33. 25.03
34. 27.03
35. 29.03

36. 31.03
37. 33.03
38. 35.03
39. 37.03
4O. 39.03

41. 41_3
42. 43D3
43. 45.03
44. 47.03
45. 49.03

9.337E-10 5.162E-13 1.434E-10
8.732E-10 4295E-13 1.007E-10
8.161E-10 4.994E-13 7.562E-11
7.835E-10 4.319E-13 7.509E-11
7.384E-10 4.889E-13 5.874E-11

7.189E-10 2.616E-13 6.421E-11
6.999E-10 6.867E-13 6.681E-11
6.902E,-10 5.476E-13 7.571E-11
6.602F_,-10 8.817E-13 6.186E-11
6.459E- 10 3.134E-13 6.162E-11

6.235E-10 5.933E-13 5.149E-I1
6.185E-10 5.575E-13 5.745E-11
5_84.E-10 6.803E-13 4.693E-11
5.974E-10 4_39E-13 5.457E-11
5.786E-10 1.054E-12 4.340E-11

5.703E- 10 3.352E- 13 4.198E- 11
5.545E- 10 6.718E- 13 3.240E- 11
5.498E- 10 3.400E-13 3.337E-11
5.422E- 10 5.938E- 13 3.087E-11
5.331E- 10 2.825E- 13 3.069E-11

5.180E-10 2.751E-13 2.313E-11
5.082E- 10 4.276E-13 1.967E-11
5.006E- 10 2.982E- 13 1.744E- 11
4.993E- 10 3.055E-13 2.070E-11
4.903F,- 10 2.472E- 13 1.565E- 11

4.839E- 10 4.241E- 13 1.268E- 11
4.936E- 10 2.700E- 13 2.539E- 11
4.798E- 10 2.756E- 13 1.414E-11
4.513E-10 1.843E-13 -2.210E-12
4.442E- 10 1.447E- 13 -8.292E- 12

4.447E- 10 2.206E- 13 -7.966E- 12
4.520E- 10 1.990E- 13 - 1.707E- 12
4.476E-10 2.754E-13 -9.839E-12
4.558E-10 3.301E-13 -4.162E-12
4.538E- 10 3.037E- 13 -9.058E- 12

4.681E-10 2.217E-13 2.157E-12
4.706E- 10 2.808E- 13 1.385E- 12
4.735E-10 1.453E-13 9.413E-13
4.840E-10 1.489E-13 7.864E-12
4.936E- 10 2.47 IE- 13 1.372E- 11

4.898E- 10 1.362E- 13 6.137E- 12
4.961E-10 2.233E-13 8.579E-12
4.976E- 10 1.593E- 13 6.166E-12
5.042E-10 1.735E-13 8.658E-12
5.081E-10 2.084E-13 8.501E-12
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Table E.8 continued

Height
(mm)

46. 51.03
47. 53.03
48. 55.03
49. 57.03
50. 59.03

51. 61.03

Total
Scattering
Coefficient
(cm"-sr "l)

Standard
Deviation

5.103E-10
5.161E-10
5.164E-10
5.268E-10
5.245E-10

5.354E-I0

1.803E-13
IA96E-13
2.088E-13
3.224E-13
2.674E-13

2.085E-13

Particle
Scattering
Coefficient
(cm".sr")

6.564E-12
8.178E-12
4.267E-12
1.044E- 11
3._37E-12

1.051E-11
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Table E.9 Profile of the total scattering coefficient and the particle scattering
coefficient for the L-II-S2 flame (_ = 2.46, vc = 22.4 cm-sec").

Total Particle
Scattering Scattering

Height Coefficient Standard Coefficient
(ram) (cm"l.m'') Deviation (cm"l-st"l)

1. 1.03
2. 1.28
3. 1.53
4. 1.78
5. 2.03

6. 2.28
7. 2.53
8. 2.78
9. 3.03
10. 3.28

11. 3.53
12. 3.78
13. 4.03
14. 4.28
15. 4.53

16. 4.78
17. 5.03
18. 5.28
19. 5.53
20. 6.03

21. 6.53
22. 7.03
23. 7.53
24. 8.03
25. 8.53

26. 9.03
27. 9.53
28. 10.03
29. 10.53
30. 15.03

31. 17.03
32. 19.03
33. 21.03
34. 25.03
35. 27.03

36. 29.03
37. 31.03
38. 33.03
39. 35.03
40. 37.03

41. 39.03
42. 41.03
43. 43.03
44. 45.03
45. 47.03

9.738E-10 5.013E-13 1A3 IE- 10
9.118E- 10 2.086F,- 13 9.88 IE-I 1
8.609F,- 10 3.678E- 13 7.995E-11
8.152E-10 2.552E-13 6.623E-11
7.701E-10 5.664E-13 4.993E-11

7.380E- 10 6A82E- 13 4.287E-11
7.292E- 10 5.111E-13 5.557E-11
6.967E- 10 5.065E- 13 4.174E- 11
6.695E- 10 7.738E- 13 3.068E- 11
6.706E- 10 4.212E-13 4.581E-11

6ASOE- 10 6.091E-13 3.557E-11
6.461E-10 4.033E-13 4.451E-11
6.236E-10 6.079E- 13 3.170E-11
6.209E- 10 4.834E- 13 3.756E- 11
5.836E- 10 4.980E- 13 7.866E- 12

5.742E- 10 4.075E- 13 5.445E- 12
5.656E-10 6.286E-13 3.013E-12
5.685E- 10 3.412E- 13 1.157E- 11
5.566E-10 5.559E-13 4.804E-12
5.345E- 10 2.693E- 13 -8.389E- 12

5.313E-10 2.269E-13 -4.129E-12
5.166E-10 3.467E-13 -1.245E-11
5.138E-10 2.524E-13 -9.836E-12
5.147E- 10 2.437E- 13 -4.359E- 12
5.052E- 10 4.055E- 13 -9.869E- 12

4.948E- 10 5.240E- 13 - 1.686E- 11
5.012E- 10 2.782E- 13 -7.586E- 12
4.847E-10 2.047E-13 -2.151E-11
5.046E-10 3.187E-13 6.059[/-13
5.093E- 10 3.455E- 13 1.529E- 11

5.207E- 10 1.750E- 13 2.767E- 11
5.416E,- 10 2.792E- 13 4.849E- 11
5.723E-10 2.511E-13 7.816E-I 1
6.185E-10 3.573E-13 1.205E-10
6.486E-10 4.501E-13 1.481E-10

6.902E- 10 2.289I/- 13 1.869E- 10
7.330E-10 2.165E-13 2.266E-10
7.691 E- 10 1.593E- 13 2.594E- 10
8.178E-10 1.634E-13 3.047E-10
8.383E- 10 2.312E- 13 3.216E- 10

8.783E- 10 2.505E- 13 3.580E- 10
9.097E-10 1.811E-13 3.856E-10
9.501E-10 2.710E-13 4.221E-10
9.783F,,- 10 2.254E- 13 4.463E- 10
1.026E-09 3.912E- 13 4.904E-10
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Table E.9 continued

Height
(ram)

46. 49.03
47. 51.03
48. 53.03
49. 55.03
50. 57.03

51. 59.03
52. 61.03

Total
Scattering
Coefficient
(cm "j.sr"_)

1.045E-09
1.062E-09
1.090E-09
1.119E-_
1.140E-09

1.149E-09
1.152E-09

Standard
Deviation

Particle
Scattering
Coefficient
(cm "l.sr'')

2.201E-13
2.917E-13
3.711E-13
2.341E-13
4.431E-13

4.459E-13
1.240E-13

5.053E-10
5.175E-10
5.420E- 10
5.665E-10
5.827E-10

5.875E-10
5.870E-10
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Table E.I0

I.

2.
3.
4.
5.

.

7.
8.
9.
10.

II.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

6.

27.

28.
29.
30.

31.
32.
33.
34.
35.

36.
37.
38.
39.
40.

41.
42.

43.
44.
45.

Profileof the totalscatteringcoefficientand the particlescattering

coefficientfor the L-II-S3 flame (¢ = 2.60, vc= 22.4 cm.scc-i).

Total Particle

Scattering Scattering
Height Coefficient Standard Coefficient
(mm) (cm".sr "1) Deviation (cm".sr "l)

1.03 1.035E-09 5.371E-13 1.349E-10
1.28 9.989E-10 2A 10E-13 1.163E-10
1.53 9.376E-10 4.636E- 13 8.708E-11
1.78 8.839E-10 3.01 IE-13 6.544E-11
2.03 8.308E-10 5.172E-13 4.111E-11

2.28 8.107E-10 3.949E-13 4.601E-11
2.53 7.819E-10 3.607E-13 3.874E-11
2.78 7.562E-10 3.455E-13 3.172E-11
3.03 7.100E-10 8.460E-13 1.651E-12
3.28 7.194E-10 5.930E- 13 2.508E- 11

3.53 6.971EoI0 7.129E-13 1.513E-11
3.78 6.732E-10 4.416E-13 2.126E-12
4.03 6.597E-10 7.851E-13 -1.833E-12
4.28 6.484E-10 4.194E-13 -4A77E-12
4.53 6.236E- 10 5.762E- 13 -2.158E- 11

4.78 6.210E- 10 4.37 IE- 13 - 1.729E- 11
5.03 6.027E- 10 8A24E- 13 -2.942E- 11
5.28 6.329E- 10 3.874E- 13 6.408E- 12
5.53 6.010E- 10 5.728E- 13 -2.034E- I1
6.03 5.869E- 10 6.715E- 13 -2.547E- 11

6.53 5.730E-10 3.612E-13 -3.194E-11
7.03 5.684E- 10 7.448E- 13 -3.014E- 11
7.53 5.767E- 10 4.089E- 13 - 1.649E- 11
8.03 5.798E- 10 6.840E- 13 -8.758E- 12
8.53 5.64 lE- 10 4.558E- 13 -2.057E- l I

9.03 5.542E- 10 8.809E- ! 3 -2.701 E- 11
9.53 5.792E-10 4.395E-13 9.591E-13

10.03 5.831 E- l 0 5.508E- 13 7.397E- 12
10.53 5.819E-10 3.475E-13 8.370E-12
l 1.03 6.062E- 10 7.242E- 13 3.456E -11

13.03 6.248E- 10 4.232E- 13 5.856E- 11
14.03 6.340E- 10 5.444E- 13 6.940E- 11
15.03 6.815E-10 5.961E-13 1.179E-10
16.03 7.192F_,-10 2.792E- 13 1.564E-10
17.03 7.783E-10 6.133E-13 2.158E-10

18.03 8.355E-10 3.965E-13 2.731E-10
19.03 9.144E-10 4.070E-13 3.517E-10
20.03 9.874E- 10 2.346E- 13 4.243E- 10
21.03 1.075E-09 6.179E-13 5.113E-10
22.03 1.142E-09 3.339E-13 5.778E-10

24.03 1.318E-09 4.828E-13 7.519E-I0
25.03 IA62E-09 5.947E-13 8.945E-I0
26.03 1.540E-09 5.483E-13 9.716E-I0
27.03 1.695E-09 5.254E-13 I.125E-09
28.03 1.775E-09 2.373E,-13 1.203E-09
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Table E.10 continued

Height
(mm)

46. 29.03
47. 30.03
48. 31.07
49. 33.07
50. 35.07

51. 37.07
52. 39.07
53. 41.07
54. 43.07
55. 45.07

56. 47.07
57. 49.07
58. 51.07
59. 53.07
60. 55.07

61. 57.07
62. 59.07
63. 61.07

Total
Scattering
Coefftcieat
(cm "t.st'')

1.962E-09
2.027E-09
2.313E-09
2.595E-09
2.929E-09

3.273E-09
3.577E-09
3.888E-09
4.248E-09
4.555E-09

4.837E-09
5.184E-09
5A77E-09
5.769E439
6.004E-09

6.194E-09
6.397E-09
6.517E-09

Standard
Deviation

5.712E-13
3.398E-13
4.186E-13
6.581E-13
5.405E-13

6.098E-13
4.869E- 13
5.319E-13
8.412E-13
I.O01E-12

6.118E-13
6.929E-13
7.924E-13
8.95ZE-13
1.354E-12

6.648E-13
8.528E-13
8.559E-13

Particle
Scattering

Coefficient
(cm "l.sr "t)

1.389E-09
1.453E-09
1.737E-09
2.016E-09
2.346E-09

2.687E-09
2.987E-09
3.294E-09
3.651E-09
3.953E-09

4.231E-09
4.575E-09
4.863E-09
5.151E-09
5.382E-09

5.568E-09
5.766E-09
5.882E-09
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Avoenclix F: OH Fluorescence Profiles for the Atmosvheric and 80-Tort Flames

In this appendix, we present the the OH fluorescence profiles for both the 80-tort

and atmospheric-pressure flames. These data sets, tabulated here to facilitate their use in

modelling, are the basis for the OH number density profiles of the atmospheric flames

presented in Figures 6.1 and 6.2 and for the relative OH fluorescence profiles of the

80-torr flames presented in Figure 6.3.

Tables F. 1 to F.3 list the normalized OH fluorescence profiles measured on three

days for the lean atmospheric-pressure flame, A-0-L (_ = 0.97). These profiles were used

to calibrate the fluorescence profiles of the rich atmospheric flames to obtain their

respective number density profiles. The OH fluorescence profiles are normalized to the

fluorescence signal at the height z = 5.30 mm. Tables F.4 to F.7 list the normalized OH

fluorescence profiles for the four rich atmospheric flames. These fluorescence profiles

were normalized to the fluorescence signal measured in the lean flame, A-0-L, at the

height z = 5.30 ram. Tables F.8 to F.11 list the normalized OH fluorescence profiles for

the four 80-torr flames. These profiles were normalized to the fluorescence signal voltage

measured in the leanest rich nonsooting flame (L-II-R1, _ = 2.03) at a height of 10 mm.

In all the tables, the standard deviations were calculated from the measured samples of the

fluorescence signal at each height.
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Table F. 1 Normalized OH fluorescence profile measured on Day 1 for the lean
atmosphedc-pressure flame, A-0-L (¢ = 0.97, vc = 8.86 crn.sec t,
D = 5.42).

Height Fluorescence Standard
(ram) Signal Deviatioa

1. 0.55 1.037E+0 1.389E-2
2. 0.55 9.719E-I 1.350E-2
3. 0.80 1.375E+0 1.593E-2
4. 1.05 1.594E+0 1.701E-2
5. 1.30 1.646E+0 1.695E-2

6. 1.55 1.587E+0 1.712E-2
7. 1.55 1.523E+0 1.669E-2
8. 1.80 1.572E+0 1.735E-2
9. 2.05 1.491E+O 1.658E,-2
10. 2.30 1.449E+0 1.559E-2

I 1. 2.55 1.397E+0 1.617E-2
12. 2.55 1.318E+0 1.571E-2
13. 2.80 1.323E+0 1.63 IE-2
14. 3.05 1.296E+0 1.561E-2
15. 3.05 1.330E+0 1.638E-2

16. 3.05 1.300E+0 1.491E-2
17. 3.05 1.316E+0 1.530E-2
18. 3.05 1.337E+0 1.570E-2
19. 3.05 1.362E+0 1.550E-2
20. 3.30 1.265E+0 1.532E-2

21. 3.55 1.219E+O 1.534E-2
22. 3.55 1.159E+0 1.487E-2
23. 3.80 1.195E+0 1.437E-2
24. 4.05 1.161E+O 1.481E-2
25. 4.30 1.120E+0 1.501E-2

26. 4.55 1.075E+0 1.459E-2
27. 4.55 1.081E+0 1.471E-2
28. 4.80 1.048E+0 1.415E-2
29. 5.05 1.031E+0 1.498E-2
30. 5.30 1.015E+0 1.443E-2

31. 5.55 9.936E- 1 1.426E-2
32. 5.55 9.350E-1 8.617E-3
33. 6.55 8.345E-1 7.767E-3
34. 7.55 7.699E-1 7.485E-3
35. 8.55 7.041E-1 7.472E-3

36. 9.55 6.598E-1 7.384E-3
37. 10.55 6.090E- 1 7.140E-3
38. 11.55 5.518E- 1 6.473E-3
39. 12.55 5.410E- 1 6.536E-3
40. 13.55 5.017E- 1 6.228E-3

41. 14.55 4.778E- 1 5.930E-3
42. 15.55 4.561E-1 6.281E-3
43. 16.55 4.309E-1 5.937E-3
44. 17.55 4.083E- 1 5.403E-3
45. 18.55 3.856E- I 5.533E-3

46. 19.55 3.768E-1 5.272E-3
47. 20.55 3.606E- 1 5.463E-3
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Table F.2 Normalized OH fluorescence profile measured on Day 2 for the lean
atmospheric-pressure flame, A-0-L (_ = 0.97, vc = 8.86 cm-sec i,

D = 5.42).

.

2.
3.
4.
5.

Height Fluorescence Standard
(nun) Signal Deviation

0.53 1.640E+0 2.162E-2
0.53 1.393E+0 1.866E-2
0.78 1.75_+0 2.123E-2
0.78 IA75E+0 1.835E-2
1.03 1.737E+0 2.098E-2

,

7.
8.
9.
10.

1.03 1.597E+0 1.879E-2
1.28 1.696E+0 2.107E-2
1.28 1.647E+0 1.862E-2
1.53 1.620E+0 2.041E-2
1.53 1.565F.+0 1.757E-2

11.
12.
13.
14.
15.

1.78 1.554E+0 2.010E-2
1.78 ! .529E+0 1.812E-2
2.03 1.530E+0 1.968E-2
2.03 1.481F_,+O 1.764E-2
2.28 1.465E+0 1.829t/-2

16.
17.
18.
19.
20.

2.28 1.413E+0 1.725E-2
2.53 1A54E+0 1.909E-2
2.53 1.386F.+0 1.628E-2
2.78 1.375E+0 1.845E-2
2.78 1.318E+O 1.599E-2

21.
22.
23.
24.
25.

3.03 1.285E+0 1.336E-2
3.03 1.295E+0 1.641E-2
3.28 1.266E+0 1.299E-2
3.28 !.236E+0 1.543E-2
3.53 1.2 ! 3E+O 1.265E-2

26.
27.
28.
29.
30.

3.53 1.209E+0 1.606E-2
3.78 ! .183E+0 1.223E-2
3.78 1.147E+0 1.567E-2
4.03 1.130E+0 1.272E-2
4.03 1.160E+O 1.593E-2

31.
32.
33.
34.
35.

4.28 1.120E+0 1.269E-2
4.28 1.107E+0 1.276E-2
4.53 1.088E+0 1.234E-2
4.53 1.107E+0 1.326E-2
4.78 1.05 IE+0 1.196E-2

36.
37.
38.
39.
40.

4.78 1.046E+0 1.297E-2
5.03 1.04 IE+0 1.152E-2
5.03 1.049E+0 1.322E-2
5.28 1.007E+0 1.198E-2
5.28 1.010E+0 1.266E-2

41.
42.

5.53 9.977E-I 1.145E-2
5.53 1.002E+0 1.214E-2
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Table F.3 Normalized OH fluorescence profile measured on Day 3 for the lean
atmospheric-pressure flame, A-0-L (_ = 0.97, vc = 8.86 cm.see _,
O = 5.42).

Height Flu_escence Standard
(ram) Signal Devialioa

1. 0.51 1.598E+0 1.794E-2
2. 0.51 9.438E-1 9.992E-3
3. 0.76 1.774E+0 1.926E-2
4. 0.76 1.277E+0 1.203E-2
5. 1.01 1.740E+0 1.943E-2

6. 1.01 1.530E+0 1.408E-2
7. 1.26 1.690E+0 1.921E-2
8. 1.26 1.547E+0 1.380E-2
9. 1.51 1.650E+0 1.913E-2
10. 1.51 1.526FA-0 1.307E-2

11. 1.76 1.596E+0 1.828E-2
12. 1.76 1.565E+0 1.643E-2
13. 2.01 1.512E+0 1.724E-2
14. 2.01 1.52 IE+0 1.589E-2
15. 2.26 1A59E+0 1.716E-2

16. 2.26 1.460E+0 1.615E-2
17. 2.51 1.409E+0 1.696E-2
18. 2.51 1.407E+0 1.482E-2
19. 2.76 1.382E+0 1.745E-2
20. 2.76 1.399E+0 1.562E-2

21. 3.01 1.356E+0 1.568E-2
22. 3.01 1.363F./d) 1.457E-2
23. 3.26 1.289E+0 1.611E-2
24. 3.26 1.299E+0 1.487E-2
25. 3.51 1.267E+0 1.641E-2

26. 3.51 1.287E+0 1.374E-2
27. 3.76 1.208E+0 1.596E-2
28. 3.76 1.253E+0 1.440E-2
29. 4.01 I. 182E+0 1.601E-2
30. 4.01 1.215E+0 1.463E-2

31. 4.26 1.131E+0 1.525E-2
32. 4.26 1.117E+O 1.152E-2
33. 4.51 1.111E+0 1.493E-2
34. 4.51 1.116E+0 1.163E-2
35. 4.76 1.078E+0 1.504E-2

36. 4.76 1.082E+0 1.170E-2
37. 5.01 1.069E+0 1.430E-2
38. 5.01 1.081E+0 1.142E-2
39. 5.26 1.032E+0 1.428E-2
40. 5.26 1.004E+0 1.090E-2
41. 5.51 9.901E-1 1.404E-2

42. 5.51 1.010E+0 1.108E-2
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Table F.4 Normalized OH fluorescence profile of the A-IA-R1 flame ($ = 1.49,

vc = 7.73 cm.sec t, D = 4.15).

Height Fluc_,scence Standard
(ram) Signal Deviation

1. 0.55 8.793E-2 1.664E-3
2. 0.80 1.083E- 1 1.855E-3
3. 1.05 1.075E-1 1.860E-3
4. 1.30 9.212E-2 1.777E-3
5. 1.55 7.518E-2 1.537E-3

6. 1.80 5.742E-2 1.178E-3
7. 2.05 4.578E-2 1.030E-3
8. 2.30 3.676E-2 9.477E-4
9. 2.55 3.024E-2 8.534E-4
10. 2.80 2.501E-2 7.901E4

11. 3.07 2.038E-2 4.865E-4
12. 3.30 1.739E-2 4.353E-4
13. 3.55 1.525E-2 4.299E-4
14. 3.80 1.350E-2 4.009E-4
15. 4.05 1.194E-2 3.731E-4

16. 4.30 1.077E-2 2.610E-4
17. 4.55 9.495E-3 2.435E-4
18. 4.80 8.818E-3 2.381E-4
19. 5.05 8.235E-3 2.350E.-4
20. 5.30 7.649E-3 2.251E-4

21. 5.55 7.237E-3 2.262E-4
22. 6.55 5,224E-3 1.507E-4
23. 7.55 4.608E-3 1.440E-4
24. 8.55 3.955E-3 1.118E-4
25. 9.55 3.510E-3 1.054E-4

26. 10.55 3.191E-3 1.066E-4
27. 11.55 2.943E-3 1.024E-4
28. 12.55 2.744E-3 1.027E-4
29. 13_55 2.629E-3 9.976E-5
30. 14.55 2.504E-3 1.008E-4

31. 15.55 2.276E-3 1.006E-4
32. 16.55 1.861E-3 5.123E-5
33. 17.55 1.698E-3 5.274E-5
34. 18.55 1.518E-3 5.282E-5
35. 19.55 1.453E-3 5.153E-5
36. 20.55 1.394E-3 5.247E-5
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Table F.5 Normalized OH fluorescence profile of the A-IA-R2 flame (_ = 1.63,
vc = 7.73 cm.sec _, D = 4.15).

Height Fluorescence Standard
(mm) Signal Deviation

1. 0.55 4.375F_,-2 9.015E-4
2. 0.80 5.659E-2 1.04ZE-3
3. 1.05 5.747E-2 1.043E-3
4. 1.30 4.952E,-2 9.715E4
5. 1.55 4.037F_,-2 8.710E4

6. i.80 3.280E-2 7.123E-4
7. 2.05 2.653E-2 6.726E-4
8. 2.30 2.163E-2 6.059E-4
9. 2.55 1.721E-2 5.569E-4
10. 2.80 1.486E-2 4.985E-4

11. 3.05 1.233E-2 2.829E-4
12. 3.30 1.089E-2 2.679E-4
13. 3.55 9.249E-3 2.630E-4
14. 3.80 8.620E-3 2.464E-4
15. 4.05 7.863E-3 2.368E-4

16. 4.30 7.325E-3 2.054E-4
17. 4.55 6.473E-3 2.096E-4
18. 4.80 6.276E-3 2.028E-4
19. 5.05 6.013E-3 1.978E-4
20. 5.30 5.699E-3 1.965E-4

21. 5.55 5.354E-3 1.983E-4
22. 6.55 4.036E-3 1.261E-4
23. 7.55 3.510E-3 1.235E-4
24. 8.55 2.989E-3 1.068E-4
25. 9.55 2.789E-3 1.087E-4

26. 10.55 2.563E-3 1.056E-4
27. I 1.55 2.401F_,-3 9.866E-5
28. 12.55 2.267E-3 9.380E-5
29. 13.55 1.996E-3 9.143E-5
30. 14.55 2.127E-3 9.551E-5

3 I. 15.55 1.844E-3 8.123E-5
32. 16.55 1.667E-3 6.095E-5
33. 17.55 1.594E-3 6.035E-5
34. 18.55 1.465E-3 6.387E-5
35. 19.55 1.425E-3 6.177E-5
36. 20.55 1.391E-3 5.833E-5
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TableF.6 Normalizext OH fluorescence profile of the A-IA-S 1 flame (# = 1.78,

vc = 7.73 cm.scc t, D = 4.16).

Height _ Standard
(nun) Signal Dcvi_m

1. 0.53 2.695E-2 5.660E-4
2. 0.78 3.255E-2 6.211E-4
3. 1.03 3.332E-2 6.299E-4
4. 1.28 3.042E-2 5.774E-4
5. 1.53 2.440E-2 5.54 IE-4

6. 1.78 2.067E-2 4.061E-4
7. 2.03 1.685E-2 3.865E-4
8. 2.28 1.363E-2 3.659E-4
9. 2.53 1.098E-2 3.289E-4
10. 2.78 9.625E-3 3.115E-4

1 !. 3.03 8.526E-3 2.087E-4
12. 3.28 7.475E-3 2.092E-4
13. 3.54 6.135E-3 2.069E-4
14. 3.78 6.039E-3 1.862E-4
15. 4.03 5.438E-3 1.862E-4

16. 4.28 4.933E-3 1.680E-4
17. 4.53 4.691E-3 1.610E-4
18. 4.78 4.273E-3 1.652E-4
19. 5.03 3.986E-3 1.679E-4
20. 5.28 4.055E-3 1.653E-4

21. 5.53 3.270E-3 1.413E-4
22. 6.54 2.594E-3 1.284E-4
23. 7.54 2.167E-3 1.225E-4
24. 8.54 1.975E-3 1.225E-4
25. 9.54 1348E-3 1.26,4E-4

26. 10.54 1.549E-3 1.220E-4
27. 11.54 1.581E-3 1.231E-4
28. 12.54 1.345F-,-3 1.154E-4
29. 13.54 1.274E-3 1.171E-4
30. 14.54 !.056E-3 1.146E-4

31. 15.54 1.01 IE-3 1.148E-4
32. 16.54 1.363E-3 9.817E-5
33. 17.54 1.465E-3 1.036E-4
34. 18.54 1.317E-3 9.902E-5
35. 19.54 1.299E-3 1.099E-4
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TableF.7 Normalized OH fluorescence profile of the A-IA-S2 flame ($ = 1.92,
v c = 7.75 cm.sec =, D = 4.17).

Height Fluorescence Standard
(nun) Signal Deviation

1. 0.53 1.759E-2 3.885E-4
2. 0.78 2.00(02 4.075E-4
3. 1.03 2.078E-2 4.208E-4
4. 1.28 1.902E-2 4.126E-4
5. 1.53 1.578E-2 3.876E-4

6. 1.78 1.369E-2 3.308E-4
7. 2.03 1.142E-2 3.171E-4
8. 2.28 9.638E-3 2.802E-4
9. 2.53 7.897E-3 2.365E-4
10. 2.78 7.180E-3 2.185E-4

11. 3.03 6.002E-3 1.87 IE-4
12. 3,28 5.410E-3 1.945E-4
13. 3.53 4.499E-3 1.716E-4
14. 3.78 4.466E-3 1.741E-4
15. 4.03 3.950E-3 1.681E-4

16. 4.28 3.675E-3 1.613E-4
17. 4.53 3.284E-3 1.224E-.4
18. 4.78 3.316E-3 1.403E-4
19. 5.03 3.236E-3 1.447E-4
20. 5.28 3.0IME-3 1.455E-4

21. 5.53 3.242E-3 1.468E-4
22. 6.53 2.179E-3 1.256E-4
23. 7.53 1.846E-3 1.227E-4
24. 8.53 1.727E-3 1.242E-4
25. 9.53 1.545E-3 1.214E-4

26. 10.53 1.365E-3 1.286E-4
27. 11.53 1.337E-3 1.189E-4
28. 12.53 1.236E-3 1.221E-4
29. 13.53 1.247E-3 1.238E-4
30. 14.53 1.214E-3 1.216E-4

31. 15.53 1.125E-3 1.232E-4
32. 16.53 1.333E-3 1.061E-4
33. 17.53 1.361E-3 1.080E-4
34. 18.53 1.225E-3 1.082E-4
35. 19.53 1.250E-3 1.173E-4
36. 20.53 1.314E-3 1.221E-4
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Table F.8 Normalized OH fluorescence profile of the L-II-R1 flame (_ = 2.03,
vc -- 22.4 cm.sec "_, P = 80 ton).

Height Fluorescence Standard
(nun) Signal Deviation

1. 0.440 2.886E-1 5.195E-3
2. 0.505 3.002E-1 6.908E-3
3. 0.840 5.321E-1 7.288E-3
4. 0.940 4.845E- 1 1.118E-2
5. 1.005 6.363E- 1 1.008E-2

6. 1.005 5.699E-1 1.326E-2
7. 1.240 7.968E-1 8.791E-3
8. 1.505 9.788E-1 1.244[/-2
9. 1.640 1.086E+0 1.012E-2
10. 1.940 1.258E+0 1.864E-2

11. 2.005 1.3411/+0 1.429E-2
12. 2.005 1.409E+0 1.981E-2
13. 2.040 1.361E+0 1.819E-2
14. 2.440 1.550E+0 1.940E-2
15. 2.505 1.617E+0 1.601E-2

16. 2.840 1.710E+0 2.056E-2
17. 2.940 1.816E+0 2.113E-2
18. 2.950 1.828E+0 2.134E-2
19. 2.950 1.813E+0 2.039E-2
20. 2.950 1.805E+0 2.139E-2

21. 2.950 1.835E, tO 2.018E-2
22. 2.950 1.7711/+0 2.195E-2
23. 3.005 1.894E+0 2.436E-2
24. 3.005 1.861EM) 2.463E-2
25. 3.240 1.802E+0 2.033E-2

26. 3.505 1.923E+0 2.360E-2
27. 3.640 1.816E+0 2.044E-2
28. 3.940 1.933E+0 2.183E-2
29. 4.005 1.950E, tO 2.4901/-2
30. 4.005 1.93 IE+0 2.314E-2

31. 4.040 1.827E+0 2.055E-2
32. 4.440 1.768E+0 2.035E-2
33. 4.505 1.876E+0 2.364E-2
34. 4.840 1.719E+0 1.965E-2
35. 4.940 1.744E+0 2.086E-2

36. 5.005 1.845E+0 2.415E-2
37. 5.005 1.81 IE+0 2.366E-2
38. 5.240 1.630E+0 1.697E-2
39. 5.505 1.646E+0 1.581E-2
40. 5.640 1.556E+0 1.640E-2

41. 5.940 1.582E+0 1.957E-2
42. 6.005 1.570E+0 1.906E-2
43. 6.005 1.548E+0 1.458E-2
44. 6.040 1.479E+0 1.639E-2
45. 6.440 1.442E+0 1.64 1E-2
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Table F.8 continued

46.
47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.
59.
60.

61.
62.
63.
64.
65.

6.

67.
68.
69.
70.

71.
72.
73.
74.
75.

76.
77.
78.
79.
80.

81.
82.
83.
84.
85.

86.
87.
88.
89.
90.

Height
(mm)

6.505
6.840
6.940
7.005
7.005

7.240
7.505
7.640
7.940
8.005

8.005
8.040
8.440
8.505
8.840

8.940
9.005
9.005
9.240
9.505

9.640
9.940
10.005
10.005
10.040

10.440
10.505
10.840
10.940
I1.005

11.240
11.640
11.940
12.005
12.040

12.440
12.940
13.005
13.940
14.005

14.940
15.005
15.940
16.005
16.940

FI uote_ence

Signal
Standard
Deviation

1A58E40
1.338E+0
1.353E+0
1.383E+0
1.357F_,+0

1.289E+0
1.307E+0
1.219E+0
1.194E+0
1.222E+0

1.219E+0
1.184E+0
1.183E+0
1.171E+0
1.118E+O

1.102E+0
1.113E+0
1.097E+0
1.065E+0
1.0821/+0

1.060E+0
1.015E+0
9.935E-1
1.006E+0
1.000E+0

9.608E-1
9.369E-1
9.323E-1
9.250E-1
8.699E-1

9.129E-1
8.704E-1
8.347E-1
8.006E- 1
8.530E- !

8.129E-1
7.317E-1
7.493E-1
6.877E-1
6.922E-I

6.448E- 1
6.374E-1
6.110E-1
5.6881/-1
5.477E-1

1.499E-2
1.512E-2
1.836E-2
1.443E-2
1.684F_,-2

1.439E-2
1.380E-2
1.423E-2
1.781E-2
1.302E-2

1.744E-2
1A54E-2
1.214E-2
1.206E-2
1.232E-2

1.392E-2
1.214E-2
1.583E-2
1.238E-2
1.151E-2

1.203E-2
1.339E-2
1.554E-2
1.154E-2
1.165E-2

1.170E-2
1.068E-2
1.140E-2
1.305E-2
8.995E-3

1.151E-2
1.061E-2
1.210E-2
8.918E-3
1.092E-2

1.046E-2
9.642E-3
8.609E-3
9.286E-3
8.566E-3

9.223E-3
7.667E-3
9.120E-3
7.282F_,-3
7.689E-3
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Table F.8 continued

Height
(mm)

Standard
Deviation

91. 17.005 5.397E-1 7.522F,-3
92. 17.940 5.094E-1 7.212E-3
93. 18.005 5.145E-1 6.867E-3
94. 18.940 4.824E- 1 7.165E-3
95. 19.005 4.723E-1 6.860E-3

96. 19.940 4.334E-1 6.759E-3
97. 20.005 4.326E- 1 6.445E-3
98. 20.940 4.110F-,-1 5.56 IE-3
99. 21.005 3.974E- 1 4.215E-3
100. 21.940 3.942F,,-1 5.342E-3

101. 22.005 3.698E-1 4.249E-3
102. 22.940 3.545E-1 5.069E-3
103. 23.005 3.415F,,-1 3.801E-3
104. 23.940 3.256E- 1 4.919E-3
105. 24.005 3.247E-1 3.995E-3

106. 24.940 2.939E-1 3.832E-3
107. 25.005 3.036E- 1 3.709E-3
108. 25.940 2.741E-1 3.773E-3
109. 26.005 2.710E- 1 3.652E-3
110. 26.940 2.494F_,-1 3.410E-3

111. 27.005 2.539E- 1 3.728E-3
112. 27.940 2.338E- 1 3.344E-3
113. 28.005 2.323E-1 3.354E-3
I 14. 28.940 2.104E- 1 3.321E-3
115. 29.005 2.185E-1 3.09gE-3

116. 29.940 1.966E- 1 3.356E-3
117. 30.005 2.043E- 1 3.116E-3
118. 30.940 1.75 IE-1 3.246E-3
119. 31.005 1.905E- 1 2.700E-3
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Table F.9
Normalized OH fluorescence profile of the L-II-R2 flame (0 -- 2.16,
vc = 22.4 cm.sec _, P = 80 ton').

Height Fluorescence Standard
(mm) Signal Deviation

1. 0A3 2.038E- 1 3.601E-3
2. 0.83 3.228E-1 4.534E-3
3. 0.94 3.426E- 1 6.837E-3
4. 1.23 4.901E-1 5.560E-3
5. 1.63 6.547E-1 6.324E-3

6. 1.94 8.179E-1 1.047E-2
7. 2.03 8.623E-1 1.187E-2
8. 2A3 1.026E+0 1.306E-2
9. 2.83 1.158E+0 1.444E-2
I0. 2.94 1.204E+0 1.287E-2

11. 3.23 1.252E+0 1.425E-2
12. 3.63 1.315E+0 1.457E-2
13. 3.94 1.354E+0 1.240E-2
14. 4.03 i.343E+0 1.450E-2
15. 4.43 1.307E+0 1.489E-2

16. 4.83 1.296E+0 1.491E-2
17. 4.94 1.290E+0 1.407E-2
18. 5.23 1.270E+0 1.496E-2
19. 5.63 1.232E+0 1.411E-2
20. 5.94 1.207E+0 1.410E-2

21. 6.03 1.170E+0 1.462E-2
22. 6.43 1.112E+0 1.380E-2
23. 6.83 1.053E+0 1.279E-2
24. 6.94 1.060E+O 1.412E-2
25. 7.23 1.013E+O 1.233E-2

26. 7.63 9.619E-1 1.286E-2
27. 7.94 9.355E- 1 1.264E-2
28. 8.03 9.086E- 1 1.251E-2
29. 8.43 8.850E- 1 1.058E-2
30. 8.83 8.228E- 1 1.063E-2

31. 8.94 8.316E- 1 9.066E-3
32. 9.23 8.293E- 1 1.075E-2
33. 9.63 7.663E- 1 9.678E-3
34. 9.94 7.483E- 1 9. I07E-3
35. 10.03 7.532E-1 8.005E-3

36. 10.43 7.317E- 1 8.4321/-3
37. 10.83 6.925E-1 7.850E-3
38. 10.94 6.756E-1 8.495E-3
39. 11.23 6.609E- 1 7.552E-3
40. 11.63 6.554E- 1 7.325E-3

4 I. 11.94 6. 107E- 1 8.425E-3
42. 12.03 6.245E- 1 7.634E-3
43. 12.43 6.030E- 1 7.457E-3
44. 12.94 5.621E-1 7.788E-3
45. 13.94 5.235E- 1 7.139E-3
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Table F.9 continued

Height
(nun)

46. 14.94
47. 15.94
48. 16.94
49. 17.94
50. 18.94

Flmnc¢

Signal

4.734B-I
4.427E-I
4.191E-I
3.908D!
3.578E-I

Standard
Deviation

7.064E-3
6,980F,,3
5.333E-3
5A93E-3
5.406E-3

51. 19.94 3.291E-1 4.963E-3
52. 20.94 3.106E-1 3.769E-3
53. 21.94 2,750E-1 3.894E-3
54. 22.94 2.6591/-1 3.447E-3
55. 23.94 2.428E-1 3.412E-3

56. 24.94 2.3ffTDl 2.876E-3
57. 25.94 2.143E-1 2.783E-3
58. 26.94 2.019E-1 2.838E-3
59. 27.94 1.842E- 1 2.557E-3
60. 28.94 1.681E-1 2.595E-3

61. 29.94 L.534E-1 2.424E-3
62. 30.94 1.465E-1 2.35 IE-3

46O



Table F. 10 Normalized OH fluorescence profile of the L-II-S I flame (_ = 2.32,
vc = 22.4 cm.sec _, P = 80 torr).

Height Flut_sc_nce Standard
(mm) Signal Deviation

I. 0.460 2.20212-I 3.940E-3
2. 0.515 1.358E-I 5.062E-3
3. 0.860 2.221E-I 4.035E-3
4. 0.940 2.134E,-1 5.003E-3
5. 1.005 2.484E-I 7.257E-3

6. 1.015 2.497E- 1 6.610E-3
7. 1.260 3.317E,- 1 4.998E-3
8. 1.515 3.976E- 1 7.879E-3
9. 1.660 4.443E-1 5.289E-3
10. 1.940 5.434E-1 7.528E-3

1I. 2.005 5.737E- 1 1.020E-2
12. 2.015 5.307E- 1 9.033E-3
13. 2.060 5.610E-1 8.806E-3
14. 2.460 7.039E- 1 9.537E-3
15. 2.515 7.237E- 1 1.035E-2

16. 2.860 8.335E-1 1.132E-2
17. 2.940 7.999E- 1 8.988E-3
18. 3.005 8.963E-1 1.288E-2
19. 3.015 8.458E-1 1.149E-2
20. 3.260 9.144E- 1 1.126E-2

21. 3.515 9.626E-1 1.153E-2
22. 3.660 9.778E- 1 1.190E-2
23. 3.940 9.648E- 1 9.760E-3
24. 4.005 1.036E+0 1.420E-2
25. 4.015 9.886E-1 1.205E-2

26. 4.060 1.011E+O 1.220E-2
27. 4.460 1.026E+0 1.15ZE-2
28. 4.515 1.023E+0 1.254E-2
29. 4.860 1.000E+0 1.168E-2
30. 4.940 9.983E- I 1.268E-2

31. 5.005 1.022E+0 1.399E-2
32. 5.015 9.999E-1 1.254E-2
33. 5.260 1.011E+O 1.151E-2
34. 5.515 9.808E- 1 1.224E-2
35. 5.660 9.832E- 1 1.132E-2

36. 5.940 9.176E- 1 1.071E-2
37. 6.005 9.289E-1 9.493E-3
38. 6.015 9.211 E- I 1.209E-2
39. 6.060 9.380E-1 1.118E-2
40. 6.460 9.143E-1 1.07ZE-2

4 I. 6.515 8.785E- 1 1.173E-2
42. 6.860 8.676E-1 1.079E-2
43. 6.940 8.212E- 1 1.057E-2
44. 7.005 8.452E-1 8.588E-3
45. 7.015 8.125E- 1 1.069E-2
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Table F. 10 continued

Height
(nun)

_. 7.260
47. 7.515
48. 7.660
49. 7.940
_. 8.005

51. 8.015
52. 8.060
53. 8.460
54. 8.515
55. 8.860

8.227E-1
7.695E,-1
7.806E-1
7.471E,-1
7.344E-1

7.277F,-1
7AI9E-I
7.050E-1
6.886E-1
6.961E-1

Standard
Deviation

1.046E-2
1.092E-2
1.002E-2
9.919E-3
8.511E-3

7.748E-3
1.041E-2
7.741E-3
7.464E-3
8.120E-3

56. 8.940 6.502E-1 8.336E-3
57. 9.005 6.665E-1 8.503E-3
58. 9.015 6.442E-1 6.806E-3
59. 9.260 6.549E-1 7.566E-3
60. 9.515 6.167E-1 7.392E-3

61. 9.660 6.245E-1 7.884E-3
62. 9.940 5.886E- 1 7.712E-3
63. 10.005 6.032E-I 7A85E-3
64. 10.015 5.870E- 1 6.781E-3
65. 10.060 6.021E- 1 7.856E-3

66. 10.460 5.664E,-1 7.463E-3
67. 10.515 5.605E,-1 6.979E-3
68. 10.860 5.569E- 1 7.142E-3
69. 10.940 5.434E-1 7.365E-3
70. 11.005 5.475E- 1 7.213E-3

71. 11.260 5.358E-1 7.320E-3
72. 11.660 5.227E-1 7.525E-3
73. 11.940 5.011E-I 7.710E-3
74. 12.005 5.082E-1 7.243E-3
75. 12.060 5_16E-1 6.606E-3

76. 12.460 5.078E- 1 7.176E-3
77. 12.940 4.633E- 1 5.52 IE-3
78. 13.005 4.601E-1 7.137E-3
79. 13.940 4.320E- 1 5.765E-3
80. 14.005 4.261E-1 6.965E-3

81. 14.940 3.978E- 1 5.183E-3
82. 15.005 3.881E-1 6.354E-3
83. 15.940 3.70 IF,,-1 5.207E-3
84. 16.005 3.606E- 1 4.208E-3
85. 16.940 3.362E-1 4.279E-3

86. 17.005 3.347E-1 4.103E-3
87. 17.940 3.109E- 1 3.866E-3
88. 18.005 3.114E-I 3.792E-3
89. 18.940 2.943E-1 3.834E-3
90. 19.005 2.905E- 1 3.817E-3
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Table F. 10 continued

Height
(mm)

Standard
Deviation

91. 19.940 2.741E-1 3.710E-3
92. 20.005 2.726E- 1 3.508E-3
93. 20.940 2.547E-1 3.711E-3
94. 21.005 2.444E- 1 3.299E-3
95. 21.940 2.310E- 1 3.491E-3

96. 22.005 2.317E- I 3.212E-3
97. 22.940 2.204E- 1 3.347E-3
98. 23.005 2.132E- 1 3.374E-3
99. 23.940 2.016E- 1 3.266E-3
100. 24.005 1.923F_,-1 3.147E-3

101. 24.940 1.965E- 1 2.711E-3
102. 25.005 1.747E,-1 3.029E-3
103. 25.940 1.745E- 1 2.705E-3
104. 26.005 1.628E-1 2.705E-3
105. 26.940 1.579E- 1 2.722E-3

106. 27.005 1.576E-1 2.733E-3
107. 27.940 1.457E-1 2.433E-3
108. 28.005 1.385E-1 2.427E-3
109. 28.940 1.360E- 1 2.519E-3
110. 29.005 1.321 E- 1 2.366E-3

111. 29.940 1.269E- 1 2.458E-3
112. 30.005 1.199E- 1 2.339E-3
113. 30.940 1.140E-I 2.271E-3
114. 31.005 1.078E- 1 2.236E-3
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Table F.11 Normalized OH fluorescence profile of the L-II-S2 flame (_ = 2.46,

vc = 22.4 cm-sec a, P = 80 tort).

Height Ru_.scence Standard
(nun) Signal Deviation

1. 0.440 1.471E-1 3AI5E-3
2. 0.515 5.943E-2 3.296E-3
3. 0.940 i.744E- 1 3.581E-3
4. 0.950 1.566E-1 4.980E-3
5. 1.005 1.411 E- 1 3.793E- 3

6. 1.015 1.696E-1 4.266E-3
7. 1.440 2.837E-1 4.679E-3
8. 1.515 2.671E-1 5.223E-3
9. 1.940 3.889E- 1 5.099E-3
10. 1.950 3.713E-1 6.145E-3

11. 2.005 3.594E- 1 5.294E-3
12. 2.015 3.854E-1 6.195E-3
13. 2.440 5.050E-1 8.621E-3
14. 2.515 5.080E-1 9.368E-3
15. 2.940 6.192E- 1 8.900E-3

16. 2.950 5.994E-1 8.079E-3
17. 3.005 5.83 IE- 1 6.62 IE-3
18. 3.015 6.064F.- 1 9.785E-3
19. 3.440 7.020E- 1 1.018E-2
20. 3.515 7.149E-I 1.108E-2

21. 3.940 7.679E- 1 1.050E-2
22. 3.950 7.652E-1 9.220E-3
23. 4.005 7.128E-1 7.097E-3
24. 4.015 7.654E- 1 1.212E-2
25. 4.440 8.449E-1 1.017E-2

26. 4.515 7.958E-1 8.275E-3
27. 4.940 8A87E-I 1.067E-2
28. 4.950 7.996E-1 8.738E-3
29. 5.005 7.81 IE- 1 1.026E-2
30. 5.015 7.793E- 1 8.162E-3

31. 5.440 8.282E- 1 1.019E-2
32. 5.515 7.696E,-1 8.151E-3
33. 5.940 8.167E-1 1.007E-2
34. 5.950 7.540E-1 8.647E-3
35. 6.005 7.146E- 1 9.923E-3

36. 6.015 7.372E-1 7.830E-3
37. 6.440 7.824E-1 9.578E-3
38. 6.515 6.915E-1 7.982E-3
39. 6.940 7.252E-1 1.016E-2
40. 6.950 6.95 IE- 1 8.664E-3

41. 7.005 6A98E- 1 9.247E-3
42. 7.015 6.633E-1 8.000E-3
43. 7.440 6.998E-1 9A73E-3
44. 7.515 6.179E- 1 7.032E-3
45. 7.940 6.527E-1 8.995E-3
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Table F. 11 continued

46.
47.
48.
49.
50.

51.
52.
53.
54.
55.

56.
57.
58.
59.
60.

61.
62.
63.
64.
65.

6.

67.
68.
69.
70.

71.
72.
73.
74.
75.

76.
77.
78.
79.
80.

81.
82.
83.
84.
85.

86.
87.
88.
89.
90.

I-Icight
(ram)

7.950
8.005
8.015
8.440
8.515

6.167E-1
5.872E- 1
5.909E-1
6.082E-1
5.563E-1

8.940
8.950
9.005
9.015
9.440

5.752E- 1
5.542E-1
5.175E-1
5.183E-1
5.413E-1

9.515
9.940
9.950
10.005
10.015

4.924E-1
5.183E-1
5.121E-1
4.661E-1
4.688E- 1

10.440
10.515
10.950
11.005
11.950

4.992E-1
4.538E-1
4.670E-1
4.301E-1
4.369E-1

12.005
12.950
13.005
13.950
14.005

3.949E-1
3.836E-1
3.698E-1
3.529E-1
3.363E-I

14.950
15.005
15.950
16.005
16.950

3.171E,-1
3.085E-1
2.990E- 1
2.807E-1
2.759E-1

17.005
17.950
18.005
18.950
19.005

2.622F_,-1
2.594E-1
2.425E- 1
2.333E-1
2.215E-1

19.950
20.005
20.950
21.005
21.950

2.145E-1
2.079E-1
2.116E-1
1.974E-1
1.967E-1

22.005
22.950
23.005
23.950
24.005

1.813E-1
1.746E- 1
1.644E-1
1.611E-I
1.545E-I

Standard
Deviation

7.944E-3
9.060E-3
7.175E-3
8.146E-3
7.433E-3

7.471E-3
7.134E-3
5.698E-3
6.697E-3
7.070E-3

6.751E-3
7.352E-3
7.241E-3
5.620E-3
6.816E-3

6.988E-3
6.551E-3
6.744E-3
5.656E-3
6.806E-3

5.573E-3
4.414E-3
5.294E-3
4.181E-3
5.325E-3

3.863E-3
4.885E-3
3.960E-3
4.965E-3
3.794E-3

3.795E-3
3.713E-3
3.687E-3
3.438E-3
3.386E-3

3.295E-3
3.363E-3
2.787E-3
2.989E-3
2.796E-3

2.955E-3
2.667E-3
2.610E-3
2.673E-3
2.565E-3
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Table F. 11 continued

Height
(nun) Signal

9I. 24.950 1.479E-I 2.461E-3
92. 25.005 1.379E-I 2.659E-3
93. 25.950 1.371F,,-I 2.566E-3
94. 26.005 1.264E-1 2.419E-3
95. 26.950 1.298E-1 2.664E-3

96. 27.005 1.189E-1 2.326E-3
97. 27.950 1.167E- 1 2.404E-3
98. 28.005 1.033E- 1 2.329E-3
99. 28.950 1.056E- 1 2.272E-3
100. 29.005 9.662E-2 2.054E-3

101. 29.950 9.358E-2 2.306E-3
102. 30.005 8.337E-2 1.831E-3
103. 30.950 8.954.E-2 2.172E-3
104. 31.005 8.181E-2 1.804E-3
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