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Liquid mirrors provide an exciting means to obtain large optical telescopes for substan-
tially lower costs than conventional technologies. The liquid mirror concept has been
demonstrated in the lab with the construction of a diffraction limited 1.5m mirror (Borra
et al. 1989). The mirror surface, using liquid mercury, forms a perfect parabolic shape
when the mirror cell is rotated at a uniform velocity. An /1.9 2.7m liquid mirror obser-
vatory is now nearing completion at a site near Vancouver, B.C.. The UBC/Laval liquid
mirror observatory is expected to begin a survey of quasars and galaxies in the fall of
1992. The successful demonstration of the 2.7m observatory may usher in an era of 4-8m -
liquid mirror telescopes (LMTs).

The primary disadvantage of liquid mirrors is their inability to point, being restricted
to observations at the zenith. The use of large format CCD’s, read out using the time-
delay and integrate (TDI) technique (McGraw et al. 1986) compensates for the earth’s
rotation as the image crosses the telescope’s field of view. The telescope than has access
to the strip of sky that passes overhead over the course of a year. The disadvantage of
being restricted to observations at the zenith is mitigated in cosmological studies, where
surveys of any strip of sky can provide valuable information.

A liquid mirror must be able to support a heavy mercury load with minimal flexure
and have a fundamental resonant frequency that is as high as possible, to suppress the
amplitude of surface waves caused by small vibrations transmitted to the mirror. To
minimize the transmission of vibrations to the liquid surface, the entire mirror rests on
an air bearing. This necessitates the mirror cell being lightweight, due to the limited
load capabilities of the air bearing. The mirror components must also have physical
characteristics which minimize the effects of thermal expansion with ambient temperature
fluctuations in the observatory. In addition, the 2.7m mirror construction is designed so
that the techniques used may be readily extended to the construction of larger mirrors.

To attain the goals of a lightweight, rigid mirror, a composite laminant construction
(such as is found in the aerospace industry) was used (Hickson et al. 1992). The mirror
consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm.
An aluminium hub serves as an anchor for the foam and skin, and allows precise centering
of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an
epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by
spin casting. This final layer is parabolic to within a fraction of a mm. An aluminium
ring bonded to the circumference of the mirror retains the mercury, and incorporates
stainless-steel hard-points for the attatchment of balance weights.

The mirror cell is covered with a 1-2mm layer of liquid mercury. A transparent
monomolecular layer on the surface of the mercury suppresses sufrace waves and virtually
eliminates evaporation. The reflectivity of mercury is about 79% from 3100 — 87004 as
compared to 92% for a fresh aluminium layer in the visible. However, it is pointed out




that the aluminium coating deteriorates as it oxidizes, while mercury oxidizes very slowly
and is easy to clean (Borra et al. 1992).

To obtain high image quality, the angular velocity of rotation must be uniform to
within 10~7. This is achieved by driving the mirror with a synchronous motor, controlled
by a quartz-oscillator.

A preleminary survey is expected to begin in the fall of 1992. The total survey area will
be approximately 20 deg?, consisting of a strip of sky 21’ wide, at a declination of 49°04’.
A Loral 2048x2048 CCD wil be used, read out using the TDI technique clocked at the
siderial rate (Gibson et al. 1992). This will provide an integration time of approximately
2 minutes per filter.

Spectrophotometry will be obtained by multiband imaging through a series of 40
intermediate band filters, each with a bandwidth of AA/A, = 0.046, uniformly sampling
the entire optical spectrum: 14.87 < logv, < 14.48(4000 — 10000A) where the filter .
central wavelength separation is A logv, = 0.01. A different filter will be used each night,
building up over a two-year period spectral energy distributions (SEDs) of all detectable
objects down to a limiting magnitude of V ~ 21.4(S/N = 3). Theoretically this will yield
SEDs for ~ 20000 galaxies and ~ 1000 QSOs. Photometric calibration will be derived .
from a sequence of secondary spectrophotometric standards in this region of the sky. The
SEDs may then be used for determining redshifts and morphological type.
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