100 - 500 kWe NEP Systems

Nuclear Propulsion Technical Interchange Meeting
LeRC Plum Brook Station
October 22, 1992

Jeff George
Advanced Space Analysis Office

100 - 500 kWe NEP Systems

• Use 2.4 MWt SP-100 reactor / dynamic power conversion
• Enhancing to 100 kWe thermoelectric SP-100
• Serve as interim step between 100 kWe and multimegawatt NEP
• New NEP mission/performance regime
System/Technology Assumptions

- **SP-100 Reactor**
 - fast spectrum, lithium-cooled, pin type
 - 2.4 MWt
 - 1375 K out
 - 7 yr life

- **Dynamic Power Conversion**
 - 1100 K Brayton
 - 1300 K Brayton
 - 1300 K Rankine
 - 1 to 4 100-125 kWe "modular" power conversion loops
 - 2000 V to load

- **Heat Rejection**
 - 10 kg/kWe (SP-100 program)

- **Krypton Ion Thrusters**
 - 50-100 cm
 - 3000-7000 sec Isp
 - 50-150 kWe/thruster
 - 6 kg/kWe

Electrical Output Power of Modular Dynamic Power Conversion Systems

<table>
<thead>
<tr>
<th>Conversion Loops</th>
<th>Low Temperature Brayton Cycle 100 kWe Loops</th>
<th>High Temperature Brayton Cycle 125 kWe Loops</th>
<th>Rankine Cycle 125 kWe Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>100</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>375</td>
<td>375</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

Lewis Research Center
Advanced Space Analysis Office
KRYPTON ION THRUSTER MASS SCALING
(500 kWc)

Thruster and PPU Specific Mass (kg/kWe)

- 50 cm thruster
- 100 cm thruster
- 150 cm thruster

Specific mass chosen for study

NEP System Specific Mass
for Rankine and Brayton Power Conversion
(2.4 MWt SP-100 reactor, Ion thrusters, 1 to 4 power conversion loops)

Specific Mass (kg/kWe)

- 1100 K Brayton
- 1300 K Brayton
- 1300 K Rankine

Power Level (kWe)
500 kWe SP-100/K-Rankine/Ion NEP Vehicle

250 kWe SP-100/K-Rankine/Ion NEP Vehicle
NEP MISSIONS

- Lunar Cargo
 - Scenario:
 - Depart LEO (400 km)
 - Spiral to Moon, Capture at Moon
 - Spiral down to Low Lunar Orbit (LLO)
 - Return Empty
 - Payload:
 - 40 MT to lunar surface
 - 39.5 MT lunar lander
 - Trip Time:
 - Round trip time < 1 year
 - Trip Time = Reactor, thruster operating time
 - Reference Cargo Vehicle:
 - Cryogenic LOX/LH2
 - Isp: 468 seconds
 - IMLEO: 267 MT
 - Trip Time: 3 days

EARLY TRACK NEP LUNAR CARGO MISSION PERFORMANCE
RESULTS

• 1350 K Rankine, Brayton provide system beneficial to SEI objectives

• Lunar Cargo:
 - 1350 K power systems at 1-1.5 MWe allow 90-130 MT savings over chemical vehicle (up to 50% reduction)
 - Round trip times: 250 days - 1 Year

• Mars Cargo:
 - 1350 K power systems at 1-1.5 MWe allow mass performance comparable to advanced NTP systems
 - Trip Time: 500 days - 2 Years

CONCLUSIONS

• Early Track NEP provides the option for "faster, cheaper" implementation of advanced propulsion for SEI

• Other areas of application:
 - Space Science - significant augmentation to exploration of outer planets and beyond
 - Precursors - Early Track NEP to Mars for robust mapping, sample return, subsurface probing

• Technology Developments Required:
 - Dynamic Power Conversion
 - Scaled Krypton Ion Thrusters
 - MPD Thrusters may also be an option
 - System integration