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Foreword

The state of computer technology can be measured by inspecting the contents of
this year's proceedings for the 1993 Goddard Conference on Space Applications of

Artificial Intelligence. Approaches are prevalent that only a few years ago would
have been impossible due to constraints on memory and speed of computing. As a
result of the increased rates of processing, an intensive research effort is now
evident in interpreting and managing the data that are being produced. Parallel

computing, distributed computing, object-oriented methodologies, constraint
satisfaction, and wavelets show up to various extents in some of the papers, and it
will not be surprising in the next few years to see an infusion of papers involving
applications with these topics. Undoublcdly, future conferences will cover the role

of multimedia in presenting information, improved methods for classifying and
detecting changes in images, innovative uses of networked computers, and
eventually applications of optical computing.

We call your attention to the Call for Papers for the 1994 Goddard Conference on
Space Applications of Artificial Intelligence, which can be found in the back of
these proceedings. We look forward to your participation.

We would like to thank the members of the conference planning committee, the
reviewers, the authors, presenters, and invited speakers for investing their valuable
time into making this a successful endeavor.

Bob Cromp
Mike Moore

Co-chairs
1993 Goddard Conference on

Space Applications of Artificial Intelligence.
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USING AI/EXPERT SYSTEM TECHNOLOGY TO AUTOMATE PLANNING
AND REPLANNING FOR THE HST SERVICING MISSIONS

L. Bogovich, J. Johnson, A. Tuchman, D. McLean, B. Page,
A. Kispert, C. Burkhardt and R. Littlefield

AlliedSignal Technical Services Corp. (formerly Bendix Field Engineering Corp.)
Seabrook, MD 20706

W. Potter

Goddard Space Flight Center
Greenbelt, MD 20779

ABSTRACT

This paper describes a knowledge-based
system that has been developed to automate
planning and scheduling for the Hubble
Space Telescope (HST) Servicing Missions.
This new system is the Servicing Mission
Planning and Replanning Tool (SM/PART).
SM/PART has been delivered to the HST

Flight Operations Team (FOT) at Goddard
Space Hight Center (GSFC) where it is being
used to build integrated timelines and
command plans to control the activities of the
HST, Shuttle, Crew and ground systems for
the next HST Servicing Mission. SM/PART
reuses and extends AI/expert system
technology from Interactive Experimenter
Planning System (IEPS) systems to build or
rebuild timelines and command plans more
rapidly than was possible for previous
missions where they were built manually.
This capability provides an important safety
factor for the HST, Shuttle and Crew in case
unexpected events occur during the mission.

Keywords: HST Servicing Mission, AI,
Expert System, Automation.

INTRODUCTION

The IEPS Group

machines. It has been possible to quickly
and efficiently change or enhance these
knowledge-based systems to adjust to new
scheduling conditions.

The IEPS Development Approach

The IEPS systems have been developed
with an evolutionary prototyping approach.
In contrast to the more traditional waterfall

approach, the evolutionary prototyping
approach starts with the assumption that a
software application cannot be totally
specified at the start of the development
process. The evolutionary prototyping
approach uses the basic cyclical paradigm:
gather requirements, create/evolve a
prototype, evaluate the prototype, and
improve the prototype. In this approach,
developing a system is considered to be a
discovery process which results in
continuously evolving specifications.

In contrast to rapid prototyping
approaches, the evolutionary prototyping
approach emphasizes the evolution and reuse
of generic software tools. By more
effectively reusing generic software tools
developed in earlier systems and prototypes,
the evolutionary prototyping approach
reduces the overall system development time.

The IEPS group at Bendix has been
building spacecraft ground support systems
with embedded AI/expert system capabilities
since 1985. The IEPS group in conjunction
with the Spacecraft Control Programs Branch
(Code 514) has built several powerful
planning and scheduling systems using the C
language and conventional hardware (PCs
and UNIX-based workstations) rather than

traditional _AI languages and specialized AI

In the IEPS development approach,
several prototypes are delivered to the
customer for evaluation before the final

system is delivered. This approach allows
the customer to provide feedback about the
prototypes and results in improved
functionality for the final system with
decreased risk for the customer. The final

system is delivered only after the customer is
satisfied with the system's performance.

3
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The ERBS System

In 1987, the ERBS-TDRSS Contact

Planning System (McLean et al, [1]) was
delivered to the Earth Radiation Budget
Satellite (ERBS) Flight Operations Team
(FOT) at GSFC. This system is written in C
and is implemented on an IBM PC/AT. The
system automates the process of generating
requests for communications support from
the NASA Tracking and Data Relay Satellite
System (TDRSS), and it was the first expert
system at GSFC to provide ground-system
support for an on-going mission.

The ERBS system uses scheduling
environment data from the Flight Dynamics
Facility at GSFC along with strategic
planning knowledge from a Knowledge Base
(KB) to build a 1-week schedule of TDRSS

requests. The system uses alternative
scheduling strategies and traditional conflict
avoidance techniques to perform conflict
resolution (McLean et al, [2]).

The ERBS system uses the Planning and
Resource Reasoning (PARR) shell to build
timelines in batch and interactive scheduling
modes. Using PARR, a schedule of requests
can be built in a few minutes, compared with
several hours by the manual method. After a
schedule of requests is built in the batch
mode, a graphical timeline can be displayed.
Users can edit the timeline in an interactive

mode, while obtaining "expert" help from
PARR.

The ERBS system has been used steadily
since its delivery. In addition, the system has
been modified or enhanced several times to

meet changing mission requirements. These
changes were easily made because of the
knowledge-based features of the system
(McLean [3]).

Explorer Platform Planning System

In 1991, the Explorer Platform Planning
System (EPPS) was delivered to the Extreme
Ultra-Violet Explorer (EUVE) FOT at GSFC
(McLean et al, [4]). EPPS uses AI/expert
system technology from the ERBS system.

In addition, EPPS provides several
enhancements to the ERBS system. First,
EPPS runs on a UNIX-based workstation

with X-Windows/Open-Look. Second,
EPPS schedules several types of EUVE
mission support activities in addition to
TDRSS service requests. Third, EPPS
provides knowledge acquisition tools so that
EUVE FOT can modify the strategies and
constraints in the KB and try "what-if"
scenarios to adapt EPPS to handle new
scheduling situations. Finally, EPPS uses an
Ethernet to electronically receive resource
data from the Flight Dynamics Facility at
GSFC, TDRSS schedule data from the
Network Control Center at GSFC, and
planning data from EUVE Investigators at the
University of California at Berkeley. This
Ethernet is also used to send TDRSS
schedule data to the Network Control Center

and sequences of EUVE command
procedures to the Command Management
Facility at GSFC.

The IEPS Software Toolkit

As IEPS systems were developed, many
genetic tools for building new IEPS systems
were also developed. Eventually, these
generic tools were formally organized into a
software toolkit called the IEPS Software

Toolkit (NASA-GSFC, [5]). This toolkit
contains several types of system-building
tools: data formatting and report generation
tools, user interface tools, database tools,

strategic planning tools and tactical planning
tools.

To build a new system using the generic
tools in the IEPS Software Toolkit, a

software engineer first examines the basic
requirements for a new system and identifies
the IEPS tools that can be applied to the new
system. Next, individual IEPS tools are
configured to handle specific tasks, and script
files are created to link the individual tools

into a system that can be tested. Finally, the
unified system is tested and iteratively refined
until it meets all of the initial, plus
discovered, requirements. Recently, IEPS
tools have been used to build another

planning and scheduling system, SM/PART.

4



SM/PART OVERVIEW

HST Servicing Missions are Shuttle
missions that are expected to occur about
every three years to upgrade or replace failed
HST components and to help the HST
function to its fullest extent over its 15-year
mission lifetime. SM/PART is a planning
and scheduling expert system that automates
the complex process of building or rebuilding
integrated timelines and command plans for
the HST Servicing Missions (Johnson, et al.
[6]). Integrated timelines and command
plans are used to coordinate the activities of
the HST, Orbiter, Crew and ground systems
during the servicing missions.

SM/PART is currently being used to
prepare for the first HST Servicing Mission
that is scheduled for launch in 1993. It is

expected that SM/PART will also be used to
support all the other future HST Servicing
Missions. For each servicing mission, HST
Servicing Mission engineers must provide
SM/'PART with detailed planning and
scheduling data. The planning and
scheduling data that is required includes
scheduling environment (resource) data,
event definitions, sequence definitions and
command procedures. SM/PART provides
powerful data and knowledge acquisition
tools for users to enter this planning and
scheduling data.

Before a timeline or command plan is
built, a defaults file and a Data Set
Configuration (DSC) file must be created.
The defaults file provides basic display
information for a timeline and command plan
such as the mission launch time, the timeline

start time and stop time, timeline and
command plan header information, and
colors to be used on the displays. The DSC
file provides the names of the defaults file,
Merged Resources file, Event Definition KB,
Sequence Definition KB and Procedure
Definition KB that are to be used for a

particular timeline and command plan.

After all of the required files and KBs
have been constructed, SM/PART uses

PARR to build a timeline in a batch

(automatic) scheduling mode. In this
process, PARR places each HST event on a
timeline in accordance with pre-defined
scheduling strategies and constraints in the
Event Definition KB. The data and

knowledge components that make up a
timeline are shown schematically in Figure 1.

Figure 1. Timeline Components

The timeline that has been built in the

batch mode can be graphically displayed with
its scheduling environment data (resources)
and scheduled HST events (activities and

comments).

A section of an integrated timeline is

shown in Figure 2.

Because the data objects displayed on an
integrated timeline are actively connected to
the Event Definition KB (via PARR), users

are able to edit a timeline during an interactive
scheduling session while they obtain "expert"
scheduling help from PARR. For example,
as an event is changed, the definition of the
event in the Event Definition KB is

automatically updated. If an event is dragged
by mouse to a place where a scheduling
constraint is violated, a prominent
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Figure 2. SM/PART Integrated Timeline

"VIOLATION" message is displayed in the
Event Definition KB and on the timeline.

After an integrated timeline has been
built, sequence definitions and command
procedures can be combined with the
scheduled timehne event data to automatically
generate a command plan. Command plans
are used by Servicing Mission personnel at

their consoles during the mission.

SM/PART was built in an eight month
period using an evolutionary prototyping
approach that reused AI tools from earlier
IEPS systems. Two prototypes were
delivered to HST Servicing Mission
engineers for their evaluation before the final

system was delivered.
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In addition to reusing IEPS tools,
SM/PART provides several new and
enhanced features. For example, SM/PART
is the first IEPS system that uses Motif
software for its multitude of windows and

pop-up/pull-down menus. Also, SM/PART
features enhanced data and knowledge
acquisition tools, as described below.

ENVIRONMENT DATA

ACQUISITION

One type of planning and scheduling
information that must be acquired for
SM/PART to function is scheduling
environment, or resource, data. Scheduling
environment data is part of the strategic
planning information (data/knowledge) that is
required by PARR to automatically build
timelines and command plans during the
tactical planning process.

Several types of scheduling environment
data displayed on an integrated timeline are
acquired electronically from external sources.
For example, ORBIT#, DAY/NIGHT,
SOUTH ATLANTIC ANOMALY, and

TDRS data are received electronically from
the Flight Dynamics Facility at GSFC via the
HST Application Processor. This data is not
generated or modified by HST Servicing
Mission personnel, but just reformatted by
SM/PART.

Other types of scheduling environment
data on an integrated timeline are acquired
directly from HST Servicing Mission
personnel. Examples of this data include:
HST ATTITUDE, ORBITER ATTITUDE,
TELEMETRY FORMAT, CREW
SCHEDULES, and GROUND SYSTEM
ACTIVITIES. For acquiring this data,
SM/PART provides several types of Motif-
style data-entry forms.

Eventually, the various types of external
and user-entered scheduling environment data
must be merged into a single data file, the

KNOWLEDGE ACQUISITION

Another type of planning and scheduling
information that must be acquired for
SM/PART is strategic planning knowledge.
For SM/PART, strategic planning knowledge
includes activity event definitions, comment
event definitions, sequence definitions and
command procedures. This knowledge is
acquired from HST personnel and stored in
various KBs. HST activity event definitions
and comment event definitions are stored in

the Event Definition KB, sequence
definitions are stored in a Sequence
Definition KB, and command procedures are
stored in a Procedure Definition KB.

For acquiring strategic planning
knowledge, SM/PART provides new
knowledge acquisition tools. For example,
to acquire complex scheduling strategies and
constraints, event definition forms with

linked push-button or pop-up menus and
various options are provided. An Activity
Event Definition Form, for AD# B508, is
shown in Figure 3. This event is also seen
scheduled on the timeline shown by Figure 2.

For acquiring the "start event" attribute of
an event, linked push-button and/or pop-up
menus are provided to allow the user to
specify that an event start when a second
event or resource starts or stops. Also, the
user may specify a plus or minus offset for
the "event start" relative to the start or stop
time of the second event or resource.

For acquiring "constraints" for events,
linked push-button and/or pop-up menus are
provided to allow the user to specify that an
event occur only when a second specified
event or resource occurs. Alternatively, an
event can be specified so that it avoids a
second event or resource. In addition, the

user can enter plus or minus offset times for
the various options selected.

SM/PART also allows users to specify
Merged Resources file. Later, data from this alternative scheduling strategies that can be
file is used by PARR, along with strategic tried when there is a scheduling conflict. One
planning knowledge, to automatically place type of alternative strategy has SM/PART
HST events on a timeline.

7
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Figure 3. SM/PART Activity Event Definition Form

schedule an event just before or just after a
conflicting event. Another type of alternative
strategy has SM/PART schedule an event
during the resource window that occurs just
prior to or just after the resource window
where the conflict occurs.

Sequence Definition Forms are provided
for acquiring sequence information such as
sequence number, sequence title, the activity
events included in each sequence, and special

ordering instructions for the activity events

within each sequence.

Procedure Definition Forms are provided
for acquiring detailed command procedures
associated with HST activity events.
Procedure Definition Forms allow users to

enter information describing the procedures
to be performed by operations personnel for
each activity event, the effects of each
procedure, the duration of each step/substep,
and the actions expected in space and
throughout the ground system.



BUILDING A TIMELINE

Batch Scheduling

After scheduling environment data and
strategic planning knowledge have been
acquired, SM/PART is able to build a
timeline in the batch (automatic) scheduling
mode. This process is referred to as tactical

planning. To build a timeline in the batch
mode, PARR reads scheduling environment
data from the Merged Resources file and
strategic planning knowledge from the Event
Definition KB, dynamically allocates an
internal frame structure to represent each
HST event, and uses the information to place
events on the timeline. If resources are not

available or if constraints are violated, then
alternative scheduling strategies are used to
try to resolve the scheduling conflicts.

If there are no scheduling conflicts, the
event is put on the timeline and the Event
Definition KB is updated. If there is a
scheduling conflict that cannot be resolved
then a prominent "VIOLATION" message is
written in the Event Definition KB.

Interactive Scheduling

A timeline that is built in the batch

scheduling mode can be displayed graphically
on the terminal screen with its scheduled

events. Alternatively, a new timeline with
scheduling environment data, but with no

scheduled events, can be displayed
graphically on the terminal screen.

In the interactive scheduling mode, the
user can browse the timeline that is displayed
and interactively add or change timeline
events while receiving expert scheduling
assistance from PARR. This expert
scheduling assistance is possible because the
timeline data objects are actively linked via
PARR to the Merged Resource file and Event
Definition KB.

As an example of editing a timeline in the
interactive scheduling mode, a user may click
on an HST activity event with the mouse and
"drag" it to a new, valid position. In this

case, the Event Definition KB is

automatically updated. However, if the
activity is dragged to a place where a
scheduling constraint is violated, then a pop-
up window with a "VIOLATION" message
that the user must respond to is displayed on
the screen.

BUILDING A COMMAND PLAN

After a timeline has been built, a detailed
command plan corresponding to the timeline
can be automatically built and displayed on
the terminal. Building a command plan
involves retrieving and combining scheduled
timeline event information with sequence
definitions and command procedures.

Sequence definitions specify groups of HST
activities while command procedures specify
the detailed steps required to complete each
scheduled HST event.

A command plan that is displayed on the
terminal can be converted to an identical

graphical command plan print. Command
plan prints are used by HST Servicing
Mission engineers at their control consoles
during the HST Servicing Missions.

SM/PART is also able to automatically
synchronize a command plan with a timeline.
Synchronizing a command plan with a
timeline is required whenever changes are
made to either the command plan or its
corresponding timeline.

REPLANNING

An important capability of SM/PART is
to quickly rebuild a timeline and command
plan. This capability is particularly important
if unexpected events or changes in the
scheduling environment occur during a
mission. In critical situations, this capability
provides an important safety factor for the
HST, Shuttle and Crew. Initial results from

the HST Flight Operations Team indicate that
SM/PART is able to reduce the time to

rebuild a timeline and command by a factor of
ten compared with the former manual method
using a Macintosh (Potter et al, [7]).



CONCLUSIONS

SM/PART has successfully reused and
extended IEPS AI/expert system technology
to build SM/PART and automate the complex
task of building timelines and command plans
for HST Servicing Missions. To automate
this task, SM/PART initially provides
capabilities for HST Servicing Mission
personnel to acquire scheduling environment
data and strategic planning knowledge.
Next, SM/PART is able to use the acquired
scheduling environment data and strategic
planning knowledge to automatically place
HST events on a timeline. During interactive
scheduling sessions, SM/'PART is able to
provide "expert" scheduling assistance to
users. Finally, SM/PART is able to combine
timeline event data with sequence definitions
and detailed command procedures to
automatically generate command plans.

An evolutionary prototyping approach
which emphasizes reusing and enhancing AI
tools was successfully used to build
SM/PART in an eight month period.
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ABSTRACT

Autonomous robot systems are being
proposed for a variety of missions including
the Mars rover/sample return mission. Prior
to any other mission objectives being met,
an autonomous robot must be able to
determine its own location. This will be

especially challenging because location
sensors like GPS, which are available on
Earth, will not be useful, nor will INS
sensors because their drift is too large.
Another approach to self-localization is
required.

In this paper, we describe a novel approach
to localization by applying a problem-
solving methodology. The term "problem-
solving" implies a computational technique
based on logical representational and control
steps. In this research, these steps are
derived from observing experts solving
localization problems. The objective is not
specifically to simulate human expertise but
rather to apply its techniques where
appropriate for computational systems. In
doing this, we describe a model for solving
the problem (Ref. 1) and a system built on
that model, called localization control and
logic expert (LOCALE), which is a demon-
stration of concept for the approach and the
model. The results of this work represent the
first successful solution to high-level control
aspects of the localization problem.

Keywords: Knowledge-based control,
robotics

INTRODUCTION

Interest has been growing in the
development of autonomous mobile robot

systems. For example, autonomous mobile
robots have been proposed for the Mars
rover/sample return mission. In addition,
applications for such systems are being
proposed for military, industrial, and
scientific endeavors. Missions include

advanced reconnaissance, battle
damage/contamination assessment, and
exploration for cartographic, geographic,
and geologic concerns. In each of these
missions, an autonomous mobile robotic
agent would be used in place of a human
agent for cost savings and safety reasons. In
order for a robotic agent to perform the
above missions, it must be able to perform
navigation tasks. These tasks generally
include locating oneself on a map,
determining a route to a specified location,
performing some operation at that location,
and continuing on to other locations or
returning. The first of these tasks, locating
oneself on a map, is the most critical
because all the other functions rely on the
agent having and maintaining accurate
knowledge of self-location. The
environments for these tasks are usually
large outdoor spaces where environmental
features are much larger than the robot, and
the entire environment cannot be observed
all at one time from the robot's sensors.

Unambiguous, human-made landmarks and
other location tools are not available.

There are several systems used by aircraft
and other navigational systems to perform
localization. They include global positioning
systems (GPS) and inertial navigation
systems (INS). GPSs use radio signal
returns from orbiting satellites to determine
an agent's current position on the Earth. The
resolution of these systems is quite good and
would preclude the need to solve the
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localization problem for Earth-based
scenarios. However, localization is a major
problem for space exploration. No GPS
satellites exist for Mars. It will not be cost-

efficient to put a GPS system in place for
this relatively low usage, so in the near term,
autonomous systems on Mars will need the
capability to localize. While INSs also
provide localization information, they
unfortunately experience drift on the order
of feet per hour over the long run and meters
per second in the short run, making these
systems inadequate for localization in
ground-based robot systems.

THE LOCALIZATION PROBLEM

Problem Description

The objective of the localization problem is
specifying the current viewpoint and
viewing direction in the map coordinate
system. Knowledge of self-location is
essential to any agent that will interact with
an external environment. If self-location is

defined in terms of the map coordinate
system, then knowledge of it makes all other
map data accessible. Given the constraints
of current technology (e.g., videocameras,
digital maps), self-localization becomes a
translation from one input domain into
another. For our research, two data sources
were explored: visual information and map
information.

At an abstract level, localization can be
modeled as three interacting processes (see
Figure 1). Two of the processes are
perceptual: they identify the pertinent
information from the view of the image and
from the map. The inputs from a
videocamera are a series of pixels, each
defining a grey level or color. These need to
be preprocessed to determine meaningful
symbolic labels like hill, valley, saddle, etc.
The inputs from a digital map are elevation
points in a grid pattern over the map area.
These, too, need to be preprocessed into
meaningful symbolic labels. Ideally, both of

these processes are able to operate in both
data-driven and hypothesis-driven modes. In

the data-driven mode, they reason bottom-
up from the input data, gleaning all they can
from new data and integrating it with old
data. In the hypothesis-driven mode, they
reason top-down and search for specified
data of a certain type or in a specific
location. The third process determines the
correspondence between the features in the
map and the features in the view.
Correspondence is determined by matching
features from the map and the view. This
matching should be able to occur in both
directions: map to view and view to map.
This capitalizes on the results of data-driven
reasoning in each domain and uses those
results to drive hypothesis-driven reasoning
in the other. The search for matches should

be guided by knowledge of the environment
and heuristics that reduce the computational
complexity of the search. The
correspondence process mediates between
the two perceptual processes. For example,
it translates between the map's plan-view
(down-looking) representation, where
elements are north or west of each other,
and the image's lateral (side-looking) view
where elements are left and right or in front
of each other.

Knowledge

Matching

Perception

Data

Figure 1. Top-level Model of the Localization
Process (The perception process extracts
features from the map and the view of the image.
Matching determines the correspondence
between the view and map features. Knowledge
is used to determine the focalization of the agent
on the map.)
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Problem Approach

Formally, the localization problem is
matching image features to map features and
using that information to hypothesize a
current viewpoint. The goal of localization
is to determine an estimate of the location

where the image was shot and the direction
from which it was shot (i.e., to derive a

viewpoint hypothesis). In the case where
one unambiguous estimate cannot be
derived, a list of prioritized viewpoint

inputs: a topographic map and a single video
sensor image. These inputs are assumed to
be processed by a low-level processing
system, which is not part of this research.
Figure 2 shows an example view. Figure 3
shows the area of the topographic map used
in this problem.

The rationale for limiting the inputs is that
they are a minimal set of inputs. If a system
can be built that works effectively with this
constrained environment, it can likely be

hypotheses is generated. These viewpoint expanded to work in domains with richer
hypotheses constitute the best estimates inputs. The limit on the visual sensor to one
derived along with rank-order preference for
them.

Because the objective of this research was to
develop a model to provide high-level
control for localization, it determined
strategies for effectively and efficiently
generating and evaluating viewpoint
hypotheses.

The rationale for using feature-matching
techniques is that there is simply too much
data to deal with individually. This is
essentially an argument of granularity. Both
raw map and image data are digitized for
input to a computational system; however,
the granularity of this digitization is
extremely small in order to provide the
computer with as much data as possible. The
prospect of matching each picture element,
or pixel, in the visual sensor input data to a
point on the map is daunting. The approach
of combining individual map and sensor
data elements into features reduces the

search required for matching. In' this
approach, many data elements are combined
into geographic features and are dealt with
on the level of hills, valleys, gaps, and so
forth. Humans performing this task use data
elements on the level of geographic features.
It is therefore a natural representation level
to communicate the computer system's
abilities to its human builders and observers.

Demonstration Constraints

For this research, test cases with specific
map and sensor data have been explored. In
these test cases there are two available

input frame is quite severe. This means that
no stereo or image-to-image information is
available. The limits of a normal camera are

also quite tight--the angle of view is
limited. So, while a panoramic or preferably
a full-circle view would give more data, we
chose to explore what can be gained from
the standard limited camera view. In

addition to limiting the viewing angle from
side to side, the standard camera also limits

the viewing angle from top to bottom. So
the data about the location on which the

camera is standing, which could be quite
useful, is unavailable. The main limitations

on the map data are the resolution and the
fact that it is limited to elevation data. Our

goal was to focus on large outdoor
environments, so we eliminated human-
made features from our scenarios and picked
areas where their effect was minimal. Thus,

the elevation data in the digital map is
essential and was readily available.

This work assumes that a low-level image
and map processing system processes the
raw image signal and map elevation data
and sends processed information to
LOCALE. The result of this processing is
the location and classification of features in

the map and image. Map features are peaks,
valleys, ridges, etc. Image features are
peaks, valleys, gaps, ridges, saddles, and
inclines. Figure 4 shows the processed map
information. The image and map processing
system was simulated for this work because
computational systems are only just being
developed to this effect (Refs. 2 and 3).
LOCALE can query the simulated image
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Figure 2. Example Videocamera View (In this example of a videocamera view, the most prominent features
are the large valley in the middle and the two protrusions on either side of it in the front. Other valleys and peaks
also appear in the view.)

and map processing system for specific data
as required. The simulated image and map
processing system replies by describing the
map and image features (e.g., hills, valleys,
etc.) at varying levels of detail.

Finally, the localization problem is actually

a class of problems that fall on a spectrum

determined by the amount of a priori

information available to the system. Figure

5 shows the localization spectrum. Near one
end of the spectrum are update problems

where a lot of a priori information exists. In

this region the typical problem is verifying
one's location after a short move from a

known location. Update problems are easier

than dropoff problems because the agent has
an indication of current location in an

update problem. The agent needs to test

actual sensor data against expected sensor
data based on estimated location. In the

dropoff scenario the agent must determine

the estimated location in addition to testing

its validity. In dropoff problems the agent

has no a priori knowledge of where it is on
the map. The research we have done

addresses the dropoff problem and works

with no a priori knowledge, not even a

compass heading.
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Figure 3. Example Topographic Map of Teton Region
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Figure 5. The Locallzatlon Spectrum
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problems, Problems with more a pdori knowledge
are update problems. This research focuses on
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RELATED WORK

Traditional computational approaches to the
localization problem and related problems
have developed in several areas: pattern
recognition, control and representation
systems, and computer vision research.

Classic pattern recognition approaches to
the localization problem have differed from
this work in two aspects: their reliance on
low-level matching and their reliance on a
priori knowledge.

Past work has explored low-level signal
matching techniques as opposed to flame-
based approaches for correlating images
with maps. There are two signal domains in
which this work can be pursued: the image
domain and the map domain. More work has
been done in the image domain. Ernst and
Flinchbaugh (Ref. 4) matched estimated
features with sensed features and required a
known sensor location within a small

neighborhood. Stein and Medioni (Ref. 5)
explored localization using panoramic
horizons as the features. This approach
requires extensive pre-computation of
indexed synthetic horizon maps and then
matches the actual horizon to these. This

approach also requires a full 360 ° view. As
for the map domain, Lavin's work (Ref. 6)
centered around determining what depth
map could cause a two-dimensional (2-D)
projection. It requires multiframe moving
images.

The HILARE project (Ref. 7) sought to
develop an experimental testbed on which to
study general robotics, and robot perception
and planning. The position referencing
subsystem on HILARE used infrared
triangulation operating in areas where fixed
beacons were installed. This allowed for

position determination either relative to
objects and specific environment patterns or
in a constructed frame of reference.

Beyond the low-level matching, some
attention has been paid to control for low-
level image processing. Arkin et al.(Ref. 8)
explored an integrated system for the
interpretation of visual data in a mobile
robot testbed. This work essentially

explored the low-level processing tasks and
relied heavily on a priori knowledge of
expected location. In related work,
Fennema, et al. (Refs. 9, 10, and 11) use a

hierarchy of representation and control
techniques to solve the planning concerns
for control uncertainty but do not examine it
in light of specific localization problems. In
addition, some research has explored
advanced representational structures.
Binford (Ref. 12) and Kriegman, et al. (Ref.
13) explore a hierarchical representation
model for robot navigation focusing on
interior environments. Smith and Strat (Ref.
14) begin to explore a frame hierarchy and a
community of independent processes for
solving outdoor problems with human-made
landmark recognition. Andress and Kak
(Ref. 15) explore knowledge-based control
for accumulating evidence and controlling
reasoning in a hierarchical spatial reasoning
system with a computer program called
production system environment for
integrating knowledge with images
(PSEIKI) that reasons about interior
environments.

Traditionally, vision system approaches
have only examined the update problem.
Update implies a priori knowledge, an
accurate estimate of current location.

Examples of such systems include the work
by Davis, et al. (Ref. 16) on DARPA's
Autonomous Land Vehicle (ALV) program,
Carnegie-Mellon University's Navlab
project [17], and Lawton, Levitt, et al. (Refs.
18, 19, 20, 21, 22 and 23).

Thompson, et al. (Refs. 24 and 25) define
the aspects of the localization problem and
specifically the dropoff problem in large-
scale environments.

The research described here uses a different

approach where abstract representations of
both the map and image were generated by
extracting high-level features from each
domain. The correspondence between these
features is then computed in this higher-
level abstract domain.

The work of Thompson, Pick, et al. (Ref.
25, 26 and 27) is closely related to this
research. Here, protocol analyses of experts
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indicated that humanssolving localization
problems benefit from the following
strategies:

1. Concentrateon theview first.
2. Landmarkfeaturesshouldbe

organizedintoconfigurations.
3. Informationaboutterrainatthe

viewpointis important.
4. Multiple hypothesesneedto be

generatedandexamined.
5. Hypothesesshouldbecompared

usinga disconfirmationstrategy.
6. The ability to moveto alternate

viewpointsis important.

From work with experts, we made the
following generalobservations:

Grouping things into
configurations is important--
These configurations are linear
and contain relationships among
the constituent entities. This
serves to constrain the search

because the more complex a
feature is the more specific the
search can be. And,
configurations are more complex
than the features that compose
them.

Working at various levels is
important--At times it is useful
to take an overall view of the

area or the map. At other times it
is important to focus on
increasingly minute details of an
area. It is important to be able to
swap back and forth between
these levels, too.
Heuristic generation and
testing of hypotheses is
important--For example,
humans use the fact that a great
deal of information is required to
fully accept a hypothesis, while
very little is required to reject
one.

Data-driven and hypothesis-
driven reasoning is used--
Early on, data about the
viewpoint are gathered and
interrogated--this is data-driven
reasoning. Once enough data are

present to construct sufficiently
interesting hypotheses, they can
drive the reasoning.

THE MODEL

From the discussion on human experts in the
previous section, two principles stand out:

Grouping objects into composite
entities focuses attention and
reduces search.

Representing data and working at
multiple levels allows
opportunistic and agenda-driven
reasoning to work cooperatively.

Grouping Objects

From a purely mathematical perspective,
grouping objects into composites for
matching has clear significance. If one is
trying to match two sets of features (e.g.,
trying to match image features to map
features) and there are five features in the
first set and 40 in the second, then the
number of possible matches is 90,536,361.

This calculation is

min(m,n)
E _ m.f

j=0 j! (n-j)[ (m-j)!

where m and n are the cardinality of the sets
(in this case 5 and 40). If, however, the first
set is actually grouped into two groups: one
of three and one of two, and the second set
is divided into eight groups of three and
some singletons, then the number of
possible matches between the groups of
three in each set is only nine. The group of
three from the first set could match any of
the eight, or none at all. So, from a

mathematical perspective, grouping clearly
assists matching. In computational terms,
grouping objects into composites and then
working with the composites reduces the
search space of the problem.

Grouping is observed in expert performance
in the localization problem. Successful
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experts group individual features into
configurations.Theconfigurationsobserved
and used are linear and generally radial from
the subject. The expert realizes that there are
fewer groupings of hill-valley-hill in a
straight line on the map than there are
individual hills or valleys. So the expert
chooses to reason at the configuration rather
than the feature level.

As for the model, the goal is to capture the
groupings that facilitate the heuristic
solution to the localization problem.
Practically, this means an enumeration of
the terms experts use in problems of this
type and a thorough understanding of the
interrelationships of these terms. This
understanding leads to illumination of
constraints and other rules of thumb to focus

matching and other reasoning processes for
localization.

Multiple Levels of Representation and
Reasoning

The second major principle of the model is
that working at multiple levels provides the
ability for opportunistic- and agenda-driven
reasoning to work cooperatively. Data
required for the model fall across a spectrum
of levels of complexity. The levels of data
required in the model reflect the derivative
nature of the data. Low-level data are the

raw inputs from the simulated image and
map processing system. They consist of
brief statements of fact, for example, that a
certain hill is at a certain location. Higher-
level data, including configurations, possible
configuration matches, and viewpoint
hypotheses derive from them.

Data at different levels are very different.
Raw data are immutable facts. Derived data

are less strong. It is useful to distinguish
permanent and persistent data in this
context. As the system approaches a given
localization problem in a given geographic
area, that is one problem-solving episode;
there are some data that will be permanent
to this problem-solving episode, and some
that will not. The permanent data are facts
like, "There is a hill at coordinate 335,432."

Less permanent data (we use the term

persistent data) may fall in and out of favor.
Persistent data is a specialized example of a
requirement for nonmonotonic reasoning.
Hypotheses are examples of persistent data.
At one point in the episode a hypothesis
may look very promising, it may lose
credibility, then gain it again as more data
are gathered, but it is not truly temporary
because even when it appears unlikely, the
mere fact that a hypotheses has been
explored to a certain degree of detail is
important and should be preserved and not
discarded as one would be tempted to do
with false information. Like systems
requiring full nonmonotonic reasoning,
persistent data requires that the logical
dependencies of conclusions are maintained;
however, this is not a case where data will

later be retracted, per se, as in a full non-
monotonic system. In contrast, persistent
data will not decrease the amount of

knowledge held by a system (it will always
grow), but this knowledge will simply have
preference values that may change
(increasing and decreasing) over time;
however, all of the information used to solve
a given problem is temporary in the sense
that it holds for only one localization
episode. In the next episode, when another
given problem in another given geographic
area is undertaken, all of these data will be
gone, unlike the domain-specific
information retained from problem to
problem within a given geographic area.

In addition, we observe that two approaches
to reasoning are employed by successful
human experts. First, they use a data-driven
approach to the problem, where they are
gathering all the information they can bring
to bear on the problem at hand. In this
approach the expert is building up complex
representations of the world. This is bottom-
up reasoning from raw data. Once these
representations have been built, and the
pertinent data have been gleaned from them
(e.g., there is a big valley in the middle of
the image with a hill on either side,
therefore, the configuration hill-valley-hill is
important), then hypothesis-driven reasoning
can begin (e.g., go look for hill-valley-hill
configurations in the map). This is top-down
reasoning from derived information. It is
important to use both data- and hypothesis-
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driven approachesbecausea data-driven
approachworks well when little is known
abouttheproblemathand,but ahypothesis-
driven approach focusesthe searchwhen
specific hypotheses exist. And, it is
important to be able to alternatebetween
themduring thecourseof a.problem-solving
episode. A strategic reasoning
superstructureprovidesthecapabilityfor the
system to assessits current state, select
among alternatives for the next step, and
choosetheappropriateone.This is the self-
consciouscontrol of the systembecausethe
break points provided in the strata of
reasoningcomponentsare theopportunities
for evaluation and selection of the next
courseof action.

THE APPROACH

The approach used for this research was to
understand the features in the domain
relevant to solving localization and then to
construct the representational and control
structures to work with this information.

The individual features are hills, valleys,
walls, etc. Image features have properties
like membership in a group of similar
features (valleys, hills, gaps) and relations to
other features in the image (being right or
left of one another, occlusion) and height in
the frame. Map features have properties like
location, slope, relation to other features
(north-of, south-of, etc.), and elevation. The
current implementation limits features to
points on an X, Y coordinate. This
limitation is used for simplicity of

processing. The most significant of these
properties are the relations among features.
These relations are used to define

configurations of features. One type of
configuration is a linear configuration where
three or more objects are in a line. In this
case the relation between the first two

objects is the same as between the second
and third objects.

Hypotheses are expressions of potential
solutions (or partial potential solutions) to
the localization problem at hand. Multiple,

conflicting hypotheses may be under

consideration at any one time. There are
three types of hypotheses: feature-match

hypotheses, configuration-match
hypotheses, and viewpoint hypotheses.
Feature-match hypotheses acknowledge the
possibility that a particular map feature may
be a particular image features. These are
constrained by matching rules derived from
the possible visual appearance of map
features. For example, a saddle from the

map may appear as either a valley, a saddle,
or a gap in the image. Only possible
matches need to be posited. Configuration-
match hypotheses are statements of the
potential correspondence between a
configuration in the map and a configuration
in the image. These are constrained by the
feature matches. For a configuration-match
hypothesis to be retained, not only must the
configuration forms match (two linear and
three component configurations may be
matched, but a linear configuration with
three components and a right-angle
configuration with four components may not
be matched), but the individual features
must be compatible. That is, the appropriate
feature-match hypotheses must exist.
Finally, viewpoint hypotheses are the
outgrowth of configuration-match
hypotheses. If two configurations do indeed
match, then there is a limited area from

which they can be viewed to give the
appearance in the image. The viewpoint
hypotheses are the representation of this. In
addition to the individual components that
must match for it to be true, the viewpoint

hypothesis includes a description of the area
where the observer must be located. This
area is constrained to be within certain map
coordinates limited by the visibility and

intervisibility of the features in the image as
related to their potential match partners from

the map.

Representation Issues

The representation components of the model
use a hierarchical semantic network.

Figure 6 shows the data categories of the
representation components. The lowest level
data is the raw data input from the simulated
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Figure 6. Data Categories In the Computational Model of Localization

image and map processing system.
Successively higher levels of data represent
abstracted, interpolated, or otherwise
derived data that the system has concluded
from the input data. The components of the
semantic network are the objects and the
relations between them. The components are
represented in frames and the relations are
represented in slots in the frames.

There are actually several hierarchies that
are appropriate to this problem. The main
data representation hierarchies are the
configuration hierarchy and the feature
taxonomy. Hierarchies are also used for
rules and relations.

Individual map and image features are
represented as instances of the classes
defined in a domain-specific feature
taxonomy that divides features into image
features and map features. Image features
are GAPS, IMAGE-RIDGES (so called to

distinguish them from ridges that appear in
the map), IMAGE-SADDLES, IMAGE-
VALLEYS, INCLINES, and PEAKS. These
are all of the elements that can be uniquely

distinguished in an image. Map features are

divided into BENCHES, DEPRESSIONS,
PROTRUSIONS, a n d W A L L S.
DEPRESSIONS are divided into RE-
ENTRANTS and VALLEYS. VALLEYS

are divided into BASINS, DRAWS,
GULLIES, HANGING-VALLEYS, and
MAP-SADDLES. BASINS are divided into

BOWLS and CIRQUES. MAP-SADDLES
are divided into COLS and PASSES.

PROTRUSIONS are divided into BUTTES,
PEAK-PRIMITIVES, RIDGES, and
SPIRES. RIDGES are divided into
BUTTRESSES, SHOULDERS, and

SPURS. WALLS can be distinguished into
HEADWALLS.

Control Issues

There are many types of expertise brought
to bear on localization problems. High-level
reasoning expertise can select from among
several high-level alternatives:

• Understand the viewpoint,

• Understand the map,

• Generate and test hypotheses.
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In addition, these high-level reasoning

processes can call on a number of lower
level subroutines to perform their functions:

• Gather map data,
• Gather image data,
• Scrutinize the incoming data and

connect them to known data,

• Match features,
• Locate configuration,
• Match configurations,
• Establish viewpoint hypotheses,
• Evaluate and refine viewpoint

hypotheses.

Each of these reasoning steps (both high-
level and low-level) is a specialized
subroutine. These subroutines can

encapsulate just enough information to
perform one specific function. The
implementation represents them
independently and weaves them together as
appropriate (e.g., where a high-level
function calls one or more low-level

functions). And, it coordinates the actions of

the multiple experts.

Control Structures
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THE SYSTEM

Figure 7 shows the system diagram of the
computer implementation running on a Sun
workstation using KEE® (by Intellicorp)
and lisp. Data flow in from the simulated
image and map processing system and are
posted on either the map or the image
knowledge bases (KBs). These KBs are
built on top of the taxonomy KB, which
contains the problem-specific data about the
localization problem and the geographic
region in general. The taxonomy is the
hierarchy of geographic features that occur
in this area. The control structures are the
reasoners and rule bases that scrutinize the

map and image information, taking into
account their relationships within the
taxonomy. The results of this scrutiny form
the basis for the hypotheses that are posted
in the hypothesis KB. Further scrutiny of the
hypotheses may lead the control structures
to send queries back to the simulated image
and map processing system for more data.

Figure 7. LOCALE System Diagram

These data will arrive as new postings to the

image and map KBs.

The levels of representation of problem-
specific information from lowest to highest
are:

• Input data (map and image),
• Feature-match hypotheses,
• Configurations (map and image),
• Configuration-match hypotheses,
• Viewpoint hypotheses.

As an input datum arrives it is plugged in as
an instance of one of the classes in the

hierarchy. This allows it to inherit certain
properties from its super classes and to be
reasoned about as a member of the class.

The feature taxonomy provides the basis for
feature matching. Table 1 shows a feature-
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Table 1. Feature-Match Matrlx(Potentialfeatures from the map an(] the imageare comparedfor match
quality.)

Image-Fea tures
Gaps Image- Image- Image- Inclines Peaks

Map-Features Ridges Saddles Valleys
Benches 0 3 0 0 1 1
Depressions 5 0 5 5 O 0
Re-entrants 5 O 1 3 0 O
Valleys 5 0 3 5 O O
Basins 5 0 5 5 0 O
Bowls 3 0 3 5 0 O
Cirques 3 0 3 5 0 O
Draws 5 0 1 5 O O
Gullies 5 0 1 5 0 0
Hanging-valleys 3 0 3 5 0 O
Map-Saddles 3 0 5 3 0 O
Cols 3 0 5 5 0 0
Passes 3 0 5 5 0 0
Protrusions 0 3 0 0 3 3
Buttes 0 3 0 0 3 3
Peak-primitives 0 3 0 0 3 S
Ridges 0 5 0 0 3 1
Buttresses 0 5 0 0 3 3
Shoulders 0 5 0 0 3 3
Spurs 0 5 0 0 3 3
Spires 0 3 0 0 3 5
Walls 0 3 0 0 5 0
Headwalls 0 3 0 0 3 0

match matrix between image and map
features. Feature matches are ranked on a

scale from 0 to 5, bad to good, where 0
indicates that a map feature can never
appear as an image feature (for example, a
gully in the map will never appear as a peak
in the image), and 5 indicates a preferred
match (for example, a peak in the image
matches well with a peak in the map).

Reasoning is divided into task-specific
subroutines and proceeds in the manner
described in the approach section above.
Components are high-level (strategic), and
low-level (specific tasks). High-level
components are the conscious reasoners of
the system. They pick the strategic direction
in which the system should proceed, initiate
that work, evaluate its performance, and
then choose the next strategic direction.

RESULTS

In LOCALE two types of heuristics were
used. The first type of heuristic was the use
of configurations. By considering features in
groups instead of as individuals, search was
limited to those features that were parts of
appropriate groups. The second type of
heuristic was the use of category limitations.
Only map features of the appropriate type
were considered for matching with the
image features. In addition, matches were
prioritized based on proximity in the feature
hierarchy, so that stronger matches could be
considered first. Each heuristic is useful, but
the real power of this approach came from
the combination of both heuristics. The

result was to constrain the search space to
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only thosemap featuresthat were partsof
appropriateconfigurationsand were of the
correct type to match with the image
features. The effect of this is to determine
the subset of features that meets the

configuration constraints and to determine
the subset of features that meets the

category constraints, and then to take the
intersection of those two subsets as the

search space. We can quantify the benefits
of this approach for an example problem.
After three levels of map data detail and two
levels of image data detail have been loaded
into the system, there are thirty-seven map
features and eight image features. The
number of possible matches between these

two sets is 6.48914 x 1016. The power of

this approach is that very few possible
matches are actually considered and
explored. Using the configuration heuristic,
there are only 98 map configurations that
match the current image configuration.

Using the category heuristic, there are only
52 possible matches between the image
features and map features that are
constrained by the compatibility of their
categories. Combining the results of those
two heuristics, there are only twelve
configuration-match hypotheses that can be
developed into viewpoint hypotheses. This
reduction of the search space is dramatic.
Because this is a heuristic approach, its
performance cannot be guaranteed in the
same way an algorithm's performance can.
The reduction in search depends on the
uniqueness and identifiability of the feature
categories and the availability of
configurations; however, this magnitude of

search reduction was consistently observed
among all the test cases. Table 2
summarizes the state space reductions
observed in both this and other test cases.

The prospect of exploring and evaluating 10
to 20 test cases is reasonable. And, even if

the correct solution is not always selected as
the best alternative at any one time, the fact
that it exists among the small, select set of
alternatives is significant.

CONCLUSIONS

This work has analyzed the components of
the localization problem. The solution of
this problem is a critical component to
future work on autonomous mobile robot

systems like those proposed for missions
such as the Mars rover/sample collector.
Localization has the potential to become a
computationally insurmountable problem.
However, heuristic strategies for high-level
control can be employed to combat this
challenge. Two such strategies are the use of
configurations of features to control feature
matching and the use of category
limitations. The LOCALE system has been
implemented to demonstrate these
strategies.
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Table 2. Comparison of Test Cases

Test Case

Moran

Teewinot

Bivouac

Number of Number of Viewpoint
Map Features Image State Space Hypotheses

Features Explored

37

37

37

8 2.0 x 1012

5 6.1 x 107

6 2.0 × 109

12

12

2O
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1 Abstract

A neural network based system is presented

which is able to generate point-to-point move-

ments of robotic manipulators. The foun-

dation of this approach is the use of proto-

typical control torque signals which are de-

fined by a set of parameters. The parameter

set is used for scaling and shaping of these

prototypical torque signals to effect a de-

sired outcome of the system. This approach

is based on neurophysiological findings that

the central nervous system stores general-

ized cognitive representations of movements

called synergies, schemas, or motor programs.

It has been proposed that these motor pro-

grams may be stored as torque-time functions

in centrM pattern generators which can be

scaled with appropriate time and magnitude

parameters. The central pattern generators

use these parameters to generate stereotypi-

cal torque-time profiles, which are then sent

to the joint actuators. Hence, only a small

number of parameters need to be determined

for each point-to-point movement instead of

the entire torque-time trajectory. This same

principle is implemented for controlling the

joint torques of robotic manipulators where

a neural network is used to identify the rela-

tionship between the task requirements and

the torque parameters. Movements are spec-

ified by the initial robot position in joint co-
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ordinates and the desired final end-effector

position in Cartesian coordinates. This in-

formation is provided to the neural ncl work

which calculates six torque parameter._ for

a two-link system. The prototypical torque

profiles (one per joint) are then scaled by

those parameters. After appropriate training

of the network, our parametric control design

allowed the reproduction of a trained set of

movements with relatively high accuracy, and

the production of previously untrained move-

ments with comparable accuracy. We con-

clude that our approach was successful in dis-

criminating between trained movements and

in generalizing to untrained movements.

2 Introduction

An important problem in space robotics is

point-to-point control of the robotic arm

end-effector in an unstructured environment.

Many attempts have been made to solve this

problem: the usual methods are tedious and

computationally intensive to solve in real-

time, even with the most advanced compu-

tational methods ( [4], [11], [13]). This paper

introduces a different strategy based on mo-

tor control principles used by humans.

In many studies on human movements,

consistent and stereotypical hand and joint

trajectories have been observed across move-

ment speeds, extents, directions, and exter-

nal loads. Such findings support the no-

tion that movements are controlled by pro-

totypical motor programs which are stored in

the central nervous system and scaled to fit

the requirements of each particular movement

task before playback [1], [2], [5], [7], [12],

[15], [16]. In particular, it has been proposed

that these motor programs may be stored as
muscle force-time functions and that differ-

ent movements along the same path, but with

varying speed or paylod, can be executed by

playing back those functions with appropriate

time and magnitude scaling. Therefore, the

human motor system replaces the explicit cal-

culation of the entire muscle-force profile by

the calculation of just a few scaling parame-

ters which are used to control central pattern

generators (CPG) where the motor programs
are stored.

A problem emerging from the motor pro-

gram concept is that, since an infinite number

of possible movements exist, the nervous sys-

tem must have some way to calculate or to

look up an infinite number of possible scal-

ing parameters. Recently, engineering solu-

tions for similar problems have been intro-
duced in the form of artificial neural networks

(ANN's [14]). Essentially, an ANN consists of

processing elements, interconnection topolo-

gies, and a learning algorithm governing the

modification of connection strengths depend-

ing on mapping performance. Generally, an

ANN allows the mapping of input values into

output values based on previously established

mapping rules. These rules are determined

via a repetitive trial-and-error learning pro-

cedure rather than by explicit calculations.

An important characteristic of ANN's is that

once a correct mapping has been learned for a

number of input values, the network can gen-

eralize and provide correct output values even

for untrained input values. Thus the above

problem of representing an infinite number of

parameters can be overcome by using neural
networks to find suitable solutions.

To summarize, control by motor programs

appears to be potentially useful for manipula-

tor control because the controller would only

have to calculate a limited number of scal-

ing parameters before movement onset rather

than calculating tile entire joint torque-time
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profiles in real-time. This results in a robotic
manipulator control system that can be re-

ferred to as a Parametric Control System, and

is presented here as a means of controlling

the joint torques of a two degree-of-freedom

planar robotic manipulator. Furthermore,

this approach is used in conjunction with a

neural network which identifies the relation-

ship between the task requirements and the

torque parameters. Therefore, the approach

presented here combines the motor program

concept with neural networks to determine

the joint torque-time functions necessary to

drive a robotic manipulator end-effector from

an initial to a desired final configuration.

3 Control Strategy

The control problem is to move a two-link

planar robotic arm, as shown in Figure 1,

from an initial position to a desired final posi-

tion within the workspace shown. The robot

manipulator control system, which was used,

is designed to utilize the benefits of the motor

program concept, and is illustrated in Fig-

ure 2. The adaptive controller is an ANN,

trained to map inputs xd, O_ into outputs

p. The parameters p are applied to a func-

tion generator which generates a prototypical

time-function. This time-function is scaled

by p to yield the force-time functions Td(t),

one per joint, to be applied by the plant. In

the work reported here, the plant is the Ra-

dius robotic manipulator at the University of

Toronto Institute for Aerospace Studies [3].

This manipulator is a two degree-of-freedom

planar manipulator with rigid links, where

the links are supported by airjets in the hor-

izontal plane. The airjets allow the Radius

robotic manipulator to move in the horizontal

plane without friction. The two joint actua-
tors are harmonic-drive servomotors with the

joint position 0_ being measured by precision

potentiometers.

The ANN was implemented using the

structure shown in Figure 3. Each neuron is

a logistic unit having a working range of - 1.0

to + 1.0 with all of the neurons being fully

forward-connected. Inputs to the ANN struc-

ture are Xd, the two Cartesian coordinates of

the desired final gripper position, and 0_, the

actual initial angles of both joints, with 0_

and Xd being sampled once before a move-

ment.

The input signals x_ and 0a pass through

a layer of 127 coarse-coding neurons [6] (each

neuron being tuned to a range of input val-

ues with overlapping ranges for neighboring

neurons), then through two hidden layers of

20 units per layer (the first layer containing

20 neurons and the second layer containing

20 neurons) and finally through a layer of six

output neurons. The output signals provided

by the last lay,'r represent the values of the

six parameters p which were previously de-

scribed. Three of these parameters are used

for each joint, Pl to Pa for the shoulder joint

and P4 to P6 for the elbow joint.

The parameters p serve as inputs to

the Function Generator (Figure 2), which

in turn provides two output signals Td(t),

one for each joint, which are applied to the

plant. Both output signals are triggered syn-

chronously when p changes after a new xd has

been entered, and each output signal consists

of two successive sinusoidal half-waves hav-

ing an overall duration of 4 see. Figure 4

illustrates that Pl and P4 represent the per-

centage of movement time taken by the first

lobe of the two torque profiles, one for each

joint, and p2, pa, ps, and p6 represent the max-

imum torque amplitudes for each lobe of the

two torque profiles.
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The function of the ANN is, essentially,
to map four discrete input signals xd, O_ for

the two joints into six discrete output signals

pl,pe, and P3 (the torque parameters for the

shoulder joint) and P4,Ps, and P6 (the torque

parameters for the elbow joint). Only a single

mapping action per movement is needed. The

modifiable ANN weights are adjusted in order

to achieve satisfactory mapping by a modi-

fied version of Direct Inverse Modeling [8], a

known training procedure.

In this modified Direct Inverse Model-

ing training procedure, the initial Radius

joint positions 0_ are first noted and an op-

erator then moves the gripper into a se-

lected final position xs along an approxi-

mately straight path with an approximately

bell-shaped, single-peaked velocity profile of

4 second duration. The joint trajectories O(t)

during that movement are recorded on a disk

and subsequently transformed into predicted

joint torque profiles Tp(t) using Radius's In-

verse Dynamics equations. Next, predicted

joint torque profiles Tp(t) are approximated

by two sinusoidal half-waves of variable rel-

ative duration and amplitude and the corre-

sponding parameters p are noted. Then, Ra-

dius having been reset to O_,p is provided as

inputs to the function generator which sup-

plies outputs Td(t) to the actuators in order

to drive Radius to a final position noted as xd.

Since the parameterization is only an approx-

imation, Td(t) and Tp(t) will be somewhat dif-

ferent and Xd will be somewhat different from

X s •

The noted values of Xd, O_ and p character-

ize one movement of a training set. The above

steps are repeated for 225 different move-

ments of various amplitudes and directions

within the workspace shown in Figure 1 to

yield a set of 225 training movements char-

acterized by their respective values of xd, O_

and p.

Training of the ANN commences by ini-

tializing the modifiable weights with random

values. Th('n xd and 0a of the training set

are used as the ANN inputs and the corre-

sponding outputs p are recorded. The differ-

ence between p as calculated by the ANN and

the corresponding p as noted for the train-

ing set is the ANN performance error and

is used for incremental weight changes ac-

cording to the backpropagation rule. ANN

performance is considered satisfactory when

the output values Pl to P6, which are applied

to the function generator, result in a grip-

per movement to the desired final position Xd

such that xa _ xd.

4 Results

An illustrative representation of network per-

formance is given by Figure 5, where the fi-

nal position error of the end-effector is plot-

ted. The errors are coded as lines from the

actual final position to the desired final po-

sition. Performance before training is shown

in Figure 5A, and after training (10,000 itera-

tions) in Figure 5B. As can be seen, the errors
between the desired and actual final end el-

lector positions are greatly reduced. In fact,

the average error drops from 0.75 m before

training, to 0.03 m after training: in compar-

ison, the robotic arm is 2.12 m long. There-

fore, the error after learning was almost an

order of magnitude smaller than the inter-

target distances which ranged from 0.1 m to

0.85 m. Thus, the system was able to dis-

criminate between targets. Figure 5C shows

the final po._it ion errors of the trained neural-

network controller using a set of movements

that were not previously trained. As can be

seen, the average final position error of 0.07
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m was slightly higher than the trained data
set, but was again lessthan the shortest in-
tertarget distance. Therefore,generalization
within the workspacewassuccessful.

5 Conclusions

We have described a solution to the control

of point-to-point movements of a two joint

planar robotic arm. This parametric control

concept is qualitatively different from tradi-

tional approaches described earlier. Instead

of explicitly calculating the torques for the

entire trajectory, the new concept specifies

only a limited number of characteristic pa-

rameters. In addition, the control system

presented in this paper provides the follow-

ing advantages over most other known types

of systems:

1. No explicit knowledge of the manipula-

tor's dynamics is required.

. The nonlinear (ANN) stage is not in a

control loop which will avoid any prob-

lems due to computational delays of

the type generally caused by nonlinear

stages.

.

.

The ANN can be easily retrained for

different robotic manipulators and/or

changing robot dynamics.

The design of a controller for a multi-

link robotic manipulator with n > 2 is

not qualitatively different than that de-

scribed in this paper since the nonlin-

ear stage is designed by trial-and-error

rather that by an analytical solution.

control should be particularly useful for real-

time robot control in unstructured environ-

ments since only a limited number of vari-

ables need to be updated, therefore placing

less of a computational burden on the con-

troller. Moreover, our control concept may

be improved to achieve a more accurate ter-

minal approach to the targets by the addi-

tion of sensory feedback, as found in humans.

Also, this concept could be easily expanded

to allow for velocity control by direct scaling

of the torque profiles, and better control of

movement paths could be achieved by adding

more parameters (pl).
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Figure 1: Two-link planar manipulator and workspace (L1 and L2 are the link lengths of the first

and second links, where LI = L2 = 1.06 m).

AdapUve Function

Controller Generator

xd

Plant

I
J
i
i
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Figure 2: Block diagram of the control system utilized, where solid lines represent time varying

actions and hatched lines represent a single mapping actions per movement (Xa and ._'_ are the

desired and actual end-effector positions, 0_ the initial robot configuration in joint coordinates,

P,'_ are the torque scaling parameters, TI(i_ ) and T2(t) are the joint torque-time profiles for the

shoulder and elbow joints, and Ta(L) represents the input torques to the plant).
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Coarse coded
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2 Hidden Layers _ __

_Torque parameters for

shoulder joint

_Torque parameters for

elbow joint

Figure 3: Artificial neural network architecture used in the simulations reported here (n = 127).
All neurons are fully forward- connected to the neurons in the layers in front.

Torque (Nm)

Time (sec)

Figure 4: Torque parameterization scheme employed. Where pl, and p4 are the time of switching

from the first lobe to the second lobe for torque profiles TI and T2 respectively, p2 and p5 are

the amplitudes of the first lobe, and p3 and p6 are the amplitudes of the second lobe for torque

profiles TI and T2.
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Figure 5: Graphicalillustrationof the final positionerrorsfrom the actualto the desired final

end-effector positions (A - final position errors before training, B - final position errors after

training, for same workspace as A, C - final position errors for an untrained data set, for same

workspace as A also).
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Abstract

We present a novel time-domain method for

the detection of faulty bearings that has

direct applicability to monitoring the health

of the turbopumps on the Space Shuttle

Main Engine. A feed-forward neural network

was trained to detect modelled roller bearing

faults on the basis of the periodicity of

impact pulse trains. The network's

performance was dependent upon the number

of pulses in the network's input window and

the signal-to-noise ratio of the input signal.

To test the model's validity, we fit the

model's parameters to an actual vibration

signal generated by a faulty roller element

bearing and applied the network trained on

this model to detect faults in actual vibration

data. When this network was tested on the

actual vibration data, it correctly identified

the vibration signal as a fault condition 76%
of the time.

1.0 Introduction

A critical aspect of the Space Shuttle Main

Engine (SSME) as a reusable space vehicle

is the durability of its components. One

major inadequacy has been the insufficient

life of the bearings in the SSME's

turbopumps. The life expectancy of the

turbopump was designed to be 55 missions,

but actually the pumps require an overhaul

every one to three missions As a result, a

significant ground test program has been

required to provide "flight-qualified"

turbopumps. One means of reducing the cost

associated with ground testing is to provide

a preflight, non-invasive monitoring

procedure that can detect subtle bearing

failures without requiring the firing of the

SSME. This paper describes a novel bearing

failure detection technique that is suitable for

preflight inspection of SSME components.

The most common failure modes of rolling

element bearings are local defects in the

outer race, the inner race, or a rolling

element. As the bearing rotates, whenever

the defect passes through the element-to-race

contact area, a short duration impact is

generated that can be detected by

accelerometers or acoustic emission sensors

mounted near the beating. A typical

accelerometer signal generated by a faulty

bearing is shown in Figure 1. This signal is

characterized by transient events caused by

beating imperfections. These transients occur

against a background of minute transients

whose sum is approximated well by a
Gaussian distribution. The fault transients

typically exhibit a quasi-periodicity governed

by the rotational speed and the bearing

geometry _, The interval between such

transients is typically much longer than the

duration of the transient itself. Such impact
transients have been recorded from SSME

turbopumps using acoustic emission sensors 2.

Because the structure of each fault transient

is generally random, the challenge associated

with the early detection of beating faults is

to detect the fault transients' periodicity.
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Figure I A typicalfaultyvibrationsignal.

Impact transientsare indicated.

In the past, spectral analysis had been used

to analyze the acceleration signal s frorn

faulty bearings z. The basis for this analysis

is that the frequency corresponding to the

spacing of the fault transients shows up as a

peak in the frequency domain. The problem
with this method is that the noise in the

interval between fault transients tends to

dominate the power specnum due to the

temporally local nature of the fault

transients. Consequently, Only large bearing

faults can be detected using this method.

This has been shown to be the case for

detecting turbopump bearing cage failures. A

severely damaged mrbopump bearing

exhibits peaks in the accelerometer signal's

power spectrum at 214 Hz and 428 Hz.

These are the primary and secondary

harmonics of the bearing cage at 104% of

the turbopump's rated power level. Even
under severe fault condidions, these spectral

peaks cannot be reliably detected.

More recently, time-frequency methods, such

as wavelet transforms, have been applied to

transient signals in an attempt to address the

averaging problems associated with Fourier

techniquesL Such techniques have proven

quite useful in characterizing temporally

local events. However, due to the local

nature of their basis functions the time-

frequency techniques are inappropriate for

detecting periodicity in the signal.

As an alternative to spectral and time-

frequency techniques, we propose to use

time-domain analysis as a means of

detecting the inter-pulse interval associated

with bearing fault transients.

The simplest time-domain algorithm for

detection of pulse trains in the presence of

noise is averaging of points in the vibration

signal which are one period of the pulse

train apart'. This averaging enhances the

pulses by reducing the effect of random

background noise. While this method is

effective for enhancing detennini_'c signals

in rotating machinery, such as cylinder

pressure in internal combustion engines, its

use is limited in the bearing fault detection

application. The main problem is that the

pulses are random, being a sum of stress

waves that reach the sensor through multiple

paths between the bearing contact points and

the sensor mounting point. The rolling

element-to-race impact that produces the

pulse is itself random, being dependent on
the exact orientation and vibrations of all the

bearing components at that instant.

Consequently, the pulse spacing is not

exactly constant and no two pulses have the

same shape. As the result of the

randomness, the averaging process attenuates

the pulses just as it attenuates the

background noise, and does not improve

significantly the detectability of the fault.

Another practical limitation of the averaging
method is the need for accurate data

alignment during the averaging process. In

the engine cylinder pressure example, a
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one-per-revolutionsignal is sufficient for

perfect alignment of signals of any length.

In the bearing case, the frequency of the

pulses is a product of the rotational speed

and a geometric constant. Therefore, a

one-per-period signal cannot be generated,

making it impossible to align long records

accurately.

The contribution of this paper is the use of

a feed-forward neural network as an

alternative time-domain detection method for

pulse trains generated by faulty bearings.
The three main features of our method

overcome the limitations of the averaging

method. First, the fault transients are not

required to possess a specfic structure.

Second, there is no need for data alignment.

Finally, our algorithm can tolerate moderate

variations in pulse spacing. In summary, our

method can detect pulse trains in noise

without excessive sensitivity to the features

and repeatability of the pulses.

The next section details the signal model

used to train the neural network. Section 3.0

describes the neural network experiments

conducted on the modelled data. Section 4.0

provides the results of those experiments and

Section 5.0 presents the results of an

experiment applying the network detector to

actual vibration data generated by a faulty

roller bearing. This data was collected from

a simple test device. Finally, Section 6.0
discusses the conclusions drawn from these

results.

2.0 Vibration Signal Model

To develop the neural network-based fault

detector, we modelled the vibration signal

generated by a faulty bearing as a pulse train

embedded in Gaussian noise. The pulse

train possessed a specific periodicity. These

pulse train signals generated using various

signal-to-noise ratios (SNRs) were used to

train the neural network. Once trained, the

neural network was tested using actual

vibration data collected from a faulty ball

bearing in our laboratory.

In order to train a neural network to serve as

a generic fault detector for rolling element

bearings, a general signal model was

developed. Faulty vibration signals are

characterized by quasi-periodic impact

transients. Figure 1 shows a faulty vibration

signal with two impact transients indicated.

We were interested in a signal model that

provided only quasi-periodicity information
as a classification cue. Therefore, we used

the same Gaussian statistics to generate both

the pulses and the background noise. The

only difference between a pulse and noise

was the mean amplitude of their respective

distributions.

Two classes of vibration signal were

generated. The first class of signals

possessed pulses whose inter-pulse interval

was random (uniform distribution between

zero and twice the mean interval). The

second class was designed to represent a

vibration signal generated by a faulty

bearing. This signal possessed a pulse train

that exhibited a quasi-periodicity (a Gaussian

distribution with a variance equal to 20% of

the mean inter-pulse interval). The pulse

width to inter-pulse interval ratio was 0.22

and the position of the initial pulse was

chosen randomly (a uniform distribution

between zero and the mean inter-pulse

interval).

The signal-to-noise ratio of a model signal

was computed as follows

As
SNR = 101og--TS (1)

AN

where As and AN are the means of the

Gaussian distributions used to generate the
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pulse and the noise, respectively. The final

signal was generated by adding the Gaussian

noise to the pulse train signal.

3.0 Neural Network Training

Feed-forward neural networks with two

layers of modifiable weights were used

throughout the study. Two sets of

experiments were conducted. In the f'trst

experiment, we trained the network on input

signals containing an average of ten pulses.

In the second experiment, the network was

trained on signals containing only three

pulses on average. The network trained on

ten pulses contained 192 input units, 20

hidden units, and 2 output units. The

network trained on three pulses contained 63

input units, 10 hidden units, and 2 output

units. The size of the input layer was

determined by the number of signal sample

points required to provide the appropriate

number of pulses to the network. The
number of hidden units was chosen to

provide a sufficient number of degrees of

freedom to solve the classification problem.

In both cases, the desired output was [1 -1]

for the good bearing and [-1 1] for the faulty

beating.

The network was trained using the

back-propagation leaming algorithm 5. The

learning rate and the momentum were set at

0.01 and 0.9, respectively. These values

provided the best convergence and training
rates for the two networks.

During training, network weights were

adjusted so as to minimize the difference

between desired and actual output values.

Each pattem presented to the network was

generated at the time of presentation and,

therefore, the network never saw the same

pattem twice. Training continued until the

average improvement in performance over

weight updates fell below a fixed threshold.

This is termed asymptotic performance.

4.0 Network Performance

For the ten-pulse and the three-pulse

networks, training was conducted on signals

with a given SNR. Performance figures for

each network was obtained for various SNR

values. Table 1 provides asymptotic

performance levels for the ten-pulse network

at the SN'Rs indicated. Although the SNR

for the last two experiments was less than

zero, the average amplitude of the pulse was

larger than the background noise as a result

of adding the pulse vector to the noise

vector to produce the final signal.

Ten-Pulse Neural Network

SNR [dB] Performance

[9]

20.0 87.7

14.0 86.4

6.0 81.9

0.0 80.2

-3.5 79.6

-6.0 54.6

Table 1 Detection performance for ten-

pulse network (% correct classification).

As can be seen from the performance values,

the network's ability to detect the quasi-

periodic pulse train degrades less than 10%
as the SNR is decreased from 20.0 dB to

-3.5 dB. However, at an SNR of-6.0 dB the

performance falls to near chance. This

represents a precipitous drop in performance

below an SNR of -3.5 dB.

Table 2 presents performance values for the

three-pulse network. This network
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consistently performed 10% to 15% below

the ten-pulse network. This indicates that

Three-Pulse Neural

Network

SNR [dB] Performance

[%]

20.0 75.4

14.0 76.5

6.0 74.0

0.0 69.7

-3.5 65.0

-6.0 60.0

53.0-12.0

Table 2 Detection performance for three

pulse network (% correct classilication).

the network performs better as a function of

the number of pulses within its input

window, as expected.

5.0 Vibration Data

To test the model against actual vibration

signals, we obtained vibration data from a

faulty ball bearing. The data was acquired
from an accelerometer mounted on the

bearing housing which held the outer race.

The inner race of the bearing was mounted

to a rotating shaft which was driven by an

electric motor. The bearing was

disassembled and the outer race was

damaged with a grinding tool. During data

collection, the shaft was rotated at a constant

RIM and the vibration signal was digitized

and recorded by a personal computer

equipped with an A/D converter.

The faulty vibration signal exhibited quasi-

periodic pulses similar to the model signal.

The frequency of the pulse train was

proportional to the RPM of the rotating

shaft. We estimated the signal-to-noise ratio

of the vibration signal to be 12.5 clB. We

computed this value by measuring the mean

amplitude of the signal within the inter-pulse
interval which we used as the mean of the

noise. We then measured the mean

amplitude of the pulses and subtracted the

mean amplitude of the noise to obtain the

mean amplitude of the signal. We then used

Equation 1 to compute the signal-to-noise
ratio.

A model of the vibration signal was

developed by fitting the parameters

governing the periodicity of the modelled

fault signal to the actual statistics of the

vibration signal. In this case the pulse width

to inter-pulse interval ratio was 0.054 which

was a factor of 4 times smaller than the

original model. The variance in the interval

between each pair of pulses was a 20% of

the mean inter-pulse interval. This value

was used previously to generate the

modelled signal for the simulation

experiments described above.

A three-pulse neural network was trained on

model signals as described above. This

network achieved an asymptotic performance

of 89% correct classification on the

modelled data. The network weights were

then fixed and tested by presenting the

network actual vibration data obtained from

the faulty roller element bearing. The

network classified the fault signal as a fault

76% of the time.

6.0 Discussion

A feed-forward neural network was trained

to detect modelled roller bearing faults on

the basis of the quasi-periodicity of impact
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pulse trains. The network's performance

was dependent upon the number of pulses in

the network's input window and the signal-

to-noise of the input signal. To test the

model's validity, we fit the model's

parameters to an actual vibration signal

generated by a faulty bali bearing. We then

applied the network trained on this

experimental model to the detection of faults

in an actual vibration signal.

The performance of the three-pulse network

trained on the modelled signal whose

parameters were fit to actual vibration signal

statistics performed much better than the

three-pulse network trained during the

original set of experiments on signals with

the same SNR. This is accounted for by the

difference in the pulse width to inter-pulse
interval ratio between the two cases. In the

simulation, model the ratio of the pulse

width to the interval between the pulses was

four times as large as the same ratio derived

from the actual vibration signal. Therefore,

the percentage of confusable patterns

generated using random inter-pulse intervals

was significantly larger for the simulation
model.

However, the performance of the same

network applied to the actual vibration signal

was much closer to the performance of the
network trained on the simulation model.

This suggests that perhaps the actual

variance in the inter-pulse interval exhibited

by the actual vibration data should have
been measured and used as a model

parameter in the experimental model. In any

case, the differential in classification

performance on the modelled and the actual

signal data suggests that a more accurate

signal model is required.

It should be pointed out that the performance

figures presented in this study were obtained

by requiring the neural network to make a

decision based on a very small portion of the

signal. In the case of the actual vibration

signal, the network's decision was based on

a signal segment only 3.75 ms in length.

We could improve the performance of a

neural network-based fault detector

significantly by using a time-delay neural
network which would allow us to scale the

amount of information available to the

network a couple orders of magnitude.

The current model completely ignores any

characteristic stmcntre of the impact pulses.
This was done to ensure that the network

detect0rwould be applicable for a variety of

bearing faults and systems being monitored
under various environmental conditions.

However, if the application were restricted

sufficiently to allow the use of characteristic

impact pulse features, a second neural

network could be used to extract such

features allowing the detection of faults at

much lower SNRs. The capability of neural

networks to detect transients in noise was

demonstrated in a previous paper _. This
work showed that a neural network trained

to detect a transient with specific structural

characteristics consistently out-performed a

matched filter designed for the same

purpose.

In future work, we plan to apply this

technique to the monitoring of bearing

failure for the Space Shuttle Main Engine

turbopumps. This application would allow

us to monitor the system under controlled

conditions ensuring that the RPM of the

pump was held to a fixed value. However, in

some practical applications, where the RPM

of the rotating shaft could vary widely l it

would be necessary to either restrict the

range of RPMs monitored by a neural
network fault detector or use a bank of

network detectors each tuned to detect faults

in a specific RPM range. This is due to the

fact that the network cues on periodicity
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information which must be restricted to a

finite range in order to distinguish a periodic

pulse train from random pulses.
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Abstract

Fault isolation and sensor placement are vi-

tal for monitoring and diagnosis. A sensor

conveys information about a system's state

that guides troubleshooting if problems arise.

We are using machine learning methods to

uncover behavioral patterns over snapshots

of system simulations that will aid fault iso-

lation and sensor placement, with an eye to-

wards minimality, fault coverage, and noise

tolerance.

1 Introduction

Accurate and timely fault diagnosis is crit-

ical in the life cycle of many physical sys-

tems. Seemingly minor faults can, if un-

remedied, lead to catastrophic faults that

disable a system permanently. To iden-

tify faults, (human or machine) diagnosti-

cians observe the system's behavior primar-

ily through sensor readings. Sensors should

generally be selected to be maximally infor-

mative about the state of the system. In the

best of all possible worlds, we might expect

that sensors should be placed on all measur-

able quantities of a system; anomalous val-

ues on one or more sensors could then read-

ily identify the presence of and help isolate

system faults. However, costs are associated

with sensors. These costs correspond to ac-

tual monetary cost as well as costs due to

tile physical design constraints of the sys-

tem such as power, mass, and volume which

are a.t a high premium in systems such as

Space Station Freedom. In addition, in-

creased numbers of sensors introduce more

information that an operator must attend

to; too many sensors can lead to informa-

tion overload, thus actually contributing to

a degradation in (human) diagnostic perfor-

mance.

In many cases it is neither feasible nor de-

sirable to measure all quantities of a system.

Thus, the diagnostician must interact with

the system in two other ways: probing and

testing. One can think of probing as sens-

ing a quantity dynamically to determine its

value at a particular point in time. In test-

ing we examine component output quant, i-

ties while systematically varying its inputs.
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Probing and testing increase the cost (e.g.,

time) of diagnosis and may even be impos-

sible on remote systems such as unmanned

spacecraft. Moreover, probing and testing

are only initiated when there is some indi-

cation of a fault. Thus, we would like to ju-

diciously place sensors so that they indicate

the existence of faults and focus attention

on their plausible causes.

Sensor placement is the task of determin-

ing a set of sensors which allows the most ac-

curate determination of the overall state of a

monitored system while minimizing costs re-

lating to tile number of sensors, power con-

snmption, cost, and weight. Reducing these

quantities is particularly important in space

platforms due to power and space restric-

tions. In response, we are using two ma-

chine learning methods to identify categories

of system behavior that are similar in terms

of measurable quantities. In this paper we

describe the specific methods used and ana-

lyze their results. As we will illustrate, these

results call be exploited for purposes of diag-

nosis and design for diagnosability, notably

sensor placement.

We describe a methodology for applying

inductive learning systems to the discovery

of 'rule bases' for diagnosis. Our primary

reason for doing so is to facilitate system de-

sign. In particular, rules suggest measurable

quantities that are most diagnostic. Given a

suitable tradeoff between coverage, accuracy

and sensor cost, we envision a tool that aids

system designers in sensor selection. We are

currently in the process of systematically ex-

ploring the interaction between these factors

in the context of two learning systems, Quin-

lan's C4.5 [13] and Fisher's COBWEB [6],

with a longer-term goal of developing objec-

tive function(s) that reflect such a tradeoff.

2 Supervised Learning

Approach

Supervised learning systems discover rules

that characterize preclassified observations.

For example, supervised machine learning

systems are used in medical diagnosis; given

patient case histories that record features

such as gender, age, aspects of medical his-

tory, and a variety of test results, as well

as a diagnosis provided by a physician, a

supervised system discovers rules that are

consistent with the physician-supplied diag-

noses. We can also use this technology for

purposes of fault diagnosis. In particular,

consider the model of a thermal subsystem

given in Figure 1.

We have used the following strategy to

learn rules that distinguish a variety of con-

ditions that can cause anomalous behavior

in this system.

[1] Specify a simulator that represents each

major system component as a func-

tion that maps component inputs to

outputs. Simulation using a model-

based methodology similar to Kuipers'

[10] begins with an initial state of sys-

tem parameter settings and propagates

parameter changes through component

functions until the simulator converges

on a steady state.

[2] Associated with each system component

are permissible parameter (continuous

and discrete) ranges, within which the

component is assumed to operate sat-

isfactorily. Initial simulator parame-

ters are systematically perturbed be-

yond extreme ends of these ranges for

each component, thus yielding condi-

tions under which the system is liable

to malfunction.
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Figure 1: A thermal model.

[3] Each condition set generated in step [2]

is propagated through the system un-

til a steady state (or some error con-

dition) is reached. A database record

(which consists of measurements from

each observable parameter in the sys-

tem, labeled by the initial perturbed

condition) is generated.

[4] The system state descriptions of all

simulations are collected together and

passed to a supervised learning system.

[5] The learning system forms a decision

tree, then extracts rules that distin-

guish anomalous behaviors that were

caused by different parameter pertur-
bations.

We have used a supervised learning sys-

tem known as C4.5 to form a diagnostic

rule base. C4.5 has separate programs that

(1) construct a decision tree and (2) form

a rule base. In particular, C4.5 was used

to discriminate the system perturbations

('faults') generated in step [2] of the sim-

ulation/learning procedure outlined above.

Our thermal model contained a total of 87

fault types. In addition, three versions of

each perturbation type were generated, cor-

responding to cases where the selected pa-

rameter value was perturbed just above (or

below) acceptable ranges, moderately out of

range, and far out of range. Intuitively,

these corresponded to conditions of high

(low), very high (low), and extremely high

(low) values, but each case was labeled by a

single fault (e.g., the parameter was 'above

acceptable range'). Thus, the decision tree
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had to distinguish 87 'faults', derived from

over 261 observation sets (snapshots). Each

snapshot was represented by 23 system pa-

rameter values. Using C4.5, we constructed

decision trees much like the one partially

shown in Figure 2.

tank-flow )

(ho., ,omp)

P.Mr-SPEEr,-LOW ( _._-.ow )

VALVtaA-POS-LOW VALVE I-POS-LOW

Figure 2: A partial decision tree over
anomalous behaviors.

Initially, we are interested in two items:

(1) the diagnostic accuracy of this tree, if we

insist that faults must be perfectly isolated,

and (2) how much the tree 'compresses' the

parameters needed to attain a desired accu-

racy. We call this second factor the param-

eter compression ratio.

In this example, the decision tree cor-

rectly and uniquely classified 73% of the

snapshots over which it was constructed.

Note that the failure to perfectly classify

a,ll known behaviors is the result of C4.5's

information-theoretic measure which could

not reliably distinguish certain behaviors

with the existing observable parameter val-

ues. These points of ambiguity are precisely

where system designers should focus sensor

placement efforts in order to better distin-

guish faults. It required that approximately

18 of the 23 parameters be consulted in or-

der to achieve this accuracy - a parameter

compression ratio of (23 - 18)/23 or 0.22.
The statistics above reflect a bias that

the decision tree (or any rule-based system

for that matter) should not attempt to per-

fectly isolate a fault. Ilowever, we can re-

lax the diagnostic task, and allow catego-

rization to identify an observation's fault

as one of a small number of possibilities.

The tree above will correctly identify each

observation as exhibiting 1 of at most 3

fault possibilities (pump-speed-low, valvel-

pos-low, valvel-pos-high) in 100% of the

cases. Thus, we are are interested in the

degree to which the tree isolates a fault. In

this case, our minimal fault compression ra-

tio is (87- 3)/87 or 0.97.

Three aspects of this inductive analysis

are of interest. Each of these speaks to

the success of the diagnostic task, and pro-

vides guidelines for fault isolation and sensor

placement. Our particular concern in this

latter regard is with sensor placement.

• The fault compression ratio tells us the

degree to which a behavior's fault can

be isolated using the rule base. In-

versely, it is a measure of the extent

that we will have to rely on other

sources of knowledge and diagnostic

procedures, such as an expert or system

simulation in conjunction with model-

based diagnosis, to discriminate the

fault from the reduced set of possibil-

ities.

The parameter compression ratio indi-

cates the proportion of system param-

eters that need to be accessed for di-

agnosis over a population of behaviors.

This is a guide to the number of sensors

that will be required if diagnosis relies

simply on sensor values.

• The diagnostic accuracy in a system is

the percentage of behaviors that are
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correctly categorizedas one of several
possibilities. It measuresthe reliabil-

ity of diagnosis within the rule base,

whereas fault compression measures the

granularity.

These factors are, of course, interdepen-

dent. For example, decreasing allowable

fault compression (undesirable) will tend to

increase the required parameter compres-

sion (desirable), and increase diagnostic ac-

curacy (desirable). In general, we cannot

hope to optimize each of these parameters.

Rather, design and sensor placement must

optimize some tradeoff between them. For

example, if accuracy is at a premium, then

we may have to accept an decrease in fault

compression. This implies a corresponding

(but desirable) increase in parameter com-

pression, and an expected decrease in sen-

sor 'cost' as well. ttowever, the undesir-

able decrease in fault compression implies

that diagnostic cost will increase from hav-

ing to employ secondary diagnostic proce-

dures such as probing, testing, and simula-

tion to a larger extent.

We are initiating systematic experiments

across tile range of diagnostic factors, with

the eventual goal of defining an objective

function that characterizes an appropriate

tradeoff between them. Such a function

will allow us to bound certain factors (e.g.

accuracy, parameter compression or sensor

'cost') and to optimize for the remaining

factors (e.g., fault compression). Our cur-

rent version of C4.5 builds a decision tree

based on the diagnosticity of system param-

eter values. Other variations that take into

account the cost of sensing certain values

have also been developed by Tan & Schlim-

mer [15].

A decision tree representation of a rule

base is conceptually simple, and it has the

desirable aspect of encoding the 'minimal'

number of system measurements needed to

isolate faults to a certain granularity. Ilow-

ever, it also has some well-known disadvan-

tages. Notably, a decision tree is very sen-

sitive to noise in sensed system values (or

faulty sensors, which we regard as another

type of noise): a single misleading value can

lead diagnosis considerably astray. One im-

plication is that the minimality characteris-

tic of decision trees may not be wholly de-

sirable; uncertainty in a domain may insist

on some redundancy in the sensed values, in

order to better protect against the possibil-

ity of noise. Thus, in addition to our studies

with C4.5, we are also investigating a second

inductive approach known as clustering.

3 Cluster-Analytic Ap-

proach

A data analyst must often identify sim-

ilarities and differences between observa-

tions. For example, a biologist will cate-

gorize a newly discovered organism into a

known genera based on its similarities with

known species of the class and differences

with members of competing genera. An

economist may recognize a trend in the mar-

ket as having occurred previously, and h_re-

cast a particular outcome based on these his-

torical similarities. The need to 'cluster' ob-

servations is critical in many fields, includ-

ing the biological and social sciences, where

it has spawned data analysis tools of numer-

ical taxonomy or cluster analysis (e.g., Jain

& Dubes [8]). Clustering methods have also

evolved in artificial intelligence (AI) and ma-

chine learning (e.g., Michalski & Stepp[l 1]).

Clustering systems automatically discover

categories of observations (events or objects)

that are similar along some dimension(s).

Once uncovered, these categories may sug-
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gest features that characterizethe observed
data and/or facilitate predictionsabout the
nature of filture data. As in scientific en-
deavors, engineeringdisciplines can profit
from clustering. For example, in diagnosis
an observation may be a set of symptoms
that collectively indicate a classof events
that sharea commondiagnosis.We believe
that discoveredclusterscanbeuseddynam-
ically for automateddiagnosis,andthat like
a data analyst, a system designercan use
clustersoversimulatedbehaviorto facilitate
design- in this casesensorplacement.

3'1 COBWEB: A sample clus-

tering system

A clustering system c0nstructs: __classifica-
tion scheme over a set of obsei-vations. Fig-

ure 3 illustrates a classification tree con-

structed over five observations by a clus-

tering system called COBWEB. Each node

(class) in this tree represents a cluster of

observations. Each cluster is represented

by the distribution of attribute values over

members of that node; this illustrative ex-

ample assumes that observations are rep-

resented by attributes of Size (small,

medium, large), Shape (square, sphere,

pyramid), and Color (blue, green, red).

Each leaf of the tree represents a cate-

gory covering a single observation; the prob-

ability of each value in a leaf, P(AI =

Vijlleafk), is 1.0 (i.e., present in the cor-

responding observation) or 0.0 (i.e., absent,

in which case it is not explicitly stored at

the node). The root of the trec covers all

observations, with base rate probabilities

P(AI = Vii[root) that reflect global value

distributions. In general, each node, Ck,

contains probabilities, P(Ai = V,j[Ck), for

each attribute value observed in a member

of the node. In addition, the proportion of

observations stored under each node relative

to the node's parent is stored with the node.

For example, forty percent of the observa-

tions stored under the root are stored under

node Cl: P(Cllroot) = 0.4.
We will not describe the strategy used to

build this categorization hierarchy over ob-

servations since it is of limited relevance in

future discussion, and any of several strate-

gies can be used. However, it is important

to note that every clustering system relies on

a measure of cluster quality. In COBWEB'S

case this is a measure of category utility de-

rived from Cluck & Corter [3]:

CU(Ck) = P(Ck)x

[_i F,j P(A, = Vij[Ck) logs P(Ai = Vij[Ck)

- P(Ai = VO)log2 P(Ai = Vii)],

which rewards clusters that increase the cer-

tainty inherent in the attribute value dis-

tributions. The expression above is appro-

priate for nominally-valued (i.e., discrete,

unordered, finite) attributes, but several

variations on this basic scheme (Gennari,

Langley, & Fisher [7]; Reich & Fenves[14])

have been adapted to handle observations

described over ordinal and continuously-

valued attributes as well. The certainty-

maximizing measure is used recursively, first

to build a partition over the entire popula-

tion of observations, and then to subparti-

tion each of these initially-constructed clus-

ters, thus yielding a categorization hierar-

chy. Our particular interest in this process

is its ability to discover clusters over snap-

shots or instantaneous descriptions of sys-

tem simulations.

3.2 Discovering Fault Modes

We use COBWEB to discover categories of

fault conditions over system simulations.

This proceeds in much the same way as
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Figure 3: A classification tree constructed by COBWEB.

the simulation/induction procedure of Sec-

tion 2, except that in Step [4], the snapshots

are passed to our clustering system rather

than a supervised one. An example of a

categorization tree of discovered fault modes

for the thermal system is partially shown in

Figure 4. Each datum consists of inputs

and outputs, for all components, including

the single perturbed value (as described in

step [2]); that is, each datum is a snapshot

of the system. We do not show the proba-

bility distributions over all attribute values

for clusters, but simply label each low-level

node by a descriptor that conveys the fault-

mode meaning. Thus, low flow through the

radiator and a malfunction to the heater it-

self both result in high water temperatures

(Example 1), despite the fact that this be-

havior emerges for very different reasons.

Similarly, high flow through the pump ap-

pears somewhat similar to a second heater
malfunction: both result in low water tern-

peratures (Example 2).

As with C4.5, the benefits of clustering

are at least two-fold. First, it is difficult

for engineers to completely design against

system faults in advance. Collectively, sim-

ulation and clustering identify fault models

that benefit design decision making. For ex-

ample, a faulty heater may overheat water in

the thermal system, but this behavior may

appear to be similar to, and thus be clus-

tered with, a radiator (heat exchanger) that

does not sufficiently cool water. Second, as

with C4.5, these ambiguities can alert ana-

lysts to place sensors that better distinguish

these conditions.

Again like C4.5, a COBWEB classifica-

tion tree can also facilitate fault diagnosis.

In particular, categories discovered through

clustering associate observable/sensor/test

features with component faults that lead to

the observed anomalies. We wish to clas-

sify an observable set of sensor readings to a
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level of the classification tree where a rea-

sonably certain prediction of the underly-

ing fault can be made. However, a cat-

egorizo_tion and diagnosis procedure is less

clear with a COBWEB generated tree, since

it does not specify a single value that should

be sensed at any particular point as a deci-

sion tree does. Rather, we can exploit char-

acteristic attribute values of discovered cat-

egories to direct sensor testing. There are

a number of ways for identifying character-

istic (or normative) values, as described in

Fisher[6] and Reich & Penves[14], but suffice

it to say that they are values that are typ-

ically true of category members, and typ-

ically discriminate the category's members

from other, contrasting categories. Charac-

teristic values suggest tests that are likely

to discriminate the most promising paths of

the tree during classification: verification of

a characteristic value(s) suggests that the

associated path be followed, thus narrow-

ing the plausible faults that are consistent

with the known observables; failure to ob-

serve the expected value reduces the likeli-

hood that the associated path will lead to a

correct diagnosis.

The primary advantage of this strategy

over C4.5 is that the categorization tree

formed through clustering specifies a num-
ber of values at each node of the tree that

can be sensed in order to guide further cate-

gorization or diagnosis. The decision tree

structure is not generally as robust when

certain values cannot be reliably sensed be-

cause of noise. In contrast, the increased in-

formation redundancy of the COBWEB tree

is more robust in the face of noise, but re-

dundancy also comes with the correspond-

ing disadvantage that parameter compres-

sion is correspondingly lower.

4 Attention Focusing

Consider the space between the decision tree

approach and the conceptual clustering ap-

proach as a continuum on feature structure.

In decision trees the structure is fixed during

training so that tile order for feature testing

during prediction is rigid. There is one fea-

ture test at each node with leads to a node

at a deeper level (and another test).

In conceptual clustering there is no fea-

ture structure. To determine how to branch

into the concept hierarchy, one must test ev-

ery feature in the current node. In some

cases this could lead to a significant number

of tests (e.g., in our domain example from

Section 2).

Optimally, we would like to classify an

object or event in as few tests as possi-

ble with as few branches as possible. The

decision tree approach would seem to have

a tremendous advantage in classification of

problems with highly independent feature

spaces. However, when in a feature space

with specific dependencies, it would be nice

to cluster tests over these dependencies and

branch deeper into the tree with fewer tests.

One way in which we accomplish this is to

examine the salience of each feature within

each node, calculating what amounts to a

category utility for each feature within the

scope of its parent node.

The order of inspection for features in

each node is then relative to its salience.

The salience for a feature can be computed

in any number of ways. In the equation be-

low we show a general method for calculat-

ing salience based on standard deviation.

1 1

saIiencei --
K

where K is the number of classes, P(Ck)

is the probability of a particular class, and
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HEATER

Figure 4: A partial classificationtree of fault modesfor the thermal model.

o_ij is the standard deviation of the feature
within classk.

Using the notion of salience, an algorithm

can be derived that focuses attention on

the most informative features to test before

branching into a behavior hierarchy. The

following describes our algorithm for atten-
tion:

° Select an unseen feature with probabil-

ity based on salience scores stored at

the parent.

. Compute the salience of the selected

feature; store this new score at the par-

ent.

. Compare the category utility score for

the best classification, x, based only on

features inspected so far.

4. Consider all remaining unseen features;

if these were to match the second best

classification, would the score be better
than z?

5. If yes, goto step [1], otherwise ignore

remaining attributes and branch to new

node.

A problem closely associated with the cal-

culation of feature salience is the selection

of parametric measurements to ensure com-

plete and cost-effective diagnosis. In ana-

lyzing a design for fault isolation we exam-

ine several additional factors, or properties,

that belong to the device used for sensing a

particular feature. A partial list of factors

governing sensor selection follows:

So, when looking at which salient features

to actually measure, an objective equation

to minimize cost and maximize feature cov-

erage must be designed. Below we offer a
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responsetime
launch weight
criticality
reliability
repeatability
accuracy

resolution

maintainability

I/O performance

power consumption

procurement price
number of sensors

operating temperature

operating pressure

Table 1: Factors for sensor selection.

general form for such an objective equation:

min _ wif_

where Eiwi = 1, fi G {fl,"',fi,'",f_}

are n sensor factors; and f[ =llk ]l is a nor-

malized value representing tile sensor factor

within some range.

The following algorithm can be used for

selecting which salient features to measure

in a system under design.

1. Set threshold for objective equation.

2. Apply objective equation.

3. Collect sensor recommendations.

4. If parameter compression and fault

compression (from decision tree analy-

sis) are exceeded, then adjust threshold;

goto root-node and restart. Otherwise

branch and goto step [2].

5 Related Work

Work currently underway at JPL comple-

ments our research. JPL's AI Group has

identified numerous factors that influence

optimal sensor placement in Chien, Doyle,

L: de Mello[1], Chien, Doyle, L: Rouqette[2],

and Doyle & Fayyad[5]. Among these are

factors that relate to the diagnosticity of

sensors - i.e., the ability of sensed system

quantities to predict tile presence and lo-

cation of faults. Roughly, diagnosticity is

measured by simulating a fault on a system

model, and then observing the changes to

various model quantities. Quantities that

differ most relative to their normal state

(and possibly their value during other, com-

peting fault conditions), are judged good

predictors of that particular fault. In gen-

eral, the approach makes pairwise compar-

isons between the same quantities under

two different fault modes, and two different

quantities under identical fault conditions.

The approach appears to be generally help-

ful, but the utility of pairwise comparisons

is limited. In contrast, our two learning ap-

proaches seek patterns or rules across mul-

tiple dimensions (i.e., multiple fault modes,

and multiple sensed quantities) of system

behavioral snapshots simultaneously. This

approach can provide a more global perspec-

tive on system behavior, and makes certain

multidimensional patterns explicit to the de-

signer.

Furthermore, our approach to sensor

placement is guided by an explicit model

of the diagnostic process. This top-down

approach contrasts with JPL's bottom-up

approach, which is primarily responsible

for enumerating a wider variety of fac-

tors that play a role in sensor placement.

Our primary focus on a single aspect (i.e.,

information-content) of system parameter

values that might act as good sensors is

a disadvantage of our approach relative to

JPL's. Ilowever, we view the two ap-

proaches as complementary, and are pursu-

ing links between them.
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6 Concluding Remarks

Our approach to sensor selection is distin-

guished from others in that it is guided by

an explicit model of diagnosis; this top-down

methodology promises principled criteria for

sensor placement. Although our models of

diagnosis are primarily useful for design, the

rule bases developed through clustering and

supervised methods could be used directly

for diagnosis as well either autonomously

or by a human user. In this, wc recognize the

importance of both rule-based and model-

based approaches as contrasted in Keller[9]

and Davis[4]. Our bias is that inductive ap-

proaches can never replace model-based ap-

proaches in any but the most trivial of ap-

plications. As Keller points out, 'compiled'

knowledge is most helpful in diagnosing rel-

atively routine faults. To attempt a rule-

based approach that covers idiosyncratic

faults as well (i.e., achieves very high fault

compression) invites 'overfitting' (i.e., unac-

ceptably low accuracy and/or unacceptably

low parameter compression). The overfit-

ring phenomenon is well-known in machine

learning, but inductive approaches to com-

pilation for diagnosis have not traditionally

addressed the issue, as shown in Pearce[12].

Rather, an ideal tradeoff between coverage,

cost, and accuracy must only assume that a

certain diagnostic burden is taken on by the

compiled rule base. Our primary goal is to

limit, but not eliminate, the space of faults

that need be explored by probing, testing,

and simulation.
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ABSTRACT

This paper describes Harris AI research performed
on the Adaptive Link Reconfiguration (ALR)
study for Rome Lab, and focuses on the applica-
tion of constraint propagation to the problem of
link reconfiguration for the proposed space based
Strategic Defense System (SDS) Brilliant Pebbles
(BP) communications system. According to the
concept of operations at the time of the study,
Laser communications will exist between BP's and

to ground entry points. Long-term links typical of
RF transmission will not exist. This study
addressed an initial implementation of BP's based
on the Global Protection Against Limited Strikes
(GPALS) SDI mission. The number of satellites

and rings studied was representative of this prob-
lem.

An orbital dynamics program was used to generate
line-of-site data for the modeled architecture. This

was input into a discrete event simulation imple-
mented in the Harris developed COnstraint Propa-

gation Expert System (COPES) Shell, developed
initially on the Rome Lab BM/C study. Using a
model of the network and several heuristics, the

COPES shell was used to develop the Heuristic
Adaptive Link Ordering(HALO) Algorithm to
rank and order potential laser links according to
probability of communication. A reduced set of
links based on this ranking would then be used by
a routing algorithm to select the next hop.

This paper includes an overview of Constraint Pro-
pagation as an Artificial Intelligence technique and
its embodiment in the COPES shell. It describes

the design and implementation of both the simula-
tion of the GPALS BP network and the HALO

algorithm in COPES. This is described using a
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Data Flow Diagram, State Transition Diagrams,
and Structured English PDL. It describes a laser
communications model and the heuristics involved

in rank-ordering the potential communication
links. The generation of simulation data is
described along with its interface via COPES to
the Harris developed ViewNet graphical tool for
visual analysis of communications networks. Con-
clusions are presented, including a graphical
analysis of results depicting the ordered set of links
versus the set of all possible links based on the
computed Bit Error Rate(BER).

Finally, future research is discussed which includes
enhancements to the HALO algorithm, network
simulation, and the addition of an intelligent mut-
ing algorithm for BP.

1. SDI BRILLIANT PEBBLES COMMUNI-
CATIONS

During the course of the ALR program the
space-based architecture was changed to be based
on the concept of "Brilliant Pebbles (BP)". Each
BP consists of a weapon system, sensor system,
and a communications system. The focus of the
ALR was on the communications system, as is that
of this paper.

1.1. LINK RECONFIGURATION FOR BRIL-
LIANT PEBBLES

The BP network consists of many platforms,
each of which can receive simultaneously from a
large number of neighbors, but which can only
transmit via a laser to one other platform at a time.

This work was funded by the U.S. Air Force Rome

Laboratory under contract number F30602-89-D-0096



It also runs in an open-loop fashion using simplex
links, where a platform calculates the position of
other platforms based on orbital predictions and
periodic position updates. It then points at the
selected platform only for the duration of a mes-
sage. A link is never established in the manner of
a typical RF architecture. There is, however, the
possibility that pebbles will not recalculate links
on a per message basis. Although the study does
not address this possibility, the COPES implemen-
tation of the HALO Algorithm could be modified
in a straightforward manner to accommodate such
a change.

Given the large number of potential links
from any node, a routing algorithm should not
have to consider all potential nodes every time a
message is sent. To work effectively it should
only have to consider a subset of the links. This
approach requires a database to be maintained
which can effectively rate links according to con-
straints such as, longevity of LOS, range, probabil-
ity of accurate position data for other nodes,
beam-width limitations, probability of jamming,
etc. Maintaining such an intelligent data base can
significantly speed up the routing algorithm, and
make it more robust in the face of enemy actions.
The concept of link reconfiguration was redefined
under the ALR program to mean the process of
creating and maintaining such a database of rated
links.

1.2. GLOBAL PROTECTION AGAINST

LIMITED STRIKES (GPALS)

During the ALR study we simulated an ini
tial implementation of the Brilliant Pebbles SDI
architecture based on the Midcourse and Terminal

Tier (MATTR) and Global Protection Against
Limited Strikes (GPALS) Shad]es_ The SDI archi-
tecture has been radically altered since the BM/C 3

study, (Crone, Julich, 1990) with the incorporation

of Brilliant Eyes(BE), Brilliant Pebbles(BP_, and
the Endo /Exoatmospheric Interceptors (E I). In
addition, the concept of Battle Management has
evolved, including both the location of Battle
Managers and modes of operation. The MATI'R
study defined a BP-based SDI architecture which
includes the midcourse and terminal phases. The

GPALS study defined requirements for an SDI sys-
tem which addresses a more limited size strike

which may originate from any location. The
GPALS architecture represents an initial but
scaled-down version of an eventual phase 1 archi-
tecture, with less BPs and BEs, and without the

GSTS system.
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A significant difference in the mission of
GPALS (as contrasted with the full scale SDS) is
indicated by the name. First, the system provides
Global Protection. The space elements of the sys-
tem are intended to support defense both within
CONUS and in overseas theaters. Advantages can
be obtained by using a common communications
architecture for the overseas theater and the

CONUS implementation. Second, the term Pro-
tection suggests a different mission from the earlier
SDIO Phase 1 architecture. The Phase 1 architec-

ture had a primary mission of attack deterrence.
Providing protection (zero leakage of attacking
missiles) indicates a requirement for increased reli-
ability and less probabilistic focus. This affects
the communication requirements by placing a
higher emphasis upon guaranteed delivery of mes-

sages. Third, the term Limited Strike indicates a
smaller threat than the massive strikes considered

in the Phase 1 (full scale) architecture.

The GPALS architecture is more distributed

than previous architectures, with Battle Manage-
ment being distributed along both regional and ele-
ment lines. Weapon Target Assignments (WTA's)
are generated much closer to the weapons. Control
Of the battle is hierarchical, however, through the
use of Preplanned Response Options (PROs),
Defense Employment Opportunities _EOs), and
Weapons Release Authority (WRA).

Figure 1 provides a view of the
MA'ITR/GPALS architecture and connectivity.
The legend describes the various elements
involved in the battle. Control of the system is

hierarchical beginning at the Command Center
(CC) and proceeding through Regional Operations
Centers (ROCs) and Element Operations Centers
0_OCs).

In GPALS, battle management is distributed
and co-located with sensor systems such as Brilli-
ant Eyes(BE), Brilliant Pebbies(BP) and Ground
Based Radars(GBRs). The ALR study was pri-

marily concerned with track reports originating
with BPs that are filtered by merge nodes as they
are passed toward a GEP.

2, _ CONSTRAINT'BASED ALGORITHM

DEVELOPMENT

Given the requirements of the GPALS simu-

lation and the need to develop a heuristic algorithm
to maintain a reduced set of potential linkS, con-

straint propagation as embodied in the COPES
shell was chosen to accomplish both tasks. The

application of constraint propagation to intelligent
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Figure 1 - Space-based GPALS Communications Architecture

problem solving was begun during the BM/C 3 pro-

gram with Rome Lab.That effort resulted in the
initial development of the COPES shell.(Crone,
Julich, 1990) COPES was subsequently used in
developing a distributed intelligent network
manager in cooperation with the C Language
Integrated Production System (CLIPS) rule-based
language under the Distributed Intelligent Network
Control (DINC) program for the U.S Army Stra-
tegic Defense Command. (Crone, Julich, 1991)
This research was performed in cooperation with
the Professor Ramamoorthy and students at the
University of California Berkeley. The subject of
this paper is the work done in intelligent link
assignment for the SDI laser communications
space network.

Since this work, we have used COPES to

implement a version of the new Arpanet Shortest
Path First(SPF) algorithm (McQuillan, 1980), a
version of simulated annealing using COPES for

the traveling salesman problem as a precursor to
the problem of Weapon Target Assignment under
Harris research, and have developed a neural net-

work development tool. The simulated annealing
technique utilized the discrete event scheduling
capability of COPES to produce solutions to a 95
city problem which were consistently within 94%
of the optimum solution. The COPES developed
neural network tool is based on the Parallel Distri-

buted Processing Project. (McClelland, 1988). In
each case, as in all COPES development, the prob-
lem is represented in a distributed manner without
a central executive process. In addition, the solu-
tion is distributed throughout the object database.
For instance, in the case of the SPF algorithm, the

shortest "next hop" to a particular node is main-
tained in the object representing the that node, as
opposed to being maintained in a centralized rout-
ing table.

The remainder of this section gives the prin-

ciples of constraint propagation in the context of
Artificial Intelligence; its implementation in the
COPES shell; and the current status of the shell as

a basis of implementation for the HALO algo-
rithm.
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2.1. BACKGROUND

2.1.1. Traditional Search Techniques

A variety of search techniques exist, in the
area of combinatorial minimization with an objec-
tive function to be minimized. (Press 1986) We

have investigated some of these in the similarly
complex domain of planning and have found them
to be inadequate for knowledge-based problems.
In particular the Simplex Method is a linear pro-
gramming technique which can maximize a func-
tion subject to a set of constraints. This was found
to be too slow and unable to provide partial
schedules if all constraints could not be met. The

Constrained Minimization technique in which a
cost function is to be minimized subject to a set of

constraints depends on the function being continu-
ously differentiable. In this case standard tech-
niques such as Penalty Function methods, and
Conjugate Gradient methods could be used.
Because of the discrete nature of planning and link
assignment, such a function cannot be found. The
concept of a heuristic cost function can be useful
using a AI approach, however. Used in this way
the function is used to evaluate potential link

assignments and guide further refinement.

The method of simulated annealing is a tech-

nique which for practical purposes has solved the
"traveling salesman" problem. It has been used
successfully for designing complex integrated cir-
cuits to minimize interference among connecting
wires in the arrangement of several hundred
thousand circuit elements on a silicon substrate.

These are both applications of combinatorial
minimization. There is an objective function to be
minimized over a discrete but very large

configuration space. The method of simulated
annealing based on the Metropolis algorithm
always takes a downhill step while sometimes tak-
ing an uphill step thus avoiding being trapped in a
local minima. (Press, 1986) It is applicable in
cases where a simple measure of an objective func-

tion (analog of energy) can be defined. For most
complex problems this cannot be defined by one
function.

2.1.2. Artificial Intelligence

State space search is used in AI to move
from an initial state representation oT the

problem(such as all potential links for each CV
platform) to a goal state by the application of
knowledge-based operators. (Rich, 1983) Given
the nature of the initial and goal states, this search
can be combinatorial. Algorithmic techniques

exist such as branch-and-bound, and A* to reduce

the search for some problems, but are inadequate
for knowledge-rich problems. In this class of
problem the cognitive activity of an intelligent
agent involves two types of search: (1) knowledge
search, that is, which operator to apply next, and
(2) problem-space search, that is, search within the
problem space for a goal state. (Gupta, 1983)
Pruning of both spaces is crucial to reducing the
search. In order to solve many hard problems

efficiently, it is often necessary to to construct a
control structure that is no longer guaranteed to
find the best answer, but that will almost always
find a very good answer. This is called heuristic
search because knowledge is used to guide the
search process. Heuristic search can be applied

implicitly via the pattem matching of the rules
against the problem-space data which takes place
on each cycle in a production system, or explicitly
via the weighting of constraints as in constraint-
directed search in the ISIS scheduling system.
(Fox, 1983) Blackboard Architectures address
many of the issues of state space search and have
been suggested as a control mechanism for prob-
lem solving. (Hayes-Roth, 1983)

Systems which take advantage of a great deal
of knowledge are referred to as "Expert Systems",
and have been shown to provide problem-solving
computer programs that can reach a level of perfor-
mance comparable to that of a human expert in
specialized problem domains. (Barr, 1982)
(Gevarter, 1983) They are in fact a form of qualita-
tive model of both the problem space and the

human problem solver. (Clancey, 1986) Expert
Systems are characterized by the separation of
data, rules(knowledge), and control. (Crone, 1985)
They are usually rule-based, and due to the often
enormous amount of pattern matching in rule-
based systems, have not fared well in real-time
applications. Some speed-up is predicted via
parallel processing. (Gupta, 1983) Given the often
autonomous intelligent activity which would be
required in the link assignment problem, Expert
Systems will be required, so research must uncover
faster inferencing mechanisms. Rather than con-
sidering all data and knowledge in every inferenc-
ing cycle a more "object-oriented" (Stefik, 1986)
knowledge representation is suggested. This is
especially appropriate in cases where the problem
space is in the form of a network with each node
being connected to surrounding neighbors. The
approach taken by this research is to use constraint
propagation as the method of inference.
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2.1.3. Constraint Propagation

An architecture which has been used with

varying degrees of success, in physical reasoning,
temporal reasoning, and spatial reasoning is to
represent the knowledge base as a constraint net-
work which performs inference by propagating
labels. (Davis, 1987) These labels represent poten-
tial candidate values for nodes in the network.

2.1.3.1. Constraint Networks

A constraint network is a declarative struc-

ture which expresses relations among parameters.
It consists of a number of nodes connected by
"constraints". (Davis, 1987) A node represents an
object which contains state and which is
represented by the value of the instance variables
of the object. A constraint represents a relation
among the instance variables of the node and those
of other objects it connects. As such, it is usually
local in scope, but can connect all nodes in the case
of a global constraint such as a heuristic weighting
function. Examples of different applications of
constraint propagation are numerous. (Crone, Jul-
ich, 1987,1990,1991)(Davis, 1983)(Fox, 1983)
Forward inference on constraint networks, called

assimilation, is usually done using constraint pro-
pagation, shown in algorithm 1. In constraint pro-
pagation, information is deduced from a local
group of constraints and nodes, and is recorded as
a change in the network. Further deductions will
make use of these changes to make further
changes. Thus, the consequences of each datum
gradually spread throughout the network.

Algorithrn 1. - Consa'aint propagation

repeat
-take some small group of constraints and nodes in
some connected section of the network,

-update the information in this section of the network,

given the information in the constraints and the nodes;
until no more updating occurs (the network is quiescent)

or some other termination condition is reached.

In its most basic form, a set of potential labels for
each node's instance variables are given, and then
reduced based on constraint propagation to a
unique solution or an inconsistent state. =

A greater depth of knowledge concerning a
particular system can be expressed in terms of con-
straints than is possible in a rule-based system
alone. Model-based reasoning is a common appli-
cation of constraint propagation where expected
performance of a system is described through a set
of constraints, which may contain mathematical
models. Deviation from this behavior or observed

similarities to expected failure modes can trigger
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corrective action or alter resource planning. This
type of diagnostics is known as specification based
as opposed to the symptom based approach used in
rule-based diagnostic expert systems.

Unlike commercial AI shells such as ART,

constraint propagation takes advantage of locality
of information. Some of its valuable properties
are:

• Forms a close analogy for systems in which phy-
sical effects propagate across connections
between components.

• Constraint propagation consists of a simple con-
trol structure similar to a rule-based inference

engine.

• Degrades well under time limitations; interrupt-
ing the process in the middle gives useful infor-
mation already deduced.

• With assimilation, it is easily implemented in
parallel, since updating can be performed all
over the network simultaneously.

• Is easily expanded by adding constraints incre-
mentally to the network.

2.1.3.2. Inferencing in COPES

In assimilation, the instance variable values

for each node are represented by a set of labels
which must be consistent with constraints relating
the instance variable to those of other nodes. The

general form of refinement is given by the follow-
ing definition: Definition 1. Let C be a constraint

on nodes X_.... Xk. Let Si be the label set for X i.
Then

REFINE(C,Xj) = {aje Sj [ _ (ae S t, i:1 .... k, i _ j)

C(a_..... a)....aO}.

That is, REFINE(C, X,) is the set of values for X.
which is consistent wi_ the constraint C and wi_

all.the labels Si. .A value aj is in REFINE(C, .X:),_fa is m S. and It _s part of some k-tuple a.,
J ) J .

which satisfies C and all the Si.

: Applying the updating function REFINE

within the constraint propagation control structure
given in Algorithm 1, gives the Waltz algorithm.
(Waltz, 1975) The Waltz algorithm applies con-
straints to nodes until no more changes occur (the
network has reached quiescence). Algorithm 2 is
an efficient implementation of the Waltz algorithm
which served as the original basis for this research
with many additions being added over time.



Algorithm 2. - Waltz Algorithm

]* The set

S_ is the current label set of quantity X_ */

REVISE refines all the parameters X t ...
,X_ of a given
constraint C, and returns the set of all parameters

whose set was changed.

procedure REVISE(C(X, .... X k ))
begin CHANGED _ o

for each argument X, do
begin S _-- REFINE(C, X)

if S = _ then halt

else if S # St then

begin S t _ S
add Xi to CHANGED

end
end

return CHANGED

end

procedure WALTZ

begin Q ,,---a queue of all constraints
while Q # o do

begin remove constraint C from Q

CHANGED _ REVISE(C)

for each X i in CHANGED do

for each constraint C' _ C which has X_
domain do

add C' to Q
end

end

inits

2.2. APPROACH

2.2.1. Development of COPES Shell

In order to effectively apply Waltz's algo-
rithm to a network type of problem we designed
and implemented the COPES Shell at Harris to
merge the concepts of constraint propagation as a
method of inference, with object-oriented pro-
gramming as a method of representation. Unlike
most applications of constraint-based reasoning,
the use of COPES provides a solution which is
easily created and updated. The representation
scheme aUows the hierarchical definition of com-

plex objects called classes which contain state
information in the form of instance variables, and

links to constraints which are applied to them. For
some problems, constraints are inadequate to pro-
duce a unique state. We added a searching

be developed where variable type is dynamically
bound. This is similar to a Lisp/Flavors approach.
Among the objectives of this work was to build the
shell using the language "C" on a Unix environ-
ment such as the Harris HCX-9, and to emphasize

run-time speed. Since a large part of the
knowledge base is programmed directly in "C",
and locality of information is considered; COPES
offers an execution time advantage over rule-based

systems.

The building of a tool to support Expert Sys-
tem development is compounded by the need to
experiment with the tool during development to
expose limitations and problems. The flexibility
required for AI tool development leads one to fol-
low the principles of object-oriented design, where

possible. At Harris we have built object-oriented
versions of both C and Ada to make implementa-
tion possible in a conventional environment.
(Crone, Julich, 1987) (Simonian, Crone, 1989) For
the sake of run-time speed, we did not use either
for the development of COPES, but did follow
many of the principles of object-oriented program-
ming.

Object-oriented design methodologies typi-
cally start with an emphasis on the data represen-
tation. In order to support AI design, we added

extensions to Entity-Relationship (E-R) diagrams
which are typically used for database design.
(Chen, 1976) To describe the software design, we
modified the Jackson Structured Design(JSD) pro-
cess model. (Cameron, 1986) The AI and
software designs of COPES are described in detail
elsewhere. (Crone, Julich, 1990)

2.2.2. KnoWledge Representation in COPES

Knowledge takes two forms in COPES: (1)
the constraint network, and (2) the constraint func-

tions. The application of the constraints to the net-
work is the function of the shell.

The creation of such a constraint network

database is done either interactively for small prob-
lems or is read from a Unix file created by a C pro-
gram. In most problems amenable to solution via
constraint propagation, a network is often homo-

geneous with identical constraint relationships
between neighboring nodes. We are currently
developing a "class" language and "instantiation"

mechanism to the shell which allows back-tracking Commands to make the creation of such a network
with or without selective pruning. An instance easiefand more dynamic.
variable defined for a class is really represented by
a complex data structure which includes its type,
name, parent, etc. This allows generic functions to
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2.2.3. State of the COPES Shell

The following is a description of the current state
of development of the COPES shell and some of
the problems to which it has been applied.

• Hierarchical knowledge representation scheme

using object oriented approach

-- Metaclass, classes, subclasses

-- Instance variables to define object state

-- Class constraints (definition and instances)

• Waltz constraint propagation based on represen-
tation scheme.

• State saving and Restoring callable by constraint
routines

• Abstract variable types with generic access
methods

• Container variable types which support queues,
stacks, sets, etc.

• Container variables also support distributed

problem solving via TCP/IP sockets.

• Scheduled variable modification for discrete

event simulation including cancellation of
events.

• Variable access methods such as PUT, GET,
WRITE, etc. either direct or "BY_NAME",
where the class object and variable name is

given.

• Database features to list class structure, con-

straint bindings, and error messages during crea-
tion

• A variety of tracing features for debugging

• Problems to which COPES has been Applied

--Distributed Intelligent Network Manage-
ment

-- Distributed Network Emulation

-- Distributed Heuristic Algorithms

-- Simulated Annealing WTA Research

-- model-based diagnostics

-- Modeling Neural Networks

-- Distributed algorithms: A*, N-queens, SPF,
TSP

--Dataflow-based discrete event simulation
for SDI

3. HALO ALGORITHM USING COPES

This section describes the HALO Algorithm

and its implementation using the COPES shell.
We first introduce the Adaptive Link problem and

develop a model to analyze it. Then we discuss the
heuristics of the algorithm and consider their
relevance to the actual Brilliant Pebbles scenario.

Next, we discuss how the model is implemented

using the COPES shell as a simulator. Finally, we
discuss some results obtained from running the

simulator on a typical scenario for the Brilliant
Pebbles architecture.

3.1. HALO ALGORITHM DEFINITION

This section develops a model describing the

HALO Algorithm in terms of objects and defines
how these objects interact with one another. This
model is defined with an Object Oriented structure
which lends itself well to implementation in
COPES. The section concludes with a definition
of the heuristics of the algorithm.

3.1.1. Adaptive Link Problem

The HALO Algorithm considers a Brilliant
Pebbles architecture consisting of a constellation

(or constellations) of satellites in low earth orbit
communicating with each other using laser links.
The algorithm attempts to reduce the work of a
routing algorithm by generating a ranked list of
links ordered by the best to worst probability of
successful transmission. The algorithm generates

this optimally ordered list by applying a set of
heuristics to the list of links such that in most cases

the router would only have to consider a small set
of these optimal links to make its routing decision.

This is important in a laser based communication
network where a large number of highly dynamic

potential links exist.

Figure 2 shows a model of the data flow and
objects used to implement both the HALO Algo-
rithm and a simulation of a BP scenario. This

model represents a single instance of the HALO
algorithm running on one BP(referred to in this
discussion as the reference node). In this phase we
do not consider the router, consequently we are

only concemed with the point of view of one peb-
ble and how it orders its optimal set of links.

Thus, Figure 2 does not consider any routing
issues. In the rest of this section we develop the

model shown in Figure 2 and describe the algo-
rithm as a set of heuristics (or constraints), a set of

objects, and the relation between them.
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Figure 2 - HALO Data Flow

The data flow diagram in Figure 2 shows the
main objects in the HALO Algorithm and the

communications between these objects. The object
BP Node describes parameters common to each
BP in the constellation. It contains information

such as the position of each satellite, its error term,

cate an object viewing the data in other objects.
e.g. Ref Node BP accesses link status from BP
node 1,

The HALO Algorithm uses a set of heuris-
tics which govern how the algorithm sorts the list
of possible links. These heuristics are described

and other instance information. This object is below. _ .... :

replicated many times within each BP whicff runs: o LOS This heuristic checks whether a BP is in
this algorithm (it is the reference node's view of
other BPs in the network). The object Ref Node LOS of the reference BP. For the purposes of

BP describes information unique to the reference
node. It contains the ranked list of "links", some
state information, and some information about the

constellation. The object Central Simulator is
not a physical object in the BP scenario, but con-
tains data associated with the overall HALO algo-
rithm and helps control the interactions between
objects. _ft goVems_e-6perations of the simulation
such as reading the orbital dynamics file, and start-

the COPES implementation, this data is

precomputed using an orbital dynamics package
to model the satellite motion and visibility.

Velocity - This heuristic checks whether the
relative velocity between two BPs communicat-
ing with one another would =cause a Doppler
shift impairing the laser co_unications. An
analysis of the need for this heuristic is
described later in this section.

ing an_ stopping _ simulator. The object . Lasercomm Probability - This heuristic deter-
Display Process also is not a physical object in the mines the probability Of a successful communi-
BP scenario but is an entity which monitors the cation between two BPs. It models the effects
algorithm and simulator, and reports its progress
for display and analysis. The lines with arrows

show the communication between objects, the
solid lines indicate actual messages being sent to
the appropriate object(algorithmic communication,
not to be confused with actual communication

between physical BPs), and the dashed lines indi-

of pointing error, position uncertainty between
pebbles, and other laser parameters.

Position Error - This heuristic allows the posi-
tion error to be corrected at a predetermined
rate. Currently, the position error updates
(which would normally be received from other

BPs) are randomly scheduled with a period of
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onesatelliteorbit.
Theseheuristicsareimposedby theHALO

algorithmanddonotnecessarilymapintounique
COPES constraints. Each heuristic defined above

is developed further in the remainder of this sec-
tion. In the next section we develop the COPES
constraints which implement these heuristics.

3.1.2. Line Of Sight Heuristic

The Line Of Sight (LOS) heuristic deter-
mines whether a reference node can communicate

with a given BP. This simply tests whether the
specified BP is physically in LOS with the refer-
ence node. If it is not, then no further considera-
tion is given to the BP as a potential link.

3.1.3. Velocity Heuristic

We now consider the requirements for a
velocity constraint. The relative motion of two
BPs may affect the communications between

themselves due to the Doppler shift of the laser-
beam. The maximum tolerable frequency shift of
the laserbeam is on the order of 1 nm for the laser

comm systems considered in the brilliant pebbles
architecture. The Doppler shift of light between
two bodies is defined by the following equation:

v' = (1-u)
C

u = relative velocity of BPs.

v = frequency of light source at rest.

v" = frequency of light due to u.

This equation is valid if U_:l.
c

In the brilliant pebbles simulations at typical
satellite constellation altitudes the maximum rela-

tive velocity of BPs is about 7.5/an/s. Substituting
the appropriate values into the above equation, the
Doppler shift that the BPs see is approximately
20pro. This is two orders of magnitude less than
the laser design constraint of 1 nm. Thus, this con-
straint appears to be of limited concern in the ini-
tial analysis. There has been some discussion in

the SDI community concerning a potential prob-
lem with link acquisition based on relative velo-
city. This remains an area of research.

3.1.4. Laser Probability Heuristic

The laser probability heuristic is a computa-
tion of the probability of successful reception of a
laser transmission from the reference BP to a

designated source BP. The probability is com-
puted from a model of the laser communication
link. This model is for a direct-detection receiver

using multimode pulse position modulation (PPM)
signaling and is currently being studied for the
Brilliant Pebbles architecture.

The laser model defined for the HALO Algo-
rithm has only one degree of freedom, the position
error (described below). The model assumes fixed
values for other parameters of the laser model. In
addition controlling the transmitter beamwidth
yields a better probability of successful communi-
cation over a wider range of distance between
source and destination. The model assumes the

beamwidth can vary from 2.5 mRAD to 25 mRAD.
The model simulates this variance by keeping the

following relationship:

0t,R = K

where

0b = receiver beamwidth.

R = receiver range.

K = constant.

The range of distances between the reference node

and a designated node varies over the interval
(200,4500)km. Thus, the laser model optimally
sets its 0b over this interval and then computes the
probability of successful communication using the
position uncertainty.

3.1.5. Position Error Heuristic

Each BP maintains a database of the current

positions of other BPs in the network used for
routing and link selection. As time passes, each BP
calculates predicted position of the other BP's.
Due to the relative infrequency of position updates,
there is error associated with these predictions.
This position update message has an inherent error
associated with it as well.

In the adaptive link reconfiguration simula-
tions, we model a position error as a growing
sphere around the BP over time. Thus, we need a
rate term to grow this sphere as the simulation

progresses. The worst rate would result from the
BP being at a less or greater orbit altitude than it is
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supposedto be.Thiswouldcausetheorbit period
to be fasteror slower,respectively,thana BP
wouldpredictit to be. Thuswewill assumethat
thepositionupdatemessagehasanerrorof a cer-
tainamountd which is in a direction greater or less
than the actual orbit radius.

Assuming a spherical earth, the error will

grow at a linear rate as computed below:

R'=R -d

vat) = v(R-d) - v(R)

v (r) =

Eorbi,=t ( 1 1_!_)
vK:7 4g

where:

d is the error of the global positioning system.
R is the perceived radius of the BP orbit.
R" is the actual radius of the BP orbit.

v,(t) is the error velocity.
Eo,_i, is the error rate in m Is.

la is the gravitation parameter in m3/s 2

The adaptive link simulations assume the
positioning system used in the BP architecture is
accurate to 100 m. This causes the worst possible

position error rate of 0.055 m/s at an altitude of
550 km. This value is used in the simulations run.

The simulator also assumes that the position

updates occur at a rate of once per orbit.

3.2. COPES IMPLEMENTATION

The model of Figure 2 presents a set of

objects which describe the HALO Algorithm.
These objects are described as classes in COPES.
Each class defines the state information of a partic-

ular object in a model. There may be multiple
instances of a class such as the node object in the
model which is duplicated for each physical node

in the system. A constraint function describes the
interactions between the defined objects. A con-
straint is bound to variables in a given class
instance. A constraint "propagates" or "fires"
when a variable in a class instance that the con-

straint is bound to changes. When the constraint
"fires" it observes the state of the objects it is

bound to and changes the states of these objects
appropriately. A constraint may be bound to a
variable in two ways. The first way is for the con-
straint to "fire" when the variable changes. The

second way is for the constraint to ignore changes
to a variable but access this variable when the con-

straint does "fire" from some other binding.

The HALO Algorithm is defined as a set of
classes and constraints. The classes defined below

represent the objects of Figure 2 and some addi-
tional classes required for the COPES shell and to
support the simulator for the HALO algorithm.
The classes are:

Ref Node • This class contains information unique
to the reference node above what is

necessary to describe a general node.

Node • This class contains information unique
to each node.

Link • This class contains information about
the laser link between the reference
node and the node with which this link
is associated.

File In • This class contains file status and

descriptor information used by the
central simulator.

Display • This class contains file descriptors and
flags used by the display object.

GLOBAL • This class contains simulation parame-

ters and flags to which every con-
straint has access.

In developing the algorithm, we define state
transition diagrams which describe the threads of

the overall algorithm flow. A sample of one of the
state transition diagrams is shown for the central
simulator (Figure 3). The Central Simulator is

responsible for managing the simulation and read-
ing the new position and velocity (p&v) parame-
ters from the orbital dynamic file. It loads the p&v
information into each node, waits for the current

cycle to complete and then starts the next cycle.
When the simulation is complete, the central simu-
lator causes the COPES shell to terminate. Refer-

ring back to Figure 2, a Node performs three tasks.
During the initialization cycle_ it schedules a posi-
tion update message to correct the position error
term. During a normal cycle it receives and inter-
prets position update messages and it responds to
new position and velocity parameters. The refer-
ence node shown in Figure 2 is the node on which
the software is considered to be running in the

simulation. In a real system each node would be a
reference node. The reference node manages the
list of ranked links. As each node updates its link

status parameters, the reference node updates the
list of ranked links. When all links have been

updated in the current cycle, the reference node
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indicatesit hasanupdatedlinks list whichstarts
thedisplay process. The Display Process monitors
the simulation then prints out simulation statistics
and formats the ranked list for viewing with the

ViewNet program at the end of each cycle.
A sample of this output is given later.

INIT

SIM STEP OR a_lT

FILE FOR NEXT
SIM TIME DATA

J_JLD_ 1

WAITING FOR I
DISPLAY TO WRITE

RANKED LIST

D_P'LAY DONE J

t .SIUI.I_I"K_ OONE

EXIT SIMULATION

Figure 3 - Central Simulator STD

The constraints are derived from the heuris-

tics (described in the previous section) coupled
with the state transition diagrams. User defined
constraints are detailed in the remaining part of
this section. User constraints are defined using
structured english PDL.

The first constraint is the read._pos con-
straint. This constraint performs much of the func-
tion of the Central Simulator object. It is responsi-
ble for controlling the simulations aspects of the
COPES algorithm implementation, and reading
the orbital dynamics file for the current computed
satellite positions and LOS data.

This constraint has one instance and schedules

itself to fire once each cycle. This constraint is
bound to the instance of the class file in. This

class has a state variable, run_file_in, which the

read_pos constraint schedules to change in the
future. This allows the constraint to fire itself to

nan at the beginning of each simulation time cycle
to read the current satellite position data. In addi-
tion to acting as the Central Simulator, the
read pos constraint represents a BP reference node
computing the position, velocity, and LOS of each
node in the constellation. It takes advantage of the
discrete event scheduling capabilities of COPES
to move the simulation, link ranking, and display

through discrete phases. In this manner objects
like the Display do not have to signal the Central
Simulator when they are done. Their inactivity
(lack of constraint propagation changes in the net-
work) causes the removal of the next change from
the schedule queue and constraint propagation con-
tinues in the next phase.

The next constraint is the pos_update con-
strainL This constraint is concerned with schedul-

ing and receiving position update messages. It per-
forms two functions. It initially schedules the ran-

dom position update for each node. It then
responds to the position update messages which
cause the node to reset its position uncertainty.

This constraint represents a reference node receiv-
ing a position update message from another node
in the constellation. This message provides the
actual position of the satellite which the reference
node uses to reset its notion of that satellites posi-
tion. A separate pos_update constraint is bound to
each node instance in the BP scenario.

The next constraint is the Nodel constraint.
This constraint models the cumulative effect of the

position error. It gets fired when a p&v recompu-
tation event occurs (triggered by the Central Simu-
lator) which causes the node to increase its posi-
tion uncertainty. A separate instance of this con-
straint is bound to each class node instance.

The next constraint is the comm ber con-

straint. This constraint fires when the position

uncertainty parameter of a given node is modified.
It then (if in LOS, meets the Doppler heuristic, and
is within range) computes the bit error rate (BER)
of successful laser communication. A short Struc-

tured English PDL is shown for this constraint is
shown below as a design example.

comm_ber ()
{

when new position uncertainty parameters for this node

for each potential link

if node in LOS and (Doppler and range thresholds valid) then

computenew bet for successful tx (src to dest).
storenew ber in link.
set link flag indicating to add/update link in ranked list.

else if link currently in ranked list then
set link flag indicating to remove link from ranked list.

endif

endfor

endwhen

}

It sets this BER in the link instance for this node.

A separate instance of this constraint is bound to
each class nodel instance.
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The nextconstraintis the rank links con-
straint. This constraintfires eachtime a node
modifiesitslink qualityparametersandthenranks
all thelinks accordingto theseparameters.When
all links have been determined, the constraint

sends the ranked list out to the display constraint.
A separate instance of this constraint is bound to
the each class node.

The last constraint is the display constraint.
This constraint implements the display object. Its
purpose is to take the ranked list of links from the
reference node object and format it for display in
ViewNet. Additionally, it outputs some statistics
of the simulation for post analysis. A single
instance of this constraint is bound to the class

Display Process.

Finally, Harris developed constraint binding
diagrams are produced for each constraint to show
the dynamic bindings which link constraints to
class variables. Figure 4 shows an example of a
constraint binding diagram for the comm_ber con-
straint. This diagram is useful to understand how
the constraints interact with the object instances.
An instance of the comm_ber constraint is created
for each node and link object as it is viewed from
the reference node. An instance of the constraint

fires when the position error of the node instance to
which it is bound is modified. This causes the

given node object to reset the concept of bit error
rate for the link from the node to the reference

node. The remaining variables are bound as access
only and do not cause the comm_ber constraint to
fire. An access only variable is indicated in the
constraint binding diagram by placing an "A" on
the end of the line linking the constraint to the

variable, aass: node (instance for reference node)

nodeid

A posldon
/ position error

_k status

/ Class: node (other instances)

Constraint: / nodeid
.Z-.-------- A position

torero_bet _ posifi.on er:or

" A _k status

\_X C"]ass:_ (011¢ _Stan¢¢ I:_.rld IO "V¢_fl .Ode)

\' A lineofsightfirfie
A llnk flag

Figure 4 - Comm_ber Binding Diagram

The classes and constraints discussed in this
section define the COPES model for the HALO

Algorithm and simulator. In the next section we
discuss the aclual BP scenario used to test this

Algorithm and the results of those simulations.

3.3. SIMULATION DATA FOR THE ADAP-
TIVE LINK ALGORITHM

This section presents the simulations run for
the HALO Algorithm. The Adaptive Link simula-
tor provides two types of output for analysis. The
first is a visual display using the ViewNet tool
developed at Harris. The second is a plot of the
average her rate of the top portion of the ranked
list versus the her of all possible links.

The Brilliant Pebble scenario used to test the

algorithm is an unclassified network which is
closer in size to a GPALS architecture. It consists

of a single constellation of satellites at an altitude
of 550 km and an inclination of 60 °. The constella-

tion contains 21 rings of 20 pebbles per ring. Only
one constellation is used since the problem is not
changed by multiple constellations and the imple-
mentation of the simulator is simplified. The
simulation described above runs for a period of one
earth day. This provides time for approximately
15 satellite orbits. The random position update
messages are issued once per orbit.

The ViewNet graphical tool provides the

capability to visualize the Adaptive Link algorithm
in operation to gain an intuitive understanding of
how it works. Figure 5 shows a snapshot in time
of the ViewNet display. This figure shows the
satellites in orbit around the earth, the reference

node with the eight "best:' links connected to the
appropriate node. The actual ViewNet display is
in color. Each node has a special color indicating
its status as a potential link. In addition, the links

are color coded from red to grey indicating their
relative position in the list of ranked links. The
laser probability model tends to select the closer
links as opposed to the more distant links. How-
ever, it ranks extremely close links as less probable
due to the fact that the position error becomes

more significant at closer ranges. Observing the
ViewNet display, as the links are reordered and
displayed, this trend is apparent.

The second visualization of the simulation is

a graph depicting the enhanced set of links avail-
able to a router versus the set of all possible. The
set of all possible links is those links within LOS
and within range. The ber is computed for each of
these links and averaged. This plot is provided as
a function of time. The HALO algorithm
enhancement is shown by averaging the top 8 links
in the ranked list of links. This average is plotted
as a function of time also. The plot indicates that
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Figure 5 - Time Snapshot of Adaptive Link Viewnet Display
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the top eight ranked links are an order of magni-
tude better probability of successful transmission
over just any possible link. The plot is shown in
Figure 6.

4. CONCLUSIONS

The previous section presented a successful
simulation of a GPALS-based BP architecture

using the Discrete Event Simulation capabilities of
the COPES Shell. This simulation in COPES is

very flexible and easily modifiable to address the
BP network in its entirety, including any future
architectural or procedural changes. The simula-
tion of the network and results of the HALO algo-
rithm were also interfaced with the Harris

developed ViewNet graphics tool for network
analysis on the Silicon Graphics Workstation.
Also described was the COPES implementation
of the HALO algorithm. A graphical analysis
showed that the algorithm generates a reduced,
improved, and ordered set of links for further use
by a routing algorithm_ The benefit of a lower bit
error rate on the selected link is a reduction in the

power requirement for the communications.

tO

changes in constraints can easily be made to, for
instance, emphasize links which are more distant.
This is an area for future research.

Given the flexibility of a constraint approach
the HALO algorithm written_ in COPES, link constraints.

, : .... = =7 _ =
- . _ .=

I.E-08 ,

5. FUTURE RESEARCH

For the ALR program, the size of BP con-
steUation which must be considered by a routing
algorithm has been reduced to one closer to the
GPALS architecture. We use an orbital dynamics
program to remove all nodes which are never seen
by the reference pebble we are studying. Finally,
using a set of constraints defined above, the set of
potential links [s reduced and ordered by how well
each meets the constraints. The next step is to
develop an intelligent routing algorithm which
would use this ordered list of potential "next hops"
to choose a link or links for a particular message.
The major advantages to this approach are that the
set of potential links has been reduced significantly
prior to the running of the routing algorithm, and
the probability of successful transmission is higher.

An intelligent routing algorithm might also contain
heuristics to allow it to consider the first n poten-
tial links based on the situation, since the links arc

already sorted by how well they satisfy a set of
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A control system for autonomous distribution and control of electrical power during space

missions is being developed. This system should free the astronauts from localizing faults

and reconfiguring loads if problems with the power distribution and generation components

occur.

The control system uses an object-oriented simulation model of the power system and first-

principle knowledge to detect, identify, and isolate faults. Each power system component

is represented as a separate object with knowledge of its normal behavior. The reasoning

process takes place at three different levels of abstraction: the Physical Component Model

(PCM) level, the Electrical Equivalent Model (EEM) level, and the Functional System Model

(FSM) level, with the PCM the lowest level of abstraction and the FSM the highest. At the

EEM level the power system components are reasoned about as their electrical equivalents,

e.g, a resistive load is thought of as a resistor. However, at the PCM level detailed knowledge

about the component's specific characteristics is taken into account. The FSM level models

the system at the subsystem level, a level appropriate for reconfiguration and scheduling.

The control system operates in two modes, a reactive and a proactive mode, simultaneously.

In the reactive mode the control system receives measurement data from the power system

and compares these values with values determined through simulation to detect the existence

of a fault. The nature of the fault is then identified through a model-based reasoning process

using mainly the EEM. Compound component models are constructed at the EEM level and

used in the fault identification process. In the proactive mode the reasoning takes place at

the PCM level. Individual components determine their future health status using a physical

model and measured historical data. In case changes in the health status seem imminent the

component warns the control system about its impending failure. The fault isolation process

uses the FSM level for its reasoning base.

1 Introduction

Failure to provide a reliable, uninterrupted sup-

ply of electrical power under all circumstances

may doom space missions. In case of impend-

ing or actual failures, decisions will have to be

made about rescheduling load demand and/or

reconfiguring the power generation and distri-

bution system. These decisions will have to be

made fast, often without the help of experienced

control room operators, and often relying on in-

complete information.

Knowledge-based (or intelligent) control sys-

tems have the ability to make decisions, and

the capability to learn, and therefore seem ide-

ally suited for the operation of complex systems

such as electric power plants and distribution

systems. However, practical applications of in-
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telligent controllers are rare, and appear to be

based on control strategies that use prewired

solutions to a collection of potential problems,

and/or use a supervisory planning approach to

failure recovery. As a consequence, these sys-

tems have no way to deal with unanticipated,

or multiple simultaneously occurring faults, and

they have little or no capability to adapt to

changing environments or to learn from past ex-

periences.

We are working on overcoming these afore-

mentioned limitations by developing an intelli-

gent control system that uses quantitative and

qualitative system models based on an object-

oriented representation of the components of

the physical system to be controlled, The

object-oriented representation decentralizes in-

telligence by equipping each component With

knowledge about how to detect its: impending

failure, and how to act in case of failure. This

reduces the time required to detect faults when

compared to an approach relying on a single

central fault detector. Furthermore, the object-

oriented representation can be implemented in

a parallel computer, leading to even shorter re-

sponse times. The intelligent controller will use

these models to explore the "optimal" control

actions to modify the system performance or

operation. Also,:by equipping the model Com-

ponents with knowledge about their behavior

(e.g.: a resistor will "know"h0w its temperaiure

will rise in response to the voltage and current

applied to it), and with memory (e.g., a record

of its temperature for the last hour or so), proac-

tire autonomous control can be achieved, even

with incomplete sensor data.

Expert systems have been applied to the

power engineering area before (see [10] for a

review), but few such system are beyond the

demonstration phase, and all were developed for

large-scale, interconnected systems. The most

promising approaches involve the use of object-

oriented techniques because an object-oriented

approach models the causal and functional re-

lationships by inheritance and message passing

mechanisms, and the part-of or component hi-

erarchy [7]. Furthermore, objects are complete

functional units that lend themselves to paral-

lel implementations more easily than rule-based

approaches, which is important for real-time ap-

plications.

A fairly small number of applications of

object-oriented programming techniques for the

intelligent control of power systems have been

published [1, 2, 6, 9], with the prototypical sys-

tem for event diagnosis and operation planning

described in [3] being most closely related to

our own work. However, it is unclear how much

this system relies on reasoning from first prin-

ciples (if it uses that concept at all), nor does it

seem to have progressed beyond its first proto-

type state. Notwithstanding this criticism, [3]

clearly shows that object-oriented, model-based

methods are indeed advantageous for problems

in control. The theory of model-based reason-

ing is explained by Kuipers [5]. Model-based

systems are especially useful in the diagnosis of

multiple faults as shown in [4]. Also, it is argued

in [4] that diagnosing faults at multiple levels

of abstraction, starting with the most abstract

level, and examining the less abstract levels

only when there is reason to suspect it, makes

the generation of candidate solutions more effi-

cient.

2 Architecture 0fthe pow-

er system simulator and

controller.
=

OU/ work is based on a multicleveI model of

the system, With intelligence biliit in at each

level _n the sense that each:componen_ canrea'

son about its real-world state, as opposed to

a higher level intelligence that reasons about
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Figure 1: Overview of the architecture of the model-based, object-oriented control system.

all the "dumb" lower level objects. Also, the

object-oriented design we follow is intended

to support concurrency with only a minimal

amount of knowledge being exchanged.

2.1 General System Descrip-
tion.

A diagram of the control system is presented

in Figure 1. At its core is a model of the sys-

tem to be controlled. This model represents the

physical system under normal operating condi-

tions, and is referred to as the H0 simulator.

At least three versions of H0 exist, represent-

ing the physical system at various level of ab-

straction. First, there is the Physical Compo-

nents Model (PCM), containing physically re-

alistic models of the components of the sys-
tem to be controlled. At the next level of ab-

straction, one finds the Electrical Equivalent

Model (EEM). The latter is a representation of

the physical system in terms of power sources,

impedances, and switches. The Functional Sub-

systems Model (FSM) is the most abstract of

all, and represents the system in the form of

a reduced network in which sub-nets are rep-

resented by single functional blocks. An ex-

ample of the PCM, EEM, and FSM of a sim-

ple physical system, consisting of a generator,

switches, resistive loads (a light bulb and an

electric heater) is shown in Figure 2. The elec-

tric heater consists of a fan, i.e., a motor (M1)

and a resistive heating element (L2); and the

light bulb is denoted by L3.

Each of the three models is an object-oriented

representation of the actual system. That is,

components are represented as data structures

referred to as objects. The latter consist of at-

tributes relating to properties of the component

77



SW2SW3
m

Wires

L3

FSM EEM PCM

Figur e 2: An example of a Physical Component Model (right), its Electrical Equivalent Model

(middle), and its Functional Subsystems Model (left).

being represented, and attribute-values specify-

ing the values of these properties and/or proce-

dures that can be used to compute these values.

The topological relationships between com-

ponents in the PCM, EEM, and FSM are spec-

ified by attributes describing the connections

between the present component and others in

the network. Expected voltages at nodes and

currents through branches in the EEM are com-

puted using the VIsolver. The VIsolver is an

object that solves for the currents and volt-

ages of the power system using the modified

nodal formulation [8]. The solution is based on

Kirchhoff's current and voltage laws in a ma-

trix form with special considerations taken to

reduce the size of the matrices but at the same

time keeping it general. This method can be

used on networks containing voltage and cur-

rent sources, impedances, conductances, ideal

two-ports, and switches. Historical data, in-

tended for use in the proactive mode, for each

component is stored in history attributes. Sen-

sors placed at strategic positions in the phys-

ical system (in our case, the physical system

is a software simulation as well) provide mea-

surements of voltages and currents in the power

system. The PCM and the EEM work in tan-

dem, using the knowledge embedded in them, to

detect potential faults. Once faults have been

detected (see Section 2.2 below for an explana-

tion of the fault detection process), additional

versions of the PCM, EEM and FSM ate au-

tomatically generated, representing models of

the physical system modified in such a way as

to account for the hypothesized cause of the

fault. For example, H1 and /-/2 may be gener-

ated in case two explanations for the fault are

possible. Competing hypotheses are eliminated

on the basis of comparing future sensor data

with predicted values, and/or heuristic reason-

ing. Once the fault has been determined (iden-

tiffed) remedial action is taken to return the

system to a non-faulty state through reconffgu-

ration of loads and sources.

2.2 Fault Detection

Faults may be presen t if discrepancies between

sensor values and expec(ed v al_e s are)'ouhd in

the EEM, or if a component in the PCM antici-

pates impending faiiure (0n the b_tsis0f knowl-

edge about the behavior of its physical equiva-
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lent, andthe historical data available). In other
words,the systemworks in both a reactive and

a proactive mode simultaneously.

the appropriate commands have been issued to

the power system.

As an example of reactive operation, consider

the system shown in Figure 2. Assume that

voltages and current measurements are avail-

able at the output of the generator (V1), the

input to the heater (R1 and R2), and the input

of the light bulb (R3). Assume that the mea-

sured voltage and current at the heater sud-

denly drops. The voltage at the light bulb

will also change slightly, and the current at the

source will decrease. Therefore there is a dis-

crepancy between measured sensor values and
simulated sensor values and a fault is detected.

It is not obvious from the measurements which

component is faulty. However, by reasoning us-

ing knowledge of the fault models for each com-

ponent and their health status it is possible to

narrow down the number of possibilities and,

eventually, the fault can be identified and iso-

lated through simulation (see Section 2.3 for de-

tails).

An example of proactive fault detection is the

following: Assume that M1 in the PCM finds

that its real-world counterpart is about to over-

heat due to a continuous overload beyond its

rating. The M1 object then immediately sig-

nals its impending fault state to its equivalent

counterpart (R1) in the EEM and tells R1 that
the current needs to be reduced. The control

system formulates strategies to reduce the cur-

rent through R1, using the knowledge encapsu-

lated in it (in this case the only possibility is

switching off the motor). It is clear that hy-

pothesis selection needs to be based taking into

2.3 Fault Identification

Once the existence of a fault has been detected

the location of the fault must be determined. A

small change in a single component value can

cause many sensors to indicate the existence

of a fault. To determine which component has

caused the fault (in the reactive mode), branch

currents and node voltages are computed us-

ing the measured data, and each component's

impedance value is computed based on the cur-

rent running through it and the voltage across

it. The EEM component compares its calcu-

lated impedance with its "known" impedance

and if there is a difference, then the compo-

nent is suspected of having caused the fault.

All components have a health status attribute

which is determined by the PCM and veri-

fied by the EEM. The PCM determines the

health status using heuristics, historical data,

and physical knowledge of the component. Hy-

potheses regarding possible faults are gener-

ated, based on the component's health status

and impedance discrepancy using the compo-

nent's fault-model, supplied by the PCM.

The aforementioned approach will work if

the environment is sensor-rich, i.e., there are

enough sensors in the network to calculate the

impedance of all components. However, if the

environment is sensor-sparse, i.e., there are rel-

atively few sensors in the network, then a strat-

egy will be followed that converts the sensor-

account the importance of the various subsys- sparse environment into a virtual sensor-rich

tems in' accompl'ishing the mission objectives. @nvironment. This approach is based on the

The componenCs in the FSM have knowledge
about these aspects, and this knowledge is-used

to determine which of the reconfigured systems

best meets future objectives, and the Hi, that

accomplishes this, becomes the new Ho after

concept of compound component models. The

latter are formed by combining components

connected in series, parallel, or in a bridge con-

figuration to a single compound component.

Compound components can be part of other

compound components. The location of the
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availablevolt-meters and current-metersguides
the formation of compound modelsso that in
the (reduced) environment the impedanceof
eachcompoundcomponentcanbe determined.
In other words, the reducednetwork becomes
virtually sensor-richwith respect to the com-
pound components.The impedanceand health
status of the compound componentsis calcu-
lated basedon the impedance,the health sta-
tus, and the interconnection of the individual
componentsthat makeup the compoundcom-
ponent. The fault identification processcan
then function in a similar fashion in both a
sensor-rich and a sensor-sparseenvironment.
Of course,fault localization can then only pin-
point a compound componentasthe sourceof
the trouble. However,using the fault models,
heuristics,andhistorical data about the compo-
nentsmaking up the compoundcomponentcan
beusedin a reasoningprocessto moreprecisely
identify the fault location.

To illustrate the reasoningprocess,consider
the casewhere a fault has beenlocalized to a
compoundcomponentconsistingof two parallel
resistiveloads. Supposethat oneof the loadsis
a motor, and the other a heater. Faults occur-
ring in thesecomponentswill reflect themselves
aschangesin the component'simpedance(e.g.,
a short will causea virtually zero impedance).
Further, assumethat only the voltageacrossthe
loadsandthe total current, but not the currents
through each10ad,are known. In sucha case,
it will be impossible to determine which load
is faulty basedon the availablemeasurements
alone.However,usingfault-modelssuppliedby
the PCM, coupledwith the assumptionthat a
single fault is considerablymore likely to oc-
cur than a multiple fault, oneor morehypothe-
sescan be generated. For example, the PCM
"knows" that a heater's most commonfailure
modeis breakageof the heaterelement,causing
the impedanceto go to infinity. Thereforethe
H1 hypothesis would replace the EEM of the

heater by an infinite impedance, while leaving

the EEM of the motor unchanged. In a simi-

lar manner/-/2 would replace the motor EEM by

an impedance reflecting its most prevalent fault

state, i.e, a short in the motor coil. The voltages

and currents predicted by each of the compet-

ing components are compared to the measured

data, which will lead eventually to the elimi-

nation of all but one hypothesis. This process

can be refined by utilizing the concept of the

component's "health status". The latter can
be used to determine the order in which com-

ponents should be hypothesized as faulty. For

example, the fact that a component has been in

service for close to its expected life span, gives

it a poor health status and thus it will be hy-

pothesized as faulty prior to components with a

good health status. The system will keep track

of which components fail, and under what cir-

cumstances. This "failure log" is fundamental

to the learning capabilities of the system, which

will come to "recognize" previously encountered
failure modes.

3 Design and implementa-

tion of the power system

simulator and controller.

We are currently in the process of implement-

ing the previously outlined architecture. The

NeXT computer has been chosen as the im-

plementation platform. The NeXT supports

Objective-C and has extensive graphical inter-

face capabilities.

The power system simulator has been de-

signed and implemented. A graphics-based tool

has been developed to interactively configure

the power system to be simulated. A panel

with icons, representing components typically

encountered in a power system, is presented,

and the user can %lick-and-drag" these icons in

the desired position in the power system win-
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dow. The specifications for each component
areenteredby changingthe attribute values,in
an inspector window, for the component. The
resulting power system can simulate voltage
sources,switches,and resistive loads. We are
only consideringdirect currents at the present,
but a generalizationto alternating currents is
kept in mind.

A schematicdiagram of the powersystemis
shownon the screenin a powersystemsimula-
tor window with the componentvaluesandcur-
rents and voltagesdisplayednext to eachcom-
ponent. The power system'svoltagesand cur-
rentsarecalculatedby the simulator'sVIsotver.
The VIsolver is anobject that solvesfor branch
currentsand nodevoltagesfor anyelectric net-
work including power systemsusing the nodal
admittance matrix. The solution is basedon
Kirchhoff's current and voltage laws in a ma-
trix form with special considerationstaken to
reducethe sizeof the matricesbut at the same
time keepingit general.

Changesin switch settings, load resistance,
and source voltagescan be made through an
event queueor by clicking on the component
in the schematicdrawing of the powersystem.
The eventqueueis editableand is usedto insert
faults into the power system. The power sys-
tem's voltages and currents are automatically
recalculatedwhen the power systemsimulator
receivesaneventor aswitch position is changed

by clicking on the switch with the mouse. The

events are sent to the power system one after

the other in order of occurrence in time.

A control system that reads data from the

power system simulator has been implemented.

It is possible to set which voltages and currents

the control system can receive from the power

system by inserting volt-meters and current-

meters at the desired positions in the network.

The data is displayed in a separate control sys-

tem window containing the same diagram as

shown in the power system simulator window.

The control system is capable of issuing com-

mands regarding switch settings to the power

system. The control system is capable of form-

ing compound models of components in series,

parallel, and bridge configurations.

4 Future developments.

At present, a component library is being built

for commonly used electric power components,

including DC-motors, generators, circuit break-

ers. These components, with their embedded

knowledge, form an important part of the fault

detection system.

The current speeds of execution of the system

suggest that parallel implementation is necessi-

tated in order to achieve real-time implemen-

tation. Though we lack the hardware for such

an implementation, a successful attempt has al-

ready been made at executing the various tasks

in the program concurrently on the same pro-

cessor using separate threads. We expect to im-

plement the final system with a fair amount of

distributed processing over a network of NeXT

computers, so that each task will have its own

processor, with the goal of achieving significant

speed-ups.
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Abstract

The work described in this paper has as its goal

the integration of a number of reasoning

techniques into a unified intelligent information

system that Will aid flight crews with malfunc-

tion diagnosis and prognostication. One of these

approaches involves using the extensive archive

of information contained in aircraft accident

reports along with various models of the air-

craft as the basis for case-based reasoning

about malfunctions.

Case-based reasoning draws conclusions on the

basis of similarities between the present situ-

ation and prior experience. We maintain that

the ability of a CBR program to reason about

physical systems is significantly enchanced by

the addition to the CBR program of various

models. This paper describes the diagnostic

concepts implemented in a prototypical case-

based reasoner that operates in the domain of

in-flight fault diagnosis, the various models

used in conjuction with the reasoner's CBR

component, and results from a preliminary
evaluation.

Introduction

Reasoning about physical systems is a difficult

process, and any attempt to automate this proc-

ess must overcome a number of challenges.

Among these are the tasks of generating expla-

nations of normal behavior, fault diagnoses, ex-

planations of the various manifestations of faults,

prediction of future behavior, etc. The reasoning

process becomes even more difficult when

physical systems must remain in operation. Dur-

ing operation, a physical system changes dy-

namically by modifying its set of components,

the components' states and pattern of intercon-

nections, and the system's behavior.

To address these concerns a prototypical case-

based reasoner (CBR), called Epaion, has been

developed by the Intelligent Cockpit Aids Team

at NASA Langley Research Center, in connec-

tion with ongoing work on AI-based systems for

in-flight fault management [Schutte et al.]. The

reasoner operates in the domain of in-flight fault

diagnosis and prognosis of aviation subsystems,

particularly jet engines. Automation of in-flight

fault diagnosis and prognosis can be used as an

aid to the flight crew for early detection of a

problem or failure. This provides the crew with

more time to respond more effectively and re-

duce potential damage due to the failure.

Several aspects of the aircraft domain make

automation of in-flight diagnosis challenging. In

contrast with non-operative diagnosis (i.e., diag-

nosis of systems that can be shut down), symp-

toms in aircraft subsystems may change with

time because of failure propagation. Information

about the operational status of many aircraft

components may be unavailable or incomplete

due to limited instrumentation, and safety and

÷ Work supported by NASA grant NCC-1-159
* stamos@cs.wm.edu
** feyock@cs.wm.edu

83



comfort considerationsplacefurther constraints
on in-flight testing.

The approachwe are taking employsa novel
methodologyfor dealingwith physicalsystemsin
operation, and involves the use of case-
basedtechniquesin conjunctionwith modelsthat
describethe physicalsystem. Case-BasedRea-
soning systemssolve new problemsbyfinding
solvedproblemssimilar to the currentproblem
andadaptingtheir solutionsto thecurrentprob-
lem, taking into considerationany differences
betweenthe currentandpreviouslysolvedsitu-
ations.BecauseCBR systemsassociatefeatures
of a problemwith apreviouslyderivedsolution
to that problem,they are classifiedasassocia-
tionalreasoningsystems.

We maintainthat the ability of a CBR program
to reasonaboutphysicalsystemscanbe signifi-
cantly enchancedby the addition of various
models to the CBR program. This paper de-
scribesthe diagnosticconceptsimplementedin
Epaion1,the variousmodelsusedin conjuction
with the CBR component,and results from
Epaion's preliminaryevaluation.Although the
examplespresentedpertain to aircraft malfunc-
tions, it is clear that these techniques are
applicableto spacecraftaswell.

Knowledge Sources

Epaion draws its power from several knowledge

sources, including a library of aircraft acci-

dent/incidents; a functional dependency model

with deep domain information about the func-

tional dependencies between the components of

the aircraft; and a model representing causal

information concerning transitions between vari-
ous states of the aircraft.

I Ancient Greek for "expert"

Case Library

Epaion maintains a library of actual aircraft acci-

dent/incident scenarios called cases. Each case

consists of a set of features that identify the

particular scenario, a list of the relevant context

variables and their particular status, a set of ob-

servable symptoms, the fault, and a causal expla-

nation that connects the observable symptoms to

a justifying cause. The set of identifying features

includes information such as aircraft type, airline,

flight number, date of the accident, and similar
data. The list of context variables includes in-

formation such as the phase of flight, the

weather, etc. The set of symptoms includes

information about abnormal observatiofis

from mechanical sensors such as the value of

the exhaust gas temperature, the value of engine

pressure ratio, or from "human sensors," such as

the sound of an explosion, or the smell of smoke

in the passenger cabin. Cases containing all of

this information are called library cases, whereas

cases where the fault and the causal explanation

are not available are called input cases.

In contrast to most other CBR research efforts,

each case in our methodology consists not only
of a set of previously observed symptoms, but

also represents sequences of events over certain

time intervals. The time intervals may have un-

known and Unequal lengths; it is the event order-

ing that is of importance. Such temporal in-

formation is necessary when reasoning about

operating physical systems, since the set of

symptoms observed at a particular time may rep-

resent improvement or deterioration from a pre-

vious reading, or may reveal valuable fault

propagation information. In a jet engine, for

ex_ple, the fact that' the :fan rotational speed

was observed to be abnormal prior to an abnor-

mal observation of the compressor rotational

speed is indicative that the faulty component is

the fan and that the fault propagated to the

compressor, rather than the reverse.
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Causality Model

Epaion's causality model contains information

such as "fan-blade separation causes the rota-

tional speed of the fan to fluctuate" and "the

rotational speed of the fan causes the engine

pressure ratio to fluctuate." Along with the

causal information between two states, e.g.

"inefficient air flow" and "slowing down of the

engine", the model maintains a frequency count

of the number of times that the system witnessed

that inefficient air flow caused the engine to slow

down.

Functional Dependency Model

The functional dependency model is a digraph

model of an aircraft system, with nodes repre-

senting primitive components, and arrows con-

necting nodes representing functional depend-

encies. Component B is said to be functionally

dependent on component A if the proper func-

tioning of B depends on the proper functioning

of A. For example, the control surfaces of an

aircraft are functionally dependent on the hy-

draulic system, since they will cease operating if

the latter fails. The functional dependency

model contains two kind of arrows, representing
immediate and non-immediate links between

components. Two components C 1 and C 2 are

connected via an immediate link (I-link) when

Cl'S failure propagates immediately to C 2, i.e.,

abnormal function of C 1 at time t 1 results in ab-

normal function of C 2 at time t 2 and t I = t2. If t 2

>t 1 then C 1 is said to be connected to C 2 via an

non-immediate link (N-link). For example, if the

fan belt in an automotive engine breaks, the fault

propagates immediately to the electrical system,

as indicated by the generator light, but it may

take some time before the propagation to the

cooling system becomes evident from the tem-

perature sensor.

Physical Dependency Model

The physical dependency model is a digraph of

an aircraft system, similar to the functional de-

pendencies diagraph, in which the links in the

graph represent potential paths of fault propaga-

tion due to physical proximity. This sort of

propagation occurs when uncontrolled dis-

charges of energy attendant on component mal-

functions propagate to neighboring systems. The

severing of nearby hydraulic lines by blade frag-

ments from a disintegrating turbine provides a

typical example.

The Abstraction Hierarchy

The Case-Based Reasoning component of

Epaion consists of a self-organizing memory
structured as a frame-based abstraction hierar-

chy, as defined by [Schank 1982]. This memory

forms an upper bounded semi-lattice that

contains domain specific information at different
levels of abstraction. The information contained

in the lattice includes:

a. The names of all components in an aircraft

engine.

b. The components that are sensors. The exhaust

gas temperature, the rotational speed of the fan,
and the fuel flow indicator are some of the me-

chanical sensors in an aircraft's engine. Vision,

sight, and smell are the "human sensors" used in

the diagnostic process.

c. The possible values for each sensor. For a
mechanical sensor the allowable values are:

lower than expected; normal; higher than ex-

pected. If a sensor initially indicates values that

are normal, then at the following time interval

indicates values that are lower than expected,
and at the third time interval still indicates values

which are lower than expected, then the status of

the sensor during these three time intervals is

normal, lower, lower which is a kind (i.e.,

subcategory) of overall lower than expected
status which in turn is a kind of abnormal status.
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d. Thevariousfaults that maybeobservedin an
enginesubsystem.For example,it is represented
thatseagull ingestion is a kind of bird ingestion

fault which is a kind of foreign object ingestion

fault and so on.

e. Information on how faults manifest them-

selves. For example, fan vibration and ab-

normality in the rotational speed of the fan are

manifestations of a problem in the fan.

f. The accident/incidents that the system already

knows. For example the system knows that the

incident of a China Airlines Boeing 747 that

suffered a mishap over the Pacific Ocean_ _n _

February 19, 1985 [NTSB-AAR-86-03] is an

same as the fault in the retrieved case and adapts

the causal explanation of the retrieved case to fit

the current case. The fault and the causal expla-

nation are both stored in the case library for

future usage. The system is provided with a set

of adaptation rules which, in addition to adapting

the retrieved causal explanation to fit the current

case, find possible gaps in the causal explanation

and fill in the missing causalities by using the

models. This causal explanation connects the

symptornS to_ajustifying cause, and thus the

system's multiple-model-based causal reasoning

ability produces a causal analysis of the new

case, rather than simply a reference to a previous

solution. The new causal analysis is not

only stored in the case library as part of the input

instance of an accident/incident since it is a kind case, but is used to augment and modify the

of rotor related scenario which is a kind of knowledge of the Causal model. The following

engine related scenario which is a kind of acci-
dent�incident scenario.

Reasoning Cycle

Epaion's reasoning cycle consists of the follow-

ing three phases: input a new problem; retrieve

the most similar case; adapt the retrieved case to
fit the current scenario.

Epaion's input constitutes a set of symptoms ex-

perienced by an airplane's crew during a flight.

When the system experiences a new set of

symptoms, i.e., when faced with an input (new)

case, it searches its case library for the

most similar case. This is done by placing the

input case in self-organizing MOP 2 memory un-

der the most appropriate parents, determined as

described in [Riesbeck & Schank 1989]. The

siblings may therefore be assumed to be closely

related. The nearest sibling is retrieved as the

case that is most similar to the input case.

When the system finds and retrieves a similar

case, Epaion assumes that the current fault is the

2 Memory Organization Packet

section provides details of this process.

Adaptation and the Models

Epaion's adaptation algorithm is summarized in

the following two steps:

The first step involves the transfer of the fauit

from the library case in the input case and con-

sists of two possibilities.

Case 1: If the match between the input case and

the library case exceeds a threshold value then

the fault is transferred intact. For example, if in

the library case the fault was a malfunctioning
fuel controller, then it is assumed to be the same

in the input case.

Case 2: If the match is below the threshold value

then an abstraction of the library case fault is

transferred to the input case. For example, if in

the library case the fault was bird ingestion, then

it is assumed that in the input case the fault is

foreign object ingestion.

The second step involves the adaptation of the

causal explanation of the library case so it can

explain each, or as many as possible, of the
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symptomsof the input scenarioby connecting
them to a justifying cause.This consistsof the
following possibilities:

Case 1: If the library caseand the input case
haveidentical symptomsthen the causalexpla-
nationof the library caseis transferredintact to
the input case.

Case2: If the inputcasecontainssymptomsthat
do not appearin the librarycasethenthe causal
explanationof the library caseis transferredin
the input caseandthefollowing additionalproc-
essingtakes place. Let _2 be an unexplained

input case symptom.

Subcase 1: If the causal model contains the

relation _1 causes _2, and _1 is a symptom or

manifestation in the input case, then the link _1

causes _2 is added in the causal explanation of the

input case.

Subcase 2" The causal portion of the model

does not contain the relation _1 causes q52, but the

functional dependency model knows that com-

ponent C 2 is functionally dependent on compo-

nent C 1, and _1 is a manifestation of abnormal

behavior of component C 1, and similarly _2 is a

manifestation of C 2. This knowledge is depicted

by the graph

C1 C2

where _ denotes a phenomenon that is a symp-

tom or manifestation Ixof abnormal behavior of a

component. Additionally, if _1 is a symptom in

the input case and time(el) _< time(qb2), i.e.,

symptom ¢1 appeared before or concurrent with

¢2 then the link _1 causes ¢2 is added in the causal

explanation of the input case.

At present, Epaion is implemented to diagnose

faults in the engine subsystem of a generic twin

engine transport. The programs currently run on

various platforms using Common Lisp. Figure 1

displays the use of the various models during the

adaptation process.

Unexplained Symptoms

...._*_._._!ii::iiiii::i::iiiii_iii_i!ii_i:_i_i!iiiii_!_i!_!!!::!!!!!!!_!i!!_i_iii!_:_i!_::_i_i_::_*_..........
_iii Causality _

u

i

Remaining Symptoms

• _ • ( "

!

i

Remaining Symptoms

..:::::::i:::i:i:iiii_iiiiii_iii_ii_i_i_ii_ iiiii:ilil)iliiii:i:i:i:_:i:i:i:i:i:_::::,.

_qJi_ Simulation _.... ,.....+r+r+:.:.:.i.i?:.:.:.;_:f.,:;:.:;:?:+5:?:.:+:.:.:.:+:+..........,.-

Figure 1: Use of models during adaptation

Simulation and the Physical Model

We have indicated that Epaoin uses a physical

dependency digraph as one of its models. This is

a makeshift measure, however, due to the fact

that physical fault propagation, being the result

of catastrophic component failures, is highly

unpredictable. One expedient for dealing with

this unpredicatability is to refer to previous

cases, as Epaion does; another is to utilize spa-

tial simulation models (SSMs) to determine the

effect of uncontrolled energy releases. [Feyock

& Li, 1990, 1992] describe the use of SSMs to
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predict both fluidic and energy leaks3. These
models, which are easily interfacedwith host
systems,require only the identity of the faulty
component,which can be suppliedby Epaion.
The SSM thenlooks in the componentdatabase
to determinethe location and type of the com-
ponent. If the componentis of a type that can
causeafluid or energyleak,the systemusesthis
information to set the initial conditionsfor the
simulation.The simulationis then run, and the
physicalpropagationpathspredictedby theSSM
areextractedfrom therundata.

In addition to addressingthe chaotic natureof
physical propagation, our use of simulation
modelsin conjunctionwith moretraditionalrea-
soning systemsis prompted by a belief that
deriving answers to real-world questionsby
setting up the initial conditions of simulation
models,running the simulations,and extracting
information from the resultsof the run, consti-
tutesa powerful but underutilizedmodeof op-
erationfor AI systems.

Results

We conducted an experimental - evaluation of
Epaion on actual aircraft accident/incident cases =

involving engine faults. Information provided in

the individual accident/incident reports from the

National Transportation Board (NTSB), the

British Air Accidents Investigation Branch

(AAIB), and data collected from test accidents

staged at Boeing Inc. [Shontz et. al. 1992] was

used to derive the appropriate information con-

stituting each case, a process called accident
reconstruction. We reconstructed a total of

eighteen cases, of which sixteen were used as

library cases, and six as input cases.

The evaluation process required that each input

case be presented to Epaion separately, and that

3 We denote as "energy leaks" the catastrophic
disintegration of components due to the uncontrolled

release of kinetic or potential energy.

the system produce a diagnosis along with a

causal explanation. The diagnosis produced by

Epaion was then compared with the correct

diagnosis for the particular scenario. In addition,
the reasoner was evaluated based on the number

of symptoms for which the reasoner was able to

find a justification. A "correct diagnosis" is the

diagnosis determined by NTSB, AAIB, or by

[Shontz et. al. 1992]. Epaion is said to have

produced a complete explanation if the system

was able to explain each observed symptom by

connecting the symptom to a justifying cause.

The results achieved are very promising for the

future success of the system. Based on the re-

suits we make the following observations.

• Classification

Five of the six cases in this evaluation were

correctly classified. A case involving water in-

gestion [NTSB-AAR-78-3] was classified under

the category of miscellaneous scenarios due to

the l_ick of p/'eviously encountered water inges-

tion scenarios. An, expand_Case library will

enhance the systems classification capability and

therefore offer better matches for each additional

input case.

• Diagnosis

Epaion was able to correctly diagnose five of the

six scenarios. A case representing the American

Airlines Flight 566 scenario [NTSB-F-A067]

was properly classified as rotor scenario but

misdiagnosed as fan problem rather than turbine

problem. This is a result of the fact that prob-

lems in the fan and problems in the turbine

manifest themselves similarly, and therefore both

kinds of faults are classified under the category
of rotor scenarios. When the American Airlines

scenario was used as input case the system re-
trieved as the most similar case a Dan Air

incident [AAI-AAR-4/90], Which is a fan blade

scenario. With almost negligible difference in the

degree of match between the input case and the

L

|
z
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relevantlibrary cases,thesecondbestmatchwas
the accidentof the United Airlines Flight 611
that took placeon July 19, 1970[NTSB-AAR-
72-9]. This is a turbinefault scenarioandwould
haveachieveda higherdegreeof similaritywith
the input caseif the timeorder of the symptoms
in both caseshad beenrepresentedmore pre-
cisely. All symptoms used in reconstructing the

case of the United Airlines Flight 611 were

based on expert opinion, but none were

explicitly stated in the NTSB report. With the

exception of the behavior of the EGT, the same

holds for the symptoms used to reconstruct the

American Airlines Flight 566 scenario. This

suggests that presenting the system with cases
that are reconstructed based on an accurate set

of symptoms is vital for correct matching and

therefore correct diagnoses.

• Symptom explanation

In five of the eases presented as input Epaion

was able to explain all of the symptoms experi-

enced. When Epaion was presented with the

symptoms of an icing scenario staged at Boeing

[Shontz et. al. 1992] it failed to explain the pres-
ence of broad-band vibration. The failure is at-

tributable to insufficient information in the ab-

straction hierarchy. If the fact that broad-band

vibration is a manifestation of fan abnormality

had been included in the abstraction hierarchy,

the system's functional dependencies model

would have explained the broad-band vibration

symptom as a result of fan blade damage. The
same result would have been achieved if the

system had previously experienced other cases

with broad-band vibration, thus enabling the

causal model to explain the vibration. It is

evident that the more knowledge the system

contains in its abstraction hierarchy, the better its

explanation capability will be. Current efforts are

accordingly focused on expanding this

knowledge to a substantial size.

Conclusion

Automation of inflight diagnosis and prognosis

as an aid to the flight crew has great potential for

improving the general safety of civil transport

operations. The Epaion Case-Based Reasoning

system we have developed for the purpose of

performing fault diagnosis and prognosis of

aircraft in operation uses a hybrid

reasoning process based on a library of previous

cases and several types of models of the aircraft

as the bails for the reasoning process.

This arrangement provides the methodology

with the flexibility and power of first-principle

reasoners, coupled with the speed of associa-

tional systems.

A major concern of this project has been to

create a system capable of achieving a practically

useful level of performance on a case base of

significant size, thereby avoiding the "toy prob-

lem" trap besetting many AI systems. The ex-

tensive use of a classification hierarchy allows

the system to achieve O(log n) search times,
while the information abstraction attendant with

accident reconstruction produces space-efficient

representations. The system is currently hosted

on a desktop personal computer, and is esti-

mated to be capable of storing the full set of

propulsion related aircraft accident for the last

20 years. These considerations, together with the

encouraging level of success achieved by

Epaion, support the expectation that this system

will prove to be an effective contributor to air-

craft safety.
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ABSTRACT

This paper describes a method for the design
of autonomous spacecraft, based upon
behavioural approaches to intelligent robotics.
First, a number of previous spacecraft
automation projects are reviewed. A
methodology for the design of autonomous
spacecraft is then presented, drawing upon
both the European Space Agency
technological centre (ESTEC) automation and

robotics methodology and the subsumption
architecture for autonomous robots. A layered
competency model for autonomous orbital
spacecraft is proposed. A simple example of
low level competencies and their interaction is
presented in order to illustrate the

methodology. Finally, the general principles
adopted for the control hardware design of the
AUSTRALIS-1 spacecraft are described. This
system will provide an orbital experimental
platform for spacecraft autonomy studies,
supporting the exploration of different logical
control models, different computational
metaphors within the behavioural control
framework, and different mappings from the
logical control model to its physical
implementation.

Keywords: Spacecraft Control, Space
Robotics, Artificial Intelligence, Subsumption.

Introduction

AI applications in space systems are becoming
more readily accepted, and constitute a key
enabling technology for ambitious projects
such as the Space Station Freedom and Space
Exploration Initiative. Current or proposed
consiellations of unmanned spacecraft,
particularly in low earth orbit, and multiple

deep space missions with long
telecommunication propagation delays, can
also gain substantial benefits from the use of
more autonomous spacecraft operation.

Teleoperation of industrial space facilities and
orbital experimental platforms using highly
autonomous onboard systems may provide
crucial competitive advantages in the
commercial and industrial exploitation of
space.

This paper presents an architecture for
autonomous spacecraft control that supports
the integration of behaviour-based approaches
to emergent intelligence with numerical and
computational simulation models, and
symbolic reasoning systems such as expert
and knowledge based systems. Firstly, a
methodology is proposed for developing
autonomous space systems. Using this
methodology, system operational functions are
hierarchically decomposed, but functional
levels are not mapped directly onto
computational models. The operational
decomposition is used to refine specifications
of layered competencies, based upon a generic
layered competency model. Each competency
level defines a virtual machine interface from

the point of view of superordinate levels.
Hence, the hierarchical decomposition of
system functionality during operational
analysis does not imply a strict corresponding
hierarchical synthesis for design and
implementation, but provides a framework for
specifying system behaviours and resources,
and for understanding their interactions.

The realisation or implementation of the
functionality of successive virtual machines
can be carried out using the most appropriate

computational paradigm, or a rich
combination of paradigms. From this point of
view, a knowledge base or expert system can
be regarded either as a convenient abstraction
adopted during the design process to define
the input/output behaviour of behavioural
modules, or as a resource for use by
behavioural modules much as human
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operators would use expert systems for
particulartasks.

A simplified example application of this
approachis presented.The resultingsatellite
control architectureis significantly different
from previous satellite designs, having
improved robustness, decreasedoperating
overheads, and more autonomous fault
tolerance.Current plans are to validate and
refine this approach in a rich simulation
environment, and eventually to build and
operatea satellite for ongoing in-orbit trials
andexperiments.

Precedents

Onboard autonomy is a matter of degree.
Pidgeon et al (1992) describe how a number of
current spacecraft have mechanisms for fault
detection, reporting, and subsequent switching
to component, subsystem, or system fail-safe
modes. Human operators must then diagnose
faults and initiate appropriate contingency
recovery procedures. Increasing abstraction
levels in spacecraft command languages have
also been adopted. For example, in normal
operations, the Hipparcos spacecraft is
controlled by processed commands which are
sent to the onboard computer for distribution
to other systems, and for possible time
tagging. Direct commands are also available,
which bypass the onboard computer as a
backup in the event of computer failure, and
for more direct access to the controlled

systems. Priority real time commands can also
be issued, which allow direct switching of
systems. The ERS-1 spacecraft, which is in a

low polar orbit with limited ground access, has
a similar command macro system, with four
command types providing different functions
and levels of authority. The lowest levels of
commands bypass the onboard computer and
data handling system, again ensuring control if
those systems fail. The EURECA System,
comprising fifteen separate payloads, uses an
onboard Master Schedule which contains a list

of time tagged command macros for execution

by the odboard data handling system. Those
commands include rudimentary failure
routines, backed up by safe modes to deal with

command loop failure. Again, direct
telecommands can also be used, to bypass the

data handling system and onboard computer in
the event of their failure.

The degree of onboard autonomy is
continuously increasing, and can be expected
to incorporate a wide variety of techniques
from AI and intelligent robotics research. A
number of prototype systems have been built
to investigate onboard expert system
applications, including DIPOLE, SAGES,
APS, SACV, and SICON (see below).
Operational systems may include the Cassini

Titan Probe, and many Space Station Freedom
applications. Most of these systems involve
onboard architectures comprising a number of
distinct modular functions. Autonomous

systems of increasing size and complexity
tend to have distributed functionality, with the
various functions running on separate physical
processors. Another recurrent theme is the
devolution of autonomous functions to the

lowest possible abstraction levels.

Tello (1986) describes DIPOLE, a system for

satellite control which is intended to integrate
"shallow" heuristic or rule based reasoning
with "deep" model-based reasoning. The
shallow system uses fault-tolerant
mathematical and algorithmic subroutines, and
has the form of real-time expert systems with
data-driven switches for controlling their
performance. The aim is for the deep
reasoning system to take over when the
shallow system gets into difficulty, and to
allow the shallow system to resume when the
deep reasoning system has resolved the
problem. The DIPOLE architecture addresses
two particular problems for real time
deliberative controllers. Circumspection is the
problem of enumerating all implicit conditions
and assumptions associated with given
knowledge, and the ability to handle situations
when these are no longer valid. Inference
thrashing is the situation when inferencing
cannot produce solutions quickly enough to
keep up with changing circumstances.
DIPOLE seeks to address these problems by
using shallow rule based expert systems as
reflex processors in real time, with longer
deliberative processes performed by the deep
reasoning system.

Ciarlo et al (1987) describe a spacecraft expert
system prototype study conducted for the

92



European Space Agency. Some of the
conclusionsof theinitial studyinclude:

highly simplified interfaces typical of
spacecraft modular units reduce integration
and control problems. However, this
severely limits the information available for
monitoring each unit, and the choice of
actions available to correct failure, to the

point of making the advantages of expert
systems questionable when compared to
standard algorithmic or table-driven
software.

- it is difficult, and not necessarily
advantageous, to use an expert system in a
satellite designed without this in mind.

Ciarlo and Schilling (1988) report upon work
following on from this initial study to consider
an expert system embedded within the Cassini
Titan probe, for autonomously managing the
descent of the probe into Titan's atmosphere.
The authors note that to keep the complexity
and susceptibility of the system to faults as
low as possible, the autonomous system

should be implemented at the lowest possible
level, with capabilities such as component and

sensor self testing and redundancy switching.
Scientific management, which involves

adaptation to the situation according to
complex rules, is regarded as an appropriate
function for implementation as a knowledge
base. Engineering management, involving
FDIR and subsystem control, is regarded as an
appropriate function for conventional
technology.

The Satellite Autonomy Generic Expert
System (SAGES) architecture, developed by
Rockwell, is based upon the definition of four
intelligent agents, corresponding to phases of
the mission operation cycle, including

planning, scheduling, execution, and analysis
(providing feedback into the planning phase;
Raslavicius et al, 1989). A SAGES prototype
has been developed for a "typical"
surveillance satellite.

environment to properly control the
concurrent execution of multiple autonomous
algorithms coupled with continuous input and
output data flow. Expert system functions
include fault diagnosis and recovery, and
battery charge control. The expert systems use
event-driven processing within a blackboard
environment.

The European Space Agency (ESA) Standard
Generic Approach to Spacecraft Autonomy
and Automation (SGASAA), is a hierarchical

model which alms to devolve decision-making
to the lowest possible level (Pidgeon et al,
1992). To this end, it is a distributed onboard

architecture, with each payload and subsystem
having a certain degree of "intelligence", in
addition to an Onboard Mission Manager
(OBMM) responsible for the control of the
spacecraft as a whole. Separate subsystem
managers are intended to handle their own
failures and report the results of their
diagnoses via LAN to the OBMM, along with
a proposed recovery action. The OBMM can
authorise the proposed recovery, or block it if

the failure is caused by a failure elsewhere.
SACV (ibid) is an investigation of the

SGASAA concept involving the
implementation of a fully autonomous
spacecraft based upon EURECA.

SICON, built by LISP Machine Inc, is a
simplified prototype system for satellite
intelligent control, concentrating upon the
electrical power system (Leinweber, 1987).
The SICON prototype deals with load
distribution and switching, solar array
orientation, power system verification and
checkout, fault diagnosis, trend analysis,
contingency management, battery charge and
reconditioning-cycle optimisation, and fuel

cell monitoring and control. Leinweber notes
that there are a number of SSF processes and
subsystems that are amenable to real-time
process control, including the electrical power
system, attitude and orbital control system,
environmental and life support system,
propulsion system, monitoring of docked

The Boeing Aerospace Autonomous Power vehicles, manufacturing process control, and
System (APS) testbed has been assembled for ground communications and network control.
use in developing improved control techniques Such real-time onboard applications require
for aerospace electrical power systems (Spier particular expert system features, including
and Liffring, 1989). The main emphasis of high-speed context-sensitive rule activation,
APS is the development of a programming efficient memory recycling, acceptance of
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interactive commands without suspending
execution, and communication between
multiple expert systemsin order to provide
redundancy.

The Space Station Freedom (SSF), will
requirean extensivedataprocessingsupport
environment. The communications and
informationprocessingbackboneof theSSFis
the Data ManagementSystem (DMS). The
DMS hasthedual role of providing hardware
resourcesandsoftwareserviceswhichsupport
dataprocessingandcommunicationsneedsof
the system, its elements, and payloads
(Erickson, 1987). It also functions as an
integrating entity, providing a common
operating environment and human-machine
interface for the operation and control of
orbitingSSFsystemsandpayloadsby boththe
crew and ground operators. The DMS
provides signal conditioning, and timing
synchronisation of data required for
interpreting time-critical information and
results betweenexpert systems,knowledge-
based systems, and robotics elements
distributed throughout theSSFenvironment.
Woods (1992) notes that the DMS may use
artificial intelligence techniques for fault
detection,isolation, andrecovery (FDIR) on
DMS components. An Integrated Systems
Executive(ISE) will provideoverall software
schedulingand control for all othersystems,
experiments, and elements. Low level
software modules will take care of time
critical control loops and fault recognition.
Developmentprojectsarecurrentlyunderway
in a number of SSF expert system
applications.

A Methodology for Autonomous Spacecraft
Development

In the ongoing development of autonomous
spacecraft, devolution of decision-making to
the lowest possible level, and the
modularisation and distribution of

functionality, are prominent trends. These
trends, driven by the particular requirements
of real time autonomous agency, have been

most fully developed in the context of mobile
robotics research, and are captured most
strongly by behavioural approaches to
autonomous systems design. Behavioural

approaches to mobile robotics have also

demonstrated more fundamental benefits in

addressing the problems of circumspection
and inference thrashing that have plagued
deliberative robot control systems. There is
therefore considerable potential for
behavioural approaches to contribute to the
increased automation of space systems.
Toward this end, this paper proposes a
methodology for autonomous spacecraft
development which draws from both

behavioural approaches to mobile robotics and
an ESTEC (European Space Agency's
technological centre) methodology for space
automation and robotics. While behaviour-

based robots have been suggested for
planetary surface exploration (Brook s and
Flynn, 1989), the behavioural paradigm has
not previously been used to design orbital
spacecraft. Hence, the proposed methodology
is not fully articulated, but groundwork for a
more complete approach is presented, indeed,
it is probably dangerous to suggest any
comprehensive standardised approach until
behaviour based Spacecraft have been well
demonstrated, and the paradigm and its
benefits in this domain are well understood.

The main technical objectives of a design
methodology inClude the achievement offfull
bidirectional traceability between user
requirements and system solutions selected,
the breakdown of complex problems into
successively simpler ones, unity of system
architecture, rigorous interfaces between
subsystems, improved communications with
end users, precise communication within a

development team, efficient parallel
development of subsystems, reduced control
complexity, greater simplicity of design, and
sound data analysis and administration
(Elfving and Kirchoff, 1991). The resulting
benefits include a high-quality product which
is easy to maintain and upgrade, better project
control durihg the design process, reduced
timeio completion, and lower cost for system
development.

Elfving and Kirchoff (1991) present logical
reference models which postulate the essential
functions of an automation and robotics

system, to be used for structuring user
requirements and transforming them into
distinct design solutions. This ESTEC
methodology is derived from structuring

94



principles of hierarchical decomposition and
hierarchical structuring, fundamental
properties from disciplines such as control
theory and mechanical engineering, and
generic principles of structured analysis and 6.
structured design. It is characterised by a clear
separation between operational analysis and

system synthesis, and the application of the
principle of abstraction m the form of 7.
reference model techniques. While the ESTEC
methodology has many desirable features, it
does not immediately lend itself to the
synthesis of behaviour-based autonomous 8.
systems. Behavioural approaches are,
however, in need of methodological guidelines
to support a systematic composition of
behaviours into competencies, to assist in
ensuring that the resulting system design will
meet its overall requirements for a given 9.
application (Brooks, 1990, 1991). It is
therefore valuable to draw from both the

behavioural approach and the ESTEC
methodology, in order to achieve a
methodology combining the benefits provided
by both.

Essential Characteristics of the

Subsumption Methodology

The subsumption architecture was specifically

developed to address requirements for
autonomous mobile robots (see Brooks, 1986,
1990, and 1991) including multiple, often
conflicting, goals, multiple sensors,
robustness, and extensibility. The approach is
based upon a number of principles which can
be drawn upon and adapted here as principles
which bear upon the spacecraft autonomy
problem:

. complex or "intelligent" behaviour can be
an emergent phenomenon, arising from the
interactions of a spacecraft with its
environment and users.

2. component interfaces should be simpler
than the components that they interconnect.

. if a module solves an unstable or ill-

conditioned problem, then it is probably not
a robust solution.

4. autonomous model-making is important,
since idealised models may be inaccurate.

5. the spacecraft must operate in a three-
dimensional world•

relational models can avoid the cumulative

errors that characterise absolute coordinate

systems.

there is no global internal model, or global
planning activity with a hierarchical task
structure.

for robustness, the spacecraft must be able
to perform when one or more of its sensors
fails or malfunctions. Recovery should be
rapid, so built-in self-calibration is required
at all times.

the spacecraft control problem is
decomposed in terms of layers or levels of
competency. Those levels are task-
achieving behaviours, and as such are
external manifestations of the control

system. "Higher" levels correspond with
more specific classes of behaviour.

10. each successive level subsumes as a subset

each earlier level, and provides additional
constraints on the class of valid behaviours

defined by the earlier levels.

11 • successive levels extend competency, but
do not alter the structure of the

implementation of lower levels. A level can
receive data from lower levels in order to

monitor their behaviour, and can output
data to lower levels in order to modify
behaviours by inhibiting or exciting them.

12. competencies are parallel processes.
Hence, lower level competencies can
ensure that spacecraft behaviour is sensible,
while higher level competencies take time
to produce more optimal control solutions.

13. there is no central locus of control, either

for the system as a whole, or within any
particular competency layer. This is
essential for robustness.

14. each layer can run on its own processor,
and individual layers can also be run over
many loosely coupled processors.

z 95



15. within eachparticular layer, a traditional
decompositionof functionalitymaybeused
"to someextent".

Theseprinciplesconform with the paradigm
for autonomoussystemsdesignwhich Maes
(1990a)refersto asthebehavioural approach.
Inspired by biological models of autonomy,
the behavioural approach has abandoned the
older sense-model-plan-act (SMPA) paradigm
(Brooks, 1990), and in so doing has achieved
many successful demonstrations of greatly
improved robot performance and robusmess.
Those demonstrations represent explorations
within the new paradigm, but can by no means
be regarded as definitive or fully matured.

It is important to distinguish the logical design
of an autonomous control system from its
implementation. Sore e explorations of the
behavioural paradigm have concentrated upon
software design, with the software being
compiled to run on a single embedded
processor (eg. the MIT Squirt robot, Brooks
1990). However, while such systems can
demonstrate the effectiveness of a control

architecture based upon situatedness and
behavioural interaction, rather than model-

based deliberative reasoning, the use of a
single physical processing element creates a
single physical locus of control, and therefore
a single point failure mode in the resulting
robot. The behavioural paradigm is a systems
paradigm. As such it should lead to a
distributed hardware functionality of the kind
that typifies the more sophisticated
behavioural robots. Research within the new

paradigm continues at a vigorous pace, and the
question of how competencies at a conceptual
level can be achieved as emergent properties
of increasingly parallel and distributed
computational processes at the implementation

level has only just begun to be investigated.
Continuing advances in parallel and
distributed hardware architectures reinforce

behavioural layers which perform higher level
deliberative and symbolic computations. For
example, Steels (1991) proposes a frame
based system for "high level" cognitive tasks
(such as language use), in which frames are
grounded by sensory inputs and influence the
behaviour of the system in proportion to their
"fit" to the current situation. Arkin (1990)
describes the Autonomous Robot Architecture

(AURA), a framework for experimenting with
the integration of behavioural approaches with
model-based reasoning. AuRA allows the
advantages of modularity, incremental design,
adaptability, and robusmess of the behavioural
approach to be supplemented by the use of
model-based knowledge to configure
behavioural strategies in an efficient form.
The AuRA architecture comprises five basic
subsystems: Perception, Cartographic,
Planning (both a hierarchical planner and a

....disiributed reactive plan execution
subsystem), Motor (the actuator set interface),
and Homeostatic control (monitors internal
conditions of the robot for both the higher
level planning mechanisms and the motor
schemas). Flexibility is incorporated into the
AuRA system by drawing rnodularised
behavioural patterns and sensory strategies
from a library and configuring them to meet
the needs of a particular mission and any
known environmental constraints. World

models play an important role in this

configuration process. Bonasso (1991) also
describes an architecture in which a

declarative model is used for reasoning about
plans and controlling the activation of
behaviours implemented within an underlying
subsumption layer. Malcolm and Smithers
(1990) describe SOMASS, a robot assembly
system that combines a PROLOG assembly
planning subsystem with a plan execution
Subsystem that handles uncertaintybymeans
of behavioural modules which accomplish
useful motions of assembly parts. Malcolm
and Smithers note that, although the

the viability of the behavioural approach, and "cognitive"
demand a /--adical rethinking of how
autonomous systems can be structured.

A number of researchers have adopted the
behavioural approach as a method for

designing the lower le_/el control functions
within an autonomous system, and have then
provided one or more "layers" above the

planning function was
implemented m a high-level symbolic
language, and the "subcognitjve', execution
agent in a low level language, these decisions
were motivated by convenience. Also, the
cognitive/subcognitive distinction Was itself
found to be a useful construct for the

SOMASS system, but is not a necessary or
convenient construct for artificial mentality in
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general. The interface between the cognitive
and subcognitive systems presents a virtual
machine model to the cognitive system, which
heavily determines and permeates the design

of the cognitive system. The need to present a
virtual machine interface to the cognitive

system results in a modularity of behaviours in
the subcognitive layer, which is not needed in
approaches (eg. subsumption) which do not
include a cognitive component. Gat (1991)
describes ATLANTIS, a system which
integrates behaviours and deliberative
processes in a three layered structure. The first
layer comprises a behaviour-based system for
robust motion control and low-level

competencies. A deliberative layer provides
high level reasoning, such as plan generation.
These layers are joined together by a
sequencing layer based upon Reactive Action
Packages.

These different explorations of the
relationship between deliberative reasoning
and behavioural autonomy are not driven by
any well-proven limitations of the behavioural
approach. As Brooks (1990, 1991) notes, the
question of how far a behavioural approach
without the use of deliberative computations
can go in achieving higher levels of
competence in autonomous agents is one
which must be addressed by ongoing
empirical investigations. However, an issue
arises within the behavioural paradigm
regarding the range of computational
metaphors that can usefully be adopted for
designing behavioural units. In the
subsumption architecture, Brooks uses
augmented finite state machine (AFSM)
models to define primitive behavioural
elements, and AFSMs are further grouped into
more complete behaviours. However, any
number of computational metaphors can
potentially be used to describe a system with a
given transfer function. The effectiveness of
AFSMs has been demonstrated for some

behaviours, but metaphors of multiple
interacting agents (see Grant, 1992), objects,
processes, production systems, etc. may
equally provide convenient metaphors.
Similarly, knowledge-base systems, rule bases
(AFSMs are defined by rule sets in Brooks'
behaviour language), and expert systems
metaphors may be convenient. The metaphor
adopted should be that which most "naturally"

describes the behaviour of a module from the

perspective of the system designer. Adopting
the behavioural paradigm for the overall
control system architecture does not rule out
the adoption of other metaphors for structuring
and designing the computational processes
within a given behaviour or module in order to
achieve a desired set of input/output
mappings. The danger in adopting
heterogeneous metaphors within a behavioural
control system is if any metaphor distorts the
behavioural framework by encouraging the
centralisation of behavioural coordination and
control, or the centralisation of data flow. It

can be argued that this should not occur in the
case of spacecraft control if the control system
is modelled upon manual spacecraft operation,
since ground based, manual spacecraft control
involves highly distributed, cooperative
decision-making by numerous "agents" of
mixed expertise, generally in a way that is
highly redundant, robust, and adaptive. The
behavioural paradigm is not violated by
experimentation with alternate metaphors for
developing the internal structure of
behavioural modules within a behavioural
control framework.

Towards Reference Models for the

Behavioural Methodology

The reference models described by Elfving
and Kirchoff are intended to provide clear
traceability from user requirements to design
solutions, which justifies technical decisions
made and avoids excessively flexible,
expensive, and complex systems with high
technical risk. The reference models are
intended to cover robots, mobile vehicles, and

process control, and reflect the operational use
of the system. Elfving and Kirchoff divide
A&R capabilities in space into three major
fields:

- external servicing of payloads
- servicing of scientific experiments within

pressurised orbiting laboratories
- surface mobility and sample acquisition for

planetary exploration

To this can be added the field of current

concern:

autonomous orbital spacecraft control
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The starting point for this ESTEC automation
and robotics (A&R) control design
methodology is an established conceptual
layout for the A&R system, typically available
as a result of mission and system definition
studies. The logical reference models capture
the essential principles of this methodology.

The objective of Operational Analysis (or
Task Analysis) is to derive the essential
abilities of an A&R system such that mission
objectives are sure to be fulfilled. This is done
by a step-by-step decomposition into levels of
equal importance, from mission objectives

down to a level of elementary., actions_ This
defines "What has to be done', ideaiIy wlthrut

anticipating any solution, but by using initial
knowledge about system functional layout
based upon initial mission and system
definition studies. This analysis phase requires
system operational expertise. System Synthesis
involves the definition of solutions that satisfy
the different operational features required at
the various levels of decomposition, thereby
addressing "how is it to be done?". System
Synthesis involves an aggregation process,
from elementary abilities to system
capabilities. Synthesis requires A&R
technology expertise.

Given these processes of analysis and
synthesis, the key methodological question is
that of how to achieve traceability between the
two areas, assuming that the decomposition
logic of analysis must be in agreement with
the synthesis logic, so the inherent structure of
the analysis process is a virtual system
solution. This nexus is achieved by the use of
the logical reference models. Three logical
reference models are distinguished:

I. Functional Reference Model (FRM):

represents a decomposition of all functions
and information flow and structures, and is

valid for all A&R applications.

2. Application Reference Model (ARM):
represents an FRM derivative which
focuses on individual classes of A&R

applications.

focuses on models of operation and
systematics for man/machine and
preparation/utilisation allocation.

The objectives of applying reference model
techniques are:

- guarantee a common 'thinking model' which
is valid for all A&R applications, to enable
and ease communication within and between

development teams
-provides a generic system information

structure and identifies essential functions

for which application-specific design
solutions should be found

- establishes "rules-of-thumb" and heuristic

design strategies that allow the designerto
systematically derive good and relevant
solutions to common types of problems

- uses formal documentation techniques and
graphic support tools that emphasise the
hierarchical functions and information flow

and structures of complex systems

A logical model represents the essentials of a
system, assuming ideal internal technology of
the system and excluding application-specific
topics. A physical model represents the
implementation of a specific application, and
therefore needs to represent the actual
constraints imposed by the chosen internal
technology. Hence, only logical models can be
reference models that meet the requirement of
being valid for a multitude of applications
and/or implementation technologies.
However, a major goal of a design
methodology is to maintain a strong and
traceable link between the logical and physical
models of a system in order to achieve design
commonalities and open implementation
architectures.

,A Behavi0or-Bgsef] F0ncfi0nal Reference

Model

The FRM proposed by Elfving and Kirchoff
involves a hierarchical ordering of functions

and information with increasing precision and
decreasing planning horizon from top to
bottom, where the hierarchical information
interface layers are:

3. Operations Reference Model (ORM)"
represents an FRM derivative which

1. A&R mission: the objectives of end users
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2. task: clusteredactivities performedon a
single subsystemdefinedas the element
submittedto motion or actuationby the
A&R system

3. action:elementaryactivity for afunctional
subsystem

This decomposition leads to hierarchical
functional and information layers, with the
controlled devices and processes at the
bottom,andsuccessivelayersfor action,task,
and missionexecution,planningandcontrol.
Stateinformationflows from eachlayerto the
nexthigh layer,while commandsandactivity
attributesflow downthroughthestructure.

This hierarchical decomposition, with
"vertical" divisions between distinct
objectives,tasks,andactionsat eachlevel, is
not compatible with a behavioural
methodology. To be compatible with a
behavioural approach, the following
modificationsarerequired:

-instead of a decomposition of system
functions in terms of a tripartite structure of
mission, tasks, and actions, the system can
be decomposed in terms of layered
competencies. This overcomes the
somewhat arbitrary parsing of activity into
three levels, providing a more flexible
layering and abstraction mechanism which
subsumes and extends the tripartite
structure. It also has the advantage of
retaining the visibility of what the system is
required to do, rather than decomposing
system functions according to how those
functions are implemented. System
requirements can be mapped directly onto
competencies, and competencies then onto
their implementation.

- instead of placing all sensor and actuator
interfaces at the lowest level of a

hierarchical structure, each competency
level is associated directly with a subset of
the total set of sensors and actuators

required, in addition to having interfaces to
the competency levels above and below
itself.

A&R Mission planning and control can be
retained as the highest general level of system
competency. The lowest level is also general,

and comprises basic survival competencies.
Intermediate levels are variable in number and

form across different A&R application classes.
The resulting vertical FRM structure is then as
shown in figure 1.

Elfving and Kirchoff describe forward control,
nominal feedback, and non-nominal feedback
functions across all hierarchical levels.

Forward control involves activity
decomposition and execution planning, based
on a priori knowledge, and plan execution.
Nominal feedback deals with forseen

refinements and updates to ensure that the
system achieves the forward control execution
goals. Non-nominal feedback covers the case
of system performance diverging from the
allowable region around the nominal
execution plan and is realised by means of
monitoring discrepancies between actual and
allowable states, diagnosis of reasons for
possible discrepancies, and generation of
recovery strategies and constraints.
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Figure 1. Behavioural FRM.

This model may be used to address individual
competencies in the vertical decomposition of
system functionality. However, nominal
feedback, non-nominal feedback, and
feedforward control functions should not be

regarded with restricted computational
paradigms in mind. It must be regarded as an
open question how the respective functions
can best be modelled for any particular
application or level of problem abstraction. It
is yet another question how the modelled
functionality should then be implemented. For
example, a logical model of planning may or
may not be the best way of specifying a type
of planning activity that may be required.
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Moreover, if the planning activity is defined
logically, the implementation of the planner
may take quite a different form, such as that of
a highly distributed and emergent function

(eg. gradient field approaches, as described by
Payton 1990, analogical planning, as
described by Steels 1990, or emergent goal
arbitration, as described by Maes 1990b). In a
behavioural system, inputs and outputs for
these functions include behaviour monitoring
and control signals, in addition to sensor
inputs and actuator outputs, depending upon
their role within the competency in which they
occur. In other words, nominal feedback,

forward planning, and non-nominal feedback
become behaviours within a competency

layer.

These redefinitions result in a very different
FRM, less detailed than that presented by

Elfving and Kirchoff, and as such placing
more importance upon Application Reference
Models for the different classes of A&R

applications.

]Behavioural Application Reference Model

The Application Reference Model (ARM)
tailors the functional blocks and the
information structure of the FRM to the
characteristics of each class of A&R

application, in order to ease acceptance and
understanding. Elfving and Kirchoff identify
these classes as:

- motion systems with fixed linkages to the
environment (eg. robot manipulators)

- mobile systems (eg. moving vehicles)
- continuous processes (eg. climate control)
- event/sequence control (eg. PLC equipment)

To this can be added the class of current

concern (a subtype of mobile systems):

- autonomous orbital spacecraft

In physical realisations, a combination of
these classes may be integrated to form the
overall A&R control function.

The ARM leads to a more detailed

decomposition than the FRM. From the
behavioural viewpoint this amounts to
identifying for each class of application:

- the competency layers required
- generic requirements for nominal feedback,

non-nominal feedback, and forward control

within each layer
- individual behaviours within each

competency

Ongoing research is needed to identify
alternate implementation strategies for various
competencies, and to systematically analyse
the tradeoffs between different strategies as a

basis for rational design decisions.

Proponent ARM for Autonomous Orbital
Spacecraft

Due to very significant domain differences,
the competency layers proposed here for
autonomous orbital spacecraft bear little
resemblence (other than at the highest level) to
those proposed by Brooks (1986) for
biologically-inspired mobile robots operating
in earth-gravity environments. Some of these
differences arise due to the different

operational environment and sensor and
actuator sets of orbital spacecraft in

comparison with mobile surface robots. Other
differences arise due to a major aspect of
spacecraft functionality which concerns the
collection, distribution, and reception of data.

The definition of layered competencies is

made in terms of decreasing criticality and
increasing autonomy. In this sense, the
approach represents an extension of automated
safe mode transitions into a more complex set
of behaviours, and a set of autonomous

operations which function during normal
spacecraft operation in addition to
emergencies. Consideration of the layered
structure shows the non-hierarchical nature of

the control system. Mission critical survival
decisions, often made at the lowest levels,

must have priority over higher-level decision
making during emergency situations.
However, the higher levels must be able to
modify resource allocations, timing
relationships, and data flow within the lower
levels in order to establish priorities between
activities within a wide range of variation of
nominal operating modes in order to achieve

higher levels of competence in autonomously
meeting and optimising mission objectives.
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For example, critical docking operations
cannot havetheir power supply interrupted.
Ensuringthat this doesnot occurcaninvolve
powerconditioning schedulesthat comeinto
operation well in advanceof the docking
activity, and therefore must be plannedby
higher competencylevels, and thoseplans
thenconformedto or usedby the behaviours
of the lower levels.

A proposedcompetencymodel is shownin
figure 2. The Maintain Thermal Balance
competencyis placedat level 0 as the most
fundamental precondition of spacecraft
survival. That is, any significant over- or
under-heating can permanently damageor
destroythe spacecraft.However, temperature
variations tend to be gradual, and good
thermal design can ensurethat the normal
range of temperature variations for the
spacecraft is limited to a 20° range. The
greatest danger is from more localised
temperature fluctuations (especially
accumulationof heat),possiblydue to faults,
which can be dealt with by temperature
dependent inhibition or excitation of heat
generatingprocesses.

9 Plan and Execute Mission Based Upon Objectives

8 Rendezvous and Dock ( I Land I Take Off)

7 Plan and Schedule Data Acquisition and
Transmission

6 Plan and Execute AOCS Maneuvers

5 Acquire, Condition, Downlink Instrument Data

4 Maintain Attitude Stability and Orbit

3 Acquire, Condition, and Downlink Engineering
Data

2 Maintain Telecommand Override

1 Maintain Battery Condition ......

0 Maintain Thermal Balance

Figure 2. Competency Layers for Orbital
Spacecraft.

The Maintain Battery Condition competency

maintains a battery charge/discharge cycle that
will ensure long battery lifetime. This must be

adaptive in the face of variations in battery
and solar cell characteristics over the course of
their lifetime, and must accommodate
individual cell failures and variable solar

irradiation cycles.

Levels 0 and 1 ensure spacecraft survivability,
while successively higher layers are concerned
with spacecraft accessibility, performance, and

increasing independence from the ground. The
Maintain Telecommand Override (level 2)

competency is provided to ensure that, so long
as the survival of the spacecraft is not

threatened, the behavioural control system can
be overidden by direct ground control. It is
not, however, envisaged that this should sever
the layered structure of the behavioural
system. Rather, it provides an orthogonal
access mechanism by which it is possible to

inject data into the behavioural control system,
and should have the capacity to override
internal interconnections between spacecraft
behaviours. Hence this level ensures command

access to the spacecraft.

Acquistion, Conditioning and Downlink of

Engineering Telemetry data (level 3) ensures
access to data which is critical for diagnosing
and understanding the status of the spacecraft
from the ground. Maintainance of Attitude
Stability and Orbit (level 4) are secondary
priorities after maintaining the engineering
telecommunications link, since the link is vital

for understanding the state of the spacecraft,
and initiating telecommand override if

necessary.

The Acquisition, Conditioning, and
Transmission of Instrument Data (level 5) can

be ensured as a level above maintaining basic

survival, two way telecommunications, and
stability. Stability control (level 4) is an
operational precedent for Planning and
Execution of attitude and orbital control

(AOCS) ManeUvers (level 6), and the

acquisition and transmission of instrument
data must also be accounted for in the AOCS

maneuver planning process. AOCS
Maneuvering competency is a precondition for
autonomous Planning and Scheduling of Data

Acquisition and Transmission (level 7).

Rendezvous and Dock (level 8) is a high level

competency. Although this is already
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automated at a low level in systems for
docking Salyut and Progress vehicles with the
MIR space station, in an integrated,
behavioural control system it occupies a high
level in order to automate all of the planning
and resource allocation activities associated

with the basic rendezvous and docking
procedure. Landing and Take Off
competencies are mentioned at this level as
competencies of orbital spacecraft which also
land on and take off from planetary bodies.
Plan and Execute Mission Based Upon

Objectives (level 9) allows the highest level of
command abstraction in specifying behaviour
desired of the spacecraft.

Operations Reference Model

The FRM and ARM represent general
functions necessary to decompose a global
task into process variables and the related
information architecture. The Operations
Reference Model (ORM) addresses a different
question, that of how the overall A&R system
is operated. The aim is to help to structure the
definition of operating modes and achieve a
clear and common understanding of what is
meant. The ORM can also be used as a

support tool for a systematic and consistent
draft specification of man/machine task
allocations, and allocations of which tasks are

to be performed on the ground and which on
the spacecraft.

Virtual machine models are useful as a basis

for increasing command abstraction. Hence,
on the basis of the ORM, separate virtual
machine models can be used for telecommand

generation and-subsequent injection of data
into each competency level. This provides a
basis for telecommand language specification
at several abstraction levels.

From Analysis to Design Synthesis

The primary sources for the operational
analysis are the global spacecraft mission
objectives, the characteristics of the process to
be handled, and the layout of the spacecraft
devices to handle this process. The application
of the reference models means that the

decomposed activity hierarchy of the
operational analysis can be used to define
functional and performance specifications for
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system competencies. Hence the hierarchical
structures defined during operational analysis
are used to develop specifications for the non-
hierarchical layered competency model, and
this competency model provides the basis for
system design synthesis, as shown on Figure
3.

OPERATIONAL ANALYSIS

A,&R Mission Objectives

COMPETENCY _ SYSTEM
ANALYSIS , SYNTHESIS

PLANNING _ PLANNING

&CONTROL J_ J &CONTROL
t:

state • control

,.
s0._= I_.Js0.v,vALIco.pETE_I_ F°_pE_

LEVEL 0 ' LEVEL 0

r_u,_,'n,,°t,i_'T_s,,("
Define activity l"

& attributes }_ Action_,_j

Figure 3. Sequence from analysis to synthesis.

System synthesis involves firstly finding the
intermediate detailed specification of system
competencies based upon a general
Application Reference Model and the
operational analysis, and then finding the
appropriate design solution for the
competency layers of the controller, as shown
in the right hand side of Figure 3. This results
in system solutions that are valid for classes of
mission scenarios, in that activities to be

performed become more generic towards the
lower decomposition levels, supporting a
'standard set' of competencies which can
accommodate evolving or changing mission
task requirements without a critical impact
upon the design.

Control System Synthesis

Elfving and Kirchoff (ibid) suggest that clear
traceability of solution decisions made during
design synthesis can be achieved by an inverse
of the design process: use is m_ide of a set of
possible technical solutions which originates

from existing fundamental engineering
theories and which can be systematically
ordered into solution trees by applying
hierarchical structuring principles. While this

is a desirable goal, it depends upon a well
understood synthesis process. For a
behavioural approach to orbital spacecraft

design, this is premature. Since the spacecraft
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control architecture presented here is novel, it
represents at least one traversal of a more
comprehensive solution tree, yet to be fully
articulated. There are also major ongoing
research questions regarding the relationship
between the logical definition of system
competencies and the implementation of the
logical design (as discussed above).

Control System Example

The version of the subsumption architecture
adopted for current purposes allows a module
input to be suppressed by an output from
another module, and the input signal is
replaced by the suppressing signal (following
Brooks, 1986). Limited aspects of control will

be considered here to illustrate the principles
involved. Behavioural interactions to achieve

level 0 and level 2 competencies within a very
simple model will be considered. Sensor
inputs for this example comprise a set of
temperature sensors. Actuators will comprise a
telemetry transmitter and a receiver, each with
controllable power levels (telemetry data
flows will not be considered).

The level 0 competency maintains the thermal
balance of the spacecraft. Temperature sensors
distributed throughout the spacecraft and
associated with each controllable component
and subsystem are the primary inputs to this
competency. The hypothetical spacecraft is a
very simple design, and the only active
temperature control available is by increasing
or decreasing the power consumption, and
hence heat dissipation, of controllable units.
To achieve adaptivity and maximum
robustness, the sensor inputs are mapped into
an analogical representation of the
temperature of the spacecraft (Steels, 1990,

describes analogical maps). The analogical
representation stores a model of each heat

generating component of the system,
conductive paths, uncontrollable heat sources
and sinks (eg., the sun and "dark" space,
respectively), and the spatial interrelationships
between these elements. The resulting
analogical representation resembles a low-
resolution finite-element model. For each

controllable temperature source in the model,
there is a separate behaviour which computes
a power level signal as a function of the
current and previous temperatures of the

particular element, its immediate spatial
neighbours, the heat transfer characteristics of
their interconnections, and an approximate
measure of the specific heat of the component.
This method deals very robustly with the
failure of any given component to respond to
direct temperature control, by calculating
power (and therefore temperature) levels as a
function of the average temperature of the
component and its neighbours, thereby
allowing indirect control of components which
are not directly accessible by the use of
temperature flow relationships. Each control
behaviour could be implemented by a separate
processor, and the method of obtaining
temperature control for inaccessible elements
also deals with the control of elements whose

associated control processors have

a ERATEI
sensors V " I LOCAL MAPS]

RX Local I ITXLocal
map _ _[r map

pE RAVERXI laENERATEVXI
pOWER LEVELI IPOWER LEVEL I

vel __Level

Figure 4. Example level 0 competency.

malfunctioned or failed. The resulting
behavioural model is shown in Figure 4.
The analogical representation is an internal
state model used by the Generate Local Maps
behaviour. This behaviour may actually
comprise a separate local map generator
associated with each controllable unit, so the

analogical model is a virtual construct. Each
local map is a model of the immediate (ie.
directly connected) thermal environment of
the associated component, which is used by
the power level generation behaviour of that
component to calculate a power level which is
then sent to the component.

The next level of competency considered is
the level 2 Maintain Telecommand Override

competency. For the current highly simplified
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example, this is easy to create using a single
behavioural module. The Maintain
Telecommand Override module monitors the

receiver power level, and suppresses the level
0 control signal if it falls below the minimum
level required to operate the receiver for
telecommand override. The minimum power
level is then injected into the receiver input in
the form of the suppressing signal from the
Maintain Telecommand Override module. The

structure giving this competency is illustrated

in Figure 5.

_1 GENERATE ILOCALMAPS I

map _ _ map

GENERATE RX I IGENERATE TX[

POWER LEVEL I IPOWER LEVELI

vel

Figure 5. Example level 2 competency.

The level 0 competency can still deal with

overtemperatures in the region of the receiver,
not by reducing its power level below the
minimum required for telecommand override,

but if necessar.y by powering down
neighbouring units. The structure and
functionality of the level 0 competency
ensures that this will happen automatically,
without explicit control by the level 2

competency or by ground operators

In a more complete example, this minimum

power level required to Maintain
Telecommand Override is a function of

spacecraft orientation, orbital height, position
in relation to ground control stations, the states
of a number of alternate transmitter system
modules, etc., so the Maintain Telecommand
Override competency emerges from a much

more complex interaction between a number
of modules.

Conclusion: The AUSTRALIS-I Spacecraft

Project and Ongoing Research

AUSTRALIS-1 is a microsatellite project

currently under development by a number of
Australian universities. Ongoing research with

the spacecraft control architecture described
here will be conducted in relation to the

AUSTRALIS-1 project. A comprehensive
control simulator for the satellite based upon
the described architecture is currently under

development. The outcome of simulation
studies will be a detailed control architecture

design, with well understood tradeoff studies
of different control system configurations.

Another major ongoing area of research will
consider the relationship between the logical
control structure and the physical

computational architecture upon which it is
implemented. It is particularly desirable to
define a hardware architecture compatible
with many possible mappings from the logical
control model to its implementational
structure. To this end, the hardware design

approach will follow the following sequence:

1. a basic set of modules will be defined

representing subsystems and/or
components required to achieve desired
spacecraft competencies in relation to the
specific requirements of the AUSTRALIS-
1 mission. Module definitions will include

the definition of outputs from the modules
(which are equivalent to sensor values or
status signals), inputs to the modules
(equivalent to actuator commands), the
different operational modes of each
module, the association of different sensor

outputs and actuator inputs with different
operational modes, and the definition of
the conditions under which transitions

between the different operational modes
will occur (both in response to command
inputs, to sensor values, and to internal
states). This set of modules will be
referred to as substrate modules, and

constitute the lowest level description of
the machine to be controlled.

° a generic module interface unit will be
defined at the physical and protocol levels.
The connection between any two modules
should be asynchronous, bidirectional, and
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configurablebetween1- and n-bit binary
numbers.

. each substrate module defined in step 1
will have a standard microprocessor-based
interface unit associated with it.

. in addition to the substrate modules, based

upon an estimate of overall bandwidth
requirements to achieve all levels of
competency (or a specified subset thereof),
a number of additional processing nodes
will be specified, each with a standard
interface, and a generic processor defined
in order to implement each additional
node. (The number and capacity of
additional nodes required will be explored

by simulation of the architecture.)

5. all behaviours will be integrated into a fully
connected control signal network via their
standard interfaces.

. each standard processor will in addition
have a dual-redundant connection to a

behavioural override processor (BOP).
The BOP will be able to download transfer

functions to each processor in the control
network, to allow downloading of software
implementing different logical control
architectures. The BOP will also be able to

drive each behaviour directly, or bypass
the behavioural control network

altogether.

A significant difference between spacecraft
and the mobile robots typically used to
explore the behavioural paradigm is the
explicit and substantial role of spacecraft as
data acquisition, conditioning, and
transmission systems. Options for
accommodating this function include
distributed routing of data via the behavioural
control network, or use of a more conventional

data communications topology (eg. a bus,
ring, or star network). The approach adopted
will be to provide for any of these
mechanisms:

7. a high speed asynchronous
communications link will be part of the
standard processor interface, with
multiplexed connections both to other

processors in the network and to the BOP

processor.

This control architecture will provide a
hardware platform that conforms with the
behavioural paradigm, but allows for
considerable experimentation with different

methods of mapping the logical control
structure onto the hardware structure. In

particular, the ability to download module
transfer functions from the BOP will support
experimentation with:

- dynamic control system reconfiguration
- adaptivity and learning of module transfer

functions, network topology, and
behaviours; ie. all of the control structure
above the substrate level

-the distribution and form of multiple
computational paradigms within the
behavioural framework

In-orbit experiments will comprise a series of
empirical evaluations aimed at refining and
evaluating different detailed logical control
models, the development of a software
architecture and mappings onto the hardware
architecture for each logical model, and
methods of achieving adaptivity and
robustness within these models, at increasing
levels of behavioural competence. The results
of the project will be valuable in defining and
understanding techniques for increasing the
autonomy of space systems in many diverse
applications.
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ABSTRACT

The National Oceanic and

Atmospheric Administration's

(NOAA) National Environmental

Satellite, Data, and Infor-

mation Service (NESDIS) is

responsible for the operation

of the NOAA geostationary and

polar orbiting satellites.

NESDIS provides a wide array of

operational meteorological and

oceanographic products and

services and operates various

computer and communication

systems on a 24-hour, seven

days per week schedule.

The Anomaly Reporting System

contains a database of

anomalous events regarding the

operations of the Geostationary

Operational Environmental

Satellite (GOES) , com-

munication, or computer systems

that have degraded or caused

the loss of GOES imagery. Data

is currently entered manually

via an automated query user

interface. There are 21 pos-

sible symptoms (e.g. , No Data) ,

and 73 possible causes (e.g.,

Sectorizer - World Weather

Building) of an anomalous

event. The determination of an

event's cause(s) is made by the

on-duty computer operator, who

enters the event in a paper-

based daily log, and by the

analyst entering the data into

the reporting system. The
determination of the event's

cause (s) impacts both the

operational status of these

systems, and the performance
evaluation of the on-site

computer and communication

operations contractor.

The Anomaly Reporting Expert

Assistant System (AREAS) is an

interactive, rule-based

demonstration prototype using

backward chaining goal-directed

inference. Upon input of a new

event's symptom, AREAS queries

a database of prior events with

associated symptoms and causes,

and then suggests possible

causes to the analyst. AREAS

reasons with the archived

events, a rule-based repre-

sentation of the satellite,

communication, and computer

subsystem's physical relation-

ships, heuristics acquired from

resident domain experts, and a

mean best fit of prior events

with the new event. Whether the

analyst confirms AREAS' sug-

gested cause or enters a new

one, the event, with its

related attributes, is entered

into the database and thus

provides an up-to-date
environment in which AREAS can

operate. AREAS includes a help

system designed to assist new

users and it provides technical

information, with graphical

representation, on the GOES,

communication and computer

subsystems.

Key Words : Knowledge-Based

System, Rule-Based, Backward

Chaining, Goal-Directed

Inference, Environmental

Satellite Systems, Anomalous

Event Diagnosis, Intelligent

Database
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INTRODUCTION the

The National Environmental

Satellite, Data, and Infor-

mation Service (NESDIS)

oversees the operation of

civilian satellite systems used

for Earth-observation, and the

creation and maintenance of

global databases in the

physical and life sciences.

NESDIS provides products and
services derived from

environmenta i data that are

applied to the protection of

people and property, national

economic systems, and the

development and distribution of

food, energy and other natural
resources on a national and

international level.

Figure 1 - GOES East in Orbit

NESDIS is responsible for the

operation and- maintenance of

the Geostationary Operational

Environmental Satellite (GOES) ,
located at I12 ° West as shown

in Figure 1 above, and the GOES

Data Distribution System

(GDDS) . It is staffed with

experienced meteorologists,

oceanographers, computer

specialists, and administrative

personnel, as well as employees

new to the environmental

satellite domain. A contractor,

PRC, Inc., provides com-

munications and computer

operations support for

GDDS.

Why Artificial Intelliqence?

NESDIS determined to evaluate

the potential of Artificial

Intelligence (AI) tools and

techniques in response to the

challenge of sensing,

communicating, processing,

analyzing and distributing

ever-increasing volumes of

environmenta i data and

products. This increase is due

to the larger number of ground-

based data collection systems,
satellites in orbit with

improved sensors, and

additional data shared by other

organizations, both public and

private, in the United States

and foreign nations.

OBJECTIVES

Four objectives were

established for the development
and demonstration of the

Anomaly Reporting Expert

Assistant System (AREAS)

prototype. They were:

i. Develop a help system for

anomaly reporting.

2. Increase personal knowledge

of GDDS.

3. Retain valuable GDDS exper-
tise.

4. Demonstrate the ability of

AI to improve administrative

and operational tasks.

CURRENT ANOMALY REPORTING

SYSTEM

As a result of a computer

generated error message or

other indicator, a computer

operator documents the problem

in the paper-based Envi-

ronmental Satellite

Distribution/Interactive

Processing Center (ESD/IPC)
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Daily Log. At the conclusion of

a shift, the shift supervisor

synopsizes the Daily Log

entries into multiple summary

reports including the

Operational Problem report. A

combined hardcopy daily report,

including the Daily Log and

Operational Problem report,

among others, is then distri-

buted to management and staff.

Each morning, contractor and

NESDIS personnel meet for a

short discussion of the most

critical issues encountered in

the previous 24 hours. On a

daily basis a NESDIS staff

member evaluates the Daily Log

and Operational Problem report

and enters appropriate

information into the Anomaly

Reporting System (ARS). The

staff shares this task on a

weekly, rotating basis.

The ARS queries the user for

the following information:

Julian Date
Satellite
Zulu Time

Symptom(s)
Number Products Affected

Probable Cause(s)
Responsible Division
Number Expected
Number Actuals
Number External Lost

The 21 possible symptoms and 73

possible causes are available

to the staff in hardcopy or in
an on-line text file. For

example:

SYMPTOM CODES

CODE # ENTRY

01 ...... DATA EARLY

i4 ...... NO DATA

21 ...... WRONG DATA

CAUSE CODES
CODE # ENTRY

01 ...... AIR COND/HEATING

53 ...... SECTORIZER-WWB

73 ...... VIRGS

Accompanying the hardcopy
symptom and cause list is a

GDDS Diagram, part of which is

shown in Figure 2. This diagram
is not available on-line in the

ARS.

The complete diagram (not shown

here) outlines the flow and

processing of data for the

major communications and

computer systems from the GOES

spacecraft to NOAA's facilities

at Wallops Island, Virginia,

and Suitland and Camp Springs,

Maryland . With this

information, along with other

available documents, assigned

staff must evaluate the Daily
Log and Operational Problem

report and determine the cause

of the anomalous event• After

determination of the problem's

cause and input of the data, a

daily report is produced for
dissemination.

ANOMALY REPORTING

ASSISTANT SYSTEM
EXPERT

1.0 Problem Identification

A loss of expertise was

recently suffered due to the

retirement and promotion of

several employees. New emp-
loyees needed access to the

lost expertise in order to

accurately determine the cause

of anomalous events and prevent

future occurrences, if

possible. The current ARS has
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Figure 2 - GDDS Diagram: WWB

no help system and several of

the new employees have limited

knowledge of the GDDS.

2.0 Knowledge Acquisition

Domain knowledge was acquired

through interviews with domain

experts, one of whom has since

retired. Extensive GDDS docu-

mentation, including the GDDS

Operations and Maintenance

Contract, was reviewed. In

addition, the current Anomaly

Reporting System, ESD/IPC Daily

Logs and Operational Problem

reports, Daily and Weekly ARS

reports were also analyzed.

3.0 Analysis and Design

The analysis and selection of

knowledge representation and

the development tool along with

the system design have been

integrated within a single

category. The intent is to

emphasize the real world
environment in Which all three

issues are frequently

considered concurrently,

especially during initial

prototyping.

3.1 Knowledge Representation

Evaluation of the existing data

indicated that an attribute/

value representation scheme
combined with rule-based

processing would be sufficient

for initial prototype

development. Since the current

ARS uses a query/response
interface it was decided to use

backward chaining, goal

directed inference to emulate

the existing process.
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3.2 Tool Selection 4.0 Prototyping

The criteria for tool

selection, in addition to those

identified above, were low

cost, a simple development

environment, and a short

learning curve. The tool

selected was Level5 Expert

System Software (DOS Version

1.3) by Information Builders,

Inc. This expert system shell

fit the identified small system

prototype requirements : a

default query/response

interface, symbolic represen-

tation used in an if/then rule-

base environment, and the need

to perform simple calculations.

3.3 System Design

The system design stressed

modularity for ease of

development, explanation, use,

and maintenance. The shell's

default user interface was

employed for the selection of

menu items and the input of
numeric data. Individual

knowledge base modules were

used for each of the primary

data items required for

inferencing. The help system's

customized graphic and

narrative explanation screens

were integrated through

Level5's explanation function

and separate knowledge base

modules. The help system

focused on the three maj or

components of the GDDS : the

satellite, data communications,

and computer processing

subsystems. A simple mean

statistical analysis was

provided through symptom

specific knowledge base
modules. This architecture is

demonstrated in Figure 3.,

below.

Modularity was a key issue

during the rapid prototyping of

AREAS since the knowledge

engineering process was being

used as a learning tool for the

GDDS environment. A large

number of small, easily

modified knowledge bases were

initially prototyped to

establish the relationship

among various data elements,

particularly between symptoms

and causes, and to model the

physical subsystems.

4.1 Knowledge Sources

4.1.1 Heuristic Knowledge

Heuristic knowledge was
obtained from the domain

experts through their

explanation of Daily Log and

Operational Problem report

entries and GDDS processing.

For example, the hardware

element designation "RTIR"

(i.e., RealTime InfraRed) is

not specified in the sectorizer

subsystem node of the Wallops

version of the GDDS Diagram,

but it was identified by one of

the domain experts as important

in distinguishing between

sectorizers at the World

Weather Building (WWB) and

those at Wallops Island. This

knowledge was then incorporated

into the rule base of AREAS.

4.1.2 Documentation

A number of different documents

were used as primary knowledge

sources. NESDIS Programs - NOAA

Satellite Operations identified

the organization's mission and

major systems used in carrying

out that mission. The GDDS

Operations and Maintenance

Contract was indispensable in

identifying subsystems and
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Figure 3 - AREAS Architecture

their constituent components. A

memorandum to all the

organizations responsible for

the GDDS operation explained

the use of ARS as, in part, an

!D_t_iQna_l_ too!. It included

the GDDS Diagram, of which the

WWB segment at Camp Springs,

Maryland is shown in Figure 2,

and the lists of possible

symptoms and causes. The

memorandum's express purpose
was to establish a common

framework in which to identify

and respond to anomalous

events.

4.1.3 ARS Database

Evaluation of the ARS data base

provided input to the data type

classifications used in AREAS,

as provided by the expert

system shell: numeric,

attribute/value, and string.

4.2 Process of Discovery

Since one of the objectives of

building AREAS was to gain

additional insights into GDDS,

AREAS had to be able to

represent GDDS physical

relationships among its

subsystems and components. For

example, the following

"identify symptom" rule

represents the interpretation

of, and the relationship

between, the shift supervisor' s

comment in the remarks column

of the Operational Problem Log

and the identified symptom.

RULE identify symptom
IF remark IS Short-SZ Halted in RCV

THEN symptom identified
AND_sympt6m IS Degraded Da£a

The remark, "Short - SZ Halted

in RCV," means the sectorizer's
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processing of the imagery

product's data set during

transmission was terminated

while in receive mode. The

symptom is thus classified as

degraded data (i.e., by

definition 50 percent or more

of the complete image was

produced and was of animation

quality). The next rule,

"identify responsible

organization," establishes the

relationship between the

identification of the satellite

and a specific sectorizer and

the organization responsible

for its operation.

RULE identify responsible

organization
IF symptom identified
AND satellite IS GOES East
AND hardware element IS Sectorizer

6All

THEN responsible division
identified

AND responsible division IS SSD

4.3 Help System

The help system provides query

specific information in

narrative and graphical formats

of crucial areas of the GDDS.

If the user doesn't understand

a particular query, such as

"What was the responsible

division?" a help screen is

available with additional

information explaining the

physical system relationships

and the organizations

responsible for their

oversight. Mutually supportive

information from different

documents is merged as well in

help screens. For example, a

glossary of terms such as the

one shown below was merged with

the GDDS Diagram in Figure 2,

above.

COMM RACK Communications Rack

DCS Data Collection System
IFFA Interactive Flash

Flood Analyzer
O & A Orbit and Attitude
SEXRS Sectorizers

SOCC Satellite Operations
Control Center

TELCO Telephone Data Lines
VAS VISSR Atmospheric

Sounder
VDUC VAS Data Utilization

Center
VIE VAS Interface

Electronics

VIRGS VISSR Image

Registration and
Gridding System

VISSR Visible and Infrared

Spin - Scan
Radiometer

XBAR Crossbar Switch

4.4 Statistical Analysis

The initial objective of a

statistical analysis of the ARS

data base was to provide the

user with background

information as to the apparent

relationships between symptoms

and causes. This was accomp-

lished through a simple mean

analysis of the type and number
of causes attributed to each

symptom. This analysis, coupled

with the rule output reviewed

above, produces a diagnosis as

shown below in Figure 4. The

user is then at liberty to

accept or reject the diagnosis.

4.5 Introduction of Knowledge-

Based Systems

The focus on simplicity of the

prototype's development,

architecture, purpose, and

operation was important. These

issues had to be easily

explainable to use AREAS as an

introduction of knowledge

engineering concepts. A basic

approach was taken in knowledge

acquisition, representation,

search, and inference for this

purpose.
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Based on the following information:

Julian Date:
Satellite:
Zulu Time:
Symptom:
Number of Products Affected:
Hardware Element:

Do you agree with the diagnosis below?

Probable Cause:
Responsible Division:

Yes

No

310
GOES East

02O0
No Data

1
SZ6A11

Sectorizer-WWB
SSD

Figure 4 - Diagnosis Screen

5.0 Verification and Validation

Verification was performed

through analysis of shell-

produced knowledge trees

linking all the goals, rules

and attributes in a given

knowledge base in a logical

order of precedence starting

with the top-level goal. Each

logical path throug h _ a

knowledge base was also

manually derived and tested.

Initial validation was

performed by comparing archived

results of doma in experts '

analyses £o system generated

conclusions, Subsequent

viiidation Was conducted by

domain experts through the
evaluation of results from test

data sets processed by AREAS.

6.0 Test and Evaluation

The qualitative test and

evaluation Of the AREAS

demonstration prototype focused

on its potential use as a help

system in identifying the

Symp£oms and causes of
anomalous events. Feedback from

user surveys indicated: _

- a positive reaction to the

display of statistical data but

a need to further highlight

only the most prevalent

symptom/cause ratios;

- a desire to have AREAS

= identify _ individual ....._DDS

components and their output of

specific pr0ducts (i,e.,

products are currently assigned

identification codes and are

logically linked to specific

hardware elements within GDDS);
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- approval of the graphics used

but a request for more detail

in representing GDDS subsystems

and components;

- the need to allow multiple

symptom identifications for a

single anomalous event (e.g.,

the symptoms Data Incomplete

and Degraded Data can be

specified for a single event in

the current ARS), and the

ability to generate multiple

symptom/cause records per

report; and

- support for the ability to

easily review input prior to

data base update and subsequent

report generation.

CONCLUSION

Part, but not al i, of each

objective was accomplished in

the development and

demonstration of AREAS:

i. Develop a help system for

anomaly reporting.

The current ARS has no help

feature. One of the expressed

purposes for users and new

employees using the ARS is to
train them in the nomenclature

and processes of the GDDS. One

of the primary objectives of

AREAS was the linkage of

relevant narrative and

graphical information to

specific user queries. Based on

user feedback AREAS has made an

important step in identifying
user needs in the successful

analysis of anomalous events in

GDDS.

2. Increase personal knowledge

of GDDS.

The author is a novice with

satellite-based systems but

experienced in knowledge-based

systems development. Through

the development of AREAS and

preparation of this paper, he

was able to take advantage of

the process of discovery

highlighted by the knowledge

engineering process to gain a

better understanding of the

GDDS.

3. Retain valuable GDDS exper-

tise.

The retirement and promotion of

several employees who were very

experienced in the GDDS created

a potential problem for new

employees assigned to anomalous

event tracking and analysis.

Part of their expertise,

through the knowledge

engineering process, was

captured for use through AREAS.

4. Demonstrate the ability of

AI to improve administrative

and operational tasks.

The only automated tool
available within ARS to search

the database requires the user

to possess a clear idea of what

is being searched for and

familiarity with the data types

and structures employed. The

purpose in providing the user

with a simple mean analysis of

the data represents the initial

step in providing ready access

to analytical tools and

results. These tools, when

augmented by heuristic rules to

constrain the search space,

provide a reasonable method of

diagnosis to assist the user in

making decisions. In the future

these results may identify

potential trends in specific

GDDS subsystems and hardware

elements, as well as processing

methodologies.

AREAS, with its focus on

simplicity, provides the
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opportunity to introduce

knowledge-based systems

concepts, development and use

to employees in a direct,

hands-on way. It highlights the

value of knowledge engineering

as a process of discovery. It

also demonstrates the ability

to harness the knowledge of

disparate sources of

information and provides a

focus for that knowledge on

problem-solving in the domain

of anomalous event diagnosis
for environmental satellite

systems.
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Abstract

In this paper we discuss a neural network architecture (the Probabilistic Neural Net or

the PNN) that, to the best of our knowledge, has not previously been applied to remotely
sensed data. The PNN is a supervised non-parametric classification algorithnl as opposed to

the Gaussian maximum likelihood classifier (GMLC).
The PNN works by fitting a Gaussian kernel to each training point. The width of the

Gaussian is controlled by a tuning parameter called the window width. If very small widths are

used, the method is equivalent to the nearest neighbour method. For large windows, the PNN
behaves like the GMLC.

The basic implementation of the PNN requires no training time at. all. In this respect it

is far better than the commonly used Backpropagation neural network which can be shown to

take O(N 6) time for training where N is the dimensionality of the input vector. In addition the

PNN can be implemented in a feedforward mode in hardware. The disadvantage of the PNN is

that it requires all the training data to be stored. Some solutions to this problem are discussed

in the paper.
Finally, we discuss the accuracy of the PNN with respect to the GMLC and the Backprop-

agation neural network (BPNN). The PNN is shown to be better than GMLC and not as good

as the BPNN with regards to classification accuracy.

1 Introduction

High performance computers and Sol)histicated sensors are responsible for the explosive generation

of data for scientific, industrial and colnmercial uses. NASA faces the same data glut with its current

and future missions (including the Earth Observing System and Tropical Rainfall Measuring Mission

platforms). At NASA's Godda.rd Space Flight Center, the Intelligent Data Management group

(IDM), within the Information Science and Technology Office (ISTO), has been investigating and

developing data and information management systems that can handle the archiving and querying

of data produced by Earth and space missions with fast response times. This work has resulted in

an Intelligent Information Fusion System (IIFS) for handling and archiving terabyte-sized spatial
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databases; and Schecluler/Planner Under Deadlines (SPUDS) to guarantee that response times are

maintained [CCS92]. Our current data source of applications is remotely sensed images, t{owever,
IIFS and SPUDS are not inherently limited to this data source, having been conceived as general

purpose tools.

IDM's research into neural networks has been ongoing since 1989 [CIIC89] starting with re-

search into the applicability of the backpropagation paradigm to remotely sensed images. This work

has continued, resulting in comparisons of backpropagation with conventional Gaussian Maximum

likelihood classification [CCB92]. Within IIFS/SPUDS, the neural networks act a.s high speed, low

level image classifiers with higher level domain knowledge being provided by decision trees and

expert, systems. The combination of IIFS and SPUDS provides a. scientist with tile means to access

a database based on image content at varying levels of resolution.

For IDM's purposes, the data glut problem can be divided into two parts. The first pal'!
deals with efficient characterization of the data and subsequent archival processes. The second

part deals with efficient querying of the data based on 1)la.tform, content, and spatial and temporal

constraints. This paper will deal with the characterization of satellite images and the attendant

problems. In particular we discuss the pros and cons of the Probabilistic Neural Network (PNN)

with respect to high speed data classification.

In the following text, the PNN is first described. Next, we discuss the a.dvanlages of the

PNN with respect to backpropagatiou neural networks (BPNN) and Gaussian Maximum Likelihood

Classifiers (GMLC). As a way of addressing the shortcomings of the PNN, we introduce Kohonen's

Learning Vector Quantization (LVQ) which helps increase the feedforward speed of the PNN. We

then apply' the PNN to an image of the Blackhills in South Dakota and discuss the quality' of

the output.. D,Te conclude with a summary of the main results of the paper and reveal our future

research plans.

2 The Probabilistic Neural Network (PNN) architecture

The roots of the PNN lie in the histogram evaluation techniques that date back to 1661 ([TTT,R],

[TK76]). Whereas the histogram uses rectangular boxes and quantizes the data axes, the kernel

method chooses not to quantize the data axes, instead placing a kernel at each data point in

multidimensional space. For an illustration of this process see [Si186]. In the following discussion,

the density estimates are obtained from a set of 7_.observed data vectors X1,... ,Xn. The actual

density is denoted by f(x) and the estimate of the density by f(x).

The multivariate estimate of density [Si186] with kernel K and window width er is written as

f(x)-1 _K{l(x-Xi)}. (1)
7_o'd i=1

The kernel function satisfies

fR K(x)dx = 1. (2)
d

Usually the kernel is a unimodal, everywhere positive fu|tction. The use of non positive kernels is

still an open research question.
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The Gaussian kernel (also discussed ill the next section) can be written as

K(x) = (2_) -d/2 exp(--_xTx).
(3)

The kernel function and the smoothing parameter are the two choices to be made in tile case

of density estimates using the kernel method. Research has shown that the choice of kernel does

not greatly vary the density estimate [Si186]. All things being equal, it is then desirable to choose

kernels based on their computational properties. We will address this issue in section 2.4.

2.1 Discriminant functions

Given K classes, let f(X I Sk) be the probability density function (pdf) associated with the

measurement vector X, given that X is from class k. Let P(Sk) be the a priori probability of class

Sk. We can use the maximum a posteriori (MAP) decision rule to identify the class to which X

belongs. It can be stated as follows ([Andr2]):

Decide X E Sk iff f(X [ ,5'k)P(Sk) >_ f(X] Sj)P(Sj), j = O, 1, ... ill - 1 ,

where the products f(X [ Sk)P(S_) correspond to discriminant functions, and there are M classes
for which discriminant functions are defined. As stated, the MAP rule consists of evaluating the

discriminant functions and selecting the maximum as the winner.

Estimating the density function is a key problem in MAP estimation. If the underlying

density of each class were known, the problem would be an easy one. In fact., the Gaussian

Maximum Likelihood Classifier (GMLC) simplifies the problem of density estimation by assuming

that f(X I Sk) is a multi-variate normal pdf whose parameters (the mean vector and the variance

covariance matrix) can be determined by samples conditioned on class Sk.

The probabilistic neural net (PNN) was designed by Specht [Spe90] using Parzen's [Par62]

kernel function:

1 1 Eexp _(X - Wki)T(x -- Wki)
f(X I Sk) = (.2rc)d/2a d Pk i=1 2o'2 "

(4)

Note that Parzen's kernel is the same as the Gaussian kernel of equation (3). In equation (4)

Wki is the i th training pattern from the 0 < k *h _< M - 1 category, Pk is the total number of

training patterns in class k, d is the dimension of the training pattern Wki, and a is a "smoothing

According to Specht, a small value of a caused the density to have modes at the sites of the training

samples. Increasing a causes smoothing of the surface around the modes. In the limiting case, the

pdf is Gaussian regardless of the true nature of the uuderlying distribution. This may seem to be

a problem; however, according to Specht, " it is not difficult to find a good value of or, and ... the

misclassification rate does not change dramatically with small changes in or."

2.2 PNN implementation details

The PNN can be implemented using a feed forward network. An overview of the PNN is shown in

Figure 1. There are four layers. The input layer fans out the input d dimensional vector which has
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to beplacedin oneof M classes. Each node in the input layer is connected to every node in the

pattern layer and input vector components are transformed by means of a weight I'IQ,j connecting
the i th input node to the jth pattern node. The pattern layer is subdMded into sets of nodes. Each

set of nodes does the processing for a particular class. Since there are M classes, there are M sets

of pattern nodes. The output of each pattern node set is sent to a node in the summation layer,

thus there are M nodes in the summation layer. Finally, the outputs of the summation layer nodes

are sent to the decision layer which obtains the maximum output Ok, k = 0,..., 31- 1, and assigns
the input vector X to class/,:.

(X-Wk')r(X-Wk') is exponentiated. This product can be written asIn equation (4) - 2_,_

xTw - 1 if both input and weight vectors are converted to unit vectors, as shown in Figure

2 (a). After the dot product is completed, 1 is subtracted from the total and this is multipied by

_-2 after which the exponentiation is performed. At the end of this step one of the terms in the

sum of equation (4) has been evaluated.

If the input and weight vectors are not converted to unit vectors, then the architecture of

the PNN as shown in Figure 2 (a) can be changed to reflect this. It should be mentioned here that

using unit vectors changes the kernel evaluation from a dot product and two vector subtractions

to a single dot product and a scalar subtraction. The disadvaiitage to the dot product method is

that magnitude information, that may be useful during the classification process, is lost. On the

other hand if our vectors all contain integers, the kernel evaluation process may be done efficiently

using integer computations and the (lot product method dispensed with entirely.

A summation layer node contains an adder tiiat sums up the outputs of all the pattern nodes
1

in a particular set and then multiplies the output by (2_)e/2_dp_. as shown in Figure2 (b). Thus

the summation layer represents the summing process of equation (4).

The decision layer obtains the maximum of the summation layer outputs, and the class to

which a given input vector X belongs is finally output.

The PNN is trained by first converting the traiuing exemplars to unit vectors. Next each

connection between the input node and a pattern node is assigned a weight which is nothing but

an element from the unit training vector. Thus the number of pattern layer nodes corresponds to

the number of training vectors and each weight between illput and pattern layer nodes corresponds

to an element of a training vector. Once training has been done, the network is ready for use in

feed-forward mode. The only input parameter from the user in feed forward mode is _r. A good

heuristic method for selection cr is described in [KF72]. In this method the smoothing parameter is

given by a = (d-ltr [C])I/2N-_/d. llere, C is the covariance matrix estimated from the data, d is

the dimensions of the data., tr is the trace era matrix, N is the number of samples and 0 < a < 0.5.
Computing C would make the PNN training time identical to the Gaussian maximum likelihood

,+estimator, thereby eliminating its main advantage. In [MAC_. 92], Radial Basis Functions (of which

PNN's are a part) are used to reduce the number of hidden nodes by obtaining the covariance C

matrix of samples and also to obtain the widths of the kernel functions. While the RBF approach

of [MAC+92] is useful, we have found that a can take on a reasonably large range of values without

seriously affecting accuracy, hence our adherence to the PNN paradigm. A discussion of the results

pertaining to our choice of cr is given in section 3.2.
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Figure 2: Details of pattern and summation layers
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2.3 PNN advantages and disadvantages

In this subsectionwediscusstlle advantagesand disadvantagesof usingPNNs. In particularwe
focuson training time, retrainingtime, robustnessto weightmodification,computationalload and
memory requirements.

Advantages

1. Training time for the PNN is proportional to the total number of data vectors. In back-

propagation the training time is roughly O(d 6) [CCB92] where d is the dimensionality of the

input vector. Also, the weights in the resulting backpropagation network do not bear any

relationship to the training data and therefore are difficult to interpret. Depending on the

flavor of the BPNN chosen, there are several parameters whose values have to be selected

through heuristic means. These can affect the accuracy and generalization capability of the
net.

For example, a BPNN of the type described in [IIKP91] requires that we randomly initialize

the weights. The learning rate and the momentum are two additional parameters to be

chosen. Different choices of these fi'ee parameters lead to different neural networks with

different classification abilities. With the PNN there is only one fl'ee parameter a to be

chosen and with the negligible training time, many different nets can quickly be constructed
with different values of a and the best one chosen.

2. Retraining the PNN is easy since the hidden layer can be pruned or enlarged on demand.

When a new data vector is received, it can be inserted as a node in the appropriate position

in the pattern layer, and the weight connections are made fl'om this node to the input layer.

This is an O(d) process and an attractive feature when compared to BPNN, since the BPNN

must be retrained (though not fi'om scratch [SI187]) when new data arrive or when data from

the original training set is removed.

3. The PNN is robust to weight removal. Infact, the weight removal and adjustlnent is the basis

for the pruned PNN (PPNN). Our studies (which are also backed up by other recent work

[Bur91]) indicate that the number of nodes in the pattern layer can be reduced by considerable

amounts and yet give very accurate results. For further discussion on this see section 3.2. In

contrast, due to the compact nature of the BPNN, weight deletion/node removal may severely

impact classification accuracy.

Disadvantages

1. Since the entire training set is kept (and not an encoded version of it, as in the BPNN), the

size of the hidden layer is very large as compared to the BPNN. This would be a shortcoming

in computing environments where memory is scarce.

2. Processing speed is slower than BPNN since each input vector has to be evaluated over the

entire training set. In a previous publication [CCB92], we have shown that the classification

speed for a single input vector for the BPNN is O(d2), where d is the length of the input

vector. For the PNN, the speed is O(MPkd2), where M is the total number of classes and Pk

is the number of exemplars in class .S'k. On the surface, this would make the PNN and the

BPNN have the same execution time. tIowever, according to Kalayeh and Landgrebe [KL83],
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for accurateclassificationPk is proportional to d. ttence, in practice the network would have

a speed that is C9(d3).

From our discussion, it is evident that the PNN would be very well suited for exploring

dynamic environments. Such environments are commonplace in many scientific investigations of

data. One of the goals of IDM's IIFS/SPUDS is the high speed classification of data into discipline

specific indices for potential users of the system. In its computationally inefficient form, the PNN

is incompatible with these goals. In the next section we address this major disadvantage of the
PNN.

2.4 Speeding up feed-forward implementations of the PNN

The major disadvantage of the PNN is that all the training data are retained in the form of weights.

This data can grow extremely large, making feed-forward evaluation of input vectors impossible in

real time. One interesting way to prune the hidden layer is described in [Bur91]. In this paper, the

author suggests that the data in the hidden layer be pruned using the Learning Vector Quantization

algorithm of Kohonen [Koh89]. Unlike [Bur91], where the pruned PNN was applied to simulated

bivariate uniform and Gaussian distributions, we apply it to higher dilnensional data from real

distributions. The LVQ method can be implemented as a feed-forward neural network working

in both supervised and unsupervised mode [Sim90]. In the following paragraphs, we give a brief

description of the algorithm in its supervised form. For more details the reader is referred to

[HKP9t].

In LVQ we are given a set of input vectors X_ where X_ represents the i tt_ vector from class

Sk, i = 1,...Pk and Pk is the number of training patterns in class ,S'k. We select il[k vectors per

class to represent the Pk vectors where 3lk << Pk. We choose the minimum ."ilk < Pj.. such tha!

an acceptable level of accuracy is obtained when the Pk vectors are replaced by the Mj: vectors in

feedforward mode. This boils down to a trade off between computational efficiency and accuracy

and will depend on the user's application. In this network, the initial weight vectors w_ are

randomly chosen and a training vector is applied to the neural net input. For each weight vector a

set of distances w_ - X_] is calculated and the smallest one (denoted by" w_.) is chosen from this

set. Next we move this weight closer to the input vector by the following update rules:

Aw_. = { +o(t)[X_- w_:] if class is correct-o(t)[X_ w_.] if class is incorrect (5)

In equation (5) a,(t) is the learning rate at. time (or iteration level) t. The value of ct(t) decreases

as the number of iterations in the learning process increases. A common choice is o(t) = t -1

The number of iterations is denoted by t,_, and its range is 500 _< t,n_. <_ 10000. Our practical

experience indicates that choosing t,,_: in the range above is sufficient for convergence. In fact,

using t,n_ > 500 did not lead to great increases in accuracy.

Now the key point in the LVQ pruning of the PNN is that 3I_ << Pk, i.e., the number of

prototype vectors 21Ik is much less than the number of vectors P_ in the hidden layer, yet gives

an adequate representation of all the Pk vectors in that class. Hence, the time for feedforward

classification of input vectors can be decreased, and the memory requirements reduced. We have

performed experiments in pruning the PNN so as to improve the feedforwa.rd speed. These results
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Table1: Distributionof data, Blackhills, South Dakota

Training Entire image Class name

No. of pixels No. ofpixels USGS - Level I

0 453

1 478

2 464

3 482

4 0

5 0

6 368

7 0

8 0

6676

,12432

16727

194868

Urban

Agricultural

Rangeland
Forested Land

0

0

1-141

0

0

Water bodies

Wetland

Barren

Tundra

Perennial snow and ice

are presented in section 3.2, Table 3 and indicate that pruning tile PNN is a viable computational
scheme.

3 Application of the PNN to remote-sensing

In this section we describe the data on which we tested our PNN, discuss the selection process that

we employed for the training and testing data, elaborate upon the training and testing methodology
used, and finally, present results for the basic PNN and the LVQ pruned version of the PNN.

3.1 Description of data set

The data set that was used for training and testing the PNN is called the Blackhitls data set,

generated by the Landsat 2 multispectral scanner (MSS) (see Figure 3). This data set was previously
used to compare backpropagation neural networks with Gaussian maximum likelihood classification

in [CCB92]. The spectral bands are 0.5 - 0.6pro (green), 0.6 - O.Tttm (red), 0.8 - 1.1pro (near-

infrared). These bands correspond to channels 4 through 7 of the Landsat sensors. There are

262,144 pixels corresponding to a 512 x 512 image size, and each pixel represents approximately

79m x 79m on the ground. The image region covers a range of latitudes from 44°15 ' to 44030 '

and longitudes from 103030 , to I03°45'; the images were obtained in September 1973. The ground

reference data set was also provided in the form of United States Geological Survey level II land

use/land cover data [AHRW76]. Since we were only interested in level I classification, the different

classes were conglomerated into the various higher level classes in the hierarchy; the distribution

of pixels is shown in column three of Table 1. For example, from Table 1 we know that there are a

total of 6676 pixels in the urban class, ,153 of which were used for training the PNN.
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3.2 Training and testing the PNN

Tile groundreferencedatasetwasviewedona displaydeviceto get anideaof thespatialdistribu-
tionof thegroundreferencedatapizels.Accordingto [Ric86],amininaumsamplesizeof 60pixelsis
necessaryfor accurateclassification.Also,accordingto [Cam87],a largenumberof smallertraining
sitesshouldbe usedrather than a fewlargeones. Followingtheserecommendations,we formed
training setsfrom the Blackhillsdataset. The distribution of training samplesis summarizedin
columntwoof Table1.

The PNNclassifieris derivedfl'omthetraininggroupandthe errorestimateol)tainedfi'om
the test group. This methodis knownastile _qmldout"or H methodof estimatingerrors. Wc
do not usethe leaving-one out method of training and testing as described in [WK89] since this

method is extremely time consuming and only leads to marginally better accuracy [KC68] in testing

for large data sets (which is the case for us).

Results for testing the trained PNN on the image are shown in the contingency table (Table

4). Each entry Cij in the matrix represents the number of times a pixel in class i was put into class
j. Cii is the number of correct cla.ssifications in class i. In Table 4 the left. hand side set of values

represents the classification results of the Unpruned PNN (UPNN) while the pruned PNN (PPNN)

results are on the right. The percent correctly classified (PCC.) for the UPNN is 0.697, while it is

0.737 for the PPNN. While a 4% difference might seem small, for a 512 x 512 image this amounts

to approximately 10,000 additional pixels being correctly classified. The future generation of Earth

orbiting platforms will transmit terabytes to petabytes of data, so small percentage changes in

accuracy of classification will lead to large absolute changes in classification accuracy.

A closer look at Table ,l) indicates that for forest and urban land cover classes (categories

0 and 3), the PPNN performs better whereas in the other cases, it is not as good. This can be

explained on the basis that categories 0 and 3 have less spread in their data vectors (i.e., they are

clustered very tightly), hence representing them by a smaller set of vectors leads t:o no degradation

in classification ability. However the samples of the other classes (1, 2, 6) have a larger in-class

variability and hence their multi(limensional spatial clusters are not compact leading to poorer

representation by a smaller set of vectors.

To study the change in the classification ability of the UPNN with a, we varied cr in incre-

ments of 2 from 2 through 12, with the entire training set being used. The results are presented in

Table 2. The results indicate that there is some variability in the classification with a a.nd that as

a grows larger, the UPNN PCC tends toward the Gaussian Maximum Likelihood Estimate with

PCC = 0.653 as discussed in [CCB92].

Another test that we performed was to see the variability of the neural net accuracy as we

changed the number of hidden nodes in the PPNN. In this test, a = 4 since that was the case for

which we got maximum PCC in the unpruned PNN. These results are shown in Table 3. We found

that as the number of nodes increased there was a general increase ill the accuracy of the PPNN.

The four node case is an anomaly, since some classes were classified well while other classes were

classified extremely poorly (to the extent of having less than 25 pixels put in the rangeland class.

i.e., about 0.1% of the total number of pixels).
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Groug:8

0 Urh_

1 Agric.

12 Range
I 3 Forest

16 Barren

Figure 3: Ground reference data for Ihe Blackhills image

Tal}le 2: Variation of PC<' with cr

PC( 0677 0097 06_5 067,1 0670 0067

- iTable 3: Variation of P .( with number of nodes/class

,lod{,_/cla,_t _ll 101 201 _:,01 80
PCC] 0.74-1 1 0.720 i 0.72i IT:rat107 2
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Figure 4: PNN classified Blackhills da,taset

Table 4: Contingency table for PNN; Raw PNN oll left, with cr = 4 (PCC = 0.697); PNN LVQ

combination on right with a = 4 (PCC = 0.737)

0 1 2 3 6 Total pixels 0 1 2 3 6

0 0.410 0.165 0.228 0.153 0.044

1 0.162 0.418 0.378 0.035 0.007

2 0.110 0.286 0.532 0.071 0.002

3 0.009 0.064 0.139 0.785 0.003

6 0.196 0.118 0.128 0.177 0.381

6623

4195,,1

16263

194386

1073

0.509 0.090 0.147 0.172 0.083

0.215 0.09 0.1,17 0.172 0.0,_3

0.114 0.245 0.381 0.129 0.132

0.010 0.070 0.0,ll 0.861 0.01_

0.257 0.065 0.056 0.531 0.088
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4 Concluding remarks and future work

In this research, we have described tile Probabilistic Neural Network (PNN) and have applied it to

remotely sensed imagery. The accuracy oblained 1)y the PNN is better than the Gaussian Maximunl

Likelihood Classifier (GMLC) and no! as good as the Backpropagation Neural Network (BPNN).

On the other hand, the training time in the PNN is very small when compared to the other two

methods. In addition the network is robust to weight changes and has very small retraining time,

making it highly suitable for highly variable and dynamic environments. A modified version of the

PNN (LVQ PNN or PPNN) was discussed and compared with the raw PNN. Fox the chosen data

set., the PPNN performed better than lhe raw PNN. =..........

Future work includes additional research on the PNN and using the PNN in applications,

as described next.

4.1 Planned extensions to the PNN

As has already been discussed, it is sensible to automate the prunTug of the PNN. In this process

the number of nodes in each class wouhl be allowed to grow or decrease independently of each other

such that the PCC per class would be optimized.

In addition, the PNN algorithms described throughout the palper are all readily adaptable

for a parallel architecture implementation, most likely on a machine such as the MasPar MP-1, a

16,384 processing dement SIMD machine.

4.2 Incorporation of the PNN into a metastrategy

The Intelligent Data Management group has developed a nulnber of automatic characterization

algorithms drawn from backpropagation networks, PNN, Adaptive Resonance Theory (ART) net-

works [CG87], decision trees, Fourier analysis and wavelet theory. Each of these methods has its

own unique strengths and weaknesses, and there are cases where one may falter while another

excels. We plan to attempt to develop a metastrategy that draws on its knowledge of each of these

techniques to produce a hybrid characterization algorithm that performs at least, as well as any

single one of these components [Fin90].
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ABSTRACT

Image analysis often starts with some

preliminary segmentation which provides a

representation of the scene needed for further

interpretation. Segmentation can be performed in

several ways, which are categorized as pixel-

based, edge-based, and region-based. Each of

these approaches are affected differently by

various factors, and the final result may be

improved by integrating several or all of these

methods, thus taking advantage of their

complementary nature.

In this paper, we propose an approach that

integrates pixel-based and edge-based results by

utilizing an iterative relaxation technique. This

approach has been implemented on a massively

parallel computer and tested on some remotely

sensed imagery from the Landsat-Thematic

Mapper (TM) sensor.

1. INTRODUCTION

After pre-processing of some original data,

image segmentation is the process which

generates a spatial description of an image as a

set of specific parts, regions or objects. The

"segmented" output is then utilized by a higher-

level image interpretation process. There is no

single standard approach to segmentation which

would be "successful" for any type of data, but

some general methods have been developed

based on the two main characteristics of regions

or objects in an image:

(1) each region or object exhibits an internal

uniformity with respect to some image

property (e.g., gray level, color, texture),

(2) each region or object presents some

contrast with its surroundings.

These two properties lead to three different

types of segmentations, pixel-based, region-

based and edge-based segmentations.

Each of these approaches is affected

differently by various factors. Pixel-based

methods form their decision only based on the

information given at each pixel, while the two

other types of segmentation take into account the

information contained in the surrounding pixels.

Usually in a pixel-based approach, all of the

original information is utilized, thus avoiding a

selection process. Such methods are also easier

to integrate in a learning process, but their main
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drawback is that they do not take into account

spatial information. Conversely, edge- and

region-based approaches base their decision on

spatial information. Edge-based methods

measure the variation of intensity between pixels

belonging to different objects; they may produce

excellent results for unevenly illuminated images,

but they also can be very sensitive to noise.

Region-based approaches, which measure the

internal uniformity of some intensity or texture

function, often produce spurious segmentation

under non-uniform lighting conditions, but are

usually less sensitive to noise.

In general, these three types of

segmentation may be improved by integrating

them and by taking advantage of their

complementary nature. We previously proposed

an approach that integrates region segmentation

and edge detection results by interpreting a binary

tree representation (Le Moigne, 1992), thus

producing a refined region segmentation. This

algorithm has been tested on Landsat-TM data.

The integration of edge and region data may also

be performed by a relaxation method and has

been proposed in (Le Moigne, 1989); in the work

described in this paper,we refine this relaxation

method for the purpose of integrating edge and

classification information and we implement it on

a massively parallel computer, the MasPar MP-1.

Then, we test this approach on remotely sensed

imagery, such as Landsat-TM data.

2. RELAXATION TECHNIQUES

a. Overview

A large number of iterative relaxation

schemes have been proposed to improve the

results given by such basic processes as edge

detection, region segmentation or pixel

classification (Davis, 198I; Hummel, 1987;

Faugeras, 1981; Peleg, 1980; Zucker, 1977).

The principle of these algorithms is to utilize

contextual information

the initial labeling of the

optimal labeling.We

for iteratively changing

objects in a scene toward

will concentrate on

relaxation methods for which the decisions at

each point are taken in a probabilistic fashion.

This general class of relaxation techniques is

described in (Davis, 1981). Let us assume that

we have a set of N objects {O1, O 2 ..... ON}

(e.g., the pixels) to be labeled into one of L
n

classes {C1, C2 ..... CL] and that Pi [Ck] is the

probability that the object Oi is assigned to the

class Ck at the iteration n. The principle of the

relaxation algorithms, then, is to build a series of

probability sets {pn[ck] ;1 < i < N; 1 < k _<L},

where each new iteration step, n, adjusts the

probabilities according to the contextual

information, and these probabilities satisfy the

conditions (1) and (2):

for every i, for every k,
n

0 < Pi[Ck] < 1, (1)
and

k

for every i, ____pn[ck] = 1. (2)

k=l

Thus, the problem is to define the updating
rl

formula for Pi [Ckl. The simplest updating (which

we use in this work) is described below.

The relaxation scheme assumes that the

class assignments of each object depend on the

class assignment of the "other" objects; the

"other" objects can be defined, for example, by

neighboring objects. Therefore, we define
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c[i,k;j,l] as the compatibility coefficient between

the object Oi with the label Ck and the object Oj

with the label Cl. We assume that the c[i,k;j,I]'s

belong to the range interval [0,+1] and are

positive if there is compatibility and equal to 0 if

there is high incompatibility. The coefficient

c[i,k;j,l] can be defined as a conditional

probability, p(i _ Ck/j _ CI), which provides a
n

probabilistic framework. Let qi [Ck] be the global

compatibility for the object Oi with the label Ck; it

is defined by

qn[ck] 1 j=V[i] I=L- c[i,k;j,1] (3)
V[i] j=_l 1_1 pj[C1]

where Viii is the number of objects in the
n

neighborhood of object Oi. Then qi [Ck] is the
• . . n

"increment" which is apphed to update Pi [Ck]
• • (n+l)"

and compute the new probablhty set {Pi [Ck]}

(see (Davis, 1981) for details):

pn[ck] x qn[ Ck]

pn+l [Ck] - 1--L

'_ nPn[C1] × qi[C1]

(4)

1=1

This multiplication still ensures that the

conditions (1) and (2) are satisfied. Besides, if

the global compatibility of the object Oi with the

label Ck is higher than all the compatibilities of

Oi with the other labels CI, then the pn[ck]'S

increase relative to the other pn[Cll'S. That means

that this scheme provides an overall improvement

of the labeling but it does not guarantee the

convergence toward stable labeling.

Other relaxation schemes (Faugeras, 1981;

Peleg, 1980) utilize different formulas or

different frameworks. For example in (Faugeras,

1981), another way of updating the probabilities

pn[ck] is given; the principle of this other method

is to minimize a criterion by the "projected

gradient" optimization method. The criterion

measures the ambiguity and the consistency of

the current labeling at each step. This algorithm

provides us with a converging sequence of

probabilities pn. Starting from an initial point p0,

the method converges toward a local minimum in

the vicinity of p0.

b. Utilizing Relaxation to Integrate
Disparate Information

We now describe how a relaxation

technique, such as the one described above, can

be utilized to integrate knowledge from edge

detection and pixel classification.

Previously, Zucker and Hummel (Zucker,

1977) simultaneously used edge and region data

in a relaxation process for labeling dots. Their

goal was to provide a low-level description of the

roles of dots in cluster analysis. Unlike our

approach, they used these two types of data

"equally", i.e., both edges and regions defined

the labels and the initial probabilities. There were

ten different labels, with eight edge labels at

various orientations, one "region" label called

"interior point" label, and one "noise" label.

In our approach, the labels are all region

labels, and edge data are utilized to update the

labeling by way of the compatibility coefficients.

This approach tends to be more general and this

algorithm can be very easily applied to the fusion

of various types of data. In our work, the
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definition of the labels and the initial probabilities

are provided by a neural network pixel

classification (Chettri, 1992), then the relaxation

process updates the initial labeling by using some

edge detection results, e.g., from a Canny

operator (Canny, 1986). These standard

techniques, pixel classification and edge

detection, can easily be changed without altering

the definition of the overall relaxation algorithm.

Once the initial probabilities are given, the

fusion is realized by computing the

compatibilities between neighboring pixels.

Coefficients c[i,k;j,1] in formula (3) represent the

compatibilities between object Oi with the label

Ck and object Oj with the label C1. If a relaxation

is performed only on regions, these coefficients

represent the compatibilities of neighboring

pixels belonging to given regions. If both regions

and edges are considered, both information can

be integrated into the compatibility coefficients by

utilizing the following equation:

c[i,k;j,1]= pr(Ck/C1) x Fk&l(i,j) (5)

where pr(Ck/Cl) is the "region-probability"

(independent of edges) of i belonging to the class

Ck if the neighbor j belongs to the class C1; this

probability could be estimated from some

previous ground truth data. The last term in Eq.

(5), Fk&l(i,j), is a function that varies in [0,11 and

isl

-closer to 1 if Ck = CI (or, more generally, if

regions C'k and CI are similar in tone) and i is not

an edge point, or if regions Ck and CI are

different and i is an edge point,

- closer to 0 if Ck = CI and i is an edge point, or

if regions Ck and CI are different and i is not an

edge point.

For example, F can be defined by:

Fk&l(i,j) = Kk&l x Mag(i)

+ (1- Kk&l ) x (1- Mag(i) )

where Kk&l is equal to 0 if k=l and equal to 1 if

k_:l, and Mag(i) is the magnitude of the gradient

computed at the point i and normalized between 0

and 1.

The magnitude of the gradient at neighboring

point j would also be taken into account and we

could utilize the following formula:

Fk&l(i,j)= Kk&l x Mag(i) x Mag(j)

+ (1- Kk&l ) x (1- Mag(i) x Mag(j) ).

This updating has not been implemented yet, but

will be considered in future work.

Therefore, both region and edge

information participate simultaneously in the

updating of the labeling. Results are presented in

Section 4.

3.PARALLEL IMPLEMENTATION

Computation time is the main concern of

relaxation techniques. However these techniques

are characterized by parallel local processing

which can be easily implemented on an

architecture that favors computations between

adjacent pixels (Fishier, 1987). The method

discussed in this paper has been implemented on

a MasPar MP-1. The MasPar Parallel Processor

is a fine-grained, massively parallel SIMD

architecture, with 16,384 parallel processing

elements arranged in a 128x128 matrix and

connected by an eight nearest neighbors

interconnection network.
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The parallel implementation of the
relaxationalgorithm is straightforward,with the

n 11

quantities Pi [Ck] and qi {Ck] computed in parallel

at each pixel. Timings are given in Table 1 for

various size images and various numbers of

labels.

4. RESULTS

Figure 1 shows the results of this algorithm

on a test image. In this example, we assume that

the "ideal" image (or "ground truth") is

composed of two distinct regions and we choose

some compatibility coefficients which reflect this

assumption; the initial probabilities present three

classes, two classes corresponding to the two

"ideal" regions and one "artefact" class. The edge

image presents strong edges at the border

between the two "ideal" regions and the edge

magnitudes decrease with the distance to this

border. For this example, we notice that if the

relaxation algorithm is utilized without any edge

information, one of the labels "takes over" the

whole image after only three iterations. If the

edge information is integrated in the relaxation

process, the two regions are still separated after

10 iterations and the labeling seems to be stable.

Figures 2 to 5 present results of the

algorithm applied on a Landsat-TM scene

("Washington D.C. region") shown at the top left

corner of Figure 2. Initial probabilities for this

scene have been obtained from a classification

into seven labels, utilizing a probabilistic neural

network (see (Chettri, 1993) for details). The 7

labels correspond to the classes "urban",

"agriculture", "rangeland", "forest",

"waterbodies", "wetland", and "bareland".

The algorithm described in section 2 was

applied to this initial classification, using two

different numbers of labels; first, we grouped

these 7 labels into the 3 classes "urban",

"agriculture", and "other". Figures 2 and 3 show

the results without and with the edge

information. When no edge information is

utilized (Figure 2), one of the labels (label 0) has

"disappeared" after 20 iterations. When the edge

information is taken into account (Figure 3), the

three labels are still present after 30 iterations,

and the labeling seems to stay stable after 20

iterations.

Then, the 7 labels defined previously are

considered, and we obtain similar results: see

Figures 4 and 5. When no edge information is

utilized, only three labels are left aftei" 30

iterations and one of the three is covering most of

the image; but when the edge information is

integrated in the updating formula, all the initial

labels are still represented after 30 iterations and

the labeling seems to stabilize after 20 iterations.

Also, the results obtained after 10 or 30 iterations

can be compared to the ground truth data shown

at the top left corner of Figure 5: qualitatively, we

can observe an overall improvement of the

segmentation (e.g., suppression of small isolated

pixels or groups of pixels), but some features

(e.g., a road) have been regrouped with a

neighboring region. A quantitative evaluation of

these results will be performed later.

The previous results show the importance

of the edge information and how the integration

of edge- and the pixel-based segmentations can

improve the final result.

Other similar results have also been

obtained on AVHRR data and will be presented

at the conference.
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5. CONCLUSION

The results presented in this paper show

how the integration of complementary

information, such as pixel- and edge-based

techniques, can improve the final segmentation.

More work needs to be done, especially in

the definition of the initial probabilities, in the

choice of the compatibility coefficients, and in the

quantitative evaluation of the results. Also, the

results presented in section 4 seem to show that,

when the edge information is utilized, the

relaxation process becomes "stable" after a

certain number of iterations: this issue of

"convergence" will be studied, and different

schemes, such as the one presented in (Faugeras,

1981) will be investigated.
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Image Size # Labels Edges ?
Time per
Iteration

256*256 7 no 0.36

256*256 7 yes 0.41

256*256 3 no 0.10

256*256 3 yes 0.11

512"512 2 no 0.17

512"512 2 yes 0.17

Timings Obtained for One Relaxation Iteration on a MasPar MP-1
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"Ideal" Edges

I _ 21 m) edges I_ • no edges Iter 1_ no edges

I U_r 11 edges I _r 21 _1_ l _ex 31 edges

Results of our Method on a Test Example
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Relaxation Results Without Edge Information
on a Landsat.TM scene (3 Labels)
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Results of the "Relaxation With Edges" Method
on a Landsat.TM scene (3 Labels)
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Relaxation Results Without Edge Information
on a Landsat-TM scene (7 Labels)
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Results of the "Relaxation With Edges" Method
on a Landsat.TM scene (7 Labels)
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ABSTRACT

A data fusion system with artificial neural networks (ANN) is used for fast and accurate
ciassification of five earth surface conditions and surface changes, based on seven SSMI multi-
channel microwave satellite measurements. The measurements include brightness temperatures at

19, 22, 37, and 85 Gt-Iz at both H and V polarizations (only V at 22 GHz). The seven channel

measurements are processed through a convolution computation such that all measurements are
located at same grid. Five surface classes including non-scattering surface, precipitation over land,
over ocean, snow, and desert are identified from ground-truth observations. The system processes
sensory data in three consecutive phases : (1) pre-processing to extract feature vectors and enhance

separability among detected classes; (2) preliminary classification of Earth surface patterns using
two separate and parallely acting classifiers: back-propagation neural network and binary decision
tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal

performance in overall classification. Both the binary decision tree classifier and the fusion pro-
cessing centers are implemented by neural network architectures. The fusion system configuration
is a hierarchical neural network architecture, in which each functional neural net will handle different

processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis,
of which 4% are used as the training set and 96% as the testing set. After training, this classification
system is able to bring up the detection accuracy to 94% compared with 88% for back-propagation
artificial neural networks and 80% for binary decision tree classifiers. The neural network data
fusion classification is currently under progress to be integrated in an image processing system at

NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable
Modular Neural Ring (MNR).
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1. INTRODUCTION

Artificial neural networks (ANN) have demonstrated capabilities for robust pattern classi-
fication in the presence of noise and object-to-background sensory uncertainty, and have found

applications in environmental monitoring including land cover determination, vegetable mapping,
soil survey, etc., or multichannel satellite imagery. This paper presents a data fusion system with
artificial neural networks which will utilize multichannel SSMI satellite imagery, to combine

supervised trainable and self-organized neural network architectures with specific knowledge-based
classification techniques, with reference to fast and accurate classification of the earth surface. This

neural approach is intended to compensate for different classification techniques by using the data
fusion method and to reduce the lengthy training time required in a supervised learning network.
The overall neural network data fusion system, which will be described in more detail, can also be

seen as a four-layered supervised network which is composed of several modular and hierarchical
networks. In this paper, we will start with a background discussion of the measurement used in
this study. The data fusion classification system will be presented. Hardware implementation of
each component in a Modular Parallel Ring (MPR) will also be discussed. Some experimental
results will be presented and a summary will be given.

2. BACKGROUND

The SSMI instrument, flown on board the Defense Meteorological Satellite Program (DMSP)

polar orbiting satellites, is a seven-channel conically-scanning microwave radiometer, measuring
brightness temperatures at 19, 22, 37, and 85 GHz. All measurements are obtained with dual
polarizations (H and V) except for 22 GHz channel. The 19 and 22 GHz channels are mainly
responsive to variations in temperature and water vapor at large spatial scale. The 37 and 85 GHz
channels, due to the scattering effects at high frequencies, respond to precipitation at smaller scale.
Polarization measurements have been used to infer the wind speed, precipitation, and snow cover
over the land and ocean. The spatial resolution (field of view) of the different channels decreases

in proportion to the wavelength (inverse with frequency). It provides unique signatures for iden-
tifying surface features and obtaining the temperature and condition of the Earth's atmosphere. In
comparing the measurements at different frequencies, effects due to different spatial resolutions
are minimized by convolving all measurements to the 55-km resolution of the lowest-frequency
channel (Grody, 1991). This enables one to investigate the spectral variations without having to
consider the effects of spatial inhomogeneity on the different channel measurements. The mea-
surements (brightness temperature, sometimes called antenna temperatures) used in this study were
made between November 1988 and January 1989 and covers the entire northern hemisphere. The
data was identified and confLrmed by "ground truth" as five different data sets corresponding to
five different surface classes: non-scattering medium (Non-Sm), precipitation over the ocean (R-
Ocean), snow cover land (Snow), precipitation over the land (R-Land), and the desert (Desert).
Each class has different samples ranging from 445 to 5535 and there is a total of over 13,034 samples.
Table 1 illustrates some SSMI measurement classification characteristics including SSMI mea-
surements, surface features and their corresponding samples. The brightness temperatures are

normalized within the range of (- 1, +1), denoted as X_, and the desired output classes are represented

by mutually orthogonal vectors, denoted as Cj.

Table 1 SSMI classification characteristics

Channel frequencies and polarizations

SSMI 19 H 19 V 22 V 37 H 37 V 85 H 85 V

Tn(19) Tv(19) Tv(22) Tn(37) Tv(37) Tn(85) Tv(85)

Surface features: Non-Sm R-Ocean Snow

Number of samples: 4294 505 5535

R-Land Desert

2255 445
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3. DATA FUSION CLASSIFICATION SYSTEM

SSMI Satellite Measurements

x_ x2 x3 x5 x6 x7x.

Global Fusion

!

I 1!

Cent_

I '!
i

d

C

Surface Classses

Figure 1. Data Fusion System with Artificial Neural Networks for SSMI Measurements

Although existing neural network paradigms have demonstrated excellent capabilities in
learning and generalization, efficient training and determination of internal topology (such as
number of hidden neurons) still remain challenging tasks. This data fusion classification system

implemented with ANNs provides an alternative approach to attack these problems and can be
easily implemented in hardware. Basically, this system treats each classifier as a different sensor
and fuses each classification result to obtain the optimal or better results. The term "optimal" is
used such that the probability of error is minimized in the likelihood ratio test. The sizes and
connections of intermediate layers (or hidden layers) can be determined based upon the desired data
flow.
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This fusion classification system will process sensory data in three consecutive phases, as

follows: (1) pre-processing, aimed at extracting feature vectors and at enhancing separability among
detected classes; (2) preliminary classification of Earth surface patterns at two separate and parallely

acting classifiers: back-propagation ANN (BP ANN) and a binary decision tree (BDT); and (3)
fusion of classification results performed at global fusion center (GFC) from different classifiers
and imagery to obtain the optimal decision. The configuration is a hierarchical neural network
architecture, in which each functional neural net will handle different processing phases in a

pipelined fashion.

3.1 Pre-processing

Pre-processing for SSMI imagery includes mainly the generation of (7 x 7) covariance
matrices from measured brightness temperatures at each pixel. Information about pixel

brightness temperatures, covariance matrix elements, and desired surface class definitions is
collected in a feature vector for the supervised training of a neural network classifier. It has
been demonstrated that increasing the elements of the feature vector by adding more relevant

parameters, derived nonlinearly from original features, can, rextuce the num,ber and s!ze of hidden
layers, and can also reduce the training time (Marks, et al., lu_). _mce me covanance matrix
evaluation involves the manipulation of two matrices, the operations involved are suitable to

neural network implementation by feed-forward topologies, by merely assigning two manip-
ulated matrices to the weights and input vectors of the back propagation neural architecture, as

has been investigated.

3.2 Preliminary Classification

3.2.1 BP ANN Classifier

A three-layer (one hidden layer) supervised back propagation (BP ANN) algorithm
is used to train the network to become a feed forward pattern recognition engine (Rumelhart

and McClelland, 1991) to learn the input feature vectors corresponding to different output
classes. There are 14 input neurons corresponding to SSMI measurements as well as to their
covariance matrix, 60 hidden neurons, and 5 output neurons representing 5 surface condi-
tions. It takes around 40 and 160 epoches to train the BP ANN classifier to learn up to 90%
and 100% accuracy of the training data set, respectively. With a fully-trained BP ANN, the
classification accuracy can reach up to 88% (Lure, et al., 1992a, 1992b). For the data fusion
classification system, the BP ANN is only trained to a "satisfactory" accuracy (e.g., 75%).

Such a "partially" trained ANN only takes around 50% of the training time required in
fully-trained nets. A single fully-trained network can only reach a certain detection accuracy
limit whereas a combination of several networks such as this one can reach even higher

precision since the fusion processor will make an optimal decision based on the statistics of
preliminary classification accuracy.

3.2.2 BDT Classifier

The BDT classifier is constructed to implement Grody's global classification algo-

rithms as in Figure 2 (Grody, 1991). They are designed to analyze global coverage of satellite
data sets and to classify based on the physical characteristics of measurements and on surface
types. This technique performs a hierarchical tree-structured decision procedure through
the evaluation of polynomial functions of input feature elements and through thresholding.
The special topology of BDT classifiers used for surface condition classification based on
SSMI measurements is drawn from the so-called Entropy Net architecture (Sethi, 1990).
This architecture includes a two-layered topology, of which the lower layer performs

arbitrary mapping of thresholding operations, while the upper layer performs logical

operations (e.g. AND, OR) which allow us to convert the hierarchical decision procedure
into a fully parallel process. The weight vectors between the layers are determined from
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the coefficients of polynomial functions of the decision tree functions. The logical oper-
ations, such as AND, OR, NOR, and NAND, are implemented by using a simple BP ANN
architecture with sigrnoid transfer functions (Lippmann, 1987). A striking advantage of the

neural implementation architecture is that it allows us to specify the number of neurons
needed in each layer, along with the desired output. This, in turn, leads to an accelerated

progressive training procedure that also allows each layer to be trained separately.

X1,j X 2, X 3 , X4,_ X2 2

_NO
_--"_Io+T_x_+T2x2+T3x23+T4x3 > 0 /

C1

_YES )

NO.
YES
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_-'-'-_I4+Tloxl+Tnx4 > 0 _'Y-ES ; C4

Figure 2(a)
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Figure 2. (a) BDT Classifier and (b) its Neural Implementation. X;'s denote the SSMI
measurements; Ti's denote the higher order polynomial coefficients in (a) and weights

in (b); and Ii's denote constants in (a) and biases in (b), respectively.

There are 5 neurons corresponding to 4 selected SSMI measurements and to one
element of the covariance matrix (Xl, X2, X_, X4, and X22), and 5 output neurons for each
surface class. The individual decision from both BP ANN and BDT modules are sent to the

globa_fusqon center (GFC) for tile final decision. The two-trainable-layered BP neural net
for logical operation is trained based upon the data derived from known logic relationships
from the decision tree. As for other neural networks for logic operations, it only takes a few
epoches for them to learn the desired patterns.
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3.3 Fusion Processing

(fromBDT)

(fromBP ANN)

Cil N o bli I i

:i_.

Ci2 i* DFC

Figure 3. Data Fusion Center. c_s denote classification results from preliminary classifi-
cations for class i; b and I denote the weights and bias of an entropy net; and C_ denotes the

optimal decision for class i.

The fusion processing involves global fusion center (GFC) operations, which integrate
results from both BP ANN and BDT classifiers. The GFC is composed of several different data

fusion centers (DFC), each of which corresponds to different types of output classes as in Figure

3. A self-adjusted or self-trained learning algorithm is used in each DFC to set the optimal
decision rules such that the total probability of detection is maximized. This data fusion scheme,
also caUed distributed-detection scheme, corresponds to a two-layered network of nonlinear

threshold elements, e.g., binary or sigrnoidal functions (Tenney, 1981). The decision operation,

weights and bias of these elements are obtained as

(1 - PM,) (1 -Pp,)
b i = log( )

P6 P_ti

and

" P(Ho) _i (" (1-P.,)'_ ('" P_' 1

s=-:log(_ +,o_. ,+Io_7<-,:, e., ) :t.':'(1-e.,)J

where n denotes the number of classifiers (n = 2), P_, represents missed detection in the ith

classifier, P_, represents a false alarm in the ith classifier, P(H_) denotes the probability that

the desired class is present, and P (H0) denotes the probability that the desired class is absent.
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The probability functions Ps are obtained during training by comparing individual classification
results with the desired class. The fusion networks are trained by self-adapting off-line sto-
chastical information to form the detection system. The stochastic information including a priori

probability, the probability of false alarm, and of missed detection is obtained by comparing
classification results from individual classifiers with ground-truth data. The approximation
rules are obtained from the nonlinear combination of the statistics of previous classification
results from individual classifiers.

4. HARDWARE IMPLEMENTATION

The neural network data fusion system for real time processing is implemented in a prototype
of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR) architecture
(Ligomenides, et al., 1991), which is capable of maintaining a high performance for digital and
neural applications. The MNR architecture is composed of multiple primitive processing rings
(pRing) embedded in a global communication structure and is interfaced to a host workstation as
in Figure 4. It is a multiple-SIMD (single instruction multiple data) architecture. Each of the pRings
consists of 40 processing elements (PE) that are capable of mapping any number of neurons. It has
been shown that the MNR provides very highly efficient hardware utilization and very low com-

munication delay overhead. The achieved speed/capacity performance is increased linearly with
the number of processing elements, without upper limit.

pRING

BU5

pR[NG

E

Figure 4. Bussed-piLing Architecture. PE denotes processing element which is used to imple-
ment operations in neuron(s).

Covariance matrix evaluation, involving the manipulation of two matrices, is performed by
merely assigning two manipulated matrices to the weights and input vectors of the feed forward
neural architecture. Two pRings are used to implement the BP ANN module: one for handling the
16x64 weight matrix of input-hidden connection and one for the 64Xi6 weight matrix of hidden-
output connections. The third pRing is used for the parallel implementation of the BDT, which
handles a 16x 16 weight matrix. Since some weights are not utilized (for example, the input-hidden
connection in BP ANN only requires a 14x61 weight matrix), they are f'dled with zero weights to
satisfy hardware implementation requirements. The operation and performance of the hardware-
based networks remain almost unchanged. Once the training is f'mished, the weights and bias are
then stored in the memory of each PE for future processing. Both BP ANN and DBT operations

are performed at the MNR architecture simultaneously. The individual decision from each operation
is then fed to the data fusion center (DFC) for final optimum decision performed at the host computer.
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5. CLASSIFICATION RESULTS

There are a total of 13,034 samples of data used in this study. Each of five different classes
contains from 400 to 5,000 different samples. We used 500 samples of data as training sets which
represent 3.8% of the total samples. Each training set, obtained randomly from the total data set,
consists of an equal number of samples from five different classes. The rest of the samples (over
96%) are used for testing the network and the classification results are shown in Table 2. Once the
BP ANN is trained either fully or partially, it is used to perform the classification. The classification
accuracies, using the fully-trained BP ANN classifier (i.e., all training patterns are recognized by
this BP ANN), are 82%, 98%, 97%, 78%, and 79% for non-scattering medium, precipitation over
ocean, snow, desert, and precipitation over land, respectively (Lure, et al., 1992). The classification
accuracies are 99%, 56%, 81%, 57%, and 70% for each surface class. Note that the class of non-

scattering medium represents the surface which can not easily be specifically identified as any of
the other four surfaces. The overall accuracy for BP ANN approach is around 88% whereas it is

around 80% for BDT classifier. The preliminary results show that the neural network data fusion
system improves the classification accuracy for all classes by around 4% from BP ANN's results.
The overall accuracy of neural network data fusion is improved to 94%. Even without fully-trained
being (e.g., 75% of training set are learned correctly by BP ANN) the overall classification accuracy
can still achieve similar classification accuracies. From the coefficients of the data fusion center,

it is also found that the BP ANN plays a more important role in classifying the non-scattering
medium, snow, and desert; whereas the BDT is more dominant in classifying the other two surfaces.
The significance of each SSMI measurement to classification of each of five surface types can also
be obtained through the linearization procedure of the weights described in the previous study.

Table 2. Classification Results from BDT Classifier, BP ANN, and Data Fusion System
m, HH

ALGORITH Non-sm R-Ocean Snow Desert R-Land Overall
M

BDT 99% 56% 81% 57% 70% 80%

BP ANN 82% 98% 97% i78% 79% 88%

ANN 86% 98% 97% 184% 83% 94%
FUSION

6. SUMMARY

In this research effort, a data fusion system with artificial neural networks is presented to

classify surface types based on the SSMI measurements. Both back propagation ANN (BP ANN)
and binary decision tree (BDT) classifiers are used for this study. Seven SSMI measurements
(brighmess temperature at 19, 22, 37, and 85 GHz for H and V polarizations, except V for 37 GHz)
at each image pixel are extracted as an input feature vector. Five surface types including non-
scattering medium, precipitation over the ocean, snow cover land, precipitation over the land, and
the desert are used as target patterns. After training by using less than 4% of the samples, both BP
ANN and BDT are able to perform the classification over 13,000 samples. The training for this
data fusion system is performed progressively. The BP ANN, first module of entropy net, and
logical operation net, are trained seperately. Once these are trained, each data fusion ceter network

is trained seperately. The overall accuracy for the BP ANN and the BDT approaches 88% and 80%,
respectively. The neural network data fusion system which fused the individual decision from the

BP ANN and the BDT improved the overall accuracy to 94%. The significance of the contribution
from either approach is determined based on the coefficients of the data fusion center. The fusion

system is currently implemented in a massively parallel and dynamically reconfigurable hardware
neural network (Modular Neural Ring) for real time parallel processing and integrated in an image
processing system at NOAA/NESDIS. The data fusion classification system not only preserves
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the advantagesof both BP ANN and BDT classifiers(for example,the capabilityof physical
interpretationof input featurespacefrom theBDT classifier and robust classification from the BP

ANN), but also reduce the pitfall of individual classifiers (for example, brute-force training of the
BP ANN module and sensitivity to noise of the BDT module).

ACKNOWLEDGEMENTS

This work is partially supported by NOAA/NESDIS and Air Force Rome Development Center

under SBIR Phase II contract: F30602-89-C-0130. The SSMI data set was provided by Hughes
Aircraft Co. through NOAA/NESDIS. The authors are grateful for the discussion with P. A.
Ligomenides and L. Jump of Computer Systems and Architecture Group at Caelum Research
Corporation. The authors are also thankful for the comments by the reviewers. This paper is
submitted to IEEE Transaction of Neural Network. Due to page limitation, a more detailed
information can be found in the submitted paper.

REFERENCES:

Grody, N.C., 1991, "Classification of Snow Cover and Precipitation Using the Special Sensor
Microwave Imager, J. Geophy, Res.. Vol. 96, No. D5, 7423-7435.

Ligomenides, P. A., L. B. Jump, and Y-S. Chiou, 1991: "A Reconfigurable Ring Architecture for
Large Scale Neural Networks", Pro<:. of Conf. Fuzzy and Ne_lr_l Syst. and VChi, Appli. 1991,
Tokyo, Japan.

Lippmann, R. P., 1987, "An Introduction to Computing with Neural Nets". IEEE Acous. Spec.
Signal Proc. Magazine. 4-22.

Marks II, R. J., L. E. Atlas, and S. Oh, 1988: "Generalization in Layered Classification Neural
Networks", ISCAS'88. IEEE, 503-506.

Lure, Y.M.F., N.C. Grody, Y.S.P. Chiou, and H.Y.M, Yeh, 1992a: "Classification of Earth Surface
from Special Sensor Microwave Imager (SSMI) Using Artificial Neural Network (ANN)
Data Fusion," IEEE Proc. IGARSS '92, May 26-29, Houston, TX.

Lure, Y.M.F., Y.S.P. Chiou, H.Y.M. Yeh, and N.C. Grody, 1992b: "Hardware-based Neural Net-

work Data Fusion for Classification of Earth Surface Conditions", Invited Paper. 26th Annu_l
Asilomer Conf. on Si_wnal. System. and Computer_, Oct. 26-29, 1992, CA, IEEE Compu.
Society.

Sethi, I.K., 1990: "Entropy Nets: From Decision Trees to Neural Networks." Prec. of the IEEE.
Vol. 78, No. 10, October 1990.

Tenriey, R. R_, _d_. R. Sandell, 1981: "Detection with distributed sensors", IEEE Trans. Aeros.

Elec. Sy_., pp 501-509.

Rumelhart, D. E., J. L. McClelland, 1986, Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. MIT Press, Cambridge, MA.

I54



N93-25975

Neural Networks for Atmospheric Retrievals

Howard E. Motteler

NRC, Code 930

NASA/GSFC

Greenbelt, MD 20771

J. A. Gualtieri

USRA, Code 902.2

NASA/GSFC

Greenbelt, MD 20771

L. Larrabee Strow

Department of Physics
UMBC

Baltimore, MD 21228

Larry McMillin

NOAA/NESDIS
5200 Auth Road

Camp Springs, MD 20746

Abstract 1 Introduction

We use neural networks to perform retrievals

of temperature and water fractions from sim-

ulated clear air radiances for the Atmospheric

Infared Sounder (AIRS). Neural networks al-

low us to make effective use of the large AIRS

channel set, and give good performance with

noisy input. We retrieve surface temperature,

air temperature at 64 distinct pressure levels,

and water fractions at 50 distinct pressure lev-

els. Using 728 temperature and surface sensi-

tive channels, the RMS error for temperature

retrievals with 0.2K input noise is 1.2K. Us-

ing 586 water and temperature sensitive chan-

nels, the mean error with 0.2K input noise is

16%. Our implementation of backpropagation

training for neural networks on the 16,000-

processor MasPar MP-1 runs at a rate of 90

million weight updates per second, and al-

lows us to train large networks in a reasonable

amount of time. Once trained, the network

can be used to perform retrievals quickly on a

workstation of moderate power.

The next generation of NASA earth viewing

satellites on Earth Observing System (EOS)

platforms will produce a deluge of raw data

that must be processed into products that

describe the state of the earth and its at-

mosphere over time. Satellite instruments

that probe the atmosphere measure radiances

over a number of channels, and this informa-

tion must be "inverted" to obtain information

about the atmospheric state, such as the tem-

perature, humidity, and composition.

The Atmospheric Infrared Sounder (AIRS)

[3], currently under development, should pro-

vide both higher accuracy and vertical reso-

lution than the present operational sounders

(HIRS/MSU) [10], and lead to higher fore-

casting skill and a long term accurate mea-

sure of climate change. The AIRS instru-

ment will contain upwards of 4000 channels

at a much higher spectral resolution than the

currently operational HIRS instrument, which
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has 20 channels. The optimum useof these
data for atmospheric sounding in a cost ef-
fective way may require completelynew tech-
niques,asexisting methodsfor current instru-
ments may not be transferable in a straight-
forward manner. Traditional retrieval (or in-
version) techniquesarecomputationally inten-
sive,especiallynon-linear techniquesthat re-
quire severaliterative calculationsof the chan-
nel radiances. It is estimated that the AIRS
will require one of the most computationally
intensive data systemson EOS.

To addressthesenew computational chal-
lenges,we have implemented a backpropaga-
tion training algorithm on the Maspar MP-1
at Goddard SpaceFlight Center to train neu-
ral networksto perform atmosphericretrievals
of temperature and water profiles from simu-
lated clear air radiancesfor the AIRS instru-
ment. [The problem of cloudy atmospheresis
a topic of future work not treatedhere.] These
neural networks allow usto makeeffectiveuse
of the large AIRS channelset, give good per-
formancewith noisy input data, and allow for
very fast processingevenwith very largenum-
bersof channels.

We have found that the backpropagation
code maps very well to the Maspar, and we
haveobtained network training ratesof 93mil-
lion connectionupdatesper second(CUPS) in
singleprecision [1]. Oncesucha network has
beentrained on the Maspar, it can be down-
loadedto a workstation wherethe time to ob-
tain retrievals is the time to perform threema-
trix multiplies - of order lessthan 0.5secwith
a thousand input channels. (On the Maspar
the retrieval time is at least an order of mag-
nitude faster).

Tlie accuracy of the results obtained with
our neural networks are quite competitive

with other retrieval methods. Using 728tem-
perature and surfacesensitive channels,and
with 0.2K std noiseaddedto the input bright-
nesstemperatures,the neural network hasan
overallRMS error retrieving 64pressurelevels
of 1.22K. Using 586 water, surface,and tem-
peraturesensitivechannels,and with 0.2K std
noiseadded,the neural network hasanoverall
error retrieving 50 pressurelevelsof 16% [2].

In order to better understand retrieval per-
formance,weperform a sensitivity analysisof
trained networks. This analysisis usefulin se-
lecting what setsof channelsare to beused,in
a processof iterative refinement,and in many
casesshowsa closecorrespondenceto plots of
weightingfunctions (discussedin the next sec-
tion).

In the sequelwe describe the atmospheric
retrieval problem, show how we use neural
networks to solve the problem, describe the
datasetsused in training the networks, and
presentanumberof representativeresults. We
also describethe method of sensitivity analy-
sisfor evaluatingthe effectivenessof input sets
to a neural network.

2 Atmospheric Retrievals

The problem of atmospheric retrievals [7], [5]

(the "inverse problem") is to take as input

the radiances at a specified set of frequency

channels measured by a sensor on a satellite

above the top of the atmosphere and compute

the temperature or water profiles of the atmo-

sphere (as a function of pressure) that gave
rise to those radiances.

Associated with the inverse problem is the

"forward problem" of computing the radiances
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at the top of the atmospheregenerated by
layers of moleculesin local thermal equilib-
rium fi'om the surfaceup through the atmo-
spheric column in the sensor's field of view.

(We refer to this column as a temperature pro-

file.) Assuming a plane parallel atmosphere

in local thermodynamic equilibrium and neg-

ligible scattering, and no instrument function
one can write the monochromatic radiance at

nadir at the top of the atmosphere as

e,B,(Ts)r,(Ps,[T(P)])

f"P pdr.(P,[T(P')])din B_ [T(P)]+ al,_P, dln P

where e, is the emissivity of the surface s, and
the contribution of reflected radiation which is

negligible at most frequencies of interest has

not been included. B_,(T) is the Plan& func-

tion for emitted radiance of a blackbody at

frequency u and temperature T,

B,(T) = 1.19x 10 -5
/]3

exp [1.439u/T] - 1"

The quantity r_(Ps,[T(P')])is the atmo-

spheric transmittance from the surface at

pressure Ps to the top of the atmosphere at

pressure/5 which is the fraction of photons of

frequency u emitted at the surface P, that ar-

rive at the sensor at altitude P. The quantity

dr_(P.[T(P')]) is the weighting function for thedlnP

frequency u and when multiplied by dln P de-

scribes the fraction of photons of frequency u

emitted in the layer between pressure P and

P + dP that reach the top of the atmosphere.

Fig. 1 [3] shows a few of the several thou-

sand weighting functions available from the

AIRS instrument and indicates how a weight-

ing function can be associated with a narrow

vertical region of the atmosphere. The no-

tation (P,[T(P')]) as the argument of _ isdlnP

used to stress that it is functional of the pro-

file T(P') between/5 and P and a function of

P.

Present retrieval systems are most eas-

ily classified as being either linear regression

techniques or non-linear iterative techniques.

Both techniques can use varying amounts of

statistics for regularizing their solutions, as

well as varying amounts of the forward prob-

lem radiative transfer. The linear regression

approach is dependent on a very good first

guess in order to be in the linear regime for the

regression. The non-linear iterative method

does not require such a good first guess, but

does require time-consuming forward problem

calculations. In addition, it is not clear if the

non-llnear iterative approach can coherently
use all the information in the AIRS channel ra-

diances without numerical problems. It may

also be possible to iterate the linear regres-

sion approach, however this would result in

the need to iteratively calculate the forward

problem for a very large number of channels,

introducing a very heavy computational bur-

den.

3 Neural Networks

We use a three-layer feed-forward neural net-

work, batch trained with a modified back-

propagation algorithm [6], [8] with an adap-

tive learning rate. This network can be repre-
sented as

Y=

Fa(WaF2(W2FI(W,X + B1) -4-B2) + B3),

where each Fi maps matrices to matrices, ele-

ment by element, by applying a transfer func-
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Figure 1: Representative weighting functions for the AIRS instrument. The x axis is a measure

of the weighting function (where I(u) is the radiance) and the y axis is pressure in rob,

tion to each matrix element and the matrices

shown in boldface type are combined by ma-

trix multiplication and addition. The map-

ping Fi is often referred to as a layer, with

the weight matrices representing connections

between layers. We use the hyperbolic tan-

gent as a transfer function in the first two

layers, and a linear function in the third.

The input matrix X is of size (row x col)

7Zin × ntraining and the output Y matrix is of

size no,,_ x ntr_ini,_g. The Wi are weight ma-

tt'ices of size respectively nl x n;n, n2 x nl,

and nout x n2. The Bi are bias matrices of

respective sizes nl x n,t,-,,i,_i,_e, n2 x ntraining,

and no_,t x rttraining composed of single bias

column vectors of respectively size nt, n2, and

nout replicated rltrainin 9 times to build the bias

matrices. The quantities ni,_, nl, n2, no_, and

l_.trainin9 are the number of input units (fre-

quency channels), the number of first layer

hidden units, the number of second layer hid-

den units, the number of output units (pres-

sure levels), and the number of examples in

the training set.

The networks we use for temperature re-

trievals have one input component for each

instrument channel, and one output compo-

nent for each AIRS pressure level. The first

layer has between 90 and 108 transfer func-

tions, the second between 60 and 72 transfer

functions, and the output layer has a linear

function for each pressure level. For water re-
trievals we have used 90 transfer functions in

the first layer and 60 in the second layer.

Back-propagation training is a variation of

gradient descent, in which weight and bias

vectors are incrementally adjusted in an at-

tempt to match the network output with a
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set of training examples. This training set is

a set of pairs, where each pair is an input to-

gether with the desired output. A single pre-

sentation of all the training data and corre-

sponding weight and bias adjustment is called

an epoch. Training consists of a sequence of

epochs, and typically continues until the sum-

squared error is acceptable or some resource

limit is encountered. Training is a computa-

tionally intensive process for non-trivial net-

works. Although training is slow, applying a

trained net is very fast, with the runtime being

dominated by the time for the three matrix-

vector multiplies.

It is convenient in the case of temperature

retrievals to convert radiances R, to bright-

hess temperatures ®, according to the relation

t?,,(0,) = R,, [9]. The brightness temperature

is the temperature a blackbody would be at to

produce the radiance R_. By doing this the

large dynamic range of radiances is reduced

to a much smaller dynamic range of bright-

ness temperature. Further, each element of

the input and output vector pairs are scaled

to be differences from the mean values over the

training set, and are divided by the standard

deviation of the training set. This "normal-

izes" the inputs and outputs to a useful dy-

namic range for the transfer functions used.

We have developed a backpropagation code

for the 128 x 128 processor MasPar MP-1 at

the Goddard Space Flight Center in mpl (Mas-

par's parallel extension of C), which makes

extensive use of the Maspar linear algebra li-

brary. This code efficiently handles the virtu-

alization needed to map very large networks

of many tens of thousands of weights and bi-

ases across the 16384 processing elements of

the machine. Originally the code was written

completely in double precision (64 bits) but

since the results were found to be highly ira-

mune to noise in the data sets, a single preci-

sion version is now being used. Profiling tests

show the code spends 95% of the time per-

forming matrix multiplications, for which the

Maspar routines are highly optimized. We are

observing execution rates of 93 million weight

updates a second [1] on typical datasets.

4 Datasets for Training

Datasets for training and testing are gener-

ated from the set of 1761 TIGR profiles [4]

of temperature and water using the radiative

transfer equation, to obtain corresponding ra-
diances for the entire AIRS channel set. Thus

the physics of the problem is built in by (1) the

judicious selection of a large representative set

of profiles and (2) the radiative transfer equa-

tion that gives the matching radiances. The

TIGR profiles have been interpolated from the

original 40 levels to either 66 TOVS pressure

levels (for earlier experiments) or 64 TOVS

pressure levels (as used in the AIRS science

teams "write test"). The retrieved quantities

are the temperatures and water amounts in

the 64 intervening slabs with an additional el-

ement for the surface temperature, which may

be different from the lowest slab. The surface

emissivity is assumed to be one, for these ex-

periments.

Our general method is to partition a dataset

into training and extrapolation sets. The net

is trained on the training set, and is then

tested with the extrapolation set, both with

and without noise; the noise inputs have a nor-

mal distribution and 0.2K standard deviation.
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5 Results

In this section we present representative re-

sults for several profile and channel sets. In

general, training runs were stopped when the

RMS training error stopped showing signifi-

cant improvement; this occurred after on the

order of 100,000 epochs. Once network pa-

rameters (adaptive learning parameters, sizes

of hidden layers, and initial distributions) are

fixed in a useful range, different sets of random

initial weights typically have a small effect on
final RMS error. When the full set of TIGR

profiles is divided into training and extrapo-

lation sets of approximately equal size (with

representatives from all latitudes in=Doth sets)

exchanging training ancl extrapolationsubs-ets

also has a small effect. The result for all the

runs discussed are summarized in Table i.

In run 150, the 880 even numbered TIGR

profiles were used for training and the 881 odd

numbered TIGR profiles were used for test-

ing the network. Input to the net is bright-

ness temperature f0r 666 AIRS channels, se-

lected for surface and air temperature sen-

sitivity. Output is surface temperature and

air temperature at 66 distinct pressure lev-

els. The network has 108 hyperbolic tangent

transfer functions in the first hidden layer, and

72 hyperbolic tangent transfer functions in the

second hidden layer. After 140,000 =epochs,

RMS training error is 1.20K, RMS extrapo-

lation (testing) error is 1.26K, and RMS ex-

trapolation error with 0.2K std noise is 1.44K.

These results are shown in Fig. 2. After

100,000 epochs of further training with noisy

data (0.2K std noise added to the input data),

RMS training error is 1.22K, RMS extrapola-

tion error is 1.23N, and RMS extrapolation
error with 0.2K std noise is 1.37K

In the upper plot of Fig. 2, the temperature

retrieval error at the surface and at each of 66

pressure levels is shown. In the lower plot, the

same set of errors is presented as 11 groups of

6 pressure levels (the surface is still distinct,

and is not grouped with any pressures levels).

We do not have a completely satisfactory ex-

planation for the small 'oscillations' in the 66

level plot. This pattern of fine variations ap-

pears across a wide range of training sessions

and channel sets. (Note the similarity between

these small scale variations in the Fig. 2 and

Fig. 3 plots.) One possible explanation is that

these variations correspond to variations in

the numbers of weighting functions available

at different pressure levels. Another possibil-

ity is that t:hesemay be an artifact of the fast

tranSmittance'code (as:_supplied by JPL for

the AIRS Science ieams "wrlte test") that we

use to generate brightness temperatures. This
is a matter for further investigation.

A sensitivity analysis of run 150 (discussed

in the next section) is shown in Fig. 4.

This analysis, together with similar results

from other runs using the same channel set,

indlcdted that channels with wavenumbers

roughly between 750 and 1200 were not be-

ing used by the network. This information,

together with the relatively high error above

the 50mb pressure level suggested changes to

the channel set, which were incorporated in
run 170.

In run 170, the 880 even numbered TIGR

profiles were used for training and the 88i odd

numbered TIGR profiles were used for test-

ing the network, as before. Input to the net

is brightness temperature for 728 AIRS chan-

nels, selected for surface and air temperature

_Sensitivity, taking into account previous sen-

sitivity analysis. Output is surface tempera-

ture and air temperature at 64 distinct pres-
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TIGR Profiles, Run 150, epoch 1.4e+05. RMS Error by Pressure
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Figure 2: RMS temperature errors for run 150.
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Run Net Size

150 666 × 108 × 72 × 67

170

90

728 × 108 × 72 × 65

586 x 90 x 60 x 50

Epoch

240,000

160,000

50,000

RMS errors (a)

train

1.22K

1.02K

13.2%

test

1.23K

1.09K

15.0%

noise

1.37K

1.22K

15.9%

Table 1: Summary of runs discussed.

- .= ..... r :-.

sure levels. 1 The network is the same size at After 50,000 epochs, overall error for the first

the network for run 150. After 160,000 epochs,

RMS training error is 1.02K, RMS extrapola-

tion error is 1.09K, and RMS extrapolation er-

ror with 0.2K std noise is 1.22K. These results

are shown in Fig. 3. A slight improvement in

noise performance of this network could prob-

ably be realized by further training with noisy

data.

A sensitivity analysis of run 170 is shown

in Fig. 5. Note that the 'flat spot' (the large

group of unused middle channels) is much re-

duced, but that there are still some unused
channels.

Fig. 6 shows some initial results for wa-

50 pressure levels (expressed as percentages) is

13.2% training error, 15.0% extrapolation er-

ror, and 15.9% extrapolation error when 0.2K

std noise is added.

As with more traditional methods of inter-

polation, neural networks can both under- and

over-fit. High training error or inability to

converge on the training set is a sign of under-

fitting, while poor performance on new data

is a sign of over-fitting. The close correspon-

dence between training and extrapolation er-

rors on all the runs, and appropriate smooth-

ness of retrieved profiles, suggest that the size

of our hidden layers is not too large, and that

we are not overfitting. It may be possible to

ter retrievals. Input to the ne t is brightness .... use larger hidden layers to improve training

temperatures for 586 AIRS channels, selected and also (though to a lesser degree) extrap-
for both water ann"temperature -senslt{v{ty_ ..... _,2,:2-.'_._._. ;^_

The same set of TIGR profiles were used as

in runs 150 and 170, while the network was

slightly smaller, with 90 transfer "func't_i0ns ]ia ................. . . .
the first hidden layer and 60 in the second. ........6 Sensitivity Analysis

1We switched from 66 to 64 pressure levels to match
conventions used for the AIRS science team "write Once a network has been trained we can ob-
tesC' tain a measure of its dependency on the input
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Figure 5: Sensitivity plot for run 170.
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channel set by computing the Jacobian matrix

of the partial derivatives of outputs with re-

spect to inputs evaluated at a representative

sample of profiles. In particular we have com-

puted numerically by differences the quantity

2xT_
s_j= _(-_-_) /N_

where 7 indexes over the set of profiles in the

dataset, N-_ is the number of profiles in the

dataset, and A is the difference operator. If

Sij is large then on average over the set of all

TIGR profiles frequency channel j has a large

effect on temperature (water) in pressure layer

i, while if it is small then the network has

found little dependence of frequency channel

j on the temperature (water) in pressure level
i.

In the plots of sensitivity analysis Figs. 4

and 5, channels run from left to right, with
the lower wavenumbers to the left. Pressure

levels run from front to back, with the surface

at the back of the plot. The z axis represents

sensitivity (the sum square of partials), aver-

aged across all the training profiles.

For many channels, sensitivity peaks corre-

_spond to weighting function peaks. The sen-

sitivity plot looks much more 'noisy' and this

is to be expected. (The sensitivity plot for an

untrained net looks much like uniform noise.)

In effect, the net has discovered its own rep-

resentation for the weighting functions, where

information from groups of channels is used to

retrieve information about a particular pres-

sure level. We conjecture that the 'noisy look-

ing' sensitivity plot is inseparable from the

network's good performance on noisy input.
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7 Conclusions for helpful discussions of this problem.

We have demonstrated an application of back-

propagation neural networks to the retrieval

of accurate atmospheric temperature and wa-

ter profiles, using the hundreds of channels of

spectral information that will be available on

the AIRS instrument. The prohibitive cost of

training such large networks with large train-

ing sets is ameliorated by an effective map-

ping of the algorithm to the parallel architec-

ture of the Maspar MP-1. The neural network

allows us to make effective use of the large

AIRS channel set, especially for better noise

performance. Once the network is obtained it

can be used to obtain very fast retrievals even

with many input channels on modest compu-

tational platforms.

A sensitivity analysis of the network sug-

gests ways we can refine the choice of chan-

nels used by the network. In principle, one

could take the entire AIRS channel set, train

a net for (say) temperature retrievals, perform

a sensitivity analysis on the resultant net, get

a smaller set of temperature sensitive chan-

nels, and use the smaller channel set to train

a second net.

There are a number of directions for further

work. Our present results indicate it is likely

that a somewhat larger net may have errors

below 1K. It may be that simultaneously re-

trieving temperature and water using a large

combined channel set will give even better re-
sults than so far obtained. The retrieval of

other atmospheric parameters, such as 03, are

l?rornising areas for further investigation, as
are the potential application of neural nets to

cloudy atmospheres.
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ABSTRACT

Several energy flmctions for synthesizing neural

networks are tested on 2-D synthetic data and on

Landsat-4 Thematic Mapper data. These new en-

ergy functions, designed specifically for nfinimizing

miscla.ssification error, in some e_ses yield significant

improvements in classification accuracy over the stan-

dard least mean squares energy function. In addition

to operating on networks with one output unit per

class, a new energy hmction is tested for binary en-
coded outputs, which result in smaller network sizes.

The Thematic Mapper data (four bands were used) is
classified on a single pixel basis, to provide a starting

beuchmark against which further improvements will

be measured. Improvemeuls are underway to make

use of both subpixel and superpixel (i.e. contextual

or neighborhood) information in the processing. For

single pixel classification, the best neural network re-

sult is 78.7%, compared with 71.7% for a classical

nearest neighbor classifier. The 78.7% result also im-

proves on several earlier neural network results on
this data.

INTRODUCTION

In the past several years, a general awareness of

the environmental crises h_ gradually taken place
among the world's nations. We wish to address auto-

mated surveillance technology for environmental is-

sues. Global warming, ozone depletion, large-scale

deforestation, extinction of species are just a few of

the issues that could lead to serious consequences to
all inhabitants on tim Earth, in a scale that will l'e-

spect no national or political boundaries. To under-

staud and quantify the anthropogenic impact on the

environment, and to predict the eventualities if the

deteriorating trend is not reverted, consistent and

long-terln monitoring of the global environment is

needed. Through the Earth Probes and the Earth

Observation System (EOS), NASA's Mission to the

Planet Earth will continue to provide the essential
measurements.

The amount of measurements from the Mission

to the Plant Earth, however, will be unprecedented.

For example, the first EOS AM platform alone will

generate more than one terabyte (TB) data a day,

compared with the 5 TB from the entire 12 years of

AVHRR Pathfinder data. To timely process, analyze,
store, and disseminate the satellite measurements and

extracted information to a worldwide user community

presents a formidable cballenge, and demands inno-

vative analytical methods and advanced computing

and data communication technologies.

Among the contemporary information sciences,

neural networks have proven to be a versatile tech-

nique for input-to-output mapping, without the con-

straiqt of formulating the exact relationship between

the two. In addition, contextual and neighborhood

knowledge can be easily included. In the past few

years, neural networks have been applied to classifi-

cations of remotely sensed data (e.g., Calnpbell et al.
1989, Decatur 1989, Benediktsson et al. 1990, Liu et

al. 1991, Bischof et al. 1992, Kiang 1992). In these

studies, spectral data and ground truth are input to

multilayer perceptron networks with one or more hid-

den layers, and networks are extensively trained off-

line by minimizing a least-mean-squares (LMS) en-
ergy function with back-propagation (Werbos 1974,

Rumelhart et al. 1986). It has been shown that the
performance of neural network techniques is superior

to classical techniques for systems operating in real-
time.

It is well documented that minimizing the LMS en-

ergy function produces a neural network that approx-

imates the Bayesian a posteriori probabilities (the
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probability of a class given a particular input vector)

of classes of data represented by a training set. (see

Richard & Lippmann 1991, for a review). Given an

infinitely large training set and a network with suf-
ficient functional complexity, the approximation er-

ror becomes negligible, and the misclassification er-

ror converges to the Bayes rate. While this property

makes the LMS energy fuuction attractive, there is

an important qualification. The functional complex-

ity needed for approximating the a posteriori proba-

bilities is greater than that needed for approximating

only class boundaries. Thus, if we are only inter-

ested in the classification of an input, rather than its

a posteriori probability, a neural network that esti-

mates probabilities will be needlessly complex. The

additional complexity is a disadvantage both from
the principle of parsimony (using the smallest num-

ber of weight parameters to increase generalization

[see, e.g., Barton & Cover 1991]) and from the hard-

ware inq)lementation standpoint. Therefore, we test

energy functions that minimize the misclassification

error directly (Szu & Teller 1991, Telfer & Szu 1992a),

rather than indirectly via approximating the a poste-

riori probabilities. We call these Mininmm Misclas-

sification Error (MME) energy functions.

We frst formulate these energy functions and pro-
vide a two-feature example that illustrates the cola-

cept. The Landsat Thematic Mapper data is de-

scribed and results are presented for classifying on

a pixel-by-pixel basis. These results are intended to

provide a benchmark for further improvements that

make use of both subpixel and superpixel (contex-

tual) information. The paper concludes by discussing
these research directions.

ENERGY FUNCTION FOR-
MULATION

The commonly used a-LMS energy function is

given by

N K

n=l k=l

(1)

where d,,k is the desired output (normally set to 0

or l) of the k-th output tlllit for tile n-th training

vector, a is a sigmoidal function [we use or(z) =

1/(1 + cxp(-z)], and o,_, is the output of the k-th

out lint unit for the 7_-th training vector, before the

sigmoidal nonliuearity is applied. With one output

unit per class, and dck= 1 for training vectors fi'om

class e, d_k = 0 otherwise, mininflz, ing Eo-LMS pro-

duces outpuls that approxinmte the Bayesian a pos-

teriori probabilities. An input vector is then classi-

fied according to the largest output value. However,

for practical applications (finite training sets and net-
works with limited functional complexity), Eo-LMS

function is not guaranteed to minimize miselassifica-

tion error (Barnard & Casasent 1989).

A more natural energy function for classification

simply counts the number of training vectors that the
network misdassifies. The formulation of this count-

ing function varies depending on the output encoding.

For a two-class problem, a single output unit suffices,

with positive outputs indicating one class and nega-
tive outputs indicating the othe,'. A counting func-

tion for this network is given by (Szu & Telfer 1991,

Telfer & Szu 1992a)

N

EMME : U - E step(d,o,_), (2)
rl=l

where d,_ is the desired sign of the actual output on

and step(z) = 1 if z >_ 0; step(z) = 0 otherwise. (Eq.

2 thus uses a sharp membership function; a fuzzy

logic version would be an obvious extension.) When

the desired sign is the same _ that of the actual

output o,,, the n-th training vector x,, is correctly
classified, the step function equals 1, and the number

of misclassifications EMME is reduced by one. When

the desired output sign and actual output sign differ,

x,_ is misclassified, the step function equals 0, and

EMME is not reduced. To minimize an energy func-

tion with gradient descent, the energy function nmst

be differentiable. Although the step function in Eq.

2 is not differentiable, it can be approximated by a

sigmoidal function that is gradually steepening. As

the magnitudes of the network weights increase, the

magnitudes of the network outputs o_ also increase,
and the sigmoid behaves more and more like a step

flmction required by Eq. 2.

For multiple classes, if there is one output unit per
class and an input is classified based on the largest

output, an appropriate counting function, called the
Classification Figure of Merit (CFM) (Hampshire &

Waibel 1990), is given by"

N

ECFM : m - E a(O.,a,r - Oolhe,'), (3)

I1=I

where o,,_ is tile output from the unit that should

have the maximum value (corresponding to the train-

hag vector's class) and oo,h¢,, is the largest value of the

other output units, llere the step function has been

replaced by a sigmoid with the above justification.
For a correct classification, o,,_a_: - ooth,,- > 0 and
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cr(o,,,,_- Ooth,_) --- 1, and tile number of misclas-
sifications is reduced by 1. For a misclassification,

o,,,ax - ooo, er < 0 and a(Om,_z - Oother) -"* 0, and the
number of misclassifications is not reduced. A proof

showing that minimiziug EcrM does give the desired

result is given in (Ilampshire & Pearhnutter 1991).

With multiple classes, the outputs may also be bi-

nary encoded labels, in which case the outputs are

passed through a threshold rather than a maximum
detector. An advantage of binary encoded outputs

ovcr one output unit per class is that fewer output

units are required. For example, for 16 classes, one

output unit per class requires I6 output units, but bi-

nary encoded outputs require only 4 output units. In
addition, error correcting codes can be used as class

labels. For example, a IIannning code (Lin & Costello

1983) with 7 output units can encode 16 classes and
correct a single error ill the output units. Such an

error correcting approach increases classification ac-

curacy and has been shown to improve associative

memory performance (Liebowitz & Casasent 1986,
Casasent & Teller 1992). A new MME energy func-

tion to minimize misclassificatiol_ error for binary en-

coded outputs is given by

N K

= - - r,"+ o.5]. (4)
n=l k=l

Tile summation over k equals the number of correct

output units for the n-th training vector. If all are
correct, the summation equals K, and the outer sig-

mold becomes 1, which reduces the number of in-

correct misclassifications by 1. If there are one or

output errors, the summation over k equals at most

/( - 1 (for a single output error) and the outer sig-
mold becomes 0, and the misclassification count is not

reduced. Note that in this case of multiple classes,

EMME must determine from all the output units
whether a classification is correct or not. It _is not

sufficient to simply sum the errors from each output

unit individually by summing Eq. 2 over multiple
classes.

2-D EXAMPLE

Before considering the Thematic Mapper data, we
consider a simpler two-class example of synthetic data
with two features. This allows the class boundaries

to be easily visualized to provide insight into LMS

and MME energy functions. Since the data set is
much smaller than the Thematic Mapper data, it also

allows more detailed study.

Two classes with equal a priori probabilities are
drawn from concentric circular uniform distributions

with radius v'_/2 (class 1) and 1 (class 2). The Bayes

rate (minimum error) is 0.25, with a circular bound-
ary of radius v_/2. The training set consists of 1000
vectors from each class and is shown in Figure 1. (The

class boundaries shown in Figure 1 will be discussed

shortly.) The test set consists of 5000 vectors from
each class. The larger test set is needed to increase
the confidence levels of the results.

The following study considered L1 and L2 norm
versions of the two-class EMME. More details are

provided elsewhere (Teller & Szu 1992b). The
method described in the formulation section is the

L1 version. Multilayer perceptrons with two layers

of weights and varying numbers of hidden units were

tested for a-LMS, MME L1 and MME L2. The proce-
dure was to randomly initialize the weights to values

between 4-1, first train each network for 200 itera-

tions (epochs) using a-LMS, and then using that re-

sult as a starting point, train for 800 iterations using

the three energy flmctions. The lnotivation for t!le
initial 200 iterations was to move the networks into

a reasonable area of weight space which could then

be timed further by each energy function. This was

found to produce better results than simply start-

ing with each energy function from random weights.
Other random weight magnitudes were also tried to
ensure that the best results possible fi'om each energy

function were being measured. A conjugate gradient

method (Fletcher 1987) was used (restart cycle of 5)
with a simple inexact line search in implementing the

backpropagation algorithm. For each number of hid-

den units, ten initial sets of random weights were con-
structed. In an attempt to discount runs that became

stuck in local minima, only the run that gave the min-

imum training set error for each energy function was
included in the results.

Figure 2a plots the performance of each energy
flmction vs. number of hidden units. The MME

energy functions produce excellent results with only
three hidden units, and as more hidden units are

added, they descend to essentially identical train-

ing set errors of 0.246 for MME L2 and 0.248 for
MME L1 with 8 hidden units. Since it was plain

that tile MME energy functions were reliably finding

miuimum error networks, their hidden units were not

increased beyond 8. For a-LMS, the training set error

also slowly decreased with increasing numbers of hid-

den units, but consistently remained higher than the

MME training set results and the Bayes rate. With

16 hidden units, a-LMS still gave 0.259 error, over 1%
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Figure 2: (a) Training set, and (b) test set results for different energy functions vs. number of hidden units.
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higher than for the MME energy functions. For an

infinitely large training set, _r-LMS would converge

to tile Bayes rate, but this result does not: hold for a

finite training set.

These results are also reflected in the MME L2

and _-LMS class boundaries with four hiddela units,

plotted in Figure 1. The MME L2 boundary is clearly

ahnost exactly the desired circle, while the er-LMS

boundary is consistently inside the optimal boundary.

Of course, =the more important question is how the

networks performed on the test set. These results are

plotted in Figure 2b with 95% confidence intervals

(IIighleyman 1962). The test set errors are all higher

than the respective training set results as expected.
The MME test set results are still lower than the

cr-LMS results, and the results are statistically sig-

nificant (although there is a slight overlap between

the MME L2 and a-LMS results at 8 hidden units,

even this is still significant with a high but less than

95% confidence level). Even witb 16 hidden units,

the _r-LMS result is still significantly (in the statisti-

cal sense) worse than all but 4 of all 8 MME results
with 8 or fewer hidden units. Thus, for this exam-

ple, cr-LMS requires roughly five times the number of

hidden units of the MMI'; energy functions (16 vs. 3)

to give equal test set. performance.

LANDSAT EXAMPLE

Description of Data

Landsat-4 Thematic Mapper (TM) data taken in

July 1982 over an area in the vicinity of Washing-

ton, D.C. were used in this study. The TM is a 7-
band instrument, with spectral coverages 0.45-0.52

(TM1), 0.52-0.60 (TM2), 0.63-0.69 (TM3), 0.76-0.90

(TM4), 1.55-1.75 (TMS), 10.40-12.50 (TM6), and
2.08-2.35 (TM7). The ground Instantaneous Field-

of-View (IFOV) is 30m except for the them_al bands

(TM6), which is 120m. As the infrared and the ther-

mal bands had not yet cooled off after launch, only
the first four bands are usable.

The ground truth consists of 17 categories, and

were obtained through photointerpretation of color

infrared aerial photographs and subsequent field vis-

its (Williams et el. 198,t). Specifically, the categories

are (I) water, (2) miscellaneous crops, (3) stand-

ing corn, (4) corn stubble, (5) shrubland, (6) grass-

laud or pasture, (7) soybeans, (8) bare soil/cleared

land, (9) mostly hardwood dense canopy, (10) mostly

hardwood less dense, (11) mostly conifer, (12) mixed

wood, (13) asphalt, (14) single-family residential

area, (1,5) multi-family residential area, (16) indus-

trial or commercial area, and (17) bare soil/plowed
fields.

In general, ground truth contains information cat-

egories instead of spectral categories. As the IFOV

is broad enough to cover multiple ground categories,

there are natural overlaps among the spectral signa-

tures for these categories. Since the neural networks

in this study perform classifications based on spec-
tral data alone, whether the information categories

correspond to distinct spectral categories should be

examined, in order to estimate the intrinsic discrim-

inability among the categories.

To achieve this objective, the spectral signatures

for all categories are computed. The signatures con-
sist of mean vectors and covariance matrices. A num-

ber of measures, such as divergence and Mahalanobis
distance, could be used to estimate the separabil-

ity among multi-dimensional clusters. In this study,
we compute the ratio of between-cla.ss variance to

wlthin-class variance along the Fisher optimal dis-

criminant vector (Dnda L," IIart, 1973). From the ra-

tios, it, is concluded that some information categories

ave heavily overlapped witll others, and that the 17

information categories should be combined into 6 cat-

egories, following the land use and land cover classi-

fication system of Anderson et al. (1976). These six

categories are: (I) urban or built-up land, (2) agricul-

tural land, (3) rangeland, (4) forest land, (5) water,

and (7) bare soil/cleared land. Notice that there is

no Category 6 (wetland) in this data. In Anderson's
system, Category 7 is barren land, such as salt flats,

beaches, bare rock, etc. Since bare soil/cleared land

(Category 17 in the ground truth data) does not ex-
actly fit the definition, the original description in the

ground truth is used instead.

To give an idea of the terrain types present, Figure

3 shows the four bands of the 256 x 256 image (slightly
cropped for display purposes). Roads are clearly vis-

ible. A housing development is at the upper right.
Fields are visible in the center of the image. The

dark areas are primarily forest.

The area for which ground truth exists (a roughly

150x150 area in the center of Figure 3) has 21,952
pixels, with pixels placed alternately into training and

test sets, giving 10,976 pixels for each. The number

of pixels in each class is give in Table 1. Since each
pixel contains four spectral bands, each feature vec-

tor contains fore" features, with an additional element

set to one to provide a bias term. Each of the four
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(a) (b)

(c) (d)

Figure 3: Four bands of Thematic Mapper data: a) TM1, b) TM2, c) TM3, d) TM4.
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ClassName No. Pixels

Urban

Agric

Range
Forest

\\rater

Bare

2754

1670

318:1
13781

28

535

'I'al_le 1: Class dislril)ution of Landsat data.

spectral features was nornmlized l.o have zero mean
and standard deviation of 0.75.

Procedure and Results

Multilayer percepirons wilh Iwo layers of weights

and twelve hidden units we,'e tested for Eo-LMS,

ECFM and EMME. (Networks with fewer hidden

units were also tried but found to perforln slightly

worse.) For the network strvcture of one output unit

pet' class, six output units were used, while for binary

encoding, three output units were used. (Two of the

possible eight codes were unused.) The procedure
was to randomly initialize t]te weights to values be-

tween ±1, first train each network for 500 iterations

(epochs) using cr-LMS, and then using that result as

a starting point, t,'aiu for 1000 ilerations using the

three energy functions. A conjugate gradieut method
was used (reslart cycle of 5) with a simple inexact line
sea,'ch.

Tile resulting classification accuracies are given in
Table 2. We first consider the results for one out-

put per class. Although CFM improved the o'-LMS
training set accuracy by 1%, the test set results are

identical. The small training set improvement in-

dicates that o'-LMS is finding ('lass boundaries very
close to the minimum error boundaries. The excellent

o'-LMS pe,'forlnance can be explained by the large

training set size and apparently relatively small func-

tional conlplexity needed to represent the a posleriori
probabilities in this case.

For the binary coded outputs, the o'-LMS outputs

esimate the probabilities that the outputs are 1 given

the input. This can be seen to perform worse than

MME, which improves accuracy by 2.2% for the train-

ing set. and 1.2% for the test set.. The difference in the

test set result, is significant with an 88% confide,ace

level. (The 95% confidence level is -t-0.75%.) There is

no st atistically sight fleatat, difference between tim two

test set. results for one outlmt per class and MME

Energy Accuracy (%) Output

Function Train Test Encoding

a-LMS 78.1 78.7 l/class

CFM 79.1 78.7 1/class

o'-LMS 76.4 76.9 binary code

MME 78.6 78.1 binary code

Table 2: C.lassificatioa accuracies for Landsat data.

binary encoding, but these three restilts do differ sig-

nificantly fi'om the o'-I, MS binary encoding result.

Although the saving in weigl,ts by binary encoding

is not large in this example, for larger nmnbers of
classes, tlle savings becomes significant, hi addition,

lhe binary encoding performance would be improved

by using error correcting codes.

For comparison, a classical nearest neighbor clas-

sifier (Duda & Ilart, 1973) gave 71.7% test. set accu-

racy, Also, seven previous neural network tests (with

various network architectures and sizes) on this data

set have given test set accuracies between 71.6% and

78.4e_, (Kiang 1992, Hwang et al. 1993). Our best
result of 78.7% is statistically better than all but one

of these previous results (78.4%), and was obtained

with a much smaller network - 132 weights for our
network vs. about 640 weights required for the ra-

dial basis fimction network giving 78.4%. The fact

that this previous result is similar to our best results

suggests that this couhl be tim best possible accu-

racy that can be obtained by classifying singh" pixels.

Further accuracy improvelnents can be ol)tained by

making use of subpixel inforn|ation and by classi_'ing

based on a neighborhood of pixels. We discuss this
in the next section.

There bave been neural network based studies (e.g.

Bischof et al. 1992) in which classification accuracies

are higher than ours. Ilowever, it must be pointed

out that a direct, fair comparison among these stud-

ies may not be possible. As known in remote sens-

ing applications, classification accuracies are highly

dependeut on the ground types involved, the sensors'
resolutions, the seasons when tile measurements were

taken and the environmental conditions. In general,

discrimination among various kiuds of vegetation cov-
ers is rather difficult.
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DISCUSSION OF
WORK

FUTURE

Tile 78.7% classification accuracy for single pixel

classification should be regarded as a starting point to

l>enchmark further improvenaents that involve both

subpixel and superpixel information. Ill addition to
this work, a method for inaproving the training set is
also discussed.

Since the Thematic Mapper pixcl footprint is 30hi,

the spectra from different landuse types can be mixed

in a single pixel. In related work (Shilnabukuro &

Smith 1991), mixture components arc estilnated us-

ing conventional least squares techniques in order to

estimate ages of eucalyptus areas. Neural network

apporaches remaiu to be tested. Since a neural net-
work trained by LMS estimates a poslcriori proba-

bilities, these can be used as mixing proportions to

provide st,bpixel classification results. For example,
it. was observed in the LMS classification results de-

scribed above that many of the pixels along a road

passiug through forest had large outputs correspond-

ing to both urban (manmade) and forest. Rather

Ihan classifying the pixel as urban (road) or forest

based on only the single largest, output, it seems more

appropriate to classify the pixel ,as a certai,t frac-

lion urban/road aT_d a certaiu fi'action forest based
on the two largest mixing components. Simply clas-

sifying based on the largest outl)ut was observed to

create lnany discrepancies with ground truth. For

example, the groundtruth marks only discontinuous
slrelchcs of the road as urban and the rest as for-

est. The LMS neural network classifies (based on

largest output) the entire stretch of road as u,'ban,

hill. also has a high second largest oul.luit for forest.

Thus, making use of subt)ixel mixtures should tin-

prove restllts. Mixture information provides general

information about a pixel, but does not indicate the

physical region wMlin the pixel occupied by a par-

ticular ground type. Super-resolution theory appears

pronaising for physically locating gronnd types within

pixels based on the classifications of nearby pixels.

Conversely, since land use occurs in patches larger

lhan tile 30in pixel size, it. seems clear that infer

mat.ion fi'om neighboring pixels should also increase

classification accuracy'. Several such ideas for mak-

ing use of context have been tested with conventional

classifiers (Mohn et al. 1987 [tests several prior ap-

proaches], Lee & Philpot 1991, aeon & Landgrebe

1992) and a neural network approach (Bischof et al.
1992). 'Fhe neural neiwork approach combines spec-

tra from lho pixel 1,o he classified and fronl neigh-

boring pixels into a single feature vector. The neural
network then learns fi'om the training set how much

weight should be placed on information from neigh-

boring pixels in classifying the central pixel. Bischof
et. al. demonstrated a 5% improvement with this

method vs. single pixel classification. We are cur-

rently testing this contextual technique with our new

MME energy functions. A two-pass hybrid spec-

tral/spatial approach is also planned to overcome pro-

jection registration and distortion problems.

Lastly, editing the training set should also help

improve results. As noted elsewhere (Williams et

al. 1984), any minor errors registering groundtruth
with the Thematic Mapper data could result, in misla-

beled sainples. Therefore, training samples near class
boundaries in the image should be deleted.
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Abstract

Real time control problems require robust, high
performance solutions. Distributed computing can
offer high performance through parallelism and
robustness through redundancy. Unfortunately,
implementing distributed systems with these
characteristics places a significant burden on the
applications programmers. Goddard Code 522 has
developed WorkPlace to alleviate this burden.
WorkPlace is a small, portable, embeddable network
interface which automates message routing, failure
detection, and re-configuration in response to failures
in distributed systems. This paper describes the
design and use of WorkPlace, and its application in
the construction of a distributed blackboard system.

1. The Dilemma

WorkPlace was developed as part of the
Intelligent Ground System (IGS) project within
Goddard Space Flight Center's Data Systems
Technology Division with funding from NASA
Code R. The IGS project is exploring the use of
multiple knowledge-based systems in the satellite
control center, particularly in the area of platform
monitoring and fault diagnosis. The current
practice is to introduce isolated expert systems
mto operations. Our objective is to achieve a
more comprehensive system that involves many
expert systems that communicate and cooperate
with each other and with conventional

components of the control center.

We faced two technological hurdles in
achieving this objective. First, we needed to
provide a flexible, open mechanism for data
exchange which would support multiple
platforms and heterogeneous applications.
Second, we needed to develop an architecture for
expert systems which would accommodate the
asynchronous nature of a distributed cooperative
environment. This paper describes the solutions
to these problems that we have developed.

2. The Blackboard Solution

Blackboard systems represent the standard
metaphor for distributed problem solving in AI.
That metaphor describes a team of experts who
cooperate to solve some problem. These experts
communicate by writing partial solutions on a
blackboard. The posting of a partial solution by
one expert triggers the activity of an expert with a
related expertise. Together these experts
progressively evolve the partial solutions into a
solution to the top level problem. Thus the
blackboard architecture is based on:

• a universally accessible space for posting
partial solutions (the blackboard),

• partitioning of that space into multiple levels
of abstraction,

• and the opportunistic application of
Knowledge Sources (experts) to that space
to further the current level of understanding.

Traditional implementations of the blackboard
approach use shared memory within a uni-
processor for the information space. When the
posting of a new partial solution triggers multiple
knowledge sources, conflict resolution strategies
serialize the execution of those sources and their
access to the blackboard. This limits

performance.

Several systems have been described in the
literature which provide different approaches to
parallelizing blackboard systems. One family of
approaches is based on the use of a multi-
processor architecture. Hearsay II (Fennell and
Lesser, 1976) provides a central blackboard
which is written to by concurrent experts
executing on a simulated multi-processor. The
experts (or knowledge sources) are further de-
coupled into precondition and action parts which
can execute concurrently within their own copy
of relevant portions of the blackboard (known as

contexts). The central blackboard provides node
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and region locks to mediate reading and writing
by the concurrent knowledge sources. The
CAGE system (Nii, Aiello, and Rice, 1989) also
provides a central blackboard, and can be
executed with inter-knowledge source, intra-

knowledge source, and intra-rule parallelism on a
simulated multi-processor. Similarly, CAGE

provides locks to deal with concurrent reads and
writes to the central blackboard. Extensive

simulation experiments have been performed on
this architecture to measure the relative effects of

these different forms of parallelism on the

performance of a representative problem.
Polygon (Nii, Aiello, and Rice, 1989) departs
from the central blackboard theme by
parallelizing the nodes which would normally
reside on the central blackboard. Direct
communication between nodes obviates the need

for a global data structure. Data coherence is
handled through the use of "smart" slots in the
nodes which decide when a new value is better

than the existing value of the slot using local
heuristics. Polygon also runs on a simulated
multi-processor.

A second family of approaches is built on
concurrent processes in one or more conventional
computers communicating through Inter-process
Communication (IPC) mechanisms. The
transaction processing blackboard described in
(Ensor and Gabbe, 1988) provides a central
blackboard which mediates the interaction

between satellite blackboards which operate
concurrently. The central blackboard uses a
transaction processing metaphor to mediate
reading and writing by satellite blackboards.
This system was implemented on a network of
Symbolics Lisp Machines and provides a nice
model of loosely coupled groups of closely
coupled experts. The COPS system (Leao and
Talakdar, 1988) extends the OPS5 production
system to provide fact exchange between
independent OPS5 processes. Remote writing is
available through addressed IPC messages, but
appears to be used primarily for instantiating new

processes. Normal fact exchange is
accomplished through the use of "ambassador"
rules. Ambassador rules can be thought of as
parasites which are inserted into remote COPS
processes to watch for fact patterns and report
detections back to the originating system. A
subset of the COPS processes are designated as
blackboards. These central repositories exist

primarily as intermediaries between non-rule-

based applications (which can not accept
ambassador rules) and the other OPS5-based

applications.

3. WorkPlace Architecture

Our work falls into the second family of
approaches, attempting to bring the cooperation
available in blackboard systems to an
environment of physically distributed
conventional computers. Unlike COPS and the
Ensor and Gabbe system, WorkPlace places no
constraints on the processing formalism used in
communicating nodes, and supports a range of
interfaces to TCP/IP 1. Cooperation is built on a
flexible event distribution mechanism rather than

shared memory. This mechanism uses a
Publish/Subscribe/Sample metaphor, providing
an exceptionally simple application interface.
Cast in terms of the blackboard metaphor
WorkPlace offers:

• a common catalog of facts with a selectively

replicated fact space,
• and parallel application of knowledge

sources and transformers to that space to
further the current level of understanding.

From the application's point of view there are
four operations necessary to participate in the
WorkPlace environment. First, the application
must provide a handler for facts received over the
network. The implementation of this handler is
entirely up to the application. Second, the
application must regularly call a ProcessEvents0
function to allow the communications software to

keep in contact with the rest of the group.
Information destined for the application will be

caught during this call and passed to the
application's fact handler. Third, the application
must inform the agent of its remote information
needs. These needs can change dynamically
throughout the life of the program. Finally, the
application must explicitly make information
available which might be of interest to other
members of the group.

The remainder of this section explains these
operations in more detail, and presents some of

1 WorkPlace currently supports UNIX and Macintosh
interfaces to TCP/IP. Support for VMS may be added in
the future. Intermediate blackboards are not required to
integrate heterogeneous applications since no assumptions
are made about the nature of those applications.

182



Host Application

_ Remote Clients List ]

Report new valu>

Request remote values

Process Events

q Receiv_emote values

Producer Class

f Consumer Class

[ Remote Servers List]

_'_ Member Class
I Group Members List I

(fl Comm Class _"

[ V/_[C°rmecti°ns List ]_1 traffic>

Figure 1. WorkPlace Application Interface

the ramifications of our implementation. An
overview is shown in figure 1.

3.1 Membership In The WorkPlace

For applications to exchange information they
must know of each other's existence and

location. The list of existing applications and
their locations can be thought of as membership
information. WorkPlace acquires this
membership information dynamically. The only
static information required is the name of the
group and the address of at least one member.

Dynamic membership means that the full roster
and address lists are determined during the
execution of the applications. The simplest
approach is to use a centralized data server as an
information clearing house. This server accepts
connections from remote applications for either

receiving or delivering information. All
information produced by an application is
forwarded to this data server for selective
distribution to client sites. The down side of this

approach is that a given piece of information is
transmitted twice if a client exists for that
information, and once if that information is not

currently needed. The benefit is that a complete
history of the products of the system is available.
This centralized data server also represents a
single point of failure for the environment: if the
server goes down information flow stops.

The approach taken in the WorkPlace
environment is to provide every application with
the ability to accept and request connections from

remote applications for either receiving or
delivering information. The environment then
becomes an association of peer nodes. That
association is born with the appearance of a

founding member, and ceases to exist when the
last member exits. During the life of an

association, any of its members, including the
founding member, may leave the group and may
later return. This fully distributed and dynamic
design provides four benefits over centralized
and static ones:

• Reduced vulnerability to individual node
failures.

• Direct transmission of desired information

from producer to consumer.
• No forwarding of unused information.
• The ability to add, delete, or move processes

on an ad-hock basis without unnecessarily

disrupting the execution of retained

processes.

3.2 Product Exchange in The WorkPlace

From the application's perspective, product
exchange is simply a matter of packaging
information and reporting it, or receiving an

information product and unpackaging it. The
actual routing of information between agents
occurs asynchronously with no involvement by
the application. Allowing the agent to derive this
information dynamically provides the flexibility
necessary to accommodate changes in
computational resources (e.g. processor or link
failures), changes in computational load, and run
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time changes to the applications suite (e.g.
application crashes, upgrades to existing
applications, and addition and removal of
diagnostic processes).

Information is packaged as a value with a
unique identifier. Identifiers are broken down
further into an object specifier and an attribute
specifier, as in "the float value (object specifier )
temperature (attribute specifier ) is 71.3 °F (value
specifier)." Thus the conceptual package for an
information product is a triple of the form
<ObjectName>, <AttributeName>,
<AttributeValue>. Services are provided for
constructing attribute values from integer
numbers, floating point numbers, character
strings, or nested lists of these atomic types. The
units in which a value is cast are assumed to be

known to the receiver a-priori.

Reporting information is referred to as
Publishing in WorkPlace. Each time the
application publishes information, the agent
caches the value reported. If there are registered
clients for that information product, a message is
forwarded to each of those clients specifying the
new value. When the application publishes an
information product whose identifier is different
from any previously published by that
application, the agent makes an announcement to
all active members of the group. If the identifier
has never been published by any other member
of the group, the announcement identifies the
object name, attribute name, and a more
computationally efficient identifier for the product
to be used in subsequent transactions. Otherwise
the announcement simply notes the new source
for that information identifier. If an application

ceases to produce some information product, it
can announce this fact through the UnPublish
method. This removes the application's name
from the producers list of the indicated product

for every active member of the group.

The application requests remote information
products by subscribing to information products.
The embedded agent contacts known producers
of that product and registers subscriptions with
them. The agent also records the request so
sources of that information which appear in the
future can also be contacted. Two variants of the

subscription method exist: SubscribeToAll, and
SubscribeToAny. SubscribeToAll places
subscriptions for the requested products with
every agent known (now or in the future) to be

capable of producing those products. When an
application expects a single source for a piece of
information, it can use the SubscribeToAny
variant. SubscribeToAny places a single
subscription, per product, with a random agent
known to be capable of producing that product.
If the selected product source stops publication of
that product, quits the group, or displays
anomalous behavior, then the agent will
automatically move the subscription to an
alternative source. A measure of fault tolerance

is afforded through this mechanism by
intentionally providing redundant copies of an
information source on separate hardware. The
flow of product updates can be halted by
invoking the UnSubscribeTo method. This is
useful when throughput disparities force the
receiver to sample the data stream. An
application can subscribe to and un-subscribe to a
product or products an arbitrary number of times.
The only overhead of SubscribeTo and
UnSubscribeTo invocations is a short message to
the selected supplier(s) of the product.

The application does not receive the value of a
subscribed product until the value of that product
changes. To obtain the current value of an
information product, the application invokes the
SampleAll or SampleAny agent methods. One,
or more sources may or may not exist for the
requested products. If no sources are known,
then the supplied default value is returned to the
application's product handler. If only one source
is known, then a sample request is forwarded to
that source. That source's agent responds to the
request with the last cached value for the product.
The local agent receives that value and returns it
to the application by way of the application's
product handler. If multiple sources are known
for the requested product, then a sample request
is forwarded to a randomly selected source for
the "Any" case, or to each source in the "All"
case.

3.3 The Network Interface

In reality the WorkPlace agent implements only
the bookkeeping and protocol necessary to track
group membership and information product
sources and subscriptions. The actual network
interface is implemented in the OSCAR (Open
System for Coordinating Automated Resources)

Agent class over which the WorkPlace agent is
layered.
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The OSCARAgent classprovidesacommon
Application Programmer Interface (API) for
networkcommunicationsoverseveraloperating
systems. Within this classa suite of standard
routinesfor writing messages,readingmessages,
and getting connection status is defined.
Subclassesimplement the actual routines for
specific protocols and operating systems.
Currently the VMS, UNIX, and Macintosh
operating systemsare supportedby OSCAR.
Newprotocolimplementationsareaddedaspeers
in thesuiteof supportedprotocols. TheOSCAR
agentclassselectsamongtheseprotocolswhena
sendrequestis madebasedon informationit has
on thelocationandtypeof thedestinationagent.
The OSCAR agent also monitors each
communicationpathfor connectionrequestsfrom
remoteagents.

4. Integration of a Distributed System

The IGS project has developed a testbed to
evaluate and demonstrate the functionality of
distributed knowledge-based systems within a
control center setting (see figure 2). This testbed
incorporates a spacecraft simulator, command
scheduler, user interface, and three knowledge-
based diagnostic systems. These testbed
applications are integrated through the WorkPlace
software. Our operational goal is to evolve the

Analyst
Workstation

Command
Scheduler

diagnostic components of the testbed into a
platform diagnostic system for the first EOS
spacecraft, due to be launched in late 1998.

The object-oriented spacecraft simulator accepts
commands and generates telemetry data. A
command scheduler acts as the bottleneck

through which spacecraft commands are
forwarded. Three knowledge-based systems
interpret the telemetry stream in real time to
monitor the state of spacecraft subsystems.

When anomalies are detected, these systems
provide explanation and advice to the user
interface and optionally post suggested fixes with
the command scheduler. The user interface

depicts a graphical hierarchy of the spacecraft and
ground components, where the user can zoom
down into lower levels of detail when a problem
is detected. An intelligent front end to the user
interface filters and synthesizes related fault
warnings to reduce information overload.

Integrating the Spacecraft Simulator

The job of the testbed is to control and monitor
an object-oriented simulation of the EOS A
spacecraft The model is composed of an
electrical power system, thermal bus system,
HIRIS (High-Resolution Imaging Spectrometer)
instrument payload, and platform manager. The
EOS spacecraft model is augmented by a model
of the sun and the space-to-ground

............... _(Communications_

Suggested _l_System (.CLEAR)J
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Figure 2. Intelligent Ground System Testbed
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communications link. The simulation

demonstrates electrical, thermal, and mechanical
aspects of the spacecraft's behavior over time,
with realistic responses to up-loaded commands
and partial equipment failure. The simulator
design is based on the connection manager
architecture proposed by the Software
Engineering Institute for flight simulators, as
reported in (Lee, 1989), and the suggestions for
object-oriented simulation in (Zeigler, 1990).

To operate successfully within the context of
the testbed, the simulator needed to be able to

receive commands and report telemetry. This
was achieved by creating two new object types
within the simulation environment. The first type
received binary and serial information from other
objects within the simulator, and converted and
published that information as information
products. These objects were then directly wired
to the telemetry sources in the model. The
second object type received information products
and converted them to serial and binary signals.
These signals were then connected to the
spacecraft's command handler to allow remote
control of the spacecraft. Lastly, the cyclic
executive for the simulation was altered so that

the embedded agent's ProcessEvents method
could be called between simulation cycles.

Integration with Clips

The knowledge-based components of the
testbed include three rule-based systems: the
Communications Link Expert Assistance
Resource (CLEAR), a power bus monitoring and
diagnostic system (PowerFDIR), and a
monitoring and diagnostic system for the
spacecraft's HIRIS instrument (HirisFDIR).
CLEAR was taken from an operational NASA
communications fault diagnostic system. The
other two systems where developed by the task
expressly for the testbed.

Each of these systems is written in the "C"

Language Integrated Production System
(CLIPS), an expert system shell developed by
Johnson Space Center (Giarrantano, 1991). We
produced a distributed version of CLIPS version

5.1 (IGSClips) by embedding a WorkPlace
agent. The integration required the addition of
six new functions mirroring the distributed data
agent methods: Publish, SubscribeToAny,
SubscribeToAll, SampleAny, and SampleAll.
One additional right-hand side function,
GenNetSymbol, was added so that applications

could generate network-unique identifiers. A
call to the OSCAR ProcessEvents0 function was
inserted after each rule-execution cycle to service
the network connection. Product updates
arriving during this call are asserted into the fact

base in the form (InPort <Object Name>
<Attribute Name> <Attribute Value>). We have
not yet evaluated the performance costs to CLIPS
of the ProcessEvents call between cycles when
no network information is pending.

IGSClips is similar in concept and operation to
the COPS system (Leao and Talakdar 1988)
described earlier. The main difference lies in the

migration of group and communications
management code out of the production system
and into a separate module (the WorkPlace
agent). Because IGSClips does not rely on
ambassador rules, direct cooperation between the
simulator and the diagnostic agents was possible.

The Impact of Asynchronous Operation

Two basic diagnostic architectures are present
in the testbed: a shallow reactive architecture, and
a deeper model-based architecture. While the
deeper architectures are able to take more
information into account in making their
diagnoses, their integration into the
asynchronous environment was more difficult.

CLEAR was implemented with the help of a
domain expert who, through personal
experience, was able to impart rules which
related surface features (telemetry values) almost
directly to diagnoses. CLEAR was ported to the
testbed with only minor modifications necessary
to publish its diagnoses and to format incoming
telemetry to be accepted by the existing rule base.

The PowerFDIR and HirisFDIR diagnostic
systems could not benefit from the compiled
knowledge of a domain expert. Instead, these
diagnostic systems keep two models of the
spacecraft subsystem they monitor. The first
model maintains the expected state of the
subsystem based on a known initial state, the
command stream that has been sent to the

subsystem, and the known behavior of the
subsystem in response to commands. The
second model maintains the current state of the

subsystem based on telemetry from that
subsystem. Anomaly detection results from a
comparison of these two models.
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TemporalCoherence
Earlyexperimentswith thetestbedshowedthat

when the simulator was running on a separate
platform from that which thediagnosticsystems
wererunning on, it waspossibleto swampthe
model-baseddiagnosticsystemswith telemetry.
In some cases the diagnostic systems were
making recommendationsfor conditionswhich
no longer existed, and in others the systems
exhausted their ability to buffer incoming
telemetry and crashed. Our solution was to
changethe diagnostic systemsso that they in
effect sampled the telemetry streamand then
reacted to that sample. This de-coupledthe
processingrate of the diagnostic systemsfrom
theproductionrateof thetelemetrysource.

Unfortunately,wecouldnotusetheWorkPlace
Sample operation to do this. The telemetry data
is logically partitioned into sets which represent a
snapshot of the spacecraft at a particular point in
time. If the diagnostic system sampled two
telemetry points which were not from the same
frame, it would not be able to build a coherent

picture of the current state of the reporting
subsystem. Instead, when a diagnostic system
wants to sample the telemetry stream, it places
subscriptions for the telemetry points it needs.
The diagnostic system then throws away all the
telemetry it receives until the start of a new flame
is detected (e.g. elemento arrives). The system
then caches all the subsequent data points until
the end of the frame is detected, at which point
the subscriptions are revoked. Now if the rule-
based system is fast enough, it operates as it had
previously. If at any time it is not fast enough,
each diagnostic cycle only processes the most
recent set of telemetry available.

This elaborate behavior on the part of the
application simulates the sampling of a frame of
information. If the WorkPlace agent embedded
in the simulation knew that a given subset of data
was part of a larger product, then that agent could
take steps to guarantee the temporal coherence of

the data made available to the group for
sampling. At this point we have not extended the
WorkPlace agent to support this, so the burden
remains on the client application.

Non-monotonicity

Cooperation allows independent systems to
leverage each other's expertise. A power failure
on one power bus affects all the subsystems

which are drawing power from that bus. The
PowerFDIR has the expertise to identify the bus
power failure, but the HirisFDIR does not.
Through cooperation, the HirisFDIR can use
external information generated by the
PowerFDIR to distinguish an external power
failure from an internal power distribution
problem. Unfortunately, there is no guarantee
that the helpful information will arrive before the
subsystem monitor makes its diagnosis. The
only solution we have at this time is for the
subsystem monitor to retract its diagnosis when
better information becomes available.

Summary

We have described our solutions to two

technological hurdles standing in the way of
cooperative knowledge based systems. The first,
WorkPlace, provides an open system for fact
exchange within a heterogeneous environment.
We think that the generality of this tool makes it
suitable for a wide range of applications, and that
its support for "hot spares" makes it unique.
Second, we have described some of the
complications which have arisen from
asynchrony, and how those complications have
constrained the basic architecture of agents within
the distributed cooperative environment. Taken
together, these solutions demonstrate a viable
design for physically distributed cooperative
systems, and provide key tools for use in their
implementation.
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1. Introduction

This paper presents a discussion of current work in the area of graphical modeling and
model-based reasoning being undertaken by the Automation Technology Section, Code
522.3, at Goddard. The work was initially motivated by the growing realization that the
knowledge acquisition process was a major bottleneck in the generation of fault detection,
isolation, and repair (FDIR) systems for application in automated Mission Operations. As
with most research activities this work started out with a simple objective: to develop a
proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be
automatically realized by reasoning from a graphical representation of the system to be
monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al.
1992). As the work has successfully progressed the KFP tool has become an
environment populated by a set of tools that support a more comprehensive approach to
model-based reasoning. This paper continues by giving an overview of the graphical
modeling objectives of the work, describing the three tools that now populate the KFP
environment, briefly presenting a discussion of related work in the field, and by
indicating future directions for the KFP environment.

2 Graphical Modeling as a Basis for Answering Questions: KFP Concept

By way of introducing the major concepts in the current KFP environment we describe an
approach to modeling a system that allows one to perform the following functions:

. Verify the correctness of a system design
• Simulate the behavior of a system
• Monitor the behavior of a system

Each of these functions amounts to answering certain questions about the system being
modeled. We therefore view verification, simulation, and monitoring as different forms of
querying a system model. In its current state of development, our models can be used to
answer the following types of questions:

1) Under what conditions will event E or state S occur? This can be asked at design time
for verification, or at run-time for explaining an observed event E or state S
(monitoring).

* Mailing address: CTA Incorporated, 6116 Executive Boulevard, Suite 800, Rockville, MD 20852.
E-mail: sbailin@cta.com, fpaterra@cta.com, scott@cta.com.

** Mailing address: NASA/Goddard Space Flight Center, Code 522, Greenbelt Road, Greenbelt, MD
20771. E-mail: wtruszkowski.520@postman.gsfc.nasa.gov.
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2) What will occur as a consequence of state S and/or event E? This can be asked at
design time for verification, or during system testing (simulation).

3) Will state S2 occur as a consequence of state Sl and event E? This can be asked at
design time for verification, during system test (simulation), or at run-time to explain
the observation of state Sz (monitoring).

2.1 The Graphical Language

The modeling language represents a system as a set of components that are connected
together via input and output ports. Each component has a set of output ports, which
transmit information or physical resources (e.g., heat, power) to other components; and a
set of input ports, which receive such resources from the output ports of other components.
In addition, each component has an internal state, which is represented through one or
more stores or variables. A component may also contain sub-components, which in turn
are connected with each other. Thus, there is no conceptual difference between a system
and a component: a component is a system consisting of its sub-components, and any
system may be used as a component within a larger system.

For example, Figure 1 shows a model of the temperature control subsystem of a spacecraft
instrument. The purpose of this subsystem is to control the temperature of the lens. Heat
provided to the lens influences the temperature sensor, which in turn sends a digital
temperature signal to the temperature driver. The function of the temperature driver is to
turn the heater and cooler on and off as needed. The heater and cooler in turn influence the

lens by passing or reducing heat, respectively.
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Figure 1: Temperature Control Subsystem Model
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Eachcomponentin themodelhasabehaviordescription that specifies how its internal state
and outputs change in accordance with changing input (and its previous state). To describe
behaviors we use a tabular representation similar to that advocated by Pamas et al (1990).
The tabular form allows us to accommodate both continuous functions and discontinuities.

As Parnas observed, discontinuities are the major problem in specifying system behavior as
a mathematical function--functional expressions in mathematics are typically continuous.
At the other end of the continuous/discontinuous spectrum, a finite state machine is well-
suited to describing a discrete set of behaviors, but is not suited to specifying new states
and outputs as a continuous function of inputs and previous state.

The tabular representation is a blend of these two approaches. Each row in the table
represents a nominalized, or abstracted, state, within which the system's behavior may be
described as a continuous function of the current input and the specific (non-abstracted)
state. Different rows in the table correspond to different abstracted states, in which the
behavior is characterized by different functions. For example, the following table specifies
the behavior of the temperature driver in the model shown in Figure 1:

Table 1: Behavior of Temperature Driver

Present State

Idle

Idle

CoolerOn

HeaterOn

Influence

T > MaxTemp

T < MinTemp
T <= MaxTemp-Delta

Next State

CoolerOn

HeaterOn

Idle

T >= MinTemp+Delta Idle

Action

Set Cooler Signal

Set Heater Signal

Drop Cooler Sisnal

Drop Heater Signal

In this case the next-state and action functions are discrete-valued and are constant within

each row of the table. The input port of the temperature driver is, of course, real-valued,
but in the behavior table it is described in terms of three abstracted states:

T > MaxTemp, T < MinTemp, and (implicitly) MinTemp <= T <= MaxTemp

2.2 Querying the Models

Let us see how such models can be used to answer the types of questions posed above:

Under what conditions will event E or state S occur? To answer this we need to perform
backward chaining through the state transitions and connections described in the model.
We begin with the "fact" (whether hypothetical or observed) that event E or state S has
occurred. This is treated as a goal in our backward chaining search. Typically E or S will
describe the internal states and/or outputs of one or more components. We therefore look
for state transitions in these components that would result in E or S. Each of these
transitions will be predicated on a previously occurring internal state and input event.
These previous states and input events therefore become subgoals. Input events of one
component translate into output events of another component via the connections specified
in the model. Similarly, the internal states that were pre-conditions of E or S become
subgoals; they can be established by either assuming them as initial conditions, or tracing
them back via still earlier transitions to previous states.

What will occur as a consequence of state S and�or event E? Answering this requires that
we perform forward chaining through the state transitions and connections described in the
model. We being with the "fact" that the system is in state S and/or that event E has just
occurred, and we proceed to execute the state transitions that occur as a result (as specified

191



in the behaviordescription of the model). Valuesthat occur at output ports must be
propagatedover to whatever input ports they areconnectedto, and subsequentstate
transitionsmustthenbecardedout. Forwardchainingthereforeamountsto "executing"
themodel.

Will state S2 occur as a consequence of state Sl and event E? This type of question can be
addressed by either forward or backward chaining, and in both cases there is a possibility
of inconclusive results. We can execute the model starting with the occurrence of event E
in state Sl, and check for the system entering into state S2. If there is feedback in the
model--i.e., there is a cyclical connection between some components Cl -> C2 ... -> Ck
-> Cl--it may not be possible to limit the execution time within which S2 must occur. We
can, alternatively, treat S2 as a goal in backward chaining, as in the fin'st type of query--
but with the additional constraint that the initial conditions arrived at must be consistent

with Sl and E. Here too, if there is feedback in the system, there is a possibility of infinite
regression. We can artificially limit such searches by placing a bound on the number of
transitions executed and the number of connections traversed. If the execution of

transitions and the flow of resources over connections are viewed as taking time, rather
than being instantaneous, then such a bound corresponds to a time limit within which S2 is
required to occur.

3 Tools for Querying the Models - the KFP Environment

In the KFP environment we have developed tools to provide answers to each of the types
of questions posed above. The Formal Interconnection Analysis Tool (FIAT) is intended
to be used for verifying designs. It performs backward chaining to answer questions (1)
and (3) at design time. The Multiple Aspect Simulation Tool (MAST) executes the models.
MAST can be viewed as a tool for simulating a model or, depending on the context, for

implementing the model as a software system. The Diagnostics Inferred from Graphics
(DIG) tool generates rules that backward chain through the model at run-time. DIG is
intended to be used for system monitoring. In this section we describe the user interface
through which the models are specified, and then show how FIAT, MAST, and DIG
process the models for their respective purposes.

3.1 The User Interface

Figure 2 shows the main selection panel of the environment. Operations for managing the
model library are provided within the Load and Save Libraries menu.. The Edit

Components menu brings up the editor with the selected component displayed, or with a
work space for creating of a new model.

_I Syslem Component trnrary I "I J

Library Name: ]

!ommand Prur, elsor

Coo]er

DelecI_rw

Digital Processor

Electronics Cabinet

Focal Plane

Load & Save Librarlej ] [ Edit Component1 I

Figure 2: KFP Main Selection Panel
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Figure 3 shows the model editor with an example system defined. The components of the
system, shown as boxes, are CrndProcessor, DigitalProcessor, Heat Relay, Heater,
Cooler, PowerSupply, and Sensor. Each component has ports, shown as large arrows.
Connections between ports are displayed as arcs. As shown in the figure, a menu
containing commands for editing and querying the model pops up in response to a middle-
button mouse click in any "white space" area of the diagram:

-'[ ,, ].1!

Electronics Cabinet

Figure 3: KFP Model Editor

193



The Describe Behavior selection is used to add, modify, or remove behavior states and

transitions of the currently displayed system. As shown in Figure 4, the Mappings panel
displays the state transitions that are currently defined. The Transition panel enables the
user to modify an existing transition description, or to create a new one.

The Starting State is the state that the object is in before the transition occurs. The Trigger
is the variable assignment or input influence that causes a state transition to occur. The

Ending State is the state to which the object transitions. The Add buttons under Starting
State and Ending State are used to add conjunctive conditions to these states' definitions.

When the OK button is pressed, the behavior definition is added to the object's
description, and is available to the specific tools that are used to query the model.

After adding all the components, behaviors, connections, and ports that are needed to
define a system, the analyst selects the appropriate menu option to invoke one of the

specific tools described below. For example, Verify Behavior (in Figure 3) invokes the
Formal Interconnection Analysis Tool.
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Figure 4: Component Behavior Definition
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3.2 The Formal Interconnection Analysis Tool

FlAT uses a planning algorithm, implemented in Prolog, to chart a path from a (partially)

specified initial state to a specified end state. Steps in the path are either the transfer of a
value along a connection between ports, or the execution of a transition within a
component. The planning algorithm works backwards from the specified end-state until it
arrives at conditions that are specified in the initial state, or are consistent with the specified
initial state.

FIAT is invoked by stating a goal to the planner. The planner then determines how to
arrive at a situation in which this goal is true. A typical goal is of the form

<time-tag>: <goal-condition>

indicating that at the time designated by <time-tag>, the condition <goal-condition> is true.
The time tag can be a numeric expression, a symbolic expression (e.g., containing a
variable t), or one of the keywords START, END. A typical goal condition is A.B.C.D =
V, indicating that the variable/port D within the component A.B.C has the value V.

Backchaining algorithm. The planner responds to a goal in one of the following ways,
which are listed in order of priority:

• Finds a way to show that the goal is established. For example, a goal of the form
START: <goal-condition> is established if <goal-conditrion> is implied by the user-
specified initial conditions. A goal of the form T: <goal-condition> is established if the
planner can show that <goal-condition> is implied by the user-specified initial
conditions and that it is not affected by the user-specified initial event.

• Tries backchaining to create one or more subgoals. Backchaining takes one of two
forms, either through a connection or through a state transition, depending on whether
the goal refers to an input port, a state variable, or an output port.

• Adopts the goal as an additional assumption of the plan. The goal condition must be
consistent with (though not necessarily implied by) the user-specified initial conditions.

Synchronizing and checking consistency of subplans. FIAT processes a list of subgoals
by achieving each subgoal independently. This is not sufficient in general, since the
subplans may interact. Moreover, the subplans may be of different length, requiring that
they be synchronized with each other. In a general planning context, checking the
consistency of an arbitrary set of subplans can be computationally intensive, since one must
consider arbitrary interleavings of the individual steps of the plans. In our domain,
however, it is not necessary to consider arbitrary interleavings. Instead, we synchronize in

one of two ways:

Without time. In this approach, all time tags are of the form START or END. All
transitions and propagations of values along connections are assumed to occur
instantaneously. This approach can only be used for models without feedback. In such
models, given any two components C1 and Cz, either Cl is "upstream" from C2 or
vice versa. FIAT can therefore assume that no changes occur to a component C until

all components upstream from C have been processed. When viewed recursively, this
implies that all upstream components have stabilized in their resulting states by the time
C undergoes a transition. Thus, each component undergoes at most one state
transition, from its initial state (START) to the END state, which results from the

influence of its upstream neighbors.
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With time. In this approach, every possible state transition and every connection in the
model is annotated with a numeric or symbolic delay value, which indicates the length
of time consumed by the transition or by propagation over the connection. FIAT uses
this information to tag each step of a subplan with its time of occurrence in relation to
the time of the ultimate goal.

Once the subplans are synchronized, FIAT can check their consistency by comparing, at
each step in the plan, the values of the ports and state variables affected at that step. In
general such comparisons are difficult because the values may be symbolic rather than
numeric. For example: the value of a state variable V of a component C at time t may be

specified, in one subplan, as a polynomial expression E_ in the current values at the input
ports Il and I2 of C. In another subplan, the value of V at time t may. be specified as
another polynomial expression E2 in Ii and 12. To verify the consistency of these

subplans, FIAT must establish the equality of El and E2. This is a theorem-proving
problem and cannot be solved in general. Thus, depending on the complexity of the
behavior specifications, the plan returned by FIAT may not be a conclusive proof that the
goal state can be reached. Expanding FIAT's theorem-proving power in order to handle
complex behavior specifications is an important goal of our research.

3.3 The Multiple Aspect Simulation Tool

The multiple aspect simulation tool (MAST) is used to "execute" the graphical models.
We use the term "simulation" because typically, in our environment, the diagrams are used

to model physical (electro-mechanical) systems. If, however, the model simply
represented the components of a software system, then the resulting MAST code would be
an implementation of that system.

MAST is based on a generalization of the connection management approach described in
(Lee et al 1990). In that approach, communication between components is achieved

through the operation of a connection manager, which is responsible for visiting each
updated output port of each component and propagating its value to the necessary input
ports (those to which the output is connected). In our generalization of this approach, each
type of connection has its own connection manager. Currently MAST contains connection

managers for the following types of connections:

• Power
• Thermal

•
• Image

Each of these types of connections requires its own form of processing, e.g., the frequency
with which values are updated--hence the use of separate connection managers (and the
name "multiple aspect"). Another deviation from Lee et al is that the connection managers
in MAST are global, i.e., they range over all components in the model. In the original

approach, each subsystem, sub-subsystem, etc. has its own connection manager, which
handles the connections between objects in that subsystem, sub-subsystem, etc. The use
of global managers provides more flexibility in determining the order in which components
should be visited.

The major benefit of using connection managers is that each component in the simulation
remains independent of all other components. The components influence each other strictly
through the flow of information over the connections defined in the graphical model, and
these connections are implemented by means of connection managers. This simplifies the
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constructionof the simulator from the graphicalmodel: all that needsto be doneis to
generatedatadescriptionsof thecomponentsandtheirconnections,andcodeimplementing
the behavior (i.e., the statetransitions)of eachindividual component. The connection
managercode,which is drivenby thecomponentdescriptions,remainsconstantfrom one
modelto anotherandis simplylinkedin.

Theentiresimulationis drivenby anexecutive,which is anotherfixed block of code that is

linked together with the connection managers and component definitions.

3.4 The Diagnostics Inferred from Graphics Tool

DIG generates an expert system to monitor the system described by the graphical model.
The expert system consists of a set of facts and rules in the C-Language Integrated
Production System (CLIPS--see Giarrantano, 1991). The generated rules solve the fault
monitoring problem as three subproblems: Detection, Isolation, and Recovery.

In the generated rules, connections between components of a system are used to isolate a
failed component. The fault is detected when an alarm condition occurs. An example of
such a condition would be a temperature-sensitive object operating outside of its design
temperature range. Figure 1 showed a system in which such a fault may occur. The lens
component is temperature sensitive and will register an alarm when its sensor reads above
or below defined thresholds. In this example the only component involved in the alarm
condition is the lens itself; however, in a more complex system one might also need to
check other components, such as the quality of communication signals being received,
before it is known that an alarm condition exists.

The cause of an alarm could be one of many failed components. DIG uses the connections
between components as well as their known behavior states to identify the component that
has suffered a fault. The values of each component's state variables are considered along
with its current inputs to determine if it is operating according to its defined behavior. Both
influence and behavior information are represented by CLIPS facts in the generated expert

system.

Each alarm condition is represented by a CLIPS rule that uses facts about the state of the
components contributing to the alarm to determine whether the condition exists. When an
alarm is detected, a search begins for the faulted object causing the alarm. This search is
performed by two rules generated for each object. The first rule compares the object's"
current state and inputs to its behavior specification; if these do not match, then the fault is
occurring in that object. If the fault is found, a fact is asserted to begin the recovery phase.
If no fault is detected, the second rule fires and uses the connection information to identify

the next object to be examined. The connection paths form a collection of chains of objects
that either directly or indirectly influence the components contributing to the alarm.

After a fault has been detected and isolated, the recovery phase begins. At present the
recovery phase consists solely of notifying the operator, who can then take corrective
action.

We have recently developed a run-time user interface for the generated expert system,
which uses an animated version of the graphical model to display system status to the user.
The run-time user interface itself is independent of the monitored system, and works in
conjunction with any rule-base generated by DIG (and the corresponding diagram). The
animation works as follows: when an alarm occurs, the component to which the alarm is
attached is highlighted in red. During the ensuing fault isolation process, components that
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"checkout" arehighlightedin green;a componentin which thefault hasbeenisolatedis
identified by pointing to it with red arrows. The usercan therefore follow the fault
isolationprocessby observingthesuccessivehighlighting of componentsin thedisplay.
When thestatecausingthealarmchangesto a satisfactorystate,thehighlightsarecleared
andthecomponentsarerestoredtotheir usualdisplaymode.

4 Related Work

Our approach to model-based engineering is closely related to work on executable
specifications in software engineering and to model-based diagnostics in artificial
intelligence. In this section we briefly review these two research areas in so far as they
bear on our work.

4.1 Executable Software Specifications

The trend towards ever higher levels of languages in software engineering has led to the
use of diagrams as executable specifications. Numerous tools developed in the research

community, and a small number that are commercially available, either interpret diagrams
or generate exectuable code on the basis of an implied operational semantics for the
diagrams. The syntax and semantics of the diagrams varies widely, from dataflow
approaches to state-based representations (see, for example, Zave and Schell, 1986;
Jensen, 1987; Wang, 1988; Pulli, 1989 ). In our work, both MAST and DIG act as code
generators that are guided by graphical models.

Harel (1992) makes a point quite close to ours by suggesting that such tools are more than
curiosities, or even productivity enhancers. They represent, rather, a significant shift in the
level of abstraction at which engineers can, and should, think about software. Two open
issues in this shift concern the degree to which diagrams can accurately represent the
intended functions of a software system, and the performance levels that can be achieved
with automatically generated code. The first issue--semantic richness--depends on the
modeling approach used, including the way in which diagrams are interpreted
operationally, the amount and kinds of text-based annotations permitted, and (importantly)
the domain of applications for which the software is intended. For example, dataflow

models are amenable to a wide range of operational interpretations (see, for example,
Bewtra et al, 1992); the semantics implied by MAST are well suited to simulation systems,
but may not be appropriate for systems in which messaging plays a more essential role than
dataflow.

The second issue--performance--is one that Harel sees as being progressively addressed
as more work is done in the area of executable specifications. The chief use of such tools

today is for the execution of functional prototypes of a system; the production system can
then be developed with adequate performance by means of more conventional methods.
Harel sees this changing, however, as we become more skillful at generating code from
high-level models.

4.2 Model-Based Diagnostics

Model-based reasoning has become an important alternative to the conventional fault-based
approach to diagnostics which was first demonstrated in the MYCIN system (Hayes-Roth

et al, 1983). The fault-based approach uses a symptom/explanation structure, typically
encoded in rules, to offer possible diagnoses of an observed problem. The limitations of
this approach are now well-known: faults must be explicitly encoded in the knowledge base

in order to be recognized, there is no sound method of representing uncertainty, and the
validity of the knowledge base is difficult to establish.
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Model-based reasoning employs a more direct representation of the rules that govern a
system's behavior (Struss, 1992). The model-based approach treats the knowledge base as
a description of the structure and behavior of the system being analyzed. Valid behavior is
then characterized in terms of the states of observable elements of the system, and the
relations that must hold between these states. Invalid behavior consists of any violation of

these constraints, rather than being characterized by some finite set of faults identified a
priori.

The model-based approach also admits a theoretically sound representation of uncertainty.
The field of causal modeling applies Bayesian probability to the causal relationships
between aspects of a system's state (Lemmer and Kyburg, 1992). The distinction between
this and the fault-based approach is subtle but important. The fault-based approach draws a
direct relationship between sets of symptoms and possible diagnoses. Causal modeling
relates partial observations of a system's state to possible extended descriptions of the
system's state. The range of possible explanations is much wider than in the fault-based
approach, and is less susceptible to the biases that can easily enter unnoticed into a
symptom/explanation structure.

Although the DIG tool generates a knowledge base in the form of production rules, the
form of reasoning performed by these rules is clearly model-based. 1 There is no explicitly
defined fault set--only a description of admissible and inadmissible states of the system.
The rules are used to isolate the problem on the basis of the known relationships between

components.

The open-endedness of model-based diagnostics has an analog in our approach to model-
based engineering. As described in Section 2, we view the process of engineering as a
process of creating, querying, and modifying models. In this context, open-endedness
means that the questions that can be answered are not limited to some we-defined set. This
is a significant departure from the common practice in software engineering of using
"canned" methodologies, which in essence prescribe a certain set of questions to be
answered about a system under development. The model-based approach to system and
software engineering provides a basis for adapting a method to the needs and constraints of
a given project. Adaptation is achieved by tailoring the questions that will be asked about
the system models. Of course, changing the questions may require enhancing or
otherwise changing the models. By placing the emphasis on querying models, however,
our approach encourages a scientific mindset in developing systems, as opposed to a
mechanical "cookbook" approach.

5. Future Directions

Currently the KFP environment is a stand-alone set of tools for model-based graphical
reasoning. In the coming year this environment will be integrated into a version of the
Generic Spacecraft Analyst Assistant (GenSAA) workbench. GenSAA is designed to

support rapid development and application of real-time expert systems in the Mission
Operations domain. This experimental integration of the two environemnts ( KFP and
GenSAA) will provide an opportunity to more fully evaluate the anticipated benefits that
will be derived from embedding a model-based graphical reasoning capability in a
workbench for the real-time development of expert systems.

1 We make this observation because model-based reasoning is often contrasted with rule-based reasoning.
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Abstract

A methodology for inferring hierarchies

representing heuristic knowledge about the

check out, control, and monitoring sut)-systeln

(CCMS) of the space shuttle launch process-

ing system from natural language input is ex-

plained. Our method identifies failures explic-

itly and implicitly descrihed in natural lan-

guage by domain experts and uses those de-

scriptions to recommend classifications for in-

clusion in the experts' heuristic hierarchies.

1 Introduction

It is becoming generally accepted that most ex-

perts organize their problem-solving knowledge

into a hierarchy of concepts [Gomez and Chan-

drasekaran, 1984; Clancey, 1985]. This hier-

archical organization of knowledge is not ex-

plicitly used by the experts during the solution

of problems, but rather is used in an implicit

form. The task of the knowledge acquisition

programs is to extract this hierarchical organi-

zation from the experts by making explicit to

them the steps they need to visit in arriving

to solutions. In other words, the goal of the

knowledge acquisition interface is to make ex-

plicit the hierarchy of concepts. A well known

knowledge acquisition methodology to acquire

hierarchical knowledge from experts is that of

repertory grids [Boose and Bradshaw, 1988;

*This research is being funded by NASA-KSC Con-
tract NAG-10-0058

Boose, et al., 1989; Gaines and Shaw, 1988].

The repertory grid methodology elicits catego-

rizations, called constructs, from the expert by

asking him/her to rank numerically elements of

the domain according to how well they satisfy

a given construct.

Although this methodology has achieved

considerable success, the prot)lem of construct
selection remains one of the most serious bot-

tlenecks in the repertory grid methodology. If

the constructs are provided to the domain ex-

pert by the knowledge engineer, the method

works reasonably well because the task of the

domain expert consists of filling in the cells of

the grid with the appropriate values. However,

in most cases the key aspect of the knowledge

acquisition task is the acquisition of the con-

structs themselves from the domain expert. In

this regard, elicitation techniques face strong

limitations due to the fact that the linguistic as-

pect and contextual knowledge associated with

the constructs are difficult to handle by elicita-

tion techniques alone.

Our own research has been addressing this

problem 1)y studying the automatic construc-

tion of constructs or categorizations from nat-

ural language input. In [Gomez and Segami,

1991], the reader may find a description of lin-

guistic constructions whose underlying struc-

tures are hierarchical categorizations. In this

paper, however, we study the problem of infer-

ring classifications from natural language sen-
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tences, rather than that of directly mapping

into hierarchical structures. In order to provide

some motivation for tile problem we are facing,

Figure 1 contains a portion of the heuristic hier-

archy acquired fl'om (lomain experts using our

present interface. The problem we have expe-

rienced with our present interface is similar to

the acquisition of constructs in the repertory

grid methodology. If a good portion of the

heuristic hierarchy is provided to the domain

expert by the knowledge engineer, he/she can

continue from there without considerable dif-

ficulty. However, building the hierarchy from

scratch by the domain expert is a different

matter altogether. Then, the main idea is to

ask the expert to describe a given problem (a

C(, ,•MS computer error in our application), in-

fer some categorizations from the natural lan-

guage description, and ask the expert to select

the relevant one(s). This is basically the main

idea that we explore in this paper in the context

of the C'('MS' space shuttle network.

The remainder of this paper is organized into

6 sections. Section 2 describes the problem

domain and our original knowledge acquisition

interface. Section 3 describes the relationship

between the interface, the Natural Language

Component (NLC), and the Classification Sug-

gestion Module (CSM). Section 4 explains the

structures passed fi'Oln the NLC to the CSM.

Section 5 describes how the CSM inDrs classi-

fications. Section 6 provides an overview of the

NLC. Section 7 gives the authors' conclusions
and lists flmlre work to he done.

2 Automatic Knowledge Ac-

quisition Interface (AKAI)

OPERA (Expert System Analyst) is an expert

system whose task is to improve the operations

support of the computer network in the space

shuttle launch processing system at Kennedy

Space Center[Adler, et a]., 1989]. OPERA

functions as a consultant to systems engineers

by suggesting prot)able causes and recommend-

ing diagnostic and operational advisories re-

garding network error messages generated hy

the check out, control, and monitor subsys-

tem (CCMS). Because OPERA only has in-

fimnation on approximately 10% of the 1500

error messages generated by the (',(',MS net-

work, some type of knowledge acquisition tool

is needed. During the past several years we

have worked to develop a knowledge acquisition

interface for OPERA. The result of this effort

has been the creation of the Automatic Knowl-

edge Acquisition Interface or shnply AKAI.

It t)ecalne apparent to us as we worked on

the interface that while OPERA is not based

on classification problem-solving, AKAI could

make use of classification hierarchies [Gomez,

et al., 1992a]. Two distinct types of classifi-
cation hierarchies were identified and are now

used by the interface: heuristic hierarchies and

factual hierarchies. Heuristic hierarchies rep-

resent heuristic problem-solving knowledge of

the domain. Each expert has his/her own ideas

about how this knowledge is organized depend-

ing on their personal experience. Factual hi-

erarchies represent hard or factual knowledge

about the physical structure of physical ob-

jects. A factual hierarchy for the CCMS net-

work was constructed and is currently being

used by the interface. Because of the static

nature of the CCMS network, the factual hier-

archy is rarely modified. Of primary concern

to us is the acquisition of the heuristic knowl-

edge possessed by CCMS experts. Therefore,

the focus of our research now is acquiring and

constructing heuristic hierarchies, with the goal

of AKAI being to acquire prohable causes and

advisories from systems engineers as efficiently

as possih]e.

Towards this goal, user friendly features such

as pull-down menus, mouse selectable text, and

a wealth of fnnctions to reorganize the hierar-

chy were incorporated in AKAI. Beta testing

revealed, however, that naive users still had

difficulty during the initial stages of heuristic

hierarchy construction for the reasons stated

above. In an effort to address this problem,
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Figure 1: A Portion of a Heuristic Hierarchy for the ('(''.MS Domain

we have added a natural language component

(NLC) and a classification suggestion module

(CSM).

3 The Improved Knowledge

Acquisition Interface

The operation of the interface, graphically dis-

played in Figure 2, has changed only slightly
due to the addition of the NLC and the

CSM. The NLC is constructed around SNOWY

[Gomez & Segami, 1989, 1990, 1991]. SNOWY

is responsible for parsing (determining the syn-

tactic constituents of the sentence) and inter-

preting (constructing the logical fm'm of the

sentence), and then forming (mapping the log-

ical form of the sentence into SNOWY's rep-

resentation language). The NLC is called by

the interface during error categorization. At

this time, the expert is asked to place the er-

ror message he/she has chosen to descrihe in

his/her heuristic hierarchy. During the first

stages of hierarchy construction there is a good

chance that the appropriate category for the

error message currently being described is not

already in the heuristic hierarchy. In the origi-

nal interface, the expert was expected to know,

and was asked for, the name of an al)propri-

ate category. This was often a problem in the

initial stages, and the experts caught in these

situations tended to provide unsound catego-
rizations.

The interface has since been enhanced to

help unsophisticated users add new error cat-

egories to their heuristic hierarchies. If a user

is unsure of how to classify an error, he/she

is asked to provide a short description of what

he/she knows about the error. This description

typically consists of two or three sentences de-

tailing relevant information about the message.

The text is saved and passed to the NLC. The

NLC enlists SNOWY to parse, interpret, aim
form the sentences. If SNOWY can make sense

of the expert's description, the outl)ut of the

formation phase is then passed to the CSM.

The CSM uses the formation outl)ut to recom-

mend categories to the expert. If one or more

of these recommendatioils are selected by the
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expert as acceptable, tile prol)lmn of classifying

the error is solved and the suggested error cate-

gories as well as the error message are placed in

the expert's heuristic hierarchy. The interface

then l)roml)ts the user for the probable causes

of the error message and its operational and (IX-

agnostic advisories (this fimction of AKAI was

not changed by the addition of the NLC and

CSM).

On the other hand, if the expert is not sat-
isfied with tile CSM's recommendations or if

SNOWY is unable to understand the expert's

description, we may still be able to make a rea-

sonable suggestion by postponing the classifi-

cation of the error message until the probable

causes have heen entered by the domain exl)ert

and examined t)y the interface. We strongly be-

lieve that the probable causes represent an ex-

cellent source of text that is understandal)le hy

SNOWY and will provide classifications worth

recommending. Most of the l)robable cause
data that has been collected so far is of the

form ",V has failed," where ,Y is a comt)onent of

the CCMS network. SNOWY is quite cal)able

of understanding sentences in this form. The

classifications suggested by the CSM for these

sentences are usually relevant because experts

commonly use failed component names as cate-

gory names within their heuristic hierarchies. If

this process fails, however, the NLC and CSM
are deactivated and the user falls back on the

features of the original interface.

One may then question why the interface

bothers to ask the user for a textual descrip-

tion of the error when analysis of the prob-

able causes appears to provide suitable sug-

gestions. We have found that additional text

is needed if we are to make suggestions other

than failed component suggestions. The sys-

tem would not be able to make suggestions like
"initialization failures" or "on line failures" if

we only called the NLC with probable cause

text. Classifications of this type are present
in the heuristic hierarchies of the Grumman

personnel first consulted to test the interface.

Therefore, we must provide the interface with
additional texts which could lead to recommen-

dations other than failed components.

The operation of the enhanced interface is

identical to the original after the error message

has heen placed within the heuristic hierarchy.

The code of the original interface, therefore,

was disturbed only slightly, and the users of
the interface did not need to re-learn how to

operate the system.

4 Input to the CSM

Before addressing the details of the CSM we
must describe the structures which it takes as

input. The formation phase of the NLC mal)s

the logical form constructed by the interpreter

into the knowledge representation structures

of the representation language KL-SNOWY

through the use of formation rules. The for-

mation algorithm is called to form clauses as

they finish the interpretation phase. The most
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embeddedclauseof a sentenceis formedfirst,
the secondmost embeddedis formedsecond,
and so on until the main clauseis formed.
The structures, calledobject structuresand
relation structures,are usedby the CSM to
make recommendations.Togetherthesetwo
types of structuresform the kernel of KL-
SNOWY.There is a significantadvantageto
havingSNOWYapply its formationphaseto
the logical form producedby the interpreter.
This will becomeapparentduringour discus-
sionof the ClassificationSuggestionModulein
section5, if oneunderstandsthe structuresof
the representationlanguage. Therefore,it is
important that thesemanticsof objectandre-
lation structuresis clear.

4.1 Object Structures

Object structuresrepresentknowledgeabout
physicaland abstractobjects. Somephysical
objectsaretrains, tools,mountains,geese,etc.,
and someabstractobjects or ideasare sets,
states,properties,and relations. Conceptual
relationsrepresentingknowledgeaboutthe01)-
ject arerepresentedasslotsin theobjectstruc-
ture frame(seetheboxsurroundingtheobject
structurefor CPU in Figure 3).

These relations will either describe the ob-

ject in some way or attribute actions to it. In

the CPU object structure example, the slot

"(process (data ($more ((0)a3))))" represents

an action attributed to the concept CPU, and

"(made-of (silicon ($more ((_a2))))" represents

a description. The relation structure names,

(O)a3and (__a2, point to relation structures that
contain additional information which is not

stored directly under CPU but elsewhere in

SNOWY's long-term memory (LTM). In gen-

eral, concept relations are represented in object
structures as:

relation (@el)

relation (conceptl (@al))

monadic

diadic

All concepts must have a unique name in

memory so that the knowledge about them can

Object Structure

CPU

(is-a (electrical-component))

(part-of (computer (Smote (I_}al))))

(made-of (silicon ($more (((_a2))))

(process (data ($more

(<_a3

(instance-of (action))

(args (CPU) (data))

(pr (process))
(actor (CPU (q (?))))

(theme (data (q (?))))

Figure 3: A Portion of the Concept CPU

Acquired by SNOWY from Natural Language

Input.

be integrated in a single place. Therefore, we

need a method for dealing with concepts which

are not explicitly named in the sentence. An

example of such a sentence is "The adapter in
the FEP returned an invMid status." The sub-

ject of the sentence, "the adN)ter in the FEP,"

is a complex concept which must be given a

dummy name (a gensym) to uniquely identify it
in LTM. The structure is called an x-structure.

We use a charactcristic-fcatutrs slot to specify

the necessary and sufficient conditions describ-

ing this new concept. For this complex concept,
the representation would be:

(xl (cf (is-a (adapter))

(part-of (FEP))))

The meaning of this is that the x-structure

xl is a sub-class of adapter, whose meml)ers all

have the feature of being a part of a front-end

processor (FEP). This feature is "characteris-

tic" because it is shared l)y every member of the

class xl. Complex concepts can arise from nat-

ural language constructs such as existentially

quantified sentences, complex noun phrases,

and restrictive qualifiers (relative clauses and

prepositional phrases).
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4.2 Relation Structures

Relationstructuresrepresentknowledgeat)out
instancesof conceptual relations. Each struc-

ture contains a verbal concept, its cases and

their fillers, the quantification of each filler, an

inslancc-ofslot indicating whether the relation

is a description, action, proposition (eml)edded

relation) or cf-structure, and an optional truth-
value slot which indicates whether the relation

is believed to be true or false by SNOWY. In

the absence of a truth-value slot the statement

is taken as true by default. For example, the

relation structure, (d)a3, that represents "CPUs

process data" is shown at the bottom of Figure
3.

The first slot, instance-of, indicates that ((_,a3

is an instance of an action relation. The args

slot lists the arguments of the relation. If the

relation is monadic, the args slot will contain a

single concept. If the relation is diadic, as is the

case in this example, the a_ys slot contains two

concepts, and so on. The pr slot contains the

verbal concept or primitive. Following the ver-

bal concept are its thematic cases. Each case is

filled by a "quantified" concept from the argu-

ment list. The quantifier of an argument is the

filler of its q sub-slot. In (d)a3, both the quan-

tlfiers for CPU and data are unknown, repre-

sented by a question mark. This reflects the

fact that from the statement "CPlls process

data" it is not clear if all CPUs process all data

or only some CPUs process some data. Other

possible fillers of the q slot are: most, many,

all, cardinal adjectives, and numerMs.

Creation of relation structures is normally

handled by the formation algorithm. This al-

gorithm constructs structures from the logical

form by collecting the thenlatic cases identi-

fied by the interpreter for sentence clauses. In

certain sentences, however, the formation M-

gorithm must be overridden or postponed be-

cause the verbal concept requires an unusual

construction to be formed. To handle these

special cases, we use formation rules which are

briefly discussed in section 6.

5 The Classification Sugges-

tion Module (CSM)

The task of the Classification Suggestion Mod-

ule (CSM) is to take the output from the for-

mation phase of SNOWY and produce a list of

error message classifications that can be sug-

gested to the user. To accomplish this task, the

CSM scans the output of the formation phase

of SNOWY looking for certain constructions

that are likely to lead to plausible suggestions.

The CSM looks for the following constructions:

negated relations and relations that indicate

failures, descriptive relations which explicitly

or implicitly indicate failed components, and

complex noun phrases describing failed compo-

nents. After a set of suggestions is identified,

the CSM attempts to prioritize them based

upon an analysis of the expert's heuristic hi-

erarchy. This prioritized list of suggestions is

then presented to the expert. Additionally, if

the expert selects one or more of the sugges-

tions, the CSM will attempt to engage the ex- i

pert in a dialog whose purpose is to elicit more
information. The sections below discuss each of

the constructions relevant in identifying possi-

ble suggestions, the prioritization task, and the
elicitation of additional information.

5.1 Relation Structures

The (:SM identifies relation structures contain-

ing negated verbal concepts or with verbal con-

cepts that indicate failures. Consider for ex-

ample the formation of the sentence "The FEP

failed to detect an acknowledgement from the

i/o adapter," which contains a negated verbal

concept.

The CSM scans the formation output for

relation structures, such as @a27 below, and

examines their truth-value slots. If the truth-

value slot indicates that a verbal concept is ex-

plicitly negated, as become-aware is in the

example below, we save the relation structure.

The system can then use the cases of these

structures to generate plausible classification

suggestions (see the following section).
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@a27

(truth-value (f))

(args (fep) (acknowledgement))

(pr (become-aware))

(actor (fep (q (constanz))))

(theme

(acknowledgement (q (?))))

(instance-of (proposition))

Example I

Verbal concepts that implicitly indicate fail-

ures are also identified. In the sentence, "The

option plane microcode crashed," the verb

crashed indicates a failure. This is immediately

obvious to the CSM because of the verbal con-

cept that crash is mapped to during formation.

option-plane-microcode

(is-a (microcode))

_a30

(args (option-plane-microcode))

(pr (fail))

(actor

(option-plane-microcode

(q (constant))))

Example 2

The verb rules for the verb crash map it to

the verbal concept fail. Other verbs which are

mapped to the verbal concept fail are bvcak,

collapsc, and fail. Because SNOWY is able

to determine the underlying meaning of these

verbs, the CSM has an easy time selecting

negated relations and relations indicating fail-

tires.

two cases suggest two possible error message

classifications. One possible classification is the

class of error messages generated by "fop fail-

ures". Because all the relation structures se-

lected l)y the CSM denote failures, the actor of

each relation represents a component that has

failed to accomplish some task. 1 That failed

component may also be responsible for gener-

ating other error messages. Therefore, it makes

sense to recolllnlend a class of error llleSsages

caused by the failed component. For this ex-

ample, the CSM would save the classification

"fop failure" as a possible classification to be

recommended to the expert.

Another possible classification is "acknowl-

edgement failures". 2 This supports the notion

that the theme case of failure relations may

lead to plausible classifications, when the orig-

inal sentence is a "fail to" construction. In

the sentence "The common data buffer failed

to update the system configuration table," the

theme case, filled 1)y "the system configuration

table," may potentiMly represent a category of

errors. While the actor case represents "what"

failed, the theme case describes the component

that failed to be acted upon. Consequently,

one might think that the theme case is not as

likely a source of classifications as the actor

case. We can, however, conceptualize a class

of error messages which indicates the failure of

some component to update the system config-

uration table. Each member of the class would

have sinlilar operational advisories instructing

systems engineers in how to handle the failed

update. Therefore, the CSM saves the theme

case fillers of negated relations as possible clas-

sifications.

5.2 Case Roles as Plausible

Classifications

Some of the cases of these relation structnres,

such as actor, theme, at-loc, and at-time,

load to plausible classifications. In Example

1 above, the relation structure (C_a27 has two

case slots: the actor case, filled by fop, and the

theme case, filled by acknowledgment. These

At-time cases can also lead to 1)lausit)le

classifications. These cases indicate when a

failure occurred, which may 1)e very signif-

_We must recognize that if the expert describes fail-
ures of irrelevant components, the system will make nec-

essarily irrelevant recommendations which the expert

may ignore.
2These failures are so common they are referred to

as NOAC, Ks.
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leant. For example, consider the sentence

"The FEP failed to respond during initializa-

tion." The prepositional phrase "during initial-

ization" tells us that the failure occurred during

the process of initialization. In general, if the

filler of the at-time case is a process, we rec-

ommend that filler as a possible classification.

For tile example above this gives "initialization
failures". It is our belief that the fillers of the

at-time case should ahnost always be processes.

This is because it makes little sense to use a

time NP (a noun phrase specifying a time) ex-

cept in certain situations. 3

At-lee cases can lead to plausible classifica-

tions. For example, "The transmitter/receiver
failed in the HIM" is a sentence in which the at-

loc case, filled by "the HIM," represents a pos-

sible category of error messages. Because the
failure occurred within the HIM, we can infer

that the transmitter/receiver is located within

the HIM and therefore may be a sub-part of

the HIM. The HIM, which is the larger object,

is likely to have other sub-parts which may fail.
This means that the class of "HIM failures" is

likely to be a good category of error messages.

One should note that the object and its sub-

part(s) form a part-of hierarchy. Discussion of

how part-of hierarchies can be used to help pri-

oritize suggested classifications can be found in

section 5.5, Part-Of Hierarchies.

5.3 Descriptive Relations and Noun
Phrases

Concepts that have negative properties may

lead to plausible classifications. If the ex-

pert mentions a defective component within

his/her error message description, that compo-

nent is likely to contribute to the error. The

CSM identifies descriptive relations that indi-

cate faulty components, as in "the i/o adapter

is not operational," "the HIM may be down,"

or, "the HIM is unable to reset the status reg-

ister." In these cases, the predicate adjective is

examined to see if a failure is present. Predi-

cates that explicitly or implicitly describe nega-

tive properties of network components provide

strong indications that the components they

modify have failed. Explicitly negated predi-

cates are those that clearly indicate a negation,

either by inclusion of the adverbs not and uo,

or through the use of negative prefixes. Some

examples of explicitly negated predicates are

abnormal, unable, disabled, uninhibited, and in-

capable, hnportant features, such as negative

prefixes, are stored in a lexicon for each word.
For example, the word abnormal has the fol-

lowing feature:

abnormal

(neg-prefix (normal))

The hog-prefix slot tells us that abnormal

contains a negative prefix affixed to the root
word normal.

aln most cases, we would not expect to see a sentence

with an at-time case filled by a time NP, such as, "The

FEP failed to respond to the HIM at 10 pro." Obviously

the expert giving such a description does not realize that

hefi_he has described a specific error event, while what

we are after is a more genera] description of the error.

However, it may make sense to write, "The FEP fails to

respond to the HIM during the winter". This sentence

would lead to the classification, "winter failures," which

seems plausible. In the cases where the at-time filler is

a time NP, the CSM asks the expert, "Is this the only
time that this error occurs?" If the expert responds with
an amrulative answer, the system retains the filler a+_a
possible classification.

The representation of descriptive relations

that denote negated properties is exactly the

same as the representation of negated actions
discussed in an earlier section. For example,

the output from the formation phase for the

sentence "the i/o adapter is abnormal" is

@a39

(truth-value (f))

(args (i/o-adapter) (normal))

(pr (has-property))

(descr-subj (i/o-adapter

(q (constant))))

(descr-obj (normal (q (?))))

(instance-of (description))
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Notice that the descriptiverelation has-
property isnegated.Themeaningof therela-
tion structure,(6_a29,is "the i/o adapterdoes
not havethe property of beingnormal." The
CSMcandeterminethat this structuredenotes
a negativeproperty by examiningthe truth-
vMueslot in searchof an "r'. A moredifficult
sentenceto handlewouldbe "the i/o adapter
is not abnormal." In this case,the formation
phaserealizesthat thereis a doublenegation.
The final structure,therefore,will not havea
truth-valueslot filled by 'T', and wewill not
recommend"i/o-adapterfailures"asacategory
of errormessages.

Somepredicatesmay indicatea failure or
negation1)utare not explicitly negated. Ex-
amplesof this type of predicateare defective,

down, and broken. In these cases, the meaning

of the predicate adjective is needed if we are
to determine that a failure has occurred. Cur-

rently, a sub-hierarchy within SNOWY's LTM

maintains knowledge of properties.

The CSM also identifies complex noun

phrases that indicate faulty components, as
in "the defective HIM..." or "the failed data

bus .... " This is accomplished by examining tile

x-structures of complex noun phrases for nega-

tive properties. If the x-structure of a complex

noun phrase has a negative property, the CSM

will save the super-concept of the x-structure

as a possible classification. From the sentence

"All fllrther polling will cease pending com-

ponent fault isolation of the failed HIM," we
would like to recommend "HIM faihlres" as a

possible classifcation. The relevant portion of

the representation provided to the CSM by the

formation phase is

xl

(cf (is-a (HIM)) (©a41))

©a41

(args (xl) (defective))

(pr (has-property))

(descr-subj (HIM (q (constant))))

(descr-obj (defective))

Defective indicates a failure so the CSM

saves the super-concept of x 1, HIM, as a possi-

ble classification.

5.4 Prioritizing Recommendations

Once a set of candidate classifications has

been determined from a sequence of text, the

CSM orders tile candidates from highly recom-

mended to least recommended. Several order-

ings are possible.

• If it can be determined that the user's

heuristic hierarchy is structured based

upon component/sub-component relation-

ships, then failed components should be

highly recommended.

• If it can be determined that the user's

heuristic hierarchy is structured hased

upon process/sub-process relationships,

then verbal concepts that represent pro-
cesses or at-time slot fillers which are pro-

cesses should be highly recommended, e.g.,

"the microcode fails during initialization,"

or, "the microcode failed to initialize."

• If nothing about the user's hierarchy can

he determined, then fall back on the struc-

ture of the factual hierarchy which is

a structural one, i.e., failed components

should be highly recommended.

By prioritizing the classifications, the most

relevant classifications (deternlined heuristi-

cally using the rules above) can be presented

to the expert as such. This helps when the set

of possible classifications is large.

5.5 Part-Of Hierarchies

There may also be a hierarchical relationship
between severM of the candidate classifications,

especially when the candidates are selected

from text describing probable causes. For ex-

aml)le, the probable causes for error 141 are:
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Figure 4: FEP Part-Of Hierarchy

i. FEP i/o adapter failed.

2. FEP option plane failed.

3. I/0 adapter port on the

4-port controller failed.

4. FEP transmitter/receiver

failed.

This leads to the failed component hierar-

chy shown in Figure 4. Probable causes 1,

2, and 4 describe the failures of sub-parts

of a FEP. Determining that the FEP is re-

lated to i/o adapter, option plane, and trans-

mitter/receiver 1)y the has-part relation is the

job of the noun-noun interpretation algorithms

contained within SNOWY. That is, SNOWY

is responsible for (letermining the meaning of

complex noun phrases such as "FEP option

plane," which is, "an option plane that is part

of a FEP." The CSM simply has to look for

a part-of relation under each of the sub-parts

to recognize that a hierarchy exists. The ex-

istence of a part-of hierarchy provides strong

evidence that the root of the hierarchy should

1)e an error message category. In fact, it makes

sense for the system to recommend the entire

hierarchy to the expert.

5.6 Eliciting Additional Information

U I) to this point, we have discussed how the

NLC understands natural language input and

how the C,SM uses that understanding to iden-

tify and prioritize relevant categories of errors

for presentation to the expert. The knowl-

edge acquisition task does not end, however,

when the expert selects a suggested classifi-

cation. When experts accept suggested clas-

sifications, the CSM will "keep them talking"

by proml)ting them with questions designed to

trigger their recall of additional error message

classifications. These questions prompt the ex-

pert for the names of similar messages that they

feel would fall under the suggested category.

The CSM also asks the user for other categories

of errors that may be sinfilar to the suggested

category.

6 An Overview of the Natural

Language Component

The NLC is an application of SNOWY.

SNOWY is a system which integrates problem

solving, knowledge acquisition, and informa-

tion retrieval, hi [Gomez & Segami, 1989] it

was shown that, "in order for SNOV_rY to un-

derstand text, it needs to start with a minimum

set of concepts which categorizes the world into

states, actions, collections, etc." This a priori

set of concepts, or ontology, is organized into

a hierarchy based upon is-a relationships. The

hierarchy is part of SNOWY's LTM. This LTM

maintains the information that SNOWY has

gathered from natural language inl)ut.

Each sentence presented to SNOWY under-

goes three phases: a parsing and interpretation

phase, a formation phase, and a recognition

and integration phase. Because the recognition

and integration phase is primarily concerned

with updating SNOWY's LTM, which is unnec-

essary for our task, we only call upon SNOV_ZY

to parse, interl)ret, and form the expert's nat-

ural language input. These three processes are

descril)ed below.

Parsing a sentence involves identifying its

syntactic structures. The parser used by

SNOWY is called WUP, which stands for word

usage parser [Gomez 198,9]. The underlying

philosophy of WUP is that the syntactic us-

ages of words play a greater role in parsing than

is generally admitted. Discussion of how the

usages are iml)lemented and the details of the
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operation of the parser will not be conducted

in this paper, however. For our purposes, it

is enough to know that the parser identifes

the syntactic categories of the sentence. The

syntactic categories used by WUP are: sub-

ject, verb, object, indirect object, prepositional

phrase (PP), predicate, subordinate clause, and

conjoined clause. The parser is not responsible

for determining the attachment of prepositions,

the verbM concept mlderlying the main verb, or

the meaning of complex noun phrases. That is

the duty of the interpreter.

6.1 Interpretation

The interpretation process is responsible for

constructing the logical form from the syntac-

tic constituents identified by the parser. This

logical form represents the semantics of the sen-

tence independent of any context. As each con-

stituent of a sentence is identified, it is sent

to the interpreter. It is important to point

out that a constituent need not be interpreted

the first time that it is seen by the interpreter.

In fact, there are many cases where tile inter-

pretation of a particular constituent must be

postponed until all the constituents of the sen-
tence have been read. The constituent couhl

be a noun phrase representing the subject or

object of the sentence, in which case the in-

terpreter must determine the meaning of the

noun phrase. If the constituent is a verb, the

interpreter must determine tile underlying ver-

bal concept that the verb represents. If the

constituent is a prepositional phrase, the inter-

preter must determine its attachment and its

meaning. Each of these three types of interpre-

tation has its own set of interpretation rules.

We will discuss each of the three types of in-

terpretation and then cuhninate tile interpre-
tation section with a discussion of how this fits

in with the domain at hand.

6.1.1 Noun Phrases

Interpreting noun phrases requires a great deal

of knowledge of the meanings of nouns and ad-

jectives. This is evident in the noun phrase

leo. ,,"arthropod I _,s, which is the subject of the

simple sentence "Arthropod legs are jointed."

We can make sense of this phrase only be-

cause we know very well that arthropods, such

as spiders and crustaceans, have legs. This

knowledge allows us to determine that the NP

above means "the legs that are part of arthro-

pods." Without any knowledge of arthropod or

leg we would be unable to determine a rela-

tionship between these two nouns. Similarly,

knowledge of the adjective "wooden" is nec-

essary to determine the meaning of the NP,

"wooden legs," which is "legs made of wood."

SNOWY stores knowledge of nouns as rela-

tions under their corresponding LTM concepts

in SNOWY's concept hierarchy. Knowledge of

adjectives is stored as interpretation rules. The

noun phrase interpretation algorithm uses this

knowledge when considering each pair of items

in a given NP.

6.1.2 Verb Rules and Verbal Concepts

Tile interpreter algorithm makes use of verb

rules to establish the underlying verbal con-

cepts of sentences. These verbal concepts rep-

resent the meaning of the verb in the sentence.

Below are the verb rules for the verb dump:

h Portion of the Verb Rules for the

Verb Dump

(dump

(((dump) (dumps) (dumped) (dumping)

(has dumped) (had dumped))

( (obj

((if part-of obj computer)

(primitive-is transfer-data)

(semantic-role-of-is obj
from-lee)))))))

Tile "obj" slot contains a verb rule which will

1)e tried when the parser passes the object con-

stituent to the interpreter. This rule ch_Joses

the verbal concept transfer-data and marks

the object as filling the from-loc case t)f thi.,

verl)al concept in the event that the object (ff
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the sentence is a part of a computer. There-

fore, this rule would be used when SNOWY is

interpreting a sentence like "Dmnping tile CPU

registers would hel t) isolate..." The interpreta-

tion of the main clause of this sentence would

be "somebody transfer-data from the CPU reg-

isters (from-loc) to some unknown location (to-

loc)."

While verbs like dump have very clear mean-

ings, other verbs can he quite ambiguous. The

verb go is reported to have 63 different mean-

ings [Hirst, 1992]. We can side step this prob-

lem in most cases, however, because the domain

of the inconfing natural language is restricted

to (',(:MS network error message descriptions.

Once the verbal concept has been deter-

mined, the interpreter attempts to fill the the-

matic cases of the verbal concept. Interpre-

tation is now said to be driven by the verbal

concept in the sense that we will attempt to

place each of the other constituents within its

framework. Thematic cases or roles show how

noun phrases are related to the verbal concepts

of sentences. Some of the most common the-

matic cases used hy KL-SNOWY are: actor,

theme, instrument, at-loc, from.loc, to-loc, at-

time, init-time, end-time, descriptive-subject,

and descriptive-object.

6.1.3 Prepositional Phrases

Interpreting prepositional t)hrases involves se-

lecting the proper attachment (what sentence

constituent is modified by the prepositional

phrase) and establishing the meaning of the

modification. Meanings and attachments are

established by the verbal concept and interpre-

tation rules under the given preposition [(;omez

et al., 1992b]. Verbal concepts claim prepo-

sitional phrases through preposition rules (P-

rules) stored under them. Noun phrases claim

prepositional phrases through P-rules stored

under the preposition.

6.1.4 Interpretation in the CCMS

Network Domain

While interpretation of arbitrary text is cur-

rently an open problem, we can use the fact

that we know the domain of the inconfing dis-

course and the task of the CSM to limit the

scope of the interpretation so that it is man-

ageable. For instance, we have found that a

significant percentage of the noun phrases used

in error message descriptions and in the prob-

able causes indicate specific components of the

(:(:MS network. 4 The following is a table of

some of the most common noun phrases in this

dom ain:

Table 1: Common Noun Phrases in the CCMS

Domain

active cpu

common data buffer

error message

ground data bus

FEP option plane

GSE data bus

GSE microcode

HIM status register

system config table

i/o card

data bus

GSE FEP

LDB FEP

PCM FEP

standby cpu

i/o adapter

option plane

The semantics of these noun phrases can be

captured by a few noun phrase interpretation

rules. For instance, the phrase "data bus" is

taken to mean a "bus for transporting data,"

where in this case bus is not a vehicle whicll

makes frequent stops, but is a physical struc-

ture for transporting data and control infor-

mation. Because we know the domain of the

natural language input we will simply ignore

the vehicle meaning of bus. A rule stored un-

der the concept "data" will build the following

interpretation when the noun phrase is inter-

preted:

(bus (transport (data)))

Another rule will look for part-of relation-

ships between the nouns in noun phrases. This

4The components may be hardware components or
software programs and data structures.
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rule capturesthemeaningof phraseslike "GSE
databus," "GSEFEP," "GSEmicrocode,"and
"FEP option plane." The interpretationsof
thesefour 1)hrasesare:

((bus (transport (data)))
(part-of (GSE)))

(FEP(part-of (GSE)))
(microcode (part-of (GSE)))

(option-plane (part-of (FEP)))

Of course, to determine these part-of rela-

tions we must know a priori the physical struc-

ture of the (',(:MS network. This a priori in-

formation has been assembled by a knowledge

engineer and is stored in AKAI's factual hier-

archy. Therefore, we can determine these re-

lations simply by consulting the factual hierar-

chy.

Verb rules need to be provided for the verbs

cmnmonly used in error descriptions and prob-

able causes. A list of the verbs, for which verb

rules were added, is given in Table 2. Each of

these verb rules must specify a verbal concept.

Table 2: Verbs needing New Verb Rules

activate fail poll

command generate reset

detect initialize respond

dump isolate

Table 3 lists the new verbal concepts created

for this domain.

Table 3: New Verbal Concepts

activate initialize

command isolate

become-aware poll

fail reset

fail-negation respond

generate transfer-data

Because the verb rules and verbal concepts

added to SNOWY are dependent on knowing

the LTM categories for nouns commonly used

in the CCMS domain, it was necessary to add

them to SNOWY's a priori hierarchy. Table 4

is a partial list of the concepts that were added

to S_lOWY's LTM.

Table 4: New Concepts added to LTM

acknowledgement LDB

adapter microcode

board option-plane

buffer PCM

bus register

card signal

computer switch

cpu transceiver

FEP transmission

HIM uplink

i/o

6.1.5 Formation Rules

Formation rules are stored under verbal con-

cepts. When the formation algorithm is ac-

tivated, it looks to see if the verbal concept

selected by the interpretation process has any

special formation rules stored under it. s If

formation rules are found, the normal forma-

tion algorithm is overridden and the system

attempts to fire them. If a rule fires success-

fully, its consequent list is evaluated, effectively

taking over the task of formation. Let us now

discuss an example of a formation rule written

by the authors to handle a special construction

used in the (:(:MS domain.

Negated relations may come from sentences

which use the "fail to" construction, or fl'om

sentences with explicitly negated verbs. The

"fail to" construction is one in which the main

verb of the lnain clause is fail and fail is followed

by an embedded clause beginning with the

word to. The representation of sentences using

this type of construction is a relation structure

representing an embedded clause whose vert)al

SThis discussion a_suxnes that the interpreter wm_
able to determine a verbal concept. In the event that no
verbal concept was selected, the formation pha._e will bc
unable to construct a relation structure and is abortvd.
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concept has been negated. The formation rule

responsible for creating this structure, shown

below, is stored under the verbal concept fail-

negation in the f-rules slot.

(fail-negation

(is-a (description))

(subj (thing (descr-subj)))

(obj (proposition (descr-obj)))

(f-rules

(fire-all

( t (negate-relation)))))

This rule calls a LISP function, called

l_cgatc-rclatio_ 4 to negate the embedde<l clause.

Take for example the sentence "The FEP failed

to detect a response from the i/o adapter." We

would like to end up with KL-SNOWY struc-

tures that represent that the FEP did not be-

come aware of a response from the i/o adapter.

Therefore, the task of the negate-relation func-

tion is to place an f in a truth-value slot of the
relation structure associated with the embed-

ded relation "[FEP] detect a response from the

i/o adapter."

7 Conclusions and Future

Work

We have shown how natural language input can
be used to infer classifications suitable for inclu-

sion into the heuristic hierarchies of AKAI, in

a real world environment. We are currently in

the early stages of the implementation of these

ideas. Very little work needs to be done on

the NLC, per se, because SNOWY is a working

system. The bulk of our effort is, therefore, fo-

cused on implementing the CSM. Nevertheless,

there are several data files used by SNOWY

that must be scaled up if the enhancements of
AKAI are to work "outside the lab."

One such data file is SNOWY's lexicon. To

address this problem, a machine-readable dic-

tionary created by the Summer Institute for

Linguistics, called Englex, is being adapted for

use by SNOWY. Specifically, entries in Englex

are being converted into a forlnat assimilable

by SNOWY and added to SNOWY_s lexicon.

Englex contains morphological data for approx-

imately 11,000 nouns, 4000 verbs, and 3400

adjectives, as well as adverbs, acronyms and

abbreviations, proper nouns, prepositions, de-

terminers, conjunctions, quantifiers, etc. Es-

pecially useful are markers indicating negative

prefixes and nominalizations for nouns. By in-

corporating these words into SNOWY's lexi-

con, we hope to minimize the problem of en-

countering unknown words during the parsing

of an expert's description.

Other data that will need to be expanded

are SNOWY's verb rules and verbal concepts,

interpretation rules for interpreting complex

noun and prepositional phrases, and new for-

marion rules for handling special sentence con-

structions. At first glance this task may seem

quite daunting, but because we are receiving

natural language input constrained to the do-

main of (:(:MS network messages, we can ex-

pect a limit to the diversity and complexity of

the incoming text. This claim is supported by

an analysis of the text that makes up the prob-

able causes and advisory data currently stored
in OPERA.

While extension of the NLC involves data,

work on the CSM requires coding changes. It

is important to note that the complexity of

implementing the CSM is significantly reduced

by the robustness of SNOWY's representation.

Determining failures and their related cases is

a simple task, assuming that SNOWY has been

able to create the appropriate structures. This

underscores the importance of an adequate rep-

resentation for the purpose of acquiring knowl-

edge.
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Abstract

In this paper, we address the feasibility of

partitioning rule-based systems into a num-

ber of meanin_uI units to enhance the com-

prehensibility, maintainability and reliabil-

ity of expert systems software. Prelimi-

nary results have shown that no single struc-

turing principle or abstraction hierarchy is

suj_cient to understand complex knowledge

bases. We therefore propose the Multi-

View Point - Clustering Analysis (MVP-CA)

methodology to provide multiple views of

the same expert system. We present the re-

sults of using this approach to partition a

deployed knowledge-based system that nav-

igates the Space Shuttle's entry. We also

discuss the impact of this approach on ver-

ification and validation of knowledge-based

systems.

Keywords domain knowledge, primary

view, secondary view, conceptual clustering.

Introduction

Knowledge-based systems owe their appeal

to the promise of utilizing expertise in the

1This research was supported through Phase-I
SBIR Grant - NAS9-18706 from NASA Johnson

Space Center, Houston, TX.

domain knowledge for the solution of diffi-

cult, poorly-understood, ill-structured prob-

lems. However, they must be subjected to

rigorous verification and validation (V&:V)

analyses before they can be accepted into

real-world critical applications. Unfortu-

nately, expert systems do not lend them-

selves to the traditional V&V techniques for

highly reliable software. There is a need to

formulate an acceptable set of V&V tech-

niques which can assure their quality. Better

knowledge-acquisition techniques as well as

better management, understanding and en-

hancement of the knowledge base is critical
to the success of such V&V activities.

The difficulty in the V_V of large

knowledge-based systems arises due to a

number of reasons. Firstly, rapid prototyp-

ing and iterative development form key fea-

tures of any expert system development ac-

tivity. This has led to the development of

ad-hoc techniques for expert system design

without any software engineering guidelines.

Moreover, due to the data-driven nature of

expert systems, as the number of rules of an

expert system increase, the number of possi-

ble interactions between the rules increases

exponentially. The complexity of each pat-

tern in a rule compounds the problem of

V&V even further. As a result, large ex-

pert systems tend to be incomprehensible,
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difficult to debug or modify, and almost im-

possible to verify or validate.

Compounding the problem further is the

fact that most expert systems are built with-

out much regard to defining the require-

ments or specifications upfront. As any soft-

ware, conventional or knowledge-based, be-

comes more complex, common errors are

bound to occur through misunderstanding of

specifications and requirements. Therefore,

it is our belief that even if a software life cy-

cle stresses specifications and requirements

upfront, that will not be enough to guarantee

the right product for complicated systems.

There axe bound to be ambiguities and in-

terpretational problems. What is needed is a

complementary tool that is capable of expos-

ing such ambiguities and misinterpretations

so that corrective action can be taken be-

fore it is too late in the software life cycle.

Having a semi-automated means for captur-

ing and structuring the meta-knowledge in a

rulebase and cross-checking it with the spec-

ifications and requirements at various stages

of the software life cycle could certainly help

in this effort.

Conventional software yields more easily
to verification efforts because control is ex-

plicitly represented as procedures which can

be structured to encapsulate run-time ab-

stractions. Modules can be designed in con-

ventional software, each consisting of a man-

ageable unit with a well-defined interface.

Furthermore, procedures can be grouped

into packages or objects which share an
internal data structure. These units can

then be subjected to unit/integration test-

ing techniques.

Due to the declarative style of program-

ming in knowledge-based systems, the gen-

eration of clusters to capture significant con-

cepts in the domain seems more feasible than

it would be for procedural software. By

using knowledge-based programming tech-

niques one is much closer to the domain

knowledge of the problem than with pro-

cedural languages. The control aspects of

the problem are abstracted away into the in-

ference engine (or alternatively, the control

rules are explicitly declared). The existence
of a model of the domain would benefit the

analysis of other knowledge-based systems

within that domain by providing seeds for

cluster formation. In addition, the use of a

domain model to assist in the development of

new knowledge-based systems is a promising

research direction.

Existing research indicates that misunder-

standings of the domain are a primary cause

of systems failures [5, 12, 19]. Often small

oversights or misunderstood interactions be-

tween sources of expertise lead to catas-

trophic failures. Techniques, methodologies

and supporting tools are therefore needed

to manage a complex system from multiple

viewpoints and discover subtle interrelating

concepts that are so critical for assuring the

reliability of these systems. Even though

language support for systems structuring has

long been recognized as a key aspect of mod-

ern software and knowledge engineering, it is

our contention that no single structuring can

simultaneously capture all the important con-

cepts in compIez knowledge-based systems.

We believe that techniques, methodologies

and supporting tools are needed to manage

a complex system from multiple viewpoints

and that the discovery of subtle interrelating

concepts is critical for assuring the reliability

of these systems.

In this paper, we propose the concept of

Multi-Viewpoint Clustering Analysis (MVP-

CA) and show it as a feasible and effective

technique towards structuring a rulebase for

capturing its explicit as well as its implicit

knowledge. The extraction of implicit, pre-

viously unknown, yet potentially useful in-
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formation from the rulebase can have con-

siderable impact on various stages of the life

cycle of knowledge-based systems software.

It can expose various design pitfalls during

construction of the rulebase and the func-

tional limitations of the software during its

operation, as well as the subtle interrelation-

ships between subgroups of rules that could

prove very valuable in the maintenance of

the system. It is our contention that the un-

derstanding of any large knowledge base will

require that it be viewed from several differ-

ent, possibly orthogonal viewpoints. MVP-

CA provides an ability to discover signifi-

cant structures within the rulebase by pro-

viding a mechanism to structure both hierar-

chically (from detail to abstract) and orthog-

onally (from different perspectives). More-

over, transfer of expertise from one prob-

lem domain to another related domain would

be facilitated through the factoring of com-

mon aspects across the domains. Hence soft-

ware reuse can be exploited through multiple

structuring of a knowledge-based system.

First, we give an overview of our approach,

followed by the methodology used to gener-

ate meaningful partitions. Next, we present

the results of applying this methodology to

a deployed expert system for navigation. We

discuss some of the related work in this area

and finally give our conclusions.

MVP-CA Overview

Our research efforts address the feasibility of

automating the identification of rule-groups

in knowledge-based systems software, to re-

flect the underlying subdomains of the prob-

lem. We prove the feasibility of MVP-

CA (Multi-Viewpoint Clustering Analysis)

methodology by building an MVP-CA tool

to structure a few CLIPS 2 [3] knowledge-

based systems along several viewpoints and

showing that no single structuring principle

or abstraction hierarchy is sufficient to un-

derstand complex knowledge bases.

Our approach utilizes clustering analysis

techniques to group rules which share signif-

icant common properties and to identify the

concepts which underlie these groups. Clus-

ter analysis is a kind of unsupervised learn-

ing in which (a potentially large volume of)

information is grouped into a (usually much

smaller) set of clusters. If a simple descrip-

tion of the cluster is possible, then this de-

scription emphasizes critical features com-

mon to the cluster elements while suppress-

ing irrelevant details. Thus, clustering has

the potential to abstract from a large body

of data, a set of underlying principles or con-

cepts which organizes that data into mean-

ingful classes. The knowledge acquisition

process therefore involves "mining" the rule

base for interesting concepts shared among

the rules. The quality of clustering is related

to two competing factors: intra-group cohe-

siveness and inter-group coupling. Infor-

mally, one can say that a group (or a cluster)

is cohesive if all the items clustered together

are somehow related or similar. Two groups

are highly coupled if they share many sim-

ilar properties and they are loosely coupled

(possibly decoupled) if they share few (or no)

similar properties. It is interesting to note

that the qualities which define a good cluster

are precisely those which define a good mod-

ular functional decomposition of a problem.

Preliminary experiments with the MVP-

CA tool exposed significant natural struc-

tures within different knowledge bases. For

example, consider ONAV (Onboard Navi-

gation Expert System) [1], an expert sys-

tem deployed on the shuttle to navigate dur-

2C Language Production System
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ing re-entry. The file structure of ONAV

provides one partitioning of the whole sys-

tem. Not only did we find this generally

accepted partitioning of ONAV, but we also

found less obvious, more subtle interrelation-

ships that existed across these primary clus-

terings. In this paper we present some of

our results of applying the MVP-CA tool

to ONAV. Misunderstandings of subtle in-

teractions contribute most to the unreliabil-

ity of knowledge-based systems [10]. Hence

any methodology that exposes these rela-

tionships will contribute towards the V&V

of large knowledge-based systems.

To illustrate the need for multiple view-

points, consider an expert system for select-

ing the appropriate wine to complement a

dinner. Even such a relatively small rule-

base can be structured from several differ-

ent viewpoints, as shown in Figure 1. Very

broadly, the knowledge base can be divided

into knowledge about the problem domain

(selecting the appropriate wine) and knowl-

edge about the control domain. The control

knowledge breaks up further into user inter-

face (how to question the user) and over-

all control strategies (balancing user prefer-

ences against experts' opinion through var-

ious phase control rules). Printout state-

ments that ask the user for input or control

the phasing of control rules belong to the
control domain.

Similarly, knowledge about the problem

domain, to aid in the selection of an appro-

priate wine for a meal, can be further sub-

divided into three major subdomains: types

of food, wine properties and varieties, and a

model of the customer's preferences. These
domains axe further subdivided into vari-

ous subaspects. All these reflect different

viewpoints of the same rule base. Within

the food subdomain there are paxtitionings

of taste of food, style of food, ingredients,

etc. This is a hierarchical partitioning under

the food subdomain. An orthogonal view-

point in the wine subdomain is the inter-

action of wine properties with meal qual-

ities. Similarly there are different aspects

of the problem from the customer's view-

point. In addition, there are rules which

overlap subdomains or pass information to

rules in other subdomains (data dependency

relationships). Thus the same rule can be

part of one subdomain and at the same

time create information for use by rules in

other subdomains, such as interface rules

that specifically combine concepts from two

subdomains (e.g., the relationship between

beverage and the style of food.) There is

an added value in using the MVP-CA tool

for exposing substructures within the ab-

stract groups formed, through hierarchical

paxtitionings generated by it. The hierar-

chies represent viewpoints at different levels

of conceptual abstraction.

MVP-CA Methodology

The methodology used for MVP-CA is sum-

marized graphically in Figure 2. In the Clus-

ter Generation Phase the focus is on gener-

ating meaningful clusters through statistical

and semantics-based measures. In the Clus-

ter Analysis Phase the focus is on performing

a statistical and functional analysis of the

output generated from the previous phase.

Results of a statistical analysis of the out-

put data feed back as better constraints on

the parameters for grouping to improve the

quality of subsequent clusterings. A func-

tional analysis of the clusters captures the

key concepts conveyed by the clusters gen-

erated. Concepts are meaningful patterns

in the rulebase along with their associated

attributes. A set of key concepts consti-

tutes a single viewpoint. Multiple clusterings

present multiple viewpoints on the rule base.
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PROBLEM DOMAIN CONTROL DOMAEN

Figure 1: A Multi View Point of the Wine Rule Base

Cluster Generation Phase

Cluster Analysis Phase

Figure 2: Phase-I Data Flow Diagram
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A two-step procedure is utilized for ex-

tracting multiple viewpoints of a rulebase.

First, form the best cluster possible using

various measures, such as dispersion, cohe-

sion and coupling. The overall dispersion of

a pattern p is

nC

i=1

where nc is the number of groups for clus-

tering C and dispa, (p) = 1 if p e G_ and is

0 otherwise. Coupling is defined in terms of

the inter-group distance, D(i,j) as follows;

D(i,j) = _ _. n,, nj
rkeGi rleGj

where ni and nj are the number of rules in

groups G_ and Gj, respectively and d(rk, rl)

is the distance between rules rk and rz de-

fined according to a distance metric selected

by taking into account the nature of the rule

base application [15]. For a given clustering,

C, the cohesiveness measure is an index of

the similarity of rules belonging to the same

group. Cohesiveness of a rule rk with respect

to the group Gi that it belongs to is the aver-

age number of concepts(cncp) it shares with

the other rule members in the group G_.

cohc,(Tk)=
[ 2 * cornrn_cncp(rk, rl) [

(rleG/)

Our clustering algorithm starts with all

rules in their own clusters. At each step

of the algorithm, the two groups which are

most similar are merged together to form

a new group. This pattern of mergings

forms a hierarchical cluster from the single-

member rule cluster to a cluster containing

all the rules. One can look at this cluster-

ing near the %est" clustering points. De-

ciding which level in the hierarchy forms the

"best" clustering of the rules requires an

analysis of the cohesiveness of each cluster

(the intragroup similarity) versus the cou-

pling between groups (the intergroup sim-

ilarity). When group cohesiveness is plot-

ted against number of groups, plateau re-

gions are generated signifying stable values

for cohesiveness in certain ranges of number

of groups. These regions represent optimal

partitionings for a particular level of concep-

tual abstraction. Insight into concepts dom-

inating the various clusters can be obtained

through an examination of the groups at se-

lect points on the plateau regions. A hierar-

chical view of the rulebase can then be gen-

erated by repeating the above procedure for

different plateau regions on the cohesiveness

plots.

Next, with this "best" cluster, form a con-

cept focus list - to either sharpen a current

viewpoint or expose an alternate viewpoint.

The concept focus list is formed from dis-

persion statistics of patterns. Dispersion is

based on shared concepts - i.e. how a sin-

gle concept is dispersed among the clusters.

Low dispersion concepts are likely to repre-

sent concepts which characterize the clusters

they are in. In fact, high dispersion concepts

may interfere with the generation of highly

cohesive clusters. Removing these concepts

before clustering can help define the clus-

ters more distinctly - a process which we

call "sharpening". However, high dispersion

concepts may also represent legitimate al-

ternate structurings of the knowledge base.

By selectively removing the low dispersion

concepts, it is possible to reveal subtle alter-

nate viewpoints - a concept we have termed

multi-viewpoint clustering analysis [17, 16].

Thus the MVP-CA methodology provides

a mechanism for comprehending complex

knowledge-based systems through structur-

ing them both hierarchically (from detail to

abstract) and orthogonally (from different

perspectives) leading to discovery of signif-
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icant structures within the rule base.

Experimental Results

In this section we present some of the re-

sults obtained to date with the deployed

knowledge-based system ONAV. Other re-

sults using animal classification and wine se-

lection (available as part of the CLIPS 5.1

release) expert systems have been presented

in [16].

Even with extensive comments and a tool

such as CRSV 3 [2], the conceptual depen-

dencies of rules across files cannot be easily

determined. Not having any experience with

Shuttle mission terminology, the rulenames

were our only guide for understanding the

domain in this knowledge-base. After clus-

tering this rulebase several times using dif-

ferent criteria, we began to understand more

of the subtle interrelationships. A graphical

user interface, currently under development,

would allow us to navigate through the rule-

base and document the insights generated

by the partitioning, thus fully utilizing the

MVP-CA methodology. We document be-

low our understanding of ONAV based on

the natural partitionings set up by the devel-

oper as well as different groupings generated

through the MVP-CA tool. We also show

some of the interrelated concepts uncovered

by this tool.

ONAV is an expert system developed at

NASA Johnson to help navigate re-entry of a

space craft. It has 387 rules divided across 16

files reflecting the various stages of naviga-

tion: ascent, entry and landing. The largest

file tacan.r contains 127 rules. Monitoring of

the space shuttle through ONAV entails up-

dating some state vectors in the files state.r,

3CLIPS Cross Reference Style Analysis and Ver-
ification Tool

3state. r and hstd. r. Measurements of veloc-

ity and acceleration are calculated through

sensor readings from various devices such as

the inertial measurement unit (imu), drag

unit(drag), barometer unit(baro), tactical air

navigation unit(tacan) and microwave scan

beam landing system(msbls). The readings

go through a Kalman filter and the state vec-

tor is updated through different types of line

replacement units (lru) attached to the dif-

ferent devices. The computers onboard per-

form the necessary integrations on the cor-

rected readings to obtain accurate values of

velocity and position.

During landing, readings from different

sources have to be tallied so that the po-

sitioning of the shuttle can be as accurate

as possible before it hits the runway. Dur-

ing ascent the shuttle relies mainly on the

inertial measurement unit readings, since

an accurate positional value is less criti-
cal. All the lrus feed data to both the

primary avionics system software(PASS) as

well as to the backup flight system(BFS).

Each of these systems have different selec-

tion schemes for determining the quality of
data received. Ground-based radar stations

resolve any conflicting values for the position
of the shuttle and are used to aid in isolat-

ing malfunctioning equipment on board. Fi-

delity of the data is monitored through the

status of a number of different flags. Rules in

telemetry.r and operator.r determine which

of the readings and updated state vectors

are reliable at any point in time and give

the operator power to override any decision.

Tables. r provides general information on the

lru configurations onboard, the fault matrix

to be used for identifying the imu compo-

nent that has failed, and a definition of the

quality ratings to be used for the different

state vectors and data readings. Runway se-

lections are checked out in the file runway, r.

Rules in init.r, control.r, and output.r essen-
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tially accomplishthe initial set up of global
information during the different stagesof the
navigation by activating the various phase
control rules, and they also handle the user
interface issues.

Initial analysisof our results indicatesthat 1.5

grouping a rulebase according to control as- ,R

pects of the problem is not sufficient for un-
qg

derstanding the problem. The static aspects ._ 1.0
of the problem can be understood only if a=

domain knowledge can be separated from

control knowledge [8, 9]. The original par- o._

titioning of ONAV into 16 files by the de-

veloper provided only a coarse partitioning

based on the different phase aspects of the 0.0

knowledge-based system. When the phase

aspects of the rulebase were excised, it was
found that rules with similar domain infor-

mation were formed into a single group to

give a secondary view. In order to discover

the implicit interconnections between rules

in different files, we combined all the files of

ONAV to form one 387-rule rulebase. Since

ONAV is primarily a monitoring system with

some diagnostic capabilities, more meaning-

ful partitionings were obtained when the an- 1.s

tecedent patterns played a major role in de-

termining the distance between rules [15].

Figure 3 shows the cohesion plot for a ,_ t.o

primary view of ONAV. The cohesion val-

ues beyond 200 groups are not plotted be-
cause there are too many single groups af- a=

ter that point. Consider some of the inter- 8 0.5

esting plateau regions such as those around

11 and 50 groups. Partitionings generated

with the primary view are more or less in

accordance with the developer's partition- a.o

ings in the rulebase reflecting various phase

values. At 50 groups, we can see various

subaspects for the tacan subphase - such as,

tacan prediction rules, rules that put tacan

in automatic mode, rules to determine lru

quality, and so on - grouped in separate

groups. However, at 10 groups, all these

2.0 r I

f

u I , i , !

0 50 IOO 15o

No. of Groups

_VP

2C0

Figure 3: Cohesiveness Plot: ONAV rule-

base - Primary View

I , l , I

50 I00 i_o

No. of Groups

i

2C0

Figure 4: Cohesiveness Plot: ONAV rule-

base - Secondary View
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Group no 20:

Total number of rules in group: 15

Distance:: Min: 2.000000 Max: 7.666667 Mean: 4.284770

Cohesiveness: 0.429254 Minimum Membership: 0.033520

130

131

134

135

137

136

140

138

139

132

133

141

142

143

223

init-engaged-system-is-bfs 0.150933

init-engaged-system-is-pass 0.445672

init-syscem-availability-bfs-only 0.537089

inlt-system-availability-pass-only 0.566508

init-system-availability-both-pass-avail

inlt-system-availability-both 0.565853

init-report-major-mode 0.451083

in±t-wrong-atmosphere 0.399324

init-right-atmosphere 0.371124

init-enable-msbls-sensor-lights 0.232097

inlt-enable-tacan-sensor-lights 0.295337

init-keep-las_-ops-num 0.362514

init-report-abort-mode 0.501832

init-report-ascent-events 0.544941

nay-initialize 0.452685

0.561815

Figure 5: Initialization Rules - Primary Clustering

tacan rules come together to form one group

as conceived by the developer. Thus, while

the original partitioning of ONAV into 16

files by the developer provided a coarse par-

titioning based on the different phase as-

pects of the knowledge-based system, there

is added value in using the MVP-CA tool

to expose the substructures within these ab-

stract groups.

In the primary view, some groupings seem

to have been generated based on criteria

other than phase control. Initialization

rules across different files come together in

a group, group 20 in Figure 5, revealing ini-

tialization relationships from various phases.

Initializations from other fries, such as nay-

initialize from file state.r, combine with this

group revealing initialization relationships

across files. This is an important revelation

from the point of view of maintenance and

verification.

In order to reveal a secondary view, we

excised the concept of phase and engaged-

system, which had the highest dispersion

values in the primary view. The cohesion

plot for the secondary view is given in Fig-

ure 4. Figures 7 and 8 give cross-sections of

secondary groupings when all phase values

were excised. The rule !abelings generated

in these files are the rulenames given by the

developer originally. The numbers on the

left are the rule numbers; distance between

rule numbers thus gives an indication of the

degree of juxtaposition of the rules in the

combined rule base. Right-hand side num-

bers provide the cohesion value of the rule

with respect to its group.

Once the phase aspect is deleted from the

rulebase, other domain-dependent concepts

start asserting themselves. In fact, in Fig-

ure 7, group 8 rules with similar rulenames

(hstd-same, hstd-bad, hstd-good and hstd-

unavail) across different files (hstd.r and op-
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Group no 6:

Total number of rules in group: 19

Dis%ance:: Min: 2.000000 Max: 6.000000 Mean: 3.688889

Cohesiveness: 0.443354 Minimum Membership: 0.160000

27

194

201

195

196

197

198

199

200

204

2O2

2O3

205

207

2O6

209

2O8

210

211

control-kickoff 0.385737

operator-stop 0.526758

operator-uplink-runway 0.454210

operator-delta-state 0.472484

operator-changed-delta-state 0.520917

operator-bfs-no-go 0.398486

operator-bfs-go 0.438764

operator-runway-selection 0.400035

operator-desired-runway-from-operator 0.443254

operator-atmosphere-change 0.375280

operator-toggle-tacan 0.342885

operator-cant-toggle 0.416190

_ndeph-bad 0.443719

gndeph-same 0.490814

gndeph-good 0.452024

hstd-good 0.451576

hstd-bad 0.481044

hstd-same 0.534733

hs%d-unavail 0.394810

Group no 12:

Total number of rules in group: 4

Distance:: Min: 2.333333 Max: 3.250000

Cohesiveness: 1.112825

42 hstd-bad

44 hstd-same

43 hstd-good

45 hstd-unavail

Mean: 2.763889

Minimum Membership: 0.571429

1.229437

0.884921

1.136364

1.200577

Figure 6: Hstd rules - Primary View
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Group no 8:

Total number of rules in group: 24

Distance:: Min: 2.000000 Max: 9.900000 Mean: 4.437921

Cohesiveness: 0.377193 Minimum Membership: 0.000000

27

211

194

201

210

195

196

197

198

199

2OO

2O5

2O7

202

203

43

206

209

42

208

44

138

139

204

control-kickoff 0.351796

hstd-unavail 0.353633

operator-stop 0.479850

operator-uplink-runway 0.414068

hstd-same 0.492559

operator-delta-state 0.459732

operator-changed-delta-state 0.487993

operator-bfs-no-go 0.375855

operator-bfs-go 0.405531

operator-runway-selection 0.355490

operator-desired-runway-from-operator

gndeph-bad 0.440268

gndeph-same 0.446688

operator-toggle-tacan 0.318074

operator-cant-toggle 0.389968

hstd-good 0.294328

gndeph-good 0.444678

hstd-good 0.472972

hstd-bad 0.316276

hstd-bad 0.487546

hstd-same 0.220726

init-wrong-atmosphere 0.090802

init-right-atmosphere 0.148827

operator-atmosphere-change 0.413935

0.391028

Figure 7: Hstd rules - Secondary View

Group no 5:

Total number of rules in group: 4

Distance:: Min: 2.000000 Max: 4.000000 Mean: 3.000000

Cohesiveness: 1.328788 Minimum Membership: 0.013423

20 baro-aif-changed 1.176493

36 drag-air-changed 1.653500

310 tacan-aif-changed 1.372859

179 msbls-aif-changed 1.112300

Figure 8: Aif rules - Secondary View
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erator.r) come together because all of these

rules deal with an incorrect input value for

the hstd indicator. However, the hstd indi-

cator is important in two subphases (fact-

assertion and hstd). Once the phase compo-

nent is deleted, the domain information that

determines the hstd status pulls these rules

into the same group. In the primary view

these rules were in separate groups, 6 and

12, as shown in Figure 6.

It is also interesting to note that rules that

share the concept of modifying the auto-

inhibit-force flag (nil) in different phases all

combine together in group 5, see Figure 8.

This is a functional grouping of rules based
on actions to be taken when there is a dis-

crepancy between the previous and current

values of the air flag in the barometer, drag,

tacan and msbls units. An orthogonal view

of the rulebase comes into perspective with

this grouping.

Such a view may be of immense value to

the maintainer of the rulebase, since func-

tional dependencies like these can be ex-

tremely difficult to locate across files, es-

pecially if the maintainer has not been the

original developer of the system. Thus, our

experimental results with the MVP-CA tool

has demonstrated the feasibility of discover-

ing significant structures within the rulebase

by providing a mechanism to structure both

hierarchically (from detail to abstract) and

orthogonally (from different perspectives).

Related Work

Extraction of meta-knowledge for the pur-

poses of comprehending and maintaining ex-

pert systems has been an accepted norm. In

this section, we examine the role of structur-

ing for this purpose in some well-established

knowledge-based systems.

Systems such as XCON [4, 18] that have

been in development for more than 10 years

had to develop a new rule-based language,

RIME, and rewrite XCON-in-RIME to fa-

cilitate its maintenance. XCON-in-RIME

is supposed to make the domain knowledge

more explicit both in terms of restructuring

the rules and in terms of exposing the con-

trol structure for firing of the rules. Thus the

problem space gets more hierarchically or-

ganized into different functional aspects, the

problem solving method is made more ex-

plicit, a domain-specific classification is im-

posed on the rules and rule templates are

created to serve as guides for rule creation.

Meta-Dendral [6] is a case study in the

area of acquisition of domain knowledge.
Meta-Dendral tries to resolve the bottleneck

of knowledge acquisition through automatic

generation of rule sets so as to aid the pro-
cess of formation of newer scientific theories

in mass spectroscopy.

TEIRESIAS [7] is built upon the MYCIN

system to provide a mechanism for effective

knowledge transfer. TEIRESIAS uses meta-

rules to encode rule-based strategies that

govern the usage of other rules. For this pur-

pose it generates a set of rule models that are

then used to guide this effort by being sug-

gestive of both the content and form of the

rules. These rule models can suggest incom-

plete areas of the knowledge base, provide

summary explanations and help during de-

bugging sessions. TEIRESIAS demonstrates

the power of analyzing rule sets for experts

especially when writing new rules. It is very

helpful to see existing rules that are similar

to a new rule under consideration so as to

set the appropriate certainty factors in the

new rule. Similarity could be suggestive of

similar premises or similar conclusions. By

comparing other evidence and other conclu-

sions, the strength of the proposed rule can

be estimated in the proper context. In fact,
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each of the clusterings carries an extra slot

indicating the context in which the rule set

applies.

Although others [11, 13, 14] have at-

tempted to cluster knowledge bases in or-

der to abstract and structure the knowledge

in them, existing approaches are limited in

two major ways. First, we believe that no

one single structuring viewpoint is sufficient

to comprehend a complez knowledge base.

Second, it is difficult to understand a sin-

gle knowledge base isolated from an under-

standing of the underlying application do-

main. Often clues to the underlying seman-

tic concepts are provided through descriptive

names. Even then, the syntactic structure

alone is rarely sufficient for managing and

maintaining a complex system.

Clustering analysis can be used to reveal

regularities in the knowledge base which can

suggest possible subdomains of the problem.

This structuring of the knowledge base is in-

tended to capture both the explicit and the

implicit knowledge in the knowledge base.

The point of interest of such an analysis

should not be the clusters themselves, but the

principles and ideas suggested by the clus-

ters. Such groups would allow one to ab-

stract away from the point of view that each

rule is a procedure call and look at the sys-

tem from higher semantic levels. Each such

group or unit can then be viewed as a proce-

dure having a well-defined interface to other

rule-groups. Once a rule base is decomposed

into such "firewalled" units, studying the in-

teractions between rules would become more

tractable.

Due to the declarative style of program-

ming in knowledge-based systems, the gen-

eration of clusters to capture significant con-

cepts in the domain seems more feasible than

it would be for procedural software. By

using knowledge-based programming tech-

niques one is much closer to the domain

knowledge of the problem than with pro-

cedural languages. The control aspects of

the problem are abstracted away into the

inference engine (or alternatively, the con-

trol rules are explicitly declared.) Genera-

tion of a model of the problem domain can

be accomplished through clustering. The ex-

istence of a model of the domain would bene-

fit the analysis of other knowledge-based sys-

tems within that domain by providing seeds

for cluster formation. In addition, the use

of a domain model to assist in the develop-

ment of new knowledge-based systems is a

promising research direction.

Conclusions

Knowledge-based systems have the poten-

tial to greatly increase the capabilities of

many aerospace applications such as Space

Station, manned and unmanned spacecraft

and civilian and military air transport. Au-

tomated systems that are knowledge based

need to be deployed aboard these missions

to reduce manpower support. Failure of

such systems, however, can result in loss of

life and of substantial financial investment.

Hence these systems need to be highly reli-

able. Whereas DOD standards for conven-

tional software have been developed, such as

ADA-9x, a credible development and valida-

tion methodology for knowledge-based sys-

tems is currently lacking. Acceptance of

knowledge-based systems software for crit-

ical missions is very much dependent on de-

velopment of effective software engineering

and validation techniques. A structured ap-

proach to management and maintenance of

such systems would go a long way towards

dispelling the myth that expert systems are

inherently unreliable and that nothing can

be done about it.
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Expert systems have a wide commercial

applicability. Liability issues arising out of

improper functioning of such systems de-

mand that any risk to life or property be ei-

ther totally eliminated or at least minimized.

Hence, it is imperative to develop rigorous

and automatic testing tools for the verifica-

tion and validation of knowledge-based sys-

tems. An integrated environment for expert

system verification and validation, such as is

proposed by MVP-CA, would overcome this

barrier, opening them up for a broad range

of important applications. An integrated

system for performing V&V on structured

knowledge bases will enhance the reliability

of knowledge-based software and bridge its

current gap with conventional systems.
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Abstract

Software reuse has become a major goal in the development of space systems, as a recent NASA-wide

workshop on the subject made clear. 1 The Data Systems Technology Division of Goddard Space Flight
Center has been working on tools and techniques for promoting reuse, in particular in the development of
satellite ground support software. One of these tools is the Experiment in Libraries via Incremental
Schemata and Cobweb (ElvisC). ElvisC applies machine learning to the problem of organizing a reusable
software component library for efficient and reliable retrieval. In this paper we describe the background
factors that have motivated this work, present the design of the system, and evaluate the results of its
application.

1. Repositories vs. Architectures in Reuse

The work described in this paper concerns the self-organizing capability of a repository of reusable
software components. The recent trend in software reuse support technology has been away from a
dependence on unguided searching of component repositories, and towards a more model-based approach
[D'Ippolito '89; Simos '91; Mark '92]. In this introduction we explain the difference between the two
approaches, the role of the model-based approach at NASA/Goddard, and our reasons for focusing on
repository organization.

The model-based approach to reuse emphasizes the development of generic architectures within a given
application domain. A generic architecture shows how systems in the domain are typically composed of
reusable components. The field is moving towards knowledge-based support for generic architectures,
e.g., formalizing the constraints under which components can be combined and the commitments entailed
by reusing specific components. The ultimate goal is to build new systems by selecting features or
specifying parameter values, thus instantiating the generic architecture with little or no additional software
development.

NASA/Goddard has a long and successful history of using generic architectures, since even before the
terminology became fashionable. The Standard Software System (SSS) [WEC '79]was developed in the
late 1970s to provide a kernel of support for satellite operations control centers, and several missions were
based upon it. The Multi-Satellite Operations Control Center Application Executive (MAE) [Sperry '85]
was a successor to SSS in the mid-1980s, motivated in large part by the replacement of processor
hardware and operating systems. Again, several missions were based upon MAE. Most recently, the
Transportable Payload Operations Control Center (TPOCC) [Measday '91] was developed to take
advantage of workstation technology and open system interconnection. The degree of parameterization
and configurability has increased with each of these successive software architectures.

In a narrower domainlthat of monitoring telemetry housekeeping data--the Generic Spacecraft Analyst
Advisor (GenSAA) [-Hughes '91] is generalizing an architecture for rule-based monitoring systems that
was first illustrated in the Communications Link Expert Advisory Resource (CLEAR). GenSAA will
provide a high degree of automated support in the creation of monitoring systems for different spacecraft.

1 Organized by Langley Research Center and held at the Research Triangle Institute in April, 1992.
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The Flight Dynamics Division of Goddard is developing the Combined Operational Mission Planning and
Attitude Support System (COMPASS), which is an Ada-generic framework for creating orbit analysis
systems for different spacecraft. The role for such generic architectures in the development of satellite
ground software seems to be f'Lrmly established.

The need for specialized software has not disappeared, however. In order to meet the ever expanding
requirements of the scientific community with available resources, new technologies must continually be
inserted into ground support systems. Direct-manipulation user interfaces and knowledge-based systems
are typical of the kinds of technology being introduced into control centers.

The Data Systems Technology Division has as its charter the development of new technologies to the point
where they can be safely integrated into a control center. In such an environment there is a greater need to
respond to unprecedented requirements, and less of a role for generic application architectures. The goal
of reuse-based software development remains, however. Thus the emphasis in this group is on reuse
within horizontal domains: these are the supporting domains that provide basic application-independent
services, upon which vertical (i.e., application) domains are built (for example, databases,
communications, and user interfaces are horizontal domains).

The Data Systems Technology Division's Code 522 develops a substantial portion of their software using
the programming language C++. Each software project spins off a set of potentially reusable modules in
the form of C++ component classes. These components implement, for the most part, application-
independent functions. Because the components are produced as they are needed, their capabilities tend to
be scattered over several horizontal domains. In order for developers to take full advantage of this
collection--including developers who may not have contributed components--some rational method of
organizing the library is required. A rational organization is one that allows developers to find what they
need efficiently and reliably.

A key consideration in this challenge is that a given organization will not suffice as the contents of the
repository evolve. As requirements evolve so do solution techniques. The contents of the library will
change as new reusable components are developed---also as older components are removed, because their
usefulness has diminished or was overestimated to begin with. As the contents of the library change, we
cannot expect the same organization to remain appropriate.

Why not use the "given" hierarchy of C++ classes, which is implied by their public inheritance structure,
to organize the repository? Public inheritance in C++ is supposed to represent the "is-a" relation [Meyers
'91, Cargill '91]. In principle, a global inheritance hierarchy could function as the organization of the
repository, and new components could be created within this inheritance framework. Our conclusion,
however, is that this approach is not pragmatic. Design teams elaborate local inheritance hierarchies within
a project or segment of a project to achieve maintainable code. A typical project may include a dozen
independent inheritance hierarchies. The additional levels of abstraction required to relate these hierarchies
to each other and to the organization's past work are typically missing because it would be expensive to
develop and no additional functionality would be gained by this extra effort. When multiple individuals
and multiple organizations are involved in a project, irreconcilable hierarchies may be developed to support
similar functions. Adjusting source code to retrofit it into a unified inheritance hierarchy may not be
economically feasible or even possible (in the case of object-code libraries). Finally, we want the
organization of the repository to be malleable--to evolve as the characteristics of the components evolve.
We would like to achieve such flexibility without having to revamp the C++ class definitions continually.

Thus we have been led to consider a method for incrementally defining categories of components. In the
machine learning literature, such a method is characterized as an unsupervised incremental learning
algorithm: unsupervised, because the set of available categories is not given to the algorithm a priori, but is
developed instead by the algorithm itself; incremental, because the set of categories, as well as their
boundaries, can change every time a component is added or removed from the repository [Fisher and
Pazzani 91]. Unsupervised incremental learning is sometimes known as concept formation. ElvisC

employs a concept formation algorithm called Cobweb to perform automatic classification of C++
components, A slightly different version of the algorithm is used to retrieve components that best match a
given query.
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2. The ElvisC Repository

ElvisC attempts to provide an organized repository with minimal construction and maintenance costs to its
user community. It does so by assisting in the formal characterization of repository submissions, and
automatically organizing the repository contents to reduce searching. ElvisC is composed of three major
components: 1) a case base of submitted assets, 2) an extensible asset characterization language similar to
that first demonstrated in TEIRESIAS [Davis '82], and 3) an unsupervised classification system derived

from the Cobweb inductive concept formation system [Fisher '87].

One novelty of this work is its use of an unsupervised classification system to solve the "distance metric"
problem of case-based systems: determining the closest match to a given problem specification within the
existing case base when a perfect match does not exist. It does this by treating the problem specification as
ff it were the characterization of a new case to be classified: the bin into which this problem characterization

would have been placed is the bin that contains the closest matches to the new problem. The advantage of
this classification technique is that it requires no specific knowledge of the application domain beyond the

n-dimensional shape 2 of the existing case base. Thus the repository is both self-organizing and
ontologically open.

2.1 Acquisition and The Feature Space

Characterization of assets serves two purposes: it describes the asset for potential reusers, and it provides
the basic data with which to organize the library for reuse. To assist in the organization of the library, the
characterization must be able to differentiate this asset from dissimilar assets and to relate this asset to

similar assets. Thus characterizations must draw from a common vocabulary which can be extended as
needed to distinguish new cases from existing cases. To meet these demands ElvisC acquires its
characterization language interactively from users when they submit assets. This technique was first
demonstrated in TEIRESIAS [Davis and Lenat '82] for the acquisition of diagnostic rules for blood
diseases.

The asset characterization language, or feature space, is organized as a tree of keyword schemata. This
tree is rooted in the Feature feature. The children of Feature are top level characterizations of an artifact,
for instance the asset's function or the environment in which the asset was defined. These children may

have children themselves, each of which represents a further refinement of its parent's concept. The entire
feature space below the 'Feature' feature is malleable and can be extended or edited by contributing
authors. Modifications to the feature space are tracked by the interface so that old definitions can be
repaired to fit the new space.

Each schema specifies the keyword name, a textual definition of the keyword, an indication of how the
keyword can be refined, and prompts for selecting from existing child features or soliciting new child
features. The Feature feature is defined as follows:

name: "Feature"
definition: "This is the mother of all features."

refinement type: Alternatives
solicitation prompt: "What new feature would you like to add?"
child selection prompt: "What features characterize this asset?"

When a user interacts with this schema they are presented with the child selection prompt, followed by a
list of the refinements currently available for refining the Feature feature. If the user enters the name of
one of the refinements presented, they then interact with the schema for that refinement. If the user enters
a name that is not on the list of existing refinements, they enter a dialog for instantiating a keyword schema
as a new refinement for the Feature feature.

2 The dimensions of the space are the attributes by which the cases are classified; the shape is determined by the relative
frequencies of cases along these dimensions.
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Therefinementtypefor theFeature feature is Alternatives. This refinement type allows the selection of
one or more children in the description of an asset or the specification of a query. Alternative refinements
of the root feature might be Feature _ Language and Feature _ Performance. An asset may be
characterized by either or both of these alternatives. The Alternatives refinement type can be thought of as
an inclusive "or" in the refinement tree. The existence of alternative refinements in the feature space is
what differentiates our approach from those that use the feature space as a decision tree for directly sorting
assets into asset type categories.

A second refinement type is Options. This method of refinement allows the selection of one and only one
refinement. Subsequent selection of another refinement deselects previous refinements. The features C
and C+ + could be options for the refinement of Feature _ Language. This type of refinement can be
thought of as an exclusive "or" in the refinement tree.

The third refinement type is Arguments. This method of refinement indicates that the refinements of a
feature are _ for the feature to be present in a characterization. For instance, if one of the
options for Feature _ Function was Storage, we might specify two arguments for Storage: What (what is
being stored) and Where (where is it being stored). Thus an asset characterized by the storage keyword
would possess Feature _ Function _ Storage _ What _ ... and Feature _ Function _ Storage _ Where
=_ ... attributes. This type of refinement can be thought of as an "and" in the refinement tree.

Finally, a feature may not have any type of refinement. Such a feature is said to be "terminal". In the
language example above, C and C+ + are terminal since no further refinement of these features is deemed

necessary. If at some later point it became important to distinguish ANSI C and K&R 6"3, then the
previously terminal C feature token could be refined to provide these new options.

An asset is characterized by selecting or adding progressively more detailed refinements from the feature
space. The description of an asset is equivalent to the set of nodes from the feature space that were
traversed during asset definition. The query specification process works identically.

2.2 The Solution Space

The solution space is composed of a case base of assets and a concept hierarchy of asset types. The asset
case base is organized as a forest of inheritance trees to allow derived class assets to inherit, optionally, the
features of their parent class assets, thereby simplifying asset characterization. Assets that have no parent

class specified, or assets which are written in a non-object-oriented language, are treated as base class
assets and stored as children of a root asset. Thus in practice the asset case base tends to be top-heavy
rather than deep.

Each asset record in the hierarchy contains that asset's features (as described above) and housekeeping
data. Housekeeping data encompasses all information that is required for the asset but that does not
contribute to its classification. Examples of housekeeping data include the asset's name, location, and
author. Asset names are guaranteed to be unique so that they can serve as identifiers in the hierarchy. The
asset's location is intended to be an accessible path name for the source or object files constituting the
asset. In the future we hope to use this path name to support automatic delivery of selected artifacts to
clients of the repository.

2.3 Organization of the Solution Space

Earlier versions of ElvisC (then called Elvis) viewed a query to the case base as constraints on which
existing cases could be retrieved. If no existing cases satisfied all the constraints, Elvis had to selectively
relax some or all of those constraints until a match was found. The problem was knowing which
constraints to relax.

3 ANSI C refers to the American National StandardsInstitute's det'mition of the C language. K&R C refers to the det'mition
of the C language published by Kernighan and Ritchie prior to the ANSI work.
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Supposethat a user is looking for an asset written in "C" which functions as a sorted collection of
pointers, any of which can be located on average in O(log n) time. The features for this request would be:

Feature _ Language _ C

Feature _ Function _ Collection _ Sorted

Feature _ Performance _ Average case _ O(log n)

Suppose that no asset in the case base fulfills all these criteria. Relaxing the language constraint one level
means that any language can be used. Relaxing the function constraint means that a collection of any type
can be used. Relaxing the performance constraint means that any level of performance is adequate. The
combined result of all of these individual relaxations would be the union of a number of possibly disjoint
sets of assets. If we could order the relaxation options a priori based on their expected impact on the
appropriateness of retrieved assets, we could successively apply those options until we got a set of assets
of reasonable size and appropriateness. Otherwise we could end up with a very large set of assets, and no
clue of how to order them for appropriateness other than Hamming Distance (the number of matching
attributes). The uninformed constraint relaxation approach is equivalent to a brute force exhaustive search
in the feature space, beginning with the specified constraints, in order to f'md exemplars in the asset space.
The contents of the case base provide no insight into how to direct this search other than knowing when it
is done.

ElvisC uses the Cobweb inductive concept formation system to locate the closest match to a desired case.
Cobweb is an unsupervised incremental concept formation system originally developed by Douglas Fisher
in his doctoral work at the University of California, lrvine [Fisher '87]. A thorough description of the
algorithm and its Lisp implementation in Cobweb/3 is available in [McKusick and Thompson '90]. This
method uses the contents of the _ to guide the search. As a result, smaller sets of closest
matches are retrieved, and a method for rank ordering the appropriateness of the retrieved cases is
available. The Cobweb algorithm appears to perform in O(log n) time for classification, where n is the
number of cases in the the case base. Since the size of the case base grows slowly and probably never
exceeds thousands of cases, this performance should be adequate. Furthermore, the accuracy of an
inductive method should grow as the case base grows.

2.3.1 Cobweb

Cobweb takes a stream of object identifiers and their descriptions, and incrementally organizes them into a
concept hierarchy. As one proceeds deeper into the hierarchy the concepts formed become more and more
specific until one reaches the leaves of the hierarchy in which a concept describes the attributes of a single

object. Cobweb uses relative frequencies of attributes to construct the concepts, and uses those
frequencies as probabilities when finding the best concepts (bins) to house the next object seen. Thus
Cobweb does not employ any domain specific heuristics to do its classification, nor does it resort to
human supervision in its construction or use of these bins.

ElvisC uses Cobweb to detemaine the closest matches to a prospective re-user's stated requirements. We
treat the features comprising the requirement as the specification of a hypothetical object to be classified.
Cobweb then filters the new hypothetical object down its classification hierarchy with the additional
constraint that no new bins can be created to house the concept. The bin in which this problem
characterization would have been placed (the host bin) is the bin which contains the closest match to the
new problem. The bin which contains the host bin (the super-host bin) contains the next closest matches
for the stated requirement. ElvisC currently returns the contents of these two bins in response to a query,
with the asset from the host bin at the front of the list.

2.3.2 How Cobweb Works

Cobweb uses a metric called Category Utility (CU) to determine the relative goodness of different
placements of a new submission in the current case base. The version of category utility used in this
implementation is:
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CategoryUtility = { Sum k=l..nk P(Ck)*

[Sum i = 1..ni Sum j = 1..nji P( Ai = Vji [ Ck )2 ] _

[Sum i = 1..ni Sum j = 1..nji P( Ai = Vji )2 ]

}÷nk

where:

nk is the number of categories at the current level of the hierarchy

P(C k) is the probability of membership in category k relative to all other categories 1..nk

ni is the number of possible attributes
nji is the number of possible values for the ith attribute

P( A i = Vji I C k ) is the probability that an attribute i has the value j given membership in category k

P( A i Vji ) is the probability that an attribute i has the value j for all categories 1..nk

This metric was fhst proposed and discussed in detail in [Gluck and Corter '85].

Cobweb categorizes a new submission to the library using a recursive algorithm. The algorithm begins at
the mot of the classification hierarchy which represents the bin containing all examples. At this mot node
the algorithm performs as follows:

1. Add the example as an exemplar of the node, updating the node's value frequencies according to
the example's description.

2. If the node has no exemplars other than this new exemplar, terminate (classification is complete).

3. If the node now has two exemplars, create two child nodes (bins) to hold each of the exemplars
and terminate (classification is now complete).

4. If the node now has more than two exemplars, it must have two or more child nodes. The options

for placement of the new example are:

4a: Create a new child (sub-bin) which will hold the example as its sole exemplar.
4b: Place the exemplar in the existing child (sub-bin) which best fits the exemplar.
4c: Create a new child (sub-bin) which will hold the exemplar by merging the two existing
children which best fit the exemplar.
4d: Replace the existing child which best fits the exemplar by its children, and then place the
exemplar in one of those new children based on where it fits best.

Each option is tried individually, with the results of option 4b used to identify the children to merge in
option 4c and the child to split in option 4d. The category utility score is computed for the node after
an option is performed, and then the results of the option are undone. After all options have been
tried, the option which resulted in the best category utility score is selected. The algorithm, beginning
at step 1, is then recursively applied to the selected sub-bin.

The P(Ck) multiplier in the category utility function has the effect of limiting the number of children of a

node to a range between two and some small constant (in our experience less than a dozen). Since this
algorithm never considers more than the immediate children of the current node, and then selects at most
one of those children for further classification, the performance of the algorithm is roughly O(log n).

2.3.3 Modifications to Cobweb

Cobweb has been applied to domains where the number of attributes is known a priori, and every
exemplar is described by values for every attribute. In our reuse library, the attribute space is growing and
exemplars are described only by a subset of that space.

The first problem is easy to solve. When our version Of Cobweb is confronted with a previously unseen

attribute, it updates all existing artifact descriptions with an "unknown" value for the new attribute.
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Thesecondproblemis morefundamental. An attribute such as Performance = > 0(1) could be missing
because the artifact was inadequately described, or because the attribute does not apply to the artifact (e.g.,
the artifact is a representation for calender dates, and thus a characterization of algorithm performance is
not appropriate). The default implementation of CU and Cobweb will determine that two descriptions
match on an attribute if both have a value of "unknown" for that attribute. This is correct for the latter case

where the attribute is not appropriate to the definition of the artifacts. A modification to the calculation of
CU is possible such that an unknown value for an attribute within an artifact description is treated as
unique to this asset description, thus matching no other descriptions with a value of "unknown" for that
attribute. This is correct for the former case where the artifact was inadequately described. Operationally,
the use of unique unknowns causes a bushy classification hierarchy with a large number of bins holding a
small number of exemplars. Many artifacts which we would have expected to be present in the same bin,
at some level of the hierarchy, are instead only collectively present in the root node of the hierarchy. If we
use non-unique unknowns these artifacts do tend to be present in the same bin at a level of the hierarchy
below the root node, thus showing their similarity at that level of abstraction.

In ElvisC we treat "unknown" values for attributes as significant (non-unique) during the classification of
contributed assets, but downplay the importance of unknown values during retrieval (treat them as
unique). This decision is based on the assumption that retrieval requests are intentionally loosely
described, but that asset descriptions are not. Since unknowns are treated as unique during retrieval,
traversal of the classification hierarchy is guided more by attributes with known values than those with
unknown values. Since during retrieval no actual modifications are made to the classification hierarchy,
the deeper form caused by the normal (non-unique) algorithm is preserved. Finally, since the retrieval
algorithm returns the one exemplar from the leaf of the classification hierarchy which best matched the
request, followed by the exemplars of the parent of that leaf, a smaller and more focused set of closest
matches is returned by the deeper hierarchy.

2.3.4 Archetypes and Prototypes

Cobweb has been augmented in ElvisC to keep two synthetic artifact descriptions at every classification
bin. The prototype description records for each attribute the most probable value for that attribute given
the contents of the bin. The archetype description records for each attribute the most probable value for
that attribute other th_ the "unknown" value if there exist exemplars in the bin which have known values
for that attribute.

We hope to use the archetype descriptions to assist the submitted artifact description process in
guaranteeing that an artifact description is adequately specified. Once an author has made a preliminary
characterization of his or her artifact, the interface will do a preliminary classification to identify an
appropriate archetype. The interface will then use archetype attributes with known values which
correspond to unknown values in the proffered artifact description to prompt the author for additional
information to complete the description.

We hope to use the prototype descriptions as the basis for functionality-based asset browsing, an
alternative to the inheritance-based asset browsing currently employed.

3. An Experiment

ElvisC is, as its full name implies, an experiment. The hypothesis is that the Cobweb algorithm can
organize software components for efficient and reliable retrieval of closest matches without human
supervision, and without the direct encoding of closeness information. The experimental apparatus is the
ElvisC implementation itself, augmented by methods for quantifying its performance in an attempt to refute
the hypothesis. The experimental subjects are the potential users of the system, and their collective
solutions and problems.

There are two types of errors that could refute the hypothesis. The f'LrSt type is errors of omission, where
an applicable case is not retrieved in response to a query. These errors could be quantified by recording
examples of retrieval requests, and comparing the responses of ElvisC to the responses of a human
librarian who is familiar with the case base. Errors of omission ate inversely related to the reliability of
retrieval. The second type is errors of inclusion, where patently irrelevant cases are returned as the
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primary candidate solutions. Such errors could also be quantified by comparing the responses of a human
librarian to those of the system. Errors of inclusion are inversely related to retrieval efficiency. Of the two
types of errors, errors of omission would provide a more serious challenge to the hypothesis.

In this experiment outside subjects were not available. Instead we evaluated an automatically generated
classification hierarchy directly, looking for characteristics that would lead to the two types of errors. To
minimize errors of omission, the classification must co-locate (at some level) assets that solve the same
problem, rather than scatter them about the hierarchy. To minimize errors of inclusion, the classification
must be deep enough to effectively partition small numbers of solutions. In a hierarchical classification
scheme these two characteristics of good organization are themselves related: the higher the level at which
similar assets are co-located, the larger the number of assets that must be inspected in detail to identify a
best candidate (and hence the lower the efficiency of the overall retrieval process).

In [Bewtra and Lide '92], investigators manually characterized and classified a set of 56 source code
components from a Code 522 reuse directory. In this experiment, we entered the same classes into
ElvisC using the feature descriptions provided in that paper 4. The fifty-six classes were added to eleven
classes from the National Institute of Health C++ class library, which had been previously entered into
ElvisC, so that in total 67 classes were described and classified. The resulting classification hierarchy was
printed out and evaluated in order to determine its support for efficient and reliable relrieval of artifacts by
an unfamiliar user. The description language which was developed while entering these classes and the
classification hierarchy that resulted are presented in detail in [Henderson '92].

4. Results

Figure 1 presents the classification derived manually in [Bewtra and Lide '92]. Dotted boxes denote
categories of C++ classes that were treated in that paper but were not included in this experiment because
of time limitations. The manual classification was constructed without any knowledge of the results
(indeed, the existence) of this experiment. Conversely the experiment was performed without access to
the results of the manual classification.

Manual Classification

Use_ Interfaces Data Structures Utilities

TAE Pands

Figure 1.

It is interesting to note that this manually derived hierarchy went through several revisions during the
writing of [Bewtra and Lide '92]. Since there is no performance task associated with this hierarchy, its
construction is the result of subjective decisions on how to partition the C++ classes that were evaluated.
It is reasonable to assume that these decisions were influenced by the authors' contact with a large number
of software modules that were not part of that evaluation set.

41n some cases the provided descriptions were very terse, and several descriptions referred to base classes that were not

described elsewhere in the paper. Thus we were not always able to provide distinctive or complete descriptions for each asset,
and this may have diminished the effectiveness of the automatic classification=.
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Figure 2 presents the top levels of the automatically generated classification hierarchy. The nodes in this
tree will be called concepts to differentiate them from the nodes in the manual classification hierarchy
which we will call categories. Since ElvisC does not currently generate titles or descriptions for concepts,
we have entered titles based on examination of the concept exemplars and characteristic features.
Characteristic features were identified by a combination of two statistics. The first statistic is the
probability that an exemplar of the concept has the feature. The second is the probability that an asset
which has that feature is an exemplar of the concept. To be a characteristic feature for a concept, both of
these probabilities had to be above 50% 5.

I

1.2 Widgets

1.3 ScrolledWindow

Automatic Classification [

1.5 Viewers and Queries ] [ 2.2 Alphabetical

1.4 DebugPrinter [ 2.3 IndexTableFile

3 Misc Data Structures I

2.7 Misc lists ]

2.6 Unknown accesstype]

2.5Associations I

2.4ofNIH Objects

Figure 2.

The top levelof the automaticallygeneratedclassificationhierarchycontainsthreeconcepts.Examination
of the characteristicfeaturesreveals that they represent user interfaces,lists,and data structures

respectively.These top levelconcepts arethenfurtherdividedintosub-conceptsthathave been labeledin
thediagram based on theircontentsand characteristicfeatures.

4.1 Description of the Cobweb Classification Hierarchy

Concept I containstwenty fiveuserinterfaceclasses.There are no userinterfaceassetscontainedinany

of theother top levelconcepts,so the retrievalof userinterfacecomponents willbe reliableatthislevel.

The fLrstsub-concept of concept I,labeledDecorations,includestwo widget classeswhich perform no

function other than to provide visualfeedback for a host window. Neither of these widget classes
supportsuserinput,and theircollocationwithinthisconcept seems reasonable.The second sub-concept

(1.2)alsoincludeswidget classes,but theseclassesallow userinteraction.Next thereare two singleton

sub-concepts, one for the asset ScroIledWindow (1.3) and one for the asset DebugPrinter (1.4).
Although DebugPrinter is a novel class in the libraryand, as such, deserves its own concept,

ScroIIedWindow seems subjectivelytobe a good fitwith theViewers and Query Dialogs concept. The

placement of ScrolledWindow ina concept of itsown could adverselyeffectthe efficiencyof retrieval.

The nextsub-concept(1.5)representsinteractionwindows which arenot used foreditinga file.The final

sub-conceptof concept I representseditors.

Concept 2 containseighteencollectionassets;code components thatcollectmultipleinstancesof some type

such as linkedlists.There areno collectionassetscontainedin any of the othertop levelconcepts,so the

retrievalof collectionswillbe reliableatthislevel.The concept isfurthersubdividedintosub-conceptsof
abstractbase classes,alphabeticallyorganizedlists,listsof NIH Objects,associations,listswith unknown

5 We found through experimentation that this threshold revealed features which both described the concept and differentaated it
from its siblings.
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access methods, and a concept for lists which presumably did not fit elsewhere. The clustering of assets is
good for each lower level concept with two exceptions. First, NIH ictionary (a sub-concept of 2.4) and
the elements of the Associations concept (2.5) both provide associations between a key and a value. A
query leading to the associations concept wiU not turn up NIHDictionary and vice versa. This problem
points to a weakness in constructing exclusive categories (categories that do not share elements with their
siblings): at lower levels a decision must be made on how to discriminate classes, and that decision may
not perfectly represent the relative importance of different features in the class descriptions. In this case,
the classification decision appears to have been made based on the types of values collected: pointers to
NIH objects for concept 2.4 and untyped pointers for concept 2.5. The impact of these decisions could be
reduced through the use of multi-branch search within the classification tree.

Concept 3 contains every asset which is not an interface or a collection. The sub-concepts within concept
3 are not well formed, having few if any characteristic features to distinguish them. Several appropriate
clusters seem to be forming, such as iterators and date/time representations, but overall these sub-concepts
seem to be in a very nascent state. This could be symptomatic of poor descriptions, or of a lack in
regularity within this subdomain.

4.2 Reliability Evaluation of the Cobweb Classification Hierarchy

Retrieval reliability is dependent on the system's ability to appropriately cluster similar assets within the
repository. For the purposes of this evaluation we have presumed that the clustering presented in the
manual classification is correct, although that organization has gone through multiple revisions and the
assessment of its quality is somewhat subjective.

Table 1 shows how the assets within the automatically generated concept hierarchy fall within the manual

hierarchy for the User Interface category. The column headings represent the sub-categories of User
Interface within the manual classificauon. The row headings represent the sub-concepts of User Interface
for the automatic classification, followed by the total number of assets identified with that concept in
parentheses. Numbers within the cells of the table indicate how the assets from a concept fall into the
manual categories.

Generated Concepts Panels Widgets Editors Non user interface

Decorations (2) 2

Widgets (5) 5

Viewers (12) 9 1 2

Editors (4) 4

Other 12I (2) 1 1

Table 1.

Every asset in the User Interface category was identified within the User Interface concept, so reliability
for this concept was 100%. One additional asset was included in the User Interface concept which was
not included in the User Interface category, so the match at the User Interface level was 24 + 25 = 96%.

Although the sub-concepts formed within the User Interface concept do not match the manual partition of
the User Interface category, a mapping between them is evident from inspection of the data and from the
statistically generated concept descriptions. First, the Decorations and Widgets concepts represent a

partition of the manually generated Widget category. Second, the Viewers concept is very similar to the
manual Panels category. Given this mapping, correct classification inside the User Interface Concept is 20
+ 25 = 80%.

Table 2 shows how assets within the Collections concept fall within the partitions of the Data Structures

and Utilities categories. Within the manual classification most of these assets inhabit multiple categories.
These assets are arbitrarily labeled by letters to indicate how a member of a concept falls into the manual
categories.
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GeneratedConcepts Indexes Files Lists TnrJe String Debug
Abstract(2) a, b

Alphabetical (2) c c d d

Linked Lists (3) e, f, g g

Misc Lists (2) h, i h i
]J li

k kOther (1)

Table 2.

Every asset in the Lists partition of the Data Structures category was identified by the Collections concept,
so reliability for Lists was 100%. Two assets representative of the Collections concept were not part of
the manual Lists category, so the match between the concept and the category was 8 ÷ 10 = 80%. For
completeness it should be noted that the Associations and NIH List concepts were not part of the manual
classification and so were omitted from this discussion.

Table 3 shows how assets within the Misc Data Structures concept fall within the partitions of the Lists
and Utilities categories. Some of these assets inhabit multiple categories, so letters are used to indicate
how a member of a concept falls into the manual categories.

Generated Concepts

Reporters (2)

Files

Dates (3)

Indexes

a

Lists Tinlg

Other (8) a a,b,c,d e f, g

Iterators (1) k

m, n, o

String

h

Debug

Table 3.

We can compute the reliability of the Misc Data Structures concept by comparing it to the partitions of the
Data Structures and Utilities categories g.W,glX for the Lists partition of those categories, which should have
been accounted for by the Collections concept. Given this interpretation the reliability for the Misc Data
Structures concept was 12 + 14 = 86%.

The last two tables show that the categories which straddle concepts are Indexes, Files, Time, and String.
Reliability problems with Time and String retrieval cease if the requestor indicates that a collection of these
types is desired. Retrieval reliability for assets manually classified within the Indexes and Files categories
is not good, and reflects the nascent state of the associated concepts within the automatic classification.

One cause for the divergence between the manually generated and automatically generated hierarchies is a
difference in the definition of the classification process. Cobweb creates exclusive concepts (concepts that
do not share elements with their siblings). The manual classification generated in [Bewtra and Lide '92]
includes assets in multiple categories. Cross-referencing enhances the reliability of retrieval at the expense
of efficiency of retrieval. Thompson [Thompson '92] has suggested that a more sophisticated "beam"
search in response to queries would enhance the reliability of retrieval with a fixed decrease in retrieval
efficiency. This may represent an alternative to non-exclusive catagories. Another possible solution
would be to use a classification algorithm that assigns assets with varying probabilities to different
categories, such as AutoClass [Cheeseman '88].

4.3 Efficiency Evaluation of the Cobweb Classification Hierarchy

Retrieval efficiency is inversely related to the number of matches returned for a search request, thus the
maximum efficiency that could be attained is 1.0. Since the manually constructed classification hierarchy
is only two levels deep, efficiency is limited by the average size of a second tier partition. For the assets
considered in this experiment the average size of a second tier partition is 6.67 elements, and so the

average efficiency would be 1 + 6.67 or approximately 0.15.
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Cobweb produces a concept hierarchy whose leaves contain a single exemplar. Thus if the generated
concept hierarchy was perfect, the average number of returned cases for a request would be one! Our data
for the hierarchy that was actually constructed suggests that this strategy would be too unreliable. If we
were to restrict retrieval to second tier concepts we would attain about 80% reliability. The average size of
a retrieved set would then be 3.43 elements, and the average efficiency would be approximately 0.29.

What this suggests is that an automatically constructed but manually corrected concept hierarchy would
attain higher efficiency with less effort than a purely manually constructed hierarchy, while still retaining
the same reliability.

5. Summary

At its upper level the automatic classification performed by ElvisC is of high quality and fulfills our criteria
for reliable retrieval. For the first two categories this claim can be extended to lower level subcategories,
as can the claim for efficient retrieval. The last category, however, demonstrates the frailty of weak-theory

systems: all that the algorithm has to go on are the descriptions given it of the sixty-seven classes, and
specifically of the twenty-four assets that fall into this category. Cobweb's strength lies in its ability to
exploit the fact that the world is sparsely populated from the set of things that could be. The algorithm is
not effective until enough cases have been seen and the regularity in how attributes co-exist in objects
becomes evident.

The degree of correlation between the manually constructed classification and the automatically generated
classification is remarkable considering that the automatic algorithm was unsupervised and so made its
own decisions on the kinds of concepts to form and then on how to further partition those concepts. The
results show that, with a relatively small number of samples, a good classification can be arrived at

without human supervision or embedded knowledge of the domain.

This technique allows the reuse of work products by a large group of participating individuals when a
domain theory on how to organize the repository is not available. We hope to continue to accumulate
evidence to support these f'mdings, and thereby establish this novel application of concept formation.
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Abstract

A methodology for generating text map representations of the semantic content of
text databases is presented. Text maps provide a graphical metaphor for conceptualizing
and visualizing the contents and data interrelationships of large text databases. Described
are a set of experiments conducted against the TIPSTER corpora of Wall Street Journal

articles. These experiments provide an introduction to current work in the representation
and visualization of documents by way of their semantic content.

Introduction

This paper presents a methodology for deriving text-map representations of large
text databases. Text maps are useful graphical metaphors that can aid users in visualizing
the semantic contents of large text databases. The text map graphical metaphor relates to
Artificial Intelligence (AI) research in two substantive ways: first, text maps are often
generated using "neurally inspired" computational paradigms; second, they can be

effective tools for relating at a high level with the complex knowledge structures generated
by AI systems. It is this capacity as a vehicle for communicating intuitions about large
quantities of highly interconnected knowledge that is of primary interest. This kind of
capability is seen as relevant to NASA activities in the areas of text processing (Driscoll et
al. 1992), information retrieval (Rorvig 1991), and knowledge understanding. Specific
applications would include searching and navigating amongst the contents of regulatory
document databases as well as technical and scientific document collections. Additionally,
text-based retrieval methods can be generalized to other information domains. Thus, for
example, databases that link textual information to geographic and image objects can
make use of textual features to organize and access these objects (e.g., Carlotto 1992).
Using textual information as a key data source can be useful for describing a range of data
for two reasons: first, textual information tends to be abstract m which facilitates high level
data classification; and second, textual descriptions are expressive m and are thus robust
across applications and data types.

Also introduced in this paper are preliminary results of a set of text-map experiments
conducted against the TIPSTER corpora of Wall Street Journal articles. These

experiments made use of a simple statistical text pre-processor. More relevant to this
paper, however, is the follow-on discussion describing how the simple experimental system
Js currently being extended with a semantic-based text preprocessor.

The discussion in this paper is framed conceptually in terms of two levels of
understanding: a micro-scale level of understanding which is concerned with finding the

"gist" of the semantic content of individual documents; and a macro-scale level of
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understanding which is concerned with integrating the mosaic of individual document
interpretations into a larger meaning. Abstracting from the micro scale to the macro scale is

the function of such tools such as inference (rule) generators, database knowledge "mining"
techniques, and visualization maps. It is the latter technique that is proposed by this paper.

The proposed visualization approach is of general relevance to the NASA

community working with "vector-product" information retrieval systems (Rorvig 1991).
Furthermore, this work is of specific relevance to NASA projects in text browsing and
retrieval such as Kennedy Space Center's QA system (Driscoll et al., 1992) and other work

conducted in the Astrophysics Data Facility at Goddard. As a knowledge abstraction
technique, text maps generate simple topographic knowledge structures for interpreting
the contents of a database. From these structures, users infer associations and similarities

amongst database items.

Visualization

There are two challenges confronting text processing systems working with large
document databases: how to extract meaning from documents; and how to integrate and
represent this extracted meaning. Browsing large text databases whose contents are not
fully characterized, or whose contents are subject to change, requires information
abstraction tools. Advocated here is an approach that integrates information about the
meaning of multiple documents into a single gestalt which can be graphically and intuitively
conveyed to a user. The contrast between this approach to information abstraction and
other artificial intelligence methods is made in a later section.

With text database understanding, there are two separate but related concerns:

1.)

2.)

How can the aggregated output of a text preprocessor be concisely presented?

What kind of higher abstraction can be used to express the interrelationships
of documents?

One method for representing document classifications is by the RANKED LIST. With
the ranked list the documents in the database are linearly ordered according to how well
they match a target set of concepts. The more relevant a document is to a target set of
concepts, the higher in the list it is positioned. How a document relates with other
documents with regard to a specific set of criteria can be communicated by this list. One
example of a ranked-list system that allowed users to select database objects whose
descriptions best fit a user query is given by Rorvig (1991). With this system, if the retrieved
objects do not match the query, a user can extend the search and look at objects which are
"like" the best matching objects found in the list (relevance feedback).

One drawback of the ranked list representation is that the concepts that are being
searched for need to be known before the search is implemented. In circumstances where
the significant concepts or terminology are not well understood, a ranked linear
representation can be restrictive: it does not easily communicate how documents differ
from a query, and to what extent. Thus, with Rorvig's example, the results of the relevance
feedback are not integrated into a single representation which communicates the
relationship of the queries with the contents of the database. Instead, what is presented is a
series of disparate "snapshots" of the database as it is evaluated against an evolving query.
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Documents can also be represented hierarchically using dendrograms, or trees (a

product of single-link clustering, for example). Each leaf in the tree denotes a document.
The tree depicts how the documents are incrementally aggregated into ever larger groups:
links connect documents or groups of documents to their nearest neighbors. Hierarchical

structures are interpreted visually by sequentially traversing their component links:
relationships are identified by paths through the cluster hierarchy.

An alternative display for hierarchical document structures that de-emphasizes their

sequential interpretation has been proposed by Schneiderman (1991) in his work with
tree-maps. With tree-maps, database objects are denoted by surface-filled, color-coded
rectangles. Rectangles are colored to show the object type, and the rectangle areas
indicate how relevant that object is to its type. While tree-maps are easier to grasp visually

than a sprawling tree structure, they, like dendrograms, do not easily communicate how

arbitrary documents are related.

The text map is proposed here as an alternative to both the hierarchic structure and
the ranked list. This representation provides a comprehensive picture of all documents in a
database, unlike the ranked list, and is preferred to hierarchical cluster representations
because of its intuitive use of the two dimensional viewing surface.

While hierarchic structures can serve a useful role in facilitating database search

and retrieval and thus may underlie the data organization of any representation (van

Rijsbergen 1976), for many text database comprehension tasks, hierarchical document
displays may be counter-intuitive:

1 .) hierarchies require sequential interpretation.

2.) hierarchies restrict comparisons between documents.

3.) re-balancing hierarchic structures with new documents can cause dramatic
changes to the structure.

A more basic complaint, however, relates to the hierarchic classification

methodology itself: because the implicit goal of this method is to partition data into disjoint
sets, it cannot easily represent structures derived from statistical distributions (Kohonen
1982). When viewing document distributions, how the parts relate to the distribution carries
meaning. It is this connectivity between the documents that is undermined by hierarchic

representations: rather than emphasizing how the parts are connected to the whole, what is
emphasized is how the whole is decomposed into ever shrinking sets.

In contrast, the text map approach assumes that the interrelationships between

documents are significant and representable. It is meant to provide a macro perspective of
the database that is intuitive as well as abstract. Because it avoids representing the
semantics of the extracted text, it is a visualization method that can be used across a variety

of applications and databases.

Examples of vector-based systems that use visualization maps to represent
database information analogous to the approach described here include Carlotto (1992)

and Chang (1990).
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Text maps

Text maps are forwarded here as a visual metaphor for graphically communicating
the taxonomy of the contents of large text databases. Using text-maps, documents are
classified contextually with associations between documents being implied by proximity.
The text visualization (TEXTVIZ) approach assumes a vector representation of the
meaning of documents: each vector encodes a set of features which characterize the
content of each document. Vector components index individual document features and
vector component values denote the pertinence of a feature to a particular document. As

will be illustrated later, the actual semantic content of a feature is determined by the
preprocessor. Preprocessors that use a semantic model of a domain can generate
semantically meaningful features for that domain. Whereas preprocessors that use
non-semantic models, e.g. statistical systems, the features correlate with other properties
of the document such as word distribution.

Thus, for each document in the database, there exists a corresponding vector

description of its content. These vectors, points in vector space, are then projected onto a
two-dimensional text-map surface for display.

The TEXTVIZ procedure converts the information extracted about the content of
each document into a numeric vector, a signature. Differences in meaning between
documents is reflected by differences in their vector patterns. Thus, from a macro
perspective, the organization of the database is inferred from observing how the signature
patterns vary across all documents.

Ultimately, documents are presented to the user as points on a viewing surface or
map; distances between points represent the difference in the estimated meaning of the
documents. It is the relative similarity (dissimilarity) of the meaning of documents that is
graphically represented by the text map. Thus, there are two levels of abstraction contained
by the TEXTVIZ approach: first, meaning is abstracted from text using a text preprocessor;
second, descriptions of all documents are aggregated, abstracted, and then displayed
graphically. The abstraction process is accomplished by projecting the document signature
vector into a two dimensional visual space (x and y coordinates on the text map).

Figure 1 provides a system overview of the text visualization process. Figure 2 is an

example of a text map that was generated by a surrogate-coding system developed at
TASC (Carlotto 1992). In this map, individual documents are represented by word labels.

Visualization and Artificial Intelligence.

The TEXTVIZ approach intersects disciplines in AI in two ways: first, neural network
procedures, including the Kohonen self-organizing map (1984,1982) can be used to generate
visualization (text) maps; second, visualization maps can serve as a powerful means for

integrating the output of AI semantic reasoning processes. The semantic text processor that is
introduced later in this paper serves as one example. Similarly, as a knowledge abstraction
tool, the function of visualization maps parallels many database rule induction, data
classification, and data clustering methods (Piatetsky-Shapiro and Frawley 1991).
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Text visualization, however, does differ from many other AI-based database

knowledge discovery methods by its abstract representation. Text maps provide a high-level
topological portrait of the database that uses spatial distance on the display surface to
measure the degree of association between database text objects. This approach is

advantageous with large databases of objects where measurements of similarity are
reducible to a scalar measure of "distance." When more complex data relationships exist and

their description is sought, a visualization map would be less effective because of its inability

to express fine-grain dependencies between individual items.

For large text database navigation purposes, a representation that trades fine-grain
document contrasts for a cohesive global picture of the database is desirable. There are
two reasons for this. First, real-world text processing often requires operation over broad

subject domains using unconstrained natural language text. This means that the
information extracted from documents may be too coarse to infer exact relationships.

Second, the information navigation problem is primarily one of localizing areas of search
through a process of iterative user guidance. This process must initially be coarse-grained
because most users who browse a database either do not have a concise description of

what is being searched for, or an exact understanding of the contents of the database. The
need for broad-scoped database navigation is emphasized by databases whose contents
are volatile and subject to change.

Early Experiments

In order to speak tangibly of the TEXTVIZ approach, an initial set of experiments using

text-maps will be described here. This discussion will introduce the text-map visualization
method. Then, in the next section, this discussion will be broadened to include current work.

The following initial experiments were conducted using a subset of the Wall Street Journal
documents contained by the 1992 NIST TIPSTER corpora (2 gigabytes) of documents.

In these experiments, the information content of documents was crudely estimated

using a statistical procedure based on word-frequency counts (Figure 3). The meaning of a
document was estimated by examining the frequency profile of significant words that
occurred within that document. For these experiments, the set of significant words
coincided with the set of words that occurred infrequently in a training corpus of documents.

The frequency threshold cut-off varied across experiments and was arbitrarily selected.
Low frequency words were used because of an assumption that they were generally more
indicative of the meaning of a document than high frequency words. Early work in text

processing (e.g., discussion in van Rijsbergen 1979) bears this out.

Once the set of significant words was selected, these then become the set of word

features by which the content of documents in the test corpus would be characterized. This
approach at estimating the content of a document is analogous to the vector-based
score-and-rank systems used by Salton (1971) and Stanfill and Kahle (1986).

Upon completion of analysis of the training corpus of documents, a set of feature
words were identified which were then used to analyze a test document set. The results

were portrayed on a text map. For most experiments, the training and test document sets
were identical. All the documents were analyzed, and for each document, a feature vector
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Figure 3. Text Processing: Using Word Frequencies To Estimate Meaning

was constructed. Every feature word indexed a specific component in the feature vector.

Component magnitudes encoded the actual number of times a word occurred within a

given document.

The procedure for analyzing the information content of a document worked as follows:

1.) An initial vector of length N (= size of feature set) was created for each
document. All component values in the vector were set to zero.

2.) Every word in the document was examined; if it were a member of the feature
word set, the indexed vector component value was incremented.

3.) Every vector for each document was normalized with respect to the total word
count for that document.

After completion of the document analysis phase, the feature vectors were then

projected onto a two dimensional visualization map. Documents were positioned on the

map to reflect how close in vector space their feature vectors were. Documents of similar

feature word profiles, and hence with similar estimated content, were placed close together
while documents of dissimilar content were placed farther apart. Feature vectors were

projected from vector space onto a two-dimensional visualization surface.

Initially, a self-organizing map (SOM) was used to implement the vector space to

map projection. A SOM is an algorithm that simulates a planar "neural" network of

interconnected processing units (Kohonen 1982, 1984). These processing units converge
to an "accurate" portrait of the database through an adaptive process based on a

competitive neural network learning procedure. However, given the large number of
features that a feature-word document analysis procedure can generate (some

experiments had as many as 12K feature words), a SOM was too costly to use. The size of

the connectivity matrix and the number of processors required for high resolution maps
restricted its use.

255



For this reason, an alternative, stochastic steepest-descent approach was used.
While it was similar to Sammon's non-linear mapping algorithm (1969), it also made use of

a stochastic search regime analogous to a simulated annealing procedure (Kirkpatrick

1987). An overview of the algorithm is as follows:

1 .) Choose an initial random map configuration.

2.) Calculate the error-per-map configuration by measuring the deviation of the
relative point distances on the display map from the relative distances of the

vectors in vector space.

3.) Effect random perturbations to the map configuration; seek to minimize the error
iteratively by using gradient descent. To minimize the possibility of local minima

traps, a global "annealing" regime was in place that allowed the system to
sometimes accept non-optimal changes (a monotonically decreasing probability

of acceptance).

The product of these experiments was a set of text-maps such as the one given by
Figure 4. By visually analyzing these text-maps and relating their topographical distribution
with their interpreted differences in content, it was clear that there were several deficiencies

with this approach.

Wlntxt Visualization Ap.plication
Help

037
012
051

002
O25

034 009
021 039

020 003
O0B 004

038 O49
uuI 0030

04"-_ n31 050 010
bsz u%L,4 053 011

u_. I_ 005
O22

O36 023 028
047
u I ,,JI

043

014
O45

O35

048

033 041
017

Figure 4. Visualizing WSJ Articles Using Word Frequencies
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First, it was apparent that feature word profiles were at best weak predictors of the
content of documents. This would seem to be especially true for large text sets. Other
experiments suggested that larger linguistic units such as phrases would be better
predictors of document content.

Second, it was difficult to predict which frequency ranges were best for selecting
feature words from an arbitrary training corpus. Within training corpora whose documents
were narrowly focused upon a few distinct subjects, idealized feature words tended to
occur more frequently than they would in wide-ranging document corpora. Similarly,
technical documents also tended to exaggerate the frequencies of idealized feature words.

Thus, document corpora can bias word frequency distributions in ways that are
unpredictable in advance. The problem was one of predicting distribution biases without
knowing anything about the actual semantic content of the documents.

And finally, this approach to generating text features did not scale-up well to larger,
more discriminating applications. In other words, expansion of the feature word set to
include more content words did not necessarily make the system more robust (better able
to recognize a subject), and less brittle (cover more subjects). Feature word sets can be
expanded by accepting more words from the training corpus (broadening the frequency
range) or through dictionary or synonym expansions. The problem with word expansions,
however, is that while it does improve the system's ability to recognize content words, it also

introduces substantially more "noise words" into the system. The introduction of noise
words distracts from meaningful comparisons between documents. Strategies for

minimizing the number of "noise words" such as stemming (to remove redundant inflected
forms of words), and filtering of low content words such as determiners and prepositions do
exist: while they do help, they do not solve the problem.

Visualization by Semantic Content

As was suggested by the earlier experiments, more predictive text features would be
needed if documents were to be accurately characterized. The current section will describe
an approach that seeks to estimate the meaning of documents from the semantic content of
recognized words and phrases found in a document. The described approach is
undergoing implementation at TASC and will be tested in 1993 against the TIPSTER
corpus of documents. This system will introduce key concepts about how a varied
distribution of semantic content information from a document can be hierarchically
integrated into a single feature vector description which in turn is represented on a text map.

The algorithm described here is similar to S. Gallant's work (1991, 1992) with
several major modifications. It is hypothesized that these modifications will improve
document discriminations by providing mechanisms to identify larger linguistic units, to
better localize meaning within documents, and to provide a more accurate representation
of multiple subjects within documents. These mechanisms are designed to operate in
concert, to enhance intra-document content discrimination and representation. This is
important when trying to represent the content of a large document without "blurring"
together the subjects contained within that document.
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Words, in the described model, are defined by vectors of semantic features. Each
feature indexes a vector component and the component magnitude encodes the
correlation of that particular word to a semantic class. Syntactic features are also included.

Representing the content of a document in terms of a vector of features is analogous to
vector-based linguistic models of word-sense and semantic discrimination (e.g.,
Miikkulainen and Dyer 1991, McClelland and Kawamoto 1986).

Thus, for example, BELGIUM might be defined by the following features (and

respective correlations):

BELGIUM ->

+Nation(10)
+European-Economic-Community(3)
+North-Atlantic-Treaty-Organization(3)

+Policy:Agricultural-subsidies(4)
+Lang:french(5)
+Lang:flemish(5)
+Brussels(8)
+Geo:SAmerica(0)
+Geo:Europe(8)
+Geo: NAmerica(0)

+Geo:Asia(0)
+Noun(10)

Note that while this example illustrates a single definition of BELGIUM, multiple definitions

per word may exist. The feature set, as well as specific correlation values for individual
definitions, are hand-generated.

Figure 5 provides a simple overview of the system. Level (1) processing involves
extracting from the text stream literal string phrases (mostly proper nouns) such as "Wall
Street Journal" and "Singapore Airlines." Words from the text stream that do not match

phrase rules are then stemmed (suffixes removed). Phrases and stemmed words, or
"tokens," are sent on for processing at level (2). At this level, tokens are looked up in a

dictionary; each dictionary entry consists of a token and a set of corresponding feature
vector definitions (multiple definitions are possible). These vectors can be weighted.

If a text stream token matches a dictionary entry, all defining feature vectors
associated with the matching dictionary entry are then aggregated into an ordered list of
vectors, or vector stream. Because a word can have multiple definitions, a method of

consolidating meaning within document regions is required. The approach adopted at level
(3) is to partition the vector stream into bins which correspond to "chunks" of text from a
document. The text regions can be of arbitrary size and will generally be delimited by text

breaks such as paragraph boundaries. Thus, the size of the vector stream bins will co-vary
with the size of the text regions. The size of text regions will be user/application defined, and
will depend upon the granularity of the meaning that is sought from the document.
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Within the context of a vector stream bin, a consensus of meaning is sought. It is

through a process of consensus building that alternative, inconsistent definitions are

pruned. The objective is then to select exemplar definitions (feature vectors) to signify the
content of each vector bin. This exemplar will serve as the consensus content vector

representing a text region.

The exemplar selection process, carried out for every text region in a document, is

an abstraction process that uses context to prune alternative definitions as well as limit the

background noise generated by a large population of definitions. The number of definitions

can be magnified when working with large text bins and/or working with large dictionaries.

In this way, abstraction is used to preserve the integrity of the extracted content information

by restricting noise as well as reducing ambiguity.

The exemplar selection process uses a stochastic gradient descent clustering

technique that is similar to the algorithm used to generate the text maps (described earlier).

Definitions may be weighted to reflect._._rio ri assumptions about which definitions are most

significant (e.g., primary definitions are more important than secondary and tertiary

definitions). Features within definition vectors may also be used to modulate the exemplar

selection process. For example, if syntactic features were included in token definitions, and
if it were assumed that certain syntactic categories were more predictive of the meaning of

a document than others, then selected syntactic category information (e.g., "+Noun") could

be weighted to bias the selection of candidate exemplars.
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As stated, the effect of this clustering procedure is to discard extraneous
interpretations of tokens as well as to reinforce a consensus in meaning. This consensus is
codified by the selection of a set of exemplars used to represent the document. The manner
in which a consensus of meaning is reinforced is analogous to Gallant's (1991) ideas on
using the local context around a word to disambiguate individual words, fn contrast, the
approach described here uses a "regional" context, consisting of all words within a text
region, to modulate choice of exemplars. A regional approach is generally faster to
compute and also serves as a more general mechanism of information abstraction.

The product of level (3) processing is a set of exemplar vectors, one per text region,
that are used to symbolize the content of the document. Additional vector abstraction may
also be used to post-process the level (3) output in order to consolidate meaning across text

regions, i.e. eliminate redundancies in the exemplar list. The approach described here
advocates preserving distinct representations for unique regions of text. Thus, the
described approach differs conceptually from Gallant's (1992) strategy of vector addition.
With this approach, the complete set of exemplar vectors is used to denote the contents of a
document. This prevents a document signature from being "blurred" by background feature
"noise." Similarly, it provides a means for localizing intra-document content searches and is

hypothesized to be of significant value when working with long documents.

Conclusions

As illustrated, text maps can abstractly render general semantic relationships
among the contents of large text databases. While this assumes the existence of a
semantic model with which to analyze the database text objects, it would not explicitly
require such a model for visualization. By separating the semantic interpretation process
from the visualization process, users can conceptualize and navigate large complex
databases at a high level. Text maps thus provide a graphical and spatial metaphor for
reasoning about the contents of large text databases.

Described in this paper is an approach for hierarchically integrating the semantic
content of a spatial text stream. Aside from specific relevance to NASA interests in text and

document retrieval (Driscoll 1992), such an approach may have broader implications for
information management and database knowledge extraction. For example, semantic
comparisons between text and other spatially structured data types, such as imagery, could
be pertinent.

Furthermore, TAS C is investigating how text information can be generalized to other
information domains. For example, textually-derived information has been used to
augment information from geographic as well as image sources (Carlotto 1992). This work
underscores the versatility of the visualization map graphic metaphor, as well as suggests a
conceptual interface design for integrating information of diverse types.
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Abstract

Development of an Intelligent Information System (IIS) involves application of numerous
artificial intelligence (AI) paradigms and advanced technologies. The National Aeronautics and
Space Administration (NASA) is interested in an IIS that can automatically collect, classify, store
and retrieve data, as well as develop, manipulate and restructure knowledge regarding the data
and its application (Campbell et al., 1987, p.3). This interest stems in part from a NASA
initiative in support of the interagency Global Change Research program. NASA's space data
problems are so large and varied that scientific researchers will find it almost impossible to access
the most suitable information from a software system if meta-information (metadata and
meta-knowledge) is not embedded in that system. Even if more, faster, larger hardware is used,
new innovative software systems will be required to organize, link, maintain, and properly
archive the Earth Observing System (EOS) data that is to be stored and distributed by the EOS
Data and Information System (EOSDIS) (Dozier, 1990). Although efforts are being made to
specify the metadata that will be used in EOSDIS, meta-knowledge specification issues are not
clear. With the expectation that EOSDIS might evolve into an IIS, this paper presents certain
ideas on the concept of meta-knowledge and demonstrates how meta-knowledge might be
represented in a pixel classification problem.

Introduction

There is no single view of what constitutes an IIS nor how to apply AI techniques to develop
such a system (Goyal, 1989; Kerschberg, 1990). However, some researchers (Kaula &
Ngwenyama, 1990) envision an IIS as evolving from a large number of independently developed
systems that communicate and cooperate by passing messages (data, knowledge, and
information). These independently deveIoped systems will have evolved using various software
paradigms including different AI paradigms such as object-oriented or logic-oriented ones. In
addition, the use of neural networks or genetic algorithms to solve very domain specific
problems will be supported by advanced technologies tailored for the independently developed
system. Each of these independently developed systems will have their own assumptions,
constraints, and goals. Yet, they will be "partners in a bigger scheme of things." In this
development, there is no global schema. At times, one system will be called upon to pass
portions of its knowledge to another system and, likewise, acquire knowledge from their
communicating partners as the need arises.

Given the many and varied Earth science systems that have been independently developed by

NASA to this point in time and the EOS project that will collect more data than ever collected
before, EOSDIS seems ideally positioned to evolve into an IIS. EOSDIS will be responsible for
the storage and distribution of large volumes of data that will support scientific research into the
global change problem domain. The EOSDIS Information Management System (IMS) will
provide the software tools to search, locate, select, and order data archived at Distributed Active
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Archive Centers (DAACs). The IMS will manage a set of metadata that includes among other

items, director,/, catalog, and inventory level information, summary statistics, algorithm
descriptions, mission information, and user profiles (McDonald & Blake, 1991). The current
stage of development (Version 0) attempts to integrate and expand data management capabilities
being used now by different Earth science disciplines. As the EOSDIS IMS evolves, challenges
will exist in the specification of the scope of the system and in dealing with the many
uncertainties found in the end-user community.

At NASA's Goddard Space Flight Center the Intelligent Data Management (IDM) project team
is conducting research into the information and data management needs of Earth and space
missions that will produce terabyte-sized spatial databases that cannot be effectively managed

using present data management and mass storage technologies (Campbell & Cromp, 1990). This
basic research may have an impact on the evolution of EOSDIS IMS. The IDM project team has

proposed among many other techniques the use of semantic data modeling to organize
object-oriented databases, thereby extending the mass storage model. To test this approach, they
have developed an Intelligent Information Fusion System (IIFS) prototype. The IIFS employs
several key AI concepts and methodologies such as object/frame representations, multiple
inheritance, and rule-based decision making. Applications of AI throughout the IIFS attempt to
remove from the end-user (novice to expert) the need to understand the various complexities and

nuances of the system and of the particular problem domain. However, the IDM project team
has recognized that future science research will require even more comprehensive pre-existing
knowledge about the data granules, problem domains, and end-users of the system (Cromp et
al., 1992). In short, more meta-information is needed.

Meta-information: Metadata and Meta-knowledge

Meta-information is the underpinning of any IIS. It is the information about the information
stored within the system that allows the system to be perceived as intelligent. To take a page
from Kidder's book (1981), "meta-information is the soul of an IIS." The IDM project team

(Campbell & Cromp, 1990) describes meta-information as incorporating into an IMS knowledge
about the structure (syntax) of and the relationships (semantics) between data components, and
the hidden questions behind a user's query and the assumptions behind the system's response to
that query (pragmatics). The pattern of evolution that this research into meta-information is
taking is classical (Lenat & Guha, 1990). The metadata research and development addresses the
factual knowledge or the zero-order correction. The research into object-oriented data
management with related semantic data modeling hoIds promise for handling heuristic knowledge
or first-order correction. The second-order correction is meta-knowledge. Meta-information is

both metadata and meta-knowledge where the metadata is mostly syntax, the meta-knowledge is

mostly pragmatics, and both share in the semantics between the data components and the current
status of information in the system.

Generally speaking, the metadata for an IIS standardizes what data describes the information
resource, and it formalizes policies by specifying what data must be maintained as the system is

developed and used (March & Kim, 1989). Intelligent metadata management is a key ingredient
in the performance of an IIS (Kaula & Ngwenyama, 1990). In addition, the performance of an
IIS can be improved by supplying it with meta-knowledge. Meta-knowledge comes in many

forms, but two general categories seem to encompass much of what is considered to be
meta-knowledge. First, there as meta-knowledge that guides the user of the IIS to the "best"
rules to apply, that is, strategies that will focus quickly on the relevant group of rules to be used
on a particular problem (e.g., browsing and searching). This category contains knowledge
regarding knowledge permanency, priorities of knowledge, and knowledge on how to resolve
conflicting knowledge from different sources. For example, in this category, meta-knowledge
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on an ozone data set would include knowledge about a derived data set obtained by a researcher

(Is this an interim processing file with additional work forthcoming?), its level of reliability (Was
the pixel classification work done for thoroughness or expedience?), its relative importance with
respect to other derived data sets (How does this derived data set match the profile (level of
expertise, desire for detail, etc.) of the researcher making the request?), and an evaluation of the
performance of the cognitive processor (novice to expert) who developed it. Second, there is
meta-knowledge that oversees the IIS. This category contains knowledge regarding the ability to
explain system responses, to detect inconsistencies, and to restructure system knowledge. For
example, Earth scientists will want to know why the system is responding the way that it is for a
particular query. What is its justification? Is it the opinion of an established expert whose
knowledge has been captured? Not only is this meta-knowledge, but the act of extracting the
domain specific knowledge from the expert, coding it, and putting it into the system itself is also
meta-knowledge (Cromp, 1990).

In the IIFS, the metadata for the object-oriented data management with related semantic data
modeling has evolved into a knowledge-base with objects and relationships between objects
being explicitly declared (Campbell et al., 1991). The meta-knowledge too has been recognized
and dealt with explicitly as the "pre-existing" knowledge about the problem domain, the sensor
device, and the interpretation of the sensor's measurements (Campbell et al., 1989). However,
with the increased research that will naturally follow EOS, it is imperative that newly acquired
knowledge (new meta-knowledge) be ingested and available to all in the scientific community
(Short, Jr., 1991).

In the design and development of an I_IS, the automation of meta-knowledge is essential. An
IIS must recognize the limitations of its knowledge and gain new knowledge by interacting with
the users that it is serving. To this end, meta-knowledge must be represented in a language that
is high-level and robust yet has the appropriate primitives to integrate multi-paradigm software
systems.

A Knowledge Representation Language for Meta-knowledge

Zarri (1990) proposed a "conceptual" knowledge representation language suited to the
construction and use of intelligent information retrieval systems. This conceptual knowledge
representation language exploits the organizational strength found in definitional hierarchies and
the power realized in a theorem-prover with a unification algorithm. The components of the
language are organized around a semantic predicate ("has", "produces", etc.) that identifies the
basic type of situation to be described. The semantic predicates are frame-like in structure with
"arguments" (objects) and "roles" (slots). The choice of semantic predicates is pragmatic and
depends on the architecture of the system and on the problem domain, in particular the arguments
and the roles of those arguments in an application. Roles can be categorized as descriptive (such
as: SUBJECT, OBJECT, SOURCE, DESTINATION, etc.), binding (such as:
COORDINATION, SPECIFICATION, ALTERNATIVE, ASSOCIATION, etc.), and causal
(such as: CAUSE, MOTIVATION, CONFER, GOAL, etc.). As a conceptual unit, the semantic
predicate can be further characterized by "determiners" (attributes), for example, location and

temporality. Figure 1 is an example of how the conceptual knowledge representation language
might be applied to remote sensing domain knowledge. It is a predicative conceptual unit (a
predicative occurrence) having a semantic predicate "created_using", arguments such as
"data set sscl50" and "CAMS", and determiners. The importance of this work is that it
provides a conceptual base from which to study the inclusion of meta-knowledge into an IIS.
Both the binding and the causal roles can be very useful toward this end; they can allow control
strategies to be explicitly defined. An implementation of the proposed knowledge representation
language would be a compromise between object-oriented and logic-oriented paradigms.
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created_using SUBJECT:
OBJECT:
SOURCE:
SPECIFICATION:
ALTERNATIVE:
COORDINATION:
MOTIVATION:

data set ssc150
CAMS
flight_7824
mission_request_8182
data_set_ssc278
[5_percent_cloud_cover,30000_feeLaltitude]
deforestation_study

[location:Mexico_Guatemala_border]
[date:24_,july_1990]

Figure 1. An example of a predicative occurrence.

The knowledge representation language described above allows the system designer to declare
data, metadata, and meta-knowledge without knowing the details of its implementation. A
preprocessor could then be used to produce an effective and efficient implementation of the
design. Such a preprocessor could be either a meta-interpreter (Sterling & Beer, 1989) or a
translator (Console & Rossi, 1989). The latter approach is being taken for several reasons.
First, the knowledge representation language lends itself to this method. Second, Zaniolo (1984)
demonstrated that object-oriented programming can be embedded in a logic programming
language (PROLOG). Furthermore, today, the integration of object-oriented and logic-oriented
paradigms is a robust and productive area of research (McCabe, 1992). Finally, since logic
programming has already been used in metadata specification to make designs of semantic
networks and frames into executable code that can be queried (Lopez and Saacks, 1992), it
seems only natural to extend its use via a translator to implement the knowledge representation
language.

FROG (Frames in PROLOG) is a logic programming language that combines frames,
production rules, and PROLOG (Console & Rossi, 1989). In FROG each frame can contain
either slots or production rules (with various kinds of inference strategies). Descriptive
meta-knowledge on the relationships that exist between frames can be embedded in various kinds
of links supported by FROG. Trigger links stipulate conditions under which a frame will be
activated. Specialization links structure the hierarchy of frames. Associational links connect
highly correlated frames. Alternative links suggest other possible hypotheses of solution to be
considered when a frame cannot be instantiated. In addition to these links, FROG frames have
knowledge components that can either be local production systems or prototypical descriptions.
Control knowledge is vested in a "superframe," which is the top most frame in the frame
hierarchy as stipulated by the specialization links.

Many of the concepts and ideas expressed in Zarri's conceptual knowledge representation
language seem to have been implemented in FROG. In particular, the binding links of
SPECIFICATION, ASSOCIATION, and ALTERNATIVE seem to match directly with the
FROG links of specialization, associational, and alternative. The superframe allows the explicit
specification of the control strategy and a separation from the knowledge components of the
frames. The knowledge components allow the system designers to embed even more
meta-knowledge in the form of prototypical descriptions or production systems. The
knowledge-base itself is an object-oriented structure.
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An Application

The classification of pixels in a data set obtained from aerial or satellite images is a difficult
and time-consuming process. Rules used to classify regions in remotely sensed images are not
universal truths. Human experts have developed heuristic knowledge that allows them to focus
on those classification features that help refine the initial analysis of the image that might have

been done by unsupervised training algorithms. In using unsupervised training, the data analyst
specifies some parameters that the algorithm can use to determine statistical patterns that are
inherent in the data. This is useful only if the classes that are produced can be manually
interpreted. The interpretation depends on the expertise of the data analyst because the classes do
not necessarily correspond directly to meaningful classifications such as water, crops, manmade
objects, etc. The process involves the ingredients of data, metadata, and meta-knowledge, and
can be used as a testbed for research ideas involved in the development of IIS.

During FY92, a small study was done at Stennis Space Center on a knowledge-based pixel
classification approach using PROLOG as the vehicle to investigate the relationship between low
and high resolution feature identification in Calibrated Airborne Multispectral Scanner (CAMS)
data sets (Lopez et al., 1992). The goal was to be able to use knowledge in various forms to
construct a system with the potential of changing the means by which it characterizes a given
class of pixels (structuring and restructuring knowledge). Knowledge-based methods when
used with statistical classifiers tend to improve the accuracy of the overall classification of pixels
in an image (Short, Jr., 1991). Rules for image classification for this study were developed on
the basis of the expert data analyst's knowledge of the numerical values produced by the
statistical (maximum likelihood classification) unsupervised training. Knowledge obtained from
this study is used below to demonstrate some of the constructs of FROG.

If a pixel class is to be identified as water, it will usually exhibit a low near-infrared
reflectance. An expert data analyst's own interpretation of this previous statement might be that
the mean in the red channel of the class is less than 40 and the near-infrared mean is less than 30.

If this is realized by a pixel class it will "trigger" further investigation into whether or not the
pixel class is indeed water. There are also both necessary and sufficient conditions for a pixel
class to be water but if the pixel class meets the necessary conditions, then it does not have to
meet the sufficient conditions to be interpreted as water. Furthermore, there can always be

supplemental knowledge that can support the interpretation. This is particularly important when
uncertainty factors are added to the "knowledge components". The constructs of FROG are used
below to explicitly embed the meta-knowledge that has been discussed. Uncertainty factors have

not been incorporated into this example.

flame_control(water_class,activation) :-

knowledge_component(water_class ,trigger),
( (knowledge_component(water_class,necessary);

knowledge_component(water_class,sufficient)
knowledge_component(water_class,supplementary),
frame_control(water_class,specialization).

knowledge_component(water_class,trigger) :-
slot(water_class).

slot(water_class) :-
conditions(water_class).

) +
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conditions(water_class) :-
implies(water_class,red_channel_mean_less_than_40),
implies(water_class,near_infrared_channel_mean_less_than_30).

knowledge_component(water_class,necessary) :-
slot(implies(water_class,red_to_green_ratio_is_0.4),
slot(implies(water_class,red_to_near_infrared is 0.1).

knowledge_component(water_class,sufficient) :-
slot(implies(water_class,minimum_spectral_distance_from_water_classes));
slot(implies(water_class,above_diagonal_and_left_in_green-near-infrared-plot)).

knowledge_component(water_class,supplementary) :-
slot(contextual_information).

frame_control(water_class,specialization) :-
flame_control(clearwater_class,activation);
frame_control(muddy_water_class,activation).

The activation of the water_class frame succeeds if the trigger knowledge component can be
instantiated and either the necessary or the sufficient knowledge component instantiated. As in
standard PROLOG coding, the comma is used for the connective "and," and the semicolon is
used for the connective "or." The plus symbol in FROG is an additive evidence combination

operator and, if certainty factors were being used, would increase the certainty that the pixel class
was water if the supplemental knowledge component was instantiated. This operator allows two

knowledge components with knowledge from different sources leading to the same conclusion to
be combined. Finally, a subframe is invoked for specialization.

Conclusion and Future Research Direction

In the past, NASA has just provided data to researchers and done little to capture into its
archives the knowledge derived from the researcher's use of the data. If the acquired knowledge
is to be unified and made available to the entire scientific community, then any future IIS will

have to rely more heavily on meta-information. In particular, meta-knowledge will have to be
recognized and explicitly coded into such systems. To support this effort, more research needs
to be done on the application of Zarri's conceptual knowledge representation language to space
systems such as EOSDIS. Hand in hand with this effort is the research that is needed in
implementation languages. A logic programming language such as FROG holds great promise.
However, it is safe to say that the search for meta-knowledge in IIS is just beginning.
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Abstract

The StarView interface is being developed
to facilitate the retrieval of scientific and

engineering data produced by the Hubble Space
Telescope. While predefined screens in the
interface can be used to specify many common
requests, ad hoc requests require a dynamic
query formulation capability. Unfortunately,
logical level knowledge is too sparse to support
this capability. In particular, essential
formulation knowledge is lost when the domain
of interest is mapped to a set of database relation
schemas. Thus, a system known as QUICK
has been developed that uses conceptual design
knowledge to facilitate query formulation. By
heuristically determining strongly associated
objects at the conceptual level, QUICK is able
to formulate semantically reasonable queries
in response to high-level requests that specify
only attributes of interest. Moreover, by
exploiting constraint knowledge in the
conceptual design, QUICK assures that queries
are formulated quickly and will execute
efficiently.

1. Introduction

The Space Telescope Data Archive and
Distribution System (ST-DADS) is the
repository for scientific and engineering data
produced by the Hubble Space Telescope and
ground system. Data sets recording the
scientific results of six different astronomical

instruments and more than twenty different sets
of engineering data are archived onto optical
disk at a rate of approximately one terabyte

per year. Thousands of people with diverse
interests, located around the world, are

concerned with different aspects of the archived
data. In particular, interests are shared among
scientific investigators, guaranteed time
observers, general observers, instrument
calibration scientists, archival researchers, and

project engineers.

ST-DADS is a computer cluster composed
of archive, catalog, and host-computer
subsystems. The archive subsystem is devoted
to archiving, managing, and retrieving data sets.
The catalog subsystem, or ST-DADS Catalog,
is a descriptive database of the archived data.
The host computers are devoted to managing
user access to the ST-DADS system. StarView
is the user interface software that facilitates

access to ST-DADS. It is designed to operate
on the ST-DADS host computers, allowing
Telnet and dial-in access. It also can operate
in client/server mode in which the client runs
on a workstation and the server runs on the

host computers.

Currently, the StarView user interface is a
set of screens that allows users to browse the

ST-DADS Catalog. Each screen is composed
of a set of data fields appropriate for a specific
search. Search qualifications are entered in
screen fields and serve as selection criteria.

When a request for data is submitted, StarView
constructs the corresponding Structured Query
Language (SQL) query and transmits it to the
ST-DADS Catalog. The query is processed
and the results are returned to the St,u-View

screens; the returned records describe archived

data sets. The user marks appropriate records
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to indicate to StarView those data sets that are
to be retrieved. StarView bundles the data set

retrieval requests and transmits them to ST-
DADS, which, in turn, returns the requested
data via the Internet or other storage media.

As user interests vary significantly, it is
not possible to predetermine the criteria for
data selection. Furthermore, the ST-DADS
Catalog currently consists of approximately
1500 attributes distributed among more than
40 relations, and grows at the rate of
approximately 100 megabytes per year. As a
result, developing an interface for ad hoc
requests using traditional approaches has not
been possible. Thus, while StarView provides
more than forty screens with the most common
sets of fields, these screens cannot be used to

formulate queries in response to the many
requests that have not been anticipated.
Unfortunately, enabling users to build screens
is not feasible, as typical users do not possess
the expertise or knowledge of the database
design to ensure that semantically meaningful
results would be produced. Moreover,
providing screens for the complete set of
possible requests is not feasible because of the
combinatorial nature associated with the many
possible selection criteria involving multiple
attributes distributed among multiple relations.

To simplify interface construction, a
knowledge-based approach has been used that
enables StarView to present a universal relation
interface to users. This interface presents all
database attributes as residing in a single
relation, thus eliminating the need for explicit
knowledge concerning the structural
complexity of the underlying database design
[Leymann 1989; Maieret al. 1984]. However,
the interface must be "smart" about how various

relations can be associated via relational joins,
and it must ensure that semantically reasonable
queries are generated in response to high-level

requests that specify only attributes of interest.

StarView has been adapted to exploit the
universal relation approach by allowing users
to select attributes from an ad hoc query screen.
Specifically, the complete list of ST-DADS
attributes is displayed and the user selects those
that correspond to his request. StarView then
places the selected attributes on a temporary

screen that is functionally equivalent to a defined
screen. However, the temporary screen does

not specify predefined joins. Instead, StarView
passes the request to an intelligent query system
known as QUICK (for "QUICK is a Universal
Interface with Conceptual Knowledge") that
formulates the query based on conceptual
design knowledge and passes the query back
to StarView for further processing.

In this paper, an overview of QUICK is
presented. In the next section, semantic data
modeling is discussed and the need for
knowledge beyond the relational level is
justified. In particular, an extended Entity-
Relationship model is described that enhances
the basic Entity-Relationship model with
selected knowledge representation constructs,
and a portion of the current design of ST-DADS
using the extended constructs is shown. Then,
in Section 3, the notion of contexts is introduced
as a means for segmenting an EER conceptual
schema into overlapping subgraphs of strongly
associated objects that facilitate inference of
valid relational joins. In Section 4, it is
demonstrated how contexts can be used to

automate query formulation and thus facilitate
the construction of high-level and intelligent

interfaces. Finally, the current status of
development is described and some current
research topics are discussed.

2. Semantic Data Modeling

Designing a database as complex as ST-
DADS requires many person-years of effort.
Unfortunately, the relational model, with its
elegant, but simple, notions of relations and
attributes, is too sparse a representation to use
for direct modeling of complex domains.
Instead, higher level representations typically
are used that enable designers to communicate

effectively with users as well as abstract an
application domain to an appropriate level.
These richer representations enable designers
to model entities or objects in a world directly,
and provide constructs for specifying explicit
relationships or associations among entities
[Hull and King 1987; Peckham and Maryanski
1988]. In contrast, the relational model does

not distinguish between entities and
relationships, requiring instead that each
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abstraction be cast as a relation. Consequently,

knowledge that was explicit at the conceptual
level becomes implicit at the logical level.
Moreover, knowledge that could be used to

facilitate query formulation is lost as the world
of interest is mapped to a set of relations (see

Figure 1).

Exacerbating the loss of knowledge is the
usual practice of relegating the conceptual
schema to a minor role once the logical design

has been completed. For instance, it is not
uncommon for the conceptual schema to be
used for initial documentation only. Once the

logical schema has been created, changes often
are made directly to it instead of to the conceptual
schema, thus reducing the validity of the higher
level representation. Moreover, users typically
are not given access to the higher level

conceptual schema, having to rely instead up.on
the sparse logical schema to formulate queries.
Yet, the conceptual schema contains knowledge
that can be used effectively for query
formulation, and thus can serve as a knowledge

base for an intelligent interface.

2.1. The Entity-Relationship Model

The Entity-Relationship (ER) model is the

prominent semantic data model used for
conceptual design. From a knowledge

representation standpoint, the ER model
resembles a restricted associationist scheme.

Diagrammatically, entity types are represented
by rectangles, and relationship types are
represented by diamonds. As an example,
consider Figure 2, where the entity type
ARCHIVE-DATA-SET-ALL is related to the entity

type OBSERVATION via the relationship type
ADS-FROM-OBS. The ARCHIVE-DATA-SET-

ALL entity type corresponds to one of the core
relations in ST-DADS and contains general
information about the class of data, generation
time, and the name of the archive. Similarly,
OBSERVATION corresponds to a core relation
and contains information about the predicted
and actual observations such as target position,

magnitude, and duration of the exposure.

The two pairs of numbers associated with
ADS-FROM-OBS indicate that there is a many-

to-one relationship from ARCHIVE-DATA-SET-
ALL tO OBSERVATION. Specifically, a pair
(MIN, MAX) indicates the minimum and
maximum number of times a particular entity

can participate in a set of relationship instances.
Thus, the notation facilitates the specification
of both cardinality ratio constraints (i.e., many-
to-many, many-to-one, and one-to-one) and
participation constraints (i.e., total and partial).
Hence, an ARCHIVE-DATA-SET-ALL entity
can be related to at most one OBSERVATION

entity, but need not be related to any (i.e.,

Design

Logical Design

I LogicalSchema

Figure 1.

World Knowledge

_ Knowledge _

Logical Schema Knowlege

Knowledge lost during design.
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participation is optional). On the other hand,

an OBSERVATION entity must be associated
with at least one ARCHIVE-DATA-SET-ALL

entity (i.e., participation is total), and can be
related to many.

As also shown in Figure 2, entity types
(as well as some relationship types) have
attributes, which are similar to the slots

associated with frames, though attributes tend
to have a restricted set of facets.

Diagrammatically, an attribute is represented

as a labeled oval connected via an edge to the
ER object it characterizes. The set of attributes
that can be used to uniquely identify a real-world
object is known as the identifier, or key, and
is shown underlined. (Note that only a few of
the attributes associated with ARCHIVE-DATA-

SET-ALL and OBSERVATION have been shown.

Furthermore, the attribute names have been

simplified to avoid confusion. As attributes
do not play a central role in the discussion that

follows, they will not be shown in subsequent
diagrams.)

Given the simple ER specification of Figure
2, it is straightforward to create a corresponding
set of relation schemas. First, entity types
and their attributes are mapped to relation
schemas. Then, the key attributes of the relation
schema corresponding to the one-side entity
type (i.e., OBSERVATION) are added as a foreign
key to the relation schema corresponding to
the many-side entity type (i.e., ARCHIVE-
DATA-SET-ALL). The foreign key thus serves

as the representation of the relationship type
ARCHIVE-DATA-SET-ALL at the logical level.

The resultant relation schemas are as follows

(note that logical level objects will use
underscores instead of hyphens in names):

ARCHIVE DATA SET ALL(Name,

Archive Class,Generation Date,

Access_Time,...,Update_Time,

Program_ID, Obsnum, Obset_ID)

OBSERVATION(Program_ID,Obsnum,

Obset_ID, Actual_Duration,...,

Broad__Category)

As illustrated by the above relations,
formulating even simple queries can be difficult
at the logical level. For example, given a request
for a list of PROGRa_M-IDS, a formulator must
know to use OBSERVATION instead of
ARCHIVE DATA SET ALL. While a heuristic
could beused i-o fav-or the relation in which

the attribute is an element of the key, the
heuristic fails when more sophisticated
knowledge representation constructs are
employed. For example, a generalization lattice
maps to a set of relation schemas, each of

which has the same key. As a result, a request
to list the key will be ambiguous at the logical
level; however, as described below, this

ambiguity is resolved easily at the conceptual
level.

2.2. An Extended ER Model

The original ST-DADS conceptual schema
used only the basic ER modeling constructs
described above [Loral Aerosys 1992]. Though
richer than the corresponding logical schema,

IArchveoatase,At (o,1) ADS-
FROM-
OBS

(1.')
Observation

Figure 2. Simple ER objects.
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the original conceptual schema did not
accurately represent the ST-DADS domain.
For, example the schema did not represent the
fact that ARCHIVE-DATA-SET-ALL is a direct

superclass of six subclasses. Instead, because
generalization was not supported, simple
relationships were used to associate the six
subclasses to ARCHIVE-DATA-SET-ALL.

However, this made it impossible to infer the
hierarchical associations that actually existed.
As a result, identifier attributes that should have
been inheritedfrom ARCHIVE-DATA-SET-ALL

had to be explicitly replicated in the six
subclasses, thus resulting in duplication of
attributes and an inability to infer the primary
ER object with which an attribute was
associated. Furthermore, the hierarchical

associations are disjoint, which means that an
ARCHIVE-DATA-SET-ALL entity can participate
as an entity in at most one subclass. Because
the conceptual schema lacked this knowledge,
a query formulator might incorrectly infer that
the disjoint subclasses could be related via
natural joins at the relational level.

As a result of the representational
inadequacy of the basic ER model, an extended
ER (EER) model has been adapted and
augmented with constructs that are needed to
model more complex domains [Batini et al.
1992; Elmasri and Navathe 1989; Teory 1986].
Figure 3 illustrates a portion (approximately
hal0 of the current ST-DADS EER conceptual
schema. Some of the more significant
constructs are described below. In keeping
with the basic ER model, entity types and basic
relationship types are represented as in Figure 2.

In addition to basic entity types, weak entity
types are supported in the QUICK EER model.
(Weak entity types actually were defined in
Chen's original model [Chen 1976]; however,
many automated design tools do not support
them.) Weak entity types lack a complete set
of identifier attributes and, thus, a weak entity
can be identified only with respect to an owner
entity. For example, a DATA-SET-COMMENT
entity, which provides a comment about a data
set in the ST-DADS archive, can be identified

only in the context of a specific ARCHIVE-
DATA-SET-ALL entity. Thus, at the logical
level, the key of the DATA SET COMMENT
relation schema is the key of the

ARCHIVE DATA SET ALL relation schema

concatenated wi{-h thepartial identifier attributes
from the DATA-SET-CO_"_ENT entity type
(i.e., USER-ID and COMMENT-Tn_E).

Diagrammatically, a weak entity type is
indicated by a double-edge rectangle connected
to its identifying owner via an identifying
relationship type, which is represented by a
double-edge diamond.

Without the weak entity type abstraction,
the identifier attributes of ARCHIVE-DATA-

SET-ALL would have to be duplicated in the
conceptual schema. With the abstraction,
identifier attributes are associated only with
their primary entity types. The remaining
identifier attributes are, in a sense, inherited.

(Note that attribute duplication cannot be
avoided in the logical schema, as common
attributes serve as associational links among
relations.) Moreover, as illustrated in Figure
3, weak entity types can be defined in terms

of other weak entity types. Thus, a set of
DATA-SET-COMMENT-LINE entities makes

sense only in the context of a particular DATA-
SET-COMMENT entity. As before, identifier
attributes are inherited, this time directly from
DATA-SET-COMMENT and indirectly from
ARCHIVE-DATA-SET-ALL.

Note that the weak entity type inheritance
described above is different from the classical

notion of inheritance in A.I. or object-oriented
systems [Booch 1991; Rich and Knight 1991].
That is, a DATA-SET-COMMENT entity is not
an ARCHIVE-DATA-SET-ALL entity; rather, a
set of DATA-SET-COMMENT entities exists to

support an ARCHIVE-DATA-SET-ALL entity,
and thus is identified in the context

of an ARCHIVE-DATA-SET-ALL entity.

Consequently, only the identifier of the owner
entity type is inherited as opposed to the
complete set of attributes of the owner.

To deal with conventional inheritance, the

generalization abstraction is provided, though
the abstraction has been extended to deal with

more complex types of inheritance as well.
Diagrammatically, generalization is indicated
by a labeled circle with an arrow directed toward
the parent class. For example, Figure 3
illustrates that ARCHIVE-DATA-SET-ALL has

six subclasses. The circle is labeled with a D,
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Figure 3. Portion of ST-DADS EER design.
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indicating that the association is disjoint;
therefore, an ARCHIVE-DATA-SET-ALL entity
may participate in at most one subclass.

The four subclasses in the left portion of
the diagram are direct subclasses, and thus
inherit the complete set of attributes of
ARCHIVE-DATA-SET-ALL. However, the two

subclasses in the right portion of the diagram
(i.e., SliP-DATA, a standard header packet
containing telemetry values and spacecraft
operation data, and PDQ-DATA, which contains
product data quality data) are different.

Consider, for example, the generalization type
between ARCHIVE-DATA-SET-ALL and suP-

DATA. The identifiers are identical except that
the DATE attribute existsin ARCHIVE-DATA-

SET-ALL, but not in SliP-DATA. On cursory
inspection, one might mistakenly classify
ARCHIVE-DATA-SET-ALL as a weak entity type
of SHP-DATA. However, the existenceof an

ARCHIVE-DATA-SET-ALL entity does not

depend on an SHP-DATA entity.Rather, SHP-

DATA is semantically a subclass of ARCHIVE-

DATA-SET-ALL. In fact, theeffectof removing

DATE from the generalization type is to allow
an SHP-DATA entity to be a child of multiple
ARCHIVE-DATA-SET-ALL entities. The
association of PDQ-DATA tO ARCHIVE-DATA-

SET-ALL is similar, except that only the NAME
attribute is significant. Diagrammatically, such
inheritance associations are represented as
generalization types annotated with the
identifier attributes that will not be inherited.

If a circle is not labeled, as is the case with the

PDQ-DATA generalization type, a simple subset
association is indicated.

SHP-DATA has seven subclasses.

However, in this case, each SHP-DATA entity
must be associated with a subclass entity, as
indicated by the double-edge arrow to SliP-
DATA. This mandatory participation constraint
stands in contrast to ARCHIVE-DATA-SET-ALL

entities, which are not required to have
corresponding subclass entities, as indicated
by the single arrow to ARCHIVE-DATA-SET-

ALL. The five subclasses on the right are direct
subclasses, inheriting the identifier from SliP-
DATA (and, therefore, from ARCHIVE-DATA-

SET-ALL). Similarly, the two subclasses on
the left (i.e., WFPC-DATA and WFPC-GROUP-

DATA) correspond to an overlapping set of

entities, as indicated by the o label on the

generalization type circle. From a query
formulation standpoint, this indicates that the
relations corresponding to WFPC-DATA and
WFPC-GROUP-DATA can be joined, though

neither can be joined with relations
corresponding to the other five subclasses of
SliP-DATA. From a modeling standpoint, this
representation was a concession resulting from
the limitations of the underlying database
management system. That is, conceptually,
there is one WFPC entity type corresponding
to the wide-field planetary camera; however,
the huge amount of data produced by this camera

requires that the relation corresponding to the
conceptual WFPC entity set be split into two
relations. To preserve mapping integrity from
the conceptual level to the logical level, the
conceptual notion of WFPC was split into two

entity types at the EER level.

The disjoint association shown with
OBSERVATION illustrates another facet of EER

inheritance. Specifically, an OBSERVATION
entity type can be classified as a fixed target or
a moving target (or, strangely enough, as
neither a fixed target nor a moving target as
indicated by the single-edge arrow to
OBSERVATION). The relationship of FIXED-
TARG_.T tO OBSERVATION is representative of
the conventional inheritance association

described previously. However, the
relationship of MOVING-TARGET-POSITION-

SPEC to OBSERVATION is different. In

particular, a set of MOVING-TARGET-
POSITION-SPEC entities corresponds to a
single OBSERVATION, with the additional
identifier attributes corresponding to date and
time. Thus, a MOVING-TARGET-POSITION-

SPEC is similar to a weak entity type, but, in
this case, each MOVING-TARGET-POSITION-

SPEC entity is an OBSERVATION entity.
Furthermore, because of the disjoint
generalization type, no MOVING-TARGET-
POSITION-SPEC entity can exist as a FIXED-
TARGET entity.

The final abstraction to be discussed is the

optimization relationship type, as illustrated by
SHP-OF-OBS in Figure 3. Optimization
relationship types provide a means for
representing efficiency decisions that have been
made at the logical level to enhance
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performance.Specifically,it sometimesis the
casethatjoins of selectedrelationsareneeded
onaregularbasis.For example,in ST-DADS,
OBSERVATION often is joined with
ARCHIVE__DATA_SETALL, which in turn
is joined with SHP DATA. Often,
ARCHIVE DATA SET ALL "i'S needed in the join

only to- associate- OBSERVATION with
SHY DATA. AS this sequence of joins is
expensive, ST-DADS designers decided to
improve performance by establishing a direct
link from OBSERVATION to SHP-DATA. For

requests involving only OBSERVATION and
SHP-DATA, the direct link is used. If ARCHIVE-

DATA-SET-ALL also were involved, then the

longer join sequence would be used. Thus,
SHt'-OV-OBS serves as a direct link that informs

a query formulator of the semantic equivalence
of thepath from OBSERVATION tO SHP-DATA
tOthelongerpathfrom OBSERVATION through
ARCHIVE-DATA-SET-ALL tO SHP-DATA.

Note that if SHP-OF-OBS were represented

as a simple relationship type, then a query
formulator would have to infer that two different

join paths existed that would result in
semantically distinct results. On the other hand,
specifying SHP-OF-OBS as an optimization
relationship type ensures that the system can
infer that the paths are equivalent, and thus
serves to constrain the set of relations that will

be used in the final query.

3. Contexts

From the portion of the ST-DADS EER
conceptual schema shown in Figure 3, 21
relation schemas would be produced in the

logical schema. However, even assuming that
these 21 relation schemas constituted the

complete logical schema would not enable a
user employing only logical schema knowledge
to query the ST-DADS system in a
straightforward manner. For example, because
of weak entity type and generalization type
inheritance, the attribute NAMEfrom ARCHIVE-

DATA-SET-ALL appears in 17 relation schemas.
Thus, if a request were made to list Nm_ES
matching a specific pattern, a formulator would
have to select some subset of the 17 relations.

However, at the conceptual level, NAME

Occurs only in ARCHIVE-DATA-SET-ALL;

consequently, a query formulator could infer
immediately that only the relation

corresponding to the entity type ARCHIVE-
DATA-SET-ALL is needed.

In addition to attribute duplication, a
formulator must be familiar with the rationale

underlying the logical design to determine what
is and, just as important, what is not a
reasonable natural join. For example, from a
purely syntactic standpoint, it would appear
that any relation corresponding to a subclass
of ARCHIVE-DATA-SET-ALL could be joined

with any other subclass of ARCHIVE-DATA-
SET-ALL because of the inherited, and,

therefore, shared key attributes. However, as

described in the previous section, these
subclasses are disjoint and should not be joined.

Once again, such knowledge is explicit in the
conceptual schema.

While the conceptual schema is knowledge-
rich, it is not necessarily appropriate for direct
use as a database interface. For instance, the

large number of attributes (i.e., several
hundred) associated with many ST-DADS
entity types precludes the use of graphical query
languages that have been developed for various
EER models [Czejdo et al. 1990; Zhang and
Mendelzon 1983]. Moreover, the different
views of the world held by different users,
even at the conceptual level, makes it difficult
to create a single, agreed-upon conceptual
schema. Thus, it is better to shield the users

from the conceptual schema as well as the logical
schema.

By presenting a universal relation interface,
users can conceive of the database as being

structured as a single table of information. In
turn, high-level requests must be mapped onto
the underlying conceptual schema and

subsequently translated into a query at the
logical level. For this process to work, the
underlying conceptual schema must satisfy two
requirements:

1. It must be rich enough to support
multiple views of the world.

2. It must map to the logical level in a

straightforward way.
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Given the many person-years of effort it
takes to create a conceptual schema, it is
reasonable to assume that Requirement 1 will

be satisfied. If it is not, then, as with any
knowledge acquisition task, additional effort
must be expended in refining the schema.
Requirement 2 is satisfied inherently by the
QUICK EER model. Specifically, the
abstractions in the QUICK EER model map

directly to relations at the logical level in a
straightforward manner. Furthermore,
designers may employ various flags to control
the mappings, thus ensuring that an appropriate
logical schema will be produced from the
conceptual schema. For example, the
conceptual schema of Figure 3 was reverse-
engineered from an existing logical schema.
As the logical schema could not be changed, it
was imperative that the conceptual schema map
directly to it. By setting appropriate flags (e.g.,
allowing foreign key null values for selected
relationship types), the desired mapping was
realized without having to contrive the
conceptual schema.

As there are certain join paths that are ruled
out by the structures in a conceptual schema
(e.g., by a disjoint generalization type), it makes
sense to segment the schema into overlapping
subgraphs of strongly associated objects.
These subgraphs will be referred to as contexts
[Semmel 1992], as they implicitly define what
relations can be joined in a semantically
reasonable way and, given a sufficiently rich
conceptual schema, should correspond to
classes of reasonable requests.

A context is maximal in the sense that no

other object in the ER graph can be added to it
without undermining the strong association
criterion. However, determining what objects
are strongly associated is not well-defined;
instead, heuristics must be employed when
determining strong association, as the existence
of a path in the EER graph does not necessarily
imply that a strong association exists among
the objects in the path. Fortunately, there is a
criterion for strong association at the logical
level that can be abstracted to the conceptual
level and used for automatic context generation.
The criterion is based on a theorem in relational

database theory that says if the intersection of
the attributes of two relations multidetermines

(or, by implication, functionally determines)
one of the relations, then the two relations can

be joined in a lossless manner [Korth and
Silberschatz 1991].

At the conceptual level, the lossless join
rule enables contexts to be defined inductively.

Intuitively, a relationship type and its
participating entity types form a context. This
is justified by the fact that a relationship type
conceptually contains the identifiers of each
participating entity type; thus, a relationship
type functionally determines each of its
participating entity types. Similarly, an
overlapping generalization type and its parent
and children form a context, as each relation

corresponding to an entity can be joined in a
lossless manner. Finally, a disjoint

generalization type with n children form n
contexts, each consisting of the generalization
type, the parent, and one of the n children.

Inductively, a context can be extended to
include a relationship type and its participating
entity types if a many-to-one or one-to-one
cardinality ratio constraint exists from the
context and no cycle is introduced in the

extended context. This is justified by the fact
that a localized functional dependency can be

inferred from the entity type in the context to
the other participating entity types of the
relationship type. Similarly, a context can be
extended to include a generalization type and
one or more of its children. If the generalization

type is disjoint, then for each child, a new
context is formed consisting of the old context,

the generalization type, and the child. If the
generalization type is overlapping, then the
original context is extended to include the

generalization type and all of its children. As
before, cycles are avoided, as joining a relation
with itself at the logical level is superfluous.

The final way to extend a context is based
on the notion of an articulation point. That is,
if the removal of a relationship type disconnects
the EER conceptual schema, then the
relationship type and its participating entity
types are included in the context. The
justification for the disconnection rule is based
on the conversion of an EER conceptual schema

to a hypergraph and inferring multivalued
dependencies when the hypergraph becomes
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disconnected after removing a hyperedge
corresponding to the relationship type [Ullman
1989].

Note that optimization relationship types
are not considered when contexts are created.

Rather, they are included as part of any context
that has the bypassed association types specified
by the optimization relationship type. Thus,
in Figure 3, any context that included the three
association types connected by dashed lines to
SHP-OF-OBS would include SHP-OF-OBS as

well. It is the role of the query formulator to
use its knowledge of optimization relationship
types to determine which set of joins is
appropriate when the f'mal query is consmacted.

In the portion of the ST-DADS EER
conceptual schema shown in Figure 3, there
are 22 contexts. To see this, note that 11
contexts can be derived from the subclasses of
ARCHIVE-DATA-SET-ALL. Four of these
contexts are derived from the four subclasses

on the left side of the diagram (i.e.,
ASTROMETRY-DATA, SMS-DATA, GSPS-DATA,

and ENGINEERING-SUBSET-DATA). One of

the contexts is derived from PDQ-DATA.

Finally, six of the contexts are derived from
SliP-DATA (i.e., one from the overlapping
WFPC entity types and five from the remaining
five subclasses of SIn'-DATA). Then, for each
of the 11 contexts, two new contexts are formed

as the OBSERVATZON generalization type is
extended through to reach MOVING-TARGET-
POSITION-SPEC and FIXED-TARGET. Thus,

22 contexts are produced. Of these 22 contexts,
eight contain 15 EER objects, two contain 17
EER objects, ten contain 18 EER objects, and
two contain 20 EER objects.

There are two more points worth
mentioning with respect to contexts. First, in
the worst case, the time it takes to generate

contexts is an exponential function of the
number of association types (i.e., relationship
types and generalization types) in the EER
conceptual schema. However, real-world
designs tend to exhibit constraints that can be
exploited to make automatic generation tractable
(e.g., acyclic extensions can be initially pruned
and then reintroduced once at the end of the

context generationprocess). Exploiting these
constraints for the complete ST-DADS EER

conceptual schema enables contexts to be
generated in less than one minute on a Lisp-
based prototype of QUICK running on a Sun
SPARCStation 2. As contexts need be

generated only when the conceptual schema is
created or modified, this performance is

acceptable. The second point is that as contexts
are generated heuristically, the contexts
produced may not be consistent with designer
expectations. In this case, the automatically
generated set can be used as a starting point,
and the set of contexts can be handcrafted.

However, to this point in time, there has been
no need for such handcrafting.

4. Automated Query Formulation

Given a set of contexts, query formulation

is straightforward. First, the attributes in the
high-level request are determined. Then, each
context that covers the set of requested attributes
is found. To ensure that needless joins are
not performed, the found contexts are iteratively
pruned of leaves until all leaves cover requested
attributes. As a result of pruning, duplicate
contexts may be introduced. As duplicate
contexts are superfluous, they are eliminated.
Then, the natural join orders of the remaining
contexts are found. Finding these orders is
straightforward, as the edges in the remaining
context subgraphs identify valid natural join
paths. The EER objects in each ordered context
then are mapped to their underlying relation
schemas. As some EER objects are represented

by the same relation schema (e.g., in Figure
2, ADS-FROM-OBS and ARCHIVE-DATA-SET-

ALL both map to the ARCHIVE DATA SET ALL

relation schema), duplicate relationschemas
are eliminated. Then, subqueries are formulated
and the union of the subqueries is returned as
the final query.

Note that only when the conceptual schema

contains cycles will more than one context be
involved in the generation of the final query.
This follows from the fact that only one path
can exist between any two nodes in an acyclic

graph, and, therefore, only one subtree will
connect some set of nodes. The fact that there

are multiple contexts does not affect this
property, as context pruning will result in
identical subtrees that, in turn, will be
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eliminated. As optimization relationship types

do not participate in the generation of contexts,
no cycles exist in the portion of the ST-DADS
conceptual schema shown in Figure 3.

To clarify the query formulation process,
consider the following request:

For all observations made by the

faint object spectrograph between

January i, 1992 and February I,

1992, display the target's

description, right ascension,

declination, proper motion and red

shift, the instrument's detector

and position angle of the aperture,

and the relevant archived dataset

names and comments about the

datasets.

Recall that the StarView interface enables users

to select attributes and qualify them on an ad
hoc query screen. After the request
specification is complete, it is translated into a
form that QUICK can process. The language
used by QUICK is referred to as USQL, as it
resembles SQL, but assumes the existence of
a universal relation. Thus, StarView passes
the following USQL request to QUICK:

Select target-descrip,

ra,

dec,

ra-proper-motion,

redshift,

detector,

pa-aper,

data-set-name,

line-text

Where start-time >=

"Jan i, 1992" And

stop-time <=

"Feb I, 1992" And

instrume = "FOS"

QUICK begins processing by finding the
applicable contexts. In this case, one context
applies, as FOS-DATA is needed to cover
DETECTOR, and FIXED-TARGET is needed to
cover RA-PROPER-MOTION and REDSHIFT.

AS DATA-SET-COMMENT-LINE is needed to

cover LINE-TEXT, only ARCHIVE-VOLUME,

ADS-ON-AVO, ARCHIVE-FILE, and AFI-OF-

ADS are pruned from the found context. Next,
a natural join order is found for the conceptual
schema objects of the pruned context:

(FIXED-TARGET, OB SERVAT ION-GT,

OBSERVATION, ADS-FROM-OBS,

ARCHIVE-DATA-SET-ALL, DSC-ABOUT-

ADS, DATA-SET-COMMENT, DCL-FROM-

DSC, DATA-SET-COMMENT-LINE,

ARCH IVE-DATA- SET-ALL-GT,

ARCH IVE-DATA- SET-ALL- SHP-GT, SHP-

DATA, SHP-GT, FOS-DATA)

As will be discussed in more detail in the

next example, QUICK semantically optimizes
queries to ensure that the number of joins in
the final query is minimized. For this example,
QUICK recognizes that no attributes are
requested from DATA-SET-COMMENT, which
is used only to connect DATA-SET-COMMENT-
LINE tO ARCHIVE-DATA-SET-ALL. As DATA-

SET-COMMENT-LINE inherits (via a weak entity

type association) the identifier attributes of
DATA-SET-COMMENT, the entity type DATA-

SET-COMMENT and itsidentifyingrelationship

type can be eliminated and replaced by a virtual
linkfrom ARCHIVE-DATA-SET-ALL tO DCL-

FROM-DSC. After mapping the remaining
conceptual objects to the logical level, the
following sequence of relation schemas is
produced:

(FIXED__TARGET, OBSERVATION,

ARCHIVE__DATA__SET__ALL,

DATA__SET__COMMENT__LINE,

SHP__DATA, FOS__DATA)

QUICK now exploits its knowledge of
attribute mappings from the conceptual level
to the logical level as well as its knowledge of
natural join associations among relations to
produce the final query. Specific to ST-DADS
is the fact that designers provided distinct
relation schema prefixes to all attributes, thus
giving the impression that distinct conceptual
attributes exist at the logical level. QUICK
compensates for this by preserving attribute
uniqueness at the conceptual level, recording
prefix information, and inserting appropriate
prefixes only when the final query is generated.
However, QUICK also takes advantage of the
fact that the logical-level attributes are

syntactically unique to avoid relation
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qualification. Here, then, is the final query
generated in response to the request:

SELECT

FROM

WHERE

obs_target_descrip,

obs_ra,

obs_dec,

fit_ra_proper__motion,

fit_redshift,

fos_detector,

shp__pa_aper,

ads_dataset_name,

dcl line text

fixed_target,

observation,

archive_data_set_all,

data_set_comment_line,

shp_data,

fos data

obs start time >=

"Jan I, 1992" AND

obs_stop_time <=

"Feb i, 1992" AND

shp_instrume =

"FOS" AND

fit_program_id

obs program id AND

fit obset id =

obs obset id AND

fit obsnum =

obs obsnum AND

obs__program__id =

ads_program__id AND

obs obset id =

ads obset id AND

obs obsnum =

ads obsnum AND

ads archive class =

dcl archive class AND

ads data set name =

dcl data set name AND

ads_generation_date =

dcl_generation_date AND

ads archive class =

shp_archive_class AND

ads data set name =

shp_data_set_name AND

shp__archive_class =

fos archive class AND

shp_data_set_name =

fos data set name

The complexity of the above query clearly
demonstrates the need for an automated query
formulation capability. Moreover, it takes only
one to two seconds to generate the query, and
the query is optimal with respect to the number
of joins required. With relations as large as
those in ST-DADS, join optimality is critical.
However, achieving join optimality can be
troublesome when code is generated from a
high-level request and only logical le,;,el
knowledge is available. Consequently,
QUICK semantically optimizes final contexts
via heuristic pruning to ensure that generated
queries use the minimum number of relations
and, thereby, require the minimum number of
joins.

To gain an appreciation of QUICK's
semantic query optimization capabilities,
consider the following request:

List the data set comments

astrometry data collected

during February 1993.

for

In USQL, the query can be expressed as
follows:

Select

Where

line-text,

target-name,

data-set-name

generation-date >=

"Feb i, 1993" And

generation-date <

"Mar i, 1993"

As in the example above, first all contexts
that cover the requested attributes are found.

In this case, two contexts apply, both of which
include ASTROMETRY-DATA, and one of which
includes MOVING-TARGET-POS IT ION-SPEC

and the other of which includes FIXED-

TARGET. However, after pruning and duplicate
elimination only one context remains:

(ASTROMETRY-DATA, ARCHIVE-DATA-

SET-ALL-GT, ARCHIVE-DATA-SET-

ALL, DSC-ABOUT-ADS,DATA-SET-

COMMENT,DCL-FROM-DSC,DATA-SET-

COMMENT)

At this point the conceptual schema objects
are placed in natural join order and mapped to
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relation schemas:

(AS TROMETRY_DATA, ARCHIVE_

DATA__SET_ALL, DATA_SET_COMMENT,

DATA SET COMMENT)

Without semantic query optimization, the
following query is generated:

SELECT

FROM

WHERE

dcl_line_text,

ast_target__name,

ast data set name

astrometry_data,

archive_data_set_all,

data_set_co_ent,

data set comment line

ads_generation_date >=

"Feb i, 1993" AND

ads_generation_date <

"Mar I, 1993" AND

ast data set name =

ads data set name AND

ast archive class =

ads archive class AND

ast_generation_date =

ads_generation_date AND

ads data set name =

dsc data set name AND

ads archive class =

dsc archive class AND

ads_generation_date =

dsc_generation_date AND

dsc data set name =

dcl data set name AND

dsc archive class =

dcl archive class AND

dsc_generation_date =

dcl_generation_date AND

dsc comment time =

dcl comment time AND

dsc user id =

dcl user id

The above query produces a semantically
valid result; however, the query can be
improved. To see how, first note that the
identifier of ARCHIVE-DATA-SET-ALL is

inherited by ASTROMETRY-DATA, by DATA-

SET-COMMENT, and (in_rectly)by DATA-SET-
COMMENT-LINE. Furthermore, the existence

of an identifier value in any of the inheriting
entity types implies that the value exists in an
entity in ARCHIVE-DATA-SET-ALL. Similarly,
the existence of an identifier value in DATA-

SET-COMMENT implies that the value exists in

an entity in DATA-SET-COMMENT-LINE. Thus,
DATA-SET-COMMENT and ARCHIVE-DATA-

SET-ALL serve only to associate ASTROMETRY-

DATA V_th DATA-SET-COMMENT-LINE. That

is, the conceptual level interpretation indicates
that the join of the relations corresponding to
ASTROMETRY-DATA and DATA-SET-COMMENT-

LINE is equivalent to the join of the original
four relations. Furthermore, as the attribute

GENERATION-DATE Was requested in the USQL
WHERE clause, and is an identifier attribute of
ARCHIVE-DATA-SET-ALL that is inherited, it
can be derived from either ASTROMETRY-DATA
or DATA-SET-COMMENT-LINE. Here, then,is

the final query:

SELECT

FROM

WHERE

dcl_line_text,

ast_target_name,

ast data set name

astrometry_data,

data set comment line

ast_generation_date >=

"Feb I, 1993" AND

ast_generation_date <

"Mar i, 1993" AND

ast data set name =

dcl data set name AND

ast archive class =

dcl archive class AND

ast_generation_date =

dcl generation_date

There are several points worth noting about
the above examples. First, the queries
demonstrate the need for an interface that

simplifies request specification. In this regard,
USQL is a step in the right direction, but a
higher level interface like StarView still is
needed. Second, the use of conceptual
knowledge ensures that semantically reasonable
queries will be generated from high-level
requests. Third, the queries are generated
quickly, which facilitates user interaction with

the interface; in fact, even with full optimization,
queries typically are generated in less than two
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seconds. Finally, the queries generally will
execute as efficiently as handcrafted queries

produced by experts.

5. Summary and Conclusions

The complexity of the ST-DADS logical

schema prohibits most StarView users from
generating semantically valid queries that
correspond to ad hoc requests. However, by

exploiting conceptual design knowledge,
methods have been developed for automating
query formulation and enabling a user to
perceive the database as a universal relation.
These methods have been incorporated in
QUICK and rely on an extended ER model
that enhances the current ST-DADS conceptual
schema, thus ensuring that the conceptual
schema will play a central role throughout the

database life cycle.

By exploiting the notion of contexts,
QUICK ensures that generated queries will be
semantically reasonable. Moreover, the queries
will be generated quickly and execute
efficiently. The capabilities of QUICK also
enable StarView designers to focus on interface
issues instead of conceptual design issues. For
example, user modeling can be addressed in
the framework of a universal relation schema,

thus simplifying the task of interface
construction. Consequently, interface
designers need not develop a deep
understanding of the conceptual schema (which
is described by a 900-page database design
document [Loral Aerosys 1992]).

The first release of StarView is scheduled

for May of 1993. Currently, QUICK is being
integrated into StarView and will exist as a
module in the May release. QUICK generates
SQL queries for all of the screens provided by
StarView as well as for the ad hoc field sets

selected through the universal relation interface.

Current research efforts are focused in three

areas. First, contexts are being extended to

support arbitrary predicates. S. _1-predicates
could be used, for example, to r, ,:la-ict context
access or to disambiguate among multiple

contexts that apply to a request. Second, richer
request structures are being explored. For
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example, to generate queries of arbitrary
complexity (e.g., queries requiring the cartesian
product of two relations), tuple variables are
necessary. However, it is not clear how tuple
variables can be presented to a user by the
StarView interface in an intuitive manner.

Furthermore, inferring tuple variables is a
difficult problem for which no solution is
apparent. Finally, some consideration is being
given to alternative conceptual and logical
models, which would facilitate the use of

QUICK with object-oriented databases.
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