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Abstract

We investigate the performance of a nonlinear estimation scheme applied to the estimation of

several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear

estimator is based upon the extended Kalman filter which has been augmented to provide estimates

of several key performance variables. The estimated parameters are directly related to the efficiency

of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates

may be interpreted as degradations in turbine and/or pump efficiencies which can be useful

measures for an on-line health monitoring algorithm. This paper extends previous work which has

focused on off-line parameter estimation by investigating the filter's on-line potential from a

computational standpoint. In addition, we examine the robustness of the algorithm to unmodeHed

dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side

dynamics. The on-line results produced during this study are comparable to off-line results

generated previously. The results show that the parameter estimates are sensitive to dynamics not

included in the filter model. Off-line results using an extended Kalman filter with a full order

engine model to address the robustness problems of the reduced-order model are also presented.

*Summer Student Intern at NASA Lewis Research Center.



Introduction

The Space Shuttle Main Engine (SSME) is the first large scale reusable rocket engine

developed from a long line of expendable rocket technology. High thrust requirements have

pushed material limits and made durability an important issue. Much work has been directed

toward developing off-line monitoring algorithms to determine the relative "health" of the

propulsion system. An effective health monitoring scheme provides the capability to detect engine

degradations before significant damage occurs. Corrective action may be taken by the engine

controller using information from an on-line health monitoring algorithm such that damage can be

minimized or avoided. When a monitoring algorithm is used as a post processor, indications of

engine degradations can be used to determine if maintenance is required with focus on specific

components to help reduce operational costs associated with the SSME fleet.

A nonlinear parameter estimator based on the extended Kalman filter 1 (EKF) has proven

effective in a post-processing capacity. Recent work at the Space Engineering Center for System

Health Management Technology at the University of Cincinnati has demonstrated that the EK.F is a

viable method for off-line parameter estimation for use in a health monitoring scheme for the

SSME 2. The filter estimates parameters in a nonlinear engine model whose variation is indicative

of fuel-side turbomachinery degradations such as frictional losses or bearing wear. Degradation of

these parameters can be interpreted as a decrease in turbomachinery efficiency. The filter uses a

reduced-order model representing only the fuel-side component dynamics and has been evaluated

as an off-line -algorithm using both simulated and hot fire data. The results show that the filter

provides satisfactory estimates of the fuel-side turbomachinery efficiency parameters and tracks the

true values well when degradations to the low pressure fuel turbopump (LPFT) efficiency are

introduced. However, degradations to the high pressure fuel turbopump (HPFT) result in

unsatisfactory estimates of both efficiency parameters, primarily due to the dynamics of the engine

that are not included. Open loop degradations in the HPFT efficiency ultimately result in an

increase in mixture ratio in the main combustion chamber. The resulting rise in combustion

temperature increases the energy in the cooling circuit which will affect the LPFT and the rest of the

system. A full-order filter including both fuel and LOX dynamics has been developed to address

this proble m . Preliminary results are presented here.

The present effort extends the work on parameter estimation in a post-processing capacity 2 and

focuses on the on-line implementation of the EK_F. The primary motivation for this study is the

investigation of filter performance in the presence of a controller. Closed loop control tends to

mask information needed by the filter to accurately estimate the parameters. However, satisfactory

estimates were obtained for degradations to the LPFT. As a result of the poor open loop

performance for I-tPFT degradations, they were not considered in the on-line analysis. Sensitivity

to unmodelled dynamics for the reduced order filter was investigated by examining a degradation in
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thehighpressureoxidizer turbopumpefficiency andanincreasein theLPFT shaftsealleakage3.

The LPFT shaftsealleakageis particularly interestingbecauseit decreasestheefficiency of the

turbopumpwithoutexplicitly changingtheefficiencyparameterin themodelwhich isestimatedby

the EKF.

In this paper, we introduce the EKF algorithm, drawing attention to areas of interest for on-line

implementation. The application of the EKF to the SSME is discussed, followed by a presentation

of off-line results using the full-order filter. Modifications made to the filter algorithm to improve

execution speed for on-line implementation are presented and their impact on filter performance is

discussed. On-line results demonstrate the feasibility of this approach and draw further attention to

the shortcomings of the reduced order filter.

EKF-based Parameter Estimation

The extended Kalman filter is a state estimator for nonlinear systems and Can be modified to

provide parameter estimates in a straightforward manner 1. A brief overview of the algorithm with a

focus on the equations requiring modification for real-time implementation is given below.

The nonlinear system model of the SSME 4 adapted for use with the EKF has continuous,

nonlinear, time invariant state equations with linear discrete measurement equations written as

_(t)J ,, [ q(t)J '

(1)

y°-Ecoj[x°],vo; c-II oj,
LanJ

where u £ Bm represents the propellant valve angles, x _ b_p represents the engine state, Yn £ _b

represents the measurements used by the f'dter, and a C _r represents the parameters we are

interested in estimating. The system and measurement noise, _0(t) and Vn respectively, are white and

q(t) is a pseudo noise which is assumed to drive the parameter values for the purpose of avoiding

slow convergence of the parameter estimates, when no noise process typically drives the actual

parameter values. For simplicity, we assume the measurements are states. The relationship between

states and measurements is generally nonlinear for the SSM'E. However, several states are

measured directly allowing use ofeq (1) without additional computational burden. These equations

may be rewritten in more conventional notation as

_.(t) = fa(Z,U,t) + toa(t), (2)
Yn = Czzn + vn-

A flow chart of the EKF algorithm is given in Figure I. Propagation of the state estimates

between measurements at tn and tn+I is carried out by integrating the nonlinear state equations in

eq. (2). Fast dynamics in typical nonlinear models often prohibit the integration interval (St = tk+ I -



tk) from being the full measurement cycle (At = tn+l -tn). Hence, integration is performed over N

consecutive subintervals such that At = N _>t giving

Ik+lP+(k+l/k) = 9.(k/k) + fa(_J(X/k),U(tk),X)dT. (3)
• ,'1 g

Similarly, propagation of the error covariance matrix (P) is performed for each of the N subintervals

using

P(k+ l/k) = _(k+ l/k)P(k/k)tl>l'(k+ l/k) + Qk (4)

where Qk represents the discrete covariance matrix of the system noise in eq. (1) using interval

length St. The discrete transition matrix (<_) can be constructed by computing the Jacobian of the

state equations at each tk+l and discretizing to give

qS(k+ l/k) -- e G(tk*,-q) (5)

where the elements of G are

dfa] i,j =l,...,p.
gij" dz-'-j. _(k+l/k),u,tk. l

Execution of the integration, linearization and discretization of states in the EK.F algorithm is

very time consuming. This poses no significant difficulty for off-line application of the algorithm.

However, an on-line implementation cannot accommodate the large amounts of execution time

required to perform eqs. (3-5). As a result, several modifications can be made to simplify the

algorithm thereby improving execution time for on-line use. As shown in figure 1, once the

measurement data is received, the remainder of the EKF algorithm proceeds exactly as a standard
+.

Kalman filter.

Application of the EKF to the SSME

A 41 state nonlinear, real-time model of the SSME has been developed by Rocketdyne 4 for

evaluation of hardware in the loop (e.g. Block I controller). The dynamic model is parameterized

by "B values" which can be tuned to reflect a nominal engine balance with representative dynamic

performance. In this work, we focus on those B values which can be interpreted as efficiencies in

the torque equations of both the low pressure and high pressure fuel turbopump models. In

particular, the equations for the LPFT and HPFT torque are given by

-tit 1 -. BI6 * DWft I * _ * Fltl(V/Cftt) (6)

and

•r_ = B26 * DWft 2 * _ * Fft2(v/ce,2) (7)

respectively, where DW represents mass flow, Ah represents the change in enthalpy across the

turbine, and F represents the torque characteristics as a function of the ratio of turbine tip speed to

flow velocity. The parameters BI6 and B26 in eqs. 6 and 7 are directly related to a lumped turbine

efficiency 3. Care must be taken in interpreting the results of varying these parameters since the



real-timemodelisnotvalid for off nominaloperation.However,theycanprovidemuchinsightasa

first orderapproximation.
A reducedorderEKF basedonly on fuel-sidedynamics(14states)hasbeendeveloped5 at the

Universityof Cincinnati to estimate BI6 and B26 at several SSME power levels in a typical SSME

mission. Derivatives of the dynamic equations were computed analytically to allow computation of

the discrete state transition matrix of eq, (5) as the state estimate evolves. The 16th order filter uses

only three measurements, LPFT shaft speed, HPFI' shaft speed and fuel preburner pressure all of

which are states in the dynamic engine model giving rise to the measurement model in eq. (1).

Several other measurements are available for use, however only these three were used for this study.

They were selected as a convenient starting point for feasibility studies and are not neffessarily the

optimal set of measurements.

Off-line .Results

The EKF described above has previously been evaluated as an off-line algorithm using both

simulation 5 and hot-fire data at rated power. Figures 2 through 5 show off-line simulation results

at rated power for ramp decreases in the parameter to be estimated when no controller is present.

Figures 2 and 3 show that the filter provides acceptable estimates of B 16 and B26 for degradations

of the LPFF efficiency parameter Bl6. The B26 estimate is affected by the Bl6 degradation

initially, however it recovers quickly and converges to the correct value.

Figures 4-and 5 show that degradations of the HlaFT efficiency parameter result in

unsatisfactory estimates of both BI 6 and B26. The B26 estimate in Figure 4 predicts a decrease in

efficiency at the time the anomaly occurred. Unfortunately, the estimate of B16 indicates a rise in

LPYT efficiency has occurred. The increase in the efficiency estimate for the LPFT results from

the increase in temperature in the main combustion chamber caused by the decrease in fuel entering

the combustor. Due to the poor performance of the reduced order filter in estimating B26, transient

results for the on-line implementation are not included in this work.

A full order filter has been developed to address the limitations of the reduced order model in

estimating B26. Preliminary results shown in figures 6 and 7 indicate that the estimates can be

improved by including LOX side dynamics. However, filter performance for both the full and

reduced order models is extremely sensitive to the selection of the characteristics of the

psuedonoise (q(t)) in eq. (1). Figure 6 shows the parameter estimate converging nicely to the

degraded efficiency parameter value. The estimate is rather noisy, indicating that the filter requires

additional tuning. Estimates of B16, when the HPFT efficiency p_irameter is degraded, using this

filter are not yet available. Figure 7 shows the performance of the B 16 estimate for the full order

filter which should be compared with the reduced order filter results given in figure 2. The estimate



agrees favorably with earlier results giving us added confidence in the full order filter

implementation.

On-line Implementation

The off-line results demonstrate the feasibility of the EKF parameter estimator as a post-

processor to estimate fuel-side turbopump efficiencies. This information can be used to detect

system degradations between firings and can be used as part of an engine maintenance procedure to

indicate when turbomachinery requires work. However, on-line estimation of these efficiencies

could provide timely information to a controller thereby changing the control of the engine to

maintain performance while minimizing the burden on "healthy" components.

A first cut at on-line implementation of the reduced order filter was performed at NASA Lewis

Research Center (LeRC). Two simulation environments were available for this study, a real-time

simulation located on an ADI ADI00 and a Matrixx simulation 6. The SSME models that describe

the dynamics for the simulations are similar in both environments. However, the ADI00 simulation

has been modified to incorporate a number of different failure modes which has necessitated several

changes to the computation of key performance variables 3. Both simulations provide the capability

to perform open loop evaluation for comparison with off-line results. The AD100 simulation

allows filter evaluation in scaled time with the Block 1 controller, which is the current SSME

controller. The Matrixx simulation provides the opportunity to evaluate the filter using a

multivariable-controller 7 to evaluate several different degradation scenarios and examine the

sensitivity of the filter performance to the controller structure.

The original EKF implementation was not intended for on-line use, therefore several

modifications were made to improve execution speed. Due to the lack of a reliable measure, only a

gross approximation of the amount of reduction achieved by individual modifications is available.

A 4th order, variable step, Runge-Kutta integration scheme was used in the filter to perform the

integration ofeq. (3). It is well known that this method requires considerable computation time,

therefore it was replaced with the Burlisch-Stoer method 8. This modification significantly reduced

the time required to execute the algorithm, although some systems encounter robustness problems

when using this integration method8. However, the method has performed well on the SSME

model to date. This change had no apparent affect on the filter's convergence characteristics.

The linearization and discretization ofeq. (5) are also large contributors to execution time in the

EKF algorithm. The impact of these calculations on execution speed was reduced by performing

them only once per measurement cycle (tn) rather than once per integration cycle (tk) and by

replacing the matrix exponential in (5) with a Tustin approximation for discretization. These

approximations noticeably reduced execution time with no noticeable effect on filter performance.



Tile number(N) of linearizationsperformedduringeachmeasurementcyclecanbereduceddue

to thebehaviorof the SSME dynamics at constant power setting. Linearization may need to be

performed more often to achieve acceptable results for transient conditions. Also, it is conceivable

that performing a larger number of linearizations could possibly reduce execution time by reducing

the time required to perform the variable step integration by improving the accuracy of the error

covariance (P). Off-line results indicate that perhaps two linearizations per measurement cycle

would result in faster execution time than one. However, due to the lack of a reliable metric, this

issue Was not pursued further.

Incorporation of these modifications along with several minor changes result in an

improvement of execution time of almost 60% on an Intel 486 based special purpose computer. As

a result, the on-line simulations were performed in scaled time at 250 times rather than 600 times

real time as required by the original implementation. A significant improvement was made with

relatively straightforward modifications to the algorithm. Improved computing power, in addition to

more efficieni programming methods shouldfurther reduce execution time.

On-Line Results

The primary consideration for on-line implementation is examination of the filter behavior in the

presence of a controller. Closed loop control tends to mask information required for convergence

of the parameter estimate to the correct value. Moreover, the filter performance can be sensitive to

controller structure. Figures 8 through I 1 compare open and closed loop simulation results using

both the ADI00 (Block I control) and Matrixx (multivariable control). Open and closed loop

results compare favorably. However, notice the bias from the actual value that exists for each case.

This is due to the fact that the model used to tune the filter is different from the those used to

provide the measurement data. This indicates that robustness to unmodelled dynamics may be an

issue in this case as well as for the HPFT efficiency degradation. On-line implementation of the

full-order filter could provide some insight into this issue and will be examined in the future.

Although the estimates provided by the reduced order filter are not exact, they clearly indicate a

degradation has occurred providing information that may be useful to a controller.

Another consideration for the EKF implementation for the SSME is the evaluation of

degradations that should be interpreted as LPFT efficiency degradations but are not introduced by

decreasing BI6. Taking advantage of the seal leakage modelled in the ADI00 simulation, the

LPFT efficiency is reduced without decreasing B16 by increasing the LPFT shaft seal clearance by

250 and 500 percent. The results ate shown in figures 12 through 14. Once again, the estimates do

not converge to the predicted values indicating sensitivity to unmodelled dynamics. However, the

existence of a degradation is apparent and the estimates scale with the amount of degradation

introduced.
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The effects of oxygen side degradations on the estimate of BI6 is also of interest from a

seperability standpoint. Degradations of parameters unrelated to LPFT efficiency should be

"transparent to the estimator. A 5 % degradation in the high pressure oxidized turbopump (HPOT)

efficiency has been introduced in the Matrixx simulation with results shown in figures 15 and 16.

In this case, the open loop results show that this is interpreted as a LPFT efficiency degradation.

This is expected since the HPOT significantly affects the LPFT and this relationship is not included

in the reduced order filter model. The dosed loop results are unaffected by the HPOT efficiency

degradation which is a good example of the controller masking information used by the filter.

Conclusions

This paper gives a brief overview of the extended Kalman filter and how it can be modified to

act as a parameter estimator for Space Shuttle Main Engine (SSME) turbomachinery. Off-line

results show the shogcomings of a reduced order filter for estimating the high pressure fuel turbine

efficiency. Satisfactory estimates have been achieved for the low pressure fuel turbopump.

Preliminary results using a full order model in the filter indicate that this modification can overcome

the problems for the high pressure turbopump at the expense of a more complex filter

implementation.

On-line implementation of the extended Kalman filter (EK_F) for a complex engine like the

SSME presents a number of technical challenges. Here, we have suggested several modifications to

improve execution speed without impacting filter performance. However, real-time execution for

the SSME would be difficult without a significant increase in computing power and more efficient

programming methods.

On-line results also show that the parameter estimates are satisfactory when a closed loop

control is present and appear to be insensitive to controller structure. Thus, the EKF can be used in

an on-line environment to provide turbopump efficiency estimates for use in a health monitoring

scheme for the SSME. Finally, on-line results have demonstrated the filter's sensitivity to

unmodelled dynamics. These results, in addition to the off-line results, indicate that the dynamics

included in the filter model must be chosen carefully to accommodate the type of degradations that

might be expected.
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