
/

..........

of General Principal Value-Based

S.M. _old

Lewis Research Center

-:-_-__:_ Cleveland, Ohio

-- m

and

............ A.E Saleeb, H.Q. Tan, and Y. Zhang

........... University of Akron ::----=_ : :__: :_-:--::-

Akron, Ohio

May 1993 ?_ (NASA-TM-106123) EXPLICIT ROBUST
SCHEMES FOR IMPLEMENTATION OF

......-- --_.... "_-GENERAL PRINCIPAL VALUE-BASED

CONSTITUTIVE MODELS (NASA) 29 p

,,t

G3159

N93-26947

Unclas

0167939

Explicit Robust Schemes for Implementation of

General Principal Value-Based

Constitutive Models

S. M. Arnold

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

A. F. Saleeb, H. Q. Tan, and Y. Zhang

University of Akron

Akron, Ohio 44325

Abstract

The issue of developing effective and robust schemes to implement
general hyperelastic constitutive models is addressed. To this end, special
purpose functions axe used to symbolically derive, evaluate, and automat-
ically generate the associated FORTRAN code for the explicit forms of

the corresponding stress function and material tangent stiffness tensors.
These explicit forms axe valid for the entire deformation range (i.e.,with
both distinct and repeated principal-stretch values). The analytical form
of these explicit expressions is given here for the case in which the strain-
energy potential W is taken as a nonseparable polynomial function of the
principle stretches.

1 Introduction

Recently, constitutive models of rubber hyperelasticity, using alternative rep-

resentations in terms of the principal stretches as opposed to deformation in-

variants, have become increasingly popular in nonlinear finite element analyses

[1-3]. Two of our recent publications have discussed in detail the theoretical

development [4] and symbolic and numeric implementation [5] of explicit forms
for the second Piola Kirchhoff stress tensor and the material tangent stiffness

tensor. These forms correspond to a class of Ogden type hyperelastic constitu-

tive models, based on principal-stretch values. These explicit expressions are

significantsince they are validfor the entiredeformation range, even though

the main constituentsofthe deformation tensor(i.e.,principlevaluesand asso-

ciatedeigenvectors)are,in general,neitheruniquely defined nor continuously

differentiableover the entirerange. The two specificforms of the Ogden-type

strainenergy functionsaddressed inreference4 encompass many ofthe popular

representationscurrentlyin use for rubber materials.However, those functions

were restrictedtospecialforms ofnonseparable representationsofthe strainen-

ergy densityfunctions,with the restrictednonseparable form given in reference

4, section5, dealingwith the important and practicalcase of incompressible

and slightlycompressiblesolids.To date, comparable treatments for the gen-

eralnonseparableforms ofthe models are not ava_able inthe literature.Indeed,

itisthe extension ofour earlierresults[4]and recentdevelopments [5]to deal

with thislattercase that constitutesour main objectivein the presentpaper.

By cleverly applying symbolic manipulation packages so as to control ex-

pression growth new constitutive theories can be developed and applied (e.g.,
finite element; see, [6] and [7]). Symbolic computation uses numbers, formulas,

vectors, matrices, equations and the like to compute exact solutions; whereas

numerical computation uses floating-point numbers to compute approximate

solutions to problems of practical interest. Here, we will utilize three recently

developed [5] special purpose symbolic functions (SDIFF, SDIFFEV, and TEM-
PLATE) running under DOE MACSYMA [8]. These special purpose functions

allow the derivation and automatic FORTRAN code generation of alternative

generalizedpotentialbased constitutivemodels composed of principalvalues

and theirassociatedeigenvectors.

This paper beginsby reviewinghighlightsofour previouswork indeveloping

the theoryofexplicitforms [4]and implementing them symbolicallyand numer-

ically[5].Followingthisreview,the resultsof the derivationofthe generalized

expressionsfor the second Piola Kirchhoff stresstensor Sq and the materiM

moduli tensor Dijkl are given. The paper then concludes with a discussionof

the template filesrequiredtoautomaticallygenerate the associatedFORTRAN
source code.

2 Background

The theoretical development of a singularity-free representation of principal

value-based constitutive models has been discussed at length in reference [4].

Here, we will confine our discussion to hyperelastic isotropic materials whose

strain energy function W is taken to be a general function of the principal
stretches, that is,

w = W(Ax, a3) (1)

where AI, A2, Az are the principal values of the right Cauchy-Green deformation

tensor Cij. Denoting ni (i = I, 2, 3) to be the associated eigenvectors of Cq, we

can define,

3

=Z (2)
I----1

where N(]), which is often referred to as the (orthogonal) eigenprojection oper-
ator related to the associated eigenvecto_ of Cij is defined as

IV(I) z l- nin) (3)

Equation (2)isvalidwhen allthreeeigenvalues(Ai)are distinct.However, when

two eigenvaluesare the same (i.e,double coalescence,At # A2 = A3 = A), we

have

Cij = (A, - A)N(/) + A6ij (4)

And for the ease of triple coalescence (A1 = A2 = A3 = A), we have

Cij = A E N(J)-A6ij"

1=1

(5)

Similarly, through suitable manipulation of equations (2) and (4), explicit

expressions for N(_.) in terms of C# can be obtained for the case of three distinct
eigenvalues,

1 [(c_#- A,&j)(C_#- _,&j)]N..(:.) = (_, _ _,)(_, _ _,)

and for the case of double coalescence,

(6)

1 A6_#). (7)N(,I)= (_,,_ _)(c,_-

In the preceding equations r, s, and t represent any cyclic permutation of (1, 2, or

3). These definitions will prove very useful in obtaining the pertinent singularity-
free directional derivatives of both the potential W and the stress function

&_= &_(c_).
The explicit singularity-free expressions for the second Piola Kirchhoff stress

tensor Sij(Cij) are defined as

0W

Sij -" 2_ =---Sij(Cij) (8)

Those for the material moduli tensor Dijkt(Cij) can then be obtained by apply-

ing the directional derivative formula to Sij, that is,

- OSi" = 4 O_WDij_t = 2"" = DijJd(Cii) (9)
OCkl OCijOCkl

As a result, the explicit expressions for the tensors Si.i(Cij) and Dilk,(Cii)

can be obtained directly for the following three cases: case I - when all three

eigenvalues are distinct; case II - when a single singularity is present (hi
_2 = _3 = _, i.e., double coalescence); or case III - when a double singularity is

present (_1 ¢)_2 = _3 = _, i.e., triple coalescence).
The derivation and implementation process for the formulations described

was recently automated [5] by constructing three special purpose functions (SD-

IFF, SDIFFEV, and TEMPLATE), written at the MACSYMA command level,

that can respectively,

(1) Derive the explicit expressions for the stress tensor Sii (eqs. (8)) and

material tensor Dijkr (eqs.(9)), given three, one or no distinct eigenvalues

(2) Evaluate symbolically the expressions generated by SDIFF for a given

strain-energy function W

(3) _ the expressions generated by SDIFF and automatically generate

(using the built-in MACSYMA function gentran) the associated FOR-
TRAN code needed to evaluate the expressions numerically for a given

potential function, W

These three special purpose functions contain a list of built-in MACSYMA

instructions (factor, expand, ev, ratsubst, dhC[, limit and for-loops, to

name a few) arranged in a specific algorithmic order. Thus each special purpose

function can be thought of as a macro command.

3 Symbolic Derivation

Let us begin by assuming that W is a nonseparable function of _1, _2, and _3.

For example,

P

w = _[x,(_l + _2 + _3)_ + y,(_1_2 + _2_3+ _3_1)_" + z,(_x_2_3) _']

As a result, when the special purpose function SDIFF is invoked, the scalar

derivative of W with respect to each eigenvalue will no longer be a function of

that eigenvalue only, as discussed in reference 5, but will instead be a function

of all three eigenvalues, that is,

sct)(_l, _2,_3) = 2 O..._WW
0h(z)"

• . 2W

Furthermore, in deriving Di/_l, the mixed second denvahves (_) must also

be taken into account in the procedure. To derive the generalized explicit ex-

pression for the three cases, one need only issue the command SDIFF upon

invoking MACSYMA, as shown here:

4

• Case I -three distinct eigenvalues (_1 # _2 _ _31

SDIFF(1)

• Case II - double coalescence (A1 _ A2 : _ - A)

SDIFF(2)

• Case III- triple coalescence (A1 = A2 = A3 = A)

SDIFF(3)

Note that the resulting derived expressions have been manipulated and con-
densed so as to streamline their reporting and to facilitate their comparison

with previous work [4].

3.1 Results for Case I

The explicit expression for the second Piola Kirchhoff stress tensor is

Sij = aCikCtj + bCij+ c61j (101

where 6ij is the second order identity tensor and a,b, and c are defined as

(11)

(121

(13)

b = m[sl(_] - _]) + _2(_] - _}) + ,_(_ - _])]

c = -m[slA2A3(A2- _3)+ s_,_zA_(A3- :_1)+ s3A1A2(A,- A_)]

and where

I (141fr$--
(_1 - _2)(_2 - _3)(_3 - _1)

The explicit expression for the material moduli tensor Dijkt(Cij) is

2 2
Dijkt --alP(Ckl, Cij) + a2[P(C_D Cij) nu P(Ckh C_j)]

+ a3[Q(C_t6ij) + P(&,h C_)] + a4P(Ck,, Cii) (15)

+as[Q(Ckh _ij) + O(6},, Cij)] + 2asIij_d

where two second order symmetric tensors P and Q have been introduced and
are defined as

P_I,,(G, H) = Gi_ gi, + Gi,git (16)

QO_(G, H) = Gi_Hjt + GoHjk + GpH_k + GjkHi,

and the notation
1

(17)

(18)

C_ = CimC,_y (19)

has been used in equation (15). Here the coefficients al, as, ..., a6 are defined as

3 3 3

r=l r=l s=l,r#_

3 3 3
1

r=l r=I a=l,r#a

aa= -77,+
r=l r=l s=l,r#$

3 1 s 3

or= _(i, - _)',7, + __ _ (i, - _,)(I_- _,)_,.
r=l = s=l,r#_

(20)

(21)

(22)

(23)

as - _(/*, + (/2+ A,A,)(II - A, - A,)_,, (24)

r----I r=l $----.l,r_a

3 3 3
2

r=l -,r r_-I s=l,r_a

where

and

_]r "-

Sr

[_,, + (_.- _.)(,.+,.)+ (_.- _,)(_, + _.)]

8r$

fi = A_ +As + Aa

Ia= A_Aa + AaAa + A_As

Ia = A_AaAa

Note that in the preceding expression the following differentiation notation has
been introduced:

6

and

20W (26)

Osi()_l,)_2,)_3) 82W (27)
sit = 8i_(hi, _=, _3) = O_ = 0_i_--"_

oO2W. 202W 202W" 82W "S13 =
For example, sat = --$_-,822 = -_Z'_-2;833 = -_-,st2 = s21 = oxtx2'

°2w A comparison of the preceding expressions
S31 -" 0_t_; 823 = 832 --" 0_2_s"

and those obtained earlier for the two special Ogden-type strain energy forms

[4], shows that the expressions are identical except for the additional double-
summation terms (containing the cross derivative terms) in the coefficients

hi,a2, ...as (see equations (20)-(25)) comprising the material moduli tensor

Dij_l. Thus the previous work is now merely a special case of the present

generalized expressions.

3.2 Results for Case II

In this case, a single singularity (hi _t R2 = A3 =)0 is analytically removed,

thereby yielding

so = _c_ + _ (28)

with

= sl - s2 (29)
(_l - _)

= _ [Sl_ - 82_1] (30)

and a reduced material moduli tensor

Dijkt = blP(Ckt, Cij) + b2[Q(Ckl, 6ij) + Q,(Skt, Cij)] + b3Iijkl

where

(31)

1

bl - (_1 - _2)3 {(_1 - _)[81t + 8_ - 2s1_] - 2[s_ - s2]}

1 {(As -- _l)[_2Sl! J_ _1822 -- 2(_1 "_ _2)$12] "_" ()ll J_-)t2)[81 -- 82]}

1 {(hi - _)[_s_ + _S_l - 2_s_] - 2_[8_ - s_]}
b3= (hi - _)s

Again, in comparing the coefficients a and b, and, b_, b2, and b3 to those obtained

in previous work [4], the only difference seen is the appearance of the cross

derivative term (sis) in coefficients bt, b2, and b_.

3.3 Results for Case III

Finally, in the case of a double singularity (hi = h2 = h3 = h), the explicit

expression for the stress tensor becomes

Sij = s_(h)61j

whereas the material moduli tensor becomes

(32)

Dq_l = 2s_(h)6ijkz. (33)

These are identical to the previous results, as one would expect.

The value of automating the foregoing derivation procedure is apparent in

that not only does this special purpose function SDIFF relieve the user of the

tedious manual derivation process, but it also ensures analytical accuracy. This

was illustrated prior to the publication of reference 4, in that a number of errors
in the hand derivation were detected, verified, and corrected. Also, because the

derivation process needs to be executed only once, except for the evaluation of

the scalar derivatives in equations (26) and (27) for each new definition of W, a

second special purpose function, SDIFFEV, as described in [5], was developed.
This function is used to symbolically evaluate the foregoing expressions.

3.4 FORTRAN Code Generation

The function TEMPLATE is similar to the function SDIFFEV in that both func-

tions will evaluate the explicit expressions obtained from SDIFF. TEMPLATE,

however, will automatically generate the associated FORTRAN source code

needed to numerically evaluate the expressions for a given potential function

W. Code generation is accomplished by utilizing the MACSYMA built-in func-

tion gentran and a number of template files. The template files can be thought
of as a framework for the FORTRAN generation of four subroutines (the main

driving routine COMPSD and three subroutines, one each for case I , case II,

and case III) and numerous functions. The template file for the main driving
routine COMPSD is shown in appendix A. This subroutine is constructed for

easy implementation into a finite element code. The input requirements are the

strain tensor Cm (denoted as cmu) and its associated eigenvalues hi,h2, and h3

(denoted by gll, g12, and g13 respectively). The outputs are the stress tensor
Sn (denoted as s) and the material moduli tensor D.,n (denoted as d). Here,
n and m run from 1 to 6. Clearly, the only code generation required is that

of subroutines COMPSD1, COMPSD2, and COMPSD3. Code generation is

initiated by issuing the command gentranin, preceded by and followed by less

than and greater than symbols, respectively.
The subroutines COMPSD1, COMPSD2, and COMPSD3 are associated

with case I (hi _ h2 _ h3), case II (hl,h = ,_2 = h3), and case III (h =

hi = A2 = h3), described in section 2.0. The template files corresponding to

thesethreecasesareshown in appendices B,C and D, respectively. Note that in

these routines, most of the FORTRAN code is automatically generated, since

it pertains to the definition of coefficients a,b,c ; al, a2, ..., ae, and the first and

second scalar derivatives of the strain energy function W, (i.e., Sl, s2, s3, s11, s22,

and s33). Also, the gentran commands are again preceded and followed by

double inequality signs (that is, << >>). All functions that are associated with a

given case have been included in the corresponding appendix. As a result, with

the appropriate template files, the FORTRAN source code associated with any

general nonseparable or separable strain-energy function can easily be generated.

4 Summary of Results

Taken separately, the main constituents of the deformation tensor (i.e., the prin-

cipal values and associated eigenvectors) are, in general, not uniquely defined

and continuously differentiable functions. Careful consideration is thus called

for in implementing constitutive models formulated in terms of these principal-
strain measures. This difficulty was entirely bypassed by resorting to explicit

symbolic derivations of appropriate forms of the material tangent-stiffness ma-

trices which are valid for the entire deformation range. Furthermore, to enhance

effective utilization and implementation of the present results, automatic FOR-

TRAN code generation of the present generalized explicit expres-sions was pur-
sued and achieved. As a result, nonseparable forms dealing with the important

practical case of incompressible and slightly compressible solids can easily be

generated. Finally, the generic analytical forms of these explicit expressions have

been given for three cases: (1) distinct eigenvalues, (2) one distinct eigenvahe,

and (3) no distinct eigenvalues.
In the future we will broaden our scope of application to include not only

deformation constitutive models but also damage representations as well. An

example that immediately comes to mind, where the above singularity-free rep-

resentations will be important, is a maximum principle stress (or strain) damage

formulation. Using this work as a building block, we can then envision moving

to even more sophisticated damage formulations involving even higher tensorial

representations.

References

[1] Finney, R.H.; and Kumar, A.: Development of Material Constants for Non-
linear Finite Element Analysis. J. Rubber Chem. Tech., Vol.. 61, pp. 879-

891, 1988.

[2] Sussman, T.; and Bathe, K.J.: A Finite Element Formulation for Nonlinear
Incompressible Elastic and Inelastic Analysis. Comp. Struct. , Vol. 26, pp.

357-409, 1987.

[3] Chang, T.Y.; Saleeb, A.F.; and Li, G.: Large Strain Analysis of Rubber-Like

Materials by a Mixed Finite Element. Computational Mech. , Vol. 8, No.4,
pp. 221-233, 1991.

[4] Saleeb.A.F.; and Arnold, S.M.: Explicit Robust Schemes for Implementa-

tion of a Class Of Principle Value-Based Constitutive Models: Theoretical
Development. NASA TM 105345, 1991.

[5] Arnold, S.M.; et al.: Explicit Robust Schemes for Implementation of a Class

of Principal Value-Based Constitutive Models: Symbolic and Numeric Im-

plementation. NASA TM 106124, 1993.

[6] Arnold, S.M.; and Tan, H.Q.: Symbolic Derivation of Potential Based Con-

stitutive Equations. Computational Mech., Vol. 6, pp. 237-246, 1990.

[7] Arnold, S.M.; Tan, H.Q.; and Dong, X.: Application of Symbolic Com-

putations to The Constitutive Modeling of Structural Materials. Symbolic
Computations and Their Impact on Mechanics, Noor, A.K., Elishakoff, I.
and Hulbert, G., eds., PVP-Vol. 205, ASME, pp.215-229.,1990.

[8] MATHLAB Group: MACSYMA Reference Manual. Version 10. Laboratory

for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA, 1984.

10

APPENDIX A: Template File Associated With COMPSD
The Main Driver Routine

This is the template subroutine to calculate

tensor S and D. inputs are eigenvalues gll,gl2,gl3,

and cmu(6), cmu is assumed to be engineering strain(el,

e.g. the Cauchy-green deformation tensor cm(3,3) is related

to cmu(6) in the following fashion:

cm(1,1)=cmu(1), cm(2,2) = cmu(2), cm(3,3) =cmu(3),

cmu(4) =2*cm(1,2), cm(5) =2.cm(2,3), c,m(6) =2*cm(1,3).

The outputs are the second order tensor S(6)

and forth order tensor D(6,6) are related in the

following way:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

S=D*C

S(1,1)

s(2,2)

S(3,3)

s(1 _2)

S(2,3)

S(3 _1)

C(1,1)

C(2,2)

C(3,3)

c(1,2)
C(2,3)

C(3,1)

= S(1)

= s (2)
= s(3)

= s(4)

= s(s)
= S(6)

= C(1)

= c(2)

= c(3)
= c(4)
= c(s)
= C(6)

subroutine compsd(gll,gl2,gl3,cmu,s,d)

real*8 g11,g12,g13,ts(3,3),td(3,3,3,3)

real*8 delt(3,3),delt4(3,3,3,3),s(6),d(6,6)

real*8 cmu(6),cm(3,3)

converts cmu(6) to matrix cm(3,3) in a way that

cm(l, 2)=cm(2,1) =cmu (4),cm(2,3) =cm(3,2)=cmu (5),

cm(1,3) =cm(3,1) =cmu(6).

II

5
C

c

C

C

6

C

C

C

C

do

continue

5 i=1,3

do 5 j=1,3

if (i.eq.j) then

iq=i

cm(i, j)=cmn(iq)

else if (i.ne.j) then

if ((i+j) .eq.3) iq=4

if ((i+j). eq. 4) iq=6

if ((i+j) .eq.5) iq=5

cm(i, j)=cmu(iq)/2

end if

cont inue

Initiates the second identity tensor delt(3,3) which

is a 2X2 identity matrix.

do 6 i=1,3

delt(i,i)=1.0

continue

Computes the forth order identity tensor delt4(3,3,3,3)

by definition.

do 7 i=1,3

do 7 j=1,3

delt4 (i,j, i,j)=delt (i,i) *delt (j,j)+delt (i, j)*delt (j,i)

delt4(i,j,j,i)=delt4(i,j,i,j)

7 continue

C

**

c For different eigenvalues gll,gl2,gl3 the computation

c is different, case1 is gll#g12#g13 call subroutine comsdl.

c case2 is gl3=gl2#gll or gll=g13#g12 or gll=gl2#gl3 then

c call subroutine compsd2, case3 is g11=g12=g13 call subroutine

c compsd3.

if ((g11.ne.g12).and.(g12.ne.g13).and.(g11.ne.g13)) then

call compsdl(gll,g12,g13,delt,delt4,cm,ts,td)

else if((g12.eq.g13).and.(gll.ne.g13)) then

12

C

C

C

C

C

8

9

I0

call compsd2(gll,gl2,delt,delt4,cm,ts,td)

else if((gll.eq.gl2).and.(gl3.ne.gl2)) then

gll=gI3

call compsd2(gll,gl2,delt,delt4,cm,ts,td)

else if((gll.eq.gl3).and.(gl2.ne.gl3)) then

gll=gl2

g12=g13

call compsd2(gll,gl2,delt,delt4,cm,ts,td)

else

call compsdS(gll,delt,delt4,ts,td)

end if

Rewrite the tensor ts(i,j) td(£,j,k,l)to S(i) and D(i,j)

respectively by using the symetric property.

converts ts(3,3) s(6) and td(3,3,3,3) to D(6,6)

do 8 i=1,3

do 8 j=i,3

if (i.eq.j) iq=i

(i.eq.l.and.j.eq.2) iq=4

(i.eq.2.and.j .eq.S) iq=5

(i.eq.l.and.j .eq.3) iq=6

s(iq) =ts (i,j)

continue

continue

do 9 i=I,3

do 9 j=i,3

d(i,j)---td(i,i,j,j)

continue

continue

do I0 i=I,3

d(i,4)=td(i,i,l,2)+td(i,i,2,1)

d(i, 5)=td(i, i,2,3) +td(i, i,3,2)

d(i, 6)=td(i, i,3,1) +td (i, i,I,3)

continue

d(4,4)=(td(l,2,1,2)+td(l,2,2,1)+td(2,1,1,2)+td(2,1,2,1))12.

d(4,S)=(td(l,2,2,3)+td(l,2,S,2)+td(2,1,2,3)+td(2,1,3,2))12.

d(4,6) =(td(l, 2,1,3) +td(l, 2,3, i)+td (2,I, 1,3) +t d(2, I,3,1))/2.

d(5,5)= (td(2,3,2,3)+td(2,3,S,2)+td(3,2,2,3) +td(3,2,3,2)) 12.

d(5,6) =(td(2,3,1,3) +td(2,3,3,1) +td (3,2, i,3)+t d(3,2,3, i))/2.

if

if

if

13

11

c

C

C

101

<<

>>

<<

>>

<<

>>

d(6,6) = (td (3,1,1,3)+td(3,1,3,1)+td (1,3,1,3)+td(1,3,3,1))/2.

do 11 i = 1,6

do 11 j = 1,6

d(i,j) = d(j,i)

continue

prints out the inputs g11,g12,g13,cmn(6) and outputs S and D

print*

print*

print*

print*

print*

prlnt*

print*

print*

do 101

, 'gll=', gll

, 'g12=', g12

, 'g13=', g13

, 'Input tensor C(6) :'

, (cmu(i), i -- 1,6)

,"second order tensor S(6) :"

, (s(i), i=1,6)

, "The forth order tensor D(6,6):"

i=1,6

print*,(d(i,j),j=l,6)

continue

return

end

subroutine compsdl(gll,gl2,gl3,delt,delt4,cm,ts,td)

gent ranin ("case 1.tera")$

subroutine compsd2(gll,gl2,delt,delt4,cm,ts,td)

gent ranin ("case 2.tera")$

subroutine compsd3(gll,delt,delt4,ts,td)

gent ranin ("case3. tera")$

14

100

26

25

This subroutine computes P and Q forth order tensors

which we define in tensor D.

subroutine pqcom(cml, cm2 ,p,q)

real*8 cml(3,3),cm2(3,3), p(3,3,3,3),q(3,3,3,3)

do I00 i--1,3

do 100 j=l,3

do 100 k=1,3

do 100 1=1,3

p (i, j,k, i)=cml (i,k) *cm2 (j, I)+cml (i,I)*cm2 (j,k)

q(i, j,k, l)=p (i,j,k, l)+cml (j,l)*cm2 (i,k) +cml (j,k) *cm2 (i, I)

continue

return

end

This subroutine computes matrix product cmXcm.

subroutine product(matl,cmm)

real*8matl(3,3),cmm(3,3),sum

do 25 i=1,3

do 25 j=1,3
sum=O.O

do 26 k=1,3

sum=sum+matl(i,k)*matl(k,j)

continue

cmm(i ,j)=sum
continue

return

end

15

APPENDIX B: Template File Associated With COMPSD1

Valid For Three Distinct Eigenvalues

C

C

<<

>>

C

C

C

C

C

real*8 gll ,g12,g13,ts(3,3) ,td(3,3,3,3)

real*8 cm(3,3) ,delt (3,3) ,delt4(3,3,3,3) ,p(3,3,3,3)

real*8 q(3,3,3,3),cmm(3,3),pl(3,3,3,3),p21(3,3,3,3)

real*8 p31 (3,3,3,3) ,q11(3,3,3,3) ,q12(3,3,3,3) ,p22(3,3,3,3)

real*8 q21(3,3,3,3) ,q22(3,3,3,3) ,a,b,c,al,a2,a3,a4,a5,a6

Obtains cmm(3,3)fcm(3,3)*cm(3,3) from subroutine product

call product(cm,cnun)

Uses the formula ve derived in code to compute Second order

tensor ts(3,3).

gentran(for i:1 thru 3 do

(for j:l thru 3 do

(ts [i,j] :a (gll ,g12 ,g13) *cram[i,j]+b (gll ,g12 ,g13)

*cm[i ,j]+c (gll ,g12, gl3)*delt [i ,j])))$

Call subroutine to compute all the functions we defined

when we derived forth order tenosor td, namely P(i,j,k,l)

and Q(i,j,k,l) which are the functions of cm(3,3) and

the matrix product cmm(3,3).

call

call

call

call

call

call

call

call

pqcom(cmm,cmm,pl,q)

pqcom(cnm,cm,p21,q)

pqcom(cm,cnuu,p22,q)

pqcom(cm,cm,p31,q)

pqcom(cmm,delt,p,q11)

pqcom(delt,cmm,p,q12)

pqcom(cm,delt,p,q21)

pqcom(delt,cm,p,q22)

16

c

c

c

<<

>>

c

c

c

>>

<<

>>

<<

>>

Computes forth order tensor td(i,j,k,1)

gentran(for i:1 thru 3 do

(for j:l thru 3 do

(for k:l thru 3 do

(for 1:1 thru 3 do

(td [i, j, k, I] :al (gll, g12 ,gl3)*pl [i, j, k, i] +a2 (gll, g12, g13)

* (p21 [i ,j ,k, I]+p22 [i ,j ,k, I])+a4 (gll ,g12 ,g13) *p31 [i ,j ,k, i]

+a3 (gll ,g12, g13)* (qll [i ,j ,k, 1] +q12 [i ,j ,k, 1])

+a5 (gll ,g12 ,g13)* (q21 [i ,j ,k,l] +q22 [i ,j ,k, I])

+a6 (gll ,g12 ,glS)*delt4 [i, j ,k, i]))))) $

return

end

a,b,c,al-a6 are the coefficients we derived in code.

gentran(a(gll,gl2,gl3):=block(type(function,a),

type("real*8",gll,g12,g13),

type("real*8",a,sl,s2,s3),

a: eval (ta))) $

gent ran (b (gl 1,gl 2, g13) :=block (type (funct ion, b),

type ("real*8" ,b, gll ,g12, gI3),

type ("real*8" ,sl ,s2 ,s3),

b :eval (tb)))$

gentran (c (gll, g12, g13) :=blo ck (type (funct ion, c),

type ("real*8", c, gll, g12, gl3),

type ("real*8", sl, s2, s3),

c :eval (tc)))$

17

<<

>>

<<

>>

<<

>>

<<

>>

<<

>>

<<

>>

gentran (al (gl I, g12, g13) :=block (type (funct ion, al),

type ("real*8" ,al ,gll ,g12 ,g13),

type ("real*8", sl, s2, s3, s11, s22, s33, s21, s32, s31),

al :eval (al)))$

gentran(a2(gll,gl2,gl3):=block(type(function,a2),

type("real*8",a2,gll,g12,g13),

type("real*8",s1,s2,s3,s1I,s22,s33,s21,s32,s31),

a2:eval(a2)))$

gentran(a3(gll,gl2,gl3):=block(type(function,a3),

type("rea1*8",a3,gll,gl2,gl3),

type("real*8",sl,s2,s3,sll,s22,s33,s21,s32,s31),

a3:eval(a3)))$

gentran(a4(gll,gl2,gl3):=block(type(function,a4),

type("real*8",a4,gll,gl2,gl3),

type("rea1*8",sl,s2,s3,s11,s22_s33,s21,s32,s31),

a4:eval(a4)))$

gentran(aS(gl1,gl2,gl3):=block(type(function,a5),

type("real*8",a5,gll,gl2,gl3),

type("real*8",sl,s2,s3,sll,s22,s33,s21,s32,s31),

aS:eval(aS)))$

gentran (a6 (gll, g12, g13) :=block (type (function, a6),

type ("real*8", a6, gll, gl2, gl3),

type ("real*8", sl, s2, s3, sl I, s22, s33, s21, s32, s31),

aS :eval (aS)))$

18

C

C

c

<<

>>

c

<<

>>

c

<<

>>

c

<<

>>

The s1,s2,s3,s11,s22,s33,s21,s32,s31 are derivatives of W

function s1(g11,g12,g13)

<<cut(vat);>>

gentran(type("real*8",s1,g11,g12,g13),

sl:2*eval(diff(v,'g11,1)))$

return

end

function s2(gll,g12,g13)

<<cut(vat);>>

gentran(type("real*8",s2,g11,g12,g13),

s2:2*eval(diff(w,'gl2,1)))$

return

end

function s3(g11,g12,g13)

<<cut(vat);>>

gentran(type("real*8",s3,gll,gl2,gl3),
s3 : 2*eval (dill (g, ' g13,1))) $

return

end

function sll (gll ,g12 ,g13)

<<cut (vat) ;>>

gentran(type("real*8", sll ,gll,gl2 ,g13),
sll : 2*eval (dill (e, 'gl1,2)))$

return

end

19

<<

>>

<<

function s22 (gll ,g12,g13)

<<cut (vat) ;>>

gentran (type ("real*8", s22,gll ,g12 ,g13),

s22 :2*eval (dill (w, 'g12,2)))$

return

end

function s33(gl1,812,g13)

<<cut (var) ;>>

gentran(type("real,8", s33,gll,g12,g13),

s33 :2*eval (dill (-, 'g13,2))) $

>>

c

<<

>>

c

<<

>>

return

end

function s21 (gll ,g12,g13)

<<cut (vat) ;>>

gentran(type("real,8",s21,gll,gl2,gl3),

s21 :2seval (dill (w, 'g12,1, 'g11, I))) $

return

end

function s31 (gll ,g12,g13)

<<cut (vat) ;>>

gentran(type("real*8", s31 ,gll,gl2,gl3),

s31 :2*eval (dill (w, 'g13,1, 'gll, 1)))$

return

end

2O

<<

>>

function s32 (gll ,g12,g13)

<<cut (vat) ;>>

gentran(type("real*8" ,s32 ,gll ,g12 ,g13),

s32 :2*eval (dill (w, 'g13, I, 'g12,1)))$

return

end

21

c

c

c

c

>>

c

c

c

c

c

c

>>

APPENDIX C: Template File Associated With COMPSD2

Valid For Double Coalesence Case

real*8 gll,g12,ts(3,3),td(3,3,3,3)

real*8 cm(3,3),delt(3,3),delt4(3,3,3,3),pl(3,3,3,3)

real*8 q2(3,3,3,3) ,ql (3,3,3,3) ,p(3,3,3,3) ,q(3,3,3,3)

real*8 bl,b2,b3, abar,bbar

Computes second order tensor ts(i,j) based on the formula

derived in code.

gentran(for i:l thru 3 do

(for j:l thru 3 do

(t s [i, j] : abar (gl 1, g12) *cm [i, j] +bbar (gl 1, gl2) *delt [i, j]))) $

Call subroutine to get P, Q which are defined in code.

call pqcom(cm,cm,pl,q)

call pqcom(cm,delt,p,ql)

call pqcom(delt,cm,p,q2)

Computes tensor td(i,j,k,l).

gentran(for i:l thru 3 do

(for j:l thru 3 do

(for k:l thru 3 do

(for I:I thru 3 do

(td [i ,j ,k,1] :bl (gll, gl2)*pl [i,j ,k, 1] +b2 (Ell ,El2)*

(ql [i,j ,k,i]+q2 [i,j,k, I])+b3 (gll, gl2)*delt4 [i,j,k, I])))))$

return

end

22

c

c

c

>>

<<

>>

<<

>>

<<

>>

<<

>>

<<

>>

abar,bbar are bl, b2, b3 functions derived in code.

gentran (abar (gll, g12) :=block(type (function, abar),

type ("real*8", abar, gll, g12),

type("real*8", ssl, ss2),

abar: eval (abar)))$

gent ran (bbar (gll, g12) :=block (type (function, bbar),

type ("real*8", bbar, gll ,g12),

type("real*8", ssl,ss2),

bbar: eval (bbar)))$

gentran (bl (gll, g12) :=block (type (funct ion, bI),

type ("real*8" ,bl ,gll ,g12),

type ("real*8", ssl, ss2, ss11, ss22, ss21),

bl :eval (bl))) $

gentran (b2 (gll, g12) :=block (type (funct ion ,b2),

type ("real*8", b2, gll,g12),

type ("real*8", ssl, ss2, ss11, ss22, ss21),

b2 :eval (b2)))$

gentran (b3 (gll ,g12) :=block(type(function ,b3),

type ("real*8" ,b3,gll ,g12),

type ("real*8", ssl, ss2, ss11, ss22, ss21),

b3 :eval (b3)))$

neww :sub st (['gi3= 'g12], w) $

23

c

C

c

<<

>>

c

<<

>>

<<

>>

c

<<

>>

ssl, ss2, ssll, ss22, ss21 are derivatives

function ssl (gll,gl2)

<<cut (vat) ;>>

gentran (type ("real*8", ssl, g11, g12),

of W.

ssl:2*eval(diff(neww,'gll,1)))$

return

end

function ss2 (gli ,g12)

<<cut (vat) ;>>

gentran (type ("real*8", ss2 ,gll ,g12),

ss2 :2*eval (dill (new, 'g12, I)))$

return

end

function ssll (gll,gl2)

<<cut (var) ;>>

gentran (type ("real*8", ssll ,gll,g12),

ss11 :2*eval (dill (neww, 'gl I,2)))$

return

end

function ss21 (gll,g12)

<<cut (vat) ;>>

gentran (type ("real*8", ss21, gll, g12),

ss21 :2*eval (dill (new, 'El2, i, 'gll, I)))$

return

end

24

c

<<

>>

function ss22(gll ,g12)

<<cut (vat) ;>>

gent ran (type ("real*8", ss22, gll, g12),

ss22 :2*evalCdiff Cnew_, 'g12,2)))$

return

end

25

c

c

<<

>>

<<

>>

<<

>>

<<

>>

<<

>>

APPENDIX D: Template File Associated With COMPSD3

Valid For The Triple Coalesence Case

real*8 gll, t s (3,3), td (3,3,3,3), delt (3,3), delt4 (3,3,3,3)

real*8 ccl, abbar

gentran(for £:I thru 3 do

(for j'l thru 3 do

(ts [i ,j] :abbar (gll)*delt [i ,j])))$

gentran(for i:l thru 3 do

(for j:l thru 3 do

(for k:l thru 3 do

(for I:I thru 3 do

(td [i,j,k, I] :ccl (gll) *delt4 [i,j, k,I])))))$

return

end

gentran (abbar (gll) :=block (type (function, abbar),

type("real*8", abbar,gll),

abbar: eval (abbar))) $

gent ran (cc I(gll) :=block (type (funct ion, ccI),

type("real*8", ccl,gll),

ccl: eval (ccl))) $

www: subst (['g13=' gll, 'g12=' gll], w) $

26

c

<<

>>

c

<<

>>

function sssl (gll)

<<cut (vat);>>

gentran (type ("real*8" ,sssl ,gll),

sssl :2*eval (dill (eve, 'gll, 1))) $

return

end

function sssll(g11)

<<cut (vat) ;>>

gentran(type("real*8" ,sssll ,gll),
sssll :2*eval (dill (ww, 'gll, 2)))$

return

end

27

I Form Approved[REPORT DOCUMENTATION PAGE OMBNo.0704-0188
I

Public reporting bu'_en for this collection of information is estimated to average 1 hour per response, including the time' for reviewing instructions, searching existing data sources,

gathering and mainta_lng the data needed, and completing and reviewing the .collection of informatJo_ Send c_mments regarding th_ burden estimate orany o_ asl_, of this

collection of information, including suggestions for reducing this burden, to Wash=ngton Headquarters _ervices, ulrectorate mr imormabon uperatK)ns ano Hepotts, 1Z1_, uenerson

Davis Higlw_ay, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.

1. AGENCY USi= ONLY (Leave blank) 2. REPORT DATE 3. REPORI" TYPE AND DATES COVERED

April 1993 Technical Memorandum

4. TITLE AN'l) SUBTITLE 5. FUNDING NUMBERS

Explicit Robust Schemes for Implementation of General Principal
Value-Based Constitutive Models

6. AUTHOR(S)

S.M. Arnold,A.F.Salccb,H.Q. Tan,and Y.Zhang

7. PERFORMING ORGANIZATION NAMEISI AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-510-01-50

8- PERFORMING ORGANIZATION

REPORT NUMBER

E-7787

10. SPONSOR_G/MONITORING

AGENCY REPORT NUMBER

NASATM-106123

11. SUPPLEMENTARYNOTES

S.M. Arnold, NASA Lewis Research Center, Cleveland, Ohio; A.E Saleeb, University of Akron, Department of Civil

Engineering, Akron, Ohio 44325; and H.Q. Tan and Y. Zhang, University of Akron Department of Mathematical

Sciences, Akron, Ohio, 43325 ,. Responsible person, S.M. Arnold, (216) 433-3334.
12a. DISTRIBUTION/AVAILABILITYSTATEMENT 12b. DISTRIBUTIONCODE

Unclassified - Unlimited

Subject Category 49.5" 9

13. ABSTRACT (Maximum 200 words)

The issue of developing effective and robust schemes to implement general hyperetastic constitutive models is

addressed. To this end, special purpose functions are used to symbolically derive, evaluate, and automatically generate

the associated FORTRAN code for the explicit forms of the corresponding stress function and material tangent

stiffness tensors. These explicit forms are valid for the entire deformation range (i.e., with both distinct and repeated

principal-stretch values). The analytical form of these explicit expressions is given here for the case in which the

strain-energy potential W is taken as a nonseparable polynomial function of the principle stretches.

14. SUBJECT TERMS

Hyperelastic; Constitutive models; Symbolic computation; Principal value

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

lB. SECURITY CLASSlRCATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

29
16. PRICE CODE

A03

20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

