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Determination of Design and Operation Parameters

for Upper Atmospheric Research Instrumentation

to Yield Optimum Resolution with Deconvolution

The subject NASA grant number NAG 1-804 was instituted 1 Aug 1987, originally

for a three-year period, tluough 31 July 1990.

grant finally terminated on 31 Dec 1991.

No-cost extensions were granted so that the

During the period in which the Principal

Investigators were partially supported by the grant, Graduate Research Assistants and a

Graduate Research Associate, Mr. Abolfazl M. Amini, were also supported on an

intermittent basis. A good deal of grant-related research was performed by graduate students

who were not directly supported by the grant, but were employed by the University of New

Orleans Department of Physics as Teaching Assistant.% or otherwise employed.

In addition to the support provided by NASA Langley Research Center, two other

sources of support were associated with this grant. Two funding increments through this

NASA grant were provided by the U. S. Army Cold Regions Research and Engineering

Laboratory (CRREL) for research performed by the Principal Investigators and an additional

Investigator, Dr. Clyde Bergeron of the Department of Physics. A funding increment was

also provided by NASA Marshall Space Flight Center to begin research into the analysis and

prediction of the tethen:d satellite tether skiprope mode, which could occur in the

NASA/Italy ASI TSS-1 e_periment.

The research for the basic NASA Langley grant and for the additional increments of
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funding hasbeendescribedin journal andproceedings articles, published abstracts, student

Master's theses, and reports, all of which are included in this final report document. We

include both papers directly supported by NASA and the related research directed by the

Principal Investigators which did not receive direct NASA support. A list of the journal and

proceedings articles, research papers with published abstracts, and theses directly related to

the subject of the initial grant is included in Appendix 1, along with copies of the articles and

abstracts. Appendix 1 is bound in this volume.

Appendices 2, 3, and 4 contain the three student Master's theses listed in Appendix

1. Each of these is bound separately and enclosed as a volume with this report. The two

reports written to describe the research supported by CRREL are included as Appendices 5

and 6, which are bound hi this volume. Finally, the Engineering Notebook, Appendix 7,

written for and submitted to NASA Marshall Space Flight Center, is also part of this report,

and is included as an enclosed separate volume.

Among all the research results reported in the Appendices, note should be made of

the specific investigation ¢,f the determination of design and operation parameters for upper

atmospheric research instrumentation to yield optimum resolution with deconvolution. As

reported by G. Ioup et al (1988, 1989), a methodology has been developed to determine

design and operation parameters for error minimization when deconvolution is included in

data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all

parameters of interest. Instrumental characteristics will determine a curve in this space. The

SNR and parameter values which give the projection from the curve

corresponding to the smallest value for the error, are the optimum values.
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constrainedby the curve and sowill not necessarilycorrespondto an absoluteminimum in

the error surface.

During the period of this grant, the Investigatorsand their studentshave maintained

frequent contactwith the original technical monitor, Dr. George M. Wood, and the new

monitor, Dr. Billy T. Upchurch, both of NASA Langley ResearchCenter. This interaction

hasbeenimmensely rewarding for both the Investigatorsand their students. We are very

grateful to NASA Langley ResearchCenter, not only for the funding of the research,but

also for the interaction and research opportunities which have been provided to the

Department of Physics at the University of New Orleans. We anticipate with pleasure

continued association with the research staff of NASA Langley Research Center.
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Autocorrelation estimation using constrained iterative

spectral deconvolution

Murali Ramaswamy* and George E. Ioup_

ABSTRAC1

Computing an autocorrelatio_ conventionally pro-

duces a biased estimate, especial!v for a short data se-

quence. Windowing the autocorr :lation can remove the

bias but at the expense of violatil_g the nonnegativity of

the corresponding power spectriHn. Constrained itera-

rive deconvolution provides a /-usis for improving an

autocorrelation estimate by reducing the bias while

guaranteeing nonnegative detinit_ ness.

The length of the autocorrelati,m is increased in order

to satisfy the nonnegativity corstraints on the power

spectral estimate. The constraint_ can also have signifi-

cant effects on small, poorly de_ermined values of the

autocorrelation. The technique s applied to synthetic

and real examples to show th{ improvements in the

autocorrelation and power spectz um which are possible.

The method is reasonably, stable in the presence of

noise and it approximately pre;crves the area of the

power spectrum. Comparison to the maximum entropy

technique shows that the iterati' c method gives power

spectral resolution which is som_ limes better and some-

times not as good, but that ther: are cases for which it

is the more desirable approach.

INTRODUCT iON

Autocorrelation and power spect-al estimation are difficult

when the segment of data available s of inadequate length. To

reduce the variance in the powe_ spectral estimate, auto-

correlation windows (Blackman aJ_(l Tukey, 1958; Geckinli

and Yavuz, 1983) or some forms _.f spectrum averaging are

used (Daniell, 1946; Bartlett, 1948: Welch, 1967), Bias in the

autocorrelation due to missing la?_ged products, with more

products missing as the lag increa,,cs (Cooley et al., 1970), is

especially acute for short data segrlents, since the suggestion

of Blackman and Tukey (1958) to use only 10 percent to 20

perctnt of available lags is no longer practical. Short data

sequ,:nces are commonly selected in designing filters for non-

stati_mary or shift-variant data so that there will be approxi-

male stationarity or shift invariance within the window. This

appr,_ach is often taken in processing seismic data.

Maximum entropy (MEM) spectral estimation (Burg, 1975;

Kan.tsewich, 1973t is the technique generally used for obtain-

ing m improved autocorrelation and power spectrum for

shot'; data sequences IJurkevics and Wiggins, 1984). Maximum

entropy spectral estimation assumes an autoregressive model

for 1he data. When the method works, it works very well.

Ho_ever, it is sensitive to noise and is unstable for some data

type_, ([,acoss, 1971; Chen and Stegan, 1974}. It also does not

retuln a true magnitude for the power spectrum (Lacoss, 1971 ;

Johnson and Anderson, 1978).

In this paper we suggest for improving estimates of auto-

corr.:lations and power spectra an alternative approach, which

is nc,t very sensitive to noise and assumes only that the data

sequence is a truncated portion of a larger data set.

The method begins with a biased estimate. It removes the

bias using constrained iteralive deconvolution of the power

speclrum. If run to convergence, the technique removes almost

all thc bias. For difficult data however, the iterations may be

terminatcd bcfore all bias is rcmoved. The constraint guaran-

tees thc nonncgative definite property of the autocorrelation

by l-ceping the power spectrum nonnegative. The principal

ett"cct of the constraint is to extend the autocorrelation beyond

the t_umber of lags originally possible, but it can also improve

the ,'stimate in the original lag domain and reduce the effects

of v=triance in estimating small autocorrelation values (Yoer-

ger, 1978; Yoerger and Ioup, 1983). The constraints will most

affe_t power spectra which have peaks with valleys near the

zero baseline and least affect fiat power spectra which rarely

approach the zero baseline. For all data, however, the pro-

pos{d approach (Ramaswamy, 1985) removes the bias in the

autc.correlation estimate and sharpens the power spectral esti-

mat,:; i.e., the bias in the autocorrelation results from

deemphasizing the larger autocorrelation lag values, which in

turn smooths the spectral estimate.

Manuscript received by the Editor April 7, 1986; revised manuscript received Aug_tst 15, 1988.
*Shell Western E&P Inc., P.O. B_x 42¢:2, Houston, TX 77210-4252 and Department of Physics, University of New Orleans. New Orleans, LA
70148.
++Department of Physics and Geophysic; _ Research Laboratory, University of Ne,,, Orleans, New Orleans, LA 70148.
_', 1989 Society of Exploration Geophy,,i_-ists. All rights reserved.
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382 Ramaawamy and Ioup

We briefly discuss basic methods for autocorrelation and

power spectrum calculations for truncated data sequences to

show the bias which is inherent in the resulting estimate

(Cooley et al., 1970). We then summarize iterative deconvolu-

tion as it is currently practiced in the function domain, show

how the technique is applied in the transform domain to im-

prove the autocorrelation estimate, discuss practical consider-

ations, and give some examples.

AUTOCORRELATION ESTIMATION

The autocorrelation of a time sequence x(t) that is N sam-

ples long is often defined as (Cooley et al., 1970)

N-I

b(t) = 1/N _. x(t')x(t' -- t). (l)
t'=O

The above formulation leads to a biased estimate of the auto-

correlation because the number of lagged products going into

the estimate of b(t) is a function of t. To correct this effect, the

equation is rewritten for an unbiased estimate u(t),

N I

u(t) = 1/(N -- It I) _ x(t')x(t' -- t). (2)
t'=O

Although the above equation results in reduced bias, this form

can lead to a violation of the nonnegative definite property of

autocorrelations of real sequences, corresponding to the non-

negativity of the power spectrum.

The biased estimate b(t) is related to the unbiased sequence

u(t) by the relation

b(t) = u(t)w(t), (3)

where w(t) is a triangular or Bartlett window of unit peak

amplitude at the origin (Cooley et al., 1970). The window can

be expressed as

w(t)=(N--]t])/N, --N<t<N. (4)

Uppercase notation is used to represent the transform vari-

ables as follows:

and

b(t) _-, B(f),

u(t) ,--. U(f),
(5)

wit) _ W(f).

Applying the convolution theorem (Bracewell, 1978),

B(f) = U(f) • W(f), (6)

where the asterisk denotes convolution. In performing a

straightforward autocorrelation estimation, one chooses be-

tween the biased estimate in equation (I) and the unbiased

estimate of equation (2). The advantages of the former are that

the estimate satisfies the nonnegative definite property and

that it deemphasizes the presumably less reliable values at

larger lags. Its disadvantage is the same deemphasis, i.e., the

bias in the estimate. The unbiased estimate eliminates this bias

but sacrifices the nonnegative definite property. The method

proposed in this paper eliminates the need to choose between

these estimates by removing the bias, subject to satisfaction of

the nonnegative definite property; it simultaneously offers esti-

mation capability beyond either of the above approaches.

The problem is to get an estimate of U(f) when B(f) and

W(f) are known. W(f) is the function

Wlf) = l/N[sin 2 nNf/sin 2 rcf],

which for large N becomes

W(f) -_ sin 2 rtNJTNrc2f 2 = N sine 2 Nf

Therefore, from equation (6), B(f) is a smoothed version of

U(ft. One way to remove this smoothing effect is to decon-

volve B(f). However, deconvolution is not straightforward if

we wish to include the nonnegative definite constraint im-

posed on autocorrelations, which corresponds to a nonnegati-

vity constraint on U(f) (Papoulis, 1962; Robinson, 1980). Also

note that deconvolving in the frequency domain produces u(t),

which could be computed directly if the nonnegative definite

property is ignored.

In this paper a method to mitigate the effect of W(f) on the

spectral estimate is proposed through a constrained iterative

deconvolution process carried out in the spectral domain.

ITERATIVE DECONVOLUTION

The method of deconvolution using successive substitution

(Bracewell and Roberts, 1954; Ioup, 1968; Lacoste, 1982; Ioup

and loup, 1983: Jansson, 1984) was originally described in the

time domain. For a function f(t), input to a linear shift in-

variant system with impulse response h(t), the output x(t) is

ff(t')h(t - t') dt' =f(t)* h(t), (7)
x(t)

where the asterisk denotes the convolution operation. Alter-

natively,

X(f) = F(f)H(f), (8)

where X(f), F(./'), and H(f) are the Fourier transforms of x(t),

.f(t), and h(t), respectively. The problem of deconvolution is to

find f(t), given x(t) and h(t). The principal solution (Bracewell

and Roberts, 1954) for F(f) is

F(f) = _X(f)/H(f) for f: H(f)#0 (9)
tO forf: H(f) = 0.

Ioup and Ioup (1983) discuss the case when H(f) = 0. The van

Cittert solution to the problem is stated in the time domain by
the following equations:

fo (t) = x(t),

ft(t)=fott) + [xtt)- fo(t)*h(t)],

(10)

fn(t) = fn- l(t) + Ix(t) - fn_ l(t) . h(t)],

wheref,(t) is an approximation tof(t) which converges to the

principal solution in a finite number of iterations. Time-

domain constraints can be enforced after each iteration, loup

and Ioup (1983) and the references cited therein discuss this

method in greater detail, and Jansson (1984) gives a very com-
plete development.
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APPLICATION TO AUTO( ()RRELATION
ESTIMATION

The van Cittert solution is give: in the time domain,

whereas spectral estimation require, deconvolution in the

frequency domain. In equation (6), B(f) and W(f) are known,

and an estimate of U(f) must be conq_uted that is positive at

all frequencies. From equation (3),

u(t) = b(t)/w(t (I 1)

The iterative method yields a solution for U(f) given by

U o (f) = B(f)

U,(f) = Uo(f) + [B(f)-- U , ( f)* W(f)],

(12)

Un(f) = Un_ l(f) w IB(f) -- .?'n_ l(f)* W(./ )].

To understand these equations and t_, determine whether they

satisfy conditions for convergence, we examine the time-

domain equivalents:

Uo(t)= b(t)

ul(t) = Uo(t) + Ib(t)-- u, (t)w(t) ],

(13)

un(t)=Un-l(t)+[_l)--t'n l(t)w(t)] •

Upon substituting successively, one o_tains

u,(t)=b(t){l+[-1-w(t)]+[.l-w(t)] z , -.. +[l-w(t)]"}. (14)

This simple geometric series, which nay be summed to give

u,lt) = I1 -- [1 -- w(t)] "_' }b(t)/w(t), (15)

converges for I1 -- w(t)l < I. The de;inition of w(tl guarantees

convergence for all real input seq:,aences except at t _> N,

where w(N)= 0; and the discussion tbr zeros in the transfer

function applies (Ioup and Ioup, 1983). In the limit as n tends

to infinity, the convergent geometric .cries sums to

u(t) = b(t)/w(, _. (16)

This is precisely the result of the deconvolution [equation

(11)]. However, note that for finite n the deconvolution is not

perfect but is modified by the van (ittert window [equation

(15)].

This general form of iterative dec(.nvoiution is what is used

for improved autocorrelation and p,,wer spectral estimation.

One key additional aspect, however, is the application of con-

straints to equation (12). This is accomplished in an ad hoc

.fashion in that the nonnegativity is ._imply enforced on each

U,(f) by setting all negative values to zero before beginning

the (n + l)th iteration. The nonnegativity of the spectral esti-

mate is thus ensured.

in addition to the guaranteed no megativity, the iterations

proceed gradually and can be terndnated before too much

bias is removed if the large-lag auto,:orrelation values are un-

reliable. The constraints mainly affect those values of u,, (t) at t

383

for which w(t) is small or zero, These are the values of the

unhiaz,ed estimate u(t) which are least reliable.

AIs,_, since u(01 and hi0) represent the area of the power

spectral estimates of U(.f} and BLf) and since w(0) = 1, equa-

tion (15)implies that the method preserves area. It is not

preset red exactly due to the effects of constraints, truncation,

etc.

PRACTICAL CONSIDERATIONS

An important consideration in iterative deconvolution is the

growth of the length of the solution with each iteration, since

the length ofu, islonger than u _ bym- 1 when there are

m samples in w(t). In practice it is necessary to truncate or

limit _he maximum length of u. For many response functions,

only one expansion by convolution is necessary, and the effect

of igr_oring length expansion in further iterations is negligible

(loup 1968" Hill, 1973). In some cases it may be necessary to

use the neighboring replications of the power spectrum and

the _indow transform natural to the discrete Fourier trans-

form representation. A program to implement this scheme was

written and sample functions were tested.

Th,." power spectral estimate is sometimes calculated directly

from the square modulus of the discrete Fourier transform

(DFI) of the data. Our method may still be applied to decon-

volve the power spectrum, but only if the data are extended by

at least (N - 1) zeros before calculating the DFT to avoid

wrap._round in the autocorrelation calculation.

EXAMPLES

The following examples are included to demonstrate the

techr, ique. The input sequence was extcnded by 32 zeros to

allo_ for autocorrelation extension. A 64 point FFT was used

in all cxamples. Half the points in the autocorrelation and

FFT represent negative times or frequencies and are not dis-

played. The sampling rate may be considered to be unity,

making the Nyquist frequency /).5 Hz, and the plots are nor-

nlali/ed so that the peak amplitude shown is the maximum

ordinate value. The actual peak amplitude observed in the

data is indicated on the ordinate of each plot. The increase in

peak height which accompanies increased spectral resolution

is therefore not readily apparent on the displays although it is

indicated numerically on the vertical axes.

Ten iterations were done in each example using the pro-

posed algorithm. The number of iterations needed was not

optimized in any way. The noise sequence added to the signal

was approximately white. It was generated by transforming to

time a spectrum of constant amplitude with random phase.

Since only a part of this sequence was used, it is not strictly

white. The signal-to-noise ratio was set to approximately unity

in the examples with noise.

The maximum entropy spectrum was obtained using the

method described by Press et al. (1986). The order of the

maximum entropy estimate was set to 5, with no attempt

made to optimize the order,

The first example is the 20 sample input of Figure 1 ;

Input = sin (87tt/32) + noise.

The signal-to-noise ratio (S/N) was approximately unity. The

steel:, triangular weighting on the autocorrelation due to the
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1 , _ _ 0.8s ' * _ ._

- 1.72

(e)

0 FREQUENCY

(c) (f)

0 FREQUENCY 0 FREQUENCY

Fie;. I. Single sinusoid with noise. (a) Original data. (b) Conventional autocorrelation. (¢) Power spectrum [FT of (b)].
(d) Autocorrelation estimate [inverse FT of (e)]. (e) Spectrum calculated by iterative deconvolution from (c).
(f) Maximum entropy power spectrum of(a).

decreased number of terms at higher lag values is apparent.

The autocorrelation obtained by iterative deconvolution

decays more slowly. The extended part of the autocorrelation

seems reasonable in that there is no dramatic change in its

characteristics at long lags.

Since the first sample in the spectrum represents f = 0, the

spectrum should peak at the ninth sample, as occurs in Figure

lc, the conventional spectrum. The iterative method places the

peak at the eighth sample but the ninth sample amplitude is

very close to the peak amplitude. The MEM spectrum places

the peak at the correct sample. The peak amplitude in the

MEM spectrum is smaller than that obtained by the iterative

method. Side-lobe suppression is better in the MEM spec-

trum.

As a severe test of the proposed method, a nine-sample

sequence was input in Figure 2. The input is sin (8nt/32), a

single period of a sinusoid with no noise. Due to the frequency

and sampling rate, of the nine sample values, three are exactly

zero. The autocorrelation is extended in a reasonable manner

to four times its original length, and the spectrum is sharpened

by the iterative method. The method gives reasonable results

to lags of more than one and one-half times the original auto-

correlation length. At subsequent lags, autocorrelation values
are small.

Again, one would expect the spectrum to peak at the ninth

sample. However both the conventional spectrum and the iter-

ative method peak at the eighth sample. The MEM estimate

peaks at the seventh sample. This example was very sensitive

to the order of the MEM estimate. Increasing the order from 5

to 7 yielded totally erroneous results.

In Figure 3 the 20 samples comprising the input are ob-

tained from

Input = sin (0.7 + 7nt/32) + sin (0.9 + 9nt/32).

In Figures 4a-4f, the same data and calculations are shown

for the noise-added case. S/N was once agai n set to unity. Due

to the presence of noise, the expected beating is not very evi-

dent in the noisy input Figure 4a, compared to the noise-free

input of Figure 3a. Comparison of the noisy autocorrelation

Figure 4b to the noise-free autocorrelation Figure 3b, for 20

points of this input, shows that the noise produces mainly

modest changes in the autocorrelation amplitudes, except that

the first negative lobe is less than half as large as it should be.

In addition, noise causes the fourth (at a half-period), fifth, and

sixth zero crossings to be delayed. The autocorrelations ob-

tained by iterative deconvolution, Figures 3d and 4d, on the

other hand, resemble much more the autocorrelation of 34

samples of the original function, shown in Figure 3h, with a

reduction in amplitudes at larger lags. The noise-free iterative

deconvolution result in Figure 3e has all zero crossings in

agreement with Figure 3h out to the 28th lag, except for the
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TIME

TIME

2.11

0.57 •

(d) 0_

(c)

(e)

3.87 i

i
FI_QUENCY

I
FIG. 2. Single sinusoidal wavel,:t. (a) Original data. (b) Conventional autocorrelation. (c) Power spectrum [FT of (b)].

{d) Autocorrelation estimate [inverse FT of (e)]. (e) Spectrum calculated by iterative deconvolution from (c).

{f) Maximum entropy power spectrum of (a).
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1.%

(a) 0

•_ 6.03

TIME

TIME

(b) 0

(e)

.817 ,_ 2.41 ,_

FREQUENCY

(f)

FREQUENCY

4.48' _ _ '_ (g) •

0
FREQUENCY

.873 ' " Jt ,_ . 1.11 : ,

01k. _ 40

FtG. 3. Two sinusoids. (a) Original data. (b) Conventional autocorrelation. (c) Power spectrum [FT of (b)]. (d)
Autocorrelation estimate [inverse FT of (e)]. (e) Spectrum calculated by iterative deconvolution from (c). (f) Maximum

entropy power spectrum of (a). (g) Autocorrelation calculated from (f). (h) First 32 autocorrelation lags using 34
samples of the two sinusoids.
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(f) Maximum entropy power spectrum of (a).
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sixth and seventh zero crossings which are slightly delayed. In

Figure 4e, the noise has caused the following changes from the

noise-free Figure 3e result. There are modest changes in rela-

tive amplitude at several points and major changes in the first

negative lobe, which is approximately one-third as large as it

should be relative to the peak, and in the third negative lobe

which is more than twice as large as it should be. The zero

crossings agree, except for the third, which is advanced. In the

noise-free case one may say that the autocorrelation of 20 lags

of the function has been extended to good approximation to

the first 28 lags of the autocorrelation of 34 lags of the func-

tion by the deconvolution: Even when large amounts of noise

are present, the extention can still be useful. The maximum

entropy noise-free result, Figure 3g, does not resemble any of

the extended autocoi'relations considered by the authors, up

to 40 sample points of input data.

Using the conventional spectrum the two sinusoids are

better resolved in the noisy data (Figure 4c) than in the noise-

free data (Figure 3c), but this is an accidental effect of the
noise. The noise-free iterative deconvolution spectrum (Figure

3e) partially resolves two peaks of approximately the same

height, Further resolution could have been obtained by using

more iterations. The maximum entropy spectrum in Figure 3f

resolves the peaks even better, but the peak heights and areas

are very different even though the input sinusoids are of equal

strength. For the noisy spectra, the iterative technique resolves

the peaks completely (Figure 4e) with the same number of

iterations as in Figure 3e. Again this is accidental and due to

noise. The important point is that the noise in the convention-

al spectrum (Figure 4c) has not been amplified relative to the

main peaks by the deconvolution process. In the maximum

entropy spectrum for the noisy data, Figure 4f, there is only

one peak and the two sinusoids have not been resolved.

A 20 sample symmetric square wave with a 4 time sample

period is considered in Figure 5. The conventional auto-

correlation is triangular. The autocorrelation obtained by iter-

ative deconvolution has been extended in a manner that more

closely resembles the autocorrelation of an infinite length

square wave; there is some distortion apparent at large lags.

In order to preserve the characteristics of the triangular wave

autocorrelation, frequencies other than the dominant or fun-

damental frequency, represented by sample 17 on the plots,

must be present in the spectrum. This is seen in both the

conventional and the modified spectra. The MEM method has

resolved the dominant frequency, but other frequencies and

harmonics are suppressed. The resulting autocorrelation is not

quite as triangular as one would expect. In this example,

MEM is perhaps not the most appropriate method.

An example of real seismic data is presented in Figure 6.

The input consists of the 20 samples of deconvolved prestack

data; the peak of the conventional spectrum occurs at the fifth

sample. It is apparent that although very few low-frequency

components are present in the conventional spectrum, the

maximum entropy method estimates a sizeable low-frequency

component. Our method does not have this disadvantage.

Since bias removal should increase autocorrelation ampli-

tudes, we expect increased amplitudes for the iterative decon-

volution (Figure 6e) and maximum entropy (Figure 6g)

estimates compared to the conventional result (Figure 6b).

Although both estimates show increases, the amplitudes of

Figure 6e are greater, suggesting the iterative deconvolution

Ramaswamy and Ioup

approach performed better. Also, both methods extend the

autocorrelations in a reasonably consistent fashion.

EVALUATION

Sometimes the iterative deconvolution spectrum is not as

peaked as the one obtained from maximum entropy. The con-
straints that lead to autocorrelation extension have the most

effect at spectral valleys or notches that approach the zero

baseline of the spectrum. If the spectrum that is input to the

proposed method is flat and does not have notches in the

spectrum, the constraints would be less effective.

However, the experience of the authors indicates that the

iterative method of autocorrelation and spectral estimation

has the following advantages over the maximum entropy

method: The iterative method does not assume an autoregres-

sive model for the input data as does the MEM. The iterative

technique proposed is fairly insensitive to noise. This insen-

sitivity results from the technique's attempting to improve the

conventionally obtained spectrum through a gradual and

stable iterative process. The maximum entropy method can

result in a very different spectrum upon the addition of noise

to the input. The maximum entropy method is sensitive to the

order of the estimate. To do a reasonable job, some criteria

(like Akaike's criteria) must be applied. This implies running

diagnostics prior to computing the final MEM estimate. The

iterative method could be applied in a hands-off fashion to

sharpen the conventional spectral estimate. The peak fre-

quency in the maximum entropy method can err by one

sample and may have incorrect relative and absolute ampli-

tudes. The iterative method appears to suffer from this prob-

lem to a lesser extent.

CONCLUSIONS

The iterative method cannot extend the autocorrelation in-

definitely. The method's ability to extend the autocorrelation

results from nonnegativity constraints on the spectrum. Since

the unconstrained iterative deconvolution is a linear process,

it cannot add new lag values tothe autocorrelation.

In estimating the autocorrelation with the iterative method,

the effect of the window used to produce the unbiased esti-

mate is reduced, and the window is gradually made rectangu-

lar as the iterations proceed. The autocorrelation is extended

as necessary in order to maintain a nonnegative spectrum at

the end of every iteration. The smaller values of the auto-

correlation corresponding to the smaller values of the triangu-

lar window can also be affected by the nonnegativity con-

straint more than the large values.

Naturally, there are no right or wrong answers when esti-

mating power spectra (or autocorrelations) from short data

sequences. Rather, the recorded data are assumed to be a

segment of a larger sequence, and the ultimate issue is whether

the model which generates the estimate is the same as that

which generated the data.

Finally, since the method is recommended primarily for

short data sequences, computer cost is not a major consider-

ation.
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ABSTRACT

Information contained in dala that is in the form of a series of more-or-less

resolved peaks is often unobtainable due to the limitations in resolution or
response of the instrument. Adjusting the instrumental operating parameters

to increase resolution usually has the effect of also decreasing the sensitivity

and the signal-to-noise ratio, making detection of small signals difficult. If a

mathematical representation of a shift invariant instrument response function

that describes the broadening effect on the input can be defined, then it is

possible by deconvolution to restore the resolution to some degree.This process

is represented by the solution of the convolution integral, which is achieved

for many common data types through the use of iterative or Fourier transfor-
mation techniques. Although deconvolution techniques are becoming widely

used, _>articularly in spectroscopic, ac,_ustic, astronomical, and geophysical
applications, and appear to be straightforward, care must be exercised to
prevent the generation of spurious peaks which may be interpreted as being

real data. This is particularly true when the higher frequencies in the Fourier
transform are important in recovering Ihe information. This paper describes
both iterative and Fourier techniques developed in the course of on-going

studies of the deconvolution process, and discusses some of the pilfalls which
should be avoided. Results of recent research in optimizing iterative tech-

niques and instrumentation for deconvolution applications, and for evaluating

and optimizing the efficacy of different methods of deconvolution for de|ect-
ing peaks in specific classes of noisy data are also discussed.

i IIIIII--





Enhanced Data from Analytical Instrumentation by
Dcconvolution of Periodically. Sampled Si mls

George E. loup, Juliette W. loup, Abolfazl ,_nini

Department o/Physics. University o/New Orleans. New Orleans. LA 70148 USA

Graysou !!. Rayborn, Dong Waug

Department of Physics tired Astronomy. University of Southern Mississippi. Hattiesburg,
MS 30406-5046 USA

George M. _%od
Instrument Research DiwL_ion. NASA Langley Research Center. Hampton. VA 23665 USA

ABSTRACT

Information contained in data that are in the form of a series of more-or-less resolved

peaks is often unobtainable due to the limitations in resolution or response of the instru-
ment. Adjusting the instrumental operating parameters to increase resolution usually has
the effect of also decreasing the sensitivity and the signal-to-noise ratio, making detec-
tion of small signals difficult. If a mathematical representation of a shift invariant

instrument response function that describes the broadening effect on the input can be
defined, then it is possible by deconvolution to restore the resolution to some degree.This

process is represented by the solution of the convolution integral, which is achiev.ed for
many common data types through the use of iterative or Fourier transformation tech-
niques. Although deconvolution techniques are becoming widely used, particularly in
spectroscopic, acoustic, astronomical, and geophysical applications, and appear to be

straightforward, care must be exercised to prevent the generation of spurious peaks
which may be interpreted as being real data. This is particularly true when the higher

frequencies in the Fourier transform are important in recovering the information. This
paper describes both iterative and Fourier techniques developed in the course of on-going
studies of the deconvolution process, and discusses some of the pitfalls which should be
avoided. Results of recent research in optimizing iterative techniques and instrumenta-

tion for deconvolution applications, and for evaluating and optimizing the efficacy of
different methods of de..:onvolution for detecting peaks in specific classes of noisy data
are also discussed.

INTRODUCTION

When instruments are used in the analytical sense, )he data are typically obtained by

periodically sampling the magnitude of the dependent variable. The independent varia-
ble is most often time, but may be frequency, position, mass, wavelength, wave number,





or any other parameter as well. The sensitivity of such an instrument is defined to be
the smallest increase in the intensity of the signal representing the magnitude of the
dependent variable that can be measured, with the detection limit being the smallest
measurable signal that appears above instrument background and noise. The resolution
or resolving power is the smallest increment in the independent variable that can be
identified in the output and is therefore a measure of the ability to detect changes in the

parameter being measured.

The resolving power for a particular instrument is determined by the frequency response

of the detection and recording circuitry and other factors influencing the output signal
that represents a change in input. This is referred to as instrumental broadening, but in
addition to the instrument response, it actually includes any parameters that affect the

overall response of the system as well. Examples of these other sources are the inter-
face between a sensor and the system upon which the measurement is being performed,
mechanical or electronic limitations on the rate at which the independent variable can be
scanned, and the presence of fundamental or environmental noise. Fundamental noise is

that arising from the physics of the measurement process itself, while environmental
noise results from externally imposed influences. With care, the latter can be made
arbitrarily small, but fundamental noise has a limit below which it cannot be further
reduced, therefore imL;)osing a lower limit on detectability. The situation is, therefore,
that a change in the input parameter is represented by an output signal whose response is

dictated by the effects of instrumental broadening. Whenever these changes are slow or
when only first order approximations are required, the signal obtained will represent

adequately the variatic-ns in input. However, in many cases, valuable information is not
observed or obtainable due to the broadening effects.

Signal averaging or differentiation are both useful techniques to improve the resolving

power of the instrument. The most effective cotrlputationai method is deconvolution
which, however, is mathematically difficult to apply in that it tends to amplify noise
and has other difficulties. In some cases deconvolution will result in spurious peaks that

may be interpreted as being real if not carefully examined. When properly applied,
however, deconvolution of the signal can yield an improved resolution, often much great-
er than can be obtained by careful tuning of the in.strument or otherwise enhancing the

signal, and sometimes even exceeding the theoretical limit of the resolving power. The
improvement in resolution is determined in part by how accurately the response function
(impulse response) can be determined for each point at which the deconvolution is to be
carried out, and how completely the effect of noise can be addressed.

If the instrument response does not change appreciably while the measurement is being
carried out, the response is called "shift invariant." and the relationship between the
observed signal h(x) and the input (or ideal) signal f(y) is defined by the convolution

integral
+ *a

r

h(x) - [ f(y) g(x-y) dy ,, f * g ,
(I)

d

where g is the response function representing the broadening effects. The discrete

form of this equation is given by





hi - Z fj gi-j " f * g (2)

Complete discussions of deconvolution and reviews of many of the techniques are
given by Frieden, s Robinson and Treitei,a4 Mendel,'9 and Jansson. zZ

In this paper a background in basic Fourier deconvolution is summarized, and mention
is made of newer Fourier transform techniques whi(:h improve upon it. The source of

sidelobes is discussed as well as why deconvolution generally amplifies noise and is
therefore ill-conditioned. A review of iterative deconvolution techniques is given
including recent developments. Examples of the pitfalls due to sidelobes and noise are

presented. The optimization of iterative techniques is discussed as well as a new
method for evaluating different deconvolution methods for their ability to detect true
peaks and reject false peaks.

FOURIER DECONVOI_ UTION

Fourier deconvolution proceeds directly from the Convolution Theorem. s This theo-
rem holds that if h(x) is the convolution of f(x) and g(x) as in Equations (I) or (2),
then H(s), the Fourier transform of h(x), is the product of the Fourier transforms of
g(x) and f(x):

H(s) - F(s) G(s) (3)

As long as G(s) is unequal to zero the transform of the ideal function f(x) can be
recovered by division, but when the experiment fails to transmit frequencies that are
present in the ideal function, that is, G(s) is zero for frequencies s for which F(s) is
not zero, information about f(x) contained in these frequencies is lost, and f(x) can not

be perfectly restored. Bracewell and Roberts 6 suggest that an initial approach in such

eases might be to define a principal solution Fp(s), an approximation to the transform
of the ideal function, whose value is zero whenever G(s) is zero. Thus,

Fp(S) - { H(s)/C(S)o Is:C(s){S:C(s)._ 0)0}
(4)

The approximation to the ideal function, fD(x), is then obtained by taking the inverse
transform of FD(s), and the process by ffhich this resolution enhanced solution is
obtained is calle_l simple inverse filtering.

The loss of information about F(s) at frequencies for which G(s)=0 often creates

unwanted characteristics in the approximation fp(X). In many experiments the trans-
form of the response function is non-zero (except perhaps at a few isolated points) for

all frequencies below a certain critical "cut-off" frequency s c and zero above this

frequency. In these cases Fp(S) is truncated. This usually gives rise to spurious peaks
(Gibbs oscillations) which are not present in f(x) and greatly complicates the interpreta-

tion of spectra enhanced by simple inverse filtering.

As the Convolution Theorem clearly shows, the transform of the measured function,
H(s), should be zero at values of s for which G(s) is zero. Noise at these frequencies

cannot have been transmitted through the system and is therefore called incompatible





noise.3° Noiseat frequencies s for which G(s) is not zero is called compatible noise.
Incompatible noise can be removed by bandpass filtering without further loss of infor-
mation before Fourier deconvolution if G(s) is known. Compatible noise which is
present at frequencies for which G(s) is small is an additional serious obstacle to accu-

rate resolution enhancement by simple inverse filtering. Filtering which reduces or
removes compatible noise necessarily forfeits part of the signal, and information
needed for the accurate restoration of f(x) is lost. In particular, noise tends to be more
important at high frequencies so that low-pass fiJtering which decreases the bandpass
of the approximation to the transform of the ideal function broadens the function it-
self, thereby partially tending to defeat the purpose of resolution enhancement.

For additive noise, the principal solution has the form Fp(S) = [H(s) + N(s)J/G(s),
where N(s) is the transform of the noise. The example shown in Figure 1 includes

plots of sample IH(s)+N(s)l and IG(s)] functions and the resulting [FD[, which is the noisy
F(s) truncated at the cutoff of G(s). As the cutoff frequency-is approached from
below and G(s) becomes smaller, the magnitude of N may exceed that of H, and hence

noise predominates and is amplified by the deconvolution. In this case, the high
frequency component of the transform domain spectrum is often deleted, a process
defined as "low-pass inverse filtering." This reduces the effect of the noise but does
not eliminate the Gibbs oscillations and it decreases the resolution as discussed above.

(The application of a taper (window) to the transform can reduce these oscillations, z")

:)

" IFp(s)[

,_.,)
._1

_- IC(s)l I
_=:_ [x(s)+_(s)[

FREOUE_I_

Fit'ure i. The maKnitude of t_,eFourier transform o{ the princJp_| solution for the transform o_ noisy measured

data. ]H(s)+N(=)I is the magnitude or" the transform of the noisy ,/at,= The m_tmitude or" the transform of the

impulse reponse [- labeled [G(s)[. Simple inverse Filtering yields a transform with magnitude {Fp(S)l.

A number of techniques have been developed to improve inverse filtering by restoring
the lost resolution and correcting its tendency to create spurious peaks while controlling
the effects of noise. Many of these methods use constraints to incorporate special
knowledge of the ideal function into the deconvolutJon process. Deconvolution con-
strained to produce an approximation to the ideal function f(x) that has as little nega-

tivity as possible, tz _ _* frequently referred to as either Minimum Negativity or the
Howard extrapolation, is an example of this approach to deconvolution. A similar
method was also developed by Gerchberg. g Many experiments produce measurements
of intensities which can be either positive or zero, but for which negative values can
be created only by unwanted noise or sidelobes from deconvolution. Howard uses the
minimum negativity constraint to extend the frequency spectrum of a deconvolved
function expected to be positive by retaining initially only a small number of the
lowest Fourier coefficients and restoring the lost coefficients one at a time so that each





successive coefficient pr(>duces an approximation to f(x) that minimizes the sum of the
squares of the negative values of the previous approximation.

The minimum negativity constraint has been applied to microwave spectra by Howard,

extending the spectrum of h(x) that has been curtailed by the measuring spectrometer.
L. Wang and Rayborn :)s have extended the principle of minimum negativity directly to

the deconvolution process itself, forming Fo(s ) and using the principle of minimum

negativity to extend Fp(S) beyond the cut-off frequency by first making fp(X) an even
function.

Another technique for re:;toring the spectrum of a function truncated in deconvolution
is to approximate the high frequency spectrum which has been truncated in deconvolu-

tion with the high frequency spectrum of a function of the expected shape. 41 21 This

method for extending the bandwidth uses simple inverse digital filtering to establish
the size and location of peaks in the output of a laboratory spectrometer. The ideal

peak shape for the instrutnent is determined either f, om a theoretical understanding of
its performance or by experimental study and observation of an isolated peak. An
artificial function is then formed by superposition of peaks of ideal shape of the sizes
and at the locations determined by the inverse filtering. The Fourier transform of the
artificial function is taken and the high frequency portion of this spectrum is extracted
and used to replace the high frequency portion of the spectrum of the inverse filtered
function which was truncated either naturally by the low bandpass of the spectrometer

or deliberately because of the presence of noise at the high frequencies. Extending the
Fourier spectrum in deco,volution by splicing the high frequency spectrum of an arti-
ficial function has been found to decrease the size of sidelobes created by inverse
digital filtering by up to about 50 percent.

ITERATIVE DECONVOI,UTION

One of the commonly usc_d approaches to deconvolution is an iterative one, first pro-

posed in its simplest form by van Cittert in 1931. 3s Excellent reviews are given by
Frieden a and Jansson. 22 G. Ioup and J. Ioup *_ summarize additional literature. The
form of the van Cittert iterations is as follows:

fl - h + (h - h'g)

f2 " fl + (h - fl*g)

(5)

fn - fn-I + (h - fn-I *g)

The gradual nature of the iterations causes a controlled simultaneous increase in resolu-

tion and noise, allowing a compromise to be determined by the selection of iteration
number. Because the iterations are accomplished in the function or time domain (as
opposed to the Fourier tr:_nsform domain), function domain constraints can be applied
easily in an ad hoc fashio.:! at each iteration. If the signal-to-nolse ratio of the exper-
imental data is low and more noise control is needed than that provided by the van
Cittert iterations, an iterative noise removal technique proposed by
Morrison,aO _s xT zs z6 applied before the deconvolution, can give additional noise
control.





The convergenceconditiens for the Morrison and vanCittert iterationsare well estab-
lished.6 as lo xx s ,_' There are many analytically and experimentally determined
responsefunctions for v, hich the iterations do not converge. A modification of the
deconvolution iteration called the reblurring or mirror image procedure which con-

verges for any initial response function has been developed by Kawata and lchioka 23
and independently by l-aCoste, z4 Jansson 22 gives background information and a
discussion. An alternative always-convergent iterative noise removal and deconvolution

technique was given by G. loup 16 and applied to two-dimensional data by Whitehorn a9
and Whitehorn and G. Ioup. 4°

One of the principal objections to the use of the iter3tive approach to deconvolution is

'the fact that it can be very slow for long data sets and impulse responses or for wide

impulse responses. To overcome this problem the re:;earch group at the University of
New Orleans has been investigating accelerated iterations and single filter application
of the iterations in the Fourier transform domain, a 3_ The single filter application is
based on the transform domain representation of the iterations. The last of Equations

(5) may be written in the transform domain as:

Fn - Fn_ I + (11 Fn. IG) (6)

By successive substitutions one may solve for F n in terms of G and H to obtain

Fn - [i (i - G)n+I]H/G (7)

Similar results have beea obtained for Morrison's ,oise removal is and the newer

convergent iterative techviques of noise removal and deconvolution. 39 40 is Use of the
so-called van Cittert or equivalent window makes possible the accomplishment of many
iterations as a single filter. Because multiple convolutions imply expansions of the
duration of the solution function in its independent variable, there is a possibility for

serious wraparound error _z Amini et ai. _ and Ni et al. 3_ have shown that for many

experimental data types wraparound error is negligible.

PITFALLS

Examples of effects on deconvolution of Gibbs oscillations and noise clarify the diffi-
culties of the deconvolution process. Figure 2 contains the results of two approaches to
deconvolution for mass spectrometric analysis of a gas containing oxygen and
methane. 2x Simple inverse filtering (not shown) gives large sidelobes which are the

Gibbs oscillations. The irregular nature of these oscillations is due to the interference
of the sidelobe patterns of the two main peaks. "l'he artificial function approach
(Curve B) reduces the sp_Jrious peaks somewhat but does not eliminate them. Iterative
noise removal followed by iterative deconvolution with a nonnegativity constraint
included gives Curve A. Because deconvolution with a normalized impulse response
should preserve areas, the elimination of the negative spurious lobes by the use of a
constraint reduces the positive lobes as well. 21 Since the interference of the Gibbs
oscillations due to the presence of two main peaks causes the adjacent positive and

negative sidelobe areas to differ from each other, the area cancellation is incomplete
and two small positive lobes remain after iterative deconvolution at mass to charge
16.0559 and 16.0963. These might be interpreted as small additional mass peaks if one
is not aware of this pitfall and the need for careful analysis.
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methlne (m_ 16.0313). Curve A: 30 noise remora| and 50 deconvo|ution itera¢ions. Curve B: function-
continuation Fourier deconvolucion.

Figures 3 and 4 show the effects of noise on a deconvolution of the synthetic data
given by the curve in Figure 5, which is generated by convoiving an ideal function
consisting of three narrow-width, separated Gaussians of heights 100, 100, and 50 with

a medium width Gaussian impulse response. F(_r each example (Figures 3 and 4),
different Gaussian distributed function domain noise has been added at a signal-to-
noise ratio (signal peak to noise standard deviation) of 1000to 1. Even though such
noise is too small to be seen on a graph, the noise amplification by deconvolutlon (ill-

conditioning) gives large noise spikes in the results of Figures 3 and 4. The original
input function is also shown for comparison. If a wide Gaussian impulse response had
been used the noise a_nplification would have been even worse.

One striking feature _gf Figures 3 and 4 is how much the deconvolved results differ
from each other. Differences in the noise become dramatic after deconvolution. This

behavior casts doubt on the ability of deconvolution methods to be optimized based on
an average noise spectrum. Certainly any such optimization should be tested on specif-
ic noise realizations to understand whether the use of average noise properties is
appropriate. An alte,"native approach, discussed in this paper, is to do many noise
cases in a simulation and then to calculate statistics.
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Figure 3. Deconvolution _f the synthetic broadened data h of Figure I;. Unmarked curve is original input.
Curve marked with x's is deconvolution of a noisy h with SNR--1000. Noise is Gaussian distributed.
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Figure 4. Same as Figure 3 except that a different noise set (still Gaussian distributed) ;- used to produce a
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OPTIMIZATION OF ITERATIVE DECONVOLUTION

A long unanswered question for iterative methods has been how many iterations to use
for a given data set. Experience and some trial and error for each data type have
provided crude answers, but a systematic investigation did not begin until ten years
ago. Wright4Zinitially investigated requirements for optimization of Morrison's itera-
tire noise removal. _° is ller work was extended by Wright and G. loup *_ and I. loup
and G. loup. 2° Finally a very complete analysis was performed by Leclere "s and co-
workers. 2a Since then the method has been extended to van Cittert's iterations and to

Morrison's and van Cittert's iterations applied sequentially3 7 The first optimization of
noise removal and deconvolution iterations used sequentially was for G. loup's atways-
convergent method by Amini I and co-workers, z 4 The reblurring procedure has also

been optimized. 2

The initial hypothesis for the optimization studies is that for a given data type and
signal-to-noise ratio (SNR), simulation with many different noise sets, and testing each
for optimum iteration numbers, leads to reasonable statistics for the iteration number.

It is assumed further that by varying the SNR, a smoothly varying set of the mean
iteration numbers versus SNR can be generated with standard deviations, as well as
that these standard deviations will not be too large. Although many problems present
themselves in the course of the work, the final result is that useful curves of average

iteration number versus SNR and average mean squared error of the deconvolved re-
suits versus SNR can be generated. Studies include narrow to wide Gaussian impulse
responses as well as synthetic exploration seismic data. Several different noise types
are included over SNR's from less than I to over 1000.

To answer the question of how changing the input model would affect the results, an
input consisting of a rectangle function followed by a triangle function is substituted

by El Saba r for the three- Gaussian input shown in Figure 5. The optimization gives
different optimum mean iteration number versus SNR curves, as expected. It is there-
fore important for experimentalists to do an optimization for the data type of interest.
While there is some computer time involved, the labor is minimal since the optimiza-

tion code exists. Once optimization results are obtained for a general data type, no
further simulations are needed for experiments of the same type.

A by-product of the optimization of noise removal and deconvolution iterations used
sequentially is the first _olid answer to the question of when iterative noise removal

was helpful and when it was not needed. By plotting the mean squ.qred error after
deconvolution versus SNR for sequential-use optimization on the same graph as the
result for the optimization of deconvolution iterations alone, one can decide below
which SNR noise removal is needed. The mean squared error will be smaller with
noise removal at the log.est SNR's, but above some SNR value the noise removal will
not improve the result significantly or at all. The mean squared error curves for a

fairly narrow Gaussian impulse response are shown ia Figure 6 and for a wide Gaus-
sian in Figure 7 using the input given in Figure 5. The narrow Gaussian deconvolution
is improved by noise removal up to a SNR of approximately 90. The wide Gaussian
deconvolution is improved by noise removal for all SNR°s included in Figure 7, i.e., up
to SNR 150.

Although the mean squared error (L2 norm) is principally used in this work, the LI
norm for optimization has also been tested. It is important to emphasize that this
method is not limited in the choice of optimization criterion, and that many others

could be used. We are currently studying non-norm type measures.
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These studies have also provided a methodology for deciding how to optimize instru-

ment design and operating parameters to achieve the best deconvolution results. 19 In
experiments with a compromise between SNR an,:l resolution, an approach should be
available to decide hew to configure the instrument to obtain the needed experimental
data. If deconvoluti_n of the data is t'o be part of the process, then the optimization

approach should include the deconvolution. Am,hi et al. 4 have shown that a three-
dimensional plot can be created with a surface of mean squared error after optimiza-
tion of iterative deconvolution plotted versus SNR and resolution (impulse response

width, for example) as the independent variables for systems with one degree of free-
dom. See Figure 8. Once the curve of SNR versus resolution is established for a given
instrument in the SNR-resolution plane, an upward projection of" this curve will give
another curve at the intersection with the surface, z9 The instrument resolution value

corresponding to the minimum in the latter curve should give the best deconvolved
result.
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Fig_tre 8. Surface of mean squared error after optimltation of iterative deconyo[ution versus SNR and Caussian

inpulse response 'width. The latter is a meuure of resolution.

EVALUATION OF DECONVOLUTION ALGORITHMS

Systematic evaluation of deconvolution algorithms seldom takes place. Particular

algorithms sometimes are applied to output of particular instruments and the results

compared with known results of the instrument at high resolution in a qualitative

fashion (e.g., J. Ioup et al.:*). The technique may be used or discarded depending on
whether it has distortt:;d the spectrum unacceptably, created false, or ghost peaks, or

simply used too much computer time. Sometimes synthetic spectra are generated,
convolved with an assumed instrument function, and used to test the deconvolution

algorithm by determining the square of the difference between the original spectrum
and the deconvolution As a figure of merit for evaluating deconvolution algorithms,

this square difference :riterion produces a large value for a spectrum which is faithful=

ly deconvolved if it is merely translated slightly. Recently, the problem of evaluation
of resolution enhancement has been attacked by regarding it as a problem of detecting

an unresolved peak in the presence of both noise and the larger, fused peak. :s 3r :3

This point of view seems directly applicable to those spectral problems in which the

presence or absence of a peak is the primary question. It also permits techniques long

applied to the detection problem to be applied without modification to the problem of
resolution enhancemen', permitting for the first time judgements as to which deconvo-

lution techniques are _uperior when the principal objective is to find a weak, fused

peak and which are superior when the objective is to avoid falsely believing a weak
peak to be present. R::ceiver Operating Characteristic, or ROC, curves are plots of the

probability of falsely ,_etecting an artifact of the deconvolution. Their application to

the resolution problem shows that the efficacy of ideal low-pass filtering before

deconvolution of a s_ectrum of fused Lorentzian peaks depends, of course, on the

bandpass of the filter. For the example shown in Figure 9 a superior deconvolution as

judged by the ROC curve produced occurs when about eleven of the 128 Fourier
coefficients are retained. Of particular interest, however, is the fact that filtering with

a narrower or wider tandpass, although each produce inferior deconvolutions, affects

detection in different ways. Narrow-band filtering produces deconvolutions which are

superior in avoiding false detections at low probabilities of detecting true peaks, while

wide band filtering produces deconvolutions which better detect signal peaks when a

relatively high rate of false alarms can be tolerated. When the gross efficacy of low-

pass filtering prior to the application of an inverse digital filtering deconvolution algo-
rithm is evaluated by maximizing the area under the resulting ROC curve, optimum





deconvolution is found to occur when only ten Fourier coefficients are retained in the
low-pass filtering. When the efficacy of the filtering and deconvolution is evaluated

by minimizing the square of the difference between the deconvolution and the original
spectrum,, a gentle minimum and, hence, optimum deconvolution is found when nine-
teen coefficients are kept. Thus, optimum deconvolution in the sense of minimum

square difference does not produce optimum ability to detect peaks without creating

spurious ghost peaks. Furthermore, when deconvolution with a minimum negativity
constraint was evaluated using ROC curves as it was found that. although minimum
negativity produced enhanced spectra whose peaks were easily interpreted visually, the
ability to detect small, fused peaks in noise by means of a matched correlation filter

was only marginally superior to optimum low-pass filtering. This result casts doubt on
the deconvolution algorilhms. It is clear that much work remains to be done in im-

proving evaluation of deconvolution techniques; nonetheless, viewing resolution en-
hancement as a problem in detection offers promises of quantitative evaluation of

deconvolution with a numerical appreciation of the risk of misldentifying a small peak
discovered in deconvolution of noisy, fused spectra. Numerical assessment of the

presence of ghosts and the failure to detect true peaks should greatly increase the utili-
ty of all deconvolution algorithms.
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(2) how much analog precision is needed in the connections in the hi-

work, (3) the number of training example t_e network must lee before

it can be expected to form reliable generalizations, ud (4) the et_d_ncy

with which • network exti'acts information flom the training data.

John Denker, Daniel Schwartz, Ben Wittner, Sara Sol]a, John Hop-

field, Richard Howard, and Lawrence Jackal, Complex Systems, in press

(1987).

Q An Analog VLSI S_,stem for Neural Network
S Experiments DANIEL B. SCHWARTZ and RICHARD E.

HOWARD AT&T Bell Laboratories.

Beeause the complexity available from standard VLSI has grown fax be-

yond our ability to simulate it, it has become interesting in its own right.

Adaptive neural network models are an exaJnple of a claa of complex

systems where a mapping directly onto VL$I is of great practical and

fundamental interest. However, the continuously variabh connections

required for adaption are not easily represented in a digital world. We

are building a collection of analog clrc_ts from standard digital CMOS

with variable strength analog connections ba_d upon charge storage by

• pair of MOS capacitors. The capacitors are tied together by a string

of FETs, allowing the connection strength to be monotonically varied by

moving charge between them. Our current dedgns have 7 bits of ant-

log depth of both polarities. The chips have about l0 _ connections and

can easily be cascaded to make laxger networks. The available computa-

tional speed is dominated by i/o bandwidth of the host controller. We

will dtscu_ use of such chips and their limitations.

veciflc He_t for a Bo_;_ SYltem with Anhar-

"_t_l_[_. .M.S. Wartak, C.Y. Fong, Department d
Ph3_ks, University of California, Davis.---We used the
model Hamiltonian

1t = E [ `b+b' - r'b+b+bibi + A (b;s + bd ]

iffil

to study the thermodynamic propertie_ of the one-
dimensional buson system with on-alia anharmonicity,
and with A much smaller than E. For abe cak-ulation

of partition function we have used the path-integral
method. The Dyson equation Is solved in the nelu_t-

neighbor app_tion. The resulting expression for
the free energy is evaluated in the static appraxlmLtion

using the steepest descent method. The behavior of ape-
eifle heat for different values of F and A is examined.

O184

Color Induced Transitions in the Prcscnce of a Nonlinear

P_ G. P. TS1RONIS, P. GRIGOLINi, University of

California, San Diego.-- We show that the negative diffusion
coefficients exhibited by current approaches to the Fokker-

Planck equation for non-Markovian and bistable processes

result from lassuming that the system re_ches a conventional
steady state . By lifting this assumption we show that when
a critical value of the noise correlation time z is exceeded,

the process of escape over a barrier agrees with an exact
prediction for the large-_c regime and thus that the linear

response approximation behind our tb.eory produces exact
results for arbitrary correlation times.

1. G. P. Tsironis, P. Grigolini, "Rate Frocesses activated by
color noise: Bridging two exact limits', UCSD preprint

2. J. Masolivcr, !_. J. West, K. Lindcnberg. Phys. Ray. A
m 35, 3086 (1987)

Vol. 33, No. 3 (1988)

rhm 

_ Surface Lees in a Psrabollc-Equtioa l'_del.
N. HEAD and V. JOBSY, Naval 0cmaographLc

Office and ff_Mi01t S. llOl_qEs. Science ApplicatloeJ

International Corporation, m Ocean-anrfscs loss of

acoustic energy is often $ivan as • function SL(e) of
the 8razing assle a. If p(z) is the complex scountic-

pressure field (iron a parabolic--equation model) as a
function of depth z near the surface, s Fourier tram-

form F(g) of p(z) yields pressure am s function of the

vertical wave nuaber L [ is proportional to sin e,
thus F([) is a functloa G(o) of e. I/0 account for the

surfsce loss by multiplying _e) by s loss functloe L(e)

related to SL(s) -- before transforaln$ beck to

physical space. The method also is applicable to bottoa

lose. Numerical isplementatioa, angular resolution, and
limitations of the ssthod are discussed. Numerical

examples are presented.

_ of Nois. on Pr.s.ur. and Nods1 amoli_
Processors.* CEORGI_ N. FRICtlTI_, IV,

• ULZ_TT_ v. lOt_, Univ. of New orxea_._ cEoacs s.
SMITH, _ Univ., C_-ORCg _-. _OUP,** Univ. of _ew

Orleans, CHRISTOPHER FEUILL_DK, ft.YJlf_, CI_YSQN H,
RAY_0RN, UnLv. of Southern _JUL,** and _ DEL

_LZO, _l_--lqodal _plitude matched field prOCessing

for acoustic sisals received by a vertical array of
hydrophonee is used co dntnraina the effects of

spatially correlated and uncorrelated noise fields on
pressure and modal amplitude matched field processors.

Various amounts of white laotropic noise and spatially

correlated noise as cnlculated by • normal mode noise
model are combined with the field due Co a submerged

acoustic source to produce simulated cross spectral
euttrlees A phone-to-mode apses mapping is ohms used to

obtain the eorrespondin& cross a_plituds correlation
matrices Both conventional and maximum likelihood

processing are used. Raaults show thnt spnCla].ly

uncorrelacad noise degr•dea modal amplitud* procssaora
more than spatially correlnted noise.

**Suppor*ed in part by Olqt/MORDA Contract NOOOI4-S7-K-600

STANLEY A. CHIN-BING, Naval Ocean Research

and Development Activity. NSTL. MS 39829-5004.--
Underwater acoustics is usually not discussed at APS meetings,

but rather is confined to peer review meetings. Hewers, given
the close proximity of the Navy's lead ocean caviromncnud

.RDT .&E laboratory, the N•val Ocean Research and Development
Activity (NORDA) located 45 miles from New Orleans, we take

thisoppo_unity to pt_seat • review of ocean acoustic prop•paise
modeling. In the ocean, the index of refraction is variable;

acoustic uansmission paths are curved and the coupling of the
refracted, reflected, and diffracted acoustic fields from

boundaries give rise to complicated classical physics problems.

The prominent acoustic models are bas6_l _o _e_t _mode,

p..a_olic ,ppro. xina...tion, FFr, and ?o_.'fied .ray n_tho_, .___..h
or mesa incsme • limi_m number m pnysictt mechanim_ we

have therefo_ developed • coupled fell-wave range-dependent
ocean acoustic propagation and scauering model based on the

finite element method. This model is superior especially at low

frequencies. Numerical simulations will be presented showingthe
effect of • fractal under-ice interface with ice keel on the fully

coupled range-dependent underwater acoustic field.

_vich hsr_un_!u_/_ C_OaCg g. •0UP.

A_OLFAZL M. AMINI, and JULIgTTg V. IOUP, Un/v. of New

Orleans*_--An f_portant deei_ and pnra_et_r selection
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probl_ for may lnstr_nt: i: r_hs colproalas between
resolution end aisnalotO-nOtSe ratio (SME). An

improvement fn lnatruatancal resolution le usually

accompanied by • decrease in 8_, laeolution can often
be improvod for ahift-tnvartent instruments after the

date era taken by r.he uas of deconvolution, The optima

delian and operation of the inatruaent cannot be
presumod to be the same wtch and without deconvolution,

however. We present a methodolo_ for determining
opossum inatruaant configuration when deconvolution is

used. In its simplest form, I surface of the error
after deconvolution versus SNR and instrusenC resolution

is generated. A given i_tru_ent vii1 have • curve in
the Sl(IP_-let)nt resolution plan@. The m[nin in the

intersection of the upward projection of this curve vlth

the surface determines the optimum parameters. Examples
of these surfaces and their usa will be given.

_Supported in part by NASA Grant NAG-I-804

16.<)6.

O18 9 Electron Loctlizatton in Water ClusterS: Surface
and Interr_l States.- g. N. BARNETT_ UZI IANIM_, C. L.

CLEVEIJ_ AND JOSHUA JORT_ER, School of Physics, Georgia
Institute of Ttc_l_olosy, Atlanta, Ca. 30332--Electron

attachment and localization in water clusters, (H20) n

(n,8-128) ere studiedluaing path-integral uolecular
dynmeice s/mulatione. The electron-verst molecule inter-
action is described vi F I newly developed paeudopotential
which includes Coulomb, polarization, exclusion and

exchange c_n_rlbutionm. For mall and intermediate size
clttltere (r_8-32), the energetically favored localization

involVeS a surface irate and the calculated excess

electron binding eneralee agr_vlthoxper_t. In

larger clusters internal localisatto_ (molvation) is
favored. In both cases electron localization is

accompanied by large cluster molecqlar reorEanization.

The cluster slze dnp_mdence, _nerieticz, structure and
temperature dependence ere discussed.

I. R. N. Barnett, Uzi lamdman, C. L. Cleveland and

J. Jortner, Phys. R_v. I_tt. 59, 811 (1987).
*Work supported by U.S. DOE, Grant No. FG05-86ERh523h.

16:18

018 10 Near-Electron States for Small Cu-O Rinos

Modeled by Hubbard and Extended Hubbard Models.
YU ZHO_ and SN_'_L P..BOWIDl, y_.--The

low lyir_ states of s_all rings of ato_m ere
studied for varying numbers of electrons and
holes in the Hubbard and the extended Hubbard
model. Particular interest is focused On the

binding energy of hole pairs of different separ-
ations in the many electron Bloch states the

comprise the low-lying _ultipleta. The analytic
structure of the states and the ground state

energies will be compared with numerical values
for several different chain lengths and electron
numbers.

16:30 H

OlSllHole Propa_atnon and pairin_ in a Model for

cue 2 H.Y. CHOI and EJ. MELE, University of

E.g_.k_--We construct a model for the

dynamics of the holes in the nearly half filled
Hubbard model on a square lattice. An interaction of
these carrier_ with an antiferromagnedc background

produces a self localization of the holes to form % gas

of spin polarons. The resulting polarons are found to
be relatively light, and propagate through the two
dimensional structure by coupling to background
spin fiu¢luations. A pairing potential is derived for

Vol. 33, No. 3 (1988)

the hole polarons on the resulting Fermi surface,
• which i8 mediated by exchange of the linearized spin

waves. In the simplest model this providcs a Ion S
range attractive interaction in an i = 2 state;
however, we will discuss a refinement of this model,

which favors singlet pairing in an I = 0 state.

Supplementary Progrom

018 12

Photo, lesion Svoctra of Narrow band svst-ym

P.S. gisaborough, Polvl:eohnic University, I-n
the heavy fsrmion syste_ there la a larva

discrepanc_ between the experimentally

measured density of states and the density Of

stqtes obtained from local density functional
band str_cture calculations. This

discrepancy is clearl_ indicative of manybody
effects. &rko and ooi laborators e have

recently discovered aimilar manybody
anomalies can be found in the normal narrow

band Uranlua systmas. We have performed

calculations us In_j an N fold dengsrate

Hubbard model, utilizing an expansion in the
coulomb interaction. The infinite sat of

diagrams contalnln_ independent single loops

have been evaluated. This approximation

should be exact in the ;imlt N--J_e_. We

obtain a qualitative agreement with the

experimental findings.

*A.J. Arko, B.W. _qtes, D.D. Koe111r_, B.P.

Dunlap Z. Zolnlerek, A.W. Mitchell, D.3.

Lam, C.G. Olson and N. de1 Giudlce, preprlnt

/

SESSION O19:. HYDROGEN IN METALS I

Thursday sfternoo_ 24 March 19_

Mardl C,ru K st 14'._0

P. Ricbards. preddlag

}4:30

O19 t Anomalous Proton 8ptu-LattLce Relaxation at
Hlgh Ymnp4u_turm _n BCC T_ausltlon Metal-Hydrogen

Solid $o]utlm_ System. R. G. BARNES, J-W. HAN, L.

I,ICHTY and D. R. TORGESON, Amm Labomtorf and D_

partmeat or P_mi_, Iowa State Unlver_ty- We report m.noma.

hms beh&vi0_ of the proton spin-lattice relaxation time Ts at

very high temperature (up to 1000 K) for hydrogen in so-

I.tion in the b.c.c, metals V, Nb and thelr alloys. Bmldm

the usual Tt minimum at intermediate temperatures (,- 2"_

K) chtrtcterized by the mean dwell time for hopping, rd =

exp(Ea/ksT), TI agaln dec_ sharply at ld_her tempers-

turn _nstead of returning to the va}ue Ttitdetermined by the
conduction electron contribution to (T_)- . Thi_ dpcre_e k

well-described by an *_4d|tional contribution _ (Tt_" n. of tim

form ex_-(U - E)/knT], consistent with excitation of hydro-

sen to a s tat_ of h_J_y correlated motion, where U Is the exci-

ration enerlD' and E is the activation energy for the correlatkm

time r/, in that state, i.e., rt_ =o_ exp(E/knT), and E < U.

Ct_anges in hydr_en diffusion s_o<iated with nuch a state have

• l_o been sought, s
"Operated for the USDOE by Iowa State University under con-

tract No. W-T40S-Eng-82,

1. R. M. Cotts, J. L. Bi]leter, et el., abstract thJs meeting.

14:42

019 2 Search for an Hydrogen D_ffuslon Anomaly

in a BCC Transition Metal AHoy.* R. M. COTTS and J.

L. BILLETER, Cornel/ Un_versJt_ J-W. BAN, L. LICHTY,

D. R. TORGESON and R, G. BARNES, Ames Laboratory -

ORIP_I_L PAGE 15
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which combines a modification of earlier suKsestio_ l '_

realizing sdvsnt_es of both meth-

for a matr/x expressed in a planewave buis. Comparison

of ssymptotlc convergence rates for severs] iteration methods
that the combined method is a_ |e,_t a factor of three

than the best previously knowxt method. The method

implemented in a planewave buis with separable nonloca]
,tisls so that computations[ effort scales u NIogN

buis of N planewaves.

1 M.C. Payne, J.D. Joannopouios, D.( Allan, M.P. Teter, and

D.H. Vanderbilt, Phys. Re_,. Let|. _6, 2656 (1986).

2 A. Williams and J. Soler, Bull. A_n. Phys. Soc. 32, 562

(1987).

11:12

N!82 Solution to the Initial Value Problem for the

_tum Nonlinear Sc_n'"ger ._l__tion. M. J. POTASEK and

B. YURKE, AT&T Bell Laboratories -- The quantum nonlinear

Sclufxiinger equation provides an integ_ble quantum field theory

that has been solved by a number of methods. Most reccndy,

Gutldn L2 has developed an intmwining operator technique for

o_ining the time evolution of the field operators. Using

Gur_'s formalism, we show how to obtain the exact

evolution of an _fial Schr6dingcr state vector. The suitabLfity

of this formalism for numerical computation with application to

pulse propagation in optical fibers will be discussed.

I. E. Cmddn, Ann. Is_ Henri Poincafe 3, 285 (1986).

2. E. Gutkin, J. Func. An_. (1987).

_ _ and van Cittert's Iterative Deco_volutton.

i JAMES H. LECLERE, GEORCE K. IOUP, and JULIETTE g. IOUP,

!_ Univ. of New Orleans**--Morrleon'e ltarative noise
- removal and van Clttert's iteret'lvo deconvolution have

been used to remove exp_r/menCal _roed4nlng for various
physical data types." Heretofore the number of
iterations needed and other conditions of use have been

determined by trial and error. We have developed a

atatletical optimization procedure to deternlrm optlwum
use of the uv=thods for any conp_ter-generated noise type

and any stE_al-to-noiee ratio do_ain Of interest, go
report the results for L1 and 1.2 norm optimization and

several noise t_/pez for a sl&-n_l-to-nolse ratio donmin
from 2 to over I000. The contrast betveeu point
successive and point simultaneous iterations Is also

discussed as ie the effect o_ allowln_ the deconvolved

result to expand as the iterations proceed.
Combined optimization of the two techniques is
presented.

**Supported in part by NASA Craft NAG-I-485
1C. E. Ioup and J. g. Ioup, Geophysics 48, 1287-1290
(1_83)

i1"

[_ . Op_isizat_on of QP-DX£EE£_ lteratlve
_-_6"onvolutlon for _ _ ABOLFAZL H. AMINI,

CEORGE E, 1CUP, and JULIETTE W. IOUP, Univ. of Raw

_**--$tatistical computer simulation Is used _o

optimize the always-convergent ltere_ive noise removal
end deconvolution technique of Ioup." By cor_tdering
the mean square error versus iteration number for 50
noisy data eats: one can calculate the mean optimum

iteration number and its standard deviation, as well as

the average .mean square error and its standard

deviation. D_a with peek-to-_tandard-devlztlon slEnel-
to-noise, ratios (SNR) varying from I0 to 150 are

considered. By applying the iterative decouvolution

alone, it _ shown that there exists an SNR, for any

Voi. 33, No. 3 (1988)

a

Thursday Morning

given _mpulse response and data type, above which it is

not beneficial to precede the deconvolution with the
noise removal.

**Supp,>rted in part by NASA Grants NAG-I-485 and NAG-I-804
IG g loup. Bull Am Phys. Soc. 26. 1213 (1981)

18 5 ?_A1g_ _ Avvllcatlon of Always-Convergent-

__fiT_£ve Deconvolutlon _o _ Da_a. HAIHONG NI,

ABOLFAZL M. AMINI, TAHAR A BENSUEID, GEORGE E. IOUP, and

JULIETTE W. IOUP, Unlv. of New Orleans_r*--Slngle filter

applica_lon of an_ Iterative technique, when possible,

presents significant computational economic advantage,

bur i_ should not be used until its performance is

evalusted against that of the iterations. Wraparound
errors associated with a finite length DFT calculatto_

of th_ filter must be considered. The optimizeCi_n of
the a_ways-convergent iterative technique of Ioup _ for

noisy data is reported In the preceedlng abstract. In

this Inves_igatlon the sensitivity to wraparound of the

DFT single filter equivalent window le established by

gradually increasing the zero padding of the data for

peak to standard deviation signal-to-noise reties

varying from 10 to 150. It is found that the wraparound

error is small enough to be negligible, even when almost

no zero padding Is used. These results show that very

rapid application of iterative deconvolutlon to physical

data ts possible.

_*$upported in part by NASA Grants NAG-I-485 and NAG-I-804
G. E. Ioup, BulY. _. Fhys. Soc. 26, 1213 (1981)

_--VE_F_r m in the Schwln_ar V.ariational Method.
C.A. Weatherford, Florida A&M U.;'-- A numeri-

cal metho_ is presented for the evaluatlon of

the VGV term which appeara in the denominator

of the Schwinger variatlonal expression for

the T-matrLx.l,2The method employn an evalua-

tion of a partial differential equation for the

GV part, and then is followed by the calcula-

tion of a two dimensional integral. An applica-

tion to electron scattering from a minimal

bas_s set H 2 model is presented. The possibil-

ity for efficient evaluatlon on vector compu-

ters is explored.

SSupported by NSF grant PHY-8711805 and NASA

grant NCC 2-492

I. W.M. Hue, T.L. Gibson, M.A.P. Lima, and V.

HcKoy, Phys. Ray. A36, 1632 (1987}.

2. W.M. Hue, M.A.P. Lim-_, T.L. Gibson, and V.

McKoy, Phys. Ray. A36, 1642 (1987).

NI8 7 Genera}lee _ Fourier series for non-linear quantpm

mechanics.- J. DIAZ BEJAPO_NO and A. $_RTIN SANCHEZ,

Universldad de Extremadura, BadaJoz.-- A simple

-generslizatlon of the usual Fourier series uelng the

generalized exponentlal and circular functions is

pre_ented. The functions themselves are developed in

e r_ew. _ore simple way. They are solutiona of com_on

linear and non-linear wave equations. The series are

given in terms of Jacobi elliptic functions in a form

as similar as poselble to the usual Fourier

presentation. Severa_ examPles are given that correspond

to the most ueuai textbook Fourier series.

Thanks are due to C_ICYT (project n_ i179-8_).

b.--_____a O_NAL _ __-_ IS

OF POOR QUALITY
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Extension Theo_ for Lattice Green Functions.

anted of using the known Green functions or den-
of states (DOS) for a given latttce Hamtltontan H

green functions or DOS for any latttce Hamtlto-
expressible as a rattonal _unctton of H, i.e. He

The formalism t s further developed to permit u-
known Green functions and DOS of two Hemtlton-

H and K to obtain those of any Hamtltontan He in the
generated by the direct products (Hell and (IeK),
is the identity. Namely,

He" _ amn (hdnmKn), with amn real numbers.

may be obtained elther analytically or numerical-
Other properties such as electrical conductivity are
extended from H and K to He . A study is presented

two examples, (i) The Cartesian product of two Sier-
ski fractal lattice Hamtltontans, also a hierarchical

8:12

1192 The Frenkel-Kontorova Model With Nonc;onvex
Interparticle Interactions and Strain Gradient& S. Marianer
andA. R. Bishop, _____NL.--We study the statics and dynamics of
a chain of atoms movmg in a periodic potential with nonlinear,
nonconvex interpartic|e interactions, and with strain EFra.dienta
which we model by including next nearest ne:ghbors'
intera,:tions through the discrete Hamiltonian H=
Z._.2/2 +e_u,÷,-u_O'-_(u.+:-un) 2 +_u.÷,-2Un + us.:) _-cosu..
We obtain the phase diagram within an ansatz of periodically
modulated configurations. These generalize the homogeneous
(for 13<1/8) and dimerized (for 13>]/8) configurations already
reported for Y=0, and are given by: u.=rml+b: for n= 1...N,
and u.=na2+b2 for .=N+I...N+M. The dynamics of
tranistions between different configurations when the
parameters are varied is also investigated and we show that
these are dominated by nucleation processes, which occur on
short time scales compared with the subsequent slow growth.
Possible relation of the model to the dynami.es of twin
boundaries recently observed in the copper-oxide high-

tel which is Inflnltely connected with spectral de- temper.turesuperconductor_isdiscussed.
ion 4tn31_S-2.730... (II) 20 and 3Oplaldlattlce

Simians formed as products of ID Flbonaccl chains. /'8..24-_

lattices ape quasi-periodic and admit inflation/ _,_19_ Ten_Derature Dec,_ndenee of Third Order E1_,tI_

t___pmatio_, butdonotbaveS-foldrotatton. Cl_T_tant_ of IO4nF3.* W. CAO, G.R. BARSCH, Penn StateU_,, W. JIANG, M.A. BREAZEALE, U. of Tennessee.--We have

R_dberg States of the Rape-Gas Van der Waals
INGYI DU end C. H. _EENE, Louisiana State

iltiehannel quantum defect theory is adapted to
,the bound and autotontztng _dberg states Of the

dlmers. At tn our earlier paper:, related to a
by de Ihrunele2, a nonperturbatlve Fermi-

_lysls _Ines readily wlth NQOT, giving an
simplification. This permits the description

c_mpltcated avoided crossings among Psydberg state
curvet, e.g. for Artle, XeMe, without requiring

_large-scale tb tnttto calculation. Autotontztng
structures in the phototontzatton cross

ion are alto calculated between the fine-structure-
11t ionization tlwetholds, accounting I_rttally for

Lt|ons of Iketmer and Pratt.J
in part by the _tlonal Science Foundation

Y. Ou end C. H. Greene, Phys. Rev. A 36, 971 (1987).
de Prunele. M_I. INev. A 35. 496 (198_; also Phys.

• A _. )ale (1_7).
N. Delmer and S. T. Pratt, O. Chm. PHYS. 77, 4804

GENERAL MECHANICAL
•:PROPERTIES AND NDE

moralal_ 23 March 19118
g._

i . C Cook, I_e_idl_

I_0

119 1 £eoustio £xus In TI. TII AndRI. RII Laus Group
_-ystals. DAVID Y. C_UIlG, _ --. There
are six and seven elastic eonstant_ for TI (RI) end TII
(IU-J[) group.ery_tala respectively. In an earlier paper,

I_la_kevloh" ind_oated that the crystals of TI _RI) ere
related %0 TII (RII) by a rotation of an angle _ about
the t-fold (3-fold) axis. This rotation of acouatle
axis Is the only distinction between the two groups so
far as the aeoustie properties are concerned. In the
present work. we like to show that by the use of so-
eal_ed invarient oormtanta, this rotation of_ comes
out natu_ally from the Inh_rlt properties of "these eons-
rants. Invarient C_onstants are the elastic eonstant*
which are lndapend_mt of the specific coordinate syste_
being used. The detail exprassiona of _ for TI,TII an_
RI, RII groups Will be presented at the meeting.

1.£. G. Khatkevieh, Soy. Phys. Crystallography, 6,561

(:962).
2.T.P. Srini_asan, J. of Math. a_ Mech.. 19, 1019

(1970)°

Vol. 33, No. 3 (1988)

measured the three nonl_nearity parameters along the

principal symmetry directions for KMnF 3 from 298 to

350K by means of acoustic second harmonic generation.

In conjunction wlth our earlier data on the temperature

dependence of the pressure derivatives of the elastic

conatal_ts the complete set of the six third order

elasti_ constnts has been determined in this

temperature range. For c111, c112, c123 and 0166 the

temperature dependence is linear, indicating that the

effect of the ferroelastlo transition at 186K (manifest

Ln elastic anomalies) _s no longer present above 300K,

and pe_mittlng us to clam/hate the effect of zero point

and thermal motion by eXtrapOlation to absolute zero.

The static T.O.E. constants thus obtained differ

slgnifJcantly from the R.T. values. Both static end

R.T. values exhibit large deviations fr_ the Cauchy

relations. The results are also compared with those

for other perovskltes.

*Supported b_ Otflce of Naval Research under Contract

No. N00014-82-K-0339.

II9 4 Always-Convergent Iterative Deconvolution for

Acoustic Non-Destructive Evaluation. EDWARD J. MURPHY,

JULIETTE g. IOUP, and GEORGE E. IOU?, Univ. of New

Orleans, _OEOS KZSHO_. _IL of ELIIJJm and _ _nd
NASA _ _ Cert.--Acoustic energy sources

genera)ly have a finite time duration and a ringing

shape which can make the evaluation of individual

reflections difficult Deconvolution can be an

important tool for signal analysis. In this work the

detected acoustic signals are decon_olved using the

Always-Convergent Method of Ioup." The Always-

Convergent technique is applied to data recorded during

the q_antitative analysis of materials through Non-

Destructive Evaluation in which ultrasonic signals are

used to detect flaws in substances such as co=poaltes.

An important part of processing the signal is the

norma1_zatlon since it ia useful to know the strengths

of the reflections. Various methods of normalization

are investigated and the most effective method is found

to be the one which uses the change in the sum of the

absolute values of the amplitudes in the signal before

and after processing. Results of the application to

actual data are shown.

IG. E. Ioup, Bull. Am. Phys. Sac. 26, 1213 (1981)
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showed th_t the dtrectt_t)tw_dc._ _ L)IJ ot Jn mlimtciy densely popuiated

iphencal shell array was about equal to that of a sphere. Extrapolating to
div:rete elements, this means the shell requires far fewer elements. They

did not compute DI using amplitude shading, due to the impractical cost

ofsuch systems at that time. Today's tech,ology removes that constraint.

This work revisits the problem with shadit_g, using an approach for choos-

ing the amplitude shading coefficents tha_ maximizes D! [H.S.C. Wang,

j. Acoust. Soc. Am. 57, 1076-- ]084 ( 19"/5 ) ). Calculations have been made

for the DI of shaded cubic volumetric arn,ys, forming beams perpendicu-

lar to one of its faces, in the presence of is( .t ropic noise. Results show that

for 27 and 125 element arrays with eleme tt matrix spacings of 1/2 wave-

length, a full 10 log ( number of elements) _an be obtained for DI. Work is

underway to investigate larger arrays and ,mailer spacings. The approach

will also be extended to nonisotropic no',e fields. [Work supported by

NORDA and NOSC exploratory develol ment programs ]

9.'OO

H7. Least-squares and single-filter always-convergent iterative

deconvolution of transient signals for correlation processing. James

H. Leclere, George E. loup, "_ Juliette W loup, ") and Robert L. Field

(Code 244, NORDA, Stennis Space Cenfer, MS 39529)

Correlation processing for distribut(d sensors is most accurate for

short pulses and those whose autocorrelat _on is sharply spiked. For longer

transient signals, multipath arrivals at ea:h sensor have significant inter-

ference with each other, and it is difficult to identify individual arrival

times. Deconvolution of the received sigtm] to sharpen the transients is

one method to decrease the overlap and increase the accuracy with which

travel times can be identified. Deconvolution can also be applied after

cross correlation to sharpen the autocor_ elation of the transients. Least-

squares deconvolution is the most comm rely used approach for acoustic

signals. It has the disadvantage of being computer intensive when filters
for long transients are needed. An alternative approach, the single-filter

applicat ion of the always-convergent itenttive technique, is faster and pro-
rides variable control for noise. The t_o techniques are compared for

actual underwater acoustic multipath transient signals. Single filter appli-

cation of always--convergent iterative noise removal is compared to the use

of a modified Blackman-Harris window for noise control." Also at the

Department of Physics, University of Nt_w Orleans.

9.'O5

HS. Comparison of double and triple cross c_rrelation for arrival time

kkmtllication of amplitude- and frequency-modulated acoustic transient

dgaals. Juliette W. loup, "t George E [oup, ") Robert L. Field, and
James H. Leclere (Code 244, NORE)A, Stennis Space Center, MS

39529)

The triple cross correlation of three signals is a simultaneous function

of two lags. It is an alternative to cross correlations taken two at a time for

determining the lags for a given source at three distributed sensors. It

should offer improvement in arrival tithe identification only when the

statistics of the signal have significant third moment components. In this

study, amplitude- and frequency-modulated snythetic transient signals

are propagated over several possible pat hs to three sensors, and the triple

correlation of the received pulses comp_ted, as well as the cross correla-

tions of the same three signals two at a time. The efficacy of these two

approaches is compared for a variety of ,mplitude- and frequency-modu-

lated transient signals and multipath imerference conditions. "_Also at

the Department of Physics, University ,tf New Orleans.

9:10

H9. In situ acoustic calibration for =_ large aperture array, Barbara

J. Sotirin (Marine i_hysical Laboratory A-005, Scripps Institution of

Oceanography, La .Tolla, CA 92093)
.a

During September 1987, a large ape_ ture acoustic array was deployed

vertically in the Northeast Pacific to _.tudy low-frequency noise in the

$17 J:_,coust. Soc. Am. Suppl I,Vol. 84, Fall1988

edgt oi" tndt',tdual eJc|_icni antplii_dc ajiU ph'i_,_ [¢.S_'_n_X _'Jr ii_ra|e

resu Its. Two in situ methods of array calibration are described and results

from the September experiment are presented. The first method used

transmissions from a low.frequency source of known location and power

level. Simulating the conditions encountered during the transmission, the

power arriving at the array was predicted by several acoUstic propagation

models. By comparing the array response at specific frequencies to the

response predicted by the models, an absolute calibration was obtained.

An rrror curve for the phase data was generated by unwrapping the phase,

accounting for a sampling offset in the array, and subtracting a multiple

line_tr regression curve. The second method determines relative amplitude

levels by examining the average ambient noise power output of a specified

frequency band across the array. Using spectral, coherence, and direction-

alia) plots, the level of self-noise in the array was shown to be below that of

the tmbient noise being measured. These two independent methods pro-

vide a consistent set of element calibration values used for array beam-

forr_)ing. [Work supported by ONT.]

HIO. Abstract withdrawn.

9:15

9:20

Hll. M/tched-mode processing corrections for array tilt and bottom

type. James A. Mercer (Applied Physics Laboratory, University of

Washington, Seattle, WA 98105)

In a related effort, Homer Bucker has shown that matched-mode pro-

cessing for an unknown sound-speed environment can be significantly

improved if correction factors for the mode-line amplitude functions can

be determined. The correction factors are obtained when a source with

known location is available to calibrate the system. This paper describes

the results of applying the same techniques for simulated cases of un-

known array tilt and bottom characteristics.

9:25

H 12. Se|f-consistent modeling of signal and noise in a three-dimensional

environment. John S. Perkins, W. A. Kuperman, and F. Ingenito (U.S.

N.'wal Research Laboratory, Code 5160, Washington, De 20375-5000)

Previous propagation work is extended to model surface noise, ship-

ping, and signal sources in a fully three-dimensional environment. The

noise cross-spectral density matrix for a vertical array is computed as the

sum of a local contribution and propagation from distant small patches of

ocean surface. Propagation from any point to the array is made efficient

2nd Joint Meeting: Acoustical Societies of America and Japan $17
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Role of Remanon¢ Magneuza.on in d_ MAGSAT CrustaJ Anomaly
Field i. the SW Indian Ocean

L Fulknon and J Ronrk (Astronomy Program. University of

Maryland. College Park. MD 20742},

H Frt-y and H Thomas (L.aboratota, for Teneunal Phystcs/Gnddard

Space Riglu CenteT, Ot_-'enbelt MD 20771; 301 286-5450}

The MAGSAT regioa_ crustal rnagneUc anomalies m tbe S_ r

Indian-Antarct_ Ocr.an are due to a combJrut,io_ of iMuced plus

Vl_Ogl_ R_[Uhfl_nl rlaagr_nzJtl]on &nd T_ in CRtaCCOUS Q_iel Zone

(KQT) re.guan_ Two bend. trxtghly paraJleL SW to NE n'¢nding,

multi-pe._ed lobes of positive reducod-to-po[¢ (RTP) anomalies

doenteare the n_IpO_, one lymg south of Africa and the other north of

A_ Some of the peaks of these anomalies cor_late well _th

the Iocati<_ of submarmc plareuas which are tectonic eonjugates;

i.e. fcrrned eogcther but now separated But the shape, Iocauon of

numy of the p_z/_s and amplitude contrast of the northern lob(:.

whtch runs _ the Agulhas P]areau _tward to the

Madagascar R,dEc. appea_ to be cono'olled mosdy by TRM in KQZ
crust; structurtl characrerisuea (i.e., thickened cru_t) account fog

only aboet 2oq_ of the toud enomaly tmplitode. Based on modeling
resulu, the TRM contribunon vanes from about 10 A/m ove_ the

Mozambique Plezeau and Basin) to about 3 _ over Ihe Agulha.s

I_atoatJ. Transk¢i Basin and Medagasctr Ridge O'RM assumed

dismbured through layer 2). This inferred differemial TRM is

co_sisleot with available drill c_0re data. The southwc_,tem poruon of

d_ Ende_y Abysmal Plain has a 3nT posim, e MAGSAT anomaly
over it which is centc_.d south of abe Connvt Rise. This cnmc area

is KQZ cms_, tad the anon_y seems 5n._ Ranted to the Conrad

sewn=re. The c_tmo_d of anod_r 3 nT anonudy which lies between

the Mend Rlae and Amice Ridge may also be controlk_d by the KQZ

emm rathe=r than d_ urucrtn_ features which Dank this poeuon of

the ezra:me =x=thwest Ende_ Basin. Overall there is good

br_ween the MAGSAT R'IT' anomalies observed for

conjupt¢ plateaus and adjacem _ btslns in that poruons (ormed

toged_cr at the zam¢ time but now well sepazatod u_m to have

_nilar TRM c_*tribufioos _ _ toctl aoo.udy oonrzasts observed

Surp_singly. it may be possible to use MAGSAT data to infer the

limits of KQZ crus_ where this is poorly known

_P12_-5 1_ _S_R

Magnet[radon CoetrllSl of the Padf[¢ Cretaceous Qnlel Zone

Bas*d oe Maganl Data

P B Toil and J Ark.ani-Hamed (Dept. of Geological Sciences. McGili

University. Montreal. O'uebec. FL3A 2.A7, C._n_a; 5J4.398-8052)

The absolute value of magnetization of oceanic lithe;photo is poorl_

knc_vn |nfocmatton from drill holes is only for the uppermost 0.*

km and thai from ophiolires is 1.Ctltered and sparse, Magneti_

anomaly invetlton gives only a value of magnetization cone;ate+

A oot_ti'ninl on _ abf.olusc value may be obtained from Magsat dal;

and the Paci('tc Cretaceous Ouiet Zone (0Z) of normal polaril)

There are ft-w Magsat anomalie_ over the east Pa¢/f]c, and most larg,

anomalies in the west Pacific are correlated with plateaus an,_

aeJmounts. A. a:mmaly over the Oetacema Hess Rise, for example

is modelled flrom topography and crustal thickne_ with = tots:

magnetization contrasl of IO,OOG A (magnetization • thickne_).

In the central P_tcific. howe-vet, ate anomalies that are not obvioush

correlated with topographic features. Some of these may be due I ,

a magnetization ccsrttrasl between the OZ 011¢1its surroundihgs: if th+

magnetic _Bnatures of the osnow bands of normal and levers,

magnetizaliO_ surroundin 8 the QZ sum to zero at _t¢llit¢ ahitudr

end ifthere is no su_'epl/bility contrast across the OZ boundary, _he;

Magsat anornalios may result from an edge effect of the 07-

To test this hypothesis, the magnetic anomaly of the QZ is calculate_t

at 400 km and it is fihered to simulate removal of long wlvelcngll-_

overlapping the co_¢ field that are extracted from Magsal data alorh]

with the c.ore field. The OZ with a total magnetization of ahoL_l

I 0,0(]O A Woduces 500- IOOG km wavelehgth features spatially a_o_

aled with the QZ boundary, which are similar in magnitude, way,

Itnglh, ar_J location to observed K(agsat anomalies Both the Pacif [

OZ and Lsolaled plateatts, such Is the Hess Rim. indi6.ate a tot!

magnetization of about IO.O_O A for the P_:ific oceanic lith_pher:

_012A-6 133_ P_TER

Inleltllly Of ]_Lllgnetlzatlo_ Of Oeeank Besal_ II s Functi_m

of Ale; Co_p_d Data from ODP and DSDP Bmmlt_

and H P Johnson (School of Oceanography, Univer_il) of

WeshinSmu, Seald¢, WA 98195; 206-543-g542}

H, Sakai (D¢'pt. Of Earth Sciences. Toyarm University, Toym+_a+

lapin)

in coeltrut IO th_ O_al Virtc-Mltthews nlod¢l of :he

magnedzadea of oc'e4mic crust, we now know that oceanic rocks _r

IPabj¢ct to chanl_ng physical and chemieal conditions which have _t_

potentthJ to modify the magn¢_l: propemes of crustal rocks. ":he
vanat_n in the intonsity of mag_etizabon (l) of oceanic basaJts _as

initially investigated by Bled tad Peterzen (1983). who cornp_;ed

paleomagnetic data from DSDP legs 1-65 A mo_ recent stud), a_ the

Univcrstty of Washington focussed on a re-¢xaminaoon of dri led

basalt* (O-155 Ma). and include_ all of the DSDP and new ODP kJ:d

rock _mph-s The= dam were filten_ to remove um_ples with

_a_m_Jou= geochemawy and from noa-m_ _cean ridge
env'tronmenta. Theze new recurs show that, on average . $ foe oceantc

bwdu (l) steadily electrum f'mm 0 to 35 Me, (2) mcr-_u¢ flora 35 to

50 Me, led (3) ethibit no ti_fictnt change betw_n _0 and 140 Me.
The mean value of ; tll studied basths is 35 A/re.

observed decre.t_ in J from 0-35 Me is cortlistentwith

our underltaedmg of the effect of progressive k,w tern_,ttur¢

oxidation on the Intensity of natund remanent magncuzauon, Tbe 35

50 Ma meres,so must be due to either a submarine peocess which

effecla Oceanic basalts of thisage, oe a change m the _ntensity of the

eom_gnetic rtek_. The lack of var_Cto_ in I bcew,_n _0 and 14_
is _ol consistent with recent mockls whtch I:ax_lict pmdgl that

t_.salU formed dural the Cretaceous Normal Magnetic Superchron
should have substantially higher values of J than basalts formed

before, _¢ afler, the Superobron. Therefore, we SUgl_rst that the high

magnetic fi¢lda n'z.utwed by MAGSAT over thcCretaceous Quiet

Zones in the Adantic ocean result from (I) a thicker exn-usive layer

or (2) an iocre_tsed contribution from the lower, inu_usive layers of
Oceanic cru_.

GPI_/-7 13,_ POSTER

Deconvolution for Increased Resoluti_n _n AEM

Data

Clyde 3 Bergeron, 3r, Goe_9_,

Juliette W Ioup, Long _ Trinh, and Abolfazl

M Amini (Physics Department and Ge.3physical

Research Laborstory, University of Mew

Orleans, Mew Orleans, LA 70148;

(504) 286-6341)

Deconvolution iS a standard technique for

removing thn effect of the instrument or

other roaponse functlone from date. In

airborne electrolagnetic (_rr_) measuremente.
there il an effective ilpulee remponee for

the AEM measuring device due to the large

footprint of the device. We preeent

approximate line and point lmpulee Ieeponse
functionn calculated from the Modified Imege

Method (MIM} representation Of the AEM field.

Wo apply these functions in an iterative
deconvolution of data produced from two-

dimensional modele. The doconvolvmd reeulte

in general show a increase in the effective
resolution of the AEM data. (work Kupported

in part by the U. S. Army Cold Regis)he

Research end Engineering Laboratory.)

GP12A-8133_ POSER

Thr1_.dimen¢iortal rrtaenetotellunc rno_elin¢ ux/nf _ffemnce

and THEODORE MADDEN (Bo_ st:

D¢lx of Earth. Atmo=ld_ric, _d PltneUey Sck_ el. M IT.

C.mbetd_ MA _9)

We have developed nnmerlcad idgorithma for _ornputing the

elect_omagn¢_ eeal:X:mt¢ of a fully inSomogerm0so. _D ealth modeJ
due to m nniform cunl_nt SOurce far above the _srth (this is the

magneloecllurlc response). Our tlgorithms a*e finite difference

algorithms, but they tre bated on the integral forms of Maxwell'l,

equations _ then the dif[esendld fo_1 _ elimbuttea _: lined

to appro¢irnate derivatives of earth p¢operues; indeed One only needs

be _ with d_¢ ir_u¢ of taking eventges of earth pm_

Finite difference algor'ithnn invariably lead to larl_ sys_l"os of

equations to I_ solved, espe¢iaUy for realisdc 3D eaah models. We

h4ve investigated relaxation methods (conjugate direction algorithms)

and direct mcthoets foe solving thcze sysrems quickly and Kconttely.

The relaxation solutiot_s me quick, give reasonah4¢ ans.,e-n, tnd do

no_ require lag© tmoonta of computer stonlge We have found that a

multiple scaling technique used in conjunction w_th nelasation

methods works especially well. The direct tolutio_s arc more

compuler intensive than the relaxation methods becauze they tin

require large amounts of storage space ted thvolv¢ do_ng many

matox inversions Tbe Solutions from our algneitht'ns compare well

_ith the SO|utions from Wannamaker's integral equal,on algo_m

GP12A-9133_ POSTER

MZM Inversion of AEM Data for Groundwater

Juliette W Ioup, and Clyde J Bergeron, Jr

(Physics Department and Geophysical

_esearch Laboratory, University of Mew

Orleans, New OrleanS, LA 7014_;
(504) 286-g715}

The Modified Image Method (MIM) fc+r inversion

of airborne electromagnetic (AEM)

measurements can be applied to grc, undweter

studies. The effective depth and

conductivity of the groundwater iS determined
from _he simulteneoum measurements Of the AEM

transmitter/receiver system altit_tde end the

complex low frequency secondary f_®ld. The

inversion of the high frequency A_ dace
allows s detez-mination of the ave:-agn

conductivity of the overburden layer, The

resulte of such an enelylia of data from l

groundwater survey performed by the Dighsm

Compeny in Michigan will be preeented.

GPI2B CA: 317 Mon 1330h
Magnetic Methods in Studies of Global
Change !!
Presiding: R Karlin, Univ of Nevada,
Reno; R Negrini, California State Univ
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Determinallon of Paleoenvironmental Conditions From

Soils Using Rock Magnetic Te_:hnlquea

Michte] J Singer (Dept. of Land, Air and Wal¢'r Res_urees, Univ.
of Calif.,Davis, CA 95616)

Bruce Moskowi|z and Kenneth L Verosub (Both at: Dept. of

Geology, Univ. of Calif., Davis. CA 95616)

Pinchas Fine (lostitur¢ of Soils and Water, Volcani Center, P O

Box 6, Bet bagan. ISRAEL)

So_Is ere sensitive indicators of pal¢oenvim4amenud corglitions, and

borer:on by horizon chemical analylas of a .soil can provide detailed

inf_tion about climate and ctirnate change. Wehave been using

rock magnetic Inchniqons to supplement traditional wet chernicaJ

methods for tracing the movement tnd transformation of non in

smls. Our work has shown that enhancement of the magnetic

suscep¢/bility of a _il is not a surtachtJ Imacess, as was previonsly

believed, and that the increar_ in susceptibility resulLt from the

retentio*l of inherited magnetite i._ well as from the preclpitaion of

pedogemc maghesnito. Both of these factors are influenced by tbe

wamr ¢ontont of the soil, and II1¢ enhlaw.¢rnent process ceases when
a soil becomes poorly drnined. We have also found that

morphological discontinuities found in soils often have a

co_esporming rna_netic susceptibility anomaly so that susceptibility

me.asurenents can be used to evaluate the suitability of soil sequences
for detailed pedOIO_Cal analy_. Otu one anilpnatie remit is thal _e

ratio _I.arm appea.rs Io IX independent of soil horizon and panicle

size fntctum w_thin a soil, This result implies thal the ferromag_tic

panicles in a soil fall within a narrow size ra_lc.

6PI2B-2 1345h

• la4Dm*tl lot Gce_tte (Fe3S 4) to Cret_ce_ul Imdl.
tt_rth Slope. _leaga, a_l klo,¢um I_dt_ts, I._kae

_tclttl=m

_. A Nlcho/_on, N I Goldhab_r (0SGS, KS 964,
Uo• 25045. Denver, CO !10225, 303-23b-1303)

S _ ,C.oZsan (USGS, Uo_4l ;_le, _ 02543)

J U _/_1 (Uotv, of it*ode |sland. 14arralan_lttt, RI
02882)

C A _ce. M h Tuttle. l,d O M Sher_mn (USGS. Denver. CO

8U22St

The presence O[ _olCde_os_tlonsl grslltce (FeaS_;
ferrt_agne_tc) can dtsgoft depostt|O_a] lagnetJc records

a_d thereby Jeopardile paleoenv_ro_ntal

interpretltions bmsed on e_L'_lettc luecep¢/bLllSy (MS)

8r_t rllaneng _a_netSzltLo_. o_t atudLea have provided

ote•nl go /denLi_y Ire Lilt t and Ival_te its effectl.

Uslt_ X-rly defer•taLon, tne rlloealnet$c Itlnlture. iP_

nOsl_r ipectri, we nave |denT_f_ed abundlnt |raSglte

|n Upper Cretlceous _udstonel from ghe $1upson

Pan_Bul&. NOrth 5lope. AJask.l, but have found ILctLe

evldence Ot tg tn Holocene mud fgo_ Iouehern Lake

Nlehl_an.

Gretglte doltniles lagnet 1¢ props rates of _he Ctetsceous
luditones. _lch hive • _an n$ Ot 5,9X10-" (vol $1) •_d

• mesh Nlt_ m•|ntcude of 6o6xlU "2 AJa. Geochemtcilly.

these 8udl¢ones relelble _m_ny _lcent imltne sedtHntl:

Ac|d-vo]&[|_e lu_f_r (ave; fro_ greLgLle and non=agnetlc

_lol.ltlde) rl_ei [tOI 0.UZ_ tO 0.2U_ (by Welgh_),
0isulttde S (tr_m pyrite) rlnges _rcm 0.02% to 0.&6_,

an_ lhe tltto of AV S plus dtsulftde 5 to organic carbon

• verages 0.34*

Co, part•on of _•gne_ t¢ p_oper_tel _r_¢h Che dls_rlbutton
oJ lulfur s_clel In Ho_ocene mud [rom lout hem Lake

PUcht_•n luggests the presence of ireJglte sad pyr/ct.

neither _lnera|. _owever. appe4ra SO obscure the

aetrll_l IMIsnet_c record, except $_rhlpl Jn ahallow (<2_
riB) lntelvlll _n somv cores. In lhele shll}ou

lncervell, three coles ichieve laxt_um sulfur va]uel

(AVS U.02 tO U.tb2; dtsulLtde $ U.01I tO U.2& g*) _oatly

_chln the rlnges of the Alalkln suds¢onel. In one

core. the &Vb prof_)e mLatc_ She N5 profile, bpth

reaching tneJr uaxt_uss (AV50,U2g; ttS 4.&xlO-a) a¢ 6

c_. In ghe upper lu cm of snoSher core, htgh AV5

content (maxlaum_ O. t6_) corrls_ond• to rela£/ve[y htg_
I_b (_,lxLU-) and N_ (l,lxLO- A/m), aolh of thole

res.]t• suggest that so=e of the AVS Isy b* tn the for=

of gretglte. In the litter core, hovever, high NS all_

correlates vtth htgh sand content, Indicating thsC

decrtt•l oxides conCrlhu£e lucn _ore to _s £han does

gretgl_e. This ttnd_ng ts supported by examtnatlon o_

magneczc Sep_r•te_.
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Applications of the Modified Image Method to the AEM Study of Sea Ice

INTRODUCTION

Classical image theory may provide a simple method for

calculating the secondary field produced by a conducting

structure in response to an applied field. The three-dimensional

screening distribution that is induced in the conductor is

replaced by an image (or a distribution of images) of the primary

source. When the primary field is magnetic, classical image

theory may be used in the case of a "perfect" conductor (high

frequencies and/or high conductivities) or for the response of a

superconductor to a constant magnetic field. The general

criterion for the applicability of classical image theory is that

the weighted average depth of the screening current

distribution (the superconducting penetration depth or the complex

skin depth in the ohmic case) be much less than the altitude of

the primary source above the conducting surface.

The essential constraint on the image sources for the

magnetic case is that they produce a secondary field at the

surface of the conductor whose normal component, Bsn , is equal

but opposite to the normal component of the primary field, B
pn'

thus satisfying the continuity condition on Bn at the interface.

A symmetry constraint on the tangential components, Bpt and Bst ,

results in their e_lality. Thus

-,_ --% _ A

B(surface) = Bp + B s = 2 Bpt T , (i)

1





where T is a unit vector in the conducting surface. The

conductor surface is generally termed the image surface.

Only simple interface geometries allow for simple

distributions of image sources. A plane interface requires only

one image source to satisfy the electromagnetic boundary

conditions on B n. In this case the secondary field produced by

the induced current distribution is accurately replicated in the

nonconducting halfspace by the field of a single image source.

An alternate source distribution to the image source is provided

by a surface current K which is given by K = n x B at the image

surface, where _ is the normal to the surface. Thus K is given

by

A

T' (2)
K = 2 Bpt

A

where T' is a unit vector tangent to the surface but

^
perpendicular to T and _. The secondary field produced by the

surface current di_tribution K is identical to the field produced

by the image source, but this calculation is less direct since it

involves an integration over the surface.

The modified image method (MIM) has all the elements of

the classical image theory EXCEPT that the image surface is

relocated to one weighted average screening length BELOW the

conducting surface. For the ohmic case this distance is complex

and is given by [exp(-i_/4)/J2]6, where 6 is the electromagnetic

skin depth 6 = J(2/(_oa_). For a plane layered conducting

medium, 6 is modified by a complex correction factor, Q (Bergeron

et al., 1987). The complex image field produced by this

2





assumption is in good agreement with the secondary field given b_

the one-dimensional Sommerfeld theory (Sommerfeld, 1909).

For non-planar conducting models (two- and three-

dimensional), there is no general prescription for determining a

distribution of image sources that will satisfy the

electromagnetic boundary condition, and in general none exist.

The standard methods of calculating the secondary field produced

by two- and three-dimensional structures (e.g., the finite

element method (Lee and Morrison, 1985)) are generally of an

iterative nature and hence computationally slow.

MIM provides a fast, efficient, but approximate method

for calculating the secondary field. We assume the general

validity of Eq. (2), which defines a surface screening current

__% .--%

distribution K in terms of the tangential component of Bp. This

screening distribution is at a complex skin depth,

[exp(-i=/4)/J2]6, below the conducting surface, where now n is

the LOCAL normal to the conducting surface. Equation 2 gives K

in terms of the primary field alone. The heart of this

approximation is %hat the relation Bst = Bpt is still valid.

In the context of the MIM theory, the primary field Bp

on the image surface is a formally complex function, since it is

a function of the primary source strength (real), the lateral

displacement of the source from the image surface point (real),

and the vertical separation between the source and the image

surface point, h + 6el f (complex). It follows that Bp and K in

the image plane, given by Eq. (2), and the secondary field





generated at the detector by K are complex, i.e., the secondary

field is not in phase with the primary field at the detector.

Thus in the image-source surface a discontinuous change in a

model parameter results in a local discontinuous vertical

displacement of the source surface. That is, a discontinuous

change in o i' a _ or d _ for a two-layer model, results in a

discontinuous chance in 6eff, and hence a vertical shift in the

source surface.

In this approximation the source surface is now

disjointed and the strength of the secondary surface distribution

is calculated locally in various areal cells of the surface. The

individual contributions of these source surface cells are summed

up at the detector coil location. In general the area of a

surface cell is decomposed into Cartesian components

"_ A A ? Ada = dan = _ da i + _ da + _ da k ,

where _, _, and 7 are direction cosines with respect to the x, y,

and z axes, respectively.

There are two facts that render the assumption of the

general validity of Eq. (2) at least plausible. The first is

that the field is screened from the interior of the conductor

independent of its geometry, i.e., Binterior = 0. The second

is that Eq. (2) provides for the approximate satisfaction of the

electromagnetic boundary condition at the image surface. K

produces a stepwise discontinuity in Bt at the image surface from

2Bpt to approximately zero, and likewise implies that Bn = 0 at

the surface, thus satisfying the boundary conditions on Bn.

4





The secondary field produced by K of Eq. (2) is easily

and rapidly calculated, taking about 1 sec/survey point for

fairly arbitrary two-dimensional models. See Table 2.

The ultimate utility of this approximate method of

calculating secondary fields produced by two- and three-

dimensional structures depends on how well these MIM fields agree

with secondary fields generated by other methods of calculation

and with scaled model laboratory measurements and survey results.

In this report we give the resultant numerical

calculations of the MIM secondary fields produced by models of

ice keels. The specific models studied were:

I) rectangular trough models in which we examine the dependence

of the secondary maximum (in ppm of the primary field) and the

secondary field half maximum width (in meters) on keel depth,

width, and bird altitude.

2) a triangular ice keel model which we label the Berkeley

model, identical to one used by Becker et al. (1987).

We compare the results of the MIM two-dimensional field with the

Berkeley two-dimensional calculation and to a one-dimensional

Sommerfeld calculation.

3) a "CRREL" mode] which is based on an Arctic sea-ice survey

ground truth data _et provided by CRREL (bird altitude, ice and

snow freeboard, and keel depth versus range).

THEORY

In this section we include the "working equations"





which are used in the numerical computations of the secondary

fields produced by the current distribution given by Eq. (2) for

two-dimensional structures. We also include the MIM and

Sommerfeld one-dimensional formulations which result in fields

that exactly track the geometry of the model. The two-

dimensional MIM approximation produces fields that vary more

smoothly but still generally track the model. There is one

exception to this rule which will be pointed out and discussed

later in this report.

Table i illustrates and defines the notation used for

the normalized secondary field detected by the various possible

permutations of horizontal coil pairs.

coil pair

name

horizontal coplanar

horizontal coaxial

horizontal mixed

horizontal mixed 2

Table I

diagram normalized secondary field

O ZZ = Hsz/H p
T X

8" 0 xx =  sx/ p
T X

T X

O XZ = H
T X s z-Hp/





Table 2 gives the total CPU time per survey point for a line

survey and the hori2ontal surface element dimensions.

Table 2

Field sec/survey point step sizes

xx} _I1.34 A x = 0.5 6_ _ y = 1.0
XZ

zzI 811.74 A X = 0.5 6| A y = 1.0
ZX

One-dimensional F_elds

N h_,

ZZ - _R_ -!_

(,+Pl)'/I

I

z 4

X_
- .5 [<,_

R,,,-t

2LR_-Z;

(.3d)

7
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h = altitude of bird

6 = skin depth

d = first layer thickness for a two-layer model (not relevant

in these calculations)

TO, TI, and T 2 are generally referred to as the Sommerfeld

integrals and must be evaluated numerically. Thus far we have

coded only T O .
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Note: The contribution of vertical surface elements to the

models that are used in these calculations is small compared to

the horizontal elements and so has not been included in the

section presenting results.

With the detector located at the origin of the

coordinate system, the transmitter has Cartesian coordinates

(Xo,O,O) and an element in the source surface has Cartesian

coordinates (x,y,-h). R is the complex distance between a source

element and the detector, and R' is the complex distance between

a source element and the transmitter.
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RESULTS

In this section we discuss the results of the

investigations in the context of the tasks set forth in the

contract.

Task i: The implementation of a MIM halfspace inversion

algorithm for AEM data.

This task has been completed, and a printout of the

code and a magnetic tape containing the code has been delivered

to CRREL.

Task 2: Implementation of a MIM algorithm to calculate

approximate AEM signatures of ice keels as functions of their

width and depth.

This task has been completed. MIM two-dimensional

computer codes for rectangular and triangular sea ice keel models

have also been delivered to CRREL in both printout and magnetic

tape forms. We were initially tasked to produce algorithms and

sample calculations of the MIM two-dimensional ZZ fields

(horizontal coplanar coil configuration). We have extended that

task to include the XX (horizontal coaxial coils) and ZX fields.

These calculations have been applied to two ice keel models. For

the CRREL model based on ground truth data of an ice keel in

Prudhoe Bay, the ZZ and XX fields have been inverted using the

one-dimensional MIM inversion to produce values for the model

parameters. The Berkeley model (Becket et al., 1987) is a

triangular ice keel for which the XX field has been calculated

using a finite element method. We compare results of these two

ii





calculations. A detailed discussion follows.

Task 3:

AEM data.

Implementation of an analytic continuation algorithm of

The feasibility of analytically continuing AEM data up

and down I0 m by a Taylor's series expansion of the MIM field has

been demonstrated. A preliminary report of these results was

made at the American Geophysical Union meeting in San Francisco

in Dec 1988, and the abstract published (Bergeron et al., 1988).

A more detailed discussion and illustration of this work follows

below.

Task 4: Deconvolution algorithm for ice keel signal signatures.

The results for the preceding tasks show that the two-

dimensional MIM ice keel fields (with the exception of the ZX and

probably the XZ fields) track the one-dimensional fields in a

"smoothed out" way. It is anticipated that an efficient

deconvolution algorithm of the two-dimensional fields by a line

impulse source signal will sharpen the two-dimensional fields and

bring them into closer agreement with the one-dimensional fields,

thereby bringing one-dimensional inversion results of the two-

dimensional fields into closer agreement with the input model.

12





TASK TWO

Approximate ZZ MIM Signal Signatures

of Rectangular and Triangular Ice Keels

The sea ice is assumed to be transparent to the AEM

field, i.e., its conductivity is assumed negligible. All lengths

in these models are scaled to the AEM skin depth in sea water and

all fields calculated are for the horizontal coplanar ZZ coil

configuration.

Rectangular Keel

bird

sea ice .....,i
I I -_
I I DK

I { sea_I I water
...... WK .........

13





Triangular Keel

sea ice

\ / f
\ / DK

\ / l
\ / sea water

\/
...... WK ......... --_

5-1/2 WK -_

Definition of variables:

H = altitude of bird above sea water/ice interface

WK = width of ice keel

DK = depth of ice keel

DX = numerical integration increment parallel to survey path

DY = numerical integration increment perpendicular to survey path

XO = coil spacing in AEM bird (for example, if the coil spacing

is 6 m and XO is 0.6, then the skin depth is i0 m; the

altitude of the bird above the seawater is 3.0 m if H =

3.0, and the width and depth of the keel are I0 m if WK

and DK are 1.0)

In Figures 2-1 through 2-11, Hz/H P is plotted versus

range (in skin depths) for rectangular and triangular keel

models. The keels are centered at zero for various combinations

of WK, DK, and H. The solid and dashed curves are the real and

quadrature signals, respectively. The larger pairs of signals

14





are produced by the rectangular keels.

In Figures 2-12 and 2-13, AMP is the maximum signal in

ppm produced by the ice keel as the bird passes overhead. Figure

2-12 shows AMP versus WK, and of course the signal saturates at

about 600 ppm. This is the difference in the signals produced at

altitudes of H = 3 and H+DK = 4. Figure 2-13 shows the variation

in AMP with keel depth DK for a fixed keel width. The saturated

value of AMP in this case is about 140 ppm.

In Figures 2-14, 2-15, and 2-16 the 50% signal level

signature width (WIDTH) is plotted versus keel width for constant

keel depth, or verE_us keel depth for constant keel width. Note

that the residual 50% signal width for narrow ice keels (WK < 4)

is approximately 7 for H = 3. Thus narrow ice keels produce a

50% width signal approximately equal to twice the bird altitude

plus ice thickness.

15





f..)
f ,-4

il

Q
E--_ "'-- r,.o

"T

O
,--'

:

I ,' I , I ,,- - --T----- T------I_ • I" ' I '

0 0 0 0 0 0 0

I I I I I I I

16

0o

O2

0

I

I

I

0o
I

0

I
O
co
I

Z





Figure 2-2 0

li

Q

°

Q

• I ' I ' T ' I ' ' I'-- • I ' _--'T" "1

i i i i i i i i

N

'_ I'7

[ .---I .--4 .--I

I I I

I

I

I

I

0
.---I

I





II

Q

cE

Figure 2-3

,/

I ' I r I ' I ' I ' I ' I ' I ' I ' I ' "I ' I ' I '

I_, 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i I I I I I I I I ,_ ,_ .-4
b_ I i I

C)

CO

E)

C_

0 L5

C_
I

I

{D
I

03
I

0

I





II

II

c_

II

I$

/
/

- 0

_a

i

to
i

i

i

i

_D
l

i

i

i





l"J l-ure 2-_5

I

O0

cO

II

II

_Qd II

c_ Q

cO .

II

\

c_

r_

°._

c_

to

ID

0O

_ 0
_ o

N

0 o 0 o
0 0 0

I I I





II

E-_ co
o

11̧11CD

Figure 2-6

\

\

\

\

/

cO

to

0

I

Z

I

oo
I





Figure 2-7

CD

II

II

II

II

P_

tq

I?-

oo

LO

tO

O_

0

tO

_0

oO

O_

_P
Z





Figure 2-o

O0

il

_coQ

II

Q

iiiICD

/

cO

[o

to

c_

0

I

I

to
I

I

_o
I.

co
I

I

o

t'q

0 0
0

i

0
0

I

.

0
tO
I

0
0

I

130
I

(D3
I





II

II

/I II

il

N

iiiil,ll_+!

0
0

Figure 2-9

IlVlVl|VllIVl|lllVl|lllllllVllVVlV|lVlVllVllllllV I

0 0 0 0 0 0
0 0 0 0 0
,-, _ ['0 'q"
I I I I I

_

i-
O0

[-...

r..O

t'O

Cg

,--I

t9
Z

C_

t'O

if}

b-

00





II

" II

"i

Figure 2-10

\

c£,

(.[3

c_

0 Z

c_

to

tc_

r2)

t"-

!

_ 0
_ o

N

" I ' I '

0 0 0 0
0 0 0
,--, _ ["3

I I I

0
0

I

0
0
_0

I

0
0
r.O
I

oo





CO

II

_'<

c_ Q

_ ii ii

b-

tO

to

o2

0

I

I

tO
I

I

tO
I

r_
Z

co
I

h-
I

_ o
_ o

0
0 0 0 0
0 0 0 0

i I I I

ze

00
i





Cb

(b ,..q .,...

b_
cq

E_ ,...-

0 0 0 0 0 0

_o o o o o o o

0

i

Ob

0

00

t'--
,,-,-t

r,..O

tO

o

00

£0

#"3

02

0

.17





_-qC) ii
CSLo_

q
03*-

Figure 2-i3

\

1 ' |--_-l---r'-l---r'---T---T--1 "--"--I --'" I --1 -I _--I-_r_-'--F--'- ! '

O O O O O O O O O O O O O
O

O

Ob

00

b9

cg
,---I

O

Ob

o3

- _O

- [D

tO

O2

- O

_d
A





_ tt_

[-_ tl

Flgure 2-14

\
,\

\

I'I''I'I I'I I'I'I'I'| l'l'i'

A

o

ob
,--4

00

r-,-i

G3
,.-I

[.{3

,.-.I

to
,--I

,,--I

,,.-.-.,I

O

o3

- 013

£O

to

- to

,11

O





II Q

¢"3 II

| ,t

la:l
E-i ,--.i
i:::l
I--'1

\,

1 1 1 ' T -7-

i-"! r--I

Figure 2-15

©
¢Q

1- .... a--- ---7 .... -a----1 ' I

0 01 co
,--..-t

r+

o0
r---,i

CO
¢.--,,.I

tO

r--t

tO

c_
i--..I

,-.,-I

r-I

_or--i

- 0")

- (13

- cO

- tO

tO

O_

r,-.i

0





0
C_

A
F-I

i , i , I , i , i ,'1 , I , I ' I ' I ' | ' I ' I ' I ' I ' I ' i ' I ' I '

O%

co

_D

aO

_0

e_

0

O_

cO

_D

cO

_0

0





Berkeley Triangular Keel Model

The XX response of the triangular keel model shown in

the bottom of Fig. B-I was calculated by Becker et al. (1985) by

means of a finite element algorithm. The results of the

calculation at ten survey points are shown in the upper half of

Fig. B-I. This numerical procedure reportedly required 30

minutes on a Cray supercomputer. The range of the calculation is

only approximately three times the keel width--not enough to

reach the homogeneous halfspace values of the Sommerfeld one-

dimensional field of -312 ppm inphase, -62 quadrature. The same

model is shown in Fig. B-2 but range, keel width, and keel depth

are displayed in units of skin depth, which is 5.03 m given the

assumed values for sea conductivity and bird transmitter

frequency. The MIM one-dimensional and approximate two-

dimensional fields for the XX coil configuration are shown in

Fig. B-3 for the same model parameters. The first feature to

note in these curves is the displacement of the minimum in the

two-dimensional fields relative to the one-dimensional fields.

This is caused by our computational scheme, and since this

discrepancy continually reoccurs a brief explanation is required.

The minimum values for the two-dimensional fields occur at about

-6 m on the range scale. This is the approximate coordinate of

the receiver coil when the transmitting coil is at the origin,

which is the coordinate of the keel bottom relative to the model.

At this location of the transmitter, the smallest currents are

induced in the model and hence a minimum signal is detected at
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the receiver coil. On the other hand, in the one-dimensional

case, the altitude of the bird above the homogeneous halfspace is

taken to be the vertical separation of the receiver coil above

the model. This distance is a maximum when the receiver coil is

directly above the bottom of the keel. Thus it is at this

location where the one-dimensional field minimum occurs.

The MIM XX two-dimensional f_eld is in fair agreement

with the Berkeley calculation. The signal widths of the two

curves are approximately the same. The minimum field for the MIM

two-dimensional calculation is intermediate between the Berkeley

two-dimensional calculation and the MIM one-dimensional field

minima.

Figure B--4 shows the two-dimensional MIM fields for the

ZZ coil configuration. The signal is broader and the maximum

change in signal is smaller than for the XX configuration. No ZZ

field was reported in the Berkeley report.

Finally, the ZX MIM one- and two-dimensional fields are

displayed in Fig. B-5. This figure clearly shows that the MIM

approximation predicts that the ZX field produces a keel signature

that is very different from the one-d_mensional signal. The

leading edge downslope in the model produces a £racking downslope

in the one-dimensional fields but a large positive hump two-

dimensional signal and a nearly mirror negative hump indicative

of the keel upslope. The peak to peak separation is

approximately 25 m, which is comparable to the keel width of 18

m.
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CRREL Model

Figure C-i through C-9 are the results of ground truth

measurements of a Prudhoe Bay ice keel by CRREL personnel and

contractors. The ordinant of the figure is the total ice/snow

thickness, i.e., snow cover plus freeboard plus ice keel. A

uniform thickness region has been added to each end of the keel

in order to demons%rate that the two-dimensional MIM calculations

of AEM fields are _n agreement with the one-dimensional field in

the uniform thickness regions of the model. Figure C-2 shows the

altimeter reading of the bird-to-snow vertical distance measured

during a helicopter traverse of the keel. The final model

parameter used in these calculations is the sea conductivity, a

= 3.1 S/m.

Figures C-3, C-4, and C-5 show the results of one- and

two-dimensional calculations for the ZZ coil configuration

(horizontal coplanar). Figure C-3 shows the inphase and

quadrature one- and two-dimensional ZZ fields. Both fields track

the model but the two-dimensional results are smoother and the

variations are smaller than the one-dimensional results. Figures

C-4 and C-5 show the results of the one-dimensional MIM inversion

of the one- and two-dimensional fields. Figure C-4 gives the ice

thickness (inverse distance from bird to sea surface minus the

laser altimeter reading) and Figure C-5 the inversion results for

the sea conductivity. The inversion results for the one-

dimensional fields are in close agreement with the input model

whereas the two-dimensional results indicate a smoother keel no
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as dependent on the model.

Figures C-6, C-7, and C-8 show results of the same

calculations for the XX configuration (horizontal coaxial). A

comparison of Figures C-4 and C-6 shows that the XX two-

dimensional field to be closer to its one-dimensional

counterpoint than is true for the two- and one-dimensional

fields for the ZZ configuration. This observation is confirmed

by the MIM inversion results (ice thickness and conductivity) for

the XX fields shown in Figures C-7 and C-8. Figure C-9 shows the

one- and two-dimensional fields for the mixed coil configurations

ZX (vertical transmitter dipole/horizontal receiver coil axis).

The most striking feature of these curves is the large difference

between the two- and one-dimensional fields at the leading edge

of the keel. The two-dimensional results show an enhanced

secondary field whereas the one-dimensional field falls off with

increasing distance between bird and sea surface. Thus a ZX

field would seem to provide a signature for a sudden increase in

ice thickness. In this model the effect on the ZX field of the

sudden decrease in ice thickness at about I00 m downrange (Figure

C-l) tends to be canceled by the increasing altitude of the bird

over the same poztion of the range (Figure C-2). Nevertheless

the two-dimensional fields do show a relatively sharp decrease

from 80 to ii0 m_ a mirror image trailing edge response to the

initial leading edge response. This is more clearly seen in the

ZX field of Figure C-10 in which the model has been modified to a

constant bird altitude of 18 m.
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In principle these departures of the two-dimensional

calculation for the ZX configuration from the one-dimensional ZX

fields can be compared to the measured ZX response of scaled edge

models (Dallal, 1985). Dallal measured the ZX field in the time

domain over a sheet of brass as a function of distance from the

edge of the sheet. It is possible for us to calculate the ZX

field for such models in the frequency domain over a sufficiently

large range of fre_lencies and then Fourier transform these

results for ZX(_) into ZX(t), thereby allowing a comparison of

the MIM approximation of ZX(t) with the scale model measurements.

41





I

II

'_-_"_" I
.,_ _,.,..._,

_._ II I

c'o
II

-_" 1 ' I ' I ' I "_ I ' 1 ' I ' I '

0
H

r- ,

42

O
O
tO

O
O
o_

O
O

rD

<

O

o
0
,--4

I





t"4
I

Q)

.H

II

C_

c_
II

C_

I--4

43

0
0

0
0
c_

0
0

0

0
0
,11

I

_3





I

_D

co
II

c4

II

I Q

II

L)

-N

Z

::3

O O O O
I_, O O O O

O

O
0

0
0

O
O

O
O

O

O
O
,---I

0
0

I

_,_ 44





!

II

-. II

c_

_z,

L

0

_o_9
i
F

r

I

I °
0
C_

!

I 0
I

O

_----r-----_:-- --r---_--_ _---T---_----_---" -_----_-----l---_---r

- 0

0
0

I

f_

L_

<





0
0
tO

I

" II (_

.,,., Q)

.._

Q

c_
c_
ro

IlL

O*

0

01

0
0

I





L',q
I

CO
II
C_

II

C2)

,-.Q

cK

I ' I 'i I '

:_ o o o
•-_ 0 O_

p_ ,-4 ,--4 I
I I

F

It

I ' I ' i ' I' ' i ' i ' I ' I '

0 0 O 0 0 0 O 0
00 t'- tO LO _ tO C_
I I I I I I I I

47

0
- 0

0

0

0

0
0
c_

0
O

0

0
0

I

0
0
O_
I

<





0
0
tO

!

co
II
C_

C_

_q

_°

0
0

0
0

0

-!

0
0





I

•_ CO

II

II L0

c_
C3

_0

D

0
o

r

0
0
e_

o
o

<

o

__.r____w__ _.]

49

U3

0
0

I





2

II

><

jlltlll_11jl111111111t111I_'llljllll11111j111111111

0 0 0 0 0

5O

0

0
0

0
0

0
0
c_

0
0

0

0
0

I

0
0
o2
I





o

II

II _--

Q
c_

,s

7.J

n_

J
k
L

0 0 0 0 0 0

F

0
0
,,_

0
0
to

0
0
e,l

0
0
,.-.-I

0

0
0

I

0
0

I

<

X
51





TASK THREE

Analytic Continuation of AEM Signal

Figure 3-1 is a summary sheet of the MIM model along

with the indicated Taylor's series expansion of the vertical

component Z of the normalized secondary field (Bergeron et al.,

1988). Figure 3-2 shows the smoothed laser altimeter versus

range of a Prudhoe Bay survey line. It, along with an assumed

conductivity of 2.7 S/m, constitutes a uniform halfspace model.

The Sommerfeld integral expression, TO, for a secondary field is

employed with this model to generate the inphase (real) and

quadrature (imaginary) fields shown in Figs. 3-3 and 3-4.

Figures 3-5 and 3-6 show the absolute percent difference between

the Sommerfeld field calculated directly at a 40 m altitude and

the fields shown in Fig. 3-3 and 3-4 and which are analytically

continued to h = 40 m, i.e.,

% IaZ/ZI = I([Zs(40) - Zcont to 40(h)]/Zs(40)) x i00 .

Figures 3-7 and 3-8 show the percent errors that result from an

upward continuation of a signal from 30 m as a function of

altitude for skin depths of 5 and 25 m, respectively. Figures

3-9 and 3-10 show the corresponding percent errors that result

from a downward continuation of a signal from 50 m. All of the

figures indicate that a smaller error occurs for an upward

continuation than a downward continuation. The utility of the

technique depends on the subtlety of the anomaly that one is

searching for in the data. Only if the error produced by the

continuation of the data to a fixed reference altitude is less

than the anticipated anomaly signal will this procedure be useful_
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Figure 3-2
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Figure 3-4
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Figure 3-7
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Figure 3-10
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TASK FOUR

Deconvolution of a keel signal

Figure 4-I shows the one- and two-dimensional inphase

and quadrature fields produced for a rectangular keel model of

width 90 m and depth 5 m. Figure 4-2 shows the inphase one- and

two-dimensional fields, again along with the result of a

deconvolution of the two-dimensional field by a line impulse

function. The signal width of the deconvolved fields is

narrowed, which is the desired result. Gibbs oscillations are

introduced by the deconvolution process. Similar results are

shown in Figure 4-3 for the quadrature component of the fields.

The step in the deconvolved two-dimens_onal quadrature field at

about 20 m is probably an artifact of the line impulse function

used in the calculation.

Figures 4-4 through 4-7 show the results of a one-

dimensional inversion of the fields displayed in Figures 4-1

through 4-3. Figures 4-4 and 4-5 illustrate ice thickness and

ice conductivity results for the one- and two-dimensional fields,

and Figures 4-6 and 4-7 show the one-dimensional results, again

along with those for the two-dimensional deconvolved fields.

The deconvolved two-dimensional inversion results are

not noticeably different from those of the original two-

dimensional fields. The chief benefit of the deconvolution

process that can be seen in this example is the narrowing of the

keel signal. Further investigation with a variety of models

should be pursued.
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CONCLUSION

The manner in which most of the tasks were completed

exceeded initial specifications, e.g., the calculation of the XX

and ZX ice keel fields.

The validation of the MIM two- and three-dimensional

fields by comparison with the results of more accurate (but more

CPU time consuming) numerical calculations and model measurements

should be the primary thrust in a continuing investigation.
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Sea Ice Inversion

The MIM in_ersion of sea ice AEM data taken at two

frequencies, i000 Hz (flo) and 250 kHz (fhi), proceeds as

follows.

The low frequency data are first inverted to give

(h + dl) and u2, where h is the altitude of the bird above the sea

ice, d is the ice thickness, and 02 is the electrical

conductivity of the se._. This inversion assus_es the following:

i. The skin depth of the sea ice 61(lo) is much greater than the

thickness of the sea i_e and hence the sea ice is effectively

transparent to the low frequency primary signal.

2. The sea bottom does not affect the secondary field. This

assumption is valid provided that the sea depth d 2 is greater

than twice the low frequency skin depth of the sea, i.e., d 2 > 2

i





62(lo ) . These two assumptions allow a halfspace inversion. The

algebra and computer algorithms for the halfspace inversion are

given in the Appendix.

It is assumed that the altitude h is independently

determined by a radar or laser altimeter. Thus the inversion

results in a local value for the sea ice thickness dI and the

conductivity of the sea water, a 2. These resu]ts are employed in

the inversion of the high frequency data to determine the sea ice

conductivity.

Outline of high frequency inversion

First a halfspace inversion of the high frequency data

is performed. This produces an effective skin depth 6ef f which

lles in the range 62 _ 6ef f _ 61, and is a function of ice

thickness d I. The effective high frequency skin depth is

combined with the altimeter reading h to form the ratio Aef f -

2h/6ef f. The ad hoc normalization function employed in MIM

inversion is a functior_ of Aeff, i.e.,

ZMIM _s Z_(normalized) - F(Aef f) ZS

For d I << 6 1, 6ef f = 62 and for dI > 261 , then 6ef f -

61 . Since d I is known from the low frequency inversion, this

latter case may be recognized and hence the first layer

conductivity aI is determined from 6ef f by

a I - 21[_ 0 f

where F0 is the vacuum magnetic permittivity. The condition

d I > 2 61 only occurs for thick (dI _ 10m), highly conducting (oI





> 0.027 S/m) sea ice. For the intermediate, more general

situation where 6eff/d I is of the order of unity, the inversion

procedure to be used is that described below.

The MIM relationship between the complex two-layer

correction factor Q and the high frequency AEM field is

algebraically transformed into two simultaneous transcendental

real equations with argur_ent dl/61, where 61 is the unknown

quantity. All other qua1_tities in these equations are known.

Each of these equations has in general several roots, BUT only one

common root. The explicit functions that occur respectively in

these equations are tan(dl/61) and tanh(dl/61). A root-flnding

algorithm is first applied to the tan(dl/61) equation. When a

root is determined, that root is inserted in the tanh(dl/61)

equation to test if it _s also a root of the ta_(dl/61)

equation. If not, the _Igorithm continues in its determination

of the real roots of the tan(dl/61) equation until the root is

found that simultaneously satisfies both equations. The first

layer skin depth 61 and conductivity o I are given by that

simultaneous root.

The range o[ applicability of the root finding

algorithm is given by 0 02 < dl/61 < 2.5. These limits can be

understood in physical terms. For dl/61 > 2.5 the sea ice is

effectively a halfspace as has been already noted, and a two

layer model is inappropriate. For dl/61 < 0.02 the perturbation

produced on the secondary AEM field by the sea ice cover is lost

in the computer "noise" caused by roundoff, etc., and will





certainly be undetectable in the noise and drift present in even

ideal real data, where noise and drift are greater than about i

ppm.

The lower ic_ thickness limit on the detectability of

sea ice conductivity is _llustrated in the following table which

assumesa value of sea w_ter conductivity of a 2 - 2.7 S/m and an

operating frequency of 250 Khz.

a2/a I 61 minimum dI

I00 - 6 m - 0.i m

i000 - 20 m - 0.3 m

The algebraic details of this procedure and the root finding

algorithm are given in [he Appendix.

Results

The MIM inversion procedure that has been described is

applied to several sea ice models. In all of the models used the

low and high frequencies assumed for the AEM system are I kHz and

250 kHz, respectively; the altitude of the AEM bird is 25 m; the

conductivity of the sea water o2 is 2.7 S/m; and the conductivity

of the sea ice aI for each model has input values of 0.027 S/m,

0.0054 S/m, and 0.0027 S/m. Thus the ratio K of the

conductivities of sea water to sea ice has the values I00, 500,

and I000, respectively.

With these general conditions, the first model of ice

4





thickness versus range (fiducial number) is given in Figure I.

The ice thickness increases linearly with increasing range. The

results of the inversion for a I are shown in Figure 2. The

inversion values for a] are in fair agreement with the input

values except for the case with a I - 0.027 S/m. The problem

occurs at an ice thick, less of approximately 9.5 m. For a I -

0.027 S/m the skin depth of the sea ice is about 6 m, thus the

ratio of ice thickness to skin depth (which is the argument of

both the tan and tanh functions) is about pi/2, where the tangent

becomes singular and double valued. More importantly, in the

immediate vicinity of pi/2, tan(dl/61) varies rapidly. In spite

of this, the root finding inversion algorithm still works when

the exact forward MIM field ZZ(MIM) is used as the input field

(see Table i). When ,i simultaneous root cannot be found for the

normalized Sommerfeld field in the vicinity of _/2, a value of

1.55 is assumed for x. See Table 2. It is the residual

differences between the normalized Sommerfeld field (or real

field data) and the exact MIM field that causes the root finding

algorithm that we are currently using to fail for x - dl/61 -

_12.

It should be noted that this value of _/2 will most

likely not be encountered in field surveys where ice

conductivities will generally be less than 0.0054 S/m (K - 500).

Table 3 shows that for K - 500, x is less than _/2 for sea ice

thicknesses up to 20 m.

A shallow ice keel model is shown in Figure 3. Figure 4

5





shows the values of o I for this model produced by the inversion

algorithm for K - i00, 500, and I000. These results are also

listed in Tables 5, 6, and 7.

In all of the tables we have included the results of

the halfspace inversion of the high frequency data which gives

aef f. It can be seen fer the case K - 100 when x > 2.4, aef f -

Oinpu t. This demonstrates that when the ice thickness is greater

than 2.4 skin depths, a halfspace inversion yields good results

for the ice conductivity. Although values of x > 2.4 will

probably not be found iu survey data taken at a high frequency of

250 kHz, still higher fcequencies of about 1 MHz will bring x

into this range.

Finally, the results of the inversion are shown in

Figure 3 for a shallow ice keel model. The tabulated results are

shown in Tables 5, 6, and 7.

In summary, the present inversion algorithm for a 1

works well except in the vicinity of dl/61 - _/2. We are

continuing efforts to ,_odify and improve the existing algorithm.
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TABLE 1

SIGMA1 (ACTUAL)=0. 027 S/M

WORKING WITH

ZZMIM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIG1 SIGeff

0.0 0.i 0.0156 0.0247 2.6960

1.0 0.5 0.0781 0.0247 2.5941

2.0 1.0 0.1563 0.0247 2.2813

3.0 1.5 0.2344 0.0247 1.7051

4.0 2.0 0.3250 0.0268 1.1303

5.0 2.5 0.4063 0.0268 0.7022

6.0 3.0 0.4875 0.0268 0.4009

7.0 3.5 0.5687 0.0268 0.2198

8.0 4.0 0.6500 0.0268 0.1332

9.0 4.5 0.7312 0.0268 0.0884

I0.0 5.0 0.8125 0.0268 0.0613

ll.0 5.5 0.9000 0.0271 0.0461

12.0 6.0 0.9818 0.0271 0.0373

13.0 6.5 1.0636 0.0271 0.0315

14.0 7.0 1.1455 0.0271 0.0277

15.0 7.5 1.2273 0.0271 0.0253

16.0 8.0 1.3091 0.0271 0.0238

17.0 8.5 1.3909 0.0271 0.0228

18.0 9.0 1.4727 0.0271 0.0224

19.0 9.5 1.5500 0.0270 0.0221

20.0 i0.0 1.6355 0.0271 0.0222

21.0 10.5 1.7172 0.0271 0.0223

22.0 ii.0 1.7990 0.0271 0.0226

23.0 11.5 1.8808 0.0271 0.0230

24.0 12.0 1.9626 0.0271 0.0234

25.0 12.5 2.0443 0.0271 0.0237

26.0 13.0 2.1218 0.0270 0.0241

27.0 13.5 2.2035 0.0270 0.0244

28.0 14.0 2.2851 0.0270 0.0247

29.0 14.5 2.3667 0.0270 0.0250

30.0 15.0 2.4483 0.0270 0.0252

31.0 15.5 2.5299 0.0270 0.0254

32.0 16.0 2.6115 0.0270 0.0255

33.0 16.5 2.6931 0.0270 0.0257

34.0 17.0 2.774"7 0.0270 0.0258

35.0 17.5 2.8563 0.0270 0.0258

36.0 18.0 2.9379 0.0270 0.0259

37.0 18.5 3.0195 0.0270 0.0259

38.0 19.0 3.1012 0.0270 0.0259

39.0 19.5 3.1828 0.0270 0.0259

40.0 20.0 3.2644 0.0270 0.0259





TABLE 2

SIGMA1 (ACTUAL)=0.027 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,
AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIGI SIGeff

0.0 0.I 0.0156 0.0247 2.6973

1.0 0.5 0.0781 0.0247 2.5953

2.0 1.0 0.1563 0.0247 2.2816

3.0 1.5 0.2344 0.0247 1.7033

4.0 2.0 0.3375 0.0289 1.1265

5.0 2.5 0.4087 0.0271 0.6976

6.0 3.0 0.4904 0.0271 0.3973

7.0 3.5 0.5722 0.0271 0.2178

8.0 4.0 0.6664 0.0281 0.1324

9.0 4.5 0.7497 0.0281 0.0884

i0.0 5.0 0.8330 0.0281 0.0619

II.0 5.5 0.9163 0.0281 0.0471

12.0 6.0 0.9996 0.0281 0.0386

13.0 6.5 1.0829 0.0281 0.0330

14.0 7.0 1.1662 0.0281 0.0294

15.0 7.5 1.2495 0.0281 0.0270

16.0 8.0 1.5500 0.0380 0.0256

17.0 8.5 1.5500 0.0337 0.0247

18.0 9.0 1.5500 0.0301 0.0242

19.0 9.5 1.4875 0.0248 0.0240

20.0 i0.0 1.5500 0.0243 0.0240

21.0 10.5 1.7131 0.0270 0.0241

22.0 ii.0 1.7947 0.0270 0.0244

23.0 11.5 1.8763 0.0270 0.0247

24.0 12.0 1.9579 0.0270 0.0250

25.0 12.5 2.0394 0.0270 0.0253

26.0 13.0 2.1210 0.0270 0.0256

27.0 13.5 2.2026 0.0270 0.0259

28.0 14.0 2.2842 0.0270 0.0261

29.0 14.5 2.3657 0.0270 0.0264

30.0 15.0 2.4473 0.0270 0.0265

31.0 15.5 2.5289 0.0270 0.0267

32.0 16.0 2.6105 0.0270 0.0268

33.0 16.5 2.6921 0.0270 0.0269

34.0 17.0 2.7736 0.0270 0.0270

35.0 17.5 2.8552 0.0270 0.0271

36.0 18.0 2.9383 0.0270 0.0271

37.0 18.5 3.0199 0.0270 0.0271

38.0 19.0 3.1024 0.0270 0.0271

39.0 19.5 1.5500 0.0064 0.0271

40.0 20.0 1.5500 0.0061 0.0271





TABLE 3

SIGMA1 (ACTUAL)=0.0054 S/M

WORKING WITH

ZZSOM

XSTART= 0. 5000000

KNOW D1 AND SIG2, _OLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIGI SIGeff

0.0 0.I 0.0078 0.0062 2.6998

1.0 0.5 0.0391 0.0062 2.6784

2.0 1.0 0.0781 0.0062 2.6794

3.0 1.5 0.1172 0.0062 2.5616

4.0 2.0 0.1563 0.0062 2.3817

5.0 2.5 0.1953 0.0062 2.1671

6.0 3.0 0.2344 0.0062 1.7031

7.0 3.5 0.2734 0.0062 1.1052

8.0 4.0 0.2930 0.0054 0.7481

9.0 4.5 0.3296 0.0054 0.5329

10.0 5.0 0.3662 0.0054 0.3495

11.0 5.5 0.4028 0.0054 0.2399

12.0 6.0 0.4395 0.0054 0.1807

13.0 6.5 0.4886 0.0057 0.1303

14.0 7.0 0.5262 0.0057 0.0979

15.0 7.5 0.5637 0.0057 0.0723

16.0 8.0 0.6076 0.0058 0.0536

17.0 8.5 0.6455 0.0058 0.0414

18.0 9.0 0.6835 0.0058 0.0325

19.0 9.5 0.7215 0.0058 0.0264

20.0 i0.0 0.7595 0.0058 0.0213

21.0 10.5 0.7974 0.0058 0.0178

22.0 ii.0 0.8354 0.0058 0.0148

23.0 11.5 0.8734 0.0058 0.0126

24.0 12.0 0.9114 0.0058 0.0109

25.0 12.5 0.9493 0.0058 0.0097

26.0 13.0 0.9873 0.0058 0.0087

27.0 13.5 1.1253 0.0070 0.0082

28.0 14.0 1.1670 0.0070 0.0075

29.0 14.5 1.2086 0.0070 0.0070

30.0 15.0 1.2503 0.0070 0.0066

31.0 15.5 1.2112 0.0062 0.0063

32.0 16.0 1.2503 0.0062 0.0060

33.0 16.5 1.2894 0.0062 0.0058

34.0 17.0 1.3285 0.0062 0.0056

35.0 17.5 1.3675 0.0062 0.0055

36.0 18.0 1.4066 0.0062 0.0054

37.0 18.5 1.5500 0.0071 0.0053

38.0 19.0 1.5500 0.0067 0.0052

39.0 19.5 1.5500 0.0064 0.0052

40.0 20.0 1.5500 0.0061 0.0051





TABLE 4

SIGMA1 (ACTUAL)=0. 0027 S/M

WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIG1 SIGeff

0.0 0.i 0.0078 0.0062 2.7001

1.0 0.5 0.0391 0.0062 2.6894

2.0 1.0 0.0781 0.0062 2.7387

3.0 1.5 0.0586 0.0015 2.7221

4.0 2.0 0.0781 0.0015 2.7030

5.0 2.5 0.0977 0.0015 2.7093

6.0 3.0 0.1672 0.0031 2.3818

7.0 3.5 0.1951 0.0031 1.6995

8.0 4.0 0.2229 0.0031 1.2689

9.0 4.5 0.2508 0.0031 1.0030

I0.0 5.0 0.2786 0.0031 0.7038

11.0 5.5 0.2874 0.0028 0.5150

12.0 6.0 0.3135 0.0028 0.4217

13.0 6.5 0.3396 0.0028 0.3189

14.0 7.0 0.3657 0.0028 0.2518

15.0 7.5 0.3918 0.0028 0.1897

16.0 8.0 0.4180 0.0028 0.1405

17.0 8.5 0.4566 0.0029 0.1086

18.0 9.0 0.4835 0.0029 0.0843

19.0 9.5 0.5103 0.0029 0.0680

20.0 i0.0 0.5372 0.0029 0.0528

21.0 10.5 0.5640 0.0029 0.0426

22.0 ll.O 0.5909 0.0029 0.0332

23.0 11.5 0.6177 0.0029 0.0265

24.0 12.0 0.6446 0.0029 0.0217

25.0 12.5 0.6715 0.0029 0.0180

26.0 13.0 0.6983 0.0029 0.0151

27.0 13.5 0.7252 0.0029 0.0128

28.0 14.0 0.7520 0.0029 0.0109

29.0 14.5 0.7789 0.0029 0.0095

30.0 15.0 0.8058 0.0029 0.0083

31.0 15.5 0.9326 0.0037 0.0073

32.0 16.0 0.962"7 0.0037 0.0067

33.0 16.5 0.9928 0.0037 0.0061

34.0 17.0 1.0229 0.0037 0.0055

35.0 17.5 1.0529 0.0037 0.0051

36.0 18.0 1.0830 0.0037 0.0047

37.0 18.5 1.1131 0.0037 0.0044

38.0 19.0 1.1432 0.0037 0.0041

39.0 19.5 1.1733 0.0037 0.0038

40.0 20.0 1.2034 0.0037 0.0036





TABLE 5

SIGMA1 (ACTUAL)=0.027 S/M
WORKING WITH

ZZSOM

XSTART= 0. 5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIG1 SIGeff

0.0 0.I 0.0156 0.0247 2.6973

1.0 0.5 0.0781 0.0247 2.5953

2.0 1.0 0.1563 0.0247 2.2046

3.0 1.5 0.2469 0.0274 1.6041

4.0 2.0 0.3292 0.0274 1.0232

5.0 2.5 0.4115 0.0274 0.6057

6.0 3.0 0.4938 0.0274 0.3527

7.0 3.5 0.5760 0.0274 0.2107

8.0 4.0 0.6583 0.0274 0.1324

9.0 4.5 0.7469 0.0279 0.0884

i0.0 5.0 0.8299 0.0279 0.0631

ii.0 5.5 0.9191 0.0283 0.0481

12.0 6.0 1.0027 0.0283 0.0388

13.0 6.5 1.0862 0.0283 0.0330

14.0 7.0 1.1652 0.0281 0.0294

15.0 7.5 1.2484 0.0281 0.0270

16.0 8.0 1.5500 0.0380 0.0256

17.0 8.5 1.5500 0.0337 0.0247

18.0 9.0 1.5500 0.0301 0.0242

19.0 9.5 1.5000 0.0253 0.0240

20.0 i0.0 1.6274 0.0268 0.0241

21.0 9.5 1.5500 0.0270 0.0240

22.0 9.0 1.5500 0.0301 0.0242

23.0 8.5 1.5500 0.0337 0.0247

24.0 8.0 1.5500 0.0380 0.0256

25.0 7.5 1.2500 0.0281 0.0270

26.0 7.0 1.1667 0.0281 0.0294

27.0 6.5 1.0833 0.0281 0.0330

28.0 6.0 1.0000 0.0281 0.0388

29.0 5.5 0.9167 0.0281 0.0481

30.0 5.0 0.8333 0.0281 0.0631

31.0 4.5 0.7500 0.0281 0.0884

32.0 4.0 0.6667 0.0281 0.1324

33.0 3.5 0.5833 0.0281 0.2107

34.0 3.0 0.500[) 0.0281 0.3527

35.0 2.5 0.4167 0.0281 0.6057

36.0 2.0 0.3333 0.0281 1.0232

37.0 1.5 0.2500 0.0281 1.6041

38.0 1.0 0.1667 0.0281 2.2046

39.0 0.5 0.0833 0.0281 2.5953

40.0 0.i 0.016"I 0.0281 2.6973





TABLE 6

SIGMA1 (ACTUAL) =0. 0054 S/M

WORKING WITH

ZZSOM

XSTART= 0. 5000000

KNOW D1 AND SIG2, SOLVE FOR X=D1/DELT1 AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIGI SIGeff

0.0 0.i 0.0078 0.0062 2.6998

1.0 0.5 0.0391 0.0062 2.6784

2.0 1.0 0.0781 0.0062 2.5848

3.0 1.5 0.1172 0.0062 2.3914

4.0 2.0 0.1563 0.0062 2.0990

5.0 2.5 0.1953 0.0062 1.7409

6.0 3.0 0.2344 0.0062 1.3686

7.0 3.5 0.2734 0.0062 1.0287

8.0 4.0 0.2930 0.0054 0.7481

9.0 4.5 0.3296 0.0054 0.5329

i0.0 5.0 0.3662 0.0054 0.3759

ii.0 5.5 0.4028 0.0054 0.2650

12.0 6.0 0.4395 0.0054 0.1879

13.0 6.5 0.4886 0.0057 0.1348

14.0 7.0 0.5262 0.0057 0.0979

15.0 7.5 0.5637 0.0057 0.0723

16.0 8.0 0.6076 0.0058 0.0544

17.0 8.5 0.6455 0.0058 0.0417

18.0 9.0 0.6835 0.0058 0.0325

19.0 9.5 0.7215 0.0058 0.0259

20.0 i0.0 0.7595 0.0058 0.0210

21.0 9.5 0.7215 0.0058 0.0259

22.0 9.0 0.6835 0.0058 0.0325

23.0 8.5 0.6500 0.0059 0.0417

24.0 8.0 0.6118 0.0059 0.0544

25.0 7.5 0.5646 0.0057 0.0723

26.0 7.0 0.5269 0.0057 0.0979

27.0 6.5 0.4893 0.0057 0.1348

28.0 6.0 0.4517 0.0057 0.1879

29.0 5.5 0.4140 0.0057 0.2650

30.0 5.0 0.3764 0.0057 0.3759

31.0 4.5 0.3387 0.0057 0.5329

32.0 4.0 0.3011 0.0057 0.7481

33.0 3.5 0.2635 0.0057 1.0287

34.0 3.0 0.2258 0.0057 1.3686

35.0 2.5 0.1882 0.0057 1.7409

36.0 2.0 0.1506 0.0057 2.0990

37.0 1.5 0.1129 0.0057 2.3914

38.0 1.0 0.0753 0.0057 2.5848

39.0 0.5 0.0376 0.0057 2.6784

40.0 0.i 0.0075 0.0057 2.6998





TABLE 7

SIGMA1 (ACTUAL)=0.0027 S/M
WORKING WITH

ZZSOM

XSTART= 0.5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIGI SIGeff

0.0 0.I 0.0078 0.0062 2.7001

1.0 0.5 0.0391 0.0062 2.6894

2.0 1.0 0.0781 0.0062 2.6414

3.0 1.5 0.0586 0.0015 2.5379

4.0 2.0 0.0781 0.0015 2.3690

5.0 2.5 0.0977 0.0015 2.1376

6.0 3.0 0.1672 0.0031 1.8600

7.0 3.5 0.1951 0.0031 1.5616

8.0 4.0 0.2229 0.0031 1.2689

9.0 4.5 0.2508 0.0031 1.0030

i0.0 5.0 0.2786 0.0031 0.7760

ii.0 5.5 0.2874 0.0028 0.5912

12.0 6.0 0.3135 0.0028 0.4462

13.0 6.5 0.3396 0.0028 0.3353

14.0 7.0 0.3657 0.0028 0.2518

15.0 7.5 0.3918 0.0028 0.1897

16.0 8.0 0.4180 0.0028 0.1437

17.0 8.5 0.4566 0.0029 0.1096

18.0 9.0 0.4835 0.0029 0.0843

19.0 9.5 0.5103 0.0029 0.0654

20.0 i0.0 0.5372 0.0029 0.0513

21.0 9.5 0.5103 0.0029 0.0654

22.0 9.0 0.4835 0.0029 0.0843

23.0 8.5 0.4566 0.0029 0.1096

24.0 8.0 0.4297 0.0029 0.1437

25.0 7.5 0.4029 0.0029 0.1897

26.0 7.0 0.3760 0.0029 0.2518

27.0 6.5 0.3492 0.0029 0.3353

28.0 6.0 0.3223 0.0029 0.4462

29.0 5.5 0.2954 0.0029 0.5912

30.0 5.0 0.2686 0.0029 0.7760

31.0 4.5 0.2417 0.0029 1.0030

32.0 4.0 0.2149 0.0029 1.2689

33.0 3.5 0.1880 0.0029 1.5616

34.0 3.0 0.1612 0.0029 1.8600

35.0 2.5 0.1343 0.0029 2.1376

36.0 2.0 0.1074 0.0029 2.3690

37.0 1.5 0.0806 0.0029 2.5379

38.0 1.0 0.053'7 0.0029 2.6414

39.0 0.5 0.0269 0.0029 2.6894

40.0 0.i 0.0054 0.0029 2.7001





Appendix

The MIMrepresentation of the normalized secondary

field produced by induced ohmic currents in a two-layered

conducting model (see Figure I) for a horizontal[ coplanar coil

pair is given by

(Hs/Hp) = ZZ = [2R2 l]/[R 2 + 1] 5/2 (A-l)

and

R - [2h + (l-i} Q 61]/p , (A-2)

where [2h + (l-i) Q 61] is the complex vertical distance

separating the primary dipole source from the image source, h is

the real altitude of the bird above the first layer surface,

[(l-i) Q 61]/2 is the complex distance below the first layer

surface of the image plane, p is the coil spacing, 61 is the

first layer (sea ice) s|:in depth, and finally Q is the two-layer

correction factor given by

Q - [(61/52 ) + tanh{(l+i)dl/61}]/[l + (61/62 ) tanh{(l+i)dl/61}]

dI is the first layer :_hickness and 62 is the skin depth of the

second layer (sea water). The thickness or depth of the second

layer, d2, is assumed to be greater than 2 62 in this analysis.

(In order to determine the sea depth, a third lower frequency

signal must be employed.) The R function can be interpreted

geometrically as cotan 4, where 4 is the complex angle indicated

in Figure i.

In all MIM inversion schemes, Equation (A-2) is

inverted by means of a polynomial expression which gives R as a

function of ZZ:

(A-3)





R - I/s as bs 3 - cs 5 - ds 7 , (A-4)

where s - (ZZ/2) I/3 and for this coil configuration a - i

b - 9/8, c - 31/12, and d - 267_384. This inverted relationship

is of paramount importance in all MIM inversion routines, i.e.,

from the value of R calculated from the AEM fields the values of

the model parameters are determined.

Halfspace inversion

A halfspace inversion is defined by the condition Q -

i. Thus Equation (A-2) can be inverted to give values for the

bird altitude h and the _kin depth 61:

2h/p - R I + R 2

61/p -, _ R 2 ,

where R I and R 2 are the real and imaginary components of R. In

the event that the conditions which make Q - I are not satisfied

(Q - I if =2 - °l or d I > 2 61) , then the halfspace inversion

results in an effective _;kin depth and bird altitude.

Two layer inversion for sea ice conductivity

In this inversion it is assumed that the only unknown

is the first layer skin depth, i.e., the altitude, the second

layer skin depth, and the first layer thickness are known from

the altimeter reading a_d the low frequency invc_rsion results.

The algebraic manipulations of Equations (A-2) and (A-3) that

result in the two simultaneous equations mentioned in the

narrative proceed as follows:
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to produce

First Q61 is solved for explicitly from Equation (A-2)

Q61 - [p R(hi) 2h]/(l i) (A-5)

Next the expression for Q from Equation (A-3) i_: substituted into

Equation (A-5) and the resultant equation is rearranged to solve

explicitly for tanh{(l+i)dl/61]:

tanh{(l+i)dl/6 I} - [(C - 1)(62/61)]/[1 - C62/6 I]

= D(61,62 C) (A-6)

C is a known complex number given by

C - [p R(hi) 2 h]/[(l i) 62] ,

and D is a complex function of the unknown 61 and the known

quantities C and 62 . 11 we set D = DI + i D 2 and expand

tanh{(l+i)dl/61) by

tanh{(l+i)dl/61} - [tanh(dl/61) + i tan(dl/61)]/[l +

i tanh(dl/61) tan(dl/61) ] ,

we get

[tanh(dl/61) + i tan(dl/61)]/[l + i tanh(dl/61) tan(dl/61) ]

- DI + i D2 (A-7)

Finally, if we equate _le real and imaginary parts of Equation

(A-7), we find

tanh(dl/61) - D I - D 2 tan(dl/6 I) tanh(dl/6 I)

tan(dl/61) - D2 + DI tan(dl/6 I) tanh(dl/6 I)

These can be combined to give

D2 tan2(dl/61 ) - (DI 2 + D22 I) tan(dl/6 I)

and

D I tanh2(dl/6 I)

D 2 - 0 (A-8a)

(DI 2 + D22 + 1) tanh(dl/6 I) + D I - 0 (A- 8b)

9





Both of these equations are of the quadratic form a x2 + b x + c,

and hence explicit expressions for tanh(dl/61) and tan(dl/6 I) can

be written. But first it should be noted that for the tan

equation, a - - c - D2, and thus

tan(dl/81) - - b/2a ± [(b/2a) 2 + 1] 1/2 ,

and similarly for the tar_h equation, since a - c - DI,

tanh(dl/61) =_ - b/2a ± [(b/2a) 2 1] 1/2

The physical constraint that the roots of these

equations be real and positive results in the following

solutions:

tan(dl/61) = Fl(dl/81) + [F12(dl/8 I) + 111/2

for 0 _ (dl/61) < _/2, and

tan(dl/61) = FI - [FI 2 + 111/2

for _/2 ! (dl/61) < _, where

FI - [DI 2 + D22 - 1]/(2 D2)

tanh(dl/61) - F2 + [F22 111/2

where

(A-9a)

(A-9b)

(A-lO)

F2 - [DI 2 + D22 + 1]/(2 DI)

A root finding algorithm given below is used to find

the real positive roots of Equation (A-9a) or (A-9b). These

roots are substituted i1_to Equation (A-IO) to find the one root

of Equation (A-9a) or (A-gb) that is simultaneously a root of

Equation (A-IO). This value of (dl/61) is used to determine 61

and in turn oI.

i0
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Sea Ice Inversion

The MIM inver_ion of sea ice AEM data taken at two

frequencies, i000 Hz (flo) and 250 kHz (fhi), and for two AEM

coil configurations, horizontal coplanar and ve[tical coaxial,

is outlined below.

The low freql:ency data are first inverted to give

(h + dl) and a2, where h Ls the altitude of the bird above the sea

ice, d is the ice thickness, and o 2 is the electrical

conductivity of the sea. This inversion assumes: the following:

i. The skin depth of the sea ice 61(lo ) is much greater than the

thickness of the sea ice and hence the sea ice Js effectively

transparent to the low frequency primary signal.

2. The sea bottom does 1,ot affect the secondary field. This

assumption is valid provided that the sea depth d 2 is greater

1





than twice the low freque1_cy skin depth of the sea, i.e., d2 > 2

62(lo ) . These two assumptions allow a halfspace inversion. The

algebra and computer algorithms for the halfspace inversion are

given in the Appendix.

It is assumed that the altitude h is independently

determined by a radar or laser altimeter. Thus the inversion

results in a local value for the sea ice thickness dI and the

conductivity of the sea _ater, a2. These results are employed in

the inversion of the hig_ frequency data to determine the sea ice

conductivity.

Outline of high frequency inversion

First a half,;pace inversion of the high frequency data

is performed. This prod_Lces an effective skin depth _eff which

lies in the range 62 _ _eff _ _i, and is a fun(_tion of ice

thickness d I. The effec_::ive high frequency skin depth is

combined with the altime_:er reading h to form the ratio Aef f =

2h/6ef f. The ad hoc nor,Lalization function employed in MIM

inversion is a function of Aeff, i.e.,

MIM field _ Normalized field = F(Aeff) Sommerfeld field

It turns out that the sa_He norma]ization function F(Aeff) may be

employed for both coil configurations.

For d I << _i' _eff m _2 and for dI > 2_i, then _eff :

6 I. Since dI is known from the low frequency inversion, this

latter case may be recogtlized and hence the first layer

conductivity aI is determined from _eff by

2





o I - 2/[_0 f_hi) 6eff 2 ] ,

where #0 is the vacuum magnetic permittivity. The condition

d I > 2 61 only occurs for thick (d I _ 10m), highly conducting (o I

> 0.027 S/m) sea ice. For the intermediate, more general

situation where 6eff/d I Js of the order of unity, the inversion

procedure to be used is t:hat described below.

The MIM relat:ionship between the complex two-layer

correction factor Q and t:he high frequency AEM field is

algebraically transformed into two simultaneous transcendental

real equations with arguz_ent dl/61, where 61 is the unknown

quantity. All other quaiLtities in these equations are known.

Each of these equations |_as in general several roots, BUT only one

common root. The explicit functions that occur respectively in

these equations are tan(_il/6 I) and tan_(dl/61). A root-finding

algorithm is first appli_d to the tan(dl/61) eq,lation. When a

root is determined, that root is inserted in the tanh(dl/61)

equation to test if it i:_ also a root of the ta_lh(dl/61)

equation. If not, the algorithm continues in its determination

of the real roots of the tan(dl/61) equation until the root is

found that simultaneousl_ satisfies both equations. The first

layer skin depth 61 and :onductivity o I are given by that

simultaneous root.

The range of applicability of the root finding

algorithm is given by 0.1_J2< dl/61 < 2.5. These limits can be

understood in physical terms. For dl/61 > 2.5 the sea ice is

effectively a halfspace as has been already noted, and a two





layer model is inappropriate. For dl/61 < 0.02 the perturbation

produced on the secondar_ AEMfield by the sea ice cover is lost

in the computer "noise" (aused by roundoff, etc., and will

certainly be undetectabl_ _ in the noise and drift present in even

ideal real data, where n_,ise and drift are greater than about i

ppm.

The lower ic_ thickness limit on the detectability of

sea ice conductivity is illustrated in the following table which

assumesa value of sea w,_ter conductivity of a2 _ 2.7 S/m and an

operating frequency of 250 Khz.

a2/a I 61 minimumd1

i00 - 6 m - 0.i m

I000 - 20 m - 0.3 m

The algebraic details of this procedure and the root finding

algorithm are given in the Appendix.

Results

The MIM inversion procedure that has been described is

applied to several sea _ce models. In all of the models used the

low and high frequencies assumed for the AEMsystem are i kHz and

250 kHz, respectively; the altitude of the AEMbird is 25 m; the

conductivity of the sea water a 2 is 2.7 S/m; arid the conductivity

of the sea ice a I for each model has input values of 0.027 S/m,

0.0054 S/m, and 0.0027 S/m. Thus the ratio K of the

4





conductivities of sea wa:;er to sea ice has the values i00, 500,

and i000, respectively.

With these general conditions, the first model of ice

thickness versus range ([iducial number) is giw_n in Figure i.

The ice thickness increa._es linearly with increasing range.

Horizontal Coplanar Ca_e

The results of the inversion of the ZZ field for a1

are shown in Figure 2. }'he inversion values for 01 are in fair

agreement with the input values except for the case with a I =

0.027 S/m. The problem occurs at an ice thickness of

approximately 9.5 m. For a I = 0.027 S/m the skin depth of the

sea ice is about 6 m, thus the ratio of ice thickness to skin

depth (which is the argument of both the tan and tanh functions)

is about pi/2, where the tangent becomes singular and double

valued. More importantly, in the immediate vicinity of pi/2,

tan(dl/61) varies rapidly. In spite of this, the root finding

inversion algorithm sti]l works when the exact forward MIM field

ZZ(MIM) is used as the input field (see Table ]). When a

simultaneous root cannot: be found for the normalized Sommerfeld

field in the vicinity of _/2, a value of 1.55 Js assumed for x.

See Table 2. It is the residual differences between the

normalized Sommerfeld field (or real field data) and the exact

MIM field that causes tl,e root finding algorithm that we are

currently using to fail for x = dl/61 = _/2.

It should b,!_noted that this value of _/2 will most
9
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likely not be encountered in field surveys where ice

conductivities will generally be less than 0.0054 S/m (K = 500).

Table 3 shows that for _ = 500, x is less than _/2 for sea ice

thicknesses up to 20 m.

A shallow ice keel model is shown in Figure 3. Figure 4

shows the values of aI ]or this model produced by the inversion

algorithm for K - i00, 500, and i000. These results are also

listed in Tables 5, 6, and 7.

In all of the tables we have included the results of

the halfspace inversion of the high frequency data which gives

Oef f. It can be seen for the case K - i00 when x > 2.4, aef f =

ainpu t. This demonstrates that when the ice thickness is greater

than 2.4 skin depths, a halfspace inversion yi4_ids good results

for the ice conductivity. Although values of x > 2.4 will

probably not be found in survey data taken at a high frequency of

250 kHz, still higher frequencies of about i MHz will bring x

into this range.

Finally, the results of the inversion are shown in

Figure 3 for a shallow ice keel model. The tabulated results are

shown in Tables 5, 6, and 7.

In summary_ the present inversion algorithm for o I

works well except in the vicinity of dl/61 = _/2. We are

continuing efforts to .Lodify and imRrove the existing algorithm.

Vertical Coaxial Case

Results similar to the horizontal coplanar case are

6





obtained for this coil configuration.

Appendix

The MIM representation of the normalized secondary

field produced by induced ohmic currents in a two-layered

conducting model (see Figure I) for a horizontal coplanar coil

pair is given by

(Hs/Hp) _ ZZ = [2R 2 l]/[R 2 + f]5/2 (A-la)

and for a vertical coaxial coil pair is given by

(Hs/Hp) m XX = [R2 2]/[R 2 + 1] 5/2 , (A-ib)

where for both cases

R = [2h + (i-i_ Q 61]/p , (A-2)

and [2h + (l-i) Q 61] is the complex vertical distance

separating the primary dipole source from the image source, h is

the real altitude of the, bird above the first layer surface,

I(l-i) Q 61]/2 is the complex distance below the first layer

surface of the image pl,_ne, p is the coil spacing, 61 is the

first layer (sea ice) skin depth, and finally Q is the two-layer

correction factor given by

Q - [(61/62) + tanh|(]+i)dl/61]]/[l + (61/62 ) tanh[(l+i)dl/61}]

dI is the first layer t_hickness and 62 is the skin depth of the

second layer (sea water). The thickness or depth of the second

layer, d2, is assumed tc_ be greater than 2 62 in this analysis.

(In order to determine the sea depth, a third lower frequency

signal must be employed.) The R function can be interpreted

geometrically as cotan $, where _ is the comp]ex angle indicated

(A-3)

7





in Figure i.

In MIM inversion schemes for both cases, Equation (A-2)

is inverted by means of a polynomial expression which gives R as

a function of ZZ or XX:

I/R - as + bs3 + cs5 + ds7 + es9 , (A-4)

where s = (ZZ/2) I/3 for the horizontal coplanar configuration and

(2XX)I/3 for the vertical coaxial case. The values for the

coefficients for the twc coil configurations axe given in the

following table. These inverted relationships are of paramount

importance in all MIM lI_version routines, i.e., the values of the

model parameters are determined from the value of R calculated

from the AEMfields.

coil configuration

horizontal coplanar

vertical coaxial

a b c d e

I I 2.069 -3 125.1

1 1.5 1.125 32.08 203.7

Halfspace inversions

A halfspace inversion is defined by the condition Q =

I. Thus Equation (A-2) can be inverted to give values for the

bird altitude h and the skin depth 61:

2h/p - R I + R 2

81/p = R 2 ,

where R I and R2 are th( real and imaglnary components of R. In

the event that the conditions which make Q = ] are not satisfied

(Q _ i if a2 = o I or dE > 2 61) , then the halfspace inversion

results in an effectiw:_ skin depth and bird altitude.

8





Two layer inversion for sea ice conductivity

In this inversion it is assumed that the only unknown

is the first layer skin depth, i.e., the altitude, the second

layer skin depth, and the first layer thickness are known from

the altimeter reading and the low frequency inversion results.

The algebraic manipulations of Equations (A-2) and (A-3) that

result in the two simultaneous equations mentioned in the

narrative proceed as fo]lows:

First Q61 is solved for explicitly from Equation (A-2)

to produce

Q61 - [p }<(hi) 2h]/(l - i) (A-5)

Next the expression for Q from Equation (A-3) Js substituted into

Equation (A-5) and the resultant equation is rearranged to solve

explicitly for tanh((l+i)dl/61):

tanh((l+i)dl/6 I} = [(C _ 1)(62/61)]/[1

D(61,62C)

C is a known complex nullber given by

C = [p R(hi) 2 h]/[(l

C62/61

(A-6)

i) _2] ,

and D is a complex function of the unknown 61 and the known

quantities C and 62 . If we set D _ D I + i D 2 and expand

tanh((l+i)dl/6 I) by

tanh((l+i)dl/6 I} = [tanh(dl/_l) + i tan(dl/61)]/[l +

i tanh(dl/6 I) tan(dl/61) ]

we get

[tanh(dl/61) + i tan(d]/61)]/[l + i tanh(dl/6l) tan(dl/61) ]

9





- DI + i D 2 (A-7)

Finally, if we equate the real and imaginary parts of Equation

(A-7), we find

tanh(dl/61 ) m D I D2 t:an(dl/61) tanh(dl/61)

tan(dl/61) = D 2 + D 1 tan(dl/6 I) tanh(dl/6 I)

These can be combined to give

(DI 2 + D22 I) tan(dl/61) D2 = 0 (A-8a)D2 tan2(dl/61 )

and

DI tanh2(dl/6 I) (DI2 _ D22 + i) tanh(dl/61) _ D 1 = 0 . (A-8b)

Both of these equations are of the quadratic form a x 2 + b x + c,

and hence explicit expressions for tanh(dl/61) and tan(dl/61) can

be written. But first it should be noted that for the tan

equation, a z _ c = D2, and thus

tan(dl/61) =- b/2a ± [(b/2a) 2 + 1] 1/2 ,

and similarly for the tanh equation, since a = c = DI,

tanh(dl/61) = b/2a ± [(b/2a) 2 - 1] 1/2

The physical constraint that the roots of these

equations be real and positive results in the following

solutions:

tan(dl/61) - Fl(dl/61) + [Fl2(dl/_l ) + 111/2

for 0 _ (dl/6 I) < _/2, and

tan(dl/61) = FI [FI 2 + 1]1/2 ,

for _/2 ! (dl/61) < _, where

FI = [DI? + D22 1]/(2 D2)

(A-9a)

(A-9b)

(A-IO)tanh(dl/61) = F 2 + [F22 1] 1/2

iO





where

F2 = [DI2 _ D22 + 1]/(2 DI)

A root findiI_g algorithm given below is used to find

the real positive roots _,f Equation (A-ga) or (A-9b). These

roots are substituted int_o Equation (A-IO) to find the one root

of Equation (A-9a) or (A.9b) that is simultaneously a root of

Equation (A-IO). This v._lue of (dl/61) is used to determine 61

and in turn a I.
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TABLE 1

SIGMA1 (ACTUAL)=0.1)27 S/M

WORKING WITH

ZZMIM

XSTART = 0 .5000000

KNOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE

SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,

AND IT IS COMPUTED ONLY WHEN INVERTING ZZSOM

SIGI.

FID D1 X SIG1 SIGeff

0.0 0.i 0.0156 0.0247 2.6960

1.0 0.5 0.0783. 0.0247 2.5941

2.0 1.0 0.1563 0.0247 2.2813

3.0 1.5 0.2344 0.0247 1.7051

4.0 2.0 0.325(9 0.0268 1.1303

5.0 2.5 0.4063 0.0268 0.7022

6.0 3.0 0.487!5 0.0268 0.4009

7.0 3.5 0.5687 0.0268 0.2198

8.0 4.0 0.6500 0.0268 0.1332

9.0 4.5 0.7312 0.0268 0.0884

i0.0 5.0 0.8125 0.0268 (].0613

ii.0 5.5 0.9000 0.0271 0.0461

12.0 6.0 0.9818 0.0271 0.0373

13.0 6.5 1.0636 0.0271 0.0315

14.0 7.0 1.1455 0.0271 0.0277

15.0 7.5 1.2273 0.0271 0.0253

16.0 8.0 1.3091 0.0271 0.0238

17.0 8.5 1.3909 0.0271 0.0228

18.0 9.0 1.4727 0.0271 0.0224

19.0 9.5 1.55G0 0.0270 0.0221

20.0 i0.0 1.6355 0.0271 0.0222

21.0 10.5 1.7172 0.0271 0.0223

22.0 ii.0 1.7990 0.0271 0.0226

23.0 11.5 1.8808 0.0271 0.0230

24.0 12.0 1.9626 0.0271 0.0234

25.0 12.5 2.0443 0.0271 0.0237

26.0 13.0 2.1218 0.0270 0.0241

27.0 13.5 2.2035 0.0270 0.0244

28.0 14.0 2.2851 0.0270 0.0247

29.0 14.5 2.3667 0.0270 0.0250

30.0 15.0 2.44_3 0.0270 0.0252

31.0 15.5 2.5299 0.0270 0.0254

32.0 16.0 2.6115 0.0270 0.0255

33.0 16.5 2.6931 0.0270 0.0257

34.0 17.0 2.7747 0.0270 0.0258

35.0 17.5 2.8563 0.0270 0.0258

36.0 18.0 2.9379 0.0270 0.0259

37.0 18.5 3.0195 0.0270 0.0259

38.0 19.0 3.1012 0.0270 0.0259

39.0 19.5 3.1828 0.0270 0.0259

40.0 20.0 3.2644 0.0270 0.0259





TABLE 2

SIGMA1 (ACTUAL)=0.()27 S/M
WORKING_qITH
ZZSOM
XSTART= 0. 5000000
K_OWD1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE SIGI.
SIGeff IS THE HALF-SPACE EFFECTIVE CO_;DUCTIVITY,
AND IT IS COMPUTEDONLY WHENI_VERTING ZZSOM

FID D1 X SIG1 SIGeff
0.0 0.1 0.0156 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2816
3.0 1.5 0.2344 0.0247 1.7033
4.0 2.0 0.3375 0.0289 1.1265
5.0 2.5 0.4087 0.0271 0.6976
6.0 3.0 0.4904 0.0271 0.3973
7.0 3.5 0.5722 0.0271 0.2178
8.0 4.0 0.6664 0.0281 0.1324
9.0 4.5 0.7497 0.0281 0.0884

i0.0 5.0 0.833C_ 0.0281 0.0619
ii.0 5.5 0.9169 0.0281 0.0471
12.0 6.0 0.9996 0.0281 0.0386
13.0 6.5 1.0829 0.0281 0.0330
14.0 7.0 1.1662 0.0281 0.0294
15.0 7.5 1.2495 0.0281 0.0270
16.0 8.0 1.5500 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.5500 0.0301 I).0242
19.0 9.5 1.4875 0.0248 I).0240
20.0 i0.0 1.5500 0.0243 0.0240
21.0 10.5 1.7131 0.0270 0.0241
22.0 ii.0 1.7947 0.0270 0.0244
23.0 11.5 1.8763 0.0270 0.0247
24.0 12.0 1.9579 0.0270 0.0250
25.0 12.5 2.0394 0.0270 0.0253
26.0 13.0 2.1210 0.0270 0.0256
27.0 13.5 2.2026 0.0270 0.0259
28.0 14.0 2.2842 0.0270 0.0261
29.0 14.5 2.3657 0.0270 0.0264
30.0 15.0 2.4473 0.0270 0.0265
31.0 15.5 2.5259 0.0270 0.0267
32.0 16.0 2.6105 0.0270 0.0268
33.0 16.5 2.6921 0.0270 0.0269
34.0 17.0 2.7736 0.0270 0.0270
35.0 17.5 2.8552 0.0270 0.0271
36.0 18.0 2.9383 0.0270 0.0271
37.0 18.5 3.0199 0.0270 0.0271
38.0 19.0 3.1024 0.0270 0.0271
39.0 19.5 1.5500 0.0064 0.0271
40.0 20.0 1.55<30 0.0061 0.0271





.ABLE 3

SIGI%AI (ACTUAL)=0.0054 S/M
WORKINGWITH
ZZSOM
XSTART= 0. 5000000
KNOWD1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE SIGI.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,
AND IT IS COMPUTEDONLY WHENINVERTING ZZSOM

FID D1 X SIG1 SIGeff
0.0 0.i 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.6794
3.0 1.5 0.1172 0.0062 2.5616
4.0 2.0 0.1563 0.0062 2.3817
5.0 2.5 0.1953 0.0062 2.1671
6.0 3.0 0.2344 0.0062 1.7031
7.0 3.5 0.2734 0.0062 1.1052
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.3296 0.0054 0.5329

i0.0 5.0 0.3662 0.0054 0.3495
11.0 5.5 0.4028 0.0054 0.2399
12.0 6.0 0.4395 0.0054 0.1807
13.0 6.5 0.4B86 0.0057 0.1303
14.0 7.0 0.5262 0.0057 0.0979
15.0 7.5 0.5637 0.0057 0.0723
16.0 8.0 0.6076 0.0058 0.0536
17.0 8.5 0.6455 0.0058 0.0414
18.0 9.0 0.6835 0.0058 0.0325
19.0 9.5 0.7215 0.0058 0.0264
20.0 i0.0 0.7595 0.0058 0.0213
21.0 10.5 0.7974 0.0058 0.0178
22.0 ii.0 0.8354 0.0058 0.0148
23.0 11.5 0.8734 0.0058 0.0126
24.0 12.0 0.9114 0.0058 0.0109
25.0 12.5 0.9493 0.0058 0.0097
26.0 13.0 0.9873 0.0058 0.0087
27.0 13.5 1.1253 0.0070 0.0082
28.0 14.0 1.1670 0.0070 0.0075
29.0 14.5 1.2086 0.0070 0.0070
30.0 15.0 1.2503 0.0070 0.0066
31.0 15.5 1.2112 0.0062 0.0063
32.0 16.0 1.2503 0.0062 0.0060
33.0 16.5 1.2894 0.0062 0.0058
34.0 17.0 1.3285 0.0062 0.0056
35.0 17.5 1.3675 0.0062 0.0055
36.0 18.0 1.4066 0.0062 0.0054
37.0 18.5 1.5500 0.0071 0.0053
38.0 19.0 1.5500 0.0067 . 0.0052
39.0 19.5 1.5500 0.0064 0.0052
40.0 20.0 1.5500 0.0061 0.0051





TABLE 4

SIGMA1 (ACTUAL)=0.0027 S/M
WORKINGWITH
ZZSOM
XSTART= 0. 5000000
K_OWD1 AND SIG2, SOLVE FOR X=DI/DELT[ AND HENCE SIGI.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,
AND IT IS COMPUTEDONLY WHENI_[VERTING ZZSOM

FID D1 X SIG1 SIGeff
0.0 0.i 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.7387
3.0 1.5 0.0586 0.0015 2.7221
4.0 2.0 0.078] 0.0015 2.7030
5.0 2.5 0.0977 0.0015 2.7093
6.0 3.0 0.167_ 0.0031 2.3818
7.0 3.5 0.195i 0.0031 ]_.6995
8.0 4.0 0.2229 0.0031 ]..2689
9.0 4.5 0.2508 0.0031 1.0030

I0.0 5.0 0.2786 0.0031 0.7038
ii.0 5.5 0.2874 0.0028 0.5150
12.0 6.0 0.3135 0.0028 0.4217
13.0 6.5 0.3395 0.0028 0.3189
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897
16.0 8.0 0.4180 0.0028. 0.1405
17.0 8.5 0.4566 0.0029 0.1086
18.0 9.0 0.4835 0.0029 0.0843
19.0 9.5 0.5103 0.0029 0.0680
20.0 i0.0 0.5372 0.0029 0.0528
21.0 10.5 0.5640 0.0029 0.0426
22.0 ii.0 0.5909 0.0029 0.0332
23.0 11.5 0.6177 0.0029 0.0265
24.0 12.0 0.6446 0.0029 0.0217
25.0 12.5 0.6715 0.0029 0.0180
26.0 13.0 0.6983 0.0029 0.0151
27.0 13.5 0.7252 0.0029 0.0128
28.0 14.0 0.7520 0.0029 0.0109
29.0 14.5 0.77139 0.0029 0.0095
30.0 15.0 0.8058 0.0029 0.0083
31.0 15.5 0.9326 0.0037 0.0073
32.0 16.0 0.9627 0.0037 0.0067
33.0 16.5 0.9928 0.0037 0.0061
34.0 17.0 1.0229 0.0037 0.0055
35.0 17.5 1.0529 0.0037 0.0051
36.0 18.0 1.0830 0.0037 0.0047
37.0 18.5 1.1131 0.0037 0.0044
38.0 19.0 1.1432 0.0037 0.0041
39.0 19.5 1.1733 0.0037 0.0038
40.0 20.0 1.2C34 0.0037 0.0036





TABLE 5

SIGMA1 (ACTUAL)=0.027 SIM
WORKINGWITH
ZZSOM
XSTART= 0.5000000
_[OW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,
AND IT IS COMPUT_:DONLY WHENINVERTING ZZSOM

SIGI.

FID D1 X SIG1 SIGeff
0.0 0.1 0.0156 0.0247 2.6973
1.0 0.5 0.0781 0.0247 2.5953
2.0 1.0 0.1563 0.0247 2.2046
3.0 1.5 0.2469 0.0274 1.6041
4.0 2.0 0.3292 0.0274 1.0232
5.0 2.5 0.4115 0.0274 0.6057
6.0 3.0 0.49118 0.0274 0.3527
7.0 3.5 0.5760 0.0274 0.2107
8.0 4.0 0.65_3 0. 0274 0. 1324
9.0 4.5 0.7469 0.0279 0.0884

i0.0 5.0 0.8299 0.0279 0.0631
ii.0 5.5 0.9191 0.0283 0.0481
12.0 6.0 1.0027 0.0283 0.0388
13.0 6.5 1.0862 0.0283 0.0330
14.0 7.0 1.1652 0.0281 0.0294
15.0 7.5 1.2484 0.0281 . 0.0270
16.0 8.0 1.5500 0.0380 0.0256
17.0 8.5 1.5500 0.0337 0.0247
18.0 9.0 1.5500 0.0301 0.0242
19.0 9.5 1.5000 0.0253 0.0240
20.0 i0.0 1.6274 0.0268 0.0241
21.0 9.5 1.5500 0.0270 0.0240
22.0 9.0 1.5500 0.0301 0.0242
23.0 8.5 1.5500 0.0337 0.0247
24.0 8.0 1.5500 0.0380 0.0256
25.0 7.5 1.2500 0.0281 0.0270
26.0 7.0 1.1667 0.0281 0.0294
27.0 6.5 1.0833 0.0281 0.0330
28.0 6.0 1.0000 0.0281 0.0388
29.0 5.5 0.9[67 0.0281 0.0481
30.0 5.0 0.8333 0.0281 0.0631
31.0 4.5 0.7500 0.0281 0.0884
32.0 4.0 0.6667 0.0281 0.1324
33.0 3.5 0.5833 0.0281 0.2107
34.0 3.0 0.5000 0.0281 0.3527
35.0 2.5 0.4167 0.0281 0.6057
36.0 2.0 0.3333 0.0281 1.0232
37.0 1.5 0.2500 0.0281 1.6041
38.0 1.0 0.1667 0.0281 2.2046
39.0 0.5 0.0833 0.0281 2.5953
40.0 0.i 0.0167 0.0281 2.6973





TABLE 6

SIGMA1 (ACTUAL)=O.O054 S/M
WORKINGWITH
ZZSOM
XSTART= 0.5000000
KNOWD1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE SIGI.
SIGeff IS THE HALF-SPACE EFFECTIVE CO_;DUCTIVITY,
AND IT IS COMPUTEDONLY WHENINVERTING ZZSOM

FID D1 X SIG1 SIGeff
0.0 0.i 0.0078 0.0062 2.6998
1.0 0.5 0.0391 0.0062 2.6784
2.0 1.0 0.0781 0.0062 2.5848
3.0 1.5 0.1172 0.0062 2.3914
4.0 2.0 0.1563 0.0062 2.0990
5.0 2.5 0.1953 0.0062 1.7409
6.0 3.0 0.2344 0.0062 1.3686
7.0 3.5 0.2734 0.0062 1.0287
8.0 4.0 0.2930 0.0054 0.7481
9.0 4.5 0.3296 0.0054 0.5329

i0.0 5.0 0.3662 0.0054 0.3759
ii.0 5.5 0.4025 0.0054 0.2650
12.0 6.0 0.4395 0.0054 0.1879
13.0 6.5 0.4886 0.0057 0.1348
14.0 7.0 0.5262 0.0057 0.0979
15.0 7.5 0.563[ _ 0.0057 0.0723
16.0 8.0 0.6076 0.0058 0.0544
17.0 8.5 0.6455 0.0058 0.0417
18.0 9.0 0.6835 0.0058 0.0325
19.0 9.5 0.7215 0.0058 0.0259
20.0 i0.0 0.759!5 0.0058 0.0210
21.0 9.5 0.7215 0.0058 0.0259
22.0 9.0 0.6835 0.0058 0.0325
23.0 8.5 0.6500 0.0059 0.0417
24.0 8.0 0.611B 0.0059 0.0544
25.0 7.5 0.5646 0.0057 0.0723
26.0 7.0 0.5269 0.0057 0.0979
27.0 6.5 0.4893 0.0057 0.1348
28.0 6.0 0.4517 0.0057 0.1879
29.0 5.5 0.4140 0.0057 0.2650
30.0 5.0 0.3764 0.0057 0.3759
31.0 4.5 0.3387 0.0057 0.5329
32.0 4.0 0.3011 0.0057 0.7481
33.0 3.5 0.2635 0.0057 1.0287
34.0 3.0 0.2258 0.0057 1.3686
35.0 2.5 0.18S2 0.0057 1.7409
36.0 2.0 0.1506 0.0057 2.0990
37.0 1.5 0.ii_[9 0.0057 2.3914
38.0 1.0 0.0753 0.0057 2.5848
39.0 0.5 0.0376 0.0057 2.6784
40.0 0.i 0.00"15 0.0057 2.6998





TABLE 7

SIGMA1 (ACTUAL)=0.0027 S/M
WORKINGWITH
ZZSOM
XSTART= 0.5000000
_lOW D1 AND SIG2, SOLVE FOR X=DI/DELTI AND HENCE SIGI.
SIGeff IS THE HALF-SPACE EFFECTIVE CONDUCTIVITY,
_D IT IS COMPUTEDONLY WHENINVERTING ZZSOM

FID D1 X SIGI SIGeff
0.0 0.1 0.0078 0.0062 2.7001
1.0 0.5 0.0391 0.0062 2.6894
2.0 1.0 0.0781 0.0062 2.6414
3.0 1.5 0.0586 0.0015 2.5379
4.0 2.0 0.0781 0.0015 2.3690
5.0 2.5 0.0977 0.0015 2.1376
6.0 3.0 0.1672 0.0031 1,8600
7.0 3.5 0.1951 0.0031 1.5616
8.0 4.0 0.2229 0.0031 1.2689
9.0 4.5 0.2508 0.0031 1.0030

i0.0 5.0 0.2786 0.0031 0.7760
ii.0 5.5 0.2874 0.0028 0.5912
12.0 6.0 0.3135 0.0028 0.4462
13.0 6.5 0.3396 0.0028 0.3353
14.0 7.0 0.3657 0.0028 0.2518
15.0 7.5 0.3918 0.0028 0.1897

16.0 8.0 0.4180 0.0028 0.1437

17.0 8.5 0.4566 0.0029 0.1096

18.0 9.0 0.4835 0.0029 0.0843

19.0 9.5 0.5103 0.0029 0.0654

20.0 10.0 0.5372 0.0029 0.0513

21.0 9.5 0.5103 0.0029 0.0654

22.0 9.0 0.4835 0.0029 0.0843

23.0 8.5 0.4566 0.0029 0.1096

24.0 8.0 0.429"7 0.0029 0.1437

25.0 7.5 0.4029 0.0029 0.1897

26.0 7.0 0.3760 0.0029 0.2518

27.0 6.5 0.3492 0.0029 0.3353

28.0 6.0 0.3223 0.0029 0.4462

29.0 5.5 0.2954 0.0029 0.5912

30.0 5.0 0.2686 0.0029 0.7760

31.0 4.5 0.241"] 0.0029 1.0030

32.0 4.0 0.2149 0.0029 1.2689

33.0 3.5 0.1880 0,0029 1.5616

34.0 3.0 0.1612 0.0029 1.8600

35.0 2.5 0.1343 0.0029 2.1376

36.0 2.0 0.1074 0.0029 2.3690

37.0 1.5 0.0806 0.0029 2.5379

38.0 1.0 0.0597 0.0029 2.6414

39.0 0.5 0.0269 0.0029 2.6894

40.0 0.i 0.0054 0.0029 2.7001





FIGUREi - Appendix
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