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1 Introduction

During this contract period, our work has focused on improvements to elliptic

grid generation methods. There are two principle objectives in this project.

One objective is to make the elliptic methods more reliable and efficient, and

the other is to construct a modular code that can be incorporated into the

National Grid Project (NGP), or any other grid generation code. Progress

has been made in meeting both of these objectives. The two objectives are

actually complementary. As the code development for the NGP progresses,

we see many areas where improvements in algorithms can be made.

2 Current Research

During the past year, most of our research has been on the development of the

elliptic method for generating surface grids. This has included the derivation

of the orthogonality and control function options that are normally used with

two and three-dimensional elliptic methods. These options were not available

in the EAGLE grid generation code and, as far as is known, had not been

discussed in any previous papers on elliptic surface grid generation. The

convergence problems which were initially encountered with the surface code

have been reduced by using a new form of upwind differencing on the elliptic

equations and by reducing the size of the NURBS control net when computing

the surface derivatives. However, convergence can still be a problem if the

surface is poorly parameterized. Much of the success in the development of

surface grid generation methodology has been due to the use of the standard

NURBS representation of surfaces. The present state of development will be

present at the International Conference on Hydro-Science and Engineering in

Washington, DC. A copy of the paper "Elliptic Grid Generation on Surfaces",

which will appear in the Proceedings, has been attached to this report.

The major task in the development of the elliptic volume code has been

removing the dependence on the EAGLE data structure and writing a driver

routine that can accept and process arbitrary grid blocks. At the same time

we have improved some of the algorithms dealing with control functions and

boundary orthogonality. There were several places where iterative procedures

could be replaced by direct computations without a noticeable decrease in

quality of the resulting grid.



The main elliptic volume and surface grid generation subroutines have

been incorporated into the NGP system and are presently operational. The

subroutines for the various control function and orthogonality options are also

in the system, but they cannot be used since the panels for picking the options

have not been built into the graphical user interface. However, the basic

structure of the subroutines have been finalized so that code development

can continue.



To be presented at the International Conference on Hydro-Science and
Engineering, Washington, DC, June 1993.
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ABSTRACT

Elliptic grid generation methods for the construction of surface grids are discussed. New

techniques for computing the control functions that determine the grid point distribution

and for imposing boundary orthogonality are developed. Sample grids are presented to

demonstrate the application of these methods in the solution of some common problems in

grid generation.

INTRODUCTION

Grid generation is a critical area for many numerical simulation problems. Whether

using structured or unstructured grids, it is up to the numerical analyst to distribute points

throughout an often complex physical region. The distribution of the grid points and the

geometric properties of the grid such as skewness, smoothness, and cell aspect ratios have a

major impact on the accuracy of the simulation.

Most grid generation proceeds in stages. In two dimensions, the grid is first constructed on

the boundary curve or curves and then constructed on the interior of the physical region. In

three dimensions, the grid generation process proceeds from curves to surfaces and then to the

interior of the physical region. At each stage of the grid generation process, the construction

of the desired grid often follows in two steps. First, a grid is constructed by interpolation

from the boundary of the region or surface, and then this grid is smoothed, and possibly

modified in other ways, by an iterative procedure. The most successful iterative smoothing

schemes are based on elliptic systems of partial differential equations that relate the physical

and computational variables. The elliptic system may be applied to the boundary grids, the

interior grids, or both. The elliptic system may preserve the original distribution of grid

points or redistribute points as when constructing an adaptive grid. Orthogonality of the

grid may be imposed along certain boundary components of the physical region.

The most difficult and less developed area of elliptic grid generation is that of grid

generation on surfaces. This is because the grid must not only be smoothed, but the grid

points must also stay on the surface. For surfaces defined by parametric equations, the

simplest technique for achieving this goal is to work in parameter space rather than in

the physical variables of the surface. There are some disadvantages associated with this

approach. The differential equations become more complicated and contain two sets of
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derivatives, the derivativesof the physicalvariableswith respectto the parametric variables
and the derivativesof the parametricvariableswith respect to the computational variables.

This report will discusssomeof thecurrentproblemsin elliptic grid generationonsurfaces
and describesomenew featuresandenhancementsthat have beenrecently developed.Grid
orthogonality hasbeenone area that hasbeenof particular interest. Although orthogonal
grids aregenerallynot necessaryfor most numericalalgorithms, there must besomelimit on
the skewnessof the grid. Boundaryorthogonality is alsodesireablewheneverit is necessary
to imposeNeumann type boundaryconditionsononeor moreof the physical variablesin the
problem. Also, someof the popular waysof treating Neumannboundary conditions arenot
accurate when the grid is not orthogonaland others become unstable if the grid is extremely

skewed near the boundary.

ELLIPTIC SURFACE EQUATIONS

The elliptic equations for surface grids are a generalization of Laplace equations for

harmonic mappings of plane regions. Let S be a simply-connected surface defined by the

parametric equations

Y=Y(u,v), O<u,v<_ 1.

Further, let u and v be functions of the computational variables _ and r/where 0 _< _, r/< 1.

Now a cartesian coordinate system in the computational rectangle generates a curvilinear

coordinate system in the parametric rectangle which maps to a curvilinear coordinate system

on the surface. Thus a uniform grid in the computational rectangle generates a curvilinear

grid on the surface. The elliptic system of equations which relates the parametric and

computational variables is given as

g2:(u_ + Pu_) - 2g12u07 + gzz(u,,_ + Qu,) = J2A2u (1)

+ Pv ) - + g,,(v,, + @,) = J /X2v (2)

where

and

g12 --" glllL_Ur/ 2t- Y12(U_Vrt -}- Ur/Y_) _- -ff22'U_Vrt

-- 2 -- 2
922 = gla u, + 2-g12unv,_ + g2:v,

-- 0 --

Although we will not attempt to derive these equations, they are related to conformal map-

pings onto surfaces and a discussion may be found in Mastin and Thompson (1984). Also,

some of the theoretical results from harmonic mappings of plane regions can be verified for

solutions of the above system. These same equations may also be derived from a differential

geometric point of view as in the paper by Warsi (1990). The functions P and Q are used to

control the grid point distribution and would not appear in the derivation from conformal

or harmonic mappings.



The system of partial differential equations may be solved with either Dirichlet or Neu-

mann type boundary conditions depending on whether the grid points on the boundary of

the surface are to remain fixed or are allowed to move during the construction of the grid.

Imposing boundary orthogonality is the most common case where grid points are allowed to

move along the boundary. However it is orthogonality of the grid on the surface and not in

the parametric region that is desired. Thus the appropriate boundary conditions must be

imposed on the elliptic system in the parametric region so that the grid is orthogonal on the

surface. Two grid lines will be orthogonal on the surface if the inner product _'_ • r',7 = 0.

This can be expanded using the chain rule to give the following equation

ynU_u. + y22v_v. + -y12(u_v, 7 + u,v¢) = O. (3)

The orthogonality condition can be formulated as derivative boundary conditions for the

above elliptic system. If the boundary segments u = 0 and u = 1 are considered, then the

orthogonality condition reduces to

y22v_ + Yx2u_ = O. (4)

Similarly, for the segments v = 0 and v = 1, orthogonality is imposed by the equation

ynu,7 + y12v,7 = O. (5)

Thus the elliptic system together with the given values of u and v on the boundary and

the orthogonality boundary conditions form a mixed boundary value problem. Equation (4)

determines the values of v along the boundary where u = 0 or u = 1, and Equation (5)

determines the values of u where v = 0 or v = 1.

The control functions P and Q must be selected so that the grid has the required dis-

tribution of grid points in the computational field. Taking P = Q = 0 tends to generate

a grid with a uniform spacing which is seldom desired. In most cases there is a need to

concentrate points in some area of the surface such as along certain boundary contours.

There are two methods of computing the control functions. The first is to compute P and

Q from some initial grid. All the derivative terms in the elliptic system can be computed

from given grid point values leaving two unknowns, P and Q, which can be determined from

the two equations. Now these control function values are smoothed so that the final ellip-

tic grid will be smoother and generally more orthogonal than the initial grid. The control

functions can be computed from an initial grid only if the Jacobian of the transformation

from computational to parametric variables is nonvanishing. Since this may not always be

the case for interpolated grids, there is also the option of computing the control functions

from the boundary distribution. The appropriate values for the control functions on the

boundary can be derived by assuming the grid lines are orthogonal at the boundary and the

spacing normal to the boundary is uniform. The development basically follows that for two

dimensional plane regions as found in the book by Thompson et. al. (1985). The formulas

for P and Q in the surface Equations (1) and (2) are given below.

p _ s_ + s{/Cx (6)
3_

• .

Q - (7)
Sr I

The variable s is the arc length parameter along the boundary of the surface and the variables

K:I and )C2 denote the curvature of the boundary curves _ = constant and r/ = constant,



respectively. The curvatures are given by

where the Christoffel symbols "i'_j in the previous formulas are given by

and

1[% = 2--dg.(2

1 [922(20912= 2--d O,

0911 g12_-]o, )-
0922 0922 ]

)- g12-N-,J

G = 911922 - (912) 2.

Not all of the terms in Equations (6) and (7) for P and Q can be evaluated on the boundary.

It is clear that the arc length derivatives for P can be evaluated on the rI = 0 and r/ = 1

boundary curves and interpolated in the interior of the computational region, while the arc

length derivatives for Q can be evaluated on _ = 0 and _ = 1 and interpolated in the interior.

In a similar manner, the curvature in each control function can be computed on opposite

boundaries and interpolated. Note that the curvatures cannot be computed solely from

information on the boundary curves. In this manner all of the arc length derivatives and

curvatures, and therefore P and Q, can be computed throughout the computational region.

This second control option can be used to determine the distribution of grid points on a

surface even when an initial grid is of such poor quality in the interior of the surface that it

cannot be used itself to generate appropriate control functions.

In the above discussion it was shown how derivative boundary conditions can be used to

impose orthogonality. In a numerical algorithm, this requires moving the grid points along

the boundary of the surface. Orthogonality can also be imposed by adjusting the control

functions near the boundary and keeping the boundary points themselves fixed. Since there

are two control functions, not only can the angle at the boundary be chosen, but the distance

to the first grid line off of the boundary curve can also be chosen. If it assumed that the

grid lines are orthogonal, the values of P and Q can be determined from the elliptic system

(I) and (2)yielding the expressions

p = j2_laA2u u_ +g22A2v v_ + y12(A2u v_ + A2v u_)
911922

_ -ynu.,Tu_ + -y22v,Tnv_ + y12(u..v_ + v._u_ )
g22

gll

Q = j2-guA2u u, + y22A_v v, 7 + g12(A2u v, + A2v u,)
911922 " -

-- -gllUrl, Ur_ + g22'Ur_,V77 -JF Y12(Urj_Vr_ + Ur_r_U,)

g22

__ Ylltt{( u" -_ y22b'((Vrl --_ Yl2(l/((Vrl "_ b'({ttr_ )

911



Along a boundary component where a specified grid spacing is desired, that distance is used

for the value of 911 or 92_. Some of the other derivatives in the equations for P and Q can

be computed from the fixed values of u and v on the boundary. Those derivatives that must

be computed using interior values are updated during the iterative solution of the elliptic

system. At each iteration, these boundary control functions are smoothly blended with the

interior control functions to generate a smooth grid that is orthogonal and has a specified

spacing along assigned boundary components.

EXAMPLES

Two computational examples will be presented to demonstrate the utility of the method

in grid generation. In both cases the surface is defined as a NURBS (NonUniform Rational

B-Spline) surface. The elliptic system is solved using a finite difference discretization and an

SOR iterative method. In some cases, the SOR method does not converge. In those cases,

an acceptable grid can often be generated by setting the right hand sides of Equations (1)

and (2) to zero. Of course, curvature information about the surface is lost since all of the

second order derivatives with respect to the parametric variables appear on the right hand

side of the equations. In both of the examples the grids are very coarse so that the grid

properties can be clearly seen from the plots.

The first example is a simple surface with a complex parameterization. Two grids are

shown in Figure 1. One grid is constructed by transfinite interpolation in the parametric

region. The other grid is generated by smoothing the first grid with the elliptic system.

The second grid is certainly smoother and more uniform. The control functions were taken

to be zero and the boundary points were allowed to move so that the grid is orthogonal at

the boundary. Some nonuniformity is noted in the grid, but these are due to small changes

in the curvature of the surface and not to the parameterization. At this point, it is not

known if these effects are inherent in the elliptic system or are due to truncation error in the
discretization.

The second example is a more realistic configuration. A space shuttle type geometry is

depicted with an interpolated and a smoothed grid in Figure 2. Due to the large curvature of

the surface, convergence problems were encountered in the numerical solution of the elliptic

system. Therefore the right hand sides of the elliptic system in Equations (1) and (2) were

set to zero. Although there is not a great deal of difference in the two grids, the elliptic

grid does result in a more uniform distribution especially in front of the wing where the grid

constructed by interpolation has a sparser distribution of points.

CONCLUSIONS AND RECOMMENDATIONS

The elliptic equations for surface grids have been presented along with the control func-

tions and orthogonality techniques which allow a great deal of freedom in designing high

quality grids. This capability would be most useful when the parameterization of the sur-

face is such that interpolation of parametric values does not give a satisfactory grid because

of a poorly parameterized surface. Since this situation arises frequently when surfaces are

defined by CAD packages, the capability to smooth and improve surface grids is essential

in any state-of-the-art grid generation code. The method described in this report works

well on surfaces which have a smooth parametric representation with moderate values for

theparametric derivatives. If there are large variations in the parametric derivatives, then

the elliptic system becomes difficult to solve and the standard iterative methods, such as

SOR, will not converge. However, this is precisely the case when the elliptic grid generation



Figure 1: Initial Grid (left) and Elliptic Grid (right) for a Surface

Figure 2: Initial Grid (left) and Elliptic Grid (r!ght) for a Shuttle Configuration



methods can be most useful. Thus there is a need for more study on algorithms to solve

nonlinear elliptic systems such as those encountered in this report.
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