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Abstract

Software reuse has become a major goal in the development of space systems, as a recent NASA-wide
workshop on the subject made clear.! The Data Systems Technology Division of Goddard Space Flight
Center has been working on tools and techniques for promoting reuse, in particular in the development of
satellite ground support software. One of these tools is the Experiment in Libraries via Incremental
Schemata and Cobweb (ElvisC). ElvisC applies machine learning to the problem of organizing a reusable
software component library for efficient and reliable retrieval. In this paper we describe the background
factors that have motivated this work, present the design of the system, and evaluate the results of its
application.

1. Repositories vs. Architectures in Reuse

The work described in this paper concerns the self-organizing capability of a repository of reusable
software components. The recent trend in software reuse support technology has been away from a
dependence on unguided searching of component repositories, and towards a more model-based approach
[D'Ippolito '89; Simos '91; Mark '92]. In this introduction we explain the difference between the two
approaches, the role of the model-based approach at NASA/Goddard, and our reasons for focusing on
repository organization.

The model-based approach to reuse emphasizes the development of generic architectures within a given
application domain. A generic architecture shows how systems in the domain are typically composed of
reusable components. The field is moving towards knowledge-based support for generic architectures,
e.g., formalizing the constraints under which components can be combined and the commitments entailed
by reusing specific components. The ultimate goal is to build new systems by selecting features or
specifying parameter values, thus instantiating the generic architecture with little or no additional software

development.

NASA/Goddard has a long and successful history of using generic architectures, since even before the
terminology became fashionable. The Standard Software System (SSS) [WEC "79]was developed in the
late 1970s to provide a kernel of support for satellite operations control centers, and several missions were
based upon it. The Multi-Satellite Operations Control Center Application Executive (MAE) [Sperry '85]
was a successor to SSS in the mid-1980s, motivated in large part by the replacement of processor
hardware and operating systems. Again, several missions were based upon MAE. Most recently, the
Transportable Payload Operations Control Center (TPOCC) [Measday '91] was developed to take
advantage of workstation technology and open system interconnection. The degree of parameterization
and configurability has increased with each of these successive software architectures.

In a narrower domain—that of monitoring telemetry housekeeping data—the Generic Spacecraft Analyst
Advisor (GenSAA) [Hughes '91] is generalizing an architecture for rule-based monitoring systems that
was first illustrated in the Communications Link Expert Advisory Resource (CLEAR). GenSAA will
provide a high degree of automated support in the creation of monitoring systems for different spacecraft.

I Organized by Langley Research Center and held at the Research Triangle Institute in April, 1992.
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The Flight Dynamics Division of Goddard is developing the Combined Operational Mission Planning and
Attitude Support System (COMPASS), which is an Ada-generic framework for creating orbit analysis
systems for different spacecraft. The role for such generic architectures in the development of satellite
ground software seems to be firmly established.

The need for specialized software has not disappeared, however. In order to meet the ever expanding
requirements of the scientific community with available resources, new technologies must continually be
inserted into ground support systems. Direct-manipulation user interfaces and knowledge-based systems
are typical of the kinds of technology being introduced into control centers.

The Data Systems Technology Division has as its charter the development of new technologies to the point
where they can be safely integrated into a control center. In such an environment there is a greater need to
respond to unprecedented requirements, and less of a role for generic application architectures. The goal
of reuse-based software development remains, however. Thus the emphasis in this group is on reuse
within horizontal domains: these are the supporting domains that provide basic application-independent
services, upon which vertical (i.e., application) domains are built (for example, databases,
communications, and user interfaces are horizontal domains).

The Data Systems Technology Division's Code 522 develops a substantial portion of their software using
the programming language C++. Each software project spins off a set of potentially reusable modules in
the form of C++ component classes. These components implement, for the most part, application-
independent functions. Because the components are produced as they are needed, their capabilities tend to
be scattered over several horizontal domains. In order for developers to take full advantage of this
collection—including developers who may not have contributed components—some rational method of
organizing the library is required. A rational organization is one that allows developers to find what they
need efficiently and reliably.

A key consideration in this challenge is that a given organization will not suffice as the contents of the
repository evolve. As requirements evolve so do solution techniques. The contents of the library will
change as new reusable components are developed—also as older components are removed, because their
usefulness has diminished or was overestimated to begin with. As the contents of the library change, we
cannot expect the same organization to remain appropriate.

Why not use the "given" hierarchy of C++ classes, which is implied by their public inheritance structure,
to organize the repository? Public inheritance in C++ is supposed to represent the "is-a" relation [Meyers
91, Cargill '91]. In principle, a global inheritance hierarchy could function as the organization of the
repository, and new components could be created within this inheritance framework. Our conclusion,
however, is that this approach is not pragmatic. Design teams elaborate local inheritance hierarchies within
a project or segment of a project to achieve maintainable code. A typical project may include a dozen
independent inheritance hierarchies. The additional levels of abstraction required to relate these hierarchies
to each other and to the organization's past work are typically missing because it would be expensive to
develop and no additional functionality would be gained by this extra effort. When multiple individuals
and multiple organizations are involved in a project, irreconcilable hierarchies may be developed to support
similar functions. Adjusting source code to retrofit it into a unified inheritance hierarchy may not be
economically feasible or even possible (in the case of object-code libraries). Finally, we want the
organization of the repository to be malleable—to evolve as the characteristics of the components evolve.
We would like to achieve such flexibility without having to revamp the C++ class definitions continually.

Thus we have been led to consider a method for incrementally defining categories of components. In the
machine learning literature, such a method is characterized as an unsupervised incremental learning
algorithm: unsupervised, because the set of available categories is not given to the algorithm a priori, but is
developed instead by the algorithm itself; incremental, because the set of categories, as well as their
boundaries, can change every time a component is added or removed from the repository [Fisher and
Pazzani 91]. Unsupervised incremental learning is sometimes known as concept formation. ElvisC
employs a concept formation algorithm called Cobweb to perform automatic classification of C++
components. A slightly different version of the algorithm is used to retrieve components that best match a

given query.
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2. The ElvisC Repository

ElvisC attempts to provide an organized repository with minimal construction and maintenance costs to its
user community. It does so by assisting in the formal characterization of repository submissions, and
automatically organizing the repository contents to reduce searching. ElvisC is composed of three major
components: 1) a case base of submitted assets, 2) an extensible asset characterization language similar to
that first demonstrated in TEIRESIAS [Davis '82], and 3) an unsupervised classification system derived
from the Cobweb inductive concept formation system [Fisher '871].

One novelty of this work is its use of an unsupervised classification system to solve the "distance metric"
problem of case-based systems: determining the closest match to a given problem specification within the
existing case base when a perfect match does not exist. It does this by treating the problem specification as
if it were the characterization of a new case to be classified: the bin into which this problem characterization
would have been placed is the bin that contains the closest matches to the new problem. The advantage of
this classification technique is that it requires no specific knowledge of the application domain beyond the
n-dimensional shape? of the existing case base. Thus the repository is both self-organizing and

ontologically open.

2.1 Acquisition and The Feature Space

Characterization of assets serves two purposes: it describes the asset for potential reusers, and it provides
the basic data with which to organize the library for reuse. To assist in the organization of the library, the
characterization must be able to differentiate this asset from dissimilar assets and to relate this asset to
similar assets. Thus characterizations must draw from a common vocabulary which can be extended as
needed to distinguish new cases from existing cases. To meet these demands ElvisC acquires its
characterization language interactively from users when they submit assets. This technique was first
demonstrated in TEIRESIAS [Davis and Lenat '82] for the acquisition of diagnostic rules for blood
diseases.

The asset characterization language, or feature space, is organized as a tree of keyword schemata. This
tree is rooted in the Feature feature. The children of Feature are top level characterizations of an artifact,
for instance the asset's function or the environment in which the asset was defined. These children may
have children themselves, each of which represents a further refinement of its parent's concept. The entire
feature space below the 'Feature' feature is malleable and can be extended or edited by contributing
authors.  Modifications to the feature space are tracked by the interface so that old definitions can be

repaired to fit the new space.

Each schema specifies the keyword name, a textual definition of the keyword, an indication of how the
keyword can be refined, and prompts for selecting from existing child features or soliciting new child
features. The Feature feature is defined as follows:

name: "Feature”

definition: "This is the mother of all features."

refinement type: Alternatives

solicitation prompt: "What new feature would you like to add?"
child selection prompt: "What features characterize this asset?"

When a user interacts with this schema they are presented with the child selection prompt, followed by a
list of the refinements currently available for refining the Feature feature. If the user enters the name of
one of the refinements presented, they then interact with the schema for that refinement. If the user enters
a name that is not on the list of existing refinements, they enter a dialog for instantiating a keyword schema
as a new refinement for the Feature feature.

2 The dimensions of the space are the attributes by which the cases are classified; the shape is determined by the relative
frequencies of cases along these dimensions.
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The refinement type for the Feature feature is Alternatives. This refinement type allows the selection of
one or more children in the description of an asset or the specification of a query. Alternative refinements
of the root feature might be Feature = Language and Feature = Performance. An asset may be
characterized by either or both of these alternatives. The Alternatives refinement type can be thought of as
an inclusive "or" in the refinement tree. The existence of alternative refinements in the feature space is
what differentiates our approach from those that use the feature space as a decision tree for directly sorting
assets into asset type categories.

A second refinement type is Options. This method of refinement allows the selection of

refinement. Subsequent selection of another refinement deselects previous refinements. The features C
and C++ could be options for the refinement of Feature = Language . This type of refinement can be
thought of as an exclusive "or" in the refinement tree.

The third refinement type is Arguments. This method of refinement indicates that the refinements of a
feature are jointly required for the feature to be present in a characterization. For instance, if one of the
options for Feature = Function was Storage, we might specify two arguments for Storage: What (what is
being stored) and Where (where is it being stored). Thus an asset characterized by the storage keyword
would possess Feature = Function = Storage = What = ... and Feature = Function = Storage = Where
= ... attributes. This type of refinement can be thought of as an "and" in the refinement tree.

Finally, a feature may not have any type of refinement. Such a feature is said to be "terminal”. In the
language example above, C and C++ are terminal since no further refinement of these features is deemed
necessary. If at some later point it became important to distinguish ANSI C and K&R C3, then the
previously terminal C feature token could be refined to provide these new options.

An asset is characterized by selecting or adding progressively more detailed refinements from the feature
space. The description of an asset is equivalent to the set of nodes from the feature space that were
traversed during asset definition. The query specification process works identically.
2.2 The Solution Space

The solution space is composed of a case base of assets and a concept hierarchy of asset types. The asset
case base is organized as a forest of inheritance trees to allow derived class assets to inherit, optionally, the
features of their parent class assets, thereby simplifying asset characterization. Assets that have no parent
class specified, or assets which are written in a non-object-oriented language, are treated as base class
assets and stored as children of a root asset. Thus in practice the asset case base tends to be top-heavy

rather than deep.

Each asset record in the hierarchy contains that asset's features (as described above) and housekeeping
data. Housekeeping data encompasses all information that is required for the asset but that does not
contribute to its classification. Examples of housekeeping data include the asset's name, location, and
author. Asset names are guaranteed to be unique so that they can serve as identifiers in the hierarchy. The
asset's location is intended to be an accessible path name for the source or object files constituting the
asset. In the future we hope to use this path name to support automatic delivery of selected artifacts to

clients of the repository.

2.3 Organization of the Solution Space

Earlier versions of ElvisC (then called Elvis) viewed a query to the case base as constraints on which
existing cases could be retrieved. If no existing cases satisfied all the constraints, Elvis had to selectively
relax some or all of those constraints until a match was found. The problem was knowing which

constraints to relax.

3 ANSI C refers to the American National Standards Institute's definition of the C language. K&R C refers to the definition
of the C language published by Kernighan and Ritchie prior to the ANSI work.
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Suppose that a user is looking for an asset written in "C" which functions as a sorted collection of
pointers, any of which can be located on average in O(log n) time. The features for this request would be:

Feature = Language = C
Feature = Function = Collection = Sorted
Feature = Performance = Average case = O(log n)

Suppose that no asset in the case base fulfills all these criteria. Relaxing the language constraint one level
means that any language can be used. Relaxing the function constraint means that a collection of any type
can be used. Relaxing the performance constraint means that any level of performance is adequate. The
combined result of all of these individual relaxations would be the union of a number of possibly disjoint
sets of assets. If we could order the relaxation options a priori based on their expected impact on the
appropriateness of retrieved assets, we could successively apply those options until we got a set of assets
of reasonable size and appropriateness. Otherwise we could end up with a very large set of assets, and no
clue of how to order them for appropriateness other than Hamming Distance (the number of matching
attributes). The uninformed constraint relaxation approach is equivalent to a brute force exhaustive search
in the feature space, beginning with the specified constraints, in order to find exemplars in the asset space.
The contents of the case base provide no insight into how to direct this search other than knowing when it

is done.

ElvisC uses the Cobweb inductive concept formation system to locate the closest match to a desired case.
Cobweb is an unsupervised incremental concept formation system originally developed by Douglas Fisher
in his doctoral work at the University of California, Irvine [Fisher '87] . A thorough description of the
algorithm and its Lisp implementation in Cobweb/3 is available in [McKusick and Thompson '90]. This
method uses the contents of the solution space to guide the search. As a result, smaller sets of closest
matches are retrieved, and a method for rank ordering the appropriateness of the retrieved cases is
available. The Cobweb algorithm appears to perform in O(log n) time for classification, where 7 is the
number of cases in the the case base. Since the size of the case base grows slowly and probably never
exceeds thousands of cases, this performance should be adequate. Furthermore, the accuracy of an
inductive method should grow as the case base grows.

2.3.1 Cobweb

Cobweb takes a stream of object identifiers and their descriptions, and incrementally organizes them into a
concept hierarchy. As one proceeds deeper into the hierarchy the concepts formed become more and more
specific until one reaches the leaves of the hierarchy in which a concept describes the attributes of a single
object. Cobweb uses relative frequencies of attributes to construct the concepts, and uses those
frequencies as probabilities when finding the best concepts (bins) to house the next object seen. Thus
Cobweb does not employ any domain specific heuristics to do its classification, nor does it resort to
human supervision in its construction or use of these bins.

ElvisC uses Cobweb to determine the closest matches to a prospective re-user's stated requirements. We
treat the features comprising the requirement as the specification of a hypothetical object to be classified.
Cobweb then filters the new hypothetical object down its classification hierarchy with the additional
constraint that no new bins can be created to house the concept. The bin in which this problem
characterization would have been placed (the host bin) is the bin which contains the closest match to the
new problem. The bin which contains the host bin (the super-host bin) contains the next closest matches
for the stated requirement. ElvisC currently returns the contents of these two bins in response to a query,
with the asset from the host bin at the front of the list.

2.3.2 How Cobweb Works
Cobweb uses a metric called Category Utility (CU) to determine the relative goodness of different
placements of a new submission in the current case base. The version of category utility used in this

implementation is:
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CategoryUtility = { Sum _y o P(C)*

[Sum;_q p; Sum;_ g nj; PCA;=Vj; Izck ?1-
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) + nk

where:
nk is the number of categories at the current level of the hierarchy
P(C,) is the probability of membership in category k relative to all other categories 1..nk

ni is the number of possible attributes
njj is the number of possible values for the ith attribute
P(A;= Vji | C, ) is the probability that an attribute i has the value j given membership in category k

P(A;= Vji ) is the probability that an attribute i has the value j for all categories 1..nk

This metric was first proposed and discussed in detail in [Gluck and Corter '85].

Cobweb categorizes a new submission to the library using a recursive algorithm. The algorithm begins at
the root of the classification hierarchy which represents the bin containing all examples. At this root node

the algorithm performs as follows:

1. Add the example as an exemplar of the node, updating the node's value frequencies according to
the example's description.

2. If the node has no exemplars other than this new exemplar, terminate (classification is complete).

3. If the node now has two exemplars, create two child nodes (bins) to hold each of the exemplars
and terminate (classification is now complete).

4. If the node now has more than two exemplars, it must have two or more child nodes. The options
for placement of the new example are:

4a: Create a new child (sub-bin) which will hold the example as its sole exemplar.

4b: Place the exemplar in the existing child (sub-bin) which best fits the exemplar.

4c: Create a new child (sub-bin) which will hold the exemplar by merging the two existing

children which best fit the exemplar.
4d: Replace the existing child which best fits the exemplar by its children, and then place the

exemplar in one of those new children based on where it fits best.

Each option is tried individually, with the results of option 4b used to identify the children to merge in
option 4c and the child to split in option 4d. The category utility score is computed for the node after
an option is performed, and then the results of the option are undone. After all options have been
tried, the option which resulted in the best category utility score is selected. The algorithm, beginning
at step 1, is then recursively applied to the selected sub-bin.

The P(C,) multiplier in the category utility function has the effect of limiting the number of children of a
node to a range between two and some small constant (in our experience less than a dozen). Since this
algorithm never considers more than the immediate children of the current node, and then selects at most
one of those children for further classification, the performance of the algorithm is roughly O(log n).

2.3.3 Modifications to Cobweb
Cobweb has been applied to domains where the number of attributes is known a priori , and every
exemplar is described by values for every attribute. In our reuse library, the attribute space is growing and
exemplars are described only by a subset of that space.

The first problem is easy to solve. When our version of Cobweb is confronted with a previously unseen
attribute, it updates all existing artifact descriptions with an "unknown" value for the new attribute.
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The second problem is more fundamental. An attribute such as Performance => O(1) could be missing
because the artifact was inadequately described, or because the attribute does not apply to the artifact (e.g.,
the artifact is a representation for calender dates, and thus a characterization of algorithm performance is
not appropriate). The default implementation of CU and Cobweb will determine that two descriptions
match on an attribute if both have a value of "unknown" for that attribute. This is correct for the latter case
where the attribute is not appropriate to the definition of the artifacts. A modification to the calculation of
CU is possible such that an unknown value for an attribute within an artifact description is treated as
unique to this asset description, thus matching no other descriptions with a value of "unknown" for that
attribute. This is correct for the former case where the artifact was inadequately described. Operationally,
the use of unique unknowns causes a bushy classification hierarchy with a large number of bins holding a
small number of exemplars. Many artifacts which we would have expected to be present in the same bin,
at some level of the hierarchy, are instead only collectively present in the root node of the hierarchy. If we
use non-unique unknowns these artifacts do tend to be present in the same bin at a level of the hierarchy
below the root node, thus showing their similarity at that level of abstraction.

In ElvisC we treat "unknown" values for attributes as significant (non-unique) during the classification of
contributed assets, but downplay the importance of unknown values during retrieval (treat them as
unique). This decision is based on the assumption that retrieval requests are intentionally loosely
described, but that asset descriptions are not. Since unknowns are treated as unique during retrieval,
traversal of the classification hierarchy is guided more by attributes with known values than those with
unknown values. Since during retrieval no actual modifications are made to the classification hierarchy,
the deeper form caused by the normal (non-unique) algorithm is preserved. Finally, since the retrieval
algorithm returns the one exemplar from the leaf of the classification hierarchy which best matched the
request, followed by the exemplars of the parent of that leaf, a smaller and more focused set of closest

matches is returned by the deeper hierarchy.

2.3.4 Archetypes and Prototypes
Cobweb has been augmented in ElvisC to keep two synthetic artifact descriptions at every classification
bin. The prototype description records for each attribute the most probable value for that attribute given
the contents of the bin. The archetype description records for each attribute the most probable value for
;hat t}alxttribunt: other than the "unknown" value if there exist exemplars in the bin which have known values
or that attribute.

We hope to use the archetype descriptions to assist the submitted artifact description process in
guaranteeing that an artifact description is adequately specified. Once an author has made a preliminary
characterization of his or her artifact, the interface will do a preliminary classification to identify an
appropriate archetype. The interface will then use archetype attributes with known values which
correspond to unknown values in the proffered artifact description to prompt the author for additional
information to complete the description.

We hope to use the prototype descriptions as the basis for functionality-based asset browsing, an
alternative to the inheritance-based asset browsing currently employed.

3. An Experiment

ElvisC is, as its full name implies, an experiment. The hypothesis is that the Cobweb algorithm can
organize software components for efficient and reliable retrieval of closest matches without human
supervision, and without the direct encoding of closeness information. The experimental apparatus is the
ElvisC implementation itself, augmented by methods for quantifying its performance in an attempt to refute
the hypothesis. The experimental subjects are the potential users of the system, and their collective
solutions and problems.

There are two types of errors that could refute the hypothesis. The first type is errors of omission, where
an applicable case is not retrieved in response to a query. These errors could be quantified by recording
examples of retrieval requests, and comparing the responses of ElvisC to the responses of a human
librarian who is familiar with the case base. Errors of omission are inversely related to the reliability of
retrieval. The second type is errors of inclusion, where patently irrelevant cases are returned as the
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primary candidate solutions. Such errors could also be quantified by comparing the responses of a human
librarian to those of the system. Errors of inclusion are inversely related to retrieval efficiency. Of the two
types of errors, errors of omission would provide a more serious challenge to the hypothesis.

In this experiment outside subjects were not available. Instead we evaluated an automatically generated
classification hierarchy directly, looking for characteristics that would lead to the two types of errors. To
minimize errors of omission, the classification must co-locate (at some level) assets that solve the same
problem, rather than scatter them about the hierarchy. To minimize errors of inclusion, the classification
must be deep enough to effectively partition small numbers of solutions. In a hierarchical classification
scheme these two characteristics of good organization are themselves related: the higher the level at which
similar assets are co-located, the larger the number of assets that must be inspected in detail to identify a
best candidate (and hence the lower the efficiency of the overall retrieval process).

In [Bewtra and Lide '92], investigators manually characterized and classified a set of 56 source code
components from a Code 522 reuse directory. In this experiment, we entered the same classes into
ElvisC using the feature descriptions provided in that paper*. The fifty-six classes were added to eleven
classes from the National Institute of Health C++ class library, which had been previously entered into
ElvisC, so that in total 67 classes were described and classified. The resulting classification hierarchy was
printed out and evaluated in order to determine its support for efficient and reliable retrieval of artifacts by
an unfamiliar user. The description language which was developed while entering these classes and the
classification hierarchy that resulted are presented in detail in [Henderson '92].

4. Results

Figure 1 presents the classification derived manually in [Bewtra and Lide '92]. Dotted boxes denote
categories of C++ classes that were treated in that paper but were not included in this experiment because
of time limitations. The manual classification was constructed without any knowledge of the results
(indeed, the existence) of this experiment. Conversely the experiment was performed without access to

the results of the manual classification.

Manual Classification
User Interfaces Data Structures Utilities
/\ » """"',‘",""E
Debu, y Communications }
TAE Panels Editors Indexes Lists | = — o | \'oooremereeeem”
[ H
Time cosps
Widgets Files -
String manipulation

Figure 1.

It is interesting to note that this manually derived hierarchy went through several revisions during the
writing of [Bewtra and Lide '92]. Since there is no performance task associated with this hierarchy, its
construction is the result of subjective decisions on how to partition the C++ classes that were evaluated.
It is reasonable to assume that these decisions were influenced by the authors' contact with a large number

of software modules that were not part of that evaluation set.

4In some cases the provided descriptions were very terse, and several descriptions referred to base classes that were not
described elsewhere in the paper. Thus we were not always able to provide distinctive or complete descriptions for each asset,
and this may have diminished the effectiveness of the automatic classification.
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Figure 2 presents the top levels of the automatically generated classification hierarchy. The nodes in this
tree will be called concepts to differentiate them from the nodes in the manual classification hierarchy
which we will call categories. Since ElvisC does not currently generate titles or descriptions for concepts,
we have entered titles based on examination of the concept exemplars and characteristic features.
Characteristic features were identified by a combination of two statistics. The first statistic is the
probability that an exemplar of the concept has the feature. The second is the probability that an asset
which has that feature is an exemplar of the concept. To be a characteristic feature for a concept, both of

these probabilities had to be above 50%5.

Automatic Classification

1 User Interfaces 2 Collections 3 Misc Data Structures
1.1 Decorations 1.6 Editors 2.1 Abstract 2.7 Misc lists
1.2 Widgets 1.5 Viewers and Queries | | 2.2 Alphabetical 2.6 Unknown access type
1.3 ScrolledWindow 1.4 DebugPrinter 2.3 IndexTableFile 2.5 Associations
2.4 of NIH Objects

Figure 2.

The top level of the automatically generated classification hierarchy contains three concepts. Examination
of the characteristic features reveals that they represent user interfaces, lists, and data structures
respectively. These top level concepts are then further divided into sub-concepts that have been labeled in
the diagram based on their contents and characteristic features.

4.1 Description of the Cobweb Classification Hierarchy

Concept 1 contains twenty five user interface classes. There are no user interface assets contained in any
of the other top level concepts, so the retrieval of user interface components will be reliable at this level.
The first sub-concept of concept 1, labeled Decorations, includes two widget classes which perform no
function other than to provide visual feedback for a host window. Neither of these widget classes
supports user input, and their collocation within this concept seems reasonable. The second sub-concept
(1.2) also includes widget classes, but these classes allow user interaction. Next there are two singleton
sub-concepts, one for the asset ScrolledWindow (1.3) and one for the asset DebugPrinter (1.4).
Although DebugPrinter is a novel class in the library and, as such, deserves its own concept,
ScrolledWindow seems subjectively to be a good fit with the Viewers and Query Dialogs concept. The
placement of ScrolledWindow in a concept of its own could adversely effect the efficiency of retrieval.
The next sub-concept (1.5) represents interaction windows which are not used for editing a file. The final
sub-concept of concept 1 represents editors.

Concept 2 contains eighteen collection assets; code components that collect multiple instances of some type
such as linked lists. There are no collection assets contained in any of the other top level concepts, so the
retrieval of collections will be reliable at this level. The concept is further subdivided into sub-concepts of
abstract base classes, alphabetically organized lists, lists of NIH Objects, associations, lists with unknown

5 We found through experimentation that this threshold revealed features which both described the concept and differentiated it
from its siblings.
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access methods, and a concept for lists which presumably did not fit elsewhere. The clustering of assets is
good for each lower level concept with two exceptions. First, NIHDictionary (a sub-concept of 2.4) and
the elements of the Associations concept (2.5) both provide associations between a key and a value. A
query leading to the associations concept will not turn up NIHDictionary and vice versa. This problem
points to a weakness in constructing exclusive categories (categories that do not share elements with their
siblings): at lower levels a decision must be made on how to discriminate classes, and that decision may
not perfectly represent the relative importance of different features in the class descriptions. In this case,
the classification decision appears to have been made based on the types of values collected: pointers to
NIH objects for concept 2.4 and untyped pointers for concept 2.5. The impact of these decisions could be
reduced through the use of multi-branch search within the classification tree.

Concept 3 contains every asset which is not an interface or a collection, The sub-concepts within concept
3 are not well formed, having few if any characteristic features to distinguish them. Several appropriate
clusters seem to be forming, such as iterators and date/time representations, but overall these sub-concepts
seem to be in a very nascent state. This could be symptomatic of poor descriptions, or of a lack in
regularity within this subdomain.

4.2 Reliability Evaluation of the Cobweb Classification Hierarchy

Retrieval reliability is dependent on the system's ability to appropriately cluster similar assets within the
repository.  For the purposes of this evaluation we have presumed that the clustering presented in the
manual classification is correct, although that organization has gone through multiple revisions and the
assessment of its quality is somewhat subjective.

Table 1 shows how the assets within the automatically generated concept hierarchy fall within the manual
hierarchy for the User Interface category. The column headings represent the sub-categories of User
Interface within the manual classification. The row headings represent the sub-concepts of User Interface
for the automatic classification, followed by the total number of assets identified with that concept in
parentheses. Numbers within the cells of the table indicate how the assets from a concept fall into the

manual categories. o

Generated Concepts Panels Widgets Editors Non user interface
Decorations (2) 2
Widgets (5) ' 5
Viewers (12) 9 1 2
Editors (4) 4
Other UI (2) 1 1
Table 1.

Every asset in the User Interface category was identified within the User Interface concept, so reliability
for this concept was 100%. One additional asset was included in the User Interface concept which was
not included in the User Interface category, so the match at the User Interface level was 24 + 25 = 96%.

Although the sub-concepts formed within the User Inzerface concept do not match the manual partition of
the User Interface category, a mapping between them is evident from inspection of the data and from the
statistically generated concept descriptions. First, the Decorations and Widgets concepts represent a
partition of the manually generated Widget category. Second, the Viewers concept is very similar to the
manual Panels category. Given this mapping, correct classification inside the User Interface Concept is 20

+ 25 = 80%.

Table 2 shows how assets within the Collections concept fall within the partitions of the Data Structures
and Utilities categories. Within the manual classification most of these assets inhabit multiple categories.
These assets are arbitrarily labeled by letters to indicate how a member of a concept falls into the manual

categories.
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Generated Concepts Indexes Files Lists Time String Debug
Abstract (2) a,b
Alphabetical (2) c c d d
Linked Lists (3) e, f, g g
Misc Lists (2) h, i h i
Other (1) k k
Table 2.

Every asset in the Lists partition of the Data Structures category was identified by the Collections concept,
so reliability for Lists was 100%. Two assets representative of the Collections concept were not part of
the manual Lists category, so the match between the concept and the category was 8 + 10 = 80%. For
completeness it should be noted that the Associations and NIH List concepts were not part of the manual
classification and so were omitted from this discussion.

Table 3 shows how assets within the Misc Data Structures concept fall within the partitions of the Lists
and Utilities categories. Some of these assets inhabit multiple categories, so letters are used to indicate
how a member of a concept falls into the manual categories.

Generated Concepts Indexes Files Lists Time String Debug
Reporters (2) a b
Other (8) a a,b,c,d e f,g h
Iterators (1) k
Dates (3) m, n, 0
Table 3.

We can compute the reliability of the Misc Data Structures concept by comparing it to the partitions of the
Data Structures and Utilities categories gxcept for the Lists partition of those categories, which should have
been accounted for by the Collections concept. Given this interpretation the reliability for the Misc Data
Structures concept was 12 + 14 = 86%.

The last two tables show that the categories which straddle concepts are Indexes, Files, Time, and String.
Reliability problems with Time and String retrieval cease if the requestor indicates that a collection of these
types is desired. Retrieval reliability for assets manually classified within the Indexes and Files categories
is not good, and reflects the nascent state of the associated concepts within the automatic classification.

One cause for the divergence between the manually generated and automatically generated hierarchies is a
difference in the definition of the classification process. Cobweb creates exclusive concepts (concepts that
do not share elements with their siblings). The manual classification generated in [Bewtra and Lide '92]
includes assets in multiple categories. Cross-referencing enhances the reliability of retrieval at the expense
of efficiency of retrieval. Thompson [Thompson '92] has suggested that a more sophisticated "beam”
search in response to queries would enhance the reliability of retrieval with a fixed decrease in retrieval
efficiency. This may represent an alternative to non-exclusive catagories. Another possible solution
would be to use a classification algorithm that assigns assets with varying probabilities to different
categories, such as AutoClass [Cheeseman '88].

4.3 Efficiency Evaluation of the Cobweb Classification Hierarchy

Retrieval efficiency is inversely related to the number of matches returned for a search request, thus the
maximum efficiency that could be attained is 1.0. Since the manually constructed classification hierarchy
is only two levels deep, efficiency is limited by the average size of a second tier partition. For the assets
considered in this experiment the average size of a second tier partition is 6.67 elements, and so the

average efficiency would be 1 + 6.67 or approximately 0.15.
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Cobweb produces a concept hierarchy whose leaves contain a single exemplar. Thus if the generated
concept hierarchy was perfect, the average number of returned cases for a request would be one! Our data
for the hierarchy that was actually constructed suggests that this strategy would be too unreliable. If we
were to restrict retrieval to second tier concepts we would attain about 80% reliability. The average size of
a retrieved set would then be 3.43 elements, and the average efficiency would be approximately 0.29.

What this suggests is that an automatically constructed but manually corrected concept hierarchy would
attain higher efficiency with less effort than a purely manually constructed hierarchy, while still retaining
the same reliability.

5. Summary

At its upper level the automatic classification performed by ElvisC is of high quality and fulfills our criteria
for reliable retrieval. For the first two categories this claim can be extended to lower level subcategories,
as can the claim for efficient retrieval. The last category, however, demonstrates the frailty of weak-theory
systems: all that the algorithm has to go on are the descriptions given it of the sixty-seven classes, and
specifically of the twenty-four assets that fall into this category. Cobweb's strength lies in its ability to
exploit the fact that the world is sparsely populated from the set of things that could be. The algorithm is
not effective until enough cases have been seen and the regularity in how attributes co-exist in objects

becomes evident.

The degree of correlation between the manually constructed classification and the automatically generated
classification is remarkable considering that the automatic algorithm was unsupervised and so made its
own decisions on the kinds of concepts to form and then on how to further partition those concepts. The
results show that, with a relatively small number of samples, a good classification can be arrived at
without human supervision or embedded knowledge of the domain.

This technique allows the reuse of work products by a large group of participating individuals when a
domain theory on how to organize the repository is not available. We hope to continue to accumulate
evidence to support these findings, and thereby establish this novel application of concept formation.
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