NEP TECHNOLOGY - FY 92 MILESTONES
(NASA LERC)

THRUSTERS
- ESTABLISH 100 H TEST CAPABILITY FOR 100 KW MPD THRUSTERS
- DEMO LIGHTWEIGHT 20-KW KRYPTON ION THRUSTER
- OPTIMIZE THE DESIGN OF LOW-MASS POWER PROCESSOR TRANSFORMERS

NEP FACILITIES
- COMPLETE EPL'S TANK 5 CRYOPUMP UPGRADE

Presented by: Jim Sovey
NASA Lewis Research Center

NEP TECHNOLOGY - FY92 RESOURCES
(NASA LERC)

THRUSTERS
- $129K, MPD THRUSTER TECHNOLOGY
- $18K, TANK 5 CONSUMABLES
- $23K, ION OPTICS
- $30K, WITH $35K (BASE R&T) FOR PPU MAGNETICS, UNIVERSITY OF WISCONSIN

NEP FACILITIES
- $40K, TANK 5 CRYOPUMP UPGRADE
NEP - ION THRUSTER TECHNOLOGY
(NASA LERC)

ACCOMPLISHMENTS

- PERFORMANCE OF VIBRATION WORTHY 50-CM DIAMETER THRUSTER DESIGN COMPARABLE TO SOA DESIGNS
- LIGHTWEIGHT 30-CM THRUSTER ASSEMBLED UNDER BASE R&T PROGRAM
- 16 PAIRS OF DISHE PSD ACCELERATOR GRIDS ARE NOW BEING FABRICATED TESTING SCHEDULED FOR FEBRUARY 1993.

POWER PROCESSOR

- ANALYSIS OF FULL-BRIDGE, LOW VOLTAGE DC/DC CONVERTER COMPLETE
- DETAILED ANALYSIS, TRADE-OFFS, AND DESIGN OF TRANSFORMERS COMPLETE
- FOLLOW-ON WILL PROVIDE CONVERTER HARDWARE
50 CM DIAMETER ION THRUSTER PERFORMANCE

VIBRATION WORTHY CONICAL DIACHARGE
CHAMBER DESIGN HAS PERFORMANCE
COMPARABLE TO SOA CYLINDRICAL DESIGN

CONICAL DISCHARGE CHAMBER

CYLINDRICAL DISCHARGE CHAMBERS

6.5 kW, XENON

6.8 kW, XENON

13.5 kW, XENON

19 kW, ARGON

lsp = 3340 s

lsp = 3470 s

lsp = 5000 s

lsp = 9200 s

SPACE PROPULSION TECHNOLOGY DIVISION

Valuated Lightweight Ion Thruster Concept

State-of-the-art technology

- Significant system weight reduction
- Performance gains at low specific impulse

NEP: Technology 994 NP-TIM-92
LERC/JPL COORDINATED ION PROPULSION PROGRAM

SUPPORTED UNDER BASE R&T STARTING FY93

<table>
<thead>
<tr>
<th>LERC/JPL COORDINATED ION PROPULSION TECHNOLOGY PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT L (LERC), J (JPL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. THRUSTER DEVELOPMENT</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHTWEIGHT 30 CM</td>
<td>DOTIQ</td>
<td>AEROSP</td>
<td>VIS, WEA</td>
<td>L</td>
</tr>
<tr>
<td>POWER CONSOLE DEL</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>SEG THR. SYS. EVAL</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>5 KW SEG. THRUST</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>LIGHTWEIGHT 90 CM</td>
<td>EXP EVAL</td>
<td>1-SEGMEAN</td>
<td>5 KW MEAN</td>
<td>L</td>
</tr>
<tr>
<td>DONNELLOR THR. FOR SEP OR NEP</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. CATHODE DEVELOPMENT</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTOCOLS</td>
<td>DEFINE</td>
<td>THERMAL</td>
<td>LIFE</td>
<td>L</td>
</tr>
<tr>
<td>DIAGNOSTIC MODELS</td>
<td></td>
<td>PLASMA</td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. GRID DEVELOPMENT</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON CARBON</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>30 & 50 CM MOLY</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>DONNELLOR</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>LASER DIAGNOSTICS</td>
<td>CONTOURS</td>
<td>EVAL.</td>
<td>LIFE</td>
<td>J</td>
</tr>
<tr>
<td>CHARGE EXCH. STUDY</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. POWER PROCESSING</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENT TECH.</td>
<td>LITE MAIN</td>
<td>HV INVERTER</td>
<td>POWER</td>
<td>J</td>
</tr>
<tr>
<td>SIMPLIFIED PPU</td>
<td></td>
<td>TRV OPER</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>PACKAGED PPU</td>
<td></td>
<td></td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. 50 FEED SYSTEM LIFE</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. DIAGNOSTICS</th>
<th>FY93</th>
<th>FY94</th>
<th>FY95</th>
<th>AGENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUST STAND</td>
<td>COMPLETE</td>
<td></td>
<td></td>
<td>J</td>
</tr>
<tr>
<td>BEAM DIAGNOSTICS</td>
<td></td>
<td></td>
<td></td>
<td>J</td>
</tr>
</tbody>
</table>

NP-TIM-92

995

NEP: Technology
NEP - MPD THRUSTER TECHNOLOGY

FY 92 Milestone: Establish 100 hr test capability at 100 kW

Background:

- Base Technology Program supported extensive testing of
 - argon MPD thrusters to 240 kW
 - hydrogen thrusters to 100 kW
- Extensive performance data base established

Applied-Field MPD thruster schematic
Anode and cathode length of 7.8 cm. Cathode radius 0.94 cm, anode radii of 2.54, 3.81, and 5.1 cm. Thrust exit plane was even with anode exit plane.
High Power Electric Propulsion
MPD Thruster Technology

- New facility established
 - Helium cryopumping
 - 350 kW power
 - Plume diagnostics
 - Electrode power diagnostics

- MPD thruster tested to 240 kW

MPD Thruster Lifetime
Cathode Erosion

- Low purity Argon (99.995%)
- No vacuum purge

- High purity Argon (99.999%)
- With vacuum purge

Major cause of cathode erosion eliminated
Applied-Field MPD Thruster
Geometry/Operation Point Selection

Cathode
- Testing showed hollow cathode temperature was ~ 1000 K below rod cathode

Boron Nitride Backplate
- Increasing cathode-to-backplate separation improved insulator life

Anode
- 5.1 cm radius, 15 cm long anode to reduce power density

Operating point
60 kW: 1400 amps, 47 volts
0.14 g/s argon
Sputtering by argon propellant identified as major cause of erosion. Fundamental limit for Isp's of interest.

Program emphasis shifted toward light propellants and refractory metal anodes.

NP-TIM-92 999

NEP: Technology