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SUMMARY
The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is
computationally simulated. A three-dimensional finite element model consisting of a group of
nine unidirectional fibers is used in the analysis. The model is employed to represent five
different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The
distribution of microstresses and the composite material properties, such as moduli, coefficients
of thermal expansion, and Poisson’s ratios, are obtained from the finite element analysis for the
various fiber shapes. Comparisons of these results are used to determine the sensitivity of the
composite behavior to the different fiber shapes and assess their potential benefits. No clear

benefits result from different fiber shapes though there are some increases/decreases in isolated

properties.

BACKGROUND

Metal matrix composites offer great potential for use in advanced aerospace structural
applications requiring high operational temperatures. These materials exhibit high stiffness to

weight ratios at the anticipated use temperatures (between 425 and 1315 °C) and are currently



under development for use in compressor and turbine disks, blades and vanes. However, before
metal matrix composites can be used in these critical applications, key issues involving
coefficient of thermal expansion mismatch, interface characterization, ductility and durability of
the matrix, and identification of failure mechanisms must be resolved. A possible method for
improving composite properties, especially in the transverse direction, may be to use noncirculat

fiber shapes.

Ongoing research at NASA Lewis Research Center has been focused ¢n computationally
simulating the behavior of metal matrix composites. The ¢omputational methodologies have

been based on simplified micromechanics equations and three-dimensional finite element

concurrently in the characterization of metal matrix composite behavior. The inherent
advantage in computational methods lies in the tremendous savings in time and ¢ost over
experimental procedures. Ideally, computational methods can be tised to perform an assessment

of metal matrix composite behavior in order to focus experiiental efforts into specific areas.

The purpose of this study is to assess the potential benefits to be gained from using non-circular
fiber shapes. A three-dimensional finite element analysis is performed to computationally
simulate the eﬁect of five different fiber shapes on the composite behavior of a SiC/Ti-15 metal
matrix composite. Results from the finite element analysis include both composite material
properties and microstress distributions and are used to assess the effect of the various fiber

shapes.



COMPUTATIONAL SIMULATION PROCEDURE

A linear elastic simulation is conducted using Version 65 of MSC/NASTRAN (1), & general
purpose finite element package. The finite element model used in the study is a modified version
of a unit cell originally developed by Caruso (2). The model consists of a group of nine
unidirectional fibers in a three by three unit cell array as shown in figures 1 and 2. The finite
element mesh consists of 8 bays along the length of the fiber where each cell consists of 64
six-sided solid elements (CHEXA) and 16 five-sided solid elements (CPENTA) for a total of
5760 elements and 5992 nodes. Extensive previous efforts using this model include exploring the
effects of partial bonding and fiber fracture (3), predicting ply properties of metal matrix
composites (4), and simulating compliant layers (5). More recent work has been related to

modelling both fiber pushout (6) and microfracture in metal matrix composites (7-10).

The unit cell is modelled to allow the fiber volume ratio (FVR) to be easily varied. This is
accomplished by assigning fiber material properties to the desired elements starting from the
center of the unit cell. The remaining elements are then designated with matrix material
properties. An interphase can also be easily modelled by assigning appropriate properties to
elements between the fiber and the matrix. However, for the purposes of this study a perfect
bond between the fiber and matrix is assumed. As mentioned before, five different fiber shapes
are modelled: (1) a circle, (2) an ellipse, (3) a kidney shape, (4) a short cross shape, and (5) a
long cross shape. The representations of the different shapes using the unit cell model are sht;wn
in figure 3. Each fiber shape is examined for thrgg different FVR’s. Due to the arrangement of
elements in the unit cell, each fiber shape has a particular set of FVR’s associated with it as

listed in Table I.



A silicon carbide (SiC) fiber reinforced titanium (Ti-15-3) metal matrix composite is chosen for

applications (11). Constituent properties for the fiber and matrix were obtained from Lerch (12)

and are listed in Table II.

For each fiber shape three normal composife moduli (E,,, E,y, Ey,), three shear composite
moduli (Gy;, Ggy, Ggg), three Poisson’s ratios (v4,/4,V34), three coefficients of thermal
expansion (@, @yy, &gg), and axial, radial, and hoop microstresses in the fiber and matrix are
determined from the analysis. A total of seven separate MSC/NASTRAN simulations are
required to predict the various composite properties and microstresses for each FVR of a given
fiber shape. In a typical simulation, the various loadings and boundary conditions are applied
through enforced displacements (13). To determine the normal moduli and Poisson’s ratios,
tensile loads are applied. For example, Ell’ Vio and v, g are determined by constraining the
back face of the model and displacing the front face 0.003 cm in the x direction. A similar
method is used to find the transverse moduli and the remaining Poisson’s ratios. The shear
moduli are found through shear loadings and thermal loads are applied to determine the

coefficients of thermal expansion. Microstresses are calculated for each loading condition.

RESULTS AND DISCUSSION

For the purpose of convenient compa.risons in the following sections, the results obtained for the
circular fiber shape are used as a reference case against which results from the other four fiber
shapes are compared. Due to the large amount of data obtained from the analysis, only the
significant results will be discussed in detail in the subsequent sections. The selected results are
chosen to bring to light the key aspects of fiber shape effects on the composite behavior.
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However, for completeness all results from the analysis not shown in the text are included in

Appendix A (for composite properties) and Appendix B (fpr microstresses).

Fiber Shape Effects on Composite Properties:

The effect of the different fiber shapes on longitudinal modulus, E,, is illustrated in figure 4.
Results for all five fiber shapes fall on the same line, indicating that longitudinal modulus is
insensitive to the shape of the fiber. This is expected since E,, is mostly a fiber dominated

property which depends on the amount of fiber, not the shape.

This behavior is not true, however, for the transverse case. In figure 5, the in-plane transverse
modulus (E,,) of all the fiber shapes shows an increase from the circular shape modulus. The
increase in transverse modulus results from the presence of more fiber in the 22-direction for the
non-circular fiber shapes (see figure 3). Thus, the kidney and long cross shapes, which contain
the largest amount of fiber in the 22-direction of all five shapes, show the greatest increase

(about 6%) in transverse modulus.

Results for the G4, shear modulus are shown in figure 6. For this case, the response of the fiber
shapes can be divided into two groups. The first group consists of the two cross shapes, which
contain more fiber in the 33-direction than the circular shape, and shows an increase (9% for the
long cross) in shear modulus. The second set, called the oblong group, is composed of the elliptic
and kidney shapes, contains legs fiber in the 33-direction, and shows a decrease (3% for both
shapes) in shear modulus. These predictions are consistent with the expected behavior in which

the amount of fiber dictates the stiffness of the shear modulus.



A look at Poisson’s ratio, Vi3 in figure 7 shows that it is also influenced by fiber geometry.
Similar to the shear modulus, the fiber shape responses fall on either side of the baseline
response. The presence of more fiber in the 33-direction for the cross shape group results in a
decrease in value (2% for the long cross). On the other hand, the oblong group shows a
corresponding increase (2% for the kidney shape) due to the presence of less fiber in the 33-

direction.

trends as noted above. Fiber geometry has no effect on the longitudinal CTE as shown in
figure 8. As mentioned before, longitudinal properties are dominated by the amount, not shape,
of the fiber. The behavior of CTE through the thickness (33-direction) is again characterized by
the two groups (figure 9). The oblong shapes have a higher CTE by approximately 3%. The
cross shapes have a lower CTE by approximately 2%. The relative éua,.ntity of fiber in the 33-

direction determines whether the composite CTE will be increased or decreased.

The influence of fiber shapes on composite material properties is summarized in Table III. This
table shows whether a particular property for a particular shape increases, decreases, or remains
the same when compared to the circular shape behavior. Although this table does not represent
magnitude, it does highlight the pattern of the changes. In general, the longitudinal (fiber
dominated) properties show no change. The transverse and shear moduli increase while CTE’s

and Poisson’s ratios decrease.



I

Fiber Shape Effects on Microstresses:

The effect of fiber shapes on the distribution of microstresses in the composite is determined by
examining the microstresses at four points in the center cell of the three by three unit cell array.
The four points are indicated in ﬁéure 10 for each fiber shape: point A in the fiber, point B on
the fiber side of the fiber-matrix boundary, point C on the matrix side of the boundary, and
point D in the matrix. The microstresses are examined for one value of fiber volume ratio for

each fiber shape, since similar trends occur for the other fiber volume ratios.

The results for axial microstresses under a longitudinal load are shown in figure 11. The
majority of the stress is carried uniformly by the fiber while the matrix bears about one-fourth
of the fiber load. Microstresses in both the fiber and matrix remain the same for all five shapes,
indicating that fiber shapes have no effect axially under a longitudinal load. Once again, this
results from the dominance of the fiber properties in the longitudinal direction, which is

determined by the amount, not shape, of the fiber.

The radial microstresses under a transverse load are shown in figure 12. The circular fiber shape
results in the lowest and most consistent values of microstresses at the four evaluation points.
The elliptic and kidney shapes also have fairly consistent microstress values, but result in
roughly a 10-15% increase in microstress over the circular shape. The long and short cross
shapes both lead to the formation of large stress concentrations on the fiber side of the fiber-
matrix boundary (point B). The result for both cross shapes is a 50% increase in microstress
from the circular shape at point B. The large peaks in microstress for the cross shapes arise due
to the presence of sharp projections in their fiber geometry. The circle, ellipse, and kidney
shapes have a smoother geometry which results in a more consistent microstress distribution.

7



Even under a thermal load (AT = 38° C), the axial microstresses for the two cross shapes
experience abrupt jumps as shown in figure 13. The microstresses for the circle and oblong
shapes are reasonably close. The microstresses at point B for the short crosses increases by 29%,
while the long cross jumps by 46% over the circular shape. Again, these microstress

concentrations are due to the sharp geometry of the cross shapes.

CONCLUSIONS

Three clear points can be obtained from the resu!ts. First, the shape of the fiber does not
influence the longitudinal properties since they are a function of the quantity, not geometry, of
the fiber. Second, the transverse and shear material properties are only moderately affected by
fiber shape. In most instances, the difference between the circular fiber and another shape is less
than 10%. The most consistent improvements in composite properties occurred for the long
cross fiber shape. Third, the effects of these improvements were dramatic increases in stress
concentrations for the cross shapes and generally increased microstress values for the oblong
sha.peé. Thus, results of this study indicate that the use of different fiber shapes is appropriate
for applications in which the advantages of improving the transverse composite properties

outweigh the trade-off of increased microstresses.
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TABLE L. — FIBER SHAPE WITH

CORRESPONDING FIBER
VOLUME RATIOS

Fiber shape

Fiber volume ratios

Circle

0.136, 0.224, 0.334

Ellipse

0.103, 0.180, 0.279

Kidney

0.163, 0.257,0.373

Long cross

0.147, 0.235, 0.345

Short cross

0.103, 0.180, 0.279

TABLE II. - ROOM TEMPERATURE CONSTITUENT

MATERIAL PROPERTIES

SiC

Ti-15

Young’s modulus, E, GPa

427.5

84.8

Poisson’s ratio, v

0.190

0.320

Coefficients of thermal expansion, o,

ppm
°C

4.896

8.460

Density, p, kg/m®

1.760

2.752

TABLE Ill. - TRENDS IN COMPOSITE PROPERTIES OF FIBER SHAPES IN
COMPARISON WITH THE CIRCULAR SHAPE

Fiber shape Composite Shear modulus Coefficient Poisson’s
modulus of thermal ratio
expansion
E,| E; | E4 | G, Gy | Gy | @, oy ay Vo |V | Yo
Equality (E) with or decrease (D) or increase (1) from circular shape value
of above property
Ellipse E | E I D 1 E| D[ I|Df|1 |D
Kidney E I E I | D | Ef D I1{D}1 |D
Long cross E I I | I I E( D D D
Short cross E 1 | 1 | I E| D| P| D D
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Appendix A:

Additional Composite Material Property Figures
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Appendix B:

Additional Microstress Figures
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Figure B-13.—Fiber shape effects on shear microstresses under transverse loading.
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Figure B-14.—Fiber shape effects on axial microstresses under shear loading.
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Figure B-15.—Fiber shape effects on transverse microstresses under shear loading.
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Figure B-16.—Fiber shape effects on transverse microstresses under shear loading.
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Figure B-17.—Fiber shape effects on shear microstresses under shear loading.
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Figure B-18.—Fiber shape effects on shear microstresses under shear loading.
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Figure B-19.—Fiber shape effects on shear microstresses under shear ioading.
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Figure B-20.—Fiber shape effects on axial microstresses under thermal loading.
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Figure B-21.—Fiber shape effects on transverse microstresses under thermal loading.
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Figure B-22.—Fiber shape effects on transverse microstresses under thermal loading.
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