
N93-25979

Inferring Heuristic Classification Hierarchies from Natural

Language Input*

Richard Hull, Fernando Gomez

Department of Computer Science

University of Central Florida

Orlando, FL 32816

hull(i_cs.ucf.edu (407) 823-2366

Abstract

A methodology for inferring hierarchies

representing heuristic knowledge about the

check out, control, and monitoring sul)-system

((:(7:MS) of the space shuttle launch process-

ing system from natural language input is ex-

plained. Our method identifies failures explic-

itly and implicitly described in natural lan-

guage by domain experts and uses those de-

scriptions to recommend classifications for in-

clusion in the experts' heuristic hierarchies.

1 Introduction

It is becoming generally accepted that most ex-

perts organize their problem-solving knowledge

into a hierarchy of concepts [Gomez and Chan-

drasekaran, 19_4; Clancey, 1985]. This hier-

archical organization of knowledge is not ex-

plicltly used by the experts during the solution

of problems, but rather is used in an iml)licit

form. The task of the knowledge acquisition

programs is to extract this hierarchical organi-

zation from the experts by making explicit to

them the steps they need to visit in arriving

to solutions. In other words, the goal of the

knowledge acquisition interface is to make ex-

plicit the hierarchy of concepts. A well known

knowledge acquisition methodology to acquire

hierarchical knowledge from experts is that of

repertory grids [Boose and Bradshaw, 1988;

*This research is being funded by NASA-KSC Con-
tract NAG-10-0058

Boose, et el., 1989; Gaines and Shaw, 1988].

The repertory grid methodology elicits catego-

rizations, called constructs, from the expert by

asking him/her to rank numerically elements of

the domain according to how well they satisfy

a given construct.

Although this methodology has achieved

considerable success, the prot)lem of construct
selection remains one of the most serious bot-

tlenecks in the repertory grid methodology. If

the constructs are provided to the domain ex-

pert by the knowledge engineer, the method

works reasonably well because the task of the

domain expert consists of filling in the cells of

the grid with the appropriate values. However,

in most cases the key aspect of the knowledge

acquisition task is the acquisition of the con-

structs themselves from the domain expert. In

this regard, elicitation techniques face strong

limitations due to the fact that the hnguistic as-

pect and contextuM knowledge associated with

the constructs are difficult to handle by elicita-

tion techniques alone.

Our own research has been addressing this

problem by studying the automatic construc-

tion of constructs or categorizations from nat-

ural language input. In [Gomez and Segami,

1991], the reader may find a description of lin-

guistic constructions whose underlying struc-

tures are hierarchical categorizations. In this

paper, however, we study the prot)lem of infcr-

ring classifications from natural language sen-

201

tences,rather"than that of directly mapping
intohierarchicalstructures.In orderto provide
somemotivationfor"theproblemwearefacing,
Figure1containsaportionoftileheuristichier-
archyacquiredfl'om domainexpertsusingour
presentinterface.The prohlemwehaveexpe-
riencedwith our presentinterfaceis similar to
the acquisitionof constructs in the repertory

grid methodology. If a good portion of the

heuristic hierarchy is provided to the domain

expert by the knowledge engineer, he/she can
continue from there without considerable dif-

ficulty. However, building the hierarchy from

scratch by the domain expert is a different

matter altogether. Then, the main idea is to

ask the expert to describe a given problem (a

('.(?MS computer error in our application), in-

fer some categorizations from the natural lan-

guage description, and ask the expert to select

the relevant one(s). This is basically the main

idea that we explore in this paper in the context

of the CCMS space shuttle network.

The remainder of this paper is organized into

6 sections. Section 2 describes the problem

domain and our original knowledge acquisition

interface. Section 3 describes the relationship

between the interface, the Natural Language

Component (NLC), and the Classification Sug-

gestion Module (CSM). Section 4 explains the

structures passed from the NLC to the CSM.
Section 5 describes how the CSM infers classi-

fications. Section 6 provides an overview of the

NLC. Section 7 gives the authors' conclusions
and lists future work to be (lone.

2 Automatic Knowledge Ac-

quisition Interface (AKAI)

OPERA (Expert System Analyst) is an expert

system whose task is to improve the operations

support of the computer network in the space

shuttle launch processing system at Kennedy

Space Center[Adler, et el., 1989]. OPERA

functions as a consultant to systems engineers

by suggesting prol)able causes and recommend-

ing diagnostic and operational advisories re-

garding network error messages generated by

the check out, control, and monitor subsys-

tem (CCMS). Because OPERA only has in-

formation on approximately 10_, of the 1500

error messages generated by the (',(',MS net-

work, some type of knowledge acquisition tool

is needed. During the past several years we

have worked to develop a knowledge acquisition
interface for OPERA. The result of this effort

has been the creation of the Automatic Knowl-

edge Acquisition Interface or siml)ly AKAI.

It became apparent to us as we worked on
the interface that while OPERA is not based

on classification l)rol)lem-solving, AKAI could

make use of classification hierarchies [Gomez,

et el., 1992@ Two distinct types of classifi-
cation hierarchies were identified and are now

used by the interface: heuristic hierarchies and

factual hierarchies. Heuristic hierarchies rep-

resent heuristic prot)lem-solving knowledge of

the domain. Each expert has his/her own ideas

ahout how this knowledge is organized depend-

ing on their personal experience. Factual hi-

erarchies represent hard or factual knowledge

about the physical structure of physical ob-

jects. A factual hierarchy for the (:(-?MS net-

work was constructed and is currently being

used by the interface. Because of the static

nature of the CCMS network, the factual hier-

archy is rarely modified. Of primary concern

to us is the acquisition of the heuristic knowl-

edge possessed by CCMS experts. Therefore,

the focus of our research now is acquiring and

constructing heuristic hierarchies, with the goal

of AKAI being to acquire probable causes and

advisories from systems engineers as efficiently

as possible.

Towards this goal, user friendly features such

as l)ull-down menus, mouse selectable text, and

a wealth of functions to reorganize the hierar-

chy were incorporated in AKAI. Beta testing

revealed, however, that naive users still had

difficulty during the initial stages of heuristic

hierarchy construction for the reasons stated
above. In an effort to address this prohlem,

202

I Sys-Error _-'{Existing-cond

Hardware

System

NN] Component

Software

Incorrect-Boot I

Explained
Condition OMl-shortcut]

Headset-problem]

Return-Code __Mech-Anomaly

Abnormal-Volt.

Signal- Degrad,

Signal-Drop

Op-Sul)p°rt]

Debug-Environ.]

Firmware]

Within-Spec]

P redefi ned- Cond]

,(-, ,Figure 1: A Portion of a Heuristic Hierarchy for the C ..MS Domain

we have added a natural language component

(NLC) and a classification suggestion Inodule

(CSM).

3 The Improved Knowledge

Acquisition Interface

The operation of the interface, graphically dis-

played in Figure 2, has changed only slightly

due to the addition of the NLC and the

CSM. The NLC is constructed around SNOWY

[Gomez & Seganli, 1989, 1990, 1991]. SNOWY

is responsible for parsing (determining the syn-

tactic constituents of the sentence) and inter-

preting (constructing the logical form of the

sentence), and then forming (mapping the log-

ical form of the sentence into SNOWY's rep-

resentation language). The NLC is called by

the interface during error categorization. At

this time, the expert is asked to place the er-

ror message he/she has chosen to describe in

his/her heuristic hierarchy. During the first

stages of hierarchy construction there is a good

chance that the appropriate category for the

error message currently being described is not

already in the heuristic hierarchy. In the origi-

nal interface, the expert was expected to know,

and was asked for, the name of an appropri-

ate category. This was often a prol)lem in the

initial stages, and the experts caught in these

situations tended to provide unsound catego-

rizations.

The interface has since been enhanced to

hell) unsophisticated users add new error cat-

egories to their heuristic hierarchies. If a user

is unsure of how to classify' an error, he/she

is asked to provide a short description of what

he/she knows about the error. This descril)tion

typically consists of two or three sentences de-

tailing relevant information about the message.

The text is saved and passed to the NLC. The

NLC enlists SNOWY to parse, interpret, and

form the sentences. If SNOWY can make sense

of the expert's description, the outl)ut of the

formation phase is then passed to the CSM.

The CSM uses the formation outlmt to recom-

mend categories to the expert. If one or more

of these recommendations are selected by the

203

Domaill

Expert

NL Input

AKAI
Recommended

C,la.ssifications

form ",Y has failed," where ,V is a component of

the CCMS network. SNOWY is quite capable

of understanding sentences in this form. The

classifications suggested by the CSM for these

sentences are usually relevant because experts

commonly use failed component names as cate-

gory names within their heuristic hierarchies. If

this process fails, however, the NLC and CSM
are deactivated and the user falls back on the

features of the original interface.

Factual

Hierarcl

Part-Of

Relations, NL

Ilierarch 3

NLC
SNOWY

Knowledge

Structures

Figure 2: System Design

CSM

expert as acceptable, the problem of classifying

the error is solved and the suggested error cate-

gories as well as the error message are placed in

the expert's heuristic hierarchy. The interface

then proml}ts the user for the probal}le causes

of the error message and its operational and di-

agnostic advisories (this fimction of AKAI was

not changed by the addition of the NLC and

CSM).

On the other hand, if the expert is not sat-
isfied with the CSM's recommendations or if

SNOWY is unal}le to understand the expert's

description, we may still be ahle to make a rea-

sonable suggestion by postponing the classifi-

cation of the error message until the probable

causes have been entered by the domain expert

and examined by the interface. We. strongly be-

lieve that the probable causes represent an ex-

cellent source of text that is understandable by

SNOWY and will provide classifications worth

recommending. Most of the probable cause
data that has been collected so far is of the

One may then question why the interface

bothers to ask the user for a textual descrip-

tion of the error when analysis of the prob-

able causes appears to provide suitable sug-

gestions. We have found that additional text

is needed if we are to make suggestions other

than failed component suggestions. Tile sys-

tem would not be able to make suggestions like
"initiMization failures" or "on line failures" if

we only called the NLC with probable cause

text. Classifications of this type are present
in the heuristic hierarchies of the Grumman

personnel first consulted to test the interface.

Therefore, we must provide the interface with
additional texts which could lead to recommen-

dations other than failed components.

Tile operation of the enhanced interface is

i{lenticM to the original after tile error message

has been placed within the heuristic hierarchy.

The code of the original interface, therefore,

was disturbed only slightly, and the users of
the interface did not need to re-learn how to

operate the system.

4 Input to the CSM

Before addressing the details of the CSM we
must describe the structures which it takes as

input. The formation phase of the NLC maps

the logical form constructed hy the interpreter

into the knowledge representation structures

of the representation language KL-SNOWY

through the use of formation rules. The for-

mation algorithm is called to form clauses as

they finish the interpretation phase. The most

204

embeddedclauseof a sentenceis formedfirst,
the secondmost embeddedis formedsecond,
and so on until the main clauseis formed.
The structures,calledobject structuresand
relation structures,are usedby the CSM to
make recommendations.Togetherthesetwo
types of structuresform the kernel of KL-
SNOWY.There is a significantadvantageto
havingSNOWYapply its formationphaseto
the logical form producedby the interpreter.
This will becomeapparentduringour discus-
sionof the ClassificationSuggestionModulein
section5, if oneunderstandsthe structuresof
the representationlanguage. Therefore,it is
importantthat the semanticsof objectandre-
lation structuresis clear.

4.1 Object Structures

Object structures represent knowledge about

physical and abstract objects. Some physical

objects are trains, tools, mountains, geese, etc.,

and some abstract objects or ideas are sets,

states, properties, and relations. Conceptual

relations representing knowledge about the ob-

ject are represented as slots in the object struc-

ture frame (see the box surrounding the object

structure for CPU in Figure 3).

These relations will either describe the ob-

ject in some way or attribute actions to it. In

the (:Pit object structure example, the slot

"(process (data ($more (CC_a3))))" represents

an action attributed to the concept CPU, and

"(made-of (silicon ($more (@a2))))" represents

a description. The relation structure names,

(_a3 and COd2, point to relation structures that
contain additional information which is not

stored directly under CPU but elsewhere in

SNOWY's long-term memory (LTM). In gen-

eral, concept relations are represented in object
structures as:

relation (©al)

relation (conceptl (@al))

monadic

diadic

All concepts must have a unique name in

memory so that the knowledge at)out them can

Object Structure

CPU

(is-a (electrical-component))

(part-of (computer ($more (!<_al))))

(n ad -of (silicon(*more
(pro ss (data ($more

(<_.a3

(instance-of (action))

(args (CPU) (data))

(pr (pro ss))
(actor (CPU (q (?))))

(theme (data (q (?))))

Figure 3: A Portion of the Concept CPU

Acquired by SNOWY from Natural Language

Input.

be integrated in a single])lace. Therefore, we

need a method for dealing with concepts which

are not explicitly named in the sentence. An

example of such a sentence is "The adal)ter in
the FEP returned an invalid status." The sub-

ject of the sentence, "the adapter in the FEP,"

is a complex concept which must be given a

dummy name (a gensym) to uniquely identify it
in LTM. The structure is called an x-structure.

We use a characteristic-features slot to specify

the necessary and sufficient conditions describ-

ing this new concept. For this complex concept,

the representation would be:

(xl (cf (is-a (adapter))

(part-of (FEP))))

The meaning of this is that the x-structure

xl is a sub-class of adapter, whose members all

have the feature of being a part of a front-end

processor (FEP). This feature is "characteris-

tic" because it is shared by every member of the

class zl. Complex concepts can arise fiom nat-

ural language constructs such as existentially

quantified sentences, complex noun phrases,

and restrictive quMifiers (relative clauses and

prepositional phrases).

205

4.2 Relation Structures

Relation structures represent knowledge about

instances of conceptual relations. Each struc-

ture contains a verbal concept, its cases and

their fillers, the quantification of each filler, an

instance-of slot indicating whether the relation

is a description, action, proposition (embedded

relation) or of-structure, and an optional truth-
value slot which indicates whether the relation

is believed to be true or false by SNOWY. In

the absence of a truth-value slot the statement

is taken as true by default. For example, the

relation structure, (@a3, that represents "('PUs

process data" is shown at the 1)ottom of Figure

3.

The first slot, instance-of, indicates that (¢a3

is an instance of an action relation. The args

slot lists the arguments of the relation. If the

relation is monadic, the args slot will contain a

single concept. If the relation is diadic, as is the

case in this example, the args slot contains two

concepts, and so on. The pr slot contains the

verl)al concept or primitive. Following the ver-

bal concept are its thematic cases. Each case is

filled by a "quantified" concept from the argu-

ment list. The quantifier of an argument is the

filler of its q sub-slot. In (6)a3, both the quan-

tifiers for CPU and data are unknown, repre-

sented by a question mark. This reflects the
fact that from the statement "CPUs process

data" it is not clear if all CPVs process all data

or only some CPUs process some data. Other

possible fillers of the q slot are: most, many,

all, cardinal adjectives, and numerals.

Creation of relation structures is normally

handled by the formation algorithm. This al-

gorithm constructs structures fi'om the logical

form by collecting the thematic cases identi-

fied by the interpreter for sentence clauses. In

certain sentences, however, the forlnation al-

gorithm must be overridden or postponed be-

cause the verbal concept requires an unusual

construction to be formed. To handle these

special cases, we use formation rules which are

briefly discussed in section 6.

5 The Classification Sugges-

tion Module (CSM)

The task of the Classification Suggestion Mod-

ule (CSM) is to take the output from the for-

mation phase of SNOWY and produce a list of

error message classifications that can be sug-

gested to the user. To accomplish this task, the

CSM scans the output of the formation phase

of SNOWY looking for certain constructions

that are likely to lead to plausible suggestions.

The CSM looks for the following constructions:

negated relations and relations that indicate

failures, descriptive relations which explicitly

or implicitly indicate failed components, and

complex noun phrases describing failed compo-

nents. After a set of suggestions is identified,

the CSM attempts to prioritize them based

upon an analysis of the expert's heuristic hi-

erarchy. This prioritized list of suggestions is

then presented to the expert. Additionally, if

the expert selects one or more of the sugges-

tions, the CSM will attempt to engage the ex-

pert in a dialog whose purpose is to elicit more
information. The sections below discuss each of

the constructions relevant in identifying possi-

ble suggestions, the prioritization task, and the
elicitation of additional information.

5.1 Relation Structures

The CSM identifies relation structures contain-

ing negated verbal concepts or with verbal con-

cepts that indicate failures. Consider for ex-

ample the formation of the sentence "The FEP

failed to detect an acknowledgement from the

i/o adapter," which contains a negated verbal

concept.

The CSM scans the formation output for

relation structures, such as _C(_a27below, and

examines their truth-value slots. If the truth-

value slot indicates that a verbal concept is ex-

plicitly negated, as become-aware is in the

example below, we save the relation structure.

The system can then use the cases of these

structures to generate plausible classification

suggestions (see the following section).

206

@a27

(truth-value (f))

(args (fep) (acknowledgement))

(pr (become-aware))

(actor (fep (q (constant))))

(theme

(acknowledgement (q (?))))

(instance-of (proposition))

Example I

Verbal concepts that implicitly indicate fail-

ures are also identified. In the sentence, "The

option plane microcode crashed," the verb

crashed indicates a failure. This is immediately

obvious to the CSM because of the verbal con-

cept that crash is mapped to during formation.

option-plane-microcode

(is-a (microcode))

¢a30

(args (option-plane-microcode))

(pr (fail))

(actor

(option-plane-microcode

(q (constant))))

Example 2

The verb rules for the verb crash map it to

the verbal concept fail. Other verbs which are

mapped to the verbal concept fail are break,

collapse, and fail. Because SNOWY is able

to determine the underlying meaning of these

verbs, the CSM has an easy thne selecting

negated relations and relations indicating fail-

ures.

two cases suggest two possible error message

classifications. One possible classification is the

class of error messages generated by "fep fail-

ures". Because all the relation structures se-

lected by the CSM denote failures, the actor of

each relation represents a component that has

failed to aCColnplish some task. 1 That failed

component may also be responsible for gener-

ating other error messages. Therefore, it makes

sense to recommend a class of error messages

caused by the failed component. For this ex-

ample, the CSM would save the classification

"fep faihlre" as a possible classification to be

recommended to the expert.

Another possible classification is "acknowl-

edgement failures". 2 This supports the notion

that the theme case of failure relations may

lead to plausible classifications, when the orig-
inal sentence is a "fail to" construction. In

the sentence "The common data buffer failed

to update the system configuration table," the

theme case, filled by "the system configuration

table," may potentially represent a category of

errors. While the actor case represents "what"

failed, the theme case describes the component

that failed to be acted _lpon. Consequently,

one might think that the theme case is not as

likely a source of classifications as the actor

case. We can, however, conceptualize a class

of error messages which indicates the failure of

some component to update the system config-

uration table. Each member of the class would

have similar operational advisories instructing

systems engineers in how to handle the failed

update. Therefore, the CSM saves the theme

case fillers of negated relations as possible clas-

sifications.

5.2 Case Roles as Plausible

Classifications

Some of the cases of these relation structures,

such as actor, theme, at-loc, and at-tilne,

lead to plausible classifications. In Example

1 above, the relation structure @a27 has two

case slots: the actor case, filled by fop, and the

theme case, filled by acknowledgment. These

At-time cases can Mso lead to plausible

classifications. These cases indicate when a

failure occurred, which may be very signif-

_We must recognize that if the expert describes fail-
ures of irrelevant components, the system will make nec-

essarily irrelevant recommendations which the expert
may ignore.

2These failures are so common they are referred to
as NOAC.Ks.

207

leant. For example, consider the sentence

"The FEP failed to respond during initializa-

tion." The prepositional phrase "during initial-

ization" tells us that the failure occurred during

the process of initialization. In general, if the

filler of the at-time case is a process, we rec-

ommend that filler as a possible classification.

For the example above this gives "initialization
failures". It is our belief that the fillers of the

at-time case should almost always be processes.
This is because it makes little sense to use a

time NP (a noun phrase specifying a time) ex-

cept in certain situationsJ

At-lee cases can lead to plausible classifica-

tions. For example, "The transmitter/receiver

failed in the HIM" is a sentence in which the at-

loc case, filled by "the HIM," represents a pos-

sible category of error messages. Because the

failure occurred within the HIM, we can infer

that the transmitter/receiver is located within

the HIM and therefore may be a sub-part of

the HIM. The HIM, which is the larger object,

is likely to have other sub-parts which may fail.
This means that the class of "HIM failures" is

likely to be a good category of error messages.

One should note that the object and its sub-

part(s) form a part-of hierarchy. Discussion of

how part-of hierarchies can be used to help pri-

oritize suggested classifications can be found in

section 5.5, Part-Of Hierarchies.

5.3 Descriptive Relations and Noun
Phrases

Concepts that have negative properties may

lead to plausible classifications. If the ex-

pert mentions a defective component within

his/her error message description, that compo-

nent is likely to contribute to the error. The

CSM identifies descriptive relations that indi-

cate faulty components, as in "the i/o adapter

is not operational," "the HIM may be down,"

or, "the HIM is unable to reset the status reg-

ister." In these cases, the predicate adjective is

examined to see if a failure is present. Predi-

cates that explicitly or implicitly describe nega-

tive properties of network components provide

strong indications that the components they

modify have failed. Explicitly negated predi-

cates are those that clearly indicate a negation,

either by inclusion of the adverbs not and no,

or through the use of negative prefixes. Some

examples of explicitly negated predicates are

abnormal, unable, disabled, uninhibited, and in-

capable, hnportant features, such as negative

prefixes, are stored in a lexicon for each word.

For example, the word abnormal has the fol-

lowing feature:

abnormal

(neg-prefix (normal))

The neg-prefix slot tells us that abnormal

contains a negative prefix affixed to the root
word normal.

aln most causes, we would not expect to see a sentence

with an at-time case filled by a time NP, such as, "The

FEP failed to respond to the HIM at 10 pro." Ob_dously

the expert giving such a description does not realize that

he/she has described a specific error event, while what
we are after is a more general description of the error.

However, it may make sense to write, "The FEP fails to

respond to the HIM during the winter". This sentence

would lead to the classification, "winter failures," which

seems plausible. In the cases where the at-time filler is

a time NP, the CSM asks the expert, "Is this the only

time that this error occurs?" If the expert responds with

an affirmative answer, the system retains the filler as a

possible classification.

The representation of descriptive relations

that denote negated properties is exactly the

same as the representation of negated actions

discussed in an earlier section. For example,

the output from the formation phase for the

sentence "the i/o adapter is abnormal" is

©a39

(truth-value (f))

(args (i/o-adapter) (normal))

(pr (has-property))

(descr-subj (i/o-adapter

(q (constant))))

(descr-obj (normal (q (?))))

(instance-of (description))

208

Notice that the descriptiverelation has-

property is negated. The meaning of the rela-

tion structure, (_a29, is "the i/o adapter does

not have the property of being normal." The
CSM can determine that this structure denotes

a negative property by examining the truth-
value slot in search of an 'T'. A more difficult

sentence to handle would be "the i/o adapter

is not abnormal." In this case, the formation

phase realizes that there is a double negation.

The final structure, therefore, will not have a

truth-value slot filled by 'T', and we will not

recommend "i/o-adapter failures" as a category

of error messages.

Some predicates may indicate a failure or

negation but are not explicitly negated. Ex-

amples of this type of predicate are d@ctive,

down, and brokcn. In these cases, the meaning

of the predicate adjective is needed if we are
to determine that a failure has occurred. Cur-

rently, a sub-hierarchy within SNOWY's LTM

maintains knowledge of properties.

The CSM also identifies complex noun

phrases that indicate faulty components, as
in "the defective HIM..." or "the failed data

bus " This is accomplished by examining the

x-structures of complex noun phrases for nega-

tive properties. If the x-structure of a complex

noun phrase has a negative property, the CSM

will save the super-concept of the x-structure

as a possible classification. From the sentence

"All fllrther polling will cease pending com-

ponent fault isolation of the failed HIM," we
would like to recommend "HIM failures" as a

possible classification. The relevant portion of

the representation provided to the CSM by tile

formation phase is

xl

(cf (is-a (HIM)) (©a41))

@a41

(args (xl) (defective))

(pr (has-property))

(descr-subj (HIM (q (constant))))

(descr-obj (defective))

Dcfcctivc indicates a failure so the CSM

saves the super-concept of xl, HIM, as a possi-

ble classification.

5.4 Prioritizing Recommendations

Once a set of candidate classifications has

been determined fl'om a sequence of text, the

CSM orders the candidates fi'om highly recom-

mended to least recommended. Several order-

ings are possible.

• If it can be determined that the user's

heuristic hierarchy is structured based

upon component/sub-component relation-

ships, then failed components should be

highly recommended.

• If it can be determined that the user's

heuristic hierarchy is structured based

upon process/sub-process relationships,
then verbM concepts that represent pro-

cesses or at-time slot fillers which are pro-

cesses should be highly recommended, e.g.,

"the microcode fails during initialization,"

or, "the microcode failed to initialize."

• If nothing about the user's hierarchy can

be determined, then fall back on the struc-

ture of the factual hierarchy which is

a structural one, i.e., failed components

should be highly recommended.

By prioritizing the classifications, the most

relevant classifications (determined hem'isti-

tally using the rules above) can be presented

to the expert as such. This helps when the set

of possible classifications is large.

5.5 Part-Of Hierarchies

There may also be a hierarchical relationship
between several of the candidate classifications,

especially when the candidates are selected

fl'om text describing probable causes. For ex-

ample, the probable causes for error 141 are:

209

FEP

FEPI/O
Adapter

FEPOption FEPT/R
Plane

Figure4: FEP Part-OfHierarchy

I. FEP i/o adapter failed.

2. FEP option plane failed.

3. I/0 adapter port on the

4-port controller failed.

4. FEP transmitter�receiver

failed.

This leads to the failed component hierar-

chy shown in Figure 4. Probable causes 1,

2, and 4 describe the failures of sub-parts

of a FEP. Determining that the FEP is re-

lated to i/o adapter, option plane, and trans-

nlitter/receiver 1)y the has-part relation is the

job of the noun-noun interpretation algorithms
contained within SNOWY. That is, SNOWY

is responsil)le for determining the meaning of

complex noun phrases such as "FEP option

plane," which is, "an option plane that is part

of a FEP." The CSM simply has to look for

a part-of relation under each of the sub-parts

to recognize that a hierarchy exists. The ex-
istence of a part-of hierarchy provides strong

evidence that the root of the hierarchy should

1)e an error message category. In fact, it makes

sense for the system to recommend the entire

hierarchy to the expert.

5.6 Eliciting Additional Information

Up to this point, we have discussed how the

NLC understands natural language inl)ut and

how the CSM uses that understanding to iden-

tify and prioritize relevant categories of errors

for presentation to the expert. The knowl-

edge acquisition task does not end, however,

when the expert selects a suggested classifi-

cation. When experts accept suggested clas-

sifications, the CSM will "keep them talking"

by proml)ting them with questions designed to

trigger their recall of additional error message

classifications. These questions prompt the ex-

pert for the names of similar messages that they

fool would fall under the suggested category.

The CSM also asks the user for other categories

of errors that may t)e similar to the suggested

category.

6 An Overview of the Natural

Language Component

The NLC is an aplflication of SNOWY.

SNOWY is a system which integrates problem

solving, knowledge acquisition, and informa-

tion retrieval. In [(;omez & Segami, 19_9] it

was shown that, "in order for SNOWY to un-

derstand text, it needs to start with a nlinimum

set of concepts which categorizes the world into

states, actions, collections, etc." This a priori

set of concepts, or ontology, is organized into

a hierarchy 1)ased upon is-a relationships. The

hierarchy is part of SNOWY's LTM. This LTM
maintains the information that SNOWY has

gathered from natural language inl)ut.

Each sentence presented to SNOWY under-

goes three phases: a parsing and interpretation

phase, a formation phase, and a recognition

and integration phase. Because the recognition

and integration phase is primarily concerned

with ul)dating SNOWY's LTM, which is unnec-

essary for our task, we only call upon SNOWY

to parse, interl)ret , and form the expert's nat-

ural language input. These three processes are
described below.

Parsing a sentence involves identifying its

syntactic structures. The parser used by

SNOWY is called WUP, which stands for word

usage parser [Gomez 1989]. The underlying

philosophy of WUP is that the syntactic us-

ages of words play a greater role in parsing than

is generally admitted. Discussion of how the

usages are implemented and the details of the

210

operation of the parser will not be conducted

in this paper, however. For our purposes, it

is enough to know that the parser identifies

the syntactic categories of the sentence. The

syntactic categories used by WUP are: sub-

ject, verb, object, indirect object, prepositional

phrase (PP), predicate, subordinate clause, and

conjoined clause. Tile parser is not responsible

for deternfining tile attachment of prepositions,

the verbal concept u,lderlying the main verb, or

the meaning of complex noun phrases. That is

the duty of the interpreter.

6.1 Interpretation

The interpretation process is responsible for

constructing the logical form from the syntac-

tic constituents identified by the parser. This

logical form represents the semantics of the sen-

tence independent of any context. As each con-

stituent of a sentence is identified, it is sent

to the interpreter. It is important to point

out that a constituent need not be interpreted

the first time that it is seen by the interpreter.

In fact, there are many cases where the inter-

pretation of a particular constituent must be

postponed until all the constituents of the sen-
tence have been read. The constituent could

be a noun phrase representing the subject or

object of the sentence, in which case the in-

terpreter must determine the meaning of the

noun phrase. If the constituent is a verb, the

interpreter must determine the underlying ver-

bal concept that the verb represents. If the

constituent is a prepositional phrase, the inter-

preter must determine its attachment and its

meaning. Each of these three types of interpre-

tation has its own set of interpretation rules.

We will discuss each of the three types of in-

terpretation and then cuhninate the interpre-
tation section with a discussion of how this fits

in with the domain at hand.

6.1.1 Noun Phrases

Interpreting noun phrases requires a great (leal

of knowledge of the meanings of nouns and ad-

jectives. This is evident in the noun phrase

"arthropod legs," which is the subject of the

simple sentence "Arthropod legs are jointed."

We can make sense of this phrase only be-

cause we know very well that arthropods, such

as spiders and crustaceans, have legs. This

knowledge allows us to determine that the NP

above Ineans "the legs that are part of arthro-

pods." Without any knowledge of arthropod or

Icg we would be unable to determine a rela-

tionship between these two nouns. Similarly,

knowledge of the adjective "wooden" is nec-

essary to determine the meaning of the NP,

"wooden legs," which is "legs made of wood."

SNOWY stores knowledge of nouns as rela-

tions under their corresponding LTM concepts

in SNOWY's concept hierarchy. Knowledge of

adjectives is stored as interpretation rules. The

noun phrase interpretation algorithm uses this

knowledge when considering each pair of items

in a given NP.

6.1.2 Verb Rules and Verbal Concepts

The interpreter Mgorithm makes use of verb

rules to establish the underlying verbal con-

cel)ts of sentences. These verbal concepts rep-

resent the meaning of the verb in the sentence.

Below are the verb rules for the verb dump:

h Portion of the Verb Rules for the

Verb Dump

(dump

(((dump) (dumps) (dumped) (dumping)

(has dumped) (had dumped))

((obj

((if part-of obj computer)

(primitive-is transfer-data)

(semantic-role-of-is obj

from- loc)))))))

The "obj" slot contains a verb rule which will

l)e tried when the parser passes the object con-

stituent to the interpreter. This rule chooses

the verbal concept transfer-data and mark,,

the object as filling the fl'om-loc case of thi._

verbal concept in the event that th(' object ()f

211

the sentenceis a part of a computer. There-
fore,this rule wouldbe usedwhenSNOWYis
interpretingasentencelike"Dmnpingtile CPU
registerswouldhe]l) isolate..."The interpreta-
tion of the main clause of this sentence would

be "somebody transfer-data from the CPU reg-

isters (fi'om-loc) to some unknown location (to-

loc)."

While verbs like dump have very clear mean-

ings, other verbs can be quite aml)iguous. The

verb go is reported to have 6:1 different mean-

ings [Hirst, 1992]. We can side step this prob-

lem in most cases, however, because the domain

of the incoming naturM langnlage is restricted

to CCMS network error message descriptions.

Once the verbal concept has been deter-

mined, the interpreter attempts to fill the the-

matic cases of the verbal concept. Interpre-

tation is now said to be driven by the verbal

concept in the sense that we will attempt to

place each of the other constituents within its

framework. Thematic cases or roles show how

noun phrases are related to the verbal concepts

of sentences. Some of the most common the-

matic cases used by KL-SNOWY are: actor,

theme, instrument, at-lee, from.loc, to-lee, at-

time, inlt-time, end-time, descriptive-subject,

and descriptive-object.

6.1.3 Prepositional Phrases

Interpreting prepositional phrases involves se-

lecting the proper attachment (what sentence

constituent is modified by the prepositional

phrase) and establishing the meaning of the

modification. Meanings and attachments are

established by the verbal concept and interpre-

tation rules under the given preposition [Gomez

et al., 1992b]. Verbal concepts claim prepo-

sitional phrases through preposition rules (P-

rules) stored under them. Noun phrases claim

prepositional phrases through P-rules stored

under the preposition.

6.1.4 Interpretation in the CCMS

Network Domain

While interpretation of arbitrary text is cur-

rently an open problem, we can use the fact

that we know the domain of the incoming dis-

course and the task of the CSM to limit the

scope of the interpretation so that it is man-

ageable. For instance, we have found that a

significant percentage of the nom_ phrases used

in error message descriptions and in the prob-

able causes indicate specific components of the

CCMS network. 4 The following is a table of

some of the most common noun phrases in this

domain:

Table I: Common Noun Phrases in the CCMS

Domain

active cpu

common data buffer

error message

ground data bus

FEP option plane

GSE data bus

GSE microcode

HIM status register

system config table

i/o card

data bus

GSE FEP

LDB FEP

PCM FEP

standby cpu

i/o adapter

option plane

The semantics of these noun phrases can be

captured by a few noun phrase interpretation

rules. For instance, the phrase "data bus" is

taken to mean a "bus for transporting data,"

where in this case bus is not a vehicle which

makes fi'equent stops, but is a physical struc-

ture for transporting data and control infor-

mation. Because we know the domain of the

natural language input we will simply ignore

the vehicle meaning of bus. A rule stored un-

der the concept "data" will build the following

interpretation when the noun phrase is inter-

preted:

(bus (transport (data)))

Another rule will look for part-of relation-

ships between the nouns in noun phrases. This

4The components may be hardware components or
software programs and data structures.

212

rule capturesthemeaningof l)hraseslike "GSE
databus," "GSEFEP," "GSEmicrocode,"and
"FEP option plane." The interpretationsof
thesefour phrasesare:

((bus (transport (data)))

(part-of (GSE)))

(FEP (part-of (GSE)))

(microcode (part-of (GSE)))

(option-plane (part-of (FEP)))

Of course, to determine these part-of rela-

tions we must know a priori the physical struc-

ture of the CCMS network. This a priori in-

formation has been assembled by a knowledge

engineer and is stored in AKAI's factual hier-

archy. Therefore, we can determine these re-

lations simply by consulting the factuM hierar-

chy.

Verb rules need to be provided for the verbs

commonly used in error descriptions and prob-

able causes. A list of the verbs, for which verb

rules were added, is given in Table 2. Each of

these verb rules must specify a verbal concept.

Table 2: Verbs needing New Verb Rules

activate fail poll

command generate reset

detect initialize respond

dump isolate

Table 3 lists the new verbal concepts created

for this domain.

Table 3: New Verbal Concepts

activate initialize

command isolate

become-aware poll

fail reset

fail-negation respond

generate transfer-data

Because the verb rules and verbal concepts

added to SNOWY are dependent on knowing

the LTM categories for nouns commonly used

in the (:(:MS domain, it was necessary to add

them to SNOWY's a priori hierarchy. Table 4

is a partial list of the concepts that were added

to SNOWY's LTM.

Table 4: New Concepts added to LTM

acknowledgement LDB

adapter microcode

board option-plane

buffer PCM

bus register

card signal

computer switch

cpu transceiver

FEP transmission

HIM uplink

i/o

6.1.5 Formation Rules

Formation rules are stored under verbal con-

cepts. When the formation algorithm is ac-

tivated, it looks to see if the verbal concept

selected by the interpretation process has any

special formation rules stored under it. s If

formation rules are found, the normal forma-

tion algorithm is overridden and the system

attempts to fire them. If a rule fires success-

flflly, its consequent list is evaluated, effectively

taking over the task of formation. Let us now

discuss an example of a formation rule written

by the authors to handle a special construction
used in the CCMS domain.

Negated relations may come from sentences

which use the "fail to" construction, or fl'om

sentences with explicitly negated verbs. The

"fail to" construction is one in which the main

verb of the main clause is fail and fail is followed

by an eml)edded clause beginning with the

word to. The representation of sentences using

this type of construction is a relation structure

representing an embedded clause whose verbal

STiffs discussion assumes that the interpreter w_

able to deternfine a verbal concept. In the event that no
verbal concept was selected, the formation ph_e will [)t:
unable to construct a relation structure and is abortt_d.

213

concept has been negated. Tile formation rule

responsible for creating this structure, shown

below, is stored under the verbal concept fail-

negation in the f-rules slot.

(fail-negation

(is-a (description))

(subj (thing (descr-subj)))

(obj (proposition (descr-obj)))

(f-rules

(fire-all

(t (negate-relation)))))

This rule calls a LISP flmction, called

_cgatc-rclatiou, to negate the embedded clause.

Take for example the sentence "The FEP failed

to detect a response from the i/o adapter." We

would like to end up with KL-SNOWY struc-

tures that represent that the FEP did not be-

come aware of a response from the i/o adapter.

Therefore, the task of the negate-relation time-

tion is to place an fin a truth-value slot of the
relation structure associated with the embed-

dad relation "[FEP] detect a response from the

i/o adapter."

7 Conclusions and Future

Work

We have shown how natural language input can

he used to infer classifications suitable for inclu-

sion into the heuristic hierarchies of AKAI, in

a real world environment. We are currently in

the early stages of the implementation of these

ideas. Very little work needs to be done on

the NLC, per se, because SNOWY is a working

system. The bulk of our effort is, therefore, fo-

cused on hnplementing the CSM. Nevertheless,
there are several data files used by SNOWY

that must be scaled up if the enhancements of
AKAI are to work "outside the lab."

One such data file is SNOWY's lexicon. To

address this problem, a machine-readable dic-

tionary created by the Summer Institute for

Linguistics, called Englex, is being adapted for

use by SNOWY. Specifically, entries in Englex

are being converted into a forlnat assimilable

by SNOWY and added to SNOWY's lexicon.

Englex contains morphological data for approx-

imately 11,000 nouns, 4000 verbs, and 3400

adjectives, as well as adverhs, acronyms and

abbreviations, proper nouns, prepositions, de-

terminers, conjunctions, quantifiers, etc. Es-

pecially useful are markers indicating negative

prefixes and nominalizations for nouns. By in-

corporating these words into SNOWY's lexi-

con, we hope to minimize the prohlem of en-

countering unknown words during the parsing

of an expert's description.

Other data that will need to be expanded

are SNOWY's verb rules and verbal concepts,

interpretation rules for interpreting complex

noun and prepositional phrases, and new for-

mation rules for handling special sentence con-

structions. At first glance this task may seem

quite daunting, but because we are receiving

natural language input constrained to the do-

main of CCMS network messages, we can ex-

pect a limit to the diversity and complexity of

the incoming text. This claim is supported by

an analysis of the text that makes up the prob-

able causes and advisory data currently stored
in OPERA.

While extension of the NLC involves data,

work on the CSM requires coding changes. It

is important to note that the complexity of

implementing the CSM is significantly reduced

by the robustness of SNOWY's representation.

Determining failures and their related cases is

a simple task, assuming that SNOWY has been

able to create the appropriate structures. This

underscores the importance of an adequate rep-

resentation for the purpose of acquiring knowl-

edge.

Acknowledgements

We would like to thank R. Bruce Hosken and

William Verhagen of Grumman Technical Ser-

vices, KSC, for providing us with a set of typi-

cal error message descriptions, and the referees
who made valuable comments.

214

References

Adler, R., Heard, A., & Hosken, B. (1989)

An Expert Operations Analyst (OPERA)

for a Distributed (_omputer Network. AI

Systems In Government (A IS'I(;). Wash-

ington D.C.

Boose, J. and Bradshaw, J. (1988). Exper-

tise Transfer and Complex Prol)lems: us-

ing Aquinas as a knowledge acquisition

workbench for knowledge-based systems,
in J. Boose and B. Gaines Knowledge-

Based Systems, vol. 2, Acadenlic Press:
London.

Boose, J., Shema, D. & Bradshaw, J. (1989).

Recent Progress in Aquinas: a knowledge

acquisition workbench. Journal of Knowl-

edge Acquisition, 1, 185-214.

Clancey, W.J. (1985). Heuristic Classifica-

tion, Artificial Intelligence, 27, 289-:350.

Gaines, B.R., and Shaw, M. L.G. (1981). New

Directions in the analysis and interactive

elicitation of personal construct systems,

in M.L.G. Shaw (ed). Recent Advances in

Personal Construct Technology, Academic
Press: New York.

Gomez, F. (1989) WUP: A Parser based on

Word Usage. UCF-Tech-89-2, Dept. of

Computer Science, University of Central
Florida, Orlando, FL, 32816.

Gomez, F. & Chandrasekaran, B. (1984).

Knowledge organization, and distribution

for medical diagnosis. In W. Clancey & E.

Shortliffe, Eds. Readings in Medical Arti-

ficial Intelligence. Reading, MA: Addison-

Wesley.

Gomez, F., Hull, R., Karr, C., Hosken, R.B.,

& Verhagen, W. (1992a) Combining Fac-

tual and Heuristic Knowledge in Knowl-

edge Acquisition, Telematics and Infer

matics, 9(6), Dec., 1992.

Gomez, F. & Segami, C. (1989) The Recogni-

tion and Integration of Concepts in Under-

standing Scientific Texts. Journal of Ex-

perimental and Theoretical Artificial Intel-

ligence, Vol. l, 51-77.

Gomez, F. & Segami, C. (1990) Knowledge ac-

quisition from natural language for expert

systems based on classification problem-

solving methods. Knowledge Acquisition,

Vol. 2, 107-128.

Gomez, F. & Seganfi, C. (1991) Classifica-

tion Based Reasoning. IEEE Transactions

on Systems, Man, and Cybernetics, 21(3),
644-659.

Gomez, F., Segami, C., & Hull, R. (19921))

Prepositional Attachment, Prepositional

Meaning, Verb Meaning, and Thematic

Roles. UCF-Toch-92, Dept. of Computer

Science, University of Central Florida, Or-

lando, FL, 32816. (Submitted for Put)lica-

tion)

Hirst, Graeme. (1992) Semantic interpreta-
tion and the resolution of ambiguity. Cam-

bridge University Press.

215

