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Abstract. The compression, or efficient coding, of single band or multispectral still images is 
becoming an increasingly important topic. While lossy compression approaches can produce 
reconstructions that are visually close to the original, many scientific and engineering 
applications require exact (lossless) reconstructions. However, the most popi~lar and efficient 
lossless compression techniques do not fully exploit the two-dimensional structural links existing 
in the image data. We describe here a general approach to lossless data compression that 
effectively exploits two-dimensional structural links of any length. After describing i n  detail two 
main variants on this scheme, we discuss experimental results. 

1. Introduction 

The problem of compressing or efficiently coding various types of data for transmission or 
archival has attracted much attention recently. Since the trend is continuing in the direction of 
collecting increasing amounts of space and Earth science data, this should be an irz~porr:~nc 
problem for some time to come. 

Much of space and Earth science data is represented in image format. This is especi:illy trile for 
data that will be analyzed, recognized, and identified by human beings, with or without the 
assistance of a computer. The two-dimensional nature of single band images, and the three- 
dimensional nature of multispectral images, gives this type of data a different nature t h a n  one- 
dimensional data such as alphanumeric text. 

Many different scientific and engineering applications utilize image archiving andlor 
transmission systems. Achieving the highest possible compression factors for the ima~es will 
help reduce the expense of building and maintaining these systems. Besides space and Earrh 
science applications, many other applications would benefit from compression, incluciing 
medical and other scientific, industrial, defense, and intelligence image analysis applications; 
computer assisted image synthesis (e.g. animation); fingerprint and other criminology imaging 
application; and the publishing industry. 

All of these applications require lossless compression of image data, especially in the associated 
archival systems. It should be emphasized that in many cases the absolute pixel values carry 
important information in addition to that carried by the general image morphology (as 
determined by pixel contrast). For example, in CAT or MRI medical images, the morphology 
represents the anatomy of the body, while the absolute pixel values carry additional infonnatioi~ 
about pathology and disease. 

The potential for compression in any meaningful two-dimensional still image data comes ~~x~iri ly 
from the statistical, spatial redundancy reflecting the two-dimensional strtictural links ber\i,een 
image pixels that form two-dimensional structures. The more two-dimension:! 1 srrlict l ire 



contained in an image, the more compressible it will be, since this structure makes the image 
more dis1simi1a.r from a two-dimensional random field. 

The amount of compression achieved for an image will depend on how deep and long are the 
structural links between image pixels, and how well this structure is extracted by the two- 
dimensional preprocessing of the image compression scheme. The most popular and efficient 
lossless compression techniques [I], [2], [3], do not effectively exploit these two-dimensional 
structural links, since they were designed for the compression of one-dimensional messages such 
as texts. 

There are two well known approaches for exploiting the two-dimensional structure contained in 
still images. The first is two-dimensional predictive coding, in which the value of a pixel is 
predicted based on knowledge of the directly neighboring pixels previously scanned. Such 
preprocessing is recommended by JPEG Still Picture Compression Standard 141. However, the 
r e s ~ c t i o n  of using only directly neighboring pixels for prediction does not allow the use of any 
longer two-dimensional structural links between pixels. 

The second well known approach for exploiting two-dimensional image structure is block 
encoding in which the image is artificially divided into k-by-k pixel blocks, and spatial features 
are extracted from the analysis of each of these blocks [4], [ 5 ] ,  [6] .  I n  real images, however, 
two-dimensional spatial structures generally do not correspond to such artificial blocks, but 
instead have arbitrary shapes and sizes. 

2. General Approach 

Our approach to two-dimensional image compression employs a natural splitting of an image 
into its drawing, shading and fine-grained components. This approach extracts and utilizes two- 
dimen~i~onal structural links of any length between image pixels. Because of this, our method 
has the :potential of achieving better higher compression amounts than other methods that do not 
effectively utilize these two-dimensional links. 

The splitting of an image into drawing, shading and fine-grained components arises natur;illy 
from the nature of digital images of natural scenes. A digital image is a matrix of nlxn2=Ng 
pixels, which often is the product of analog-to-digital conversion of a natural scene consisting of 
objects. Since the objects in the natural scene manifest themselves as connected regions in  the 
two-dimensional scene, any so constructed digital image is a map-image of a number of 
connected regions that fully cover the image. We will call such an image a digital map-image. 

A connected region is an ensemble of pixels of the same type or value, in which it is possible to 
travel from any pixel in such a region to any other pixel contained in it without intersecting the 
boundary of the region. For every meaningful digital map-image with No pixels, the number of 
connected regions, N,,, satisfies N,, << No. This statistical redundancy is exploited by our 
approach. 

In our approach, the drawing component is a contour map of boundaries between all N,, 
connected regions of the digital map-image. (How these connected regions are defined is 
discussed in the next sections.) These boundaries may be represented by a "compound 
directional edgemap," which we will call a CDEdgemap. A CDEdgemap can be constructed by 
setting bits as follows: 

i) set the first bit if (and only if) the pixel is in a different region from the pixel to the 
south; 



ii) set the second bit if (and only if) the pixel is in a different region from the pixel to the 
east. 

Relationships to pixels to the north and west can be found through reflection. Such two bit 
region boundary representations are sufficient to select and label separately all N,, connected 
regions, with four nearest neighbor connectivity. This scheme can be extended to eight nearest 
neighbors by setting two more bits as follows: 

iii) set the third bit if (and only if) the pixel is in a different region from the pixel to the 
southeast; 

iv) set the fourth bit if (and only if) the pixel is in a different region from the pixel to the 
southwest. 

Here the relationships to pixels to the northwest and northeast can be found through reflection. 

The shading component is then the list of feature values for each region. The feature value is a 
common pixel value (or common pixel vector for the multispectral case) for each connected 
region. This common pixel value can be simply the region mean, or a more complicated 
compound value, such as a set of texture values. It is sufficient to list these feature values i n  the 
order in which the regions are first encountered in a fixed scan order through the image. 
Knowing the fixed scan order, the drawing and shading components can be combined to produce 
a possibly lossy reconstruction of the initial digital map-image. Depending on the partimeter 
settings, this lossy reconstruction can be either identical or very similar to the originnl, or a 
coarse representation which may be appropriate for image browsing. 

The fine-grained component is then the difference between original image and the lossy image 
reconstruction from the drawing and shading components. Since the drawing and shading 
components contain much of the structural information, the fine-grained component consists 
primarily of the region textures. 

For further compression, the drawing, shading, and fine-grained components are then processed 
with a universal adaptive compression technique. We have used the LZW algorithm (available 
as "compress" on UNIX computers), and two variants of Arithmetic coding. 

We have implemented two main variants of our general image compression approach. We will 
first discuss the variant based on dropping a specified number of least significant bits from the 
original image data. Later we will discuss the variant based on image segmentation by iterative 
parallel region growing. 

3. Method Based on Dropping ml Least Significant Bits 

In the first variant, the drawing and shading components are defined by dropping a certain 
number of least significant bits from the original image. In this case, each connected re~ion is 
the ensemble pixels of the same value (after a specified number of least significant b~ts  are 
dropped), in which it is possible to travel from any pixel in such a region to any other pixel i n  the 
region without intersecting the of the boundary of the region. 

Any image with m bits per pixel can be arbitrarily divided into two digital images. Each pixel of 
one image is the ml least significant bits of the corresponding pixel in the original image. Each 
pixel of the other image is the mh most significant bits of the corresponding pixel in the original 
image. Note that m=mh+ml. The splitting into drawing and shading components is perfon~led 
only on the image with pixels corresponding to the mh most significant bits in the original image. 



The image with the ml least significant bits is designated as the "fine-grained" component of the 
original digital image. 

It is clear that, under our scheme, the size of the drawing and shading components will depend 
on the number of connected regions, N,,. Ncr is determined by the nature of the original image, 
by the number of bits, m, in the analog-to-digital conversion used in creating the original image, 
and the number, mi, of least significant bits dropped. Ncr will generally decrease with a decrease 
in m and increase in ml. 

Depending of the value of ml, giving mh = m-ml, we will obtain different amounts of image 
compression. There will exist a value mi,opr that provides the maximum possible image data 
compression for the combination of all three components (drawing, shading and fine-grain) of a 
digital image represented with m bits per pixel. 

The following is an outline of an algorithm that implements this variant of our image data 
compression scheme for an m-bit per pixel digital image: 

i. select the ml least important bits from original digital image as its fine-grain 
component; 

ii. separate the image formed by the mh most important bits into its shading and drawing 
components, producing a directional edge map and a feature list as described in the 
previous section; 

iii. encode (compress) all three extracted image components by an appropriate universal 
lossless data compression technique. 

The original image is reconstructed by following the steps listed below: 

i. decode (decompress) the drawing and shading image components; 
ii. construct a region label map by the following process: Give each image pixel the 

region label RL = (row-l)*ncol + col, where row is the row number, col is the column 
number, and ncol is the number of columns in the image. Then propagate the lowest 
region label through each region. Note that there is one unique location in each 
region where the final labeling matches the original labeling. These locations are also 
the locations of the first pixel encountered in a line-by-line scan of the image for each 
region. We call these locations the "seed" pixel for each region; 

iii. while scanning through the region label map, fill in "seed" pixels in the reconstructed 
image from the shading component. Each time a new region is encountered, record 
the label in a table, and take the next value from the shading component file and place 
it in that location of the reconstructed image; 

iv. propagate the seed pixel value to every pixel in each region using a connected 
component labeling algorithm; 

v. decode (decompress) the fine-grained image component and add it to the 
reconstructed digital map-image formed by consolidation of the drawing and shading 
components. 

4. Method Based on Image Segmentation 

In the second variant of our compression method, the drawing and shading components are 
defined from an image segmentation produced by an iterative parallel region growing algorithm 
(IPRG), which is discussed in detail in [7] and [8]. Briefly, the IPRG algorithm is as follows: 

i. Initialize the segmentation process by labeling each pixel as a separate region; 
ii. merge all spatially adjacent pixels that have identical feature values; 



. . . 
111. calculate a (dis)similarity criterion between each pair of spatially adjacent regions; 
iv. merge pairs of regions that meet the merge constraints; 
v. check for convergence. If converged, stop. Otherwise return to step iii. 

A dissimilarity criterion is required in step iii. Dissimilarity criterion based on mean-square 
error and image entropy are described in [8]. For an image compression application, the most 
natural dissimilarity criterion is to minimize the range of pixel values in each region [9]. 

Let MIN(Dk(p)) be the minimum image value in region p for spectral band k,  and let 
MX@k(p))  be the maximum image value in region p for spectral band k. 

The dissimilarity function for regions p and q in spectral band k is: 

The dissimilarity function for regions p and q over all bands k, k=1 ... M is: 

The merge constraint employed in step iv is that each merge must be the mutually best pairwise 
merge for merging regions. This is the same as merge constraint level 1.0 in [7] .  

Convergence in step iv occurs when there are no further merges that can be performed wit11 the 
range of pixel values in each region remaining no more than rl = EXP(m,*ln(2)) - 1,  where rn, is 
the number of bits per pixel selected for the fine-grained component. 

At convergence, the IPRG algorithm produces an edge map coded as described in the Genera1 
Approach section above. This is the drawing component. It also produces the shading 
component as a list of feature values (or vectors for multispectral images), one per region, i n  the 
order each region is first encountered in a line-by-line scan through the image. The feature value 
is taken to be the "mid-val" of the regions, defined as the rounded average of the minimum and 
maximum pixel values in each region (the values are rounded up to the nearest integer-, if 
necessary). The mid-val is taken as the feature value, rather than the region mininlum or 
maximum, so that the image reconstructed from just the drawing and shading components will 
have close to the same average brightness as the original image. 

The fine-grained component is defined in such a way that i t  will consist of positive integers i n  
the range 0 to rl. This is accomplished by taking the fine-grained component to be the difference 
between the original image and the image reconstructed from drawing and shading components, 
plus a bias value equal to (r1+1)/2. 

As it was in the first variant, in this second variant the size of the drawing and :;h;~dirig 
components will depend on the number of connected regions, N,,,hproduced by the IPRG 
algorithm. As before, NCr is determined by the nature of the original Image, by the  nu^-nbei- of 
bits, m, in the analog-to-digital conversion used in creating the original image, and the number, 
me, of bits selected for the fine-grained component. N,, will generally decrease with a decrease 
in m and increase in me. 

Similar to the situation for the first variant, there will exist a value m,,, , that provicies the 
maximum possible image data compression for the combination of a l f  three conljlonenrs 
(drawing, shading and fine-grain) of a digital image represented with m bits per pixel. 



Comparing the two variants, with me=ml, the value of N,, for the second variant will be no more 
than the value of N,, for the first variant. Thus, the second variant will generally achieve better 
compression for the drawing and shading components. However, prior to extensive elnpirical 
tests, irs is unclear as to which variant will produced more conipressible fine-grained 
components. The second variant, however, requires significantly more computation for 
encoding than the first variant. However, the decoding process for both variants is virtu:tlly 
identical. 

The following is an outline of an algorithm that implements this variant of our image data 
compression scheme for an m-bit per pixel digital image: 

i. select value of me, or number of bits, for the fine-grain component; . . 
n. to help pack the feature values in the shading component in the fewest possible bits, 

find the minimum value of each spectral band and subtract for each pixel in each 

... band; 
Ian. perfom the PPRG algorithm on the adjusted image from step ii with convergence 

limit r1= EXP(ine*lcln(2)) - 1. The IPRG algorithm produces the drawing and sli:~ding 
components as a directional edge map and feature list (of region mid-val's); 

iv compute the fine-grained component as the difference between the original image and 
the image constructed from the regions mid-val's, plus the bias value = (rL+1)/2; 

v. encode (compress) all three extracted image components by an appropriate univers:~l 
lossless data compression technique. 

The onajginal image is reconstructed by following the same steps listed for image reconstruction 
for the first variant, with the exception that the bias value = (r1+1)/2 must be subtracted and the 
band minimum value added back to each pixel in each band as the final step. 

5.  Experimental Results 

Our connpression approaches were tested on image data from: 

-> the Landsat Thematic Mapper (TM) instrument (512 line by 5 12 column by 7 bmti 
section); 

-> NOAA's Advance Very High Resolution Radiometer (AVHRR) instrument (Global 
Area Coverage) (5 12 line by 409 column by 5 band section); 

-> J K ' s  Airborne Visibleflnfrared Imaging Spectrometer (AVIRIS) (512 line by 614 
column by 16 band section). 

For both variants we found the optimal mi or me. (number of dropped bits or error bits), N R 
F, (number of connected regions), and CR (compression ratio defined as the number of bytes i n  t e 

original image divided by the number of bytes in the compressed files). In addition, we 
compared our results to the compression produced by the Lempel-Ziv-Welch algorithm (UNIX 
"eomprc=ss"), by two forms of arithmetic coding (Witten-Neal-Cleary and Adaptive), and by 
straightfornard block averaging. 

Our algorithm for straightforward block averaging is as follows: 

i. select value of ni, or size of blocks, for the spatial averaging; . . 
n. subtract the ~ilininii~m value of each spectral band from each pixel in each band; ... 
nr. compute region mid-value (average of region maximum and minimum) over ni by ni 

sized blocks and store as feature llst; 



iv. compute the fine-grained component as the difference between the original image and 
the image constructed from the blocks of mid-values, plus the bias value = (rl+1)/2;* 

-1. encode (compress) all feature list and fine-grained image components by an 
appropriate universal lossless data compression technique. 

The numerical results are presented in Tables 1 , 2  and 3. The drawing, shading and fine-grained 
components were each losslessly compressed with one of the lossless techniques, depending on 
which technique performed best. 

Table 1 shows that the natural splitting approaches did not perform very well with the TM 
image. An alternative view is that the adaptive arithmetic coder did so well it made our 
approaches look poor by comparison. In contrast, tables 2 and 3 show that our natural splitting 
approaches did very well compared to all other approaches. Our method based on Iterative 
Parallel Region Growing posted 47% and 60% improvements, respectively, over the Lempel- 
Ziv-Welch method on the AVHRR and AVIRIS image data. Similarly, the dropping in1 
significant bits method showed gains of 41% and 42%, respectively over the Lempel-Ziv-Welch 
method on the same data sets. Smaller, but still significant, gains were obtained by both 
methods over the block averaging method. 

The results obtained here encourage us to continue investigating the natural splitting approaches 
described herein. However, the relatively poor results on the TM image indicate that additional 
work may be required to truly exploit all the two-dimensional structural links that exist in the 
data. 
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Table 1. Landsat Thematic Mapper (TM) Image 

Washington, DC image; 7 spectral bands, 5 12 lines by 5 12 columns 
1 byte pixels, 1,835,008 bytes in original 

Table 2. Advanced Very Nigh Resolution Radiometer (AVHRR) Image 

5 spectral bands, 512 lines by 409 columns 
2 byte pixels, 2,094,080 bytes in original 

* EZW => Lempel-Ziv-Welch method, WNC => Witten-Neal-Cleary Arithmetic Coding, ADAP => Adaptive 
Arithmetic Coding, BP => Bit Packing, BA => Block averaging method, DLSB => Delele Least ml Significant Bits 
method, 1PF:G => method based on Iterative Parallel Region Growing segmentation. 



Table 3. Airborne VisibleIInfrared Imaging Spectrometer Image 

Moffet Field, CA image; 16 spectral bands (out of 210), 512 lines by 614 columns 
10,059,776 bytes in original 

(ADAP: residual) 

* LZW => Lempel-Ziv-Welch method, WNC => Wittcn-Neal-Cleary Arithmetic Coding, ADAP =:> A t l a p t ~ ~ c  
Arithmetic Coding, BP => Bit Packing, BA => Block averaging method, DLSB => Dclctc Lcast trll Signillcant Bits 
method, IPRG => method based on Iterative Parallel Region Growing segmcntation. 




