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Abstract. Fuzzy control has been successfully applied in industrial systems. However, there is some cauti
in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implement
in several different ways, and depending on which of the imFlementations we choose we get different resul
Some implementations lead to a high quality control, some of them not. And since are no theoretical metho
for choosing the implementation, the basic way to choose it now is erimental. But if we choose a meth:
that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the cautic

We are going to provide a theoretical basis for choosing the fuzzy control procedures. In order to choose
procedure that transforms a fuzzy knowledge into a control we need, first, to choose a membership functic
for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values th
corresponds to “and” and “or”, and third, when we obtain a membership function for control, we mu
defuzzify it, that is, somehow generate a value of the control u that will be actually used. In the paper s
describe a general approach that will help to make all these choices: namely, we prove that under reasonat
assumptions membership functions should be linear or fractionally linear, defuzzification must be described !
a centroid rule and describe all possible “and“ and “or* operations. Thus we give a theoretical explanatio’
of the existing semi-heuristic choices and formulate the basis for the further research on optimal fuzzy contr:

1. BRIEF INTRODUCTION

Why do we need mathematical foundations of fuzzy control? In order to design a fuzzy contr:
we must choose fuzzy variables, choose combination rules for uncertainty values and choose a defuzzificatic
procedure. The efficiency of the resulting fuzzy control essentially depends on these choices. For example (s
[KFLL91] for details) different choices of combination rules can lead to relaxation times that differ twofold (ar
if we go for stability this is an essential increase). These choices are now made mainly on a semi- empiric
basis: if a resulting system works, that’s fine. This approach is acceptable for camcorders or dishwasher
even if something goes wrong with a picture for a moment or two, it is not a problem. However, this lev
of reliability is absolutely unacceptable for such serious applications as Space SPhuttle, and that is the ma’
reason why in spite of the brilliant results of computer simulations ([L88, LJ B90], etc) fuzzy control techniqu:
are not yet widely applied to space missions. So what we need is an analysis of different possible choices ¢
every stage of choosing a fuzzy control, an analysis that must be done on the mathematical strictness lev
and either explain what choices to make or at least severely restrict the set of possible choices, so that t}
best methods could be then chosen by an exhaustive analysis of the few possible candidates.

What are we planning to do? We'll explain how reasonable demands on the choices of 2 membersh;
function, operations with certainty values and a defuzzification procedure lead to the natural reformulation «
these choice problems in terms of transformation groups, a formalism that is extremely successful in moder
physics. We’'ll also show how the known results about transformation grouﬁ:s1 help to solve these choic
problems, resulting in the choice of centroid as a defuzzification procedure, li ear, fractionally linear an
spline membership functions and a list of possible choices for &- and V-operations. o

2. WHY FUZZY CONTROL? HOW AND WHY IS IT DESIGNED NOW? )
Simplest example of a control system. To illustrate the idea of fuzzy control let’s consider somethin
very simple, like a thermostat. Suppose that we want to keep a temperature T equal to some fixed value 7,
In other words, we want the difference z = T — T}, to be equal to 0. The way to control the temperature is t
switch on the heater or the cooler, and to control the degree of cooling and heating. In mathematical terr
heating increases the temperature and cooling decreases it, so what we control is a variable that determine
the rate with which the temperature changes. In other words, this “degree of heating and cooling” is mothin.
else but a derivative T of temperature with respect to time. So the behavior of the thermostat is determine:
by the equation T' = u, where u is the control we apply. What control u to apply in every moment of time
depends on the current temperature. If it is higher than Tp, we must cool the room down, i.e., apply u < (
if T < T, we must heat it, i.e., apply u > 0. So u in general depends on T: u = u(T'). All these formulas ar

easier to express in terms of z = T — To: & = T, hence for z the dynamics is £ = u(z), where the value of th.
control variable depends on z. The remaining problem is: how to control? Le., what u(z) to use?
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We have an expert; why cannot we extract u(z) from him? We are talking about the expert system
approach; this means that we have an expert who already knows how to control, and what we are planning
to do is to somehow extract his knowledge and put it inside the computer. Ideally we would like to extract
the whole dependency u(z) from that expert. The natural idea to do that is to ask him lots of questions, like
ugyppose that z is 5 degrees; what do you do?”, write down the answers to all those qt}es_tions, and thus plot
u(z). Sounds reasonable at first glance, until you try to apply the same idea to the skill in which practically
all the adults consider themselves experts: driving a car. If you ask a driver 2 %ueStiOﬁ like that “you are going
at 55 mph, the car in front of you is at the distance of 30 ft, and it slowed down to 47 mph, for how man}
seconds do you hit the brakes?”, I guess no one will give a precise pumber. O.K., you can install measuring
devices into a car or a simulator, and simulate this situation, but what will happen is that this time will be
different for different simulations. The problem is not that the expert has some precise number (like 1.45.
sec) in his mind, but cannot express it in words; the problem is that once it will be 1.3, another time it ma;
be 1.5, etc. (depending on whether he is tired or not, etc.).

An expert usually expresses his knowledge in words. An expert cannot say “hit the breaks for 1.45
sec”, what he can say is “hit the brakes for a while”. So the rules that can be extracted from him are not “
the velocity is 47 then hit the brakes for 1.453 sec”, but something like “if the velocity is a little bit smalle
than maximum, hit the breaks for a while”. Let’s illustrate the rules on the thermostat example.

Rules: thermostat example. One does not have to be a great expert to control a thermostat, commo
sense is sufficient here, and common sense prompts the following rules: If the temperature T is close to T
i.e., if the difference z = T — T, is negligible, then no control is needed, i.e., t i8 also negligible. If the room !
slightly overheated, i.e., if z is positive and small, we must cool it a little bit (i.e., u =  must be negative an
small). If the temperature is a little lower, then we need to heat the room a little bit. In other terms, if T
small negative, then u must be small positive, etc. Thus way we can formulate our commonsense experient
in terms of rules: If z is negligible, then u must be negligible. If z is small positive, then u must be sma
negative. If z is small negative, then 4 must be small positive, etc.

Suppose that we know z. What u to choose? Summarizing the rules, we can say that u is an appropria
choice for a control if and only if either (z is negligible and u is negligible), or (z is small positive and u is sm:
negative), etc. If we use the denotations C(u) for “u is an appropriate control”, N(z) for “z is negligible”, S
for “small positive, SN for usmall negative® and use the standard mathematical notations & for “and”, V
4or” and = for “if and only if”, we come to the following formula: C(z) = (N(2)&N(u))V (§P(z)&SN(u).

(SN(2)&SP(u)V .

How to formalize these words: the idea of fuzzy logic. In order to formalize them we need to expr:
in mathematical terms notions like “negligible”, “small positive”, “small negative”, etc. The main differer
between these notions and mathematically precise (“crisp”) ones like “greater than 0.5” is that any value
either greater than 0.5 or not, while we cannot say that any value z is negligible or not. Some values
so small that practically everyone would agree that they are negligible, but the bigger is the value, the |
experts will say that it is negligible, and less confident he will be in that statement. For example, if somec
is performing a com licated experiment that needs fixed temperature, then for him 0.1 degree is negligit
but 1 degree is not. ror another expert 5 degrees is negligible.

This degree of confidence is usually described by a fuzzy logic [265). The idea is that to every “fuz
property like “negligible” or “small positive” and to every real number z we put into correspondence 2 va
p(z) from the interval [0,1] that expresses our degree of confidence that this property is true for z: p(z)

means that we are absolutely sure that this property is true for z. p(z) = 0 means that we are absolutely &
that this property is false for z. Values between 0 and 1 mean that we are not sure whether it is true or !

This p is called a membership function.

How to determine the membership function for a given property? One of the possibilities is to t
several (E) experts, take different values of z, and ask every expert whether he believes that this prop:
is true for each of this values. Suppose that for some z E(z) experts out of E said that z is negligible
satisfies any other property). Then it is natural to take the ratio of those who said that z is negligible, :
resulting degree of confidence, i.e., take E(z)/E as p(z). Another possibility is to ask one expert and exp
his degree of confidence in terms of the so-called subjective probabilities [S54]. After we've got the values |
for the z’s that we asked about, we must extrapolate these values to get the expression for p(z) for all z

In lfuu)é control v(\lre do not fix any specific way to assign membership functions, we just suppose that
somehow determined.
(25—
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What membership functions are actually used. Several different membership functions result for:
this approach. The simplest ones correspond to the case, when we consider just three values z: one vall
a, for which we are absolutely sure that this property is true, and two values a — A,a + A, for which v
are absolutely sure that it is false; and then use linear interpolation in between. The resulting membershi
function is described by the following expression: p4s(z) =0ifz <a—Aorz > a+A; ps(z)=1+(z-4a)/.
fa-~A<z<aand pu(z)=1-(z~a)/Aifa <z <a+ A Such functions are called triangular.

In case we have several consequent words to describe the same quantity, like “small negative”, “negligible
“small positive”, etc., it means that every value of z must satisfy one of these properties. If we use ratios
experts or subjective probabilities to get the values of x, we come to the conclusion, that for every z the sum
the values of u4(z) for all A must be equal to 1. Therefore, where the membership function corresponding
one property starts decreasing from 1 to 0 (in the interval [a,a+ A]), the membership function that COTTesponc
to the next property must start increasing from 0 to 1. In view of that the value of A must be the same
all the properties, and a are equal to 0 for negligible, A for “small positive”, 2A for the next property, etc.

This is to some extent an oversimplification in comparison with what is actually used: “left A” and “right A
can be different, and there must be infinite intervals corresponding to “very very big”(positive and negative
With these corrections made, these simplest membership functions are efficiently used in fuzzy control [L8S
[LTTJ89], [LIB90). More complicated functions are also used: e.g., fractionally linear functions are used
control trains [MYI87], splines are used, etc.

Returning to rules. If we choose some membership functions, we’ll be able for every z and u to descrit
our degree of confidence in statements N(z), N(u), etc. In order to compute our degree of confidence in C(:
we must figure out, how to apply & and V to these degrees of confidence. The degrees of confidence are
generalization of truth values (true corresponds to 1, false to 0), so we must somehow extend & and V from t!
two-valued set {0,1} to the functions fr and fy, that are defined on the whole interval [0,1]. Zadeh original
pProposed to use fy = min and fy = max. Later other functions were proposed, including product for & an
min(a + 4,1) as fy(a,bd) (these four functions are most frequently used in fuzzy control). For our thermost:
example we get the following expression for the membership function pc(u):
pe(u) = fu(fu(pn(z), pn(v), fu(psp(z), Bsn(v)), fu(pBsn(z), psp(u)),...)
In particular, if we use min and max, we get
pc(u) = max(min(pn(z), pa(u)), min(psp(z), psn(v)), min(usn(z), psp(v)), ...)

So what control to use? a problem. What we get as a result is a "fuzzy” recommendation: we can us

'say u = 0.5 with degree of certainty 0.8, u = 0.4 with degree of certainty 0.3, etc. In the real expert systen

it is all we need: for example, in case of a medical system we give to a doctor the list of all possible illnesse
with degrees of certainty, and it is for him to decide: either to believe in the most probable diagnosis, or !
analyze the patient more. But in the control case the whole purpose was to automate; so we do not have
person who makes decision, we want a system itself to decide which of the possible controls to use. So v
must transform this membership function uc(u) into one value 4.

Centroid: a solution to this problem. Informally speaking, we want a value that is in average close
to the optimal control. Closest means that the square (u — %)* must be minimal. “In average” means th:
we have to take into account, how often different values of control are appropriate. We do not know tt
frequencies, what we now are degrees of confidence. But let’s recall that one of the natural interpretatior
of the degrees of confidence is that they are proportional to the number N(u) of experts who believe th:
this very value u is the best: uc(u) = kN(u) for some constant k. The more experts say that u is the bes
the greater is the probability p(u) that this u will really be the best. In view of that we can estimate th:
probability as p(u) = Kpuc(u) for some constant K. Therefore the average deviation of & from u equals f
J »{(u)(u~)? du = K [ pc(u)(u - ©)? du. We must choose @ so that this deviation is the smallest possibl
Differentiating with respect to @ gives the explicit formula & = ([ upc(u) du)/([ pc(u) du). This formula
called the centroid formula. Now we are ready for a final description.

Fusry control: brief description. We extract the rules from the expert (or experts); transform these rule
into the and-or statement. Then we find the membership functions for all involved words like "negligible” (
"small”. After that we choose functions fy and fy. Now we can compute uc(u) for every z. Using centroi
rule, we compute the value #. This value is what the fuzzy control algorithm recommends for this case.

This method can be applied also if we control the second derivative, only rules will be longer, like "if z
N and 2 is SP, then u is SN™, and terms in uc(z) will be longer, like min(pn(z), psp(2), psn(u))-
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3. IN ORDER TO CHOOSE A DEFUZZIFICATION
LET'S LIST NATURAL RESTRICTIONS ON THAT CHOICE
AND THUS FORMULATE THE PROBLEM IN MATHEMATICAL TERMS
Comment. Let’s start with the last stage of the fuzzy control design: defuzzification. We'll first analyze the
case, when only finitely many values z; are possible.

Definition. A fuzzy set of real numbers (or a fuzzy real number) is a function g from the set R of all real
numbers into the interval [0,1]. It is called finite if the value of p is different from 0 only for finitely many
numbers z1,Z2, .1 Zn-

Comment. So in order to describe a finite fuzzy set it is sufficient to give all these values z; and the corre-
sponding values pi = u(z:) € [0,1]. A defuzzification procedure must be defined for all the cases when this
set is non-empty, i.e., when not all p; are equal to 0. Let’s List reasonable demands for such a procedure.

D1: The result of defuzzification must lie between z;. The first natural property of the desired result
7 of a defuzzification procedure is that it must lie between the smallest and the biggest of all possible values
z; of the quantity z. The reason for that is as follows: when we say that u(z;) > 0, it means that there is
some reason to believe that the actual value of z is equal to z; (or is at least close to z;). The fact that p(z)
is different from 0 only for z = zy,...,7, means that all possible reasons lead to the values from the interval
[min z;, max z;], and there are no reasons to believe that z is smaller than min z; or bigger than max z;. Hence
it seevrzls reasonable to conclude that a single value, chosen by this procedure, must also belong to this same
interval.

D2: Symmetry. A finite fuzzy set is a finite set of pairs (z;, ;). The word “set” means that it does not
matter in what order we list these pairs; so evidently the result of defuzzification must not depend on the
order in which we list them.

D3: If u; = 0 for some i, then the result of defuzzification must not depend on this z;. This
demand is quite natural: if g; = 0, this means that z; is impossible, so we can omit it.

D4: pi, z; and Z can be interpreted as degrees of uncertainty, and the transformation from g,
orz;toZisa transformation of degrees o uncertainty. That u; is a degree of uncertainty is evident:
that’s what the values of membership functions describe. Let’s show tgat z; and g can also be interpreted as
degrees of uncertainty.

~ To do that let’s recall that to describe a finite fuzzy function with n values we must describe 2n different
parameters 1,2, ...y Zny M1y e fine A defuzzification method f takes all these parameters as an input and
computes Z as an output: £ = f(z1, vy Ty By oeey i)

Suppose that we fix somehow the values of all these parameters, except for p; for some i. The remaining
parameter y; can take any value from 0 to 1. The bigger the value of z;, the more uncertain we are about the
actual value of z: if g; = 0, then only the values zi1,...,Zi-1, Zi41, .y Zn 2T€ possible. When we increase p;;
we add one more possibility: that the actual value of z equals to z;. The bigger is u;, the more possible is
this additional possibility, and so the value y; =1 corresponds to the greatest possible uncertainty (greatest
possible under the condition that the values of all the other parameters are fixed). So in this case u; describes
our degree of uncertainty.

But these different degrees of uncertainty correspond in general to different values of Z. So in principle
we can express the degree of uncertainty by the value of Z, and not by the value of y;. This is not a purel
mathematical trick: for example, in the simplest case, when n = 2 and i = 2, when u; = 0, it means that witi
certainty z = i, so it’s natural to conclude that # = z;. When p; increase, our cf:egree of believe that z; i
possible increase as well, and therefore it is natural to “shift” the overall estimate Z closer to z3. In genera
the same arguments works, so the value Z really describes our degree of belief in z;: the closer is Z to zi, the
more we beleve in z;.

So if all the values of z; and p; are fixed, except for p; for some §, we can express our degree of uncertaint}
(or degree of belief in the possibility of z;) in two different ways: by the value of p; (a bigger p; would mea
a higher possibility for z; to be the actual value of z) and by the value of Z (the closer is Z to z;, the bigge
is the possibility that the actual value of z is z;).

In other words, we have two different scales to represent the same degrees of belief: the scale of possibl
values of p; and the scale of possible values of . In these terms the transformation from p; to Z, definec
by the formula £ = f(z1,...1Zn, 1y ey Bn) With fixed Zy,.ey Zny B1yees Biz1y Bit1y oofin, €30 be viewed as
transformation that “translates” the value of uncertainty in one scale into the representation of the sam
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degree of uncertainty in some other scale. In short, the transformation from u; to # is a transformation
degrees of certainty.

Let’s now fix the values of all the parameters, except for z; for some {. In this case z; can take any value frc
—00 to +00. Let’s denote m = min(z1,22,...s Tiz1, Tit1y 1y Zn) a0d M = max(zy, 23, ..., Zio1, Zig1, e T
Then, in particular, z; can take any value from M to oo. For every choice of z; the possible values of z
between tge minimum and the maximum of all the values z;. If z; > M, then the minimum of all the T equ
to m, and the maximum of all the z; equals to z;. Therefore, the bigger is z;, the bigger is the interval
possible values for z, and the bigger is our uncertainty in z. So in this case z; can be viewed on as describi
our uncertainty in z: the bigger is z;, the greater is our uncertainty.

On the other hand, if we increase z;, we keep n — 1 possible values at the same place and shift t
remaining value z; to the right. So it is natural to expect that the resulting “overall® value increases as
increases. So the bigger Z, the bigger is our uncerta.intg. So in this case we also have two different scales
represent the same degrees of belief: the scale of possible values of z; and the scale of possible values of
In these terms the transformation from z; to Z, defined by the formula z = S(Z1y ey 2y i1 ooy i) With fix
T1yerey Tim13 Ti41s ey Ty i1y -ooy Piny €20 be viewed as a transformation that “translates” the value of uncertair
in one scale into the representation of the same degree of uncertainty in some other scale. In short, ¢
transformation from z; to Z is also a transformation of degrees of uncertainty.

These considerations may sound non-mathematical: well, we can consider these values as describing «
grees of certainty, so what? But this descriptions immediately becomes a mathematical fact if we take in
consideration the fact that
Transformations of degrees of uncertainty have already been described. Such a description w
obtained in [KK91], and it is based on the following idea. The class F of reasonable transformations of degre
of uncertainty must satisfy the following properties:

(1) If a function z — f(z) is a reasonable transformation from a scale A to some scale B, and a functi
y — g(y) is a reasonable transformation from B into some other scale C, then it is reasonable to dema
that the transformation z — g(f(z)) is also a reasonable transformation. In other words, the class F of
reasonable transformations must be closed under composition.

(2) f z — f(z) is a reasonable transformation from a scale A to scale B, then the inverse function is
reasonable transformation from B to A.

Thus, the family F must contain the inverse of every function that belongs to it, and the composition
every two functions from F. In mathematical terms, it means that F must be a transformation group.

(3) The next reasonable property is that this class F' must be not too big: its elements must be unique
determined by fixing finitely many parameters. In mathematical terms this can be expressed by saying th
the transformation group F is finite-dimensional.

Comment. Actually, in our case we only need 2n — 1 parameters to describe all the functions of one variat
that we have constructed: Namely, the 2n—1 parameters that we have fixed (z, ..., Z,, By ey Bicly Big1yeoes )
OF T1, .0y Zimly Zi41y-eey Zny H1y -y fbn) are the parameters uniquely determining this function. Of course, it
not necessary to assume that we have exhausted all possible reasonable transformations, so 2n — 1 paramete
are not necessary sufficient. However, the opposite situation, when practically every function can be view:
on as a reasonable rescaling, also does not seem intuitively true.

(4) In [KK91], we have shown that some linear functions can be represented as transformations of degre
of uncertainty between some reasonable scales.

;(From (1)-(4) we concluded in [KK91] that reasonable transformations are fractionally linear, i.e., th
every reasonable transformation has the form f(z) = (az + b)/(cz + d) for some a,b, ¢, d.

Comment. The problem of classifying all finite-dimensional transformation groups of an n-dimensional spa
R" n =1,2,3,.., that include a sufficiently big family of linear transformations, was formulated by N. Wien
(see, e.g., [W62]). His hypothesis was confirmed in [GS64), [SS65). It turned out that for n = 1, the
only two groups are possible: the group of all linear transformations and the group of all fractionally-line:
transformations (the simplified proof for n = 1 is given in [K87); for other applications of this result s
[KK90], [CK91], [KQ91)).

Using this description, we can formulate the first result.
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4. NATURAL AXIOMS LEAD TO THE CHOICE OF CENTROID
AS A DEFUZZIFICATION PROCEDURE FOR FUZZY CONTROL

Definition 1. Suppose that a class F of functions of one real variable is fixed, and all the elements of this
:class are fractionally linear functions. The elements of this class will be called reasonable transformations.

nt. The justification for this definition was given in the previous section.

Pefinition 2. Assume that some positive integer n is fixed. A function f(Z1,.res Tny B1,-ees fin) Of 21 Teal
~variables is called a defuzzification ifit is defined whenever not all y; are equal to 0. A defuzzification is called
teasonable if it satisfies the following demands:

D L Tlie value of f always lies between the smallest min z; and the biggest maxz; of all the values.

D2 (Symmetry): The value of f must not change after any permutation, i.e.:

: f(zl yeeey Ti=19 Tis Titlr ey Tj—19 Ty L5410y Ty Py oo-Bbi—1s Biy Bidlrerey Bi—1sHjseees I‘n) =
f(zla ey Zi=1r1 Ty Titlr oo Ti-1, iy T+l cey Ty P1yoo-Hhi=-1s BisHitlsoeos Bi=1yHBiy ooy Pn)

D3: If y; = 0 for some i, then the result of defuzzification must not depend on z;, i.e.,

f(---y Ti—11TirTitlyeess l‘i—l’ov Hi+1, '-') = f('"v I;_1,22,2i+1, ey Bi-1 0, Bit1, "') for all z; and 2:2-
D4: If we fix the values of all its variables, except one of them, then the resulting functions z; —
f(zl_s'"121'—1’:!'7'"’:1!’“17"'Uu'N) and Hi — f(zls"'azrn B1y ooy Bit1s Hiy pH—l’"'al‘n) are reasonable transfor-
mations.

;From these demands we can conclude the following:

" LEMMA. Every reasonable defuzzification has the form f(Z1,...,Zns b1, e fin) = (@121 4 o F anZa)/(on +

e+ ay), where a; = pigis and g; is a multilinear symmetric function of 1, B2y ooy Bi=1y Bit1y - B

Idea of the proof. According to D4, the dependency of f on z; (if we fix all other variables) is fractional
linear: f = (az; +b)/(czi+d). Ue # 0, then this function is not defined for z; = —d;/ci, and we assumed
that it is everywhere defined. So ¢; =0, and f is a linear function of each of z;. Therefore for fixed p; fis a
multi-linear function of the variables T1,...Zn, 18y f = a0 + @121 + o + GnZp + 6122122 + ... If the terms
of higher than first order are different from 0, then for big z; they are prevailing, so f increases at least as
k? if we multiply all z; by k. For sufficiently big k we’ll then have f > maxz;, that contradicts to D1. So f
can contain only linear terms: f=a+0a1Z1+ ...+ 8nZn. This same assumption D1 allows us to prove that
ag = 0 (take z; = 0) and Y a; =1 (take 2y =22 = ... = zn). As for the dependency on p;, We can use the
algebraic result from [KQ91] that it is a fraction of multilinear functions, and the assumptions of symmetry
and independence on z; for yi = 0.

Comment. In other words, a; = pi(co + €1 X Yigili t ...). So we more or less know what a defuzzification
can be for a finite fuzzy set. But finite fuzzy sets are only the simplest case. In real life, if an expert is
not sure about the value of a physical quantity, he names tge whole interval of possible values, and not just
finitely many of them. A natural idea is to approximate the infinite fuzzy set p by a sequence of finite sets
A,, apply the defuzzification to these finite fuzzy sets, and then take the limit of the resulting values f(An).
A natural way to approximate a continuous function p by a set of finite pairs is to take its values on 2

id. For example, if a fuzzy function p is located on an interval (0,1}, we can take for A, the set of pairs

gr
(O»u(O)),(llﬂm(lln)),---,(f/n,ﬂ(i/n)),---,(1,#(1))-

If we add such a continuity demand to the previous list of demands, an interesting thing happens: in the
above formula for a; as » — 0o, the values ):r:-#p,- for different § become almost equal because differ only
by terms p; that become negligible in comparison with the whole sum. The same is true for all other sum:
in this expression. So in the limit the coefficients at p; become equal, and by dividing both the numerato
and the denominator of the fraction for f by this coefficient, we arrive at a formula f(Z1,...sZny B1y e Hn) A
S pizi/ 3 pi, that in the limit n — 00 leads to a centroid formula f(u(z)) = (f zp(z) dz)/([ u(=) dz).

Conclusion. We explained the centroid formula that is really very efficient in fuzzy control.

5. THE SAME MATHEMATICAL FORMALISM HELPS TO CHOOSE
MEMBERSHIP FUNCTION AND HOW TO DEAL WITH UNCERTAINTIES

How to choose membership functions. Suppose that we have a fuzzy notion like “small”. Then for z =
and maybe for extremely small values of some physical quantity z we are sure that it is a small value; fc
some sufficiently big z we are absolutely sure that it is not small. However, for intermediate values z we ar
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uncertain whether z is small or not. The bigger the value z, the less we are certain that this value is sm:
In this case there are two ways to represent our uncertainty: first, we can use a general tool that transla
our uncertainty into a number (value of a membership function u(z)), and, second, we can use this very va
z: because the bigger z, the bigger is our uncertainty.

Of course, this is true not for all possible z, but only for those z that lie in the “gray zone”, between !
values that are for sure small (and then p(z) = 1) and that are for sure not small (and then u(z) = 0).
on every such zone z and u(z) are two different scales that express the same uncertainty, and therefore
transformation between them (i.e., a function ;) must be a transformation between two reasonable scales.

In Section 3 we already listed the arguments that such a transformation must be expressed by a fractiona
linear function. So we come to a conclusion that a reasonable membership function must be fractionally-line
between its 0 and 1 zones. Since linear functions are a particular case of fractionally linear ones, we get
explanation of the above-mentioned fact that linear and fractionally-linear functions are really very efficic
in fuzzy control.

Comments. 1. In this case, unlike defuzzification, we do not come out with a single membership function, t
with a small family of them (3 parameters are sufficient to describe a fractional-linear function), for which
is easy to perform an exhaustive search.

2. One can ask the following natural question: OK, we found reasonable, or natural membership functic
that may be the best one to represent the experts’ knowledge. But even the best experts are not necessar
ideal controllers. So why should we stick to what the experts say? Maybe in some cases a slight modificat;
of those membership functions can lead to a better control? For example, one of the natural criteria fo
control is the smoothness of the resulting trajectory (that’s what the Japanese fuzzy-controlled trains achiev
Fuzzy control is obtained by some transformations (integration, etc) from the initial membership functio
So it is reasonable in this case to look for the most smooth membership functions. Namely, by interview
the experts we can determine the values of the membership function in several points, and then find
“smoothest” curve going through all these points. For usual numerical criteria of smoothness we conclt
that the piecewise-polynomial (spline) extrapolation is the best. This fact explains why not only piecewi
linear, but also piecewise-quadratic membership functions are successful in fuzzy control.

How to deal with uncertainties? We can use the same kind of arguments for choosing the functions
and fy from [0,1] x [0, 1] — [0,1] that correspond to & and V.

Suppose that a function fg is fixed. Let’s fix also some uncertain event A with a certainty degree a. Tl
for every other event B we can express our uncertainty in two different ways: either by giving the certai
value b of this B, or by giving a certainty value b’ = fy,(a,b) of A&B. Both scales for representing uncertai
sound reasonable, so the transformation from one scale to another must belong to the class of reasona
transformations.

;From this we conclude that the function a — fi(a,b) is fractionally-linear for every b. In [KK90]
proved that this demand (and a similar demand for fyv) lead to a narrow choice of possible functions fg
fv: min, max of traditional fuzzy logic, ab and a + b — ab that correspond to the so-called probabilistic lo
and fractional-bilinear operations from [H75]. We thus explained the success of the traditional choices ol
and V-functions in fuzzy control.

Comment. In [KK90] we actually proved a stronger statement: that if we assume that a pair of operatic
fr. and f, is optimal with respect to some optimality criterion, and this criterion is invariant with resp
to reasonable rescaling transformations (i.e., if one pair was better than another in one scale, it will still
better if we start expressing uncertainty in another scale), then the optimal family must be invariant (a
thus coincide with one of the above-given functions). So whatever optimality criterion we choose, the optir
functions are among those enumerated above.

But what exactly operations correspond to what criterion? Of course, since we have narrowed down !
set of possible choices to a finite-dimensional family of functions, we can apply the exhaustive search and fi
the best choice of fi and fy. Can we avoid this exhaustive choice? Sometimes yes. For example, in [KFLL
we proved that if we are interested in maximal stability (i.e., in the smallest possible relaxation time), t}
the optimal choices are fy = min and fy(a.b) = min(a + b,1). This formulation corresponds to the trac
problem: if we lost an object we must return to it as quickly as possible.

In docking problems this criterion makes no sense: if we unnecessarily speed up, we'll crash into a sp:
station instead of smoothly approaching it. So here a reasonable criterion is smoothness. The same te
niques as we used in [KFLL91] enables us to prove that in this case the optimal choice is fi.(a,b) = ab 2
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fv(a,b) = max(a,b). Both results are in good accordance with the results of experiments with the Space
Shuttle simulator.

CONCLUSIONS. In the present paper wé analyzed the process of designing the fuzzy control. In order to
design a specific control procedure one must make three choices: choose membershxﬁp functions that correspond
to fuzzy words, choose operations corresponding to & and V, and choose a defuzzification procedure. For each
of these stages we formulate reasonable restrictions on the set of possible choices. In all three cases these
restrictions are naturally formalized in a special mathematical formalism (group theory). This formalization
allows us to apply the known deep results of group theory and conclude that the reasonable choice of a

membership function is linear or fractiona:lly-linea:, to show that a reasonable defuzzification is a centroid and
to enumerate all possible & and V operations. Thus:

(1) we give theoretical explanations to the existing semi-empirical choices; these explanations are based on a
single formalism and thus form a unifying theory for all 3 stages of control design;

§2) we formulate the class of possible choices, so that for every specific situation the optimal choice can be
ound by analyzing only-these choices; we also actually find the best choices for several typical situations
(tracking and docking);

(3) we show that fuzzy control is not a semi-empirical craft but it can be based on the same theoretical
foundations as theoretical physics and some parts of Computer Science; we hope that this formalism will be
helpful to solve other problems of fuzzy control theory.
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