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Abstract. Data compression is essential to current low-earth-orbit spectral sensors with global cov- 
erage, e.g. meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per 
orbit ( over 4 Mb/s for about 110 min. ) while typically limited to less than 10 Gb of downlink capac- 
ity per orbit ( 15 minutes at 10 Mb/s ). Astro-Space Division develops spaceborne compression sys- 
tems for compression ratios from as little as three to as much as twenty-twne for high--fidelity re- 
constructions. Current hardware production and development at AstrMpace Division focuses on 
discrete cosine transform ( DCT ) systems implemented with the GE PFFT chip, a 32x32 2D-DCT 
engine. Spectral relations in the data are exploited through block mean extraction followed by ortho- 
normal transformation. The transformation produces blocks with spatial correlation that axe suitable 
for further compression with any block-oriented spatial compression system, e.g. AsthoSpace Di- 
vision's Laplacian modeler and analytic encoder of DCT coefficients. 

1.0 Introduction 

Image compression typically consists of two steps: decorrelation and encoding. For spectral h a g -  
ery a flexible and practical approach to compression is to transform the n-band spectral data into 
n spatially correlated but spectrally mostly decorrelated channels, using some approximation to the 
spectral Karhunen-Lo6ve transform ( KLT ). Then the channels can be compressed using ,my spatial 
compression technique. The DCT is probably the most effective practical spatial decorrelator for 
image compression, but it produces a data stream which is difficult to encode due to its severe cycli- 
cal nonstationarityl. The analytic encoder was developed specifically for such data sources, and has 
therefore first been applied to DCT coefficient encoding. 

The spatial compression system consisting of the DCT, Laplacian modeler and analytic encoder is 
specifically designed for superior performance at bitrates near those achievable by optimized los- 
sless compressors, producing nearly lossless performance ( 85% of pixels reconstructed exactly ) 
at the lossless compressor 's bitrate. The DCT-Laplacian'system generally outperforms JPEG &aft 
rev. 8 by about 0.5 b/p ( or an MSE ratio of about 1:2 ) when compressing more lossily . 

2.0 Spectral Decorrelation 

One of the results of our investigations into spectral data compression ( a.k.a. "multispectral. corn- 
pression" [sic] ) is that data with extension in a spectral dimension can be effectively compressed 
by first applying a decorrelating orthonormal transformation to each pixel spectrally and then corn- 
pressing blocks of like coefficients from adjacent pixels spatially as though they were irnage data. 

This is not a new idea, but empirical investigations have demonstrated that three-dimensional ( one 
spectral and two spatial dimensions ) optimal decorrelating transforms ( Karhunen-Lokve or Hotel- 
ling transforms ) are decomposable into separate spectral and spatial transforms. Thus, there is noth- 
ing substantial to be gained by joint spatial-spectral transformations. Whereas such transformations 
have previously been rejected a priori for practical reasons, we now reject them a posteriori. 

1. The expected moments of transform coefficients vary within blocks, hence nonstationarity, but the pattern is re- 
peated for each block, hence cyclical. 



Thus, all that is needed for spectral compression is a decorrelating orthonormal spectral transforma- 
tion. Once the spectral transformation is done, the resulting channels of coefficients can be com- 
pressed using any normal spatial compression technique. 

The implemen.tation of the spectral transform is still not simple. The basis vectors of spectral Karhu- 
nen-Lokve transforms derived for several 5-band AVHRR images varied greatly from scene to 
scene, and attempting to use a "composite" transform derived from the pooled covariance matrix 
in a prototype spectral compressor lead to insignificant extra compression ( less than 0.1 bits per 
band per pixel ) over a benchmark scheme of compressing each band spatially only, with bits allo- 
cated among the bands according to information content. 

2.1 Stabilizing the Karhunen-Loitve Bansform 

One basic feature of spectral images which can be overlooked in spatial applications but becomes 
mmlportmt in spectral applications is that different surfaces ( e.g. cloud, water, ice, forest, desert ) 
have different offsets between spectral bands but similarly aligned random variations about those 
oflsets. Therefore subscenes with uniform underlying surfaces have similar optimum spectral decor- 
relating transforms regardless of the surfaces, but scenes with a variety of surface types have optimal 
spectral transforms which depend on the mix of surfaces, since the intersurface spectral variations 
swamp the smaller intrasurface variations. 

This is graphically illustrated for a two-dimensional system in figure 1 below. 

Dimension X 

Figure 1 : Example of Alignment of lntrasurFace Variations 

Clearly in figure 1 the principal component of variation in the X-Y domain is similar for scenes con- 
sisting of only one surface type ( the main axes of each ellipse are nearly parallel ), but for any pair 
of surface types the principal component of variation in the X-Y domain will be more or less parallel 
to the vector connecting the centroids of each surface's distribution, while for a scene containing 
dl three surface types the principal component of variation could be oriented in any manner. 

Without actually trying to classify pixels and compress only within irregularly shaped regions, the 
easiest way to eliminate intersurface variations from data being spectrally transformed is to apply 



spectral transformation in the spatial frequency domain only on those elements whose wavelength 
is shorter than plausible spatial feature sizes, i.e. those coefficients which register intrasurface varia- 
tions better than intersurface variations. For DCT compression with small blocksizes ( or vector 
quantization techniques ) this may mean spectrally transforming all but the principal spatial cornpo- 
nents ( the "DC terms" ). 

2.2 The Spectral Compressor Front End 

A simple and generic implementation of spectral compression as outlined above consists of a stan- 
dard spatial compressor ( e.g. the analytic encoder with Laplacian coefficient modeler applied to 
DCT coefficients ) with a centroid extractor and deviate transformer appended to the front end. As- 
suming n-dimensional spectral data and a spatial compressor that operates on 32 by 32 pixel blocks 
( 16x 16 and 32x32 are common blocksizes for the DCT, but 4x4 and 8x8 are more common for vector 
quantization ), the front end is depicted in figure 2 below. 

Deviate 
(32x32~  n) 

Figure 2 : Front End Block Diagram 

When the spatial compressor is a discrete cosine transform-based algorithm the centroid values can 
be substituted for the DC coefficients of the DCT blocks in the overhead stream, since those coeffi- 
cients will all be zero for blocks whose centroids have been extracted. Other spatial compressors 
( e.g. mean-residual vector quantizers ) also exploit the zero-mean property of the deviates. 

3.0 The Spatial Compressor 

For the Astro-Space DCT compressor the sensor data are partitioned into 32-pixel square blocks 2, 

which are transformed into 32-point square blocks of transform coefficients. These blocks are then 
passed through the Laplacian ( analytic ) encoder one at a time, with anew arithmetic codeword gen- 
erated for each block. In between the transform operator and the encoder the data are statistically 
characterized by a coefficient modeler so that scale predictions can be generated for the Laplaclan 

2. Previous studies for Mars Rover Sample and Return data compression indicated that the most efective power-of- 
two sized transforms were 16 pixels and 32 pixels square. The choice of 32 pixels square was based in part on the size 
of GE's proprietary PFFT chip ( 1024-point transforms, or 32 transforms in parallel with 32 points eaLh ) and in part 
on the desire to lower the amount of overhead information ( which is typically generated on a per-block basis and corn- 
pressed less efficiently than other data ). 



encoder. The Laplacian model is purely an empirical choice3. This process is depicted below in fig- 
ure 3. 

Divisor 

DC Coefficient h 
Block Height 
Block Slope 
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Figure 3 : System Block Diagram 

The flo-w sizes in figure 3 are as follows: 

@ 1024 pixels enter the discrete cosine transformer, 

@ 1024 coefficients and one divisor ( W,  ) enter the coefficient modeler, 

@ The principal ( "DC" ) coefficient and block model parameters are put out as block 
overhead for further compression and separate transmission, 

@ 1023 coefficients ( the "AC" coefficients ) and associated predictions enter the La- 
placian encoder, 

@ The Laplacian codeword ( a long bitstream ) and its length are put out, the former 
as the principal output, the latter as block overhead for further compression and sep- 
arate transmission. 

3.1 The Discrete Cosine nansformer 

The As1:roSpace discrete cosine transformer takes a 32-pixel square block of data and performs two 
passes of 32 parallel 32-point one-dimensional discrete cosine transforms. In between the two 
passes the data are transposed row for column so that the two passes are first horizontally across the 
block, then vertically across it. 

The discrete cosine transform has the property that for typical image data, the transform coefficients 
are nearly uncorrelated. Specifically, the principal components of samples from first-order Markov 
processes approach the basis vectors of the discrete cosine transform as the adjacent element correla- 
tion coefficient approaches unity. The two-dimensional Markov model is intuitively appealing as 
an interpretation of images, and typical images have adjacent pixel correlation coefficients in excess 
of 0.9, so the discrete cosine transform is widely used. 

3.2 Decorrelation Efficiency of the Iltvo-Dimensional Discrete Cosine Transform 

The covariance hypercube of the coefficients of a two-dimensional transform is simply the four-di- 
mensional transform of the covariance hypercube of the original two-dimensional data block. Given 
3. See section 4.4 of Clarke, "Transform Coding of Images", Academic Press, London 1985, for a thorough survey 
of coefficient distribution models. 



an optimal decorrelator ( the KLT ) the transform domain covariance matrix of one4hensiond 
data would be diagonal, and the transform domain covariance hypercube of twdimensional data 
would be diago-planar ( have nonzero entries only on the "diagonal" plane ). To quantify the extent 
to which a transform is optimal, we define two measures of optimality: decorrelation efficiency ( the 
traditional measure ) is the proportional reduction in off-diagonal energy ( sum of ak)solute values 
of covariances ) from the data domain to the transform domain4, and relative remaining energy is 
the ratio of the total energy in the transform domain to the (planar ) trace of the data domiain covarian- 
ce hypercube. Ideally both measures would be one, with decorrelation efficiency approachg from 
below and relative remaining energy approaching from above. 

Figure 4 shows scatter plots of decorrelation efficiency and relative remaining energy as a function 
of adjacent-pixel correlation5. In interpreting these plots it is important to keep in mind that the "sp- 
timum" decorrelator corresponding to complete efficiency and no extra remaining energy is only 
optimum within the following constraints: 

Decorrelation shall only be accomplished within blocks; interblock correlation is 
not considered, 

@ Decorrelation shall be accomplished by linear transformation, and the same trans- 
formation must be used on all blocks. 

Traditional Efficiency 
vs. Correlation 

Relative Remaining Energy 
vs. Correlation 

Figure 4 : Decorrelation Efficiency vs. Adjacent Element Correlation 

4. Diagonal energy is unchanged since: 1) the trace of a matrix is invariant under orthonormal transformation; 2) the 
covariancematrixdiagonal elements are all variances, hence positive; 3) the covariance matrixis real symmetric, hence 
the transform-domain diagonal elements are all positive. 
5. Actually, the independent variable is diagonal correlation with pixels one row up or down and one column left 01- 
right, raised to the root-one-half power This is sort of a geomemc mean of horizontal and vertical adjacent-pixel corre- 
lations, which are not equal for real sensols. 



The plolts in f ipres 4 and 5 are based on 35 frames ( 7 scenes with 5 bands each ) of NHRR data 
from the 1990 GE benchmark satellite image test suite. The frames are 5 12x5 12x 10 bits, so efficien- 
cy was computed for 16x16 transforms since a 5 12-pixel square frame does not have sufficient de- 
grees of' freedom for a 324-element covariance hypercube of full rank. 

As the figures suggest, decorrelation efficiency and relative remaining energy are directly related. 
In the limit, if we assume that all correlations w i h  the 16 by 16 pixel data block are near unity, 
then the 16~-elernent covariance hypercube has 1 6 ~  units of information energy out of 1 64 total units 
of energy. Expressing relative remaining energy in terms of decorrelation efficiency q (the portion 
of the 1 6 ~ - l 6 ~  units of redundant energy removed), 

This apl?roximate relationship is apparent in figures 4 and 5. Clearly relative remaining energy is 
more sensitive than the traditional measure of efficiency. Note that changing the size of the block 
and the ;assumed amount of non-diagonal energy in the covariance hypercube changes the two coef- 
ficients in the right-hand expression above without affecting their unit difference. For 32-pixel 
square blocks the coefficients in the expression are about one thousand. 

Figure Cj indicates a typical relative remaining energy of two for the test suite. Using the relationship 
of entropy ( 4 ) as a function of enegy ( or variance, d ) 

a relative remaining energy of two means a half a bit per coefficient ( or pixel ) of extra information 
is needed to encode the not-quite-deconelated data set. Using the relationship between lost resolu- 
tion b ( bits per symbol ) and mean squared error for densely quantized data 

22b - 1 
MSE = - 

12 

a half of a bit of resolution lost causes a mean squared error of 1/12 at a bitrate that would otherwise 
have been lossless, or doubles the mean squared error at other bitrates. While the discrete cosine 
transfoim is good, it is still not nearly optimal even within the constraints given above for this effi- 
ciency analysis. For this reason Astro-Space division continues to study DCT pre- or postproces- 
sing, e.g. sparse matrix pre- or postmultiplication to exploit the DCT as a flrst ( or last ) easily com- 
putable step on the way to a good approximation of the KLT. 

3.3 Coefficient Modeling and Quantization 

The coefficient modeler, quantizer, and analytic encoder are optimized for data having the Laplacian 
distribution 



The coefficient modeler predicts the value of Ixl from block overhead parameters indicatixlg general 
block energy, energy decay with sequency, and energy orientation, and from coefficienlt reconstmc.- 
tions that will be available to the decompressor at the time it is working to decode any pmicula 
coefficient. The prediction of 1x1 for any coefficient is used as s ( the dispersion parameter of the La- 
placian distribution ) for quantizing and encoding that coefficient. Clearly, s is not ceastrked to 
be constant for any block of coefficients, nor even to vary slowly. 

The quantizer design is based upon the following premises: 

@ A tradeoff ratio -R is set for expected squared error o2 vs. expected code length h, 

@ The center quantizer bin will be symmetric about zero, 

@ The center bin will be set to that width ( Wo ) for which the marginal increase !in c2 
for expanding that bin at each end is R times the marginal reduction in h, 

@ Subsequent bins will extend outward toward positive and negative Smity from the 
endpoints of previous bins until the marginal increase in o2 for expanding those 
bins is R times the marginal reduction in h, at which point those bins will end ( 
width Wo ) and new bins will begin. 

Varying R in this scheme will sweep through the various points on the limiting curve elf ouput rate 
vs. distortion, with each value of R producing that point on the rate-distortion curve where the dexiv- 
ative of distortion with respect to rate is -R. 

Solving the equation 

for the upper bound b of a quantization bin as a function of the lower bound a, the cost constr&lt 
R, and the dispersion s of the laplacian-distributed variable x, and also solving for a :;ymmetsicd 
bin about zero ( for which a = -b ) yields quantizers with uniform size bins off zero, a slightly lager 
bin about zero, bin sizes that increase slightly with s, and everything varying in the same propontions 
when R is varied. In particular, if we define VVb, to be the width of a quantizer bin for the uglzfomn 
distribution given cost constraint R, then the bin widths and reconstruction points ( consu&ed ex- 
pected values of positive x given a <x I b, where a and b are the bin boundaries for positive nonzero 
bins ) are tabulated below in proportion to W, for some values of s. 

From Table 1 it is apparent that the quantizer favors finer quantization of low-energy si ;pds ( high- 
sequency DCT coefficients ) than high-energy signals, since distortion reduction is "cheaper" for 
them in proportion to output expansion. 

Such a quantization scheme obviously fives neither block distortion nor block output rate. High-en- 
ergy blocks will obviously consume more bits than low-energy blocks given the same ~ f d u e  for Ww 
( the parameter used to control overall compression quality, maintained constant for long periods 
of time ), but they will not consume enough extra bits to match the output quality of the Pow-63nergy 
blocks because marginal distortion improvements are more expensive for high+nergy signals. 



Dispersion of Width of Bin Width of Reconstruction 
Distribution About Zero Nonzero Bins Point 

s Wo/ Ww Wo / Ww E(x-a) / W, 

0 94; .'/& 0 

0.01 0.81 699 0.41 837 0.01 000 

0.02 0.81 845 0.42874 0.02000 

0.05 0.82852 0.461 23 0.04995 

0.1 0.85530 0.51 548 0.09701 

0.2 0.89775 0.60094 0.16867 

0.5 0.94784 0.73621 0.28087 

1 0.971 51 0.8291 3 0.35792 

2 0.98509 0.89898 0.41 593 

5 0.99387 0.95441 0.46203 

ce 1 1 '42 

Table 1 : Quantizer Parameters 

The actual quantizer is simply realized as two interpolated lookup tables: one yielding the inverse 
of the nonzero bin size and the other yielding half the difference between the zero and nonzero bin 
sizes. Using these values the coefficient x is quantized into the integer i according to 

with i rounded to the nearest integer, and the alternating sign matching the sign of x. The formula 
for i above is designed to map the quantization bin boundaries a and b to odd multiples of 1/2, so that 
all values of x in the same bin round to the same i. 

3.4 The Laplacian ( Analytic ) Encoder 

The analytic encoder is an arithmetic encoder which uses an analytic expression for the c.d.f. of the 
distribution that a particular datum is assumed to have been drawn from, rather than a prepro- 
grammed table or prior experience. Thus, along with each datum the encoder expects as many pa- 
rameters as are needed to define the c.d.f. In the case of the laplacian distribution, the only parameter 
needed is s, the expected absolute value. 

The Laplacian encoder is a state machine which takes in Laplacian4stributed data coupled with 
scale predictions and puts out a bit stream called a codeword. The bit stream is unlimited in length, 
and is restarted for each 32-pixel square block in Astro-Space division's current implementation 
of DCT compression. The Laplacian encoder can terminate a codeword in either of two ways: simply 



by putting out ( as compressible overhead )the length of the codeword, or by extending the codeword 
( theoretically by 2% bits on average ) so that regardless of what follows the codeword will be prop- 
erly decoded. The former option is preferable for applications where data losses are possible, as it 
allows a total restart at the beginning of each block. 

Freedom to encode diverse data in any order, rather than in statistically homogeneous groups, brings 
a number of benefits: 

@ Data can be grouped spatially, for instance encoding all of the coefficients of a 
single discrete cosine transform block as one symbol set. This obviously simpliFies 
buffering and also provides robustness. For instance, if a 32 by 32 pixel bloclk is 
compressed to one bit per pixel, then one thousand consecutive bits will all be from 
the same block, so that burst errors in communication are likely to affect only (one 
block at a time (or two at most). 

@ A carefully designed predictor of Ixl used to choose the distribution dispersion pa- 
rameter s will be able to adjust immediately to any nonstationarity in the data 
source, tracking variations in source statistics on the single-sample level rather 
than from sample set to sample set. 

No symbol distribution or similar overhead needs to be transmitted. 

The codeword put out by the Laplacian encoder is the principal compression product for leach block. 
For instance, for a compressor operating at four bits per pixel the codeword would be, on average, 
about four thousand bits for each 32x32 block ( though unusual blocks could yield much longer or 
much shorter codewords for the same setting of the control parameter W, ). 

3.4.1 Encoder Operation 

The Laplacian encoder differs from normal arithmetic coding by not grouping similar da.ta together: 
each datum is encoded individually as though it came from a large sample, but each datum is in fact 
a sample of one. Instead of having a probability table the Laplacian encoder has embedded in it the 
analytic expression for the cumulative density function of a Laplacian distribution, 

Each datum is modelled as coming from a Laplacian distribution with mean absolute value s, with 
a unique value of s for each datum. Obviously, s cannot be a measured sample statistic ( there is only 
one datum in the sample ); it must be a prediction entirely independent of the datum to be encoded. 
As long as the predictor is unbiased and has the power to discriminate, i.e. as long as 

while 
0 < asc,us 

the encoder will operate as efficiently as, and often more efficiently than, encoders which rely on 
grouping similar data together. 



3.5 Implementation of Laplacian EncoderIDecoder 

The encoder follows the general procedure for arithmetic encoders, maintaining a bounded interval 
w i t h  which the ultimate codeword will fall, and transmitting bits ( and shifting up the boundaries ) 
as the boundaries converge to the point where leading bits match. Specifically, a pass through the 
errcoder ( with one symbol ) consists of the following: 

(1) Computation of Hi and Lo, the boundaries of the interval on [O,1] where the code- 
word will be. The computation yields a subinterval on the stored previous interval 
Hi- and Lo+ ( derived by truncating the previous Hi and Lo inward to some buffer 
size, e.g. 16 bits ) corresponding to the c.d.f. interval between the bin boundaries 
a and b for the input datum i and the dispersions. The new Hi and Lo are temporarily 
maintained at their full precision, e.g. 32 bits if Hi-, Lo+, and the c.d.f. points are 
all 16-bit numbers. 

(2) Transmission of as many of the leading bits as match in Hi and Lo ( actually, for 
exception handling and sneaky storage purposes, transmission of "0" if Hi 5 v2 and 
"1" if Lo 1 v2, repeated as often as possible ). As the bits are transmitted, Hi and 
Lo are shifted up ( padding with zeroes ) so that in the end 

(3) Truncation of Hi and Lo into new values of Hi- and Lo+. As the labels imply, Hi- 
is derived by rounding Hi down while Lo+ is derived by rounding Lo up. This 
rounding towards the inside of the interval guarantees that adjacent intervals do not 
overlap after truncation. If they did, a codeword in the overlapping region could be 
misinterpreted. 

Matherniatically the decoding process for one coefficient consists merely of solving the actual code- 
word, Hi, and Lo, for a c.d.f. value, and then evaluating s and the inverse of the Laplacian c.d.f. for 
a value of x' , which is quantized to i ( note that the actual value of x' produced by the inverse c.d.f 
will lie in the same quantization bin as the original value of x, but beyond that it carries no inforrna- 
tiion, and therefore should be reduced to its bin label i ). The true value of x will then be estimated 
by adding ( subtracting for negative i ) a tabulated and interpolated expected value ( the last column 
in table 1 above ) to the quantization bin boundary a ( or -a for negative i ). 

4.0 Block Overhead Compression 

For each block of 1024 pixels the compressor puts out four pieces of overhead information that need 
to be tretnsmitted along with the codeword for reconstruction: 

@ The raw DC coefficients ( a S-dimensional quantity ), 

@ The codeword length ( in bits ), 

e The "height" of the scaled, quantized coefficient block absolute values ( a 5-dimen- 
sional quantity ), 

@ The "slope" of the scaled, quantized coefficient block absolute values ( a 5-dimen- 
sional quantity ). 



@ The "orientation" of the scaled, quantized coefficient block absolute values ( (a 
5-dimensional quantity ). 

The "height" of the coefficient block is a measure of information content and therefore obviously 
correlated with the codeword length, and the two are also be weakly correlated with the "slope" of 
the coefficient block. The DC coefficients, codeword lengths and coefficient block "heights" are 
also obviously correlated with their counterparts in adjacent blocks, and the coefficie:nt block 
"slopes" are also weakly spatially correlated. Finally, all of the 5-dimensional quantities haye inter- 
nal correlation among their scalar components. These correlations are exploited in a DPCIM com- 
pressor of overhead information. The codeword length is compressed losslessly, and the oth.er quan- 
tities are compressed lossily, with the compressor using those values of lossily compressed 
parameters that the reconstructor will have rather than the original values. 

5.0 Performance of the Comp~ssor on Meteorological Images 
AstroSpace division maintains ongoing efforts to determine the value to end users of 1oss:ily com- 
pressed imagery. Studies have included generic quality measures ( e.g. mean squared and absolute 
errors, frequency distortion, automated pattern recognition, edge detection and location, difference 
histograms and images, etc. ), user-oriented objective quality measures ( e.g. calculated sea surface 
temperatures, spatial coherence analyses, cloud type identification, cloud cover calculation, forest 
classification, crop identification, ice fissure detection, location, and measurement, inteq~lanetary 
probe landing site hazard identification, surface altitude and grade derivation from stereo p&s, 
etc. ), and subjective expert assessments. Algorithms have been evaluated not only for the quality 
of their reconstructed images but also for hardware requirements at the transmitter, vulnerability to 
communications errors, compatibility with packeting and encryption, and exploitation of error-cor- 
recting codes and retransmission. 

Most analyses have indicated a surprising robustness of image-derived information to compression 
losses, particularly to compression errors without structure, e.g. white noise. A battery of meteoro- 
logical tests on 5-band AVHRR data indicated that with our best compression techniques compres- 
sion ratios of 50: 1 were achievable with borderline unacceptable defects in the images. Images com- 
pressed 25: 1 were clearly acceptable for all analyses, and images compressed between 5: 1 and 10: 1 
exhibited either no loss ( due to rounding to some user-selected relevant resolution ) or negligible 
loss in image-derived quantities. 

For example, one study focussed on computing multichannel sea surface temperatures ( MCSST ) 
from compressed AVHRR data. Table 2 below summarizes root-mean-square ( RMS ) errors in de- 
grees Kelvin for a variety of compressors. 

Table 2 : Sea Surface Temperature RMS Errors 

The data in table 2 were interpolated for those compressors ( all but DCT/Laplacian, which employs 
rate feedback control ) which don't produce an arbitrary compression ratio exactly on demand. The 



DCT Laplacian algorithm used involved no spectral compression or spectral resource allocation in 
order to produce results commensurate with the other ( purely spatial ) techniques. 

The RMS errors of fi,oure 2 were computed on a pixel-by-pixel basis, and would seem ( in some 
cases ) to be unacceptable, except that typical sea surface temperature analyses involve computing 
average temperatures over regions of not less than 256 pixels. Such averaging reduces r m s  error by 
factors in excess of 16, making even the worst compressed datalook good. Similar averaging effects 
help in other meteorological analyses, e.g. cloud cover calculations, since most analyses focus on 
the properties of large objects ( e.g. cloud formations, ocean currents, polar icecaps, etc. ). 

Another interesting result of our user-oriented studies is that scalar error measures are usually en- 
tirely adequate for intercomparisons of conceptually dissimilar algorithms. For instance, when we 
presented a panel of meteorologists with a suite of images compressed to various degrees with vari- 
ous algorithms and asked them to subjectively grade the reconstructions, the rank order in which 
they placed the reconstructions exactly matched the rank order of their mean squared errors ( MSE ), 
without regard to whether the images were compressed using any of a number of DCT algorithms, 
a DPCM algorithm, or an MRVQ algorithm, all of which produced different characteristic errors. 
In the spirit of this observation in defense of the much-maligned MSE, figure 5 below presents the 
MSE performance of the DCTLaplacian compressor, both with the spectral transform and without, 
for a particularly challenging scene combining clouds on two levels, land, open water, and polar ice. 

Good ( Fully Useful ) Quality Nearly Lossless Quality 
75- 

60- 

45- 

# 
# 

Very High Fidelity 
I I I 1 1 

Compression Ratio 

Unusually Entropous Scene, 5 Bands, 10 Bits/Pixel/Band ( AVHRR Level 1 B ) 

Figure 5 : Bad-Case Compressor Performance 

Operating the spectral compressor without the spectral transform but with the same value of W,used 
for each spectral band causes the same cost constraint R to be used across the whole image, resulting 



in bit allocation among the bands as well as among the blocks in such a manner as to reduce: overall 
distortion as much as possible within the tradeoff ratio -R of distortion for output. The di.Eerence 
in performance shown in figure 5 is due entirely to spectral decorrelation, and can be used a:s a mea- 
sure of the added benefit to be gained from full spectral/spatial compression over spatial compres- 
sion with output bits allocated among the spectral bands according to need. The latter approach sug- 
gests itself as a way to compartmentalize the effects of single-band sensor hardware failures such 
as that on the AVIHRR sensor aboard TIROS-7. 

Figure 5 shows two statistical classifications of reconstruction quality in use at A s t r d p a c e  Di-vi- 
sion: High Fidelity reconstruction is defined as reconstruction with an MSE of one squared quanmm 
per scalar dimension ( chosen for parsimony and uniphilia ), and Very High Fidelity reconstmction 
is defined as reconstruction with an MSE of 1/12 of one squared quantum per scalar dimension ( cho- 
sen to match quantization error for dense quantizers ). Together with Lossless and Lossy these pro- 
vide a range of qualitative descriptors of reconstructions. 

6.0 Choosing Spectral Bands for a Sensor 

Existing sensors designed without spectral data compression in mind ( such as AVWRR ) tend to have 
spectral bands which are relatively unconelated. This is only natural, since without spect:ral com- 
pression the cost ( in storage space and transmission bandwidth ) of adding a new band to a sensor 
is independent of the added nonredundant information in the band, so bands are chosen to provide 
as much nonredundant information as possible. Intuitively, when a sensor is designed without spec- 
tral compression in mind, the optimal sensor design produces spectrally irreducible data, thereby 
packing in the most information per band, and justifying the omission of spectral compression after 
the fact. This leads to spectral compressor performance such as that shown in figure 5,  where exploit- 
ing spectral redundancies provides only limited performance improvements over well-designed 
spatial compression. 

Adding spectral compression to a sensor changes the cost of adding a new band by exploiting spec- 
tral redundancies so that a system designer has only to pay ( in bytes, baud, and bucks ) for the nome- 
dundant information in a band, rather than paying a fixed price for all the information in a band. 
Since the cost and added value of a new band will vary together given spectral compression, there 
will no longer be an obvious incentive to choose highly uncorrelated bands for a sensor. Future sen- 
sors with spectral compression will therefore tend to have more spectral bands, and more correlation 
among bands, than current sensors designed for the same purposes. 

7.0 Choosing Sensor Output Quantization Resolution 

In parallel with our user-oriented studies As t rdpace  division also conducts systems studies to as- 
sess the impact of data compression on sensor design, backplane capacity, buffer memory require- 
ments, and downlink encryption and error correction. In this context, one of the most common cus- 
tomer requirements is for lossless data compression regardless of other systemic, dynamic, md 
random sources of loss. AstroSpace Division develops lossless compressors for various uses, but 
future sensors ought to be designed for lossy compression, since lossy data compression a~lplied to 
higher-resolution data always produces better radiometric accuracy for a given bitrate than lossless 
data compression applied to lower-resolution data. 

This is intuitively a consequence of the fact that the underlying "exact" datavalues are real numbers, 
and the difference between higher-resolution sensor data and lower-resolution sensor data is simply 
the degree of truncation, with the lower-resolution data always worse than, and reproducib1.e from, 



the higker-resolution data ( higher-resolution data is produced by a quantizer with bin boundaries 
at dl of the boundaries of the lower-resolution quantizer, plus other intermediate boundaries as 
well ). Since the lower-resolution data is reproducible from the higher-resolution data, the choice 
between Bossless compression of the lower-resolution data and lossy compression of the higher-re- 
solution dar a becomes a choice between two lossy approaches to compressing the higher-resolution 
data: tmncation followed by lossless compression or direct lossless compression. Direct lossless 
compression has flexibility to incur losses in some optimal manner, and therefore should always out- 
perfom truncation followed by lossless compression, in which the losses are fixed in an arbitrary 
m mner* 

Retahhg h.igher-resolution data for lossy compression is rarely a matter of buying a more precise 
( m d  hence more expensive ) analog-to-digital converter ( ADC ), since most sensor data needs to 
be calibrated, corrected for nonlinear sensor response, spatially resampled, etc. The calibratedlcor- 
rectediresanpledtprocessed data will be real numbers even though the ADC produces only integers, 
so as Iong eis some of these steps ( and preferably all of them, which is feasible with current space- 
borne processors ) occur before compression, the data will have to be truncated once more ( or many 
tbnnes more ) before compression, and these later truncations will determine the resolution of the data 
being compressed. 

The effect of original data resolution on reconstructed data quality can be assessed using the pre- 
viously presented fomula for MSE as a function of bits truncated, 

22b - 1 
MSE = - . 

12 

This fornula can be inverted to get effective resolution lost as a consequence of error, which, com- 
bined with the original resolution, yields effective remaining resolution: 

g resolutions can be compared for reconstructions independently of the original 
data resolution, so one way to assess the value of extra bits of resolution is to measure how many 
bits of eiFgective resolution are gained by adding a few bits of resolution to the original data, given 
that in either case the data have to be compressed to the same fixed bitrate before reconstruction. 

Such a study is presented in figure 6 below: 10-bit AWRR data and &bit truncations of the same 
data were compressed to a number of bitrates and reconstructed, and effective resolutions compared. 
The improvement in effective resolution from having two extra bits in the original data is plotted 
below as a h t i o n  of the effective resolution lost in compressing the &bit data, so the benefit of 
extra resolution is expressed as a function of how much of the lesser resolution data are being lost 
to compre:ssion. Clearly, as less of the information in the lower-resolution data is being retained 
( i.e. Bossier compression is being performed ), the benefits of having even more resolution in the 
original data evaporate. 

Figure 6 shows that substantial gains can be made by increasing original data resolution until the 
resolution of the data being compressed is such that at least two bits of effective resolution are lost 
in the corn:pression. Another inference from the figure above is that lossless compression of an image 
( compressbng a lower-resolution image without losing any effective resolution ) is about one bit 



worse in effective resolution than lossier compression of a higher-resolution version of the same 
image. 

Effective Resolution Lost in Compressing Lower-Resolution Data ( Bits ) 

Figure 6 : Benefits of Increasing Original Data Resolution 

8.0 Conclusion 

Astro-Space Division continues to investigate, develop, and build compression systems for high- 
volume spectral images. Existing techniques compress data at ratios from 3: 1 with pristine recon- 
struction to 25: 1 with acceptable reconstruction quality. Data compression is being designed into 
future sensors, and future sensors are being designed differently because of data compression. In 
particular, sensors designed with lossy data compression in mind produce higher resolution cali- 
brated, corrected, and resampled data, and spectral sensors designed with spectral compression in 
mind can afford more spectral bands since the cost ( in storage volume and downlink bandwidth ) 
of adding a new band depends only on the amount of new information in the band. 




