Flow Instability in Particle-Bed Nuclear Reactors

J. L. Kerrebrock*
Massachusetts Institute of Technology

PRESENTED AT NUCLEAR PROPULSION INTERCHANGE MEETING
NASA LEWIS RESEARCH CENTER, OCTOBER 22, 1992

Abstract

The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted here, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented here should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which have been carried out, it can be concluded that a particle bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

* R.C. Maclaurin Professor of Aeronautics and Astronautics
Conclusions

Comparison of three quite different approaches to modeling the stability of the particle-bed reactor, all with consistent physical assumptions, shows that a complete linear stability such as that presented here is in fact necessary for reliable prediction of the stability of the particle-bed reactor. The approach, termed here the Parallel-Stream model, where the reactor is assumed to be composed of a series of channels coupled only at their inlets and outlets, does not accurately represent the stability at low Re, nor does it represent the effect of heat conduction in the bed.

The model termed here (perhaps somewhat naively) the Complete Model should be capable of accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty.

From the exemplary calculations which have been carried out, it can be concluded that a particle bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.

Acknowledgments

This research was supported by the Space Nuclear Propulsion Office of NASA Lewis Research Center.

The author wishes to acknowledge helpful discussions with Dr. John Clark of NASA Lewis, with Prof. Frank E. Marble, and with Mssrs. James Kalamas, David Suzuki, Timothy Lawrence and Jonathan Witter.

References

GOVERNING EQUATIONS

\[v_p = \frac{\mu}{k} \left(\frac{1}{u} - \frac{b}{a} \right) \rho a \]

(1)

\[\frac{\mu}{k} = 150 \left(\frac{1 - e^2}{e^2} \right) \rho P \]

(2)

\[\begin{align*}
\frac{\partial T_p}{\partial t} + \nabla \cdot (v_p (T_p - T_b)) &= - k_{\text{eff}} \nabla^2 T_p \end{align*} \]

(3)

\[k_{\text{eff}} = k_{\text{cond}} + k_{\text{rad}} - \frac{k_{\text{cond}}}{\frac{1}{4} \alpha T_p} \]

(4)

\[u = 15 \left(1 - e^2 \right) \left(1 - \frac{275 \left(1 - e^2 \right)}{e^2} \right) / Re \]

(5)

\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = \frac{\partial}{\partial x} \left(\rho \frac{\partial p}{\partial x} \right) \]

(6)

\[p = \rho C T \]

(7)
NON-DIMENSIONAL GOVERNING EQUATIONS

\[V_p = \frac{b_1}{T_p} \frac{\mu_0(0)}{\rho_0(0)} \frac{u_0}{\nu} \]
(1a)

\[c \frac{\partial p}{\partial x} = g(T_p) - \frac{\mu_0(0) \nu^2(0)}{\rho_0(0) \nu} \]
(1b)

\[c = \frac{p_0 T_p}{\rho_0(0) \nu} \]
(1c)

\[\frac{\partial T_p}{\partial x} = \frac{1}{\eta} \left(\frac{\nu^2(0)}{\mu_0(0)} \right) \left(\frac{T_p}{T_g(0)} \right)^{\frac{\eta}{\gamma}} \]
(1d)

\[c = \frac{p_0^2}{\nu^2(0)} \]
(1e)

\[\frac{\partial T_g}{\partial x} = \frac{1 + q x}{H} \]
(1f)

\[\frac{\partial p}{\partial x} = \frac{2b}{(1 + q x)^2} \]
(1g)

\[\frac{p}{p_0} = \frac{1}{(1 + q x)^2} \frac{1}{1 + \frac{b_2}{q} (1 + q x)^2} \]
(1h)

\[\frac{u_0}{p_0} = \frac{1}{(1 + q x)^2} \]
(1i)

\[\frac{w_0}{p_0} = \frac{1}{(1 + q x)^2} \]
(1j)

\[\frac{q_0}{p_0} = \frac{1}{(1 + q x)^2} \]
(1k)

ZEROTH-ORDER OR STEADY SOLUTION

\[\frac{d T_g(0)}{d x} = q + \frac{d^2 T_p}{d x^2} \]
(9)

\[T_g(0) = 1 + q x \]
(10)

\[\frac{d^2 T_p}{d x^2} = \frac{1}{H} \]
(11)

\[\frac{p(0)}{p_0} = \frac{1}{1 + \frac{2b_1}{q} (1 + q x)^2} \]
(12)

\[\frac{u_0}{p_0} = \frac{1}{(1 + q x)^2} \]
(13)

NTP Technology 502 NP-TIM-92
FIRST ORDER

\[V_p = k [T_p^{\infty} + i \omega \gamma T_p^{\infty} - b q + j (\omega \gamma p + u_x)] \] (14)

\[\frac{dT_p}{dt} = \frac{1}{\rho(T_p, T_g)} \left[\frac{T_g}{\rho(T_p, T_g)} \right]^2 \left(u_x + u_T \right) + \gamma T_p^2 \] (15)

\[\frac{dT_g}{dt} = \frac{d(T_g)}{dx} + \frac{d(T_g)}{dx} \rho \frac{\partial p}{\partial x} \]

\[\rho \left[(T_g(T_p, T_g)) \frac{d u_x}{dx} + \frac{d(T_g)}{dx} \right] \]

\[\frac{dp}{dt} + p \frac{\partial}{\partial x} + \gamma u_x \frac{\partial u_x}{\partial x} + \frac{\partial u_x}{\partial x} + \frac{\partial u_T}{\partial x} = 0 \] (17)

\[p = \rho(T_g + T_g) \rho \] (18)

Variables are: \(p, \rho, T_g, u_x \), and \(T_p \)

PARAMETERS

Dimensionless Parameters:
from 1n, v, b1, b2
from 3n, q, c, H, Kc, Kf

Operating Parameters:
\(T_{go} \) (exit) = 3000 K
\(P_{o} \) (exit) = 100 atm
\(Q = 4 \times 10^{10} \) watt/m³

Design Parameters:
\(l = 0.01 \) m
\(D_p = 0.5 \times 10^{-3} \) m

Stability Parameters:
\[\frac{R_e}{q} = \frac{\rho_g(0) u_T(0) D_p}{\mu(0)} - \frac{D_p Q_1}{q(T_g) \mu(0) q} \]
APPROACHES TO INSTABILITY ANALYSIS

1) Parallel Flow Instability
2) Local Instability Analysis
3) Full Stability Analysis

PARALLEL-STREAM INSTABILITY

Instability is possible if $p_0(1)$ increases with mass flow density for fixed Q and $p_0(0)$. Hence:

\[
\frac{d \log p_0(1)}{d \log Re}_{Q, p_0(0)} > 0 \Rightarrow \text{INSTABILITY}
\]

![Graph showing the relationship between q, Re, and $\frac{d \log p_0(1)}{d \log Re}$ for instability analysis.](image)
COMPLETE INSTABILITY MODEL

\[
p(x,y,z,t) = \rho(x,t) + \omega \frac{\partial \rho}{\partial t}
\]

(33)

\[
\frac{d\rho}{dx} = -\left(h_1 T_g^* + b_2 \rho + b_1 \rho \left(1 - h_1 \frac{T_g^*}{T_g^0}
ight) T_g - b_2 \rho^2 \right) \rho
\]

(34)

\[
\frac{dT_g}{dx} = \left[H T_g T_g^0 - \rho \frac{d\rho}{dx}\right] \frac{dT_g}{T_g^0} \frac{d\rho}{dx} - \frac{d\rho}{dx} \frac{d\rho}{dx} \frac{dT_g}{T_g^0} \frac{d\rho}{dx}
\]

(35)

\[
\frac{d\rho}{dx} \frac{dT_g}{dx} = \left[1 - \frac{d\rho}{dx} \frac{dT_g}{dx} \frac{d\rho}{dx} \frac{dT_g}{dx} \frac{d\rho}{dx}
ight] \frac{dT_g}{T_g^0} \frac{d\rho}{dx}
\]

(36)

\[
\frac{du_x}{dx} = \left[1 - \frac{d\rho}{dx} \frac{dT_g}{dx} \frac{d\rho}{dx} \frac{dT_g}{dx} \frac{d\rho}{dx}
ight] \frac{dT_g}{T_g^0} \frac{d\rho}{dx}
\]

(37)

\[
k \frac{d\rho}{dx} = (k \beta^2 + c_o + H) T_p - H T_g + (q_v \rho) u_x + (q_v \rho) \rho
\]

(38)

\[
\frac{d\rho}{dx} - \gamma
\]

(39)

Approximate Case Neglecting Conduction in x:

\[
T_p = \frac{H T_g + (q_v \rho) u_x + (q_v \rho) \rho}{k \beta^2 + c_o + H}
\]

(40)
LOCAL INSTABILITY

\[p(x,y,z) - (k_x,k_y,k_z) \cdot \nabla [k \cdot \nabla] = 0 \]

\[k_x = x \]

Nominal Particle-Fluid Operating Point

Parallel Stream

x = 1

\[x = 0 \]

stable

unstable

COMPLETT INSTABILITY MODEL

Boundary Value Solutions cold fin

\[k_f = 10 \text{ watt/m}^2\text{K} \]

\[k_f = 1 \]

with and without cold fin

no cold fin

\[K_x = K_y = 0 \]

Nominal Pebble Bed Operating Point

Parallel Stream