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Abstract• Fuzzy control has been successfully applied in industrial systems. However, there is some cauti
in using it. The reason is that it is b_ed on q_te re_onabh ideas, but each of these ideas can be implement
in several different way.s, .and depending on which of the implementations we choose we get different resul
Some implementations lead to a high guality control, some olthem not. And since are no theoretical metho
for choosing the implementation, the basic way to choose it now is experimental. But if we choose a meth(
that is good for several examples, there is no guarantee that it will work fine in all of them• Hence the cautic

We are going to provide a theoretical basis for choosing the fuzzy control procedures. In order to choose
procedure that transforms a fuzzy knowledge into a control we need, first, to choose a membership functi(
for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values th
corresponds to "and" and "or", and third, when we obtain a .membership function for control, we mc
defuzzify it, that is, somehow generate a value of the control u that will be actually used. In the paper
describe a general approach that will help to make all these choices: namely, we prove that under reasonat
assumptions membership functions should be linear or fractionsJ]y linear, defuzzification must be described t
a centroid rule and describe all possible "and" and "or" operations. Thus we give a theoretical explanatio:
of the existing semi-heuristic choices and formulatethe basis for the further research on optimal fuzzy contr(

1. BKIEF INTRODUCTION

Why do we need mathematical foundations of fuzzy control? In order to design a fuzzy contn
we must choose fuzzy variables, choose combination rules for uncertainty values and choose a defuzzificatk

procedure. The efficiency of the resulting fuzzy control essentially depends on these choices. For examph (s
[KFLLgl] for details) different choices of combination rules can lead to relaxation times that differ twofold (a_
if we go for stability this is an essential increase)• These choices are now made mainly on a semi- empiric
basis: if a resulting system works, that's fine. This approach is acceptable for camcorders or dishwasher
even if something goes wrong with a picture for a moment or two, it is not aproblem. However, this hv
of reliability is absolutely unacceptable for such serious applications as Space Shuttle, and that is the ms;
reason why in spite of the brilliant results of computer simulations ([L88, LJBg0], etc) fuzzy control technJqu,
are not yet widely applied to space missions. So what we need is an analysis of different possible choices c
every stage of choosing a fuzzy control, an analysis that must be done on the mathematical strictness hv
and either explain what choices to make or at least severely restrict the set of possible choices, so that tt
best methods could be then chosen by an exhaustive analysis of the few possible candidates.

What are we planning to do? We'll explain how reasonable demands on the choices of a membersh_
function, operations with certainty values and a defuzzification procedure leaxt to the natural reformulation c
these choice problems in terms of transformation groups, a formalism that is extremely successful in moder

physics. We'll also show how. the known results about tr_sformation groups help to solve these choic
problems, resulting in the choice of Centroid as a defuzzification procedure, linear, fractionally linear an
spline membership functions and a list of possible choices for &- and V-operations.

2. WHY FUZZY CONTROL? HOW AND WHY IS IT DESIGNED NOW?

Simplest example of a control system. To illustrate the idea of fuzzy control let's consider somethin
very simple, like a thermostat. Suppose that we want to keep a temperature T equal to some fixed v'_ue Tc
In other words, we want the difference z - T - To to be equal to 0. The way to control the temperature is t
switch on the heater or the cooler, and to control the degree of cooling andheating. In mathematical tern;
heating increases the temperature and cooling decreases it, so what we control is a variable that determin_
the rate with which the temperature changes. In other words, this "degree of heating and cooling" is _othin

else but a derivative T of temperature with respect to time. So the behavior of the thermostat is determine

by the equation T = u, where u is the control we apply. What control u to apply in every moment of time
depends on the current temperature• If it is higher than To, we must cool the room down, i.e., apply u < [
if T < To, we must heat it, i.e., apply u > 0. So u in general depends on T: u = u(T). All these formulas ar

easier to express in terms of z = T - To: _ = T, hence for z the dynamics is _ = u(z), where the value of th

control variable depends on z. The remaining problem is: how to control? I.e., what u(z) to use?
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We have an expert; why cannot we extract u(z) i'rom him? We are talkingabout the expert sysl

approach; thismeans that we have an expert who already knows how to control,and what we are plan_
to do isto somehow extracthis knowledge and put itinsidethe computer. Ideallywe would llketo extl

the whole dependency u(z) from that expert. The naturalidea to do that isto ask him lotsof questions,

"suppose that z is5 degrees;what do you do?", write down the answers to allthose questions,and thus ]
u(z). Sounds reasonableat firstglance,untilyou try to apply the same idea to the skillin which practic
allthe adultsconsiderthemselves experts:drivinga car.Ifyou ask a drivera questionlikethat "you are gc

at 55 mph, the car in frontof you isat the distanceof 30 ft,and itslowed down to 4T mph, for how m
seconds do you hit the brakes? ,I guess no one will_i'vea precisenumber. O.K., you can installmeasuJ
devices into a car or a simulator, and simulate this situation, but what will happen is that this time w_

different for different simulations. The problem is not that the expert has some precise number (like 1.

sec) in his mind, but cannot express it in words; the problem is that once it will be 1.3, another time it x
be 1.5, etc. (depending on whether he is tired or not, etc.).

An expert usually expresses his knowledge in words. An expert cannot say "hit the breaks for 1.
sec", what he can say is "hit the brakes for a while". So the rules that can be extracted from him are not
the velocity is 47 then hit the brakes for 1.453 sec", but something like "if the velocity is a little bit sm_
than maximum, hit the breaks for a while". Let's illustrate the rules on the thermostat example.

Rules: thermostat example. One does not have to be a great expert to control a thermostat, comI
sense is su_cient here, and common sense prompts the following rules: If the temperature T' is close to
i.e., if the difference z - T - T0 is negligible, then no control is needed, i.e., u is also negligible. If the tool
slightly overheated, i.e., if z is positive and small, we must cool it a little bit (i.e., u -- 9 must be negative
small). If the temperature is a little lower, then we need to heat the room a little bit. In other terms, if
small negative, then u must be small positive, etc. Thus way we can formulate our commonsense experie
in terms of rules: If z is negligible, then u must be negligible. If z is small positive, then u must be sr
negative. If z is small negative, then u must be small positive, etc.

Suppose that we know z. What u to choose? Summarizing the rules, we can say that u is an appropr
choicefora controlifand only ifeither(z isnegligibleand u isnegligible),or (z issmall positiveand u issl

negative),etc.Ifwe use the denotationsC(u) for"u isan appropriatecontrol",N(z) for ``zisnegligible",
for "smallpositive,SJV for '_smallnegative_ and use the standard mathematical notations8zfor ``and",V

"or" and --for "ifand only if",we come to the followingformula: C(z) = (N(z)&N(u))V (SP(z)&SN(u

How to formalize these words: the idea of fuzzy log|c.In order to formalizethem we need to exp
in mathematical terms notions like"negligible","smallpositive_, ``smallnegative",etc. The main differe

between these notions and mathematically precise(_crisp')ones like"greaterthan 0.5" isthat any valu
eithergreaterthan 0.5 or not, whl]e we cannot say that any value z isnegligibleor not. Some values
so small that practicallyeveryone would agree that they are ne_ligible,but the biggeristhe value,the
expertswillsay that itisne_Ugible,and lessconfidenthe willbe in that statement. For example, ifsome

isperforming a complicated experiment that needs fixedtemperature, then for him 0.1 degree isnegligi
but 1 degreeisnot.For another expert :[:5degreesisnegligible.

This degree of confidence is usually described by a fuzzy logic[Z65]. The idea is that to every _'uz

property like``negligible"or _small positive_ and to every realnumber z we put intocorrespondence a v_

#(z) from the interval[0,1]that expressesour degreeof confidencethat thisproperty is truefor z: #(z)

means that we are absolutelysure that thisproperty istruefor z. _(z) = 0 means thatwe are absolutelyE
that thisproperty isfalsefor z. Values between 0 and 1 mean that we are not sure whether itistrueor
This/J iscalleda membersMp function.

How to determine the membersh|p function for a given property? One of the possibilitiesisto t

several(E) experts,take differentvaluesof z, and ask every expert whether he believesthat thisprop_

istrue for each of thisvalues. Suppose that forsome z B(z) experts out of B said that x isnegligible

satisfiesany other property). Then itisnatural to take the ratioof those who saidthat z isnegligible,:

resultingdegreeof confidence,i.e.,take E(z)/g as/_(z).Another possibilityisto ask one expert and exp

hisdegreeofconfidenceinterms of the so-calledsubjectiveprobabilities[$54].After we've got the values

forthe z'sthat we asked about, we must extrapolatethesevaluesto get the expressionfor#(z) forallx.

In fuzzy controlwe do not fixany specificway to assignmembership functions,we just suppose that
somehow determined.
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What membership functions are actually used. Several different membership functions result for:
this approach. The simplest ones correspond to the case, when we consider just three values z: one vail
a, for which we are absolutely sure that this property is true, and two values a - A,a 4- A, for which
are absolutely sure that it is false; and then use linear interpolation in between. The resulting membersl_
function is described by the following expression: #A(Z) = 0 if z < a--A or z > a 4- _; #A(z) ffi 1 "4-(z- a)/.
if a - A < z < a and pA(z) = 1 -- (z -- a)/A if a _< z _< a + A. Such functions axe called tr/anguIax.

In case we have several consequent words to describe the same quantity, like "small negative". "negligible'
small positive , etc., It means that every value of z must satisfy one of these properties. If we use ratios (

experts or subjective probabilities to get the values of p, we come to the conclusion, that for every z the sum,

the values of pA(z) for all A must be equal to 1. Therefore, where the membership function corresponding t
one property starts decreasing from i to 0 (in the interval [a, a+A]), the membership function that corresponc
to the next property must start increasing from 0 to 1. In view of that the value of A must be the same fc
all the properties, and a are equal to 0 for negligible, A for "small positive", 2A for the next property, etc.

This is to some extent an oversimplification in comparison with what is actually used: "left A" and Uright A
can be different, and there must be infinite intervals corresponding to "very very big'(positive and negative
With these corrections made, these simplest membership functions are efficiently used in fuzzy control [L88
[LTTJ89], [LJB90]. More complicated functions are also used: e.g., fractionally linear functions are used t
control trains [MYI8?], splines are used, etc.

Returning to rules. If we choose some membership functions, we'll be able for every z and u to descril:

our degree of confidence in statements N(x), N(u), etc. In order to compute our degree of confidence in C(t
we must figure out, how to apply & and V to these degrees of confidence. The degrees of confidence are
generalization of truth values (true corresponds to 1,'t'alse to 0), so we must somehow extend & and V from tt

two-valued set {0, 1} to the functions ft_ and fv, that axe defined on the whole interval [0, 1]. Zadeh original]
proposed to use fs_ = re.in and fv - max. Later other functions were proposed, including product for _
min(a + b, 1) as fv(a, b) (these four functions axe most frequently used in fuzzy control)• For our thermost_

example we get the following expression for the membership function pc(u):
pc(u) = fv(fSt(pN(z),pN(U)), ftt(pSP(Z),#sN(U)), ftt(psN(Z),pSP(U)),...)

In particular, if we use rain and max, we get
pC(U) = max(mln(pN(z),pN(U)),min(psp(z),PSN(U)),mJn(psN(z),psp(lt)),...)

So what control to use? a problem. What we get as a result is a "fuzzy" recommendation: we can us
say u = 0.5 with degree of certainty 0.8, u = 0.4 with degree of certainty 0.3, etc. In the real expert systerT

it is all we need: for example, in case of a medical system we give to a doctor the list of all possible illness_
with degrees of certainty, and it is for him to decide: either to believe in the most probable diagnos|s, or 1
analyze the patient more. But in the control case the whole purpose was to automate; so we do not have
person who makes decision, we want a system itself to decide which of the possible controls to use. So
must transform this membership function pc(u) into one value ft.

Centroid: a solution to this problem. Informally speaking, we want a value that is in average close

to the optimal control. Closest means that the square (u - fi)_ must be minimal. "In average" means th_
we have to take into account, how often different values of control are appropri:_te. We do not know tt
frequencies, what we now are degrees of confidence• But let's recall that one of the natural interpretatioI
of the degrees of confidence is that they are proportional to the nnmber N(u) of experts who believe th_
this very value tt is the best: pc(tt) = kN(u) for some constant k. The more experts say that u is the bes
the greater is the probability p(u) that this u will really be the best. In view of that we can estimate th_

probability as p(u) -" Kpc(u) for some constant K. Therefore the average deviation of fi from u equals 1

f _(u)(tt- _)2 du - K f pc(u)(u- _)2 du. We must choose fi so that this deviation is the smallest possibl,

Differentiating with respect to fi gives the explicit formula ft - (f up¢(u) du)/(fpc(u) du). This formula
called the centroid formula. Now we axe ready for a final description.

.F_zty control: brief description. We extract the rules from the expert (or experts); transform these ru.l_
into the and-or statement. Then we find the membership functions for all involved words llke _negligible" (
"small". After that we choose functions ft_ and fv. Now we can compute pc(u) for every z. Using centroi
rule, we compute the value ft. This value is what the fuzzy control algorithm recommends for this case.

This method can be applied also if we control the second derivative, only rules will be longer, like "if z
N a.nd _ is SP, then u is SN", and terms in pc(z) will be longer, like mln(pN(z),pSV(&),psN(u)).

OF POOR QUALITY
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3. IN ORDER TO CHOOSE A DEFUZZIFICATION
LET'S LIST NATURAL RESTRICTIONS ON THAT CHOICE

AND THUS FORMULATE THE PROBLEM IN MATHEMATICAL TERMS

Comment. Let's start with the last stage of the fuzzy control design: defuzzification. We'll first analyze the
case, when only finitely many v_ues z_ are possible.

Definition. A fuzzy set of real numbers (or a fuzzy real number) is a function p from the set R of all real
numbers into the interval [0,1]. It is called finite if the value of p is different from 0 only for finitely many
numbers zl, z2, ..., zn.

Comment. So in order to describe a finite fuzzy set it is sufficient to give all these values z_ and the corre-
sponding values #_ -/l(zi) E [0, 1]. A defuzzification procedure must be defined for all the cases when this
set is non-empty, i.e., when not all Pi are equal to 0. Let's llst reasonable demands for such a procedure.

DI: The result of defuzzification must lie between zi. The first natural property of the desired result
of a defuzzification procedure is that it must lle between the smallest and the biggest of all possible values

z_ of the quantity z. The reason for that is as follows: when we say that p(z_) > 0, it means that there is

some reason to believe that the actual value of z is equal to zi (or is at least close to zi). The fact that p(z)
is different from 0 only for z -- zl, ..., z_ means that all possible reasons lead to the values from the interval

[min zi, maxzi], and there are no reasons to believe that z is smaller than rain zi or bigger than maxz_. Hence
it seems reasonable to conclude that a single v'_ue, chosen by this procedure, must also belong to this same
interval.

D2: Symmetry. A finite fuzzy set is a flnite set of pairs (zl,pi). The word "set" means that it does not
matter in what order we list these pairs; so evidently the result of defuzzificatlon must not depend on the
order in which we list them.

D3: If/_i = 0 for some i, then the result of defuzziflcatlon must not depend on this z_. This
demand is quite natural: if pi = 0, this means that zi is impossible, so we can omit it.

D4: pi, zi and _ can be interpreted as degrees of uncertainty, and the transformation from pi

or zi to 2 is a transformation of degrees ofuncertalnt_. That Pi is a degree of uncertainty is evident:
that's what the values of membership functions describe. Let s show that zi andp can also be interpreted as
degrees of uncertainty.

To do that let's recall that to describe a finite fuzzy function with n values we must describe 2n different
parameters zl,z_,...,z_,pl,...,pn. A defuzzification method f takes all these parameters as an input and
computes 2 as an output: _ = f(zl, ...,z,_,/_l,...,pn).

Suppose that we fix somehow the values of all these parameters, except for/_i for some i. The remaining
parameter #_ can take any value from 0 to 1. The bigger the value ofz_, the more uncertain we are about the
actual value of z: if pl - 0, then only the values zl, ...,z_-l, zi+l, ...,z_ are possible. When we increase/Ji,
we add one more possibility: that the actual v_ue of z equals to zi. The bigger is pi, the more possible is
this additional possibility, and so the value Pi -- 1 corresponds to the greatest possible uncertainty (greatest
possible under the condition that the values of all the other parameters are fixed). So in this case pi describes
our degree of uncertainty.

But these different degrees of uncertainty correspond in general to different values of 2; So in principle
we can express the degree of uncertainty by the vMue of _, and not by the value of pi. This Is not a purely
mathematical trick: for example, in the simplest case, when n - 2 and i - 2, when_ --- 0, it means that wit]D
certainty z - zl, so it's natural to conclude that _ -- zl. When p_ increase, our degree of believe that z2 i.,
possible increase as well, and therefore it is natural to "shift" the overall estimate _ closer to z2. In genera:

the same arguments works, so the value _ really describes our degree of belief in zi: the closer is _ to z_, th_
more we believe in zl.

So if all the values of zj and pj are fixed, except for pi for some i, we can express our degree of uncertaint_
(or degree of belief in the possibility of z_) in two different ways: by the value of p_ (a bigger pi would meaI
a higher possibility for z_ to be the actual value of z) and by the value of 2 (the closer is _ to zi, the bigge
is the possibility that the actual value of z is zi).

In other words, we have two different scales to represent the same degrees of belief: the scale of possibl_
values of pi and the scale of possible values of _. In these terms the transformation from pi to _, define_
by the formula _. -- f(zl,...,z_,p],...,pn) with fixed z],...,z,_,p],...,p_-],pi+],...p,_, can be viewed as
transformation that "translates" the value of uncertainty in one scale into the representation of the sam,



degreeof uncertainty in someother scale. In short, the transformation from Pi to _ is a transformation
degrees of certainty.

Let's now fix the values of a3 the parameters, except for zi for some i. In this case zi can take any vaJue frc
-co to +oo. Let's denote m = min(zl,z2,...,zi_l,zi+l,...,z, 0 and M = max(zl,z_,...,zi_l,z_+l,...,z,
Then, in particular, zi can take any vaiue from M to oo. For every choice of zi the possible values of z
between the minimum and the maximum of all the values zj. If zi > M, then the minimum of all the zj equ_
to m, and the maximum of all the zi equals to zi. Therefore, the bigger is zi, the bigger is the interval
possible values for z, and the bigger is our uncertainty in z. So in this case zi can be viewed on as describi:
our uncertainty in z: the bigger is zi, the greater is our uncertainty.

On the other hand, if we increase z_, we keep n - 1 possible values at the same place and shift t
remaining value zi to the right. So it is natural to expect that the resultlne "overall" va]u_ inrr_a
• eases -o ....... - ...........mcr . .5 the bl_ger z, the.bl._ger is our uncertainty. So m this case we also have two different scales
represent the same oegrees o! belief: the scale of possible values of zi and the scale of possible values of
In these terms the transformation from zi to _, defined by the formula _ = f(zl,...,zn,_1, ...,_n) with fix
zl, ..., zi-1, zi+x, ..., zn, _l, ..., _n, can be viewed as a transformation that "translates" the value of uncertain

in one scale into the representation of the same degree of uncertainty in some other scale. In short, t
transformation from zi to _ is also a transformation of degrees of uncertainty.

These considerations may sound non-mathematical: well, we can consider these values as describing d
grees of certainty, so what? But this descriptions immediately becomes a mathematical fact if we take in
consideration the fact that

Transformations of degrees of uncertainty have already been described. Such a description w
obtained in [KK91], and it is based on the following idea. The class F of reasonable transformations of degre
of uncertainty must satisfy the following properties:

(1) If a function z -_ f(z) is a reasonable transformation from a scale A to some scale B, and a functi_
y -, g(y) is a reasonable transformation from B into some other scale C, then it is reasonable to dema_

that the transformation z ---, g(f(z)) is also a reasonable transformation. In other words, the class F of_
reasonable transformations must be closed under composition.

(2) If z -. f(z) is a reasonable transformation from a scale A to scale B, then the inverse function is
reasonable transformation from B to A.

Thus, the family F must contain the inverse of every function that belongs to it, and the composition
every two functionsfrom _. In mathematical terms,itmeans that E'must be a transformationgroup.

(3) The next reasonable property isthat thisclassF must be not too big:itselements must be unique

determined by fixingfinitelymany parameters. In mathematical terms thiscan be expressed by saying th
the transformationgroup F isfinite-dimensional.

Comment. Actually,in our case we only need 2n - 1 parameters to describeallthe functionsof one variab

thatwe have constructed:Namely, the 2n- 1 parameters that we have fixed(zl,...,z,_,/_i,...,p__i,Pi+_, ...,/

or zl,...,zi-i,zi+i,...,z,_,/_x,...,/_n)are the parameters uniquely determining thisfunction. Of course,it

not necessaryto assume that we have exhausted allpossiblereasonabletransformations,so 2n- 1 paramete
are not necessary sufficient.However, the opposite situation,when practicallyevery function can be view_
on as a reasonablerescaling,alsodoes not seem intuitivelytrue.

(4) In [KK91], we have shown that some linearfunctionscan be representedas transformationsof degre
of uncertaintybetween some reasonablescales.

_,l_om (1)-(4)we concluded in [KK91] that reasonable transformationsare fractionally/]near,i.e.,th'.

every reasonable transformationhas the form f(z) = (az + b)/(cz+ d) forsome a,b,c,d.

Comment. The problem of classifyingallfinite-dimensionaltransformationgroups of an n-dimensional spa_

R _,n = 1,2,3,...,that includea sufficientlybigfamily oflineartransformations,was formulated by N. Wiem
(see,e.g.,[W62]). His hypothesis was confirmed in [GS64], [SS65]. It turned out that for n - 1, the

only two groups axe possible:the group of alllineartransformationsand the group of allfra_:tionally-line_
transformations (the simplifiedproof for n = I is given in [K87]; for other applicationsof this results_

[KKg0], [CK91], [!_:Q91]).

Using this description, we can formulate the first result.
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4. NATURAL AXIOMS LEAD TO THE CHOICE OF CENTROID

AS A DEFUZZIFICATION PROCEDURE FOR FUZZY CONTROL

........ Definition i. Suppose that a classF of functionsof one realvariableisfixed,and allthe elements of this

s _e fractionaUylinearfunctions.The elements of thisclasswillbe calledreasonabletransformations.
_ _--_Cornm_e_nt. The justification for this definition was given in the previous section.

|i_ii==_:i:_:_:__efinltlon--2. Assume that some positiveintegern isfixed. A function /(zl,...,zn,px,...,p,_)of 2n real

i _ __--_g_iab]es iscalleda defuzzjlicationifitisdefinedwhenever not all/_iare equal to 0. A defuzzificationiscalled
!_i:i_:_bnab]e ifitsatisfiesthe followingdemands:

i !i !::!: DI: The value of/always liesbetween the smallestrainzi and the biggestmaxzi of allthe values.

:.....P2 (Symmetry): The value of / must not change afterany permutation, i.e.:
i f(zl, ..., z#__, zi, zi+l, ..., z j-l, z j, z j+l, ..., z,_, Pl, ...Pi-l,/_,/_+a, ..., Pj-_, ]J./, ...,/_,_) =
: f(zl, ..., zi-x, z j, zi+1, ..., z j-x, zi, zj+1, ..., Zn, Pl, ..._i-1, P j, Pi+_, ..., P j-I, Pi, ...,/_n)

D3: If/_i= O forsome i,then the resultof defuzzificationmust not depend on zi,i.e.,

f(..., z___, z_, _+1, ..., Pi-1,0, Pi+l, .-.) = f(..., zi-1, z_, zi+l, ..., Pl-a, 0, P_+I, .-.) for all Z_ and z_.

D4: If we fix the values of all its variables, except one of them, then the resulting functions zi

/(z], ...,zi__,z_,..., zn,_,...,pn) and pi --'/(z],..., zn,p_, ...,#i+_,_;,Pi+], ...,P,,) are reasonable transfor-
mations.

/,From these demands we can conclude the following:

LEMMA. Every reasonable defuzziffcation has the form f(zx,..., zn, #x,...,/_n) =(a]z: + ... + ¢_nZr,)/(_ +

_ ..:q: an), where ai = Pigi, and 9i is a multilinear symmetric function ofp_,p_, ...,Pi-_,_i+_,...,/_,,.

Idea of the proof. According to D4, the dependency of f on zi (ifwe fix allother variables)is fractional

linear:f = (a::_+ b)/(cz_+ d). Ifc _ 0, then thisfunction isnot defined forz_ = -di/ci,and we assumed

that itiseverywhere defined. So ci= 0,and f isa linearfunctionof each of zi. Therefore forfixedFi f isa
multi-llnear function of the variables z_,...,z_, l.e., f -- ao + a_zl + ... + anz_ + ax_z_z_ + .... If the terms
of higher than first order axe different from O, then for big zi they are prevailing, so f increases at least as
k _ ifwe multiplyallzi by k. For sufficientlybig k we'llthen have f > maxzi, that contradictsto DI. So f
can containonly linearterms: f = ao + a_z_ + ...+ a,_z,_.This same assumption DI allowsus to prove that

ao = 0 (takezi = 0) and _ ai = 1 (take z_ = z_ = ...= zn). As for the dependency on pi, we can use the

algebraicresultfrom [KQ91] that itisa fractionof multilinearfunctions,and the assumptions of symmetry

and independence on z; for/_ = 0.

Comment. In other words, al = p_(c0+ c] x _¥i/_J + "-)"So we more or lessknow what a defuzzification

can be for a finitefuzzy set. But finitefuzzy setsare only the simplest case. In realLife,ifan expert is
not sure about the value of a physicalquantity,he names the whole intervalof possiblev'Mues,and not just

finitelymany of them. A natural idea isto apprordmate the infinitefuzzy setp by a sequence of finitesets
An, apply the defuzzificationto these finitefuzzy sets,and then take the limitof the resultingvaluesf(A,_).

A natural way to approximate a continuous function p by a set of finite pairs is to take its values on a
grid. For exasnple, if a fuzzy function # is located on an interval [0,1], we can take for A_ the set of pairs
O,

If we add such a continuity demand to the__previous list of demands, an interesting thing happens: in th_

above formula for _i as n _ oo, the values Y]j#i P_ for different i become almost equal because differ onl)

by terms Pi that become negligible in comparison with the whole sum. The same is true for all other sum.,
in this expression. So in the limit the coellicients at Pi become equal, and by dividing both the numerato:
and the denominator of the f:_ction for f by this coefficient, we arrive at a formula f(z_, ...,zn,/_l, ...,/_n)

_/a_zi[ _-] pi, that in the limit n --* oo lea_ls to a centroid formula y(p(z)) = (f zp(z) dx)/(fp(z) dz).

Conclusion. We explained the centrold formula that is rea//y very e_cient in fuzzy control.

_. THE SAME MATHEMATICAL FORMALISM HELPS TO CHOOSE

MEMBERSHIP FUNCTION AND HOW TO DEAL WITH UNCERTAINTIES

How to choose membership functions. Suppose that we have a fuzzy notion like "small ". Then for z -
and maybe for extremely small values of some physical quantity z we are sure that it is a small value; fc
some sui_ciently big z we are absolutely sure that it is not small. However, for intermediate values z we ar



uncertain whether z issmall or not. The bigger the value z, the lesswe axe certainthat thisvalue issin:
In thiscase there are two ways to representour uncertainty:first,we can use a generM toolthat transla

our uncertaintyintoa number (va/ueof a membership functionp(z)),and, second,we can use thisvery v-i
z: because the biggerz, the biggerisour uncertainty.

Of course,thisistrue not for allpossiblet, but only forthose z that liein the "gray zone", between I
values that are for sure small (and then/_(z) = 1) and that are for sure not small (and then p(z) = 0).

on every such zone z and p(z) are two different scales that express the same uncertainty, and therefore t
t_-ansformation between them (i.e., a function p) must he a transformation between two reasonable scales.

In Section 3 we already listed the arguments that such a transformation must be expressed by a fractlona
linearfunction.So we come to a conclusionthat a reasonablemembership functionmust be fractionally-Un(
between its0 and I zones. Since linearfunctionsare a particularcase of fractionallylinearones, we get

explanation of the above-mentioned factthat linearand fractionally-linearfunctionsare rea/]yvery e_ci(
in fuzzy control.

Comments. I. In thiscase,unlikedefuzzification,we do not come out with a singlemembership function,t

with a small familyof them (3 parameters axe sufficientto describea fractional-linearfunction),forwhich

iseasy to perform an exhaustive search.

2. One can ask the followingnatural question:OK, we found reasonable,or naturalmembership functic
that may be the best one to representthe experts'knowledge. But even the best experts are not necessax

idea/controllers.So why should we stickto what the experts say? Maybe in some casesa slightmodiflcati
of those membership functionscan lead to a better control? rot example, one of the natural criteriafo;
controlisthe smoothness ofthe resultingtrajectory(that'swhat the Japanese fuzzy-controlledtrainsachiev

Fuzzy controlisobtained by some transformations'(integration,etc)from the initialmembership functio
So itis reasonable in thiscase to look for the most smooth membership functions.Namely, by interviewi

the experts we can determine the v_ues of the membership function in severalpoints, and then find 1
"smoothest" curve going through allthese points. For usual numerical criteriaof smoothness we concl_

that the piecewise-polynomial(spline)extrapolationisthe best. This factexplainswhy not only piecewi
linear,but aisopiecewise-quadraticmembership functionsaxe successfulin fuzzy control.

How to deal with uncertainties.'?We can use the same kind of arguments for choosing the functions

and fv from [0,1]x [0,I]---,[0,1]that correspond to & and V.

Suppose that a functionfl,isfixed.Let'sfixalsosome uncertainevent A with a certaintydegree a. T_
for every other event B we can express our uncertaintyin two differentways: eitherby giving the cert_il

value b of thisB, or by givinga certaintyvalue b'= f,,(a,b)of A&B. Both scalesforrepresentinguncertail
sound reasonable,so the transformation from one scaleto another must belong to the classof reasona
transformations.

;,From thiswe conclude that the function a _ f,,(a,b)is fractionally-linearfor every b. In [KK90]

proved that thisdemand (and a similardemand for fv) lead to a narrow choiceof possiblefunctionsft,a
/v: rain,max of traditionalfuzzy logic,ab and a + b - ab that correspond to the so-calledprobabi]]sticlo

and fractional-bllinearoperations from [H75]. We thus explained the successof the tra_/itlonalchoicesoI
and v-functionsin fuzzy control

Comment. In [KK90] we actuallyproved a strongerstatement: that ifwe assume that a pair of operati(

f_ and fv is optimal with respect to some optimality criterion,and thiscriterionisinvar/antwith resp,
to reasonable rescMing transformations(i.e.,ifone pa_r was betterthan another in one scale,itwillstill

betterifwe startexpressing uncertaintyin another scale),then the optimal family must be inv'arlant(a

thus coincidewith one of the above-given functions).So whatever optimalitycriterionwe choose,the optiv

functionsaxe among those enumerated above.

But what exactly operations correspond to what criterion?Of course,sincewe have narrowed down 1

setof possiblechoicesto a finite-dimensionalfamily offunctions,we can apply the exhaustive searchand fi
the best choiceof fa and fv. Can we avoid thisexhaustivechoice? Sometimes yes. For example, in [KFLL'

we proved that ifwe are interestedin maximal stability(i.e.,in the smallestpossiblerelaxationtime),t_

the optimal choicesaxe fa = rainand fv(a.b)= min(a + b,1). This formulation corresponds to the tracl

problem: ifwe lostan object we must return to itas quicklyas possible.

In docking problems thiscriterionmakes no sense:ifwe unnecessarilyspeed up, we'llcrash into asp;
stationinstead of smoothly approaching it. So here a reasonable criterionis smoothness. The same te.
niques as we used in [KFLL91] enables us to prove that in thiscase the optima/choice isfl.(a,b)= ab a
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fv(a,b) = max(a,b). Both resultsaxe in good accordance with the resultsof experiments with the Sp_ce
Shuttlesimulator.

CONCLUSIONS. In the presentpaper we &nalyzed the processof designing the fuzzy control.In order to

designa specificcontrolprocedure one must make three choices:choose membership functionsthat correspond
tofuzzy words, choose operationscorresponding to & and.v, and choose a defuzzificationprocedure. For each
of these stages we formulate reasonablerestrictionson the set of possiblechoices. In aLlthree cases these

restrictionsaxe naturallyforma]izedin a specialmathematical formalism (group theory). This formalization

allows us to appl_,the .known deep resultsof group theory and conclude that the reasonable choiceof a
membership functionislinearor fractionally-linear,to show that a reasonabledefuzzificationisa centroidand
to enumerate allpossible& and V operations.Thus:

(I) we give theoreticalexplanationsto the existingsemi-empiricalchoices;these explanationsare based on a

singleformalism and thus form a unifyingtheory for all3 stagesof controldesign;

Io) we formulate the classof possiblechoices,so that for every specificsituationthe optimal choicecan be
und by analyzing onlythese choices;we also actuallyfind the best choicesfor severaltypicalsituations

(trackingand docking);

(3) we show that fuzzy controlisnot a semi-empiricalcral'tbut it can be based on the same theoretical
foundationsas theoreticalphysicsand some peats of Computer Science;we hope that thisformalism willbe
helpfulto solveother problems offuzzy controltheory.
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