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Determination of Design and Operation Parameters
for Upper Atmospheric Research Instrumentation

to Yield Optimum Resolution with Deconvolution

The subject NASA grant number NAG 1-804 was instituted 1 Aug 1987, originally
for a three-year period, through 31 July 1990. No-cost extensions were granted so that the
grant finally terminated on 31 Dec 1991. During the period in which the Principal
Investigators were partially supported by the grant, Graduate Research Assistants and a
Graduate Research Associate, Mr. Abolfazl M. Amini, were also supported on an
intermittent basis. A good deal of grant-related research was performed by graduate students
who were not directly supported by the grant, but were employed by the University of New
Orleans Department of Physics as Teaching Assistants, or otherwise employed.

In addition to the support provided by NASA Langley Research Center, two other
sources of support were associated with this grant. Two funding increments through this
NASA grant were provided by the U. S. Army Cold Regions Research and Engineering
Laboratory (CRREL) for research performed by the Principal Investigators and an additional
Investigator, Dr. Clyde Bergeron of the Department of Physics. A funding increment was
also provided by NASA Marshall Space Flight Center to begin research into the analysis and
prediction of the tethercd satellite tether skiprope mode, which could occur in the
NASA/Italy ASI TSS-1 experiment.

The research for the basic NASA Langley grant and for the additional increments of






funding has been described in journal and proceedings articles, published abstracts, student
Master’s theses, and reports, all of which are included in this final report document. We
include both papers directly supported by NASA and the related research directed by the
Principal Investigators which did not receive direct NASA support. A list of the journal and
proceedings articles, research papers with published abstracts, and theses directly related to
the subject of the initial grant is included in Appendix 1, along with copies of the articles and
abstracts. Appendix 1 is bound in this volume.

Appendices 2, 3, and 4 contain the three student Master’s theses listed in Appendix
1. Each of these is bound separately and enclosed as a volume with this report. The two
reports written to describe the research supported by CRREL are included as Appendices 5
and 6, which are bound in this volume. Finally, the Engineering Notebook, Appendix 7,
written for and submitted to NASA Marshall Space Flight Center, is also part of this report,
and is included as an enclosed separate volume.

Among all the research results reported in the Appendices, note should be made of
the specific investigation of the determination of design and operation parameters for upper
atmospheric research instrumentation to yield optimum resolution with deconvolution. As
reported by G. Ioup et al (1988, 1989), a methodology has been developed to determine
design and operation parameters for error minimization when deconvolution is included in
data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all
parameters of interest. Instrumental characteristics will determine a curve in this space. The
SNR and parameter values which give the projection from the curve to the surface,
corresponding to the smallest value for the error, are the optimum values. These values are
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constrained by the curve and so will not necessarily correspond to an absolute minimum in
the error surface.

During the period of this grant, the Investigators and their students have maintained
frequent contact with the original technical monitor, Dr. George M. Wood, and the new
monitor, Dr. Billy T. Upchurch, both of NASA Langley Research Center. This interaction
has been immensely rewarding for both the Investigators and their students. We are very
grateful to NASA Langley Research Center, not only for the funding of the research, but
also for the interaction and research opportunities which have been provided to the
Department of Physics at the University of New Orleans. We anticipate with pleasure

continued association with the research staff of NASA Langley Research Center.
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Autocorrelation estimation using constrained iterative

spectral deconvolution

Murali Ramaswamy* and George E. loup}

ABSTRAC1

Computing an autocorrelation conventionally pro-
duces a biased estimate, especialiy for a short data se-
quence. Windowing the autocorr:lation can remove the
bias but at the expense of violating the nonnegativity of
the corresponding power spectrum. Constrained itera-
tive deconvolution provides a tasis for improving an
autocorrelation estimate by reducing the bias while
guarantecing nonnegative definitcness.

The length of the autocorrelation is increased in order
to satisfy the nonnegativity constraints on the power
spectral estimate. The constraints can also have signifi-
cant effects on small, poorly deiermined values of the
autocorrelation. The technique 5 applied to synthetic
and real examples to show the improvements in the
autocorrelation and power spectium which are possible.

The method is reasonably stible in the presence of
noise and it approximately prescrves the area of the
power spectrum. Comparison to the maximum entropy
technique shows that the iterativc method gives power
spectral resolution which is somctimes better and some-
times not as good, but that ther: are cases for which it
is the more desirable approach.

INTRODUCT!ON

Autocorrelation and power spect-al estimation are difficult
when the segment of data available .~ of inadequate length. To
reduce the variance in the power spectral esumate, auto-
correlation windows (Blackman and Tukey, 1958; Geckinli
and Yavuz, 1983) or some forms ol spectrum averaging are
used (Daniell, 1946; Bartlett, 1948 Welch, 1967). Bias in the
autocorrelation due to missing lagged products, with more
products missing as the lag increases (Cooley et al., 1970), is
especially acute for short data segrients, since the suggestion
of Blackman and Tukey (1958) to use only 10 percent to 20

percent of available lags is no longer practical. Short data
sequences are commonly selected in designing filters for non-
stationary or shift-variant data so that there will be approxi-
mate stationarity or shift invariance within the window. This
approach is often taken in processing seismic data.

Muaximum entropy (MEM) spectral cstimation (Burg, 1975;
Kan.asewich, 1973} is the technique generally used for obtain-
ing an improved autocorrelation and power spectrum for
shor: data sequences (Jurkevics and Wiggins, 1984). Maximum
entropy spectral estimation assumes an autoregressive model
for the data. When the method works, it works very well
However, it is sensitive to noise and is unstable for some data
type. (Lacoss, 1971; Chen and Stegan, 1974). 1t also does not
return a true magnitude for the power spectrum (Lacoss, 1971
Johrson and Anderson, 1978).

In this paper we suggest for improving estimates of auto-
correlations and power spectra an alternative approach, which
is nat very sensitive to noise and assumes only that the data
sequence is a truncated portion of a larger data set.

The method begins with a biased estimate. It removes the
bias using constrained iterative deconvolution of the power
spectrum. If run to convergence, the technique removes almost
all the bias. For difficult data however, the iterations may be
terminated before all bias is removed. The constraint guaran-
tees the nonncgative definite property of the autocorrelation
by leeping the power spectrum nonnegative. The principal
effect of the constraint is to extend the autocorrelation beyond
the number of lags originally possible, but it can also improve
the rstimate in the original lag domain and reduce the effects
of v.iriance in estimating small autocorrelation values (Yoer-
ger, 1978 Yoerger and loup. 1983). The constraints will most
affect power spectra which have peaks with valleys near the
zero baseline and least affect flat power spectra which rarely
approach the zero baseline. For all data, however, the pro-
posed approach (Ramaswamy, 1985) removes the bias in the
autocorrelation estimate and sharpens the power spectral esti-
mat:; ie, the bias in the autocorrelation results from
deeraphasizing the larger autocorrelation lag values, which in
turn smooths the spectral estimate.
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382 Ramaswamy and loup

We briefly discuss basic methods for autocorrelation and
power spectrum calculations for truncated data sequences to
show the bias which is inherent in the resulting estimate
(Cooley et al., 1970). We then summarize iterative deconvolu-
tion as it is currently practiced in the function domain, show
how the technique is applied in the transform domain to im-
prove the autocorrelation estimate, discuss practical consider-
ations, and give some examples.

AUTOCORRELATION ESTIMATION

The autocorrelation of a time sequence x(t) that is N sam-
ples long is often defined as (Cooley et al., 1970)

N~

1
b(t) = 1/N z x(t)x(t’ — ¢). n
=0

The above formulation leads to a biased estimate of the auto-
correlation because the number of lagged products going into
the estimate of b(r) is a function of 1. To correct this effect, the
equation is rewritten for an unbiased estimate u(r),

N-1
u(t) = 1N — |1]) 3 x(t)x(t' — 1). (2)
r=0
Although the above equation results in reduced bias, this form
can lead to a violation of the nonnegative definite property of
autocorrelations of real sequences, corresponding to the non-
negativity of the power spectrum.
The biased estimate b(t) is related to the unbiased sequence
u(t) by the relation

b(t) = u(t)w(2), 3

where w{t) is a triangular or Bartlett window of unit peak
amplitude at the origin (Cooley et al., 1970). The window can
be expressed as

w(t) = (N —|t]|)/N, —N<t<N. (4)

Uppercase notation is used to represent the transform vari-
ables as follows:

b(r) — B(f),

u(ty = U(f), )

and
wit) > W(f).
Applying the convolution theorem (Bracewell, 1978),

B(f) = Uy« W(/), (6)

where the asterisk denotes convolution. In performing a
straightforward autocorrelation estimation, one chooses be-
tween the biased estimate in equation (1) and the unbiased
estimate of equation (2). The advantages of the former are that
the estimate satisfies the nonnegative definite property and
that it deemphasizes the presumably less reliable values at
larger lags. Its disadvantage is the same deemphasis, i.e., the
bias in the estimate. The unbiased estimate eliminates this bias
but sacrifices the nonnegative definite property. The method
proposed in this paper eliminates the need to choose between
these estimates by removing the bias, subject to satisfaction of
the nonnegative definite property; it simultanecously offers esti-
mation capability beyond either of the above approaches.

The problem is to get an estimate of U(f) when B(f) and
W(f) are known. W(f}is the function

W(f) = 1/N[sin? nNf/sin? nf),
which for large N becomes
W([) = sin® aNfINm*f? = N sinc? Nf.

Therefore, from equation (6), B(f) is a smoothed version of
U(f). One way to remove this smoothing effect is to decon-
volve B(f). However, deconvolution is not straightforward if
we wish to include the nonnegative definite constraint im-
posed on autocorrelations, which corresponds to a nonnegati-
vity constraint on U(f) (Papoulis, 1962; Robinson, 1980). Also
note that deconvolving in the frequency domain produces u(t),
which could be computed directly if the nonnegative definite
property is ignored.

In this paper a method to mitigate the effect of W(f) on the
spectral estimate is proposed through a constrained iterative
deconvolution process carried out in the spectral domain.

ITERATIVE DECONVOLUTION

The method of deconvolution using successive substitution
(Bracewell and Roberts, 1954; Ioup, 1968; Lacoste, 1982; Ioup
and Toup, 1983: Jansson, 1984) was originally described in the
time domain. For a function f(r), input to a linear shift in-
variant system with impulse response A(t), the output x(1) is

x(t) = ff(t')h([ — ') dt’ = f(1) * h(1), )

where the asterisk denotes the convolution operation. Alter-
natively,
X(/)= FU)H(), (8)

where X(f), F(f), and H(f) arc the Fourier transforms of x(r),

S(t), and h(t), respectively. The problem of deconvolution is to

find f(1), given x(¢) and h(1). The principal solution (Bracewell
and Roberts, 1954) for F(f) is

X()H(f)  forf: H(f)#0

9
0 forf: H(f)=0.

F(f)y= {
lToup and Toup (1983) discuss the case when H(f) = 0. The van
Cittert solution to the problem is stated in the time domain by
the following equations:

Jo(8) = x(t),

L) =10 + [X(t) —Solt)* h(t)],
(10)

L@ =f_t+ [x(t) —f,_l(t)*h(t)}

where f, (¢) is an approximation to f(t) which converges to the
principal solution in a finite number of iterations. Time-
domain constraints can be enforced after each iteration. Ioup
and Ioup (1983) and the references cited therein discuss this
method in greater detail, and Jansson (1984) gives a very com-
plete development.
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APPLICATION TO AUTOCORRELATION
ESTIMATION

The van Cittert solution is givea in the time domain,
whereas spectral estimation require- deconvolution in the
frequency domain. In equation (6), B(/) and W(f) are known,
and an estimate of U(f) must be coniputed that is positive at
all frequencies. From equation (3),

u(t) = b{1)/w(t: (an
The iterative method yields a solution for U(f) given by

Uo(f)= B(f)

Ui(f)=Us(N) + [B(f)~ U (f)* W(f)},
(12)

U,(f) = U,_.(N) + I:B(f) AL W(}‘)]'

To understand these equations and t¢ determine whether they
satisfy conditions for convergence, we examine the time-
domain equivalents:

uy(t) = b(r)

u(t) = ug(t) + [h(r) — u, lt)w(r)],
(13)

u,(t)y=u,_ () + I:b(t) -, l(r)w(r)].

Upon substituting successively, one ontains

u,,(t)=b(t){1-&»[1—w(t)]+[1—w(t)]2 v+ [L=wn]") (14)

This simple geometric series, which n-ay be summed to give
w0y = {1 = [1 — w(@)]"" "1b()/wie). (15)

converges for |1 — w(t)| < 1. The detinition of w(t) guarantees
convergence for all real input sequences except at ¢ > N,
where w(N) = 0: and the discussion for zeros in the transfer
function applies (Ioup and loup. 1983). In the limit as # tends
to infinity, the convergent geometric cries sums to

u(t) = b(r)/w(. ) (16)

This is precisely the result of the deconvolution [equation
{(11)]. However, note that for finite n the deconvolution is not
perfect but is modified by the van Cittert window [equation
(15)].

This general form of iterative deccnvolution is what is used
for improved autocorrelation and power spectral estimation.
One key additional aspect, however, is the application of con-
straints to equation (12). This is accomplished in an ad hoc
fashion in that the nonnegativity is simply enforced on each
U,(f) by setting all negative values 10 zero before beginning
the (n + 1)th iteration. The nonnegativity of the spectral esti-
mate is thus ensured.

In addition to the guaranteed noanegativity, the iterations
proceed gradually and can be terminated before toq much
bias is removed if the large-lag autocorrelation values are un-
reliable. The constraints mainly affect those values of u, (1) at ¢

for which w(r) is small or zero. These are the values of the
unbiased estimate u(r) which are least reliable.

Also, since 1(0) and h{0) represent the area of the power
spectral estimates of U(f) and B(f) and since w(0) = 1, equa-
tion (15) implies that the method preserves area. It is not
preserved exactly due to the effects of constraints, truncation,
etc.

PRACTICAL CONSIDERATIONS

An important consideration in iterative deconvolution is the
growth of the length of the solution with each iteration, since
the leagth of u, is longer than u, , by m — 1 when there are
m samples in w(t). In practice it is necessary to truncate or
limit the maximum length of u. For many response functions,
only one expansion by convolution is necessary. and the effect
of ignoring length expansion in further iterations is negligible
(loup 196%: Hill, 1973). In some cases it may be necessary to
use the neighboring replications of the power spectrum and
the window transform natural to the discrete Fourier trans-
form representation. A program to implement this scheme was
written and sample functions were tested.

The power spectral estimate is sometimes calculated directly
from the square modulus of the discrete Fourier transform
{DFT} of the data. Our method may still be applied to decon-
volve the power spectrum, but only if the data are extended by
at least (N — 1) zeros before calculating the DFT to avoid
wrapround in the autocorrelation calculation.

EXAMPLES

The following examples arc included to demonstrate the
techrique. The input sequence was extended by 32 zeros to
allow for autocorrelation extension. A 64 point FFT was used
in all cxamples. Hall the points in the autocorrelation and
FFT represent negative times or frequencies and arc not dis-
playcd. The sampling rate may be considered to be unity,
making the Nyquist frequency 0.5 Hz, and the plots are nor-
malized so that the pcak amplitude shown is the maximum
ordinate value. The actual peak amplitude observed in the
data is indicated on the ordinate of each plot. The increase in
peak height which accompanies increased spectral resolution
is therefore not readily apparent on the displays although it is
indicated numerically on the vertical axes.

Ten iterations were done in each example using the pro-
posed algorithm. The number of iterations needed was not
optimized in any way. The noise sequence added to the signal
was approximately white. It was generated by transforming to
time a spectrum of constant amplitude with random phase.
Since only a part of this sequence was used, it is not strictly
white. The signal-to-noise ratio was set to approximately unity
in the examples with noise.

The maximum entropy spectrum was obtained using the
method described by Press et al. (1986). The order of the
maximum entropy estimate was set to 5, with no attempt
made to optimize the order.

The first example is the 20 sample input of Figure |;

Input = sin (87t/32) + noise.

The signal-to-noise ratio (S/N) was approximately unity. The
steep triangular weighting on the autocorrelation due to the
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FiG. 1. Single sinusoid with noise. (a) Original data. (b) Conventional autocorrelation. (c) Power spectrum [FT of (b)].
(d) Autocorrelation estimate [inverse FT of (e)]. (e) Spectrum calculated by iterative deconvolution from (c).

{f} Maximum entropy power spectrum of (a).

decreased number of terms at higher lag values is apparent.
The autocorrelation obtained by iterative deconvolution
decays more slowly. The extended part of the autocorrelation
seems reasonable in that there is no dramatic change in its
characteristics at long lags.

Since the first sample in the spectrum represents f = 0, the
spectrum should peak at the ninth sample, as occurs in Figure
Ic, the conventional spectrum. The iterative method places the
peak at the eighth sample but the ninth sample amplitude is
very close to the peak amplitude. The MEM spectrum places
the peak at the correct sample. The peak amplitude in the
MEM spectrum is smaller than that obtained by the iterative
method. Side-lobe suppression is better in the MEM spec-
trum.

As a severe test of the proposed method, a nine-sample
sequence was input in Figure 2. The input is sin (8n/32), a
single period of a sinusoid with no noise. Due to the frequency
and sampling rate, of the nine sample values, three are exactly
zero. The autocorrelation is extended in a reasonable manner
to four times its original length, and the spectrum is sharpened
by the iterative method. The method gives reasonable results
to lags of more than one and one-half times the original auto-
correlation length. At subsequent lags, autocorrelation values
are small.

Again, one would expect the spectrum to peak at the ninth
sample. However both the conventional spectrum and the iter-

ative method peak at the eighth sample. The MEM estimate
peaks at the seventh sample. This example was very sensitive
to the order of the MEM estimate. Increasing the order from 5
to 7 yielded totally erroneous results.

In Figure 3 the 20 samples comprising the input are ob-
tained from

Input = sin (0.7 + 7n¢/32) + sin (0.9 + 9nt/32).

In Figures 4a—4f, the same data and calculations are shown
for the noise-added case. S/N was once again set to unity. Due
to the presence of noise, the expected beating is not very evi-
dent in the noisy input Figure 4a, compared to the noise-free
input of Figure 3a. Comparison of the noisy autocorrelation
Figure 4b to the noise-free autocorrelation Figure 3b, for 20
points of this input, shows that the noise produces mainly
modest changes in the autocorrelation amplitudes, except that
the first negative lobe is less than half as large as it should be.
In addition, noise causes the fourth (at a half-period), fifth, and
sixth zero crossings to be delayed. The autocorrelations ob-
tained by iterative deconvolution, Figures 3d and 4d, on the
other hand, resemble much more the autocorrelation of 34
samples of the original function, shown in Figure 3h, with a
reduction in amplitudes at larger lags. The noise-free iterative
deconvolution result in Figure 3¢ has all zero crossings in
agreement with Figure 3h out to the 28th lag, except for the
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FiG. 2. Single sinusoidal wavel:t. (a) Original data. (b) Conventional autocorrelation. (c) Power spectrum [FT of (b)].
(d) Autocorrelation estimate [inverse FT of (e)]. (e} Spectrum calculated by iterative deconvolution from (c).

(f) Maximum entropy power spectrum of (a).
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FiG. 3. Two sinusoids. (a) Original data. (b) Conventional autocorrelation. (c) Power spectrum [FT of (b)]. (d)
Autocorrelation estimate [inverse FT of (e)]. (¢) Spectrum calculated by iterative deconvolution from (c). (f) Maximum
entropy power spectrum of (a). (g) Autocorrelation calculated from (f). (h) First 32 autocorrelation lags using 34

samples of the two sinusoids.
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FI1G. 4. Two sinusoids with noisc. (a) Original data. (b} Conventional autocorrelation. (¢c) Power spectrum [FT of (b)].

(d) Autocorrelation estimate [inverse FT of (e)]. (¢} Spectrum calculated by iterative deconvolution from (c).
(1) Maximum entropy power sp:ctrum of (a).
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F1G. 5. Square wave example. (a) Original data. (b) Conventional autocorrelation. (¢} Power spectrum [FT of (b)]. (d)
Autocorrelation estimate [inverse FT of (e)]. (e) Spectrum calculated by iterative deconvolution from (c). (f) Maximum
entropy power spectrum of (a). (g) Autocorrelation calculated from (f).
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sixth and seventh zero crossings which are slightly delayed. In
Figure 4e, the noise has caused the following changes from the
noise-free Figure 3e result. There are modest changes in rela-
tive amplitude at several points and major changes in the first
negative lobe, which is approximately one-third as large as it
should be relative to the peak, and in the third negative lobe
which is more than twice as large as it should be. The zero
crossings agree, except for the third, which is advanced. In the
noise-free case one may say that the autocorrelation of 20 lags
of the function has been extended to good approximation to
the first 28 lags of the autocorrelation of 34 lags of the func-
tion by the deconvolution; Even when large amounts of noise
are present, the extention can still be useful. The maximum
entropy noise-free result, Figure 3g, does not resemble any of
the extended autocoirelations considered by the authors, up
to 40 sample points of input data.

Using the conventional spectrum the two sinusoids are
better resolved in the noisy data (Figure 4c) than in the noise-
free data (Figure 3c), but this is an accidental effect of the
noise. The noise-free iterative deconvolution spectrum (Figure
3c) partially resolves two peaks of approximately the same
height, Furthet resolution could have been obtained by using
more iterations. The maximum entropy spectrum in Figure 3{
resolves the peaks even better, but the peak heights and areas
are very different even though the input sinusoids are of equal
strength. For the noisy spectra, the iterative technique resolves
the peaks completely (Figure 4e) with the same number of
iterations as in Figure 3e. Again this is accidental and duc to
noise. The important point is that the noise in the convention-
al spectrum (Figure 4c) has not been amplified relative to the
main peaks by the deconvolution process. In the maximum
entropy spectrum for the noisy data, Figure 4f, there is only
one peak and the two sinusoids have not been resolved.

A 20 sample symmetric square wave with a 4 time sample
period is considered in Figure 5. The conventional auto-
correlation is triangular. The autocorrelation obtained by iter-
ative deconvolution has been extended in a manner that more
closely resembles the autocorrelation of an infinite length
square wave; there is some distortion apparent at large lags.
In order to preserve the characteristics of the triangular wave
autocorrelation, frequencies other than the dominant or fun-
damental frequency, represented by sample 17 on the plots,
must be present in the spectrum. This is seen in both the
conventional and the modified spectra. The MEM method has
resolved the dominant frequency, but other frequencies and
harmonics are suppressed. The resulting autocorrelation is not
quite as triangular as one would expect. In this example,
MEM is perhaps not the most appropriate method.

An example of real seismic data is presented in Figure 6.
The input consists of the 20 samples of deconvolved prestack
data; the peak of the conventional spectrum occurs at the fifth
sample. It is apparent that although very few low-frequency
components are present in the conventional spectrum, the
maximum entropy method estimates a sizeable low-frequency
component. Our method does not have this disadvantage.

Since bias removal should increase autocorrelation ampli-
tudes, we expect increased amplitudes for the iterative decon-
volution (Figure 6e) and maximum entropy (Figure 6g)
estimates compared to the conventional result (Figure 6b).
Although both estimates show increases, the amplitudes of
Figure 6e are greater, suggesting the iterative deconvolution

approach performed better. Also, both methods extend the
autocorrelations in a reasonably consistent fashion.

EVALUATION

Sometimes the iterative deconvolution spectrum is not as
peaked as the one obtained from maximum entropy. The con-
straints that lead to autocorrelation extension have the most
effect at spectral valleys or notches that approach the zero
baseline of the spectrum. If the spectrum that is input to the
proposed method is flat and does not have notches in the
spectrum, the constraints would be less effective.

However, the experience of the authors indicates that the
iterative method of autocorrelation and spectral estimation
has the following advantages over the maximum entropy
method: The iterative method does not assume an autoregres-
sive model for the input data as does the MEM. The iterative
technique proposed is fairly insensitive to noise. This insen-
sitivity results from the technique’s attempting to improve the
conventionally obtained spectrum through a gradual and
stable iterative process. The maximum entropy method can
result in a very different spectrum upon the addition of noise
to the input. The maximum entropy method is sensitive to the
order of the estimate. To do a reasonable job, some criteria
(like Akaike’s criteria) must be applied. This implies running
diagnostics prior to computing the final MEM estimate. The
iterative method could be applied in a hands-off fashion to
sharpen the conventional spectral estimate. The peak fre-
quency in the maximum entropy method can err by one
sample and may have incorrect relative and absolute ampli-
tudes. The iterative method appears to suffer from this prob-
lem to a lesser extent.

CONCLUSIONS

The iterative method cannot extend the autocorrelation in-
definitely. The method’s ability to extend the autocorrelation
results from nonnegativity constraints on the spectrum. Since
the unconstrained iterative deconvolution is a linear process,
it cannot add new lag values to the autocorrelation.

In estimating the autocorrelation with the iterative method,
the effect of the window used to produce the unbiased esti-
mate is reduced, and the window is gradually made rectangu-
lar as the iterations proceed. The autocorrelation is extended
as necessary in order to maintain a nonnegative spectrum at
the end of every iteration. The smaller values of the auto-
correlation corresponding to the smaller values of the triangu-
lar window can also be affected by the nonnegativity con-
straint more than the large values,

Naturally, there are no right or wrong answers when esti-
mating power spectra (or autocorrelations) from short data
sequences. Rather, the recorded data are assumed to be a
segment of a larger sequence, and the ultimate issue is whether
the model which generates the estimate is the same as that
which generated the data.

Finally, since the method is recommended primarily for
short data sequences, computer cost is not a major consider-
ation.
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{ ABSTRACT

Information contained in data that js in the form of a series of more-or-less
resolved peaks is often unobtainable due 1o the limitations in resolution or
response of the instrument, Adjusting the instrumental operating parameters
to increase resolution usually has the effect of also decreasing the sensitivity
and the signal-to-nojse ratio, making detection of small signals difficult. If a
mathematical representation of a shify invariant instrument response function
that describes the broadening effect on the input can be defined, then it js
possible by deconvolution to restore the resolution to some degree.This process
is represented by the solution of the convolution integral, which is achieved
for many common data types through the use of iterative or Fourier transfor-
mation techniques. Although deconvolution techniques are becoming widely
used, particularly in Spectroscopic, acaustic, astronomical, and geophysical

both iterative and Fourijer techniques developed in the course of on-going
studies of the deconvolution process, and discusses some of the pitfalls which
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ABSTRACT

Information contained in data that are in the form of a series of more-or-less resolved
peaks is often unobtainable due to the limitations in resolution or response of the instru-
ment. Adjusting the instrumental operating parameters to increase resolution usually has
the effect of also decreasing the sensitivity and the signal-to-noise ratio, making detec-
tion of small signals difficult. If a mathematical representation of a shift invariant
instrument response function that describes the broadening effect on the input can be
defined, then it is possible by deconvolution to restore the resolution to some degree.This
process is represented by the solution of the convolution integral, which is achieved for
many common data types through the use of iterative or Fourier transformation tech-
niques. Although deconvolution techniques are becoming widely used, particularly in
spectroscopic, acoustic, astronomical, and geophysical applications, and appear to be
straightforward, care must be exercised to prevent the generation of spurious peaks
which may be interpreted as being real data. This is particularly true when the higher
frequencies in the Fourier transform are important in recovering the information. This -
paper describes both iterative and Fourier techniques developed in the course of on-going
studies of the deconvolution process, and discusses some of the pitfalls which should be
avoided. Results of recent research in optimizing iterative techniques and instrumenta-
tion for deconvolution applications, and for evaluating and optimizing the efficacy of
different methods of deconvolution for detecting peaks in specific classes of noisy data
are also discussed.

INTRODUCTION

When instruments are used in the analytical sense, the data are typically obtained by
periodically sampling the magnitude of the dependent variable. The independent varia-
ble is most often time, but may be frequency, position, mass, wavelength, wave number,






or any other parameter as well. The sensitivity of such an instrument is defined to be
the smallest increase in the intensity of the signal representing the magnitude of the
dependent variable that can be measured, with the detection limit being the smallest
measurable signal that appears above instrument background and noise. The resolution
or resolving power is the smallest increment in the independent variable that can be
identified in the output and is therefore a measure of the ability to detect changes in the
parameter being measured.

The resolving power for a particular instrument is determined by the frequency response
of the detection and rzcording circuitry and other factors influencing the output signal
that represents a change in input. This is referred t0 as instrumental broadening, but in
addition to the instrument response, it actually includes any parameters that affect the
overall response of the system as well. Examples of these other sources are the inter-
face between a sensor and the system upon which the measurement is being performed,
mechanical or electronic limitations on the rate at which the independent variable can be
scanned, and the presence of fundamental or environmental noise. Fundamental noise is
that arising from the physics of the measurement process itself, while environmental
noise results from externally imposed influences. With care, the latter can be made
arbitrarily small, but fundamental noise has a limit below which it cannot be further
reduced, therefore imposing a lower limit on detectability. The situation is, therefore,
that a change in the input parameter is represented by an output signal whose response is
dictated by the effects of instrumental broadening. Whenever these changes are slow or
when only first order approximations are required, the signal obtained will represent
adequately the variaticns in input. However, in many cases, valuable information is not
observed or obtainable due to the broadening effects.

Signal averaging or differentiation are both useful techniques to improve the resolving
power of the instrument. The most effective computational method is deconvolution
which, however, is mathematically difficult to apply in that it tends to amplify noise
and has other difficulties. In some cases deconvolution will result in spurious peaks that
may be interpreted as being real if not carefully examined. When properly applied,
however, deconvolution of the signal can yield an improved resolution, often much great-
er than can be obtained by careful tuning of the instrument or otherwise enhancing the
signal, and sometimes even exceeding the theoretical limit of the resolving power. The
improvement in resolution is determined in part by how accurately the response function
(impulse response) can be determined for each point at which the deconvolution is to be
carried out, and how completely the effect of noise can be addressed.

If the instrument response does not change appreciably while the measurement is being
carried out, the response is called "shift invariant,” and the relationship between the
observed signal h(x) and the input (or ideal) signal f(y) is defined by the convolution

integral
+ o©

h(x) - f(y) g(x-y) dy =  *g | (L)

where g is the response function representing the broadening effects. The discrete
form of this equation is given by
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hi - fJ gi‘J - f * g . (2)

Complete discussions of deconvolution and reviews of many of the techniques are
given by Frieden,® Robinson and Treitel,3* Mendel,?® and Jansson.2?

In this paper a background in basic Fourier deconvolution is summarized, and mention
is made of newer Fourier transform techniques which improve upon it. The source of
sidelobes is discussed as well as why deconvolution generally amplifies noise and is
therefore ill-conditioned. A review of iterative deconvolution techniques is given
including recent developments. Examples of the pitfalls due to sidelobes and noise are
presented. The optimization of iterative techniques is discussed as well as a new
method for evaluating different deconvolution methods for their ability to detect true
peaks and reject false peaks.

FOURIER DECONVOL UTION

Fourier deconvolution proceeds directly from the Convolution Theorem.$ This theo-
rem holds that if h(x) is the convolution of f(x) and g(x) as in Equations (1) or (2),
then H(s), the Fourier transform of h(x), is the product of the Fourier transforms of
g(x) and f(x):

H(s) = F(s) G(s) ] (3)

As long as G(s) is unequal to zero the transform of the ideal function f(x) can be
recovered by division, but when the experiment fails to transmit frequencies that are
present in the ideal function, that is, G(s) is zero for frequencies s for which F(s) is
not zero, information about f(x) contained in these frequencies is lost, and f(x) can not
be perfectly restored. Bracewell and Robertss suggest that an initial approach in such
cases might be to define a principal solution Fp(s), an approximation to the transform
of the ideal function, whose value is zero whenever G(s) is zero. Thus,

H(s)/G(s) {s:G(s) = 0} ,
Fp(s) = (4)
0 {s:G(s) =~ 0}

The approximation to the ideal function, f_(x), is then obtained by taking the inverse
transform of F_(s), and the process by which this resolution enhanced solution is
obtained is called simple inverse filtering.

The loss of information about F(s) at frequencies for which G(s)=0 often creates
unwanted characteristics in the approximation fp(x). In many experiments the trans-
form of the response function is non-zero (except perhaps at a few isolated points) for
all frequencies below a certain critical "cut-off" frequency S. and zero above this
frequency. In these cases Fp(s) is truncated. This usually gives rise to spurious peaks
(Gibbs oscillations) which are not present in f(x) and greatly complicates the interpreta-
tion of spectra enhanced by simple inverse filtering.

As the Convolution Theorem clearly shows, the transform of the measured function,
H(s), should be zero at values of s for which G(s) is zero. Noise at these frequencies
cannot have been transmitted through the system and is therefore called incompatible






noise.3® Noise at frequencies s for which G(s) is not zero is called compatible noise.
Incompatible noise can be removed by bandpass filtering without further loss of infor-
mation before Fourier deconvolution if G(s) is known. Compatible noise which is
present at frequencies for which G(s) is smail is an additional serious obstacle to accu-
rate resolution enhancement by simple inverse filtering. Filtering which reduces or
removes compatible noise necessarily forfeits part of the signal, and information
needed for the accurate restoration of f(x) is lost. In particular, noise tends to be more
important at high frequencies so that low-pass filtering which decreases the bandpass
of the approximation to the transform of the ideal function broadens the function it-
self, thereby partially tending to defeat the purpose of resolution enhancement.

For additive noise, the principal solution has the form Fp(s) = [H(s) + N(s5)]/G(s),
where N(s) is the transform of the noise. The example shown in Figure | includes
plots of sample [H(s)+N(s)| and |G(s)| functions and the resulting lel, which is the noisy
F(s) truncated at the cutoff of G(s). As the cutoff frequency is approached from
below and G(s) becomes smaller, the magnitude of N may exceed that of H, and hence
noise predominates and is amplified by the deconvolution. In this case, the high
frequency component of the transform domain spectrum is often deleted, a process
defined as "low-pass inverse filtering.” This reduces the effect of the noise but does
not eliminate the Gibbs oscillations and it decreases the resolution as discussed above.
(The application of a tiper (window) to the transform can reduce these oscillations.28)
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Figure 1. The magnitude of the Fourier transform of the principal solution for the transform of noisy measured
data. |H(s)+N(s)| is the magnitude of the transform of the noisy data. The magnitude of the transform of the
impulse reponse is labeled |G(s)|. Simple inverse filtering yields a transform with magnitude IFP (s)l.

A number of techniques have been developed to improve inverse filtering by restoring
the lost resolution and correcting its tendency to create spurious peaks while controlling
the effects of noise. Many of these methods use constraints to incorporate special
knowledge of the ideal function into the deconvolution process. Deconvolution con-
strained to produce an approximation to the ideal function f(x) that has as little nega-
tivity as possible,12 13 14 frequently referred to as either Minimum Negativity or the

Howard extrapolation, is an example of this approach to deconvolution. A similar
method was also developed by Gerchberg.? Many experiments produce measurements
of intensities which can be either positive or zero, but for which negative values can
be created only by unwanted noise or sidelobes from deconvolution. Howard uses the
minimum negativity constraint to extend the frequency spectrum of a deconvolved
function expected to be positive by retaining initially only a small number of the
lowest Fourier coefficients and restoring the lost coefficients one at a time so that each






successive coefficient produces an approximation to (x) that minimizes the sum of the
squares of the negative values of the previous approximation.

The minimum negativity constraint has been applied to microwave spectra by Howard,
extending the spectrum cof h(x) that has been curtailed by the measuring spectrometer.
L. Wang and Rayborn?® have extended the principle of minimum negativity directly to
the deconvolution process itself, forming F_(s) and using the principle of minimum
negativity to extend Fp(s) beyond the cut-of? frequency by first making fp(x) an even
function, .

Another technique for restoring the spectrum of a function truncated in deconvolution
is to approximate the high frequency spectrum which has been truncated in deconvolu-
tion with the high frequency spectrum of a function of the expected shape.4! 2! This
method for extending the bandwidth uses simple inverse digital filtering to establish
the size and location of peaks in the output of a laboratory spectrometer. The ideal
peak shape for the instrument is determined either from a theoretical understanding of
its performance or by experimental study and observation of an isolated peak. An
artificial function is then formed by superposition of peaks of ideal shape of the sizes
and at the locations determined by the inverse filtering. The Fourier transform of the
artificial function is taken and the high frequency portion of this spectrum is extracted
and used to replace the high frequency portion of the spectrum of the inverse filtered
function which was truncated either naturally by the low bandpass of the spectrometer
or deliberately because of the presence of noise at the high frequencies. Extending the
Fourier spectrum in deconvolution by splicing the high frequency spectrum of an arti-
ficial function has been found to decrease the size of sidelobes created by inverse
digital filtering by up to about 50 percent.

ITERATIVE DECONVOIL UTION

One of the commonly used approaches to deconvolution is an iterative one, first pro-
posed in its simplest form by van Cittert in 1931.35  Excellent reviews are given by
Frieden® and Jansson.2?  G. Ioup and J. loup!? summarize additional literature. The
form of the van Cittert iterations is as follows:

£, = h+ (h - h¥g)
f2 - f]. + (h - fl*g)

(5)

fho = fh1*+ (- fh-1*8)

The gradual nature of the iterations causes a controlled simultaneous increase in resolu-
tion and noise, allowing a compromise to be determined by the selection of iteration
number. Because the iterations are accomplished in the function or time domain (as
opposed to the Fourier trunsform domain), function domain constraints can be applied
easily in an ad hoc fashion at each iteration. If the signal-to-noise ratio of the exper-
imental data is low and more noise control is needed than that provided by the van
Cittert iterations, an iterative noise removal technique proposed by
Morrison,30 15 17 25 26 applied before the deconvolution, can give additional noise
control.






The convergence conditions for the Morrison and van Cittert iterations are well estab-
lished.s 18 10 11 8 17 There are many analytically and experimentally determined
response functions for which the iterations do not converge. A modification of the
deconvolution iteration called the reblurring or mirror image procedure which con-
verges for any initial response function has been developed by Kawata and Ichioka?3
and independently by LaCoste.?4 Jansson2? gives background information and a
discussion. An alternative always-convergent iterative noise removal and deconvolution
technique was given by G. loup!® and applied to two-dimensional data by Whitehorn3?
and Whitehorn and G. loup.4®

One of the principal objections to the use of the iterative approach to deconvolution is
‘the fact that it can be very slow for long data sets and impulse responses or for wide
impulse responses. To overcome this problem the research group at the University of
New Orleans has been investigating accelerated iterations and single filter application
of the iterations in the Fourier transform domain.? 32 The single filter application is
based on the transform domain representation of the iterations. The last of Equations
(5) may be written in the transform domain as:

F, = Fo.1 + (8- F,16) . (6)

By successive substitutions one may solve for Fp in terms of G and H to obtain

F, = [1-( - &™ue . (7
Similar results have been obtained for Morrison's noise removal!s and the newer
convergent iterative techniques of noise removal and deconvolution.3® 40 18 Use of the

so-called van Cittert or equivalent window makes possible the accomplishment of many
iterations as a single filter. Because multiple convolutions imply expansions of the
duration of the solution function in its independent variable, there is a possibility for
serious wraparound error 2 Amini et al.3 and Ni er a/.3! have shown that for many

experimental data types wraparound error is negligible.

PITFALLS

Examples of effects on deconvolution of Gibbs oscillations and noise clarify the diffi-
culties of the deconvolution process. Figure 2 contains the results of two approaches to
deconvolution for mass spectrometric analysis of a gas containing oxygen and
methane.2! Simple inverse filtering (not shown) gives large sidelobes which are the
Gibbs oscillations. The irregular nature of these osciilations is due to the interference
of the sidelobe patterns of the two main peaks. The artificial function approach
(Curve B) reduces the spurious peaks somewhat but does not eliminate them. Iterative
noise removal followed by iterative deconvolution with a nonnegativity constraint
included gives Curve A. Because deconvolution with a normalized impulse response
should preserve areas, the elimination of the negative spurious lobes by the use of a
constraint reduces the positive lobes as well.21 Since the interference of the Gibbs
oscillations due to the presence of two main peaks causes the adjacent positive and
negative sidelobe areas to differ from each other, the area cancellation is incomplete
and two small positive lobes remain after iterative deconvolution at mass to charge
16.0559 and 16.0963. These might be interpreted as small additional mass peaks if one
is not aware of this pitfall and the need for careful analysis.
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Figure 2. The deconvolution of the mass spectrometer analysis of a mixture of oxygen (mass 15.9949) and
methane (mass 16.0313). Curve A: 30 noise removal and 50 deconvolution iterations. Curve B: function-
continuation Fourier deconvolution.

Figures 3 and 4 show the effects of noise on a deconvolution of the synthetic data
given by the curve in Figure 5, which is generated by convolving an ideal function
consisting of three narrow-width, separated Gaussians of heights 100, 100, and 50 with
a medium width Gaussian impulse response. For each example (Figures 3 and 4),
different Gaussian distributed function domain noise has been added at a signal-to-
noise ratio (signal peak to noise standard deviation) of 1000 to 1. Even though such
noise is too small to be seen on a graph, the noise amplification by deconvolution (ill-
conditioning) gives large noise spikes in the results of Figures 3 and 4. The original
input function is also shown for comparison. If a wide Gaussian impulse response had
been used the noise amplification would have been even worse.

One striking feature of Figures 3 and 4 is how much the deconvolved results differ
from each other. Differences in the noise become dramatic after deconvolution. This
behavior casts doubt on the ability of deconvolution methods to be optimized based on
an average noise spectrum. Certainly any such optimization should be tested on specif-
ic noise realizations to understand whether the use of average noise properties is
appropriate. An alternative approach, discussed in this paper, is to do many noise
cases in a simulation and then to calcuiate statistics.
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OPTIMIZATION OF ITERATIVE DECONVOLUTION

A long unanswered question for iterative methods has been how many iterations to use
for a given data set. Experience and some trial and error for each data type have
provided crude answers, but a systematic investigation did not begin until ten years
ago. Wright#2initially investigated requirements for optimization of Morrison’s itera-
tive noise removal.30 18 Her work was extended by Wright and G. Ioup*? and J. Ioup

and G. loup.2® Finally a very complete analysis was performed by Leclere?® and co-

workers.2®  Since then the method has been extended to van Cittert’s iterations and to
Morrison’s and van Cittert's iterations applied sequentially.2” The first optimization of
noise removal and deconvolution iterations used sequentially was for G. loup’s always-
convergent method by Amini! and co-workers.2 4 The reblurring procedure has also

been optimized.? :

The initial hypothesis for the optimization studies is that for a given data type and
signal-to-noise ratio (SNR), simulation with many different noise sets, and testing each
for optimum iteration numbers, leads to reasonable statistics for the iteration number.
It is assumed further that by varying the SNR, a smoothly varying set of the mean
iteration numbers versus SNR can be generated with standard deviations, as well as
that these standard deviations will not be too large. Although many problems present
themselves in the course of the work, the final result is that useful curves of average
iteration number versus SNR and average mean squared error of the deconvolved re-
sults versus SNR can be generated. Studies include narrow to wide Gaussian impulse
responses as well as synthetic exploration seismic data. Several different noise types
are included over SNR's from less than 1 to over 1000.

To answer the question of how changing the input model would affect the results, an
input consisting of a rectangle function followed by a triangle function is substituted
by El Saba’ for the three- Gaussian input shown in Figure 5. The optimization gives
different optimum mean iteration number versus SNR curves, as expected. It is there-
fore important for experimentalists to do an optimization for the data type of interest.
While there is some computer time involved, the labor is minimal since the optimiza-
tion code exists. Once optimization results are obtained for a general data type, no
further simulations are needed for experiments of the same type.

A by-product of the optimization of noise removal and deconvolution iterations used
sequentially is the first solid answer to the question of when iterative noise removal
was helpful and when it was not needed. By plotting the mean squared error after
deconvolution versus SNR for sequential-use optimization on the same graph as the
result for the optimization of deconvolution iterations alone, one can decide below
which SNR noise removal is needed. The mean squared error will be smaller with
noise removal at the lowest SNR’s, but above some SNR value the noise removal will
not improve the result significantly or at all. The mean squared error curves for a
fairly narrow Gaussian impulse response are shown in Figure 6 and for a wide Gaus-
sian in Figure 7 using the input given in Figure 5. The narrow Gaussian deconvolution
is improved by noise removal up to a SNR of approximately 90. The wide Gaussian
deconvolution is improved by noise removal for all SNR’s included in Figure 7, i.e., up

to SNR 150.

- Although the mean squared error (L2 norm) is principaily used in this work, the Li
norm for optimization has also been tested. It is important to emphasize that this
method is not limited in the choice of optimization criterion, and that many others
could be used. We are currently studying non-norm type measures.
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These studies have also provided a methodology for deciding how to optimize instru-
ment design and operating parameters to achieve the best deconvolution results.!? In
experiments with a compromise between SNR and resolution, an approach should be
available to decide hcw to configure the instrument to obtain the needed experimental
data. If deconvolution of the data is to be part of the process, then the optimization
approach should include the deconvolution. Amuni et al.* have shown that a three-
dimensional plot can be created with a surface of mean squared error after optimiza-
tion of iterative deconvolution plotted versus SNR and resolution (impulse response
width, for example) as the independent variables for systems with one degree of free-
dom. See Figure 8. Once the curve of SNR versus resolution is established for a given
instrument in the SNR-resolution plane, an upward projection of this curve will give
another curve at the intersection with the surface.!® The instrument resolution value
corresponding to the minimum in the latter curve should give the best deconvolved

result.
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EVALUATION OF DIECONVOLUTION ALGORITHMS

Systematic evaluation of deconvolution algorithms seldom takes place. Particular
algorithms sometimes are applied to output of particular instruments and the results
compared with known results of the instrument at high resolution in a qualitative
fashion (e.g., J. Ioup et al.2!). The technique may be used or discarded depending on
whether it has distorted the spectrum unacceptably, created false, or ghost peaks, or
simply used too much computer time. Sometimes synthetic spectra are generated,
convolved with an assumed instrument function, and used to test the deconvolution
algorithm by determining the square of the difference between the original spectrum
and the deconvolution. As a figure of merit for evaluating deconvolution algorithms,
this square difference :riterion produces a large value for a spectrum which is faithful-
ly deconvolved if it is merely translated slightly. Recently, the problem of evaluation
of resolution enhancenient has been attacked by regarding it as a problem of detecting
an unresolved peak in the presence of both noise and the larger, fused peak.38 37 33

This point of view seems directly applicable to those spectral problems in which the
presence or absence of a peak is the primary question. It also permits techniques long
applied to the detection problem to be applied without modification to the problem of
resolution enhancemen:, permitting for the first time judgements as to which deconvo-
lution techniques are superior when the principal objective is to find a weak, fused
peak and which are superior when the objective is to avoid falsely believing a weak
peak to be present. R:ceiver Operating Characteristic, or ROC, curves are piots of the
probability of falsely detecting an artifact of the deconvolution. Their application to
the resolution problem shows that the efficacy of ideal low-pass filtering before
deconvolution of a spectrum of fused Lorentzian peaks depends, of course, on the
bandpass of the filter. For the example shown in Figure 9 a superior deconvolution as
judged by the ROC curve produced occurs when about eleven of the 128 Fourier
coefficients are retained. Of particular interest, however, is the fact that filtering with
a narrower or wider bandpass, although each produce inferior deconvolutions, affects
detection in different ways. Narrow-band filtering produces deconvolutions which are
superior in avoiding false detections at low probabilities of detecting true peaks, while
wide band filtering produces deconvolutions which better detect signal peaks whea 2
relatively high rate of false alarms can be tolerated. When the gross efficacy of low-
pass filtering prior to the application of an inverse digital fiitering deconvolution algo-
rithm is evaluated by maximizing the area under the resulting ROC curve, optimum






deconvolution is found to occur when only ten Fourier coefficients are retained in the
low-pass [iltering. When the efficacy of the filtering and deconvolution is evaluated
by minimizing the square of the difference between the deconvolution and the original
spectrum,. a gentle minimum and, hence, optimum deconvolution is found when nine-
teen coefficients are kept. Thus, optimum deconvolution in the sense of minimum
square difference does not produce optimum ability to detect peaks without creating
spurious ghost peaks. Furthermore, when deconvolution with a minimum negativity
constraint was evaluated using ROC curves?® it was found that, although minimum
negativity produced enhanced spectra whose peaks were easily interpreted visually, the
ability to detect small, fused peaks in noise by means of a matched correlation filter
was only marginally superior to optimum low-pass filtering. This result casts doubt on
the deconvolution algorithms. It is clear that much work remains to be done in im-
proving evaluation of deconvolution techniques; nonetheless, viewing resolution en-
hancement as a problem in detection offers promises of quantitative evaluation of
deconvolution with a numerical appreciation of the risk of misidentifying a small peak
discovered in deconvolution of noisy, fused spectra. Numerical assessment of the
presence of ghosts and the failure to detect true peaks should greatly increase the utili-

ty of all deconvolution algorithms.
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(2) how much analog precision is needed in the connections in the net-
work, (3) the number of training examples the network must see before
it can be expected to form reliable generalizationa, and (4) the efficiéncy
with which a network extracts information from the training data.

John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, John Hop-
field, Richard Howard, and Lawrence Jackel, Complex Systems, in press
(1987).

An Analog VLSI System for Neural Network
Lexrfung Experiments DANIEL B. SCHWARTZ and RICHARD E.
HOWARD AT&T Bell Laboratories. :

Because the complexity available from standard VLSI has grown far be-
yond our ability to simulate it, it has become interesting in its own right.
Adaptive neural network models are an example of a class of complex
systems where a mapping directly onto VLSI is of great practical and
fundamental interest. However, the continuously variable connections
required for adaption are not easily represented in a digital world. We
are building a collection of analog circuits from standard digital CMOS
with variable strength analog connections based upon charge storage by
a pair of MOS capacitors. The capacitors are tied together by a string
of FETs, allowing the connection strength to be monotonically varied by
moving charge between them. Our current designs have 7 bits of ana-
log depth of both polarities. The chips have about 10® connections and
can easily be cascaded to make larger networks. The available computa-
tional speed is dominated by i/o bandwidth of the host controller. We
will discuss use of such chips and their limitations.

ific Heat for a Boson System with Anhar-
roniefty. .5. Wartak, C.Y. Fong, Department of
Physics, University of California, Davis.— - We used the
model Hamiltonian

N
H= Z [tb:’b,' - P;b}‘b{b.-b; +A (b:;lb}-" bi+lb|' ]

s=]

to study the thermodynamic properties of the one-
dimensional boson system with on-site anharmonicity,
and with A much smaller than ¢. For the calculation
of partition function we have used the path-integral
method. The Dyson equation is solved in the nearest-
neighbor approximation. The resulting expression for
the free energy is evaluated in the static approximation
using the steepest descent method. The behavior of spe-
cific heat for different values of I' and A is examined.
15:06

Color Induced Transitions in the Presence of a Nonlinear

ential, G. P. TSIRONIS, . University o
California, San Dicgo.-- We show that the negative diffusion
coefficients exhibited by current approaches to the Fokker-
Planck equation for non-Markovian and bistable processes
result from assuming that the system regches a conventional
steady state . By lifting this assumption” we show that when
a critical value of the noise correlation time t is exceeded,
the process of escape over a barrier sgrees with an exact
prediction for the large-t regime and thus that the linear
response approximation behind our theory produces exact
results for arbitrary correlation times.

]

1. G. P. Tsironis, P.:Grigolini. "Rate processes activated by
color noise: Bridging two exact limits’, UCSD preprint -

2. J. Masoliver, B. J. West, K. Lindenberg, Phys. Rev. A

® 35, 3086 (1987)

Thursday Afternoon

Surface Loss in a Parabolic-Equetion Model.
ARPHC B.M. HEAD and W. JOBST, Naval Oceanographic
Office and ELEANOR S, HOLMES, Science Applicatioas
International Corporation, — Ocean-surface loss of
acoustic energy is often given as a function SL(e) of
the grazing angle s, If p(z) is the complex acoustic-
pressure field (from a parabolic-equation model) as s
function of depth z near the surface, s Fourier trans-
form F(K) of p(z) yields pressure as a function of the
vertical vave number K. K is proportional to sin e,
thus F(K) 1s a function G(e) of e, We account for the
surface loss by multiplying G(e) by a loss function L{e)
— related to SL(e) — before transforming back to
physical space. The method also is applicable to bottom
loss. Numerical implementation, angular resolution, and
liaitations of the method are discussed. Numerical
examples are presented,

s of Noise on Pressure and Modal Amplitude
Matched Field Processors.* GEORGE M. FRICHTER, 1V,
JULIETTE W. IOUP, Univ, of New Orleaps.,** GEORGE B.
SMITH, Zavier Univ,, GEORGE E. IOUP,** Univ, of New
QOrleans, CHRISTOPHER FEUILLADE, Syntek, GRAYSON H.
RAYBORN, Unlv., of Southern Miss,,** and DONALD DEL
BALZO, NQRDA--Modal amplituds matched fisld processing
for acoustic signals received by a vertical array of
hydrophones 1is used to determine the effects of
spatially correlated and uncorrelated ncise fislds on
pressure and modal amplitude matched field processors.
Varfous amounts of white isotropic noise and spatially
correlated noise as calculated by a normal mode noise
model are combined with the field due to a submerged
acoustic source to produce simulated cross spectral
matrices A phone-to-mode space mapping 1s then used to
obtain the corresponding cross aaplitude correlation
matrices Both conventional and maximum 1likelihood
processing are used. Results shov that spatially
uncorrelated noise degrades modal amplitude processors
more than spatially correlated noise.

**Supported in part by ONR/NORDA Contract NOO014-87-K-600

Underwater acoustics is usuﬁy not discussed at APS-meednp.

but rather is confined to review meetings. However, given
the close proximity of the Navy's lead ocean eanvironmental
RDT&E laboratory, the Naval Ocean Research and Development
t?x‘i:sﬁmy (NORDA) located 45 milesoffmm New Orleans, we take

oyponumtywpresenureview ocean acoustic propagation
modeling. In the ocean, the index of refraction is varable;
acoustic transmission paths are curved and the coupling of the
refracted, reflected, and diffracted acoustic fields from
boundaries give rise to complicated classical physics problems.
The prominent acoustic models are based -on permsl mode,
parabolic approximation, FFT, and modified ray mcthoda, Each
of these include a limited number of physical mechanisms. We
have therefore developed a coupled full-wave ran ndent
ocean acoustic propagation and scattering model on the
finite element method. This model is superior especially at low
frequencies. Numerical simulations will be presented showing the
cffect of a fractal under-ice interface with ice keel on the gzlly
coupled range-dependent underwater acoustic field.

5:54 o
0188 of Instrumentation Parameters fox
with Deconvolution, GEORGE E. IOUP,
ABOLFAZL M. AMINI, and JULIETTE W. IOUP, Univ. of New

Orleansg**--An important design and parameter selection

Y
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improvement {n instrumental Tesolution {s usually
accompanied by a decrease {n SNR. Resolution can often
be f{mproved for shift-{nvartent instruments afrer the
data are taken by the uss of deconvolution. The optimun
design and operation of the instrument cannot be
pPresumed to be ths game with and without deconvolution,
however. We present . methodology for detenining
optimum {nstrument configuration when deconvolution is
used. In its simplest form, a surface of the error
after deconvolution versus SNR and {nstrument resolution
1s generated. A siven {nstrument will have & curve in

**Supported 1in PArt by NASA Grant NAG-1-804

16:06.

Ol189 Electron Loc‘liznion in Water Clusters: Surface
and Inter_n!.l States, R. N. BARNETT, UZI LANDMAN, C, L.
CLEVELAND AND JOSHUA JORTNER, School of Physics, Georgia
Institute of Pechnhology, Atlanta, Ga, 30332--Electron
attachment and localization in water clusters, (nzo),,
(n=8-128) are studied using path-integral molecular
dynamics simulations. The electron-water molecule inter-
action is described via & newly developed pseudopotential
which includes Coulomb, polarization, exclusion and
exchange contributions. For snall and interpediate size
clusters (n=8-32), the energetically favored localization
®ode involves a surface state and the calculated excess
electron binding energies agree with experiment. In
larger clusters internal localization (lolvntion) is
favored. In both cases electron localization is
accompanied by large cluster molecylar reorganization.
The cluster size dspendence, energetics, structure and
temperature dependence are dilcu.god.

1. R.N. Barnett, Usiq Landman, C, L. Cleveland and
J. Jortner, Phys. Rev. Lett. 39, 811 (1987),
*Work supported by U.S. DOE, Grant No. FGOS-86RR45234.

—

16:18

O18 10 lmgmn-ﬂ‘mmmlﬂm
YU ZHOU and SAMUEL P..BOWEN, ¥Yirginia Tech.--The

low lying states of small rings of atoms are
studied for varying numbers of electrons and
holes in the Bubbard and the extended Hubbard

comprise the low-1lying multiplets. The analytic
structure of the states and the ground state
energies will be compared with numerical values
for several different chain lengths and electron
humbers.

a0 W |
onsuﬂnls_mmzmn_mi,hidnx_in_g_mm
CuO, H.Y. CHOI and E.J. MELE, University of

P_Emumuu_._--We construct a model for the

dynamics of the holes in the nearly half filled
Hubbard model on a square lattice. An interaction of
these carriers with an antiferromagnetic background
produces a self localization of the holes to form 4 gas

.

the hole
which is
waves.

range at

polarons on the resulting Fermi surface,

mediated by exchange
In the simplest model

of the linearized spin
this provides a long

tractive interaction in an Il =2 state;
however, we will discuss a refinement of this mode],
which favors singlet pairing in an / = 0 state,
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interaction. The

fold dengerate
expansion in the
intinite mat of

containing independent single loops

This approximation
Xact in the ]imit N oo , We

4 qualitative agreement with the
experimental findings.

*A.J. Arko, B.W. Yates, D.D.
Dunlap 2. Zolnierek, A.w. Mi
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+ del Giudice, Preprint

s

OGEN IN METALS | : -

0191 Anomalous Proton Spin-Lattice Relaxation at

peratures in BCC Trans

ition Metal-Hyd

Solid Solution Systemms. R. G, BARNES, J.w. HAN, L.
LICETY and D. R, TORGESON, Ames Laboratory* and De-

coenduction

form exp|—(U -

inimum at intermediate temperatures (~ 225
K) characterizsed by the mean dwell

time for hopping, 1y =

Ty again decreases sharply at higher tempera-
of returning to the value Ty, determined by the

electron contribution to (Tu=!. Thi Tease is
well-described by an additional contr,

bution to (13J~1- of the

E)/kpT), consistent with excitation of hydro-

gen to a state of highly correlated motion, where U is the exci-

*Operated for the USDOE b

tract No. W-7405-Eng-83,

LR. M. Cotts, J. L. Billeter,

of spin polarons. The resulting polarons are found to 14:42

.4 . 0192
be relatively light, and propagate through the two in a BCC
dimensional structure by coupling to background L. BILLET
spin flucuations. A pairing potential s derived for D. R. TOR
Vol. 33, No. 3 (1988) 706

y Iowa State University under con-

et al., abstract this meeting.

Search for an Hydrogen Diffusion Anomaly

Transition Meta] Alloy.

.* R. M. COT'TS and J.

ER, Cornell University; J-w. HAN, L. LICHTY,

GESON and R. G. BARN

ES, Ames Laboratory -
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- pethod which combines a modification of earlier luggestiou"’

* .nd subspace disgonalization, realizsing advantages of both meth-

: 5ds for » matrix expressed in a planewave basis. Comparison

of asymptotic convergence rates for several iteration methods

shows that the combined method is at least a factor of three

petter than the best previously known: method. The method

“is implcmented in a planewave basis with separable nonlocal

udopotentials so that computations! effort scales as NlogN

7 for a basis of N planewaves.

1 M.C. Payne, 1.D. Josanopoulos, D.C. Allan, M.P. Teter, and
D.H. Vanderbilt, Phys. Rev. Lett. 56, 2656 (1986).

9 A. Williams and J. Soler, Bull. Am. Phys. Soc. 82, 562
(1987).

i

12
N ;.;;a 2 Solution to the Initial Value Problem for the
> " Quantum Nonlinear Schridinger Equation. M. J. POTASEK and
.* B. YURKE, AT&T Bell Laboratories - - The quantum nonlinear
1§ Schrodinger equation provides an integrable quantum field theory
L3 that has been solved by a number of methods. Most recently,
Gutkin'*? bas developed an intertwining operator technique for
obtaining the time evolution of the field operators. Using
¢ " Gutkin's formalism, we show how 1o obtain the exact time
evolution of an initial Schrodinger state vector. The suitability
of this formalism for numerical computation with application to
pulse propagation in optical fibers will be discussed.

1. E. Gutkin, Ann. Ist. Henri Poincare 3, 285 (1986).
2. E. Gutkin, J. Func. Anal. (1987).

w Statistical Qptimization of Morrisen's Iterative
voTie Removal and yan Cittert’s Irerative Deconvolution.
JAMES H. LECLERE, GEORGE E. IOUF, and JULIETTE W. IO0UP,
Univ. of New #%..Morrison's iterative noise
removal and van Cittert’s iterative deconvolution have
been used to remove oxpfti.-enul oadening for various
physical data types. Heretofore the number of
{terations needed and other conditions of use have been
deternined by trial and error. We have developed a
statistical optimization procedurs to determine optimum
use of the methods for any computer-generated noise type
and any signal-to-noiss ratic domain of interest. Ve
report the results for 11 and 12 norm optimization and
several noise types for a signal-to-noise ratio domain
from 2 to ovar 1000. The contrast between point
successive and point simultaneous iterations is also
discussed as is the effect of allowing the deconvolved

result to expand as the iterations proceasd.
Combined optimization of the two techniques 1is
presented.

#*Supported in part by NASA Gra-t NAG-1-485
1. E. Toup snd J. W. Toup, Geophysics 48, 1287-1290
(1983)

/N184/ gprimization of Iterative
) Physical Data, ABOLFAZL M. AMINI,
GCEORGE E. IOUP, and JULIETTE W. IOUP, Univ, of New
x%..Statistical computer simulation is used to

optimize the always-convergent 1teraiivo noise removal

and deconvolution technique of Ioup. By considering

I} the mean square error versus {teration number for 50
noisy data sets, one can calculate the mean optimum
{teration number and its standard deviation, as well as
the average mean square error and its standard
deviation. Data with peak-to-standard-deviation signal-
to-noise. ratios (SNR) varying from 10 to 150 are
considered. By applying the jterative deconvolution
alone, 1t ? shown that thers exists an SNR, for any

Vol. 33, No. 3 (1988)

Thursday Morning
type, above which it 1is
deconvolution with the

glven (mpulse response and data
not beneficial to precede the
noise removal.

NAG-1-485 and NAG-1-804

**Supported in part by NASA Grants
: 26, 1213 (1981)

G. B. Ioup, Bull. Am. Phys. Soc.

/{ms’n

N185 )single Filter Application of Always-Convergent-
Iterative Deconvelution Lo Physical Data. HAIHONG NI,
ABOLFAZL M. AMINI, TAHAR A BENSUEID, GEORGE E. 10UP, and
JULIETTE W. I0UP, Univ, of New Orleang**--Single filter
application of any iterative technique, when possible,
presents significant computational economic advantage,
but iz should not be used until its performance is
evaluasted against that of the iterations. Wraparound
errors associated with a finite length DFT calculation
of the filter must be considered. The optinizatitn of
the always-convergent iterative technique of Ioup™ for
noisy data is reported in the preceeding abstract. In
this investigation the sensitivity to wraparound of the
DFT single filter equivalent window is established by
graduslly increasing the zero padding of the data for
peak to standard deviation signal-to-noise ratios
varying from 10 to 150. It is found that the wraparound
error is small enough to be negligible, even when almost
no zero padding is used. These results show that very
rapid application of iterative deconvolution to physical
data (s possible.

{*Supported in part by NASA Grants NAG-1-485 and NAG-1-804
G. E. Ioup, Bull. Am. Phys. Soc. 26, 1213 (1981)

Nis 6\ Non-8e able Numerical Bvaluation of

Tm In the EIEVIn or Variational Method.
C.A. Weatherford, Florida AsM U.; -—- A numeri-

cal method is presented for the evaluation of
the VGV term which appears in the denominator
of the Schwinger variational expression for
the T-matrix.l,2The method employs an evalua-
tion of a partial differential equation for the
GV part, and then is followed by the calcula-
tion of a two dimensional integral. An applica-
tion to electron scattering from a minimal
basis set Hy model is presented. The possibil-
ity for efficient evaluation on vector compu-
ters is explored.
*supported by NSF grant PHY-8711805 and NASA
grant NCC 2-492
1, W.M. Huo, T.L. Gibson, M.A.P. Lima,
McKoy, Phys. Rev. A36, 1632 (1987) .
2. W.M. Huo, M.A.P. Lima, T.L. Gibson,
McKoy, Phys. Rev., A36, 1642 (1987).

12:12 Com cef_.
NIi8 7 Generaiized Fourier series for ‘non-iinear quantum
DIAZ BEJARANCO and A. MARTIN SANCHEZ,
Badajoz.-~ A

and V.

and V.

mechanics.- J.

!J_rli_\Iersidad de Extremadura, gimple

-generaiization of the usuai Fourier series using the

gensraiized exponentiai and circular functions 1is

presented. The functions themselves are developed in
a rew, more simple way. They are solutions of common
linear and non-linear wave equations. The series are
given in terms of Jacobi elliptic functions in a for;n
as seimilar as possibie to the usual Fourier
presentation. ‘Severai exampies are given that correspond
to the most usuai textbook Fourier series.

Thenks are due to CAICYT (project nf® 1179-84).
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and M. K. , U.
T esented of using the known Green functions or den-

find Green functions or DOS for any lattice Hamilto-
an He ©
(H).

: the known Green functions and 00S of two Hamilton-

sebra generated by the direct products (HeI) and (IsK),
1 is the identity. Namely,

te* [ amn (H'8K"), with ay, real numbers.

so extended from H and K to Hy. A study is presented
two examples, (1) The Cartesian product of two Sier-
faski fractal lattice Hamiltonians, also a hierarchical
ractal which 1is infinitely connected with spectral di-
pension 4 £n3 / Ln5=2.730. .
Ham$

1tonians formed as products of 1D Fibonacci chains.

lattices are quasi-periodic and admit inflation/
“deflation transformations, but do not bave 5-fold rotation
B : }

10

dberg States of the Rare-Gas Van der Waal

1gers. %ﬁmw C. H. GREENE, LoulsTana State

—Hultichanne! quantum defect theory Is adapted to
ribe bound and autofonizing Rydberg states of the
gas dimers. As in our earlier paper:, related to a
aflar study by de Prunele?, a nonperturbative Fermi-
type snalysis cosbines readily with MQT, giving an
simplification. This permits the description
complicated avoided crossings among Rydberg state
otent1al curves, e.g. for Arfle, XeNe, without requiring
Yarge-scale ab initfo calculation. Autolonizing
" e structures in the phototonization cross
section are also calculated between the fine-structure-
split fonization thresholds, accounting partially for _
servatfons of Detmer and Pratt.?
rted in part by the Matfonal Science Foundation
. Y. Du and C. H. Greene, Phys. Rev, A 36, 971 (1987).
#E. de Prunele, Phys, Rev, A 35, 496 (1987); also Phys.
. A 36, 3015 (1987).
. ls Dehmer and S. T. Pratt, J. Chem. Phys. 77, 4804
982).

SESSION 119: GENERAL MECHANICAL
PROPERTIES AND NDE

ednesday morning, 23 March 1988

Mardi Gras K at 8:00;

R. C, Cook, presiding

- 800
"H91 co!
Crystalp, DAVID Y. CHUNG, Howard University, --- There
are six and seven elastic constants for TI (RI) and TII
(RIT) group crystals respectively. In an earlier paper,
Dhaticevich! indicated that the erystals of TI (RI) are
related to TII (RII) by a rotation of an angle P about
the 4-fold (3-fold) axis. This rotation of acoustie
axis 1s the only distinction between the two groups so
far as the acoustic properties are concerned. In the
present work, we like to show that by the use of so-
ecalled invarient constants, this rotation of ¢ comes
out naturally froa the inhsrit properties of these cons-
tants. Invarient ¢onstants® are the elastic constants
which are independent of the specific coordinate system
being used. The detall expressions of for TI,TI1 and
RI, RII groups will be presented at the meeting.

1.A. G. Khatkevich, Sov. Phys. Cryrtallography, 6,561
(1962).

2.T. P. Srinf¥asan, J. of Math. axi Mech., 19, 1019
(1970).

Vol. 33, No. 3 (1988)

An Extension Theory for Lattice Green Functions.
of N. Dakota--A method

rfes of states (DOS) for a given lattice Hamiltonian H

xpressible as a rational function of H, i.e. Hg
The formalism is further developed to permit u-

s H and K to obtain those of any Hamiltonian He in the

1ts may be obtained either analytically or numerical-
Other properties such as electrical conductivity are

Wednesday Morning

8:12

1192 The Frenkel-Kontorova Model With Nonconvex

Interparticle Interactions and Strain Gradients. S. Marianer
and A_R._Bishop, LANL..-We study the statics and dynamics of
a chain of atoms moving in a periodic potential with nonlinear,
nonconvex interparticle interactions, and with strain gradients
which we mo?el by including next nearest neighbors’
interactions through the discrete Hamiltonian H =
znl;nz/2 +altn,-un)*-Mun M'“n)2 +YUne1-2un + Up.1)? —cosup.
We obtain the phase diagram within an ansatz of periodically
modulated configurations. These generalize the homogeneous
(for f<1/8) and dimerized (for §>1/8) configurations nlreac}ijf
reported for y=0, and are given by: us=nay+b, for n=1..N,
and u,=nagz+bg for n=N+1.N+M. The dynamics of
tranistions between different configurations when the
parameters are varied is also investigated and we show that
these are dominated by nucleation processes, which occur on
short time scales compared with the subsequent slow growth.
Possible relation of the model to the dynamic¢s of twin
boundaries recently observed in the copper-oxide high-
temperature superconductors is discussed. ‘

(11) 2D and 3Dplaid lattice

8:24
1193

. ks of KMoF3.* W. CAO, G.R. BARSCH, Penn State
L., W. JIANG, M.A. BREAZEALE, U, of Tepnnessee.--We have

measured the three nonlinearity parameters along the
principal symmetry directions for KMnFy from 298 to
350K by means of acoustic second harmonic generation.
In conjunction with-our earlier data on the temperature
dependence of the pressure derivatives of the elastic
constants the complete set of the six third order
elastic constnts has been determined in this
temperature range. For Cj343, C€1)3/ €333 and C166 the
temperature dependence is linear, indicating that the
effect of the ferrcelastic transition at 186K (manifest
in elastic anomalies) is no longer present above 300K,
and permitting us to eliminate the effect of zero point
and thermal motion by extrapolation to absolute zero.
The static T.0.E. constants thus obtained differ
significantly from the R.T. values. Both static and
R.T. values exhibit large deviations from the Cauchy
relations. The results are also compared with those
for other perovskites.

*Supported by OUtfice of Naval Research under Contract
No. NCG0014-82-X-0339.

e 513

1194

wAYS- Iterative Deconvoluytion for
Acoustic - v v EDWARD J. MURPHY,
JULIETTE W. IOUP, and GEORGE E. IOUP, Unfv, of New

Orleans, DORON KISHONI, Coll, of William and Mary and
NASA Cen,--Acoustic energy sources
generally have a finite time duration and a ringing
shape which can make the evaluation of find{vidual
reflections difficule. Deconvolution can be an
important tool for signal analysis. 1In this work the
detected acoustic signals are decomiolved using the
Always -Convergent Method of Ioup. The Always-
Convergent technique is applied to data recorded during
the quantitative analysis of mnmaterials through Non-
Destructive Evaluation in which ultrasonic signals are
used to detect flaws in substances such as composites.
An 1important part of processing the signal 1is the
normaljzation since it 1s useful to know the strengths
of the reflections. Various methods of normalization
are investigated and the most effective method {s found
to be the one which uses the change in the sum of the
absolute values of the amplitudes in the signal before
and after processing. Results of the application to
actual data are shown.

1. E. Toup, Bull. Am. Phys. Soc. 26, 1213 (1981)

8:48
Thermal Properties of PEEK (poly-ether-
ether-ketone) Based Materials* Ryan Giledd, Ewan
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;hoWCd that the directivity index (D1 of aninhnitely densely popuiated

nencal shell array was about equal to that of a sphere. Extrapolating to
discrete elements, this means the shell requires far fewer elements. They
did not compute DI using amplitude shading, due to the impractical cost
of such systems at that time. Today's techriology removes that constraint.
This work revisits the problem with shadir g, using an approach for choos-
ing the amplitude shading coefficents tha: maximizes DI [H.S.C. Wang,
§. Acoust. Soc. Am. 57, 1076-1084 (1975} }. Calculations have been made
for the DI of shaded cubic volumetric arrays, forming beams perpendicu-
Jar toone of its faces, in the presence of isctropic noise. Results show that
for 27 and 125 element arrays with eleme 1t matrix spacings of 1/2 wave-
fength.a full 10 log (number of elements) can be obtained for DI. Work is
underway to investigate larger arrays and smaller spacings. The approach
will also be extended to nanisotropic no:se fields. { Work supported by
NORDA and NOSC exploratory develoy ment programs. |

9:00

H7. Least-squares and single-filter always-convergent iterative
deconvolution of transient signals for correlation processing. James
H. Leclere, George E. TIoup,” Juliette W. loup,” and Robert L. Field
(Code 244, NORDA, Stennis Space Cenier, MS 39529)

Correlation processing for distributed sensors is most accurate for
short pulses and those whose autocorrelat:on is sharply spiked. For longer
(ransient signals. multipath arrivals at ea-h sensor have significant inter-
ference with each other, and it is difficult to identify individual arrival
times. Deconvolution of the received signal to sharpen the transients is
one method to decrease the overlap and increase the accuracy with which
wravel times can be identified. Deconvolution can also be applied after
cross correlation to sharpen the autocorielation of the transients. Least-
squares deconvolution is the most commonly used approach for acoustic
signals. It has the disadvantage of being computer intensive when filters
for long transicnts are needed. An alternative approach, the single-filter
application of the always-convergent iterative technique, is faster and pro-
vides variable contro! for noise. The two techniques are compared for
actual underwater acoustic multipath transient signals. Single filter appli-
cation of always-convergent iterative noise removal iscompared to the use
of a modified Blackman-Harris window for noise control. *' Also at the
Department of Physics, University of New Orleans.

9:08

HS. Comparison of double and triple cross correlation for arrival time
identification of amplitude- and frequency-modulated acoustic transient
signals, Julictte W. loup,” George E. Ioup,” Robert L. Ficld, and
James H. Leclere (Code 244, NORDA, Stennis Space Center, MS
39529)

The triple cross correlation of three signals is a simultaneous function
of two lags. It is an alternative to cross correlations taken two at a time for
determining the lags for a given source at three distributed sensors. It
should offer improvement in arrival tiine identification only when the
statistics of the signal have significant third moment components. In this
study, amplitude- and frequency-modulated snythetic transient signals
are propagated over several possible paths to three sensors, and the triple
correlation of the received pulses computed, as well as the cross correla-
tions of the same three signals two at a time. The efficacy of these two
approaches is compared for a variety of amplitude- and frequency-modu-
lated transient signals and multipath interference conditions. *’ Also at
the Department of Physics, University of New Orleans.

9:10

H9. In situ acoustic calibration for u large aperture array. Barbara
J. Sotirin (Marine Physical Laboratory A-005, Scripps Institution of
Oceanography, La Jolla, CA 92093)

P
During September 1987, a large ape ture acoustic array was deployed
vertically in the Northeast Pacific to study low-frequency noise in the

S17 J.Acoust. Sac. Am. Suppi 1, Vol. 84, Fali 1988

edge of individual elemeni amphiude and phase response 1or accurate
results. Two in situ methods of array calibration are described and results
from the September experiment are presented. The first method used
transmissions from a low-frequency source of known location and power
leve). Simulating the conditions encountered during the transmission, the
power arriving at the array was predicted by several acoustic propagation
models. By comparing the array response at specific frequencies to the
response predicted by the models, an absolute calibration was obtained.
An error curve for the phase data was generated by unwrapping the phase,
accounting for a sampling offset in the array, and subtracting a multiple
linear regression curve. The second method determines relative amplitude
leveis by examining the average ambient noise power output of a specified
frequency band across the array. Using spectral, coherence, and direction-
ality plots, the level of self-noise in the array was shown to be below that of
the ambient noise being measured. These two independent methods pro-
vide a consistent set of element calibration values used for array beam-
formuing. [ Work supported by ONT.]

9:16

H10. Abstract withdrawn.

9:20

H11. Matched-mode processing corrections for array tilt and bottom
type. James A. Mercer (Applied Physics Laboratory, University of
Washington, Seattle, WA 98105)

1n a related effort, Homer Bucker has shown that matched-mode pro-
cessing for an unknown sound-speed environment can be significantly
improved if correction factors for the mode-linc amplitude functions can
be determined. The correction factors are obtained when a source with
known location is available to calibrate the system. This paper describes
the results of applying the same techniques for simulated cases of un-
known array tilt and bottom characteristics.

9:25

H12, Sell-consistent modeling of signal and noise in a three-dimensional
environment. John S. Perkins, W. A. Kuperman, and F. Ingenito (U.S.
Naval Research Laboratory, Code 5160, Washington, DC 20375-5000)

Previous propagation work is extended to model surface noise, ship-
ping, and signal sources in a fully three-dimensional environment. The
noise cross-spectral density matrix for a vertical array is computed as the
sum of a local contribution and propagation from distant small patches of
ocean surface. Propagation from any point to the array is made efficient

2nd Joint Meeting: Acoustica! Societies of America and Japan 817
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Role of Remanent Magnetization in the MAGSAT Crustal Anomaly
Field in the SW Indian Ocean

L Fullerton and J Roark (Astronomy Program, University of
Maryland, Collcge Park, MD 20742),

H Frey and H Thomas (Laboratory for Terrestrial Physics/Goddard
Space Flight Center. Greenbelt MD 20771, 301-286-5450}

The MAGSAT regional crustal magnet lies in the SW

Indian-Antarctic Ocean are due 10 2 bination of induced plus

rock samples. These daa were filicred 10 remove samples with
anomalous  geochemistty and  from  non-mid-ocean ndge
environments. These new results show that, on average, J for oceanic
basalts (1) seadily decrease from 0 <o 35 Ma, (2) increase from 35 10
5O Ma, and (3) exhibit no significant change between 30 and 140 Ma.
The mean value of J all studied basalis is 3.5 A/m.

The observed decrease in J from 0-35 Ma is consistent with
our undersanding of the effect of progressive low 3
oxidation on the inensity of natural remanent magnet zation. The 35-
S0 Ma increase must be due to cither a submanine process which
eﬂ'lecu oceanic basalts of this age, or 4 change in the intensity of the

Viscous remanent magnetization and TRM in Cretaceous Quiet Zone
(KQZ) regions. Two broad. roughly paraliel, SW 10 NE trending,
multi-peaked lobes of positive reduced-to-pole (RTP) anomalies
dominate the region, one lying south of Africa and the other north of
Antarctica. Some of the peaks of these anomalies correlaic well with
the location of submarine plateuas which are tectonic conjugates;
i.e., formed together but now scparated. But the shape, location of
many of the peaks and amplitude contrast of the northe
which runs from the Agulhas Platcau northeastward to the
fadag: Ridge, app w0 be lled mostly by TRM in KQZ
crust; suctural characteristics (i.e., thickened crust) account for
only about 20% of the total anomaly smplitude. Based on modeling
results, the TRM contribution varies from sbout 10 A/m over the
Mozambique Platcau and Basin) 10 about 3 A/m over the Agulhas
Plateau. Transkei Basin and Madagascar Ridge (TRM assumed
distribuied through layer 2). This inferred differential TRM s
consistent with available drill core dau. The southwesiern poruon of
the Enderby Abyssal Plain has a 3nT positive MAGSAT anomaly
over it which is centcred south of the Rise. This eatire area
is KQZ crust, and the anomaly seems littke related to the Conrad
structure. The centroid of another 3 nT anomaly which lies between
the Maud Rise and Astrid Ridge may also be controlied by the KQZ
crust rather than the structural features which flank this portion of
the cxtreme  southwest Basin. Ovenall there is good
between the MAGSAT RTP anomalics observed for
conjugate platcaus and adjacent ocean basins in that portions {
ogether at the 1ame time but now well scparated seem (o have
similar TRM contributions to the 1oal anomaly contrasts observed.
Surprisingly, it may be possible to use MAGSAT data 1o infer the
limits of KQZ crust where this is poorly known.
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Magnetization Contrast of the Pacific Cretaceous Quiel Zone
Based on Magsat Data

P B Toft and J Arkani-Hamed (Dept. of Geological Sciences, McGili
University, Montreal, Quebec, H3A 2A7, Canada; 514-398-8052)

The sbsolute value of mag| of oceanic lithasphere is poarly
known. Information from drill holes is only for the uppermost 0.1
km and that from ophiolites is scattered and sparse. Magnetic
anomaly inversion gives only a value of magnetization contrast.

A constraint on the absolute value may be ob d from Magsat dat:-
snd the Pacific Cretaceous Quiet Zone (QZ) of normasl polarity
There are few Magsat anomalies over the east Pacific, and most large
anomalies in the west Pacific are correlated with plateaus and
seamounts. An anomaly over the Cretaceous Hess Rise, for example
is modelied from topography and crustal thickness with 3 lots!
magnetization contrast of 10,000 A (magnetization x thickness).

In the central Pacific, however, are anomalies that are not obvious! .
correlated with topographic features. Some of these may be due 1
1 magnetization contsast berween the QZ and its surroundings: if th-
magnetic signatures of the narrow bands of normal and rteverse
magnetizations surrounding the QZ sum 1o zero at satellite altitudr,
and if there is no susceptibility contrast across the QZ boundary, then
Magssat anomalies may result from an edge effect of the QZ

To test this hypothesis, the magactic anomaly of the QZ is calculate $
at 400 km and it is filtered to simulate removal of long wavelengtts
overlapping the core field that are extracted from Magsat data alorg
with the core field. The QZ with a total magnetization of shout
10,000 A produces S00-1000 km wavelength features spatially assoc:-
ated with the QZ boundary, which are similar in magnitude, wav-
lengih, and location 10 observed Magsat anomalies. Both the Pacif ¢
QZ and isolated plateaus, such as the Hess Rise, indicate a 1ot
magnetization of about 10,000 A for the Pacific oceanic lithospher-
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The Intensity of Ma zation of Oceanic Basalts as 8 Function
of Age; Compited Data from ODP and DSDP Basslts.

1 E Pazisg and H P Johnson (School of Octanography, University of
Washington, Seattle, WA 98195, 206-543-8542)

H. Sakai (Dept. of Earth Sciences, Toyama University, Toyaia,
Japan) .

In contrast %o the ociginal Vinc-Matthews model of :he
magnetization of oceanic crust, we now know that oceanic rocks are
subject to changing physical and chemical conditions which have ‘he
posential to mod.J y the mag properties of crustal rocks, “he
variation in the intensity of magfieuzanon (f) of oceanic basalts was
initially investigated by Bleil and Petersen (1983), who comp:ied

alcomagnetic data from DSDP Legs 1-65. A more recent study al the
niversity of Washington focussed on a re-examination of dri'led
basalts (O-155 Ma), and includes all of the DSDP and new ODP +ard

field. The lack of variation in J betwren 50 and 140
Ma is nor consistent with recent models which predict predict that
basalts formed during the Cretaceous Normal Magnetic Superchron
should have substantially higher valucs of J than basals formed
before, or after, the Superchron. Therefore, we suggrst that the high
magnetic fields measured by MAGSAT over the Cretaceous Quiet
Zones in the Atlantic ocean result from (1) & thicker extrusive layer,
or (2) an increased contribution from the lower, int-usive layers of
Oceanic crust.
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Deconvolution for Increased Resolutivn in AEM
Data

Clyde J Bergeron, Jr, George .
Juliette W Ioup, long B Trinh, and Abolfazl
M Amini (Physics Department and Geophysical
Research Laboratory, University of New
Orleans, New Orleans, LA 70148
(504) 286-6341)

Deconvolution is a standard technique for
removing the effect of the instrument or
other response functions from data. In
airborne electromagnetic (AEM) measurenents,
thera is an affective impulse response for
the AEM measuring device due to the large
footprint of the davice. We present
approximate line and point impulse response
functions calculated from the Modified Image
Method (MIM} representation of the AEM field.
We apply these functions in an iterative
deconvolution of data produced from two-
dimensional models. The deconvolved results
in general show a increase in the effective
resolution of the AEM data. (Work supported
in part by the U. S. Army Cold Regions
Research and Engineering Laboratory.)

GM2A-8 133k POSTER
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equanons

RANDALL MACKIE and THEODORE MADDEN (Both at:
Dept. of Earth, Atmuspheric, and Planetary Sciences, MULT.,
Cambridge, MA 02139)

We have developed numerical algorithms for -omputing the
elec agnetic resp of a fully inhomog! 3D earth model
due to 8 uniform current source far above the earth (this is the
magnetotelluric response). Our algorithms are finite difference
algorithms, but they are based on the integral forms of Maxwell's
equations rather than the differential forms. This eliminates the nced
10 approximate derivatives of earth jes; indeed_ one only nceds
be concerned with the issue of uking averages of eanh properties.

Finite difference algorithms invariably lead to large sysiems of
equations to be solved, especially for realistic 3D esnh models. We
have i igated relaxati hods (conjugate direction algorithms)
and direct methods for solving these systems quickly and nctunwz;
The relaxation solutions are quick, give reasonable answers, and
not reguire large amounts of computer storage. We have found that a
multiple scaling technique used in conjunction with relaxation
methods works especially well. The direct solutions are more
compuler intensive than the relaxation methods because they can
require large amounts of storage space and involve doing many
matnix inversions. The solutions from our algosith pare well
with the solutions from W k ithm.

's integral eg
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MIM Inversion of AEM Data for Groundwater

Juliette W Ioup, and Clyde J Bergeron, Jr
(Physics Department and Geophysical
Research Laboratory, University of New
Orleans, New Orlean,, LA 70l48;

(504) 286-6715}

The Modified Image Method (MIM) for inversion
of airborne electromagnetic (AEM)
measurements can be applied to groundwater
studies. The effective depth and
conductivity of the groundwater is determined
from the simultaneous measurements of the AEM
transmitter/receiver system altitude and the
complex low frequency secondary field. The
inversion of the high frequency AIM data
allows a determination of the average

. s . e
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conductivity of the overburden layer. The
results of such an analysis of data from a
groundwater survey perforsed by the Dighem
Company in Michigan will be presented.

GPI12B CA: 317 Mon 1330h
Magnetic Methods in Studies of Global
Change 11

Presiding: R Kartin, Univ of Nevada,
Reno; R Negrini, California State Univ
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Determination of Paleoenvironmental Conditions From
Soils Using Rock Magnetic Techniques

Michael J Singer (Dept. of Land, Air and Water Resources, Univ.
of Calif., Davis, CA 95616)

Bruce Moskowitz and Kenneth L Yerosub
Geology. Univ. of Calif., Davis, CA 93616)

Pinchas Fine (Institute of Soils and Water, Volcani Center, P.O
Box 6, Bet Dagan, ISRAEL)

(Both at: Dept. of

1 ) i

Soils are sensitive ind of p and
horizon by horizon chemical analysis of a soil can rovide detailed
information about climate and climate change. We have been using
rock magnetic techniques 1o suppl ditional wet chemical
methods for tracing the movement and transformation of iron in
soils. Our work has shown that enhancement of the magnetic
susceptibility of a soil is not a surficial process, as was previously
believed, and that the increase in susceptibility results from the

1 of inherited magnetite as well a5 from the precipitaion of
pedogenic maghemite. Both of these faciors are influenced by the
waier content of the soil, and the enhancement process ceases when
2 soil becomes poorly drained. We have aiso found that
morpbolojgicnl discontinuities found in soils often have a
corresp § magneb ptibility anomaly so that susceptibility
measurments can be used 10 evaluate the suitability of soil sequences
for detailed pedological analysis. Our one enigmatic result is that the
ratio X/ Xarm APPEArs to be independent of soil horizon and panicie

size fraction within a soil. This result implies that the ferromagnetic
pasticles in a soil fal) within a narrow size range.
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Diagnosis for Greigite (u,s.) in Cretscecus Beds,
sorth Slope, Alaska, snd Bolocese Sedisents, Lake
Michigan

R L Reynolds, A Nicholson, M § Goldhaber (USGS, MS 964,
Box 25U46, Denver, CO BO225, 303-236-1301)

S M Colman (USGS, Woods Hole, MA 02543}

J ¥ King (Univ. of Rhode 1sland, Narragansett, Rl
021882)

C A Rice, H L Tuttle, snd D M Sharwan (USGS, Denver, CO
80225)

The presence of postdepositional greigice (Fey5,;
ferrimagnetic) can discort depositional magnetic records
and thereby jeopardize palecenvironaental
interpretations based on magnetic susceptibtlity (MS)
snd remanent magnetizstion. Our studies have provided
means fo identify gretgite and evaluate its effecta.
Using X-ray diffraction, thermosagnetic signature, and
Mossbauer spectra, ve have sdentified abundent greigite
in Upper Cretaceous mudstones from the Simpson
Paninsuls, North Slope, Alsska, but have found little
evidence of It in Holocene mud frow southern Lake
Michigan.

Greigite dominates magnetic properties of 2he Cretaceous
sudstones, which have a mean HS_of 5.9x107° {vol S1) anc
s mesn NRM magnitude of 6.6x107% A/u, Geochenically,
these sudstones Tesemble many Recent sarine sedisents:
Acid-volatile sulfur (AVS; from grelgite and nonasgnetic
soqosulfide) ranges from 0.02% to 0.201 (by weight),
gisulfide S (from pyrite) ranges from 0.02% to 0.462,
and the retio of AVS plus disulfide S to organic carbon
averages 0.3,

Coaparison of magnetlic ptoperties with the distribution
of sulfur species 1in Holocene mud from southern Lake
Michigan suggests the presence of -greigite and pyrice.
Neither mineral, however, appears (o obscure the
detrital magnetic record, excepl perhaps in shallow (K20
ca) intervals in some cores. In Chese shallow
intervals, three cores schieve maximum sulfur values
(AVS U.02 to U.162; disulfide § U.0IX to 0.24 1.} sostly
within the ranges of the Alaskan mudstones. In one
core, the AVS profile simics the MS profile, both
reaching their maximums (AVS 0,023 MS 4.ex107%) st 6
ctm. In the upper U cm of another core, high AVS
content (maximum O.16%) corrusonds to relatively high
Ms (4. 1xiu™") and Nt (1.1x1074 a/e). Both of these
fesults suggest that some of Lhe AVS may be in the forw
of greigite. 1n the latter core, however, high MS also
correlates with high sand content, indicating that
detrital oxides contribute much more to MS than does
grelgite.  Tnis finding Is supported by examinatien ot
magnetic separates.
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Applications of the Modified Image Method to the AEM Study of Sea Ice

INTRODUCTION

Classical image theory may provide a simple method for
calculating the secondary field produced by a conducting
structure in response to an applied field. The three-dimensional
screening distribution that is induced in the conductor is
replaced by an image (or a distribution of images) of the primary
source. When the primary field is magnetic, classical image
theory may be used in the case of a "perfect" conductor (high
frequencies and/or high conductivities) or for the response of a
superconductor to a constant magnetic field. The general
criterion for the applicability of classical image theory is that
the weighted average depth of the screening current
distribution (the superconducting penetration depth or the complex
skin depth in the ohmic case) be much less than the altitude of
the primary source above the conducting surface.

The essential constraint on the image sources for the
magnetic case is that they produce a secondary field at the
surface of the conductor whose normal component, Bsn' is equal
but opposite to the normal component of the primary field, B

pn’
thus satisfying the continuity condition on B, at the interface.

A symmetry constraint on the tangential components, Bpt and Bogr
results in their equality. Thus

— -— — AN\

B(surface) = Bp + Bs = 2 Bpt T ’ (1)






where % is a unit vector in the conducting surface. The
conductor surface is generally termed the image surface.

only simple interface geometries allow for simple
distributions of image sources. A plane interface requires only
one image source to satisfy the electromagnetic boundary
conditions on B, . In this case the secondary field produced by
the induced current distribution is accurately replicated in the
nonconducting halfspace by the field of a single image source.
An alternate source distribution to the image source is provided
by a surface current‘fiwhich is given by-i =} x B at the image

surface, where'g is the normal to the surface. Thus'i is given

by
- A

. K = 2B T, (2)
where T' is a unit vector tangent to the surface but
perpendicular to % and A. The secondary field produced by the
surface current distribution'f is identical to the field produced
by the image source, but this calculation is less direct since it
involves an integration over the surface.

The modified image method (MIM) has a;l the elements of
the classical image theory EXCEPT that the image surface is
relocated to one weighted average screening length BELOW the
conducting surface. For the ohmic case this distance is complex
and is given by [exp(-in/4)//2]6, where is the electromagnetic
skin depth & = /(2/ (pyow) - For a plane layered conducting

o~y
medium, § is modified by a complex correction factor, Q (Bergeron

et al., 1987). The complex image field produced by this






assumption is in good agreement with the secondary field given by
the one-dimensional Sommerfeld theory (Sommerfeld, 1909).

For non-planar conducting models (two- and three-
dimensional), there is no general prescription for determining a
distribution of image sources that will satisfy.the
electromagnetic boundary condition, and in general none exist.
The standard methods of calculating the secondary field produced
by two- and three-dimensional structures (e.g., the finite
element method (Lee and Morrison, 1985)) are generally of an
jterative nature and hence computationally slow.

MIM provides a fast, efficient, but approximate method
for calculating the secondary field. We assume the general
validity of Eq. (2), which defines a surface screening current
distribution'i in terms of the tangential component of-E;. This
screening distribution is at a complex skin depth,
[exp(—iw/4)/J2]5, below the conducting surface, where now G'is
the LOCAL normal to the conducting surface. Equation 2 gives??
in terms of the primary field alone. The heart of this
approximation is that the relation B, = Bpt is still valid.

In the context of the MIM theory, the primary field ;;
on the image surface is a formally complex function, since it is
a function of the primary source strength (real), the lateral
displacement of the source from the image surface point (real),
and the vertical separation between the source and the image

- -
surface point, h + & c¢ (complex). It follows that Bp>and K in

the image plane, given by Eq. (2), and the secondary field






generated at the detector by'f'are complex, i.e., the secondary
field is not in phase with the primary field at the detector.
Thus in the image-source surface a discontinuous change in a
model parameter results in a local discontinuous vertical
displacement of the source surface. That is, a discontinuous
change in Oqr 0 4 OX d‘I for a two-layer model, results in a
discontinuous chance in § ofgr and hence a vertical shift in the
source surface.

In this approximation the source surface is now
disjointed and the strength of the secondary surface distribution
is calculated locally in various areal cells of the surface. The
individual contributions of these source surface cells are summed
up at the detector coil location. 1In general the area of a
surface cell is decomposed into Cartesian components
<§;=da9=ada§.\+pda’j\+7da/): ’
where o, g, and y are direction cosines with respect to the x, vy,
and z axes, respectively. |

There are two facts that render the assumption of the
general validity of Eq. (2) at least plausible. The first is
that the field is screened from the interior of the conductor

independent of its geometry, i.e., B =~ 0., The second

interior

is that Eqg. (2) provides for the approximate satisfaction of the

—
electromagnetic boundary condition at the image surface. K

produces a stepwise discontinuity in B, at the image surface from

2B_. to approximately zero, and likewise implies that B, = 0 at

pt
the surface, thus satisfying the boundary conditions on B, .






The secondary field produced by‘E‘of Eg. (2) 1s easily
and rapidly calculated, taking about 1 sec/survey point for
fairly arbitrary two-dimensional models. See Table 2.

The ultimate utility of this approximate method of
calculating secondary fields produced by two- and three-
dimensional structures depends on how well these MIM fields agree
with secondary fields generated by other methods of calculation
and with scaled model laboratory measurements and survey results.

In this report we give the resultant numerical
calculations of the MIM secondary fields produced by models of
ice keels. The specific models studied were:

1) rectangular trough models in which we examine the dependenc;
of the secondary maximum (in ppm of the primary field) and the
secondary field half maximum width (in meters) on keel depth,
width, and bird altitude.

2) a triangular ice keel model which we label the Berkeley
model, identical to one used by Becker et al. (1987).

We compare the results of the MIM two-dimensional field with the
Berkeley two-dimensional calculation and to a one-dimensional
Sommerfeld calculation.

3) a "CRREL" model which is based on an Arctic sea-ice survey
ground truth data set provided by CRREL (bird altitude, ice and

snow freeboard, and keel depth versus range).
THEORY

In this section we include the "working equations"






which are used in the numerical computations of the secondary
fields produced by the current distribution given by Eq. (2) for
two-dimensional structures. We also include the MIM and
sommerfeld one-dimensional formulations which result in fields
that exactly track the geometry of the model. The two-
dimensional MIM approximation produces fields that vary more
smoothly but still generally track the model. There is one
exception to this rule which will be pointed out and discussed
jater in this report.

Table 1 illustrates and defines the notation used for
the normalized seccndary field detected by the various possible

permutations of horizontal coil pairs.

Table 1
coil pair
name diagram normalized secondary field
horizontal coplanar $ o 72z = H__/H
T X sz/7'p
horizontal coaxial 9"’ 0 XX = H__/H
T X sx P
horizontal mixed 1 <£> 0 zX = H__/H
sx/7'p
T X
horizontal mixed 2 G- o Xz = H__/H
T X sz’ P






Table 2 gives the total CPU time per survey point for a line

survey and the horizontal surface element dimensions.

Table 2
Field sec/survey point step sizes
XX
1.34 AX=0.5¢§ Ay=1.0%
XZ
2Z
1.74 Ax=0.58 AYy=1.0¢8
ZX
One-dimensional Fields
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oI
Note s Jax| = [wel o 00 ""’-’1""]
h = altitude of bird
§ = skin depth
d = first layer thickness for a two-layer model (not relevant

in these calculat:ons)

To, Tl’ and T2 are generally referred to as the Sommerfeld
integrals and must be evaluated numerically. Thus far we have

coded only To.
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7wo-Dimensional Fields
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Note: The contribution of vertical surface elements to the
models that are used in these calculations is small compared to
the horizontal elements and so has not been included in the
section presenting results.

With the detector located at the origin of the
coordinate system, the transmitter has Cartesian coordinates
(xo,o,o) and an element in the source surface has Cartesian
coordinates (x,y,-h). R is the complex distance between a source
element and the detector, and R' is the complex distance between

a source element and the transmitter.
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RESULTS

In this section we discuss the results of the
jnvestigations in the context of the tasks set forth in the

contract.

Task 1: The implementation of a MIM halfspace inversion
algorithm for AEM data.

This task has been completed, and a printout of the
code and a magnetic tape containing the code has been delivered

to CRREL.

Task 2:¢ Implementation of a MIM algorithm to calculate
approximate AEM signatures of jce keels as functions of their
width and depth.

This taskx has been completed. MIM two-dimensional
computer codes for rectangular and triangular sea ice keel models
have also been delivered to CRREL in both printout and magnetic
tape forms. We were initially tasked to produce algorithms and
sample calculations of the MIM two-dimensional 22 fields
(horizontal coplanar coil configuration). We have extended that
task to include the XX (horizontal coaxial coils) and ZX fields.
These calculations have peen applied to two jce keel models. For
the CRREL model pased on ground truth data of an ice keel in
Prudhoe Bay, the 2% and XX fields have been inverted using the
one-dimensional MIM jnversion to produce values for the model
parameters. The Berkeley model (Becker et al., 1987) is a
triangular ice keel for which the XX field has been calculated

using a finite element method. We compare results of these two

11






calculations. A detailed discussion follows.

Task 3: Implementation of an analytic continuation algorithm of
AEM data.

The feasikility of analytically continuing AEM data up _
and down 10 m by a Taylor's series expansion of the MIM field has
peen demonstrated. A preliminary report of these results was
made at the American Geophysical Union meeting in San Francisco
in Dec 1988, and the abstract published (Bergeron et al., 1988).
A more detailed discussion and illustration of this work follows

below.

Task 4: Deconvolution algorithm for ice keel signal signatures.
The results for the preceding tasks show that the two-
dimensional MIM ice keel fields (with the exception of the ZX and
probably the X2 fields) track the one-dimensional fields in a
wsmoothed out" way. It is anticipated that an efficient
deconvolution algorithm of the two-dimensional fields by a line
impulse source signal will sharpen the two-dimensional fields and
bring them into closer agreement with the one-dimensional fields,
thereby bringing one-dimensional inversion results of the two-

dimensional fields into closer agreement with the input model.
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TASK TWO

Approximate 22 MIM Signal Signatures

of Rectangular and Triangular Ice Keels

The sea ice is assumed to be transparent to the AEM
field, i.e., its conductivity is assumed negligible. All lengths
in these models are scaled to the AEM skin depth in sea water and
all fields calculated are for the horizontal coplanar Z2Z coil

configuration.

Rectangular Keel

13






Triangular Keel

sea ice
\ ;0 f
\ / DK
\ / |
\ / sea water
/
\ /
€---—-= WK —=—====——= —

pDefinition of variables:
H = altitude of pird above sea water/ice interface
WK = width of ice keel

DK = depth of ice keel

pX = numerical integration increment parallel to survey path
pY = numerical integration increment perpendicular to survey path
%0 = coil spacing in AEM bird (for exanmple, if the coil spacing

is 6 m and X0 is 0.6, then the skin depth is 10 m; the
altitude of the bird above the seawater ijis 3.0 m if H =

3.0, and the width and depth of the keel are 10 m if WK

and DK are 1.0)

In Figures 2-1 through 2-11, Hyz/Hp is plotted versus
range (in skin depths) for rectangular and triangular keel
models. The keels are centered at zero for various combinations
of WK, DK, and H. The solid and dashed curves are the real and

quadrature signals, respectively. The larger pairs of signals

14






are produced by the rectangular Kkeels.

In Figures 2-12 and 2-13, AMP is the maximum signal in
ppn produced by the ice keel as the bird passes overhead. Figure
2-12 shows AMP versus WK, and of course the signal saturates at
about 600 ppm. This ig the difference in the signals produced at
altitudes of H = 3 and H+DK = 4. Figure 2-13 shows the variation
in AMP with keel depth DK for a fixed keel width. The saturated
value of AMP in this case is about 140 ppm.

In Figures 2-14, 2-15, and 2-16 the 50% signal level
signature width (WIDTH) is plotted versus keel width for constant
keel depth, or versus keel depth for constant keel width. Note
that the residual %0% signal width for narrow jce keels (WK < 4)
is approximately 7 for H = 3. Thus narrow ice keels produce a
50% width signal approximately equal to twice the bird altitude

plus ice thickness.
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Berkeley Triangular Keel Model

The XX response of the triangular keel model shown in
the bottom of Fig. B-1 was calculated by Becker et al. (1985) by
means of a finite element algorithm. The results of the
calculation at ten survey points are shown in the upper half of
Fig. B-1. This numerical procedure reportedly required 30
minutes on a Cray supercomputer. The range of the calculation is
only approximately three times the keel width--not enough to
reach the homogeneous halfspace values of the Sommerfeld one-
dimensional field of -312 ppm inphase, =62 quadrature. The same
model is shown in Fig. B-2 but range, keel width, and keel depth
are displayed in units of skin depth, which is 5.03 m given the
assumed values for sea conductivity and bird transmitter
frequency. The MIM one-dimensional and approximate two-
dimensional fields for the XX coil configuration are shown in
Fig. B-3 for the same model parameters. The first feature to
note in these curves is the displacement of the ninimum in the
two-dimensional fields relative to the one-dimensional fields.
This is caused by our computational scheme, and since this
discrepancy continually reoccurs a brief explanation is required.
The minimum values for the two-dimensional fields occur at about
-6 m on the range scale. This is the approximate coordinate of
the receiver coil when the transmitting coil is at the origin,
which is the coordinate of the keel bottom relative to the model.
At this location cof the transmitter, the smallest currents are

induced in the model and hence a minimum signal is detected at
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the receiver coil. On the other hand, in the one-dimensional
case, the altitude of the bird above the homogeneous halfspace is
taken to be the vertical separation of the receiver coil above
the model. This distance is a maximum when the receiver coil is
directly above the bottom of the keel. Thus it is at this
location where the one-dimensional field minimum occurs.

The MIM XX two-dimensional field is in fair agreement
with the Berkeley calculation. The signal widths of the two
curves are approximately the same. The minimum field for the MIM
two-dimensional calculation is intermediate between the Berkeley
two-dimensional calculation and the MIM one-dimensional field
minima.

Figure B-4 shows the two-dimensional MIM fields for the
22 coil configuration. The signal is broader and the maximum
change in signal is smaller than for the XX configuration. No 22
field was reported in the Berkeley report.

Finally, the ZX MIM one- and two-dimensional fields are.
displayed in Fig. B-5. This figure clearly shows that the MIM
approximation predicts that the 2X field produces a keel signature
that is very different from the one-dimensional signal. The
leading edge downslope in the model produces a tracking downslope
in the one-dimensional fields but a large positive hump two-
dimensional signal and a nearly mirror negative hump indicative
of the keel upslope. The peak to peak separation is
approximately 25 m, which is comparable to the keel width of 18

m.
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CRREL Model

Figure C-1 through C-9 are the results of ground truth
measurements of a Frudhoe Bay ice keel by CRREL personnel and
contractors. The ordinant of the figure is the total ice/snow
thickness, i.e., snow cover plus freeboard plus ice keel. A
uniform thickness region has been added to each end of the keel
in order to demonstrate that the two-dimensional MIM calculations
of AEM fields are in agreement with the one-dimensional field in
the uniform thickness regions of the model. Figure C-2 shows the
altimeter reading cf the bird-to-snow vertical distance measured
during a helicopter traverse of the keel. The final model
parameter used in these calculations is the sea conductivity, o
= 3.1 S/n.

Figures C-3, C-4, and C-5 show the results of one- and
two-dimensional calculations for the ZZ coil configuration
(horizontal coplanar). Figure C-3 shows the inphase and
quadrature one- and two-dimensional ZZ fields. Both fields track
the model but the two-dimensional results are smoother and the
variations are smaller than the one-dimensional results. Figures
C-4 and C-5 show the results of the one-dimensional MIM inversion
of the one- and two-dimensional fields. Figure C-4 gives the ice
thickness (inverse distance from bird to sea surface minus the
laser altimeter reading) and Figure C-5 the inversion results for
the sea conductivity. The inversion results for the one-
dimensional fields are in close agreement with the input model

whereas the two-dimensional results indicate a smoother keel no
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as dependent on the model.

Figures C-6, c-7, and C-8 show results of the same
calculations for the XX configuration (horizontal coaxial). A
comparison of Figures C-4 and C-6 shows that the XX two-
dimensional field to pe closer to its cne-dimensional
counterpoint than is true for the two- and one-dimensional
fields for the Z2 configuration. This observation is confirmed
by the MIM inversion results (ice thickness and conductivity) for
the XX fields shown in Figures C-7 and c-8. Figure C-9 shows the
one- and two-dimensional fields for the mixed coil configurations
zX (vertical transmitter dipole/horizontal receiver coil axis).
The most striking feature of these curves is the large difference
petween the two- and one-dimensional fields at the leading edge
of the keel. The two-dimensional results show an enhanced
secondary field whereas the one-dimensional field falls off with
increasing distance pbetween bird and sea surface. Thus a 2ZX
field would seem to provide a signature for a sﬁdden increase in
jce thickness. 1In this model the effect on the 2X field of the
sudden decrease in ice thickness at about 100 m downrange (Figure
c-1) tends to be canceled by the increasing altitude of the bird
over the sane portion of the range (Figure c-2). Nevertheless
the two-dimensioral fields do show a relatively sharp decrease
from 80 to 110 m: & mirror image trailing edge response to the
initial leading edge response. This is more clearly seen in the
7zX field of Figure Cc-10 in which the model has been modified to a

constant bird altitude of 18 m.
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In principle these departures of the two-dimensional
calculation for the ZX configuration from the one-dimensional ZX
fields can be compared to the measured ZX response of scaled edge
models (Dallal, 1985). Dallal measured the ZX field in the time
domain over a sheet of brass as a function of distance from the
edge of the sheet. It is possible for us to calculate the zX
field for such models in the frequency domain over a sufficiently
large range of frequencies and then Fourier transform these
results for ZX(w) into ZX(t), thereby allowing a comparison of

the MIM approximation of ZX(t) with the scale model measurements.
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TASK THREE

Analytic Continuation of AEM Signal

Figure 3-1 is a summary sheet of the MIM model along
with the indicated Taylor's series expansion of the vertical
component Z of the normalized secondary field (Bergeron et al.,
1988). Figure 3-2 shows the smoothed laser altimeter versus
range of a Prudhoe Bay survey line. It, along with an assumed
conductivity of 2.7 S/m, constitutes a uniform halfspace model.
The Sommerfeld integral expression, Ty, for a secondary field is
employed with this model to generate the inphase (real) and
quadrature (imaginary) fields shown in Figs. 3-3 and 3-4.
Figures 3-5 and 3-€ show the absolute percent difference between
the Sommerfeld field calculated directly at a 40 m altitude and
the fields shown in Fig. 3-3 and 3-4 and which are analytically
continued to h = 40 m, i.e.,

$ |42/2]

1 {[Z25(40) - Zgoont to 40(h)1/Zg(40)} x 100 .
Figures 3-7 and 3-8 show the percent errors that result from an
upward continuation of a signal from 30 m as a function of
altitude for skin depths of 5 and 25 m, respectively. Figures
3-9 and 3-10 show the corresponding percent errors that result
from a downward continuation of a signal from 50 m. All of the
figures indicate that a smaller error occurs for an upward
continuation than a downward continuation. The utility of the
technique depends on the subtlety of the anomaly that one is
searching for in the data. Only if the error produced by the
continuation of the data to a fixed reference altitude is less

than the anticipated anomaly signal will this procedure be useful-
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MIM MODEL Figure 3-1
for coplanar horizontal coil pair

T

_p‘
i)(_'o ? bird p: coil spacing (8 m)

¢~/ Q: complex 2-layer
/ correction factor
sea level

_T— ’ - h: altitude
h
|
4'\

/
complex Len%th,ﬂ.___image plane

+ §1: first
'_T—‘

/ layer skin depth
h |
‘AL g . lmage location

/

Taylor's Expansion of Z in altitude

Z(hg) = = [ d'Z | (hy - h)
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Figure 3-2
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Figure 3-3
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Figure 3-4
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Figure 3-5
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Figure 3-6
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Figure 3-7
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Figure 3-8
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Figure 3-9
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Figure 3-10
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TASK FOUR

Deconvolution of a keel signal

Figure 4-1 shows the one- and two-dimensional inphase
and quadrature fields produced for a rectangular keel model of
width 90 m and depth 5 m. Figure 4-2 shows the inphase one- and
two-dimensional fields, again along with the result of a
deconvolution of the two-dimensional field by a line impulse
function. The signal width of the deconvolved fields is
narrowed, which is the desired result. Gibbs oscillations are
introduced by the deconvolution process. Similar results are
shown in Figure 4-3 for the gquadrature component of the fields.
The step in the deconvolved two-dimensional quadrature field at
about 20 m is probably an artifact of the line impulse function
used in the calculation.

Figures 4-4 through 4-7 show the results of a one-
dimensional inversion of the fields displayed in Figures 4-1
through 4-3. Figures 4-4 and 4-5 illustrate ice thickness and
ice conductivity results for the one- and two-dimensional fields,
and Figures 4-6 and 4-7 show the one-dimensional results, again
along with those for the two-dimensional deconvolved fields.

The deconvolved two-dimensional inversion results are
not noticeably different from those of the original two-
dimensional fields. The chief benefit of the deconvolution
process that can be seen in this example is the narrowing of the
keel signal. Further investigation with a variety of models

should be pursued.
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CONCLUSION

The manner in which most of the tasks were completed
exceeded initial specifications, e.g., the calculation of the XX
and ZX ice keel fields.

The validation of the MIM two- and three-dimensional
fields by comparison with the results of more accurate (but more
CPU time consuming) numerical calculations and model measurements

should be the primary thrust in a continuing investigation.
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Sea Ice Inversion

The MIM inversion of sea ice AEM data taken at two
frequencies, 1000 Hz (¥;,) and 250 kHz (fR4), proceeds as
follows.

The low frequency data are first inverted to give
(h + d1) and oy, where h is the altitude of the bird above the sea
ice, d is the ice thickness, and o9 is the electrical
conductivity of the sea. This inversion assumes the following:
1. The skin depth of rhe sea ice §1(lo) is much greater than the
thickness of the sea ice and hence the sea ice is effectively
transparent to the low frequency primary signal.

2. The sea bottom does not affect the secondary field. This
assumption is valid provided that the sea depth dy is greater

than twice the low frequency skin depth of the sea, i.e., d, > 2






62(10). These two assumptions allow a halfspace inversion. The
algebra and computer algorithms for the halfspace inversion are
given in the Appendix.

It is assum:d that the altitude h is independently
determined by a radar or laser altimeter. Thus the inversion
results in a local valu: for the sea ice thickress d; and the
conductivity of the sea water, o,. These results are employed in
the inversion of the high frequency data to determine the sea ice

conductivity.
Outline of high frequency inversion

First a halfspace inversion of the high frequency data
is performed. This produces an effective skin depth §.¢¢ which
lies in the range 69 < b ¢¢ < 51, and is a function of ice
thickness dy. The effective high frequency skin depth is
combined with the altimeter reading h to form the ratio A gf =
2h/é,¢¢. The ad hoc normalization function employed in MIM
inversion is a functior of A ¢f, 1i.e.,

Zyiy = Zo(normalized) = F(Agfg) Zg

For dy << &1, bgoff = 6, and for d; > 261, then §¢¢ =
§1. Since d; is known from the low frequency inversion, this
latter case may be reccgnized and hence the first layer

conductivity o is detcrmined from §.¢f by

R Ly = 2 Ty
oy = 2/[wg £E(i) Seeg?l i

where pgy is the vacuum magnetic permittivity. The condition

dy > 2 é; only occurs Tor thick (d; > 10m), highly conducting (o1






> 0.027 S/m) sea ice. For the intermediate, more general
situation where 6g¢g/dy 15 of the order of unity, the inversion
procedure to be used is that described below.

The MIM relationship between the complex two-layer
correction factor Q and the high frequency AEM field is
algebraically transformed into two simultaneous transcendental
real equations with argunent dy/6q, where 61 is the unknown
quantity. All other quantities in these equations are known.
Each of these equations has in general several roots, BUT only one
common root. The explicit functions that occur respectively in
these equations are tan(dy/67) and tanh(dy/67)- A root-finding
algorithm is first applied to the tan(dy/61) equation. When a
root is determined, that root is inserted in the tanh(d1/61)
equation to test {f it is also a root of the tanh(dy/871)
equation. If not, the algorithm continues in its determination
of the real roots of the tan(dl/Sl) equation until the root is
found that simultaneously satisfies both equations. The first
layer skin depth &y and conductivity op are given by that
simultaneous root.

The range of applicability of the root finding
algorithm is given by 0.02 < dy/67 < 2.5. These limits can be
understood in physical terms. For dy/69 > 2.5 the sea ice 1is
effectively a halfspace as has been already noted, and a two
layer model is inappropriate. For d1/6q < 0.02 the perturbation
produced on the secondary AEM field by the sea ice cover is lost

in the computer "noise" caused by roundoff, etc., and will






certainly be undetectable in the noise and drift present in even
ideal real data, where noise and drift are greater than about 1
ppm.

The lower ice thickness limit on the detectability of
sea ice conductivity is illustrated in the following table which
assumes a value of sea water conductivity of 09 = 2.7 S/m and an

operating frequency of 250 Khz.

a9/91 61 minimum dy
100 ~6m ~0.1m
1000 ~20m ~ 0.3 m

The algebraic details of this procedure and the root finding

algorithm are given in the Appendix.

Results

The MIM inversion procedure that has been described is
applied to several sea ice models. In all of the models used the
low and high frequencies assumed for the AEM system are 1 kHz and
250 kHz, respectively; the altitude of the AEM bird is 25 m; the
conductivity of the sea water o) is 2.7 S/m; and the conductivity
of the sea ice oy for c¢ach model has input values of 0.027 S/m,
0.0054 S/m, and 0.0027 S/m. Thus the ratio K of the
conductivities of sea water to sea ice has the values 100, 500,
and 1000, respectively.

With these general conditions, the first model of ice






thickness versus range (fiducial number) is given in Figure 1.
The ice thickness increases linearly with increasing range. The
results of the inversion for o, are shown in Figure 2. The
inversion values for o, are in fair agreement with the input
values except for the case with o) = 0.027 S/m. The problem
occurs at an ice thickness of approximately 9.5 m. For o7 =
0.027 S/m the skin depth of the sea ice is about 6 m, thus the
ratio of ice thickness to skin depth (which is the argument of
both the tan and tanh functions) is about pi/2, where the tangent
becomes singular and double valued. More importantly, in the
immediate vicinity of pi/2, tan(dj/éy) varies rapidly. In spite
of this, the root finding inversion algorithm still works when
the exact forward MIM field ZZ(MIM) is used as the input field
(see Table 1). When a simultaneous root cannot be found for the
normalized Sommerfeld field in the vicinity of n/2, a value of
1.55 is assumed for x. See Table 2. It is the residual
differences between thz normalized Sommerfeld field (or real
field data) and the exact MIM field that causes the root finding
algorithm that we are currently using to fail for x = dy/6q =
n/2.

It should be noted that this value of n/2 will most
likely not be encountered in field surveys where ice
conductivities will generally be less than 0.0054 S/m (K = 500).
Table 3 shows that for K = 500, x is less than n/2 for sea ice
thicknesses up to 20 m.

A shallow ice keel model is shown in Figure 3. Figure 4






shows the values of o7 for this model produced by the inversion
algorithm for K = 100, 500, and 1000. These results are also
listed in Tables 5, 6, and 7.

In all of the tables we have included the results of
the halfspace inversion of the high frequency data which gives
Ooff- It can be seen for the case K = 100 when x > 2.4, oo =
9input" This demonstrates that when the ice thickness is greater
than 2.4 skin depths, a halfspace inversion yields good results
for the ice conductivity. Although values of x > 2.4 will
probably not be found in survey data taken at a high frequency of
250 kHz, still higher frequencies of about 1 MHz will bring x
into this range.

Finally, the results of the inversion are shown in
Figure 3 for a shallow ice keel model. The tabulated results are
shown in Tables 5, 6, and 7.

In summary, the present inversion algorithm for oq

works well except in thre vicinity of dy/é; - n/2. We are

continuing efforts to modify and improve the existing algorithm.
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TABLE 1

SIGMAl (ACTUAL)=0.027 S/M

WORKING WITH

ZZMIM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIGeff
0.0 0.1 0.0156 0.0247 2.6960
1.0 0.5 0.0781 0.0247 2.5941
2.0 1.0 0.1563 0.0247 2.2813
3.0 1.5 0.2344 0.0247 1.7051
4.0 2.0 0.3250 0.0268 1.1303
5.0 2.5 0.4063 0.0268 0.7022
6.0 3.0 0.4875 0.0268 0.4009
7.0 3.5 0.5687 0.0268 0.2198
8.0 4.0 0.6500 0.0268 0.1332
9.0 4.5 0.7312 0.0268 0.0884
10.0 5.0 0.8125 0.0268 0.0613
11.0 5.5 0.900¢C 0.0271 0.0461
12.0 6.0 0.9818 0.0271 0.0373
13.0 6.5 1.063¢€ 0.0271 0.0315
14.0 7.0 1.145% 0.0271 0.0277
15.0 7.5 1.2273 0.0271 0.0253
16.0 8.0 1.3091 0.0271 0.0238
17.0 8.5 1.390¢ 0.0271 0.0228
18.0 9.0 1.4727 0.0271 0.0224
19.0 9.5 1.5500 0.0270 0.0221
20.0 10.0 1.6355 0.0271 0.0222
21.0 10.5 1.7172 0.0271 0.0223
22.0 11.0 1.7990 0.0271 0.0226
23.0 11.5 1.8808 0.0271 0.0230
24.0 12.0 1.9626 0.0271 0.0234
25.0 12.5 2.0443 0.0271 0.0237
26.0 13.0 2.1218 0.0270 0.0241
27.0 13.5 2.2035 0.0270 0.0244
28.0 14.0 2.2851 0.0270 0.0247
29.0 14.5 2.3667 0.0270 0.0250
30.0 15.0 2.4483 0.0270 0.0252
31.0 15.5 2.5299 0.0270 0.0254
32.0 16.0 2.6115 0.0270 0.0255
33.0 16.5 2.6931 0.0270 0.0257
34.0 17.0 2.7747 0.0270 0.0258
35.0 17.5 2.8563 0.0270 0.0258
36.0 18.0 2.9379 0.0270 0.0259
37.0 18.5 3.0195 0.0270 0.0259
38.0 19.0 3.1012 0.0270 0.0259
39.0 19.5 3.1823 0.0270 0.0259

40.0 20.0 3.2644 0.0270 0.0259






TABLE 2

SIGMAl (ACTUAL)=0.027 S/M

WORKING WITH

27SO0M

XSTART= 0.5000000

XNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIG1l.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING Z2SOM

FID Dl X SIGl SiGeff
0.0 0.1 0.0156 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2816
3.0 1.5 0.2344 0.0247 1.7033
4.0 2.0 0.3375 0.0289 1.1265
5.0 2.5 0.4087 0.0271 0.6976
6.0 3.0 0.4904 0.0271 0.3973
7.0 3.5 0.5722 0.0271 0.2178
8.0 4.0 0.6664 0.0281 0.1324
9.0 4.5 0.7497 0.0281 0.0884
10.0 5.0 0.8330 0.0281 0.0619
11.0 5.5 0.9163 0.0281 0.0471
12.0 6.0 0.9996 0.0281 0.0386
13.0 6.5 1.0829 0.0281 0.0330
14.0 7.0 1.1662 0.0281 0.0294
15.0 7.5 1.2495 0.0281 0.0270
16.0 8.0 1.5500 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.5500 0.0301 0.0242
19.0 9.5 1.4875 0.0248 0.0240
20.0 10.0 1.5500 0.0243 0.0240
21.0 10.5 1.7131 0.0270 0.0241
22,0 11.0 1.7947 0.0270 0.0244
23.0 11.5 1.8763 0.0270 0.0247
24.0 12.0 1.957¢ 0.0270 0.0250
25.0 12.5 2.0394 0.0270 0.0253
26.0 13.0 2.1210 0.0270 0.0256
27.0 13.5 2.2026 0.0270 0.0259
28.0 14.0 2.2842 0.0270 0.0261
29.0 14.5 2.3657 0.0270 0.0264
30.0 15.0 2.4473 0.0270 0.0265
31.0 15.5 2.5289 0.0270 0.0267
32.0 16.0 2.6103 0.0270 0.0268
33.0 16.5 2.6921 0.0270 0.0269
34,0 17.0 2.7736 0.0270 0.0270
35.0 17.5 2.8552 0.0270 0.0271
36.0 18.0 2.9383 0.0270 0.0271
37.0 18.5 3.0199 0.0270 0.0271
38.0 19.0 3.1024 0.0270 0.0271
39,0 19.5 1.5500 0.0064 0.0271

40.0 20.0 1.5500 0.0061 0.0271






TABLE 3

SIGMAl (ACTUAL)=0.0054 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIG1.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIGeff
0.0 0.1 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.6794
3.0 1.5 0.1172 0.0062 2.5616
4.0 2.0 0.1563 0.0062 2.3817
5.0 2.5 0.1953 0.0062 2.1671
6.0 3.0 0.2344 0.0062 1.7031
7.0 3.5 0.2734 0.0062 1.1052
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.3296 0.0054 0.5329
10.0 5.0 0.3662 0.0054 0.3495
11.0 5.5 0.4028 0.0054 0.2399
12.0 6.0 0.4395 0.0054 0.1807
13.0 6.5 0.4886 0.0057 0.1303
14.0 7.0 0.5262 0.0057 0.0979
15.0 7.5 0.5637 0.0057 0.0723
16.0 8.0 0.6076 0.0058 0.0536
17.0 8.5 0.6455 0.0058 0.0414
18.0 9.0 0.6835 0.0058 0.0325
19.0 9.5 0.7215 0.0058 0.0264
20.0 10.0 0.7595 0.0058 0.0213
21.0 10.5 0.7974 0.0058 0.0178
22.0 11.0 0.8354 0.0058 0.0148
23.0 11.5 0.8734 0.0058 0.0126
24,0 12.0 0.9114 0.0058 0.0109
25.0 12.5 0.9493 0.0058 0.0097
26.0 13.0 0.9873 0.0058 0.0087
27.0 13.5 1.1253 0.0070 0.0082
28.0 14.0 1.1670 0.0070 0.0075
29.0 14.5 1.2086 0.0070 0.0070
30.0 15.0 1.2503 0.0070 0.0066
31.0 15.5 1.2112 0.0062 0.0063
32.0 16.0 1.2503 0.0062 0.0060
33.0 16.5 1.2894 0.0062 0.0058
34.0 17.0 1.3285 0.0062 0.0056
35.0 17.5 1.3675 0.0062 0.0055
36.0 18.0 1.4066 0.0062 0.0054
37.0 18.5 1.5500 0.0071 0.0053
38.0 19.0 1.5500 0.0067 0.0052
39.0 19.5 1.5500 0.0064 0.0052

40.0 20.0 1.5500 0.0061 0.0051






SIGMAl1 (ACTUAL)=0.0027 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID D1l X SIGl SIGeff
0.0 0.1 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.7387
3.0 1.5 0.0586 0.0015 2.7221
4.0 2.0 0.0781 0.0015 2.7030
5.0 2.5 0.0977 0.0015 2.7093
6.0 3.0 0.1672 0.0031 2.3818
7.0 3.5 0.1951 0.0031 1.6995
8.0 4.0 0.2229 0.0031 1.2689
9.0 4.5 0.2508 0.0031 1.0030
10.0 5.0 0.2786 0.0031 0.7038
11.0 5.5 0.2874 0.0028 0.5150
12.0 6.0 0.3135 0.0028 0.4217
13.0 6.5 0.3396 0.0028 0.3189
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897
16.0 8.0 0.4180 0.0028 0.1405
17.0 8.5 0.4566 0.0029 0.1086
18.0 9.0 0.483% 0.0029 0.0843
19.0 9.5 0.5103 0.0029 0.0680
20.0 10.0 0.537z2 0.0029 0.0528
21.0 10.5 0.5640 0.0029 0.0426
22.0 11.0 0.5909 0.0029 0.0332
23.0 11.5 0.6177 0.0029 0.0265
24.0 12.0 0.644¢6 0.0029 0.0217
25.0 12.5 0.6715 0.0029 0.0180
26.0 13.0 0.6983 0.0029 0.0151
27.0 13.5 0.7252 0.0029 0.0128
28.0 14.0 0.7520 0.0029 0.0109
29.0 14.5 0.7789 0.0029 0.0095
30.0 15.0 0.8058 0.0029 0.0083
31.0 15.5 0.9326 0.0037 0.0073
32.0 16.0 0.9627 0.0037 0.0067
33.0 16.5 0.9928 0.0037 0.0061
34.0 17.0 1.0229 0.0037 0.0055
35.0 17.5 1.0529 0.0037 0.0051
36.0 18.0 1.083D 0.0037 0.0047
37.0 18.5 1.1131 0.0037 0.0044
38.0 19.0 1.1432 0.0037 0.0041
39.0 19.5 1.1733 0.0037 0.0038

40.0 20.0 1.2034 0.0037 0.0036






TABLE 5

SIGMAl (ACTUAL)=0.027 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIGeff
0.0 0.1 0.0156 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2046
3.0 1.5 0.2469 0.0274 1.6041
4.0 2.0 0.3292 0.0274 1.0232
5.0 2.5 0.4115 0.0274 0.6057
6.0 3.0 0.4938 0.0274 0.3527
7.0 3.5 0.5760 0.0274 0.2107
8.0 4.0 0.6583 0.0274 0.1324
9.0 4.5 0.7469 0.0279 0.0884
10.0 5.0 0.8299 0.0279 0.0631
11.0 5.5 0.9191 0.0283 0.0481
12.0 6.0 1.0027 0.0283 0.0388
13.0 6.5 1.0862 0.0283 0.0330
14.0 7.0 1.1652 0.0281 0.0294
15.0 7.5 1.2484 0.0281 0.0270
16.0 8.0 1.5500 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.5500 0.0301 0.0242
19.0 9.5 1.5000 0.0253 0.0240
20.0 10.0 1.6274 0.0268 0.0241
21.0 9.5 1.5500 0.0270 0.0240
22.0 9.0 1.5500 0.0301 0.0242
23.0 8.5 1.5500 0.0337 0.0247
24.0 8.0 1.5500 0.0380 0.0256
25.0 7.5 1.2500 0.0281 0.0270
26.0 7.0 1.1667 0.0281 0.0294
27.0 6.5 1.0833 0.0281 0.0330
28.0 6.0 1.0000 0.0281 0.0388
29.0 5.5 0.9167 0.0281 0.0481
30.0 5.0 0.8333 0.0281 0.0631
31.0 4.5 0.7500 0.0281 0.0884
32.0 4.0 0.6667 0.0281 0.1324
33.0 3.5 0.5833 0.0281 0.2107
34.0 3.0 0.5000 0.0281 0.3527
35.0 2.5 0.4167 0.0281 0.6057
36.0 2.0 0.3333 0.0281 1.0232
37.0 1.5 0.2500 0.0281 1.6041
38.0 1.0 0.1667 0.0281 2.2046
39.0 0.5 0.0833 0.0281 2.5953
40.0 0.1 0.0167 0.0281 2.6973






SIGMAl (ACTUAL)=0.0054 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIGeff
0.0 0.1 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.5848
3.0 1.5 0.1172 0.0062 2.3914
4.0 2.0 0.1563 0.0062 2.0990
5.0 2.5 0.1953 0.0062 1.7409
6.0 3.0 0.2344 0.0062 1.3686
7.0 3.5 0.2734 0.0062 1.0287
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.3296 0.0054 0.5329
10.0 5.0 0.3662 0.0054 0.3759
11.0 5.5 0.4028 0.0054 0.2650
12.0 6.0 0.4395 0.0054 0.1879
13.0 6.5 0.4886 0.0057 0.1348
14.0 7.0 0.5262 0.0057 0.0979
15.0 7.5 0.5637 0.0057 0.0723
16.0 8.0 0.607¢ 0.0058 0.0544
17.0 8.5 0.6455 0.0058 0.0417
18.0 9.0 0.683% 0.0058 0.0325
19.0 9.5 0.721% 0.0058 0.0259
20.0 10.0 0.7595 0.0058 0.0210
21.0 9.5 0.7215 0.0058 0.0259
22.0 9.0 0.6835 0.0058 0.0325
23.0 8.5 0.6500 0.0059 0.0417
24.0 8.0 0.6118 0.0059 0.0544
25.0 7.5 0.5646 0.0057 0.0723
26.0 7.0 0.5269 0.0057 0.0979
27.0 6.5 0.4893 0.0057 0.1348
28.0 6.0 0.4517 0.0057 0.1879
29.0 5.5 0.4140 0.0057 0.2650
30.0 5.0 0.3764 0.0057 0.3759
31.0 4.5 0.3387 0.0057 0.5329
32.0 4.0 0.3011 0.0057 0.7481
33.0 3.5 0.2635 0.0057 1.0287
"34.0 3.0 0.22538 0.0057 1.3686
35.0 2.5 0.1882 0.0057 1.7409
36.0 2.0 0.1506 0.0057 2.0990
37.0 1.5 0.1129 0.0057 2.3914
38.0 1.0 0.0753 0.0057 2.5848
39.0 0.5 0.0376 0.0057 2.6784
40.0 0.1 0.0075 0.0057 2.6998






TABLE 7

SIGMAl (ACTUAL)=0.0027 S/M

WORKING WITH

2ZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIGeff
0.0 0.1 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.6414
3.0 1.5 0.0586 0.0015 2.5379
4.0 2.0 0.0781 0.0015 2.3690
5.0 2.5 0.0977 0.0015 2.1376
6.0 3.0 0.1672 0.0031 1.8600
7.0 3.5 0.1951 0.0031 1.5616
8.0 4.0 0.2229 0.0031 1.2689
9.0 4.5 0.2508 0.0031 1.0030
10.0 5.0 0.2786 0.0031 0.7760
11.0 5.5 0.2874 0.0028 0.5912
12.0 6.0 0.3135 0.0028 0.4462
13.0 6.5 0.3396 0.0028 0.3353
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897
16.0 8.0 0.4180 0.0028 0.1437
17.0 8.5 0.4566 0.0029 0.1096
18.0 9.0 0.4835 0.0029 0.0843
19.0 9.5 0.5103 0.0029 0.0654
20.0 10.0 0.5372 0.0029 0.0513
21.0 9.5 0.5103 0.0029 0.0654
22.0 9.0 0.483% 0.0029 0.0843
23.0 8.5 0.4566 0.0029 0.1096
24.0 8.0 0.4297 0.0029 0.1437
25.0 7.5 0.4029 0.0029 0.1897
26.0 7.0 0.3760 0.0029 0.2518
27.0 6.5 0.3492 0.0029 0.3353
28.0 6.0 0.3223 0.0029 0.4462
29.0 5.5 0.2954 0.0029 0.5912
30.0 5.0 0.2686 0.0029 0.7760
31.0 4.5 0.2417 0.0029 1.0030
32.0 4.0 0.2149 0.0029 1.2689
33.0 3.5 0.1880 0.0029 1.5616
34.0 3.0 0.1612 0.0029 1.8600
35.0 2.5 0.1343 0.0029 2.1376
36.0 2.0 0.1074 0.0029 2.3690
37.0 1.5 0.0806 0.0029 2.5379
38.0 1.0 0.0537 0.0029 2.6414
39.0 0.5 0.0269 0.0029 2.6894
40.0 0.1 0.0054 0.0029 2.7001






Appendix

The MIM representation of the normalized secondary
field produced by induced ohmic currents in a two-layered
conducting model (see Figure 1) for a horizontal coplanar coil
pair is given by

Mg/Hy) =22 = [287 - 1)/[R? + 1]%/2 (A-1)
and

R = [2h+ (1-i} Q 61]/p ' (A-2)

where [2h + (1-i) Q §1] is the complex vertical distance
separating the primary dipole source from the image source, h is
the real altitude of the bird above the first layer surface,
[(1-1) Q 61]1/2 is the complex distance below the first layer
surface of the image pliane, p is the coil spacing, 61 is the
first layer (sea ice) skin depth, and finally Q is the two-layer
correction factor given by
Q = [(61/89) + tanh{(l+1)dy/69}]/[1 + (81/67) tanh{ (1+i)dy/61}] . (A-3)
d; is the first layer thickness and 5 is the skin depth of the
second layer (sea water). The thickness or depth of the second
layer, dy, is assumed to be greater than 2 §, in this analysis.
(In order to determine the sea depth, a third lower frequency
signal must be employed.) The R function can be interpreted
geometrically as cotan 4, where ¢ is the complex angle indicated
in Figure 1.

In all MIM inversion schemes, Equation (A-2) is
inverted by means of a polynomial expression which gives R as a

function of ZZ:






R - 1/s - as - bs® - cs® - ds/ (A-4)

where s = (ZZ/2)1/3, and for this coil configuration, a = 1,

b =9/8, ¢c =31/12, and d = 2677?84. This inverted relationship
is of paramount importance in all MIM inversion routines, i.e.,

from the value of R calculated from the AEM fields the values of

the model parameters are determined.
Halfspace inversion

A halfspace inversion is defined by the condition Q =

1. Thus Equation (A-2) can be inverted to give values for the
bird altitude h and the skin depth é7:

2h/p = Ry + Ry

§1/p = - Ry
where Ry and Ry are the real and imaginary components of R. 1In
the event that the conditions which make Q = 1 are not satisfied
(Q=11if g9 = 09 OF dy > 2 §1), then the halfspace inversion

results in an effective skin depth and bird altitude.
Two layer inversion for sea ice conductivity

In this inversion it is assumed that the only unknown
is the first layer skin depth, i.e., the altitude, the second
layer skin depth, and the first layer thickness are known from
the altimeter reading ard the low frequency inversion results.
The algebraic manipulations of Equations (A-2) and (A-3) that
result in the two simultaneous equations mentioned in the

narrative proceed as follows:






First Q61 is solved for explicitly from Equation (A-2)
to produce
Q57 = [p R(hi) - 2h)/(1 - 1) . (A-5)
Next the expression for 1) from Equation (A-3) is substituted into
Equation (A-5) and the resultant equation is rearranged to solve
explicitly for tanh{(l+i)d1/61}:
tanh{ (1+i)d;/61) = [(C - 1)(55/61)]/[1 - 082/5£]
= D(§7,6020) . (A-6)
C is a known complex number given by
¢ = [p R(hi) - 2 h]/[(1 - 1) &1
and D is a complex function of the unknown §; and the known
quantities C and §,. If we set D = Dy +1 Dy and expand
tanh{(1+i)d1/61} by
tanh{ (1+i)dy/61) = [tanh(d1/6y) + 1 tan(dy/61)1/(1 +
i tanh(d1/6l) tan(dl/ﬁl)] ,
we get
[tanh(dy/67) + 1 tan(dy/61)1/[(1 + 1 tanh(d;/61) tan(dy/61)]
= Dy +1iDy . (A-7)
Finally, if we equate the real and imaginary parts of Equation
(A-7), we find
tanh(dy/61) = Dj - D3 tan(dy/6,) tanh(dy/67)
tan(dy/67) = Dp + Dp tan(dy/61) tanh(dy/8y)
These can be combined to give
D, tan?(dy/67) - (D12 + D2 - 1) tan(dy/8y) - Dy = 0  (A-8a)
and

D, tanh2(dy/81) - (D2 + Dp? + 1) tanh(dy/61) + Dy = 0 . (A-8b)

9






Both of these equations are of the quadratic form a x2 +b x + ¢,
and hence explicit expressions for tanh(dy/6,) and tan(d,/6y) can
be written. But first it should be noted that for the tan
equation, a = - ¢ = Dy, snd thus
tan(d;/6;) = - b/2a % [((b/2a)2 + 11172
and similarly for the tanh equation, since a = ¢ = Dy,
tanh(d;/6;) = - b/2a % [(b/2a)2 - 111/2
The physical constraint that the roots of these
equations be real and positive results in the following
solutions:
tan(dy/6y) = F1(d/67) + (Fr2(d1/61) + 1)1/2 (A-9a)
for 0 < (dy/67) < /2, and
tan(dy/8y) = Fy - [F2 + 11172 : (A-9b)
for n/2 < (d1/61) < n, where

F, = (D2 + Dp? - 11/(2 Dp)

canh(d;/61) = Fp + [Fg? - 111/2 : (A-10)
where

F, = (D2 + Dy + 11/(2 Dy)

A root finding algorithm given below is used to find
the real positive roots of Equation (A-9a) or (A-9b). These
roots are substituted into Equation (A-10) to find the one root
of Equation (A-9a) or (A-9b) that is simultaneously a root of
Equation (A-10). This value of (d1/61) is used to determine §7

and in turn oq.

10






FIGURE 1 - Appendix
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Sea Ice Inversion

The MIM inversion of sea ice AEM data taken at two
frequencies, 1000 Hz (f,,) and 250 kHz (fp4), ard for two AEM
coil configurations, horizontal coplanar and vertical coaxial,
is outlined below.

The low frequency data are first inverted to give
(h + dl) and og, where h is the altitude of the bird above the sea
ice, d is the ice thickness, and o, is the electrical
conductivity of the sea. This inversion assumes the following:
1. The skin depth of the sea ice §1(lo) is much greater than the
thickness of the sea ice and hence the sea ice is effectively
transparent to the low frequency primary signal.

2. The sea bottom does not affect the secondary field. This

assumption is valid provided that the sea depth dy is greater






than twice the low frequency skin depth of the sea, i.e., dp > 2
§9(lo). These two assumptions allow a halfspace inversion. The
algebra and computer algorithms for the halfspace inversion are
given in the Appendix.

It is assumed that the altitude h is independently
determined by a radar or laser altimeter. Thus the inversion
results in a local value for the sea ice thickness d; and the
conductivity of the sea water, o9. These results are employed in
the inversion of the high frequency data to determine the sea ice

conductivity.
Outline of high frequency inversion

First a halfspace inversion of the high frequency data
is performed. This produces an effective skin depth 8, ¢¢ which
lies in the range 69 < d.¢f < 61, and is a function of ice
thickness d. The effective high frequency skin depth is
combined with the altime:er reading h to form the ratlo A gf =
2h/6.¢¢. The ad hoc normalization fuﬁ;tion employed in MIM
inversion is a function »f A ff, i.e.,

MIM field = Normalized field = F(A ¢f) Sommerfeld field .
1t turns out that the same normalization function F(A gg) may be
employed for both coil configurations.

For dl << 61, boff = 69 and for dy > 269, then é.¢f =
§1. Since d) is known from the low frequency inversion, this

latter case may be recognized and hence the first layer

conductivity o7 is determined from é,¢¢ by






o1 = 2/lpg Echi) Soe62]
where pg is the vacuum magnetic permittivity. The condition
dy > 2 684 only occurs for thick (dy > 10m), highly conducting (o;
> 0.027 S/m) sea ice. For the intermediate, more general
situation where §,¢¢/d] is of the order of unity, the inversion
procedure to be used is that described below.

The MIM relationship between the complex two-layer
correction factor Q and the high frequency AEM field is
algebraically transformed into two simultaneous transcendental
real equations with argurient d;/6;, where §; is the unknown
quantity. All other quantities in these equations are known.
Each of these equations has in general several roots, BUT only one
common root. The explic:it functions that occur respectively in
these equations are tan(dy/61) and tanh(dj/6;). A root-finding
algorithm is first applicd to the tan(dy/6;) equation. When a
root is determined, that root is inserted in the tanh(dy/6;)
equation to test if it is also a root of the tanh(dy/67) -
equation. If not, the algorithm continues in its determination
of the real roots of the tan(dl/61) equation until the root is
found that simultaneously satisfies both equations. The first
layer skin depth §; and :onductivity o; are éiven by that
simultaneous root.

The range of applicability of the root finding
algorithm is given by 0.92 < dy/6; < 2.5. These limits can be
understood in physical terms. For dy/6; > 2.5 the sea ice is

effectively a halfspace as has been already noted, and a two






layer model is inappropriate. For dy/61 < 0.02 the perturbation
produced on the secondary AEM field by the sea ice cover is lost
in the computer "noise" caused by roundoff, etc., and will
certainly be undetectable in the noise and drift present in even
ideal real data, where noise and drift are greater than about 1
ppm.

The lower ice thickness limit on the detectability of
sea ice conductivity is illustrated in the following table‘which
assumes a value of sea water conductivity of g9 = 2.7 S/m and an

operating frequency of 250 Khz.

g9/01 61 minimum dg
100 ~6m ~0.1m
1000 -~ 20 m ~0.3m

The algebraic details of this procedure and the root finding

algorithm are given in the Appendix.
Results

The MIM inversion procedure that has been described is
applied to several sea ice models. In all of the models used the
low and high frequencies assumed for the AEM system are 1 kHz and
250 kHz, respectively; the altitude of the AEM bird is 25 m; the
conductivity of the sea water oy, is 2.7 S/m; and the conductivity
of the sea ice o7 for each model has input values of 0.027 S/m,

0.0054 S/m, and 0.0027 S/m. Thus the ratio K of the






conductivities of sea wa er to sea ice has the values 100, 500,
and 1000, respectively.

With these general conditions, the first model of ice
thickness versus range (fiducial number) is given in Figure 1.

The ice thickness increases linearly with increasing range.
Horizontal Coplanar Case

The results of the inversion of the ZZ field for oy
are shown in Figure 2. The inversion values for oy are in fair
agreement with the input values except for the case with o7 =
0.027 S/m. The problem occurs at an ice thickness of
approximately 9.5 m. For oy = 0.027 S/m the skin depth of the
sea ice is about 6 m, thus the ratio of ice thickness to skin
depth (which is the argument of both the tan and tanh functions)
is about pi/2, where the tangent becomes singular and double
valued. More importantly, in the immediate vicinity of pi/2,
tan(dy/6§,) varies rapidly. In spite of this, the root finding
inversion algorithm still works when the exact forward MIM field
ZZ(MIM) is used as the input field (see Table 1. When a
simultaneous root cannot be found for the normalized Sommerfeld
field in the vicinity of =n/2, a value of 1.55 is assumed for x.
See Table 2. It is the residual differences between the
normalized Sommerfeld field (or real field data) and the exact
MIM field that causes the root finding algorithm that we are
currently using to fail for x = d1/61 = n/2.

1t should be noted that this value of n/2 will most






likely not be encountered in field surveys where ice
conductivities will generally be less than 0.0054 S/m (K = 500).
Table 3 shows that for K = 500, x is less than n/2 for sea ice
thicknesses up to 20 m.

A shallow ice keel model is shown in Figure 3. Figure 4
shows the values 6f oq for this model produced by the inversion
algorithm for K = 100, 500, and 1000. These results are also
listed in Tables 5, 6, and 7.

In all of the tables we have included the results of
the halfspace inversion of the high frequency data which gives
Oeff- It can be seen for the case K f_lOO when x > 214, Ooff =
9input" This demonstrates that when the ice thickness is greater
than 2.4 skin depths, a halfspace inversion yields good results
for the ice conductivity. Although values of x > 2.4 will
probably not be found in survey data taken at a high frequency of
250 kHz, still higher frequencies of about 1 MHz will bring x
into this range.

Finally, the results of the inversion are shown in
Figure 3 for a shallow ice keel model. The tabulated results are
shown in Tables 5, 6, and 7.

In summary. the present inversion algorithm for oj
works well except in the vicinity of dy/67 = n/2. We are

continuing efforts to modify and improve the existing algorithm.
Vertical Coaxial Case

Results similar to the horizontal coplanar case are






obtained for this coil configuration.
Appendix

The MIM reprcsentation of the normalized secondary
field produced by induced ohmic currents in a two-layered
conducting model (see Figure 1) for a horizontal coplanar coil
pair is given by

(Hg/Hp) = 22 = (287 - 1]/(R% + 1)°/2 (A-1a)
and for a vertical coaxial coil pair is given by

(Hg/H,) = XX = (R? - 2]/[R? + 11°/2 (A-1b)
where for both cases

R = [2h + (1-1} Q §;1/p , (A-2)

and [2h + (1-i) Q §1] 1is the complex vertical distance
separating the primary dipole source from the image source, h is
the real altitude of the bird above the first layer surface,
[(1-1) Q §1]/2 is the complex distance below the first layer
surface of the image pline, p is the coil spacing, §1 1s the
first layer (sea ice) sxin depth, and finally Q is the two-layer
correction factor given by
Q = [(89/89) + tanh((l+i)d£/61)]/[1 + (81/69) tanh((1+1)d;/87)1] . (A-3)
d; 1is the first layer thickness and &, is the skin depth of the
second layer (sea water). The thickness or depth of the second
layer, dy, is assumed to be greater than 2 §, in this analysis.
(In order to determine the sea depth, a third lower frequency
signal must be employec.) The R function can be interpreted

geometrically as cotan 4, where ¢ is the complex angle indicated






in Figure 1.

In MIM inversion schemes for both cases, Equation (A-2)

is inverted by means of a polynomial expression which gives R as

a function of ZZ or XX:

3

1/R = as + bs

where s = (ZZ/Z)l/3 for

(2)()()1/3 for the vertical coaxial case.

+ cs

5 7

+ ds’ + es? | (A-4)
the horizontal coplanar configuration and

The values for the

coefficients for the twc coil configurations are given in the

following table. These

importance in all MIM inversion routines, i.e.,

inverted relationships are of paramount

the values of the

model parameters are determined from the value of R calculated

from the AEM fields.

coil configuration
horizontal coplanar

vertical coaxial

A halfspace

1. Thus Equation (A-2)
bird altitude h and the
2h/p

61/p

where Ry and R2 are the

the event that the conditions which make Q =

(Q=11if g9 = 0y or d,

a b c d e
1 1 2.069 -3 125.1
1 1.5 1.125 32.08 203.7

Halfspace inversions

inversion is defined by the condition Q
can be inverted to give values for the
skin depth 64:

- Ry + Ry

= - Ry ,

real and imaginary components of R. In

1 are not satisfied

> 2 &y1), then the hali'space inversion

results in an effective skin depth and bird altitude.






Two layer inversion for sea ice conductivity

In this inversion it is assumed that the only unknown
is the first layer skin depth, i.e., the altitude, the second
layer skin depth, and thke first layer thickness are known from
the altimeter reading ard the low frequency inversion results.
The algebraic manipulations of Equations (A-2) and (A-3) that
result in the two simultaneous equations menticned in the
narrative proceed as follows:

First Qb4 is solved for explicitly from Equation (A-2)
to produce

Q81 = [p BE(hi) - 2h]/(1 - 1) . (A-5)

Next the expression for Q from Equation (A-3) is substituted into
Equation (A-5) and the resultant equation is rearranged to solve
explicitly for tanh{(l+i}dy/61}:
tanh{(1+i)dy/61) = [(C - 1)(89/61)1/(1 - C89/84
= D(61,69C) : (A-6)

C is a known complex nunber given by

C = [p R(hi) - 2 h)/TQ - 1) 5]
and D is a complex function of the unknown §4 and the known
quantities C and é5. If we set D=Dy + 1Dy and expand
tanh{ (1+i)d,/671) by
tanh((l+i)d1/61] = [tanh(d1/61) + i tan(d1/61)]/[1 +

i tanh(dy/67) tan(d1/61)] ,

we get

[tanh(d;/61) + 1 tan(d)/61)]/[1 + 1 tanh(dy/é;) tan(dy/61)]






- Dy + 1Dy . (A-T7)
Finally, if we equate th= real and imaginary parts of Equation
(A-7), we find
tanh(dy/6,) = Dy - Dy tan(dy/éy) tanh(dy/61)
tan(dl/él) = Dy + Dy tan(dl/Sl) tanh(dl/Sl)
These can be combined to give
D, tan’(dy/81) - (012 + 02 - 1) tan(dy/8y) - Dp = 0 (A-8a)
and
D, tanh?(dy/8y) - (D17 D,2 + 1) tanh(d)/67) + Dy = 0 . (A-8b)
Both of these equations are of the quadratic form a x2 + b x + c,
and hence explicit expressions for tanh(dy/67) and tan(dy/§y) can
be written. But first it should be noted that for the tan
equation, a = - ¢ = Dj, and thus
tan(dy/81) - - b/2a [(b/2a)2 + 111/
and similarly for the tanh equation, since a = ¢ = Dy,
tanh(d]/61) = - b/2a % [((b/2a)2 - 11172
The physical constraint that the roots of these
equations be real and fositive results in the following
solutions:
tan(d;/67) = F1(d1/61) + (F2(d1/67) + 11172 (A-9a)
for 0 < (d1/61) < n/2, and
can(dy/6y) = Fy - [F12 + 111/2 , (A-9b)
for /2 £ (d1/61) < w, where

F, = (D1’ + D% - 1]1/(2 Dp)

tanh(dy/61) = Fp + [Fo? - 111/2 , (A-10)

10






where N

F, = [D% 4 D% + 11/(2 Dy)

A root finding algorithm given below is used to find
the real positive roots of Equation (A-9a) or (A-9b). These
roots are substituted into Equation (A-10) to find the one root
of Equation (A-9a) or (A-9b) that is simultaneously a root of
Equation (A-10). This value of (d1/81) is used to determine &7

and in turn oq.

11
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SIGMAl (ACTUAL)=0.027 S/M

WORKING WITH

ZZMIM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR ¥X=D1/DELT1 AND HENCE SIGl.
gIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING Z2SOM

FID D1l X SIG1 SIiGeff
0.0 0.1 0.0156 0.0247 - 2.6960
1.0 0.5 0.078. 0.0247 2.5941
2.0 1.0 0.1563 0.0247 2.2813
3.0 1.5 0.2344 0.0247 1.7051
4.0 2.0 0.3250 0.0268 1.1303
5.0 2.5 0.4063 0.0268 0.7022
6.0 3.0 0.4875 0.0268 0.4009
7.0 3.5 0.5687 0.0268 0.2198
8.0 4.0 0.6503 0.0268 0.1332
9.0 4.5 0.7312 0.0268 0.0884
10.0 5.0 0.8125 0.0268 0.0613
11.0 5.5 0.9000 0.0271 0.0461
12.0 6.0 0.9818 0.0271 0.0373
13.0 6.5 1.0636 0.0271 0.0315
14.0 7.0 1.1455 0.0271 0.0277
15.0 7.5 1.2273 0.0271 0.0253
16.0 8.0 1.3091 0.0271 0.0238
17.0 8.5 1.39C3 0.0271 0.0228
18.0 9.0 1.4727 0.0271 0.0224
19.0 9.5 1.55C0 0.0270 0.0221
20.0 10.0 1.63%5 0.0271 0.0222
21.0 10.5 1.71%2 0.0271 0.0223
22.0 11.0 1.799%0 0.0271 0.0226
23.0 11.5 1.8808 0.0271 0.0230
24,0 12.0 1.9626 0.0271 0.0234
25.0 12.5 2.0443 0.0271 0.0237
26.0 13.0 2.1218 0.0270 0.0241
27.0 13.5 2.2035 0.0270 0.0244
28.0 14.0 2.2851 ~0.0270 0.0247
29.0 14.5 2.3657 0.0270 0.0250
30.0 15.0 2.4433 0.0270 0.0252
31.0 15.5 2.5239 0.0270 0.0254
32.0 16.0 2.6115 0.0270 0.0255
33.0 16.5 2.6931 0.0270 0.0257
34.0 17.0 2.7747 0.0270 0.0258
35.0 17.5 2.8563 0.0270 0.0258
36.0 18.0 2.9379 0.0270 0.0259
37.0 18.5 3.0195 0.0270 0.0258
3.0 19.0 3.1012 0.0270 0.0259
39.0 19.5 3.1828 0.0270 0.0259
40.0 20.0 3.2644 0.0270 0.0259






TABLE 2

SIGMAl (ACTUAL)=0.027 s/M

WORKING WITH

Z22S0M

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELTLl AND HENCE SIGl.
STGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID D1 X SIGl SIGeff
0.0 0.1 0.0156 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2816
3.0 1.5 0.2344 0.0247 1.7033
4.0 2.0 0.3375 0.0289 1.1265
5.0 2.5 0.4087 0.0271 0.6976
6.0 3.0 0.4904 0.0271 0.3973
7.0 3.5 0.5722 0.0271 0.2178
8.0 4.0 0.6664 0.0281 0.1324
9.0 4.5 0.7497 0.0281 0.0884
10.0 5.0 0.833C 0.0281 c.0619
11.0 5.5 0.9163 0.0281 ¢.0471
12.0 6.0 0.999¢6 0.0281 0.0386
13.0 6.5 1.0829 0.0281 0.,0330
14.0 7.0 1l.1662 0.0281 0.0294
15.0 7.5 1.2495 0.0281 . 0.0270
16.0 8.0 1.5500 . 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.550v 0.0301 0.0242
19.0 9.5 1.4875 0.0248 0.0240
20.0 10.0 1.5500 0.0243 0.0240
21.0 10.5 1.7131 0.0270 3.0241
22.0 11.0 1.7947 0.0270 0.0244
23.0 11.5 1.8763 0.0270 0.0247
24.0 12.0 1.9579 0.0270 0.0250
25.0 12.5 2.0394 0.0270 0.0253
26.0 13.0 2.1210 0.0270 0.0256
27.0 13.5 2.2026 0.0270 0.0259
28.0 14.0 2.2842 0.0270 0.0261
29.0 14.5 2.36%7 0.0270 0.0264
30.0 15.0 2.4473 0.0270 0.0265
31.0 15.5 2.5289 0.0270 0.0267
32.0 16.0 2.6105 0.0270 0.0268
33.0 16.5 2.6921 0.0270 0.0269
34.0 17.0 2.7736 0.0270 0.0270
35.0 17.5 2.8552 0.0270 0.0271
36.0 18.0 2.9383 0.0270 0.0271
37.0 18.5 3.0199 0.0270 0.0271
38.0 19.0 3.1024 0.0270 0.0271
39.0 19.5 1.5500 0.0064 0.0271
40.0 20.0 1.5590 0.0061 0.0271






ABLE 3 T TTT— ,

SIGMA1l (ACTUAL)=0.0054 S/M

WORKING WITH

2Z2S0M

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIG1.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID D1 X SIG1 SIGeff
0.0 0.1 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.6794
3.0 1.5 0.1172 0.0062 2.5616
4.0 2.0 0.1563 0.0062 2.3817
5.0 2.5 0.1953 0.0062 2.1671
6.0 3.0 0.2344 0.0062 1.7031
7.0 3.5 0.2734 0.0062 1.1052
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.3296 0.0054 0.5329
10.0 5.0 0.3662 0.0054 0.3495
11.0 5.5 0.4028 0.0054 0.2399
12.0 6.0 0.4395 0.0054 0.1807
13.0 6.5 0.4886 0.0057 0.1303
14.0 7.0 0.5262 0.0057 0.0979
15.0 7.5 0.5637 0.0057 0.0723
16.0 8.0 0.6076 0.0058 0.0536
17.0 8.5 0.6455 0.0058 0.0414
18.0 9.0 0.6835 0.0058 0.0325
19.0 8.5 0.7215 0.0058 0.0264
20.0 10.0 0.7595 0.0058 0.0213
21.0 10.5 0.7974 0.0058 0.0178
22.0 11.0. 0.8354 0.0058 0.0148
23.0 11.5 0.8734 0.0058 0.0126
24.0 12.0 0.9114 0.0058 0.0109
25.0 12.5 0.9493 0.0058 0.0097
26.0 13.0 0.9873 0.0058 0.0087
27.0 13.5 1.1253 0.0070 0.0082
28.0 14.0 1.1670 0.0070 0.0075
29.0 14.5 1.2086 0.0070 0.0070
. 30.0 15.0 1.2503 0.0070 0.0066
31.0 15.5 1.2112 0.0062 0.0063
32.0 16.0 1.2503 0.0062 0.0060
33.0 16.5 1.2894 0.0062 0.0058
34.0 17.0 1.3285 0.0062 0.0056
35.0 17.5 1.3675 0.0062 0.0055
36.0 18.0 1.4066 0.0062 0.0054
37.0 18.5 1.5500 0.0071 0.0053
38.0 1%.0 1.5500 0.0067 . 0.0052
39.0 19.5 1.5500 0.0064 0.0052
40.0 20.0 1.5500 0.0061 0.0051






SIGMAl (ACTUAL)=0.0027 S/M

WORKING WITH -

Z2S0M

XSTART= 0.5000000

KNOW D1 AND SIG2, 30LVE FOR X=D1/DELTl AND HENCE SIG1l.
siGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIGl SIiGeff
0.0 0.1 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.7387
3.0 1.5 0.058¢ 0.0015 2.7221
4.0 2.0 0.0781 0.0015 2.7030
5.0 2.5 0.0977 0.0015 2.7093
6.0 3.0 0.167% 0.0031 2.3818
7.0 3.5 0.1951 0.0031 1.6995
8.0 4.0 0.2229 0.0031 1.2689
9.0 4.5 0.2508 0.0031 1.0030
10.0 5.0 0.2786 0.0031 0.7038
11.0 5.5 0.2874 0.0028 0.5150
12.0 6.0 0.3133 0.0028 0.4217
13.0 6.5 0.339% 0.0028 0.3189
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897
16.0 8.0 0.4180 0.0028 . 0.1405
17.0 8.5 0.4566 0.0029 0.1086
18.0 9.0 0.4835 0.0029 0.0843
19.0 9.5 0.5103 0.0029 0.0680
20.0 10.0 0.5372 0.0029 0.0528
21.0 10.5 0.5640 0.0029 0.0426
22.0 11.0 0.59C9 0.0029 0.0332
23.0 11.5 0.6177 0.0029 0.0265
24.0 12.0 0.6446 0.0029 0.0217
25.0 12.5 0.6715 0.0029 0.0180
26.0 13.0 0.6983 0.0029 0.0151
27.0 13.5 0.7252 0.0029 0.0128
28.0 14.0 0.7520 0.0029 0.0109
29.0 14.5 0.7789 0.0029 0.0095
30.0 15.0 0.8058 0.0029 0.0083
31.0 15.5 0.9326 0.0037 0.0073
32.0 16.0 0.9627 0.0037 0.0067
33.0 16.5 0.9928 0.0037 0.0061
34.0 17.0 1.0229 0.0037 0.0055
35.0 17.5 1.0529 0.0037 0.0051
36.0 18.0 1.0830 0.0037 0.0047
37.0 18.5 1.1131 0.0037 0.0044
38.0 19.0 1.1432 0.0037 0.0041
39.0 19.5 1.1733 0.0037 0.0038
40.0 20.0 1.2C34 0.0037 0.0036






TABLE 5

SIGMAl (ACTUAL)=0.027 S/M

WORKING WITH

22501

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID D1 X SIGl SIGeff
0.0 0.1 0.01%6 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2046
3.0 1.5 0.2469 0.0274 1.6041
4.0 2.0 0.3292 0.0274 1.0232
5.0 2.5 0.4115 0.0274 0.6057
6.0 3.0 0.4938 0.0274 0.3527
7.0 3.5 0.5760 0.0274 0.2107
8.0 4.0 0.6533 0.0274 0.1324
9.0 4.5 0.7469 0.0279 0.0884
10.0 5.0 0.8299 0.0279 0.0631
11.0 5.5 0.9191 0.0283 0.0481
12.0 6.0 1.0027 0.0283 0.0388
13.0 6.5 1.0862 0.0283 0.0330
14.0 7.0 1.1652 0.0281 0.0294
15.0 7.5 1.2484 0.0281 . 0.0270
16.0 8.0 1.5500 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.5500 0.0301 0.0242
15.0 9.5 1.5000 0.0253 0.0240
20.0 10.0 1.6274 0.0268 0.0241
21.0 9.5 1.5%500 0.0270 0.0240
22.0 9.0 1.5%00 0.0301 0.0242
23.0 8.5 1.5%00 0.0337 0.0247
24.0 8.0 1.55%00 0.0380 0.0256
25.0 7.5 1.2500 0.0281 0.0270
26.0 7.0 1.1667 0.0281 0.0294
27.0 6.5 1.0833 0.0281 0.0330
28.0 6.0 1.0000 0.0281 0.0388
29.0 5.5 0.9167 0.0281 0.0481
30.0 5.0 0.8333 0.0281 0.0631
31.0 4.5 0.7500 0.0281 0.0884
32.0 4.0 0.6667 0.0281 0.1324
33.0 3.5 0.5833 0.0281 0.2107
34.0 3.0 0.5000 0.0281 0.3527
35.0 2.5 0.4167 0.0281 0.6057
36.0 2.0 0.3333 0.0281 1.0232
37.0 1.5 0.2500 0.0281 1.6041
38.0 1.0 0.1667 0.0281 2.2046
39.0 0.5 0.0833 0.0281 2.5953
40.0 0.1 0.0167 0.0281 2.6973






SIGMAl (ACTUAL)=0.C054 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIGl.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIG1l SIGeff
0.0 0.1 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.5848
3.0 1.5 0.1172 0.0062 2.3914
4.0 2.0 0.1563 0.0062 2.0990
5.0 2.5 0.1953 0.0062 1.7409
6.0 3.0 0.2344 0.0062 1.3686
7.0 3.5 0.2734 0.0062 1.0287
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.329¢€ 0.0054 0.5329
10.0 5.0 0.3662 0.0054 0.3759
11.0 5.5 0.40286 0.0054 0.2650
12.0 6.0 0.4395% 0.0054 c.1879
13.0 6.5 0.488¢ 0.0057 0.1348
14.0 7.0 0.52672 0.0057 0.0979
15.0 7.5 0.5637 0.0057 0.0723
16.0 8.0 0.6076 0.0058 0.0544
17.0 8.5 0.6455 0.0058 0.0417
18.0 9.0 0.6835 0.0058 0.0325
19.0 9.5 0.7215 0.0058 0.0259
20.0 10.0 0.7595 0.0058 0.0210
21.0 9.5 0.7215 0.0058 0.0259
22.0 9.0 0.6835 0.0058 0.0325
23.0 8.5 0.6500 0.0059 0.0417
24.0 8.0 0.6118 0.0059 0.0544
25.0 7.5 0.5646 0.0057 0.0723
26.0 7.0 0.5268 0.0057 0.0879
27.0 6.5 0.4883 0.0057 0.1348
28.0 6.0 0.4517 0.0057 0.1879
29.0 5.5 0.4140 0.0057 0.2650
30.0 5.0 0.3764 0.0057 - 0.3759
31.0 4.5 0.3387 0.0057 0.5329
32.0 4.0 0.3011 0.0057 0.7481
33.0 3.5 0.2635 0.0057 1.0287
34.0 3.0 0.22%8 0.0057 1.3686
35.0 2.5 0.1882 0.0057 1.7409
36.0 2.0 0.1506 0.0057 2.0990
37.0 1.5 0.1129 0.0057 2.3914
38.0 1.0 0.0753 0.0057 2.5848
39.0 0.5 0.0376 0.0057 2.6784
40.0 0.1 0.0075 0.0057 2.6998






TABLE 7

SIGMAl (ACTUAL)=0.0027 s/M

WORKING WITH -

ZZSOM

XSTART= 0.5000000

KlOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE SIG1l.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

FID Dl X SIG1 SIGeff
0.0 0.1 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.6414
3.0 1.5 0.0586 0.0015 2.5379
4.0 2.0 0.0781 0.0015 2.3690
5.0 2.5 0.0977 0.0015 2.1376
6.0 3.0 0.1672 0.0031 1.8600
7.0 3.5 0.1951 0.0031 1.5616
8.0 4.0 0.2229 0.0031 1.2689
5.0 4.5 0.2508 0.0031 1.0030
10.0 5.0 0.2786 0.0031 0.7760
11.0 5.5 0.2874 0.0028 0.5912
12.0 6.0 0.3135 0.0028 0.4462
13.0 6.5 0.3396 0.0028 0.3353
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897
16.0 8.0 0.418C 0.0028 0.1437
17.0 8.5 0.456¢6 0.0029 0.1096
18.0 9.0 0.4835% 0.0029 0.0843
19.0 9.5 0.5103 0.0029 0.0654
20.0 10.0 0.537% 0.0029 0.0513
21.0 9.5 0.5103 0.0029 0.0654
22.0 9.0 0.4835 0.0029 ¢.0843
23.0 8.5 0.4566 0.0029 0.1096
24.0 8.0 0.4297 0.0029 0.1437
25.0 7.5 0.4023 0.0029 0.1897
26.0 7.0 0.3769 0.0029 0.2518
27.0 6.5 0.3492 0.0029 0.3353
28.0 6.0 0.3223 0.0029 0.4462
29.0 5.5 0.2954 0.0029 0.5912
30.0 5.0 0.2686 0.0029 0.7760
31.0 4.5 0.2417 0.0029 1.0030
32.0 4.0 0.2149 0.0029 1.2689
33.0 3.5 0.1880 0.0029 1.5616
34.0 3.0 0.1612 0.0029 1.8600
35.0 2.5 0.1343 0.0029 2.1376
36.0 2.0 0.1074 0.0029 2.3690
37.0 1.5 0.0806 0.0029 2.5379
38.0 1.0 0.0537 0.0029 2.6414
39.0 0.5 0.0269 0.0029 2.6894
40.0 0.1 0.0054 0.0029 2.7001
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