Final Technical Report

NASA Grant NGL 05-020-272

Grant Period: 1971 -- 1990

Title: Physics of Solar Activity

P.I.: Dr. Peter A. Sturrock

Center for Space Science and Astrophysics

Stanford University
The NASA grant NGL 05-020-272 supported our research activity in Stanford University during the 20 year period from 1971 to 1990. We published 92 papers (72 in refereed journals) with the support by this grant. The aim of our research activity has been to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because our research subjects have been diverse and many researchers have been supported by this grant, it is impractical to describe in detail all the research activity supported by this grant. (The titles of the papers we have published will show the diversity of our research.) We will, therefore, select a few key areas of research and describe them in some detail.

(1) Energy Storage and Force-free Magnetic Field

The energy released during a solar flare is believed to be stored in magnetic fields. Because energy is stored gradually, it seems logical to assume that the magnetic field configurations have ample time to adjust to be "force free." Above the photosphere, especially in active regions, the magnetic forces tend to be much larger than thermal pressure gradient and gravitational forces acting on the plasma. Therefore, the magnetic field and electric current vectors must adjust to be very nearly aligned to make the unbalanced Lorentz forces negligible.

In this light, it is important to understand force-free magnetic field configurations. We have studied this problem early on (Barnes and Sturrock 1972; Barbosa 1976; Sturrock and Barbosa 1978), and we have recently developed a "magneto-frictional" method (Yang, Sturrock, and Antiochos 1986). Since then, we have applied this method to various cases.

In view of the important role of magnetic fields in solar activity, we have performed several studies on magnetic fields on the Sun (Sturrock 1972; 1978; 1980; 1987; 1990; 1991).

(2) Energy Release and Particle Acceleration

How the stored energy is suddenly released during a solar flare is the crux of solar flare physics. In this area, Dr. Sturrock has contributed many papers (Sturrock 1973; 1980; Sturrock et al. 1984; Sturrock 1986, Sturrock 1989a, b). It is known that a large fraction of the flare energy is channeled to accelerate particles (electrons and ions). The group has published several papers in this area (Newman et al 1971; Sturrock and Newman 1973; Barbosa 1976; Vlahos, Bai et al. 1986).

Dr. Sturrock has played a leadership role in organizing the Skylab Workshop on solar flares, which resulted in a book edited by him (Sturrock 1980). He also organized two workshops on solar flare prediction (Sturrock 1976; Antiochos, Bai, and Sturrock 1985).

(3) Radiation by Nonthermal Electrons

We deduce the number, energy spectrum, and total energy of energetic particles from the radiations they emit while interacting in the solar atmosphere. Therefore, research on the radiation processes is one of the main topics of solar flare physics. We have contributed several papers in this area (Chin, et al. 1971; Ramaty and Petrosian 1972; Sturrock and Epstein 1973; Petrosian 1973; Bai 1988).
(4) Coronal Loops

Skylab observations have shown that, except for coronal holes, the solar atmosphere is dominated by magnetic loops of various shapes and sizes. Solar flare energy is believed to be stored within magnetic loops or in the current sheets at boundaries between loops. Therefore, it is important to understand how magnetic loops and plasmas within them behave. Our group has done extensive research on this subject (Antiochos 1976, Antiochos and Sturrock 1976; Krall and Antiochos 1981; Antiochos et al. 1981, 1985).

(5) Flare Classification

Solar flares exhibit diverse phenomena including electromagnetic radiations ranging from radio waves to gamma rays with energies exceeding 100 MeV, ejection of plasmas and accelerated particles into interplanetary space, and generation of shock waves. However, we have found that flares do not always manifest all the phenomena associated with flares nor they exhibit random collections of flare phenomena. Instead, certain clusters of related phenomena tend to occur in the same flare. To understand the physical processes in solar flares, it is helpful to know which flare phenomena are related to which. From early on, we have noticed that gamma-ray line flares tend to show some characteristics not usually found in ordinary flares (Bai et al. 1985; Bai and Dennis 1985). A further study has shown that gamma-ray line flares are made of two kinds, impulsive and gradual GRL flares (Bai 1986a, b). Now interplanetary measurements show that the elemental abundances of energetic particles are different for different kinds of flare. Our studies on this subject were
culminated by a review paper proposing a comprehensive flare classification scheme (Bai and Sturrock 1989).

(6) Longitude Distributions of Flares

Although solar flares are mainly coronal phenomena, the underlying cause of flares, the dynamo activity, is deep seated. If there is a spatial pattern in the dynamo activity, therefore, it would be borne out in the longitude distribution. From the early days, it was proposed that solar flare activity was concentrated in certain longitude bands. Earlier studies, however, were qualitative. We have studied longitude distributions of solar flares of cycle 19 in coordinate systems with arbitrary rotation periods, using the maximum likelihood method (Fung et al. 1971). This study showed evidence for an active longitude band rotating with a synodic period of 28.5 days.

Our recent interest in this subject was spurred by the discovery of the 154-day periodicity. By analyzing solar flares observed by instruments aboard SMM and GOES satellites and ground-based observatory, Bai (1987, 1988, 1990) has discovered two northern-hemisphere "hot spots" rotating with a synodic period of 26.73 days. A recent study including flares of cycle 22, shows that these hot spots remained at the same place for three solar cycles (cycles 20–22). For the first time, we have shown that hot spots last longer than one solar cycle. The cause of the hot spots is still unknown.

Bai (1988) has confirmed the hot spot with a rotation period of 28.5 days discovered by Fung et al. (1971) for cycle 19, but he has found that this hot spot was in the northern hemisphere. Therefore, the longitude distribution of the northern hemisphere flares must have re-organized
after cycle 19, and two hot spots remained at the same places throughout cycles 20–22.

(7) Periodicities detected in the solar activity

The 154-day periodicity was discovered by Rieger et al. (1984), by analyzing the occurrence times of gamma-ray flares observed during 1980–1983. Since then, many people have confirmed the operation of this periodicity in different epochs. While most of the papers on this subject have remained in the discovery mode, we have contributed to the understanding of the cause of this periodicity. Not only have we confirmed the 154-day periodicity (Bogart and Bai 1985; Bai and Cliver 1990) but also discovered other related periodicities with periods at multiples of about 25.8 days (Bai 1987; Bai and Sturrock 1991; Bai 1992). Our study has eliminated the possibility of interacting hot spots being the cause of the 154-day periodicity (Bai and Sturrock 1987); and instead we have proposed that the Sun has a fundamental period of about 25.8 days and that periodicities of 51, 78, 102, 128, 154 days are its subharmonic periods (Bai and Sturrock 1991). Our recent study (Bai and Sturrock 1993) has found evidence for the fundamental clock mechanism.

We have also studied the methods of periodicity analysis (Sturrock and Shoub 1982; Bai 1992).

(8) Coronal Heating and Related Problems

The solar corona contains plasmas with temperatures around one million degrees. At first sight, it seems unreasonable that the 6000-degree photosphere can heat the million-degree corona. The coronal heating is still one of the unsolved problems in solar physics. We were interested in this
problem from early on (Adams and Sturrock 1975), and have kept our interest (Antiochos and Underwood 1981; Sturrock and Uchida 1981; Antiochos and Sturrock 1982; Sturrock et al. 1990).

We have also studied spicules, surges, and prominences which may supply substantial energy to the corona (Antiochos 1980; Blake and Sturrock 1985; Antiochos and Klimchuk 1991).

(9) Plasma Processes

The solar atmosphere as well as more than 90% of the ordinary matter in the Universe is in the plasma state. Therefore, understanding of plasma processes is essential to understanding of high-energy phenomena in astrophysical objects. We have studied plasma processes in astrophysical objects including the Sun (Smith and Sturrock 1971; Sturrock et al. 1971; Knight et al. 1974; Antiochos and Sturrock 1976, 1978; Knight and Sturrock 1977; Shapiro and Knight 1978; Barbosa 1979; Krall and Antiochos 1980; Sturrock 1990, 1991).

(10) Other Areas

We have also contributed to other areas of solar physics (Moore and Fung 1972; Dingle et al. 1973; Antiochos and Underwood 1980; Antiochos 1984; Antiochos and Noci 1986; Klimchuk et al. 1991), to the influence of solar activity to terrestrial phenomena (Knight and Sturrock 1976; Lipa et al. 1976), and to extra-solar-system astrophysics (Antiochos et al. 1983; Sturrock 1986; Sturrock and Yang 1986).
Publications Supported by NASA Grant NGL 05-020-272


Particle flux associated with stochastic processes


Maximum temperatures for radiation from plasma waves


Longitude Distribution of Solar Flares


Polarization Measurements of Solar Type III Radio Bursts at 25.3 MHz


A Weak Turbulence Analysis of the Two-Stream Instability


Comments On the Formation of Energy Spectra in Synchrotron Sources

Sturrock, P.A., 1972, Progress in Astro. and Aero, 30, 163.

Magnetic Models of Solar Flares


A Classification of Magnetic Field Configurations Associated with Solar Flares


Force-free Magnetic-field Structures and Their Role in Solar Activity


Structure of the Chromosphere-Corona Transition Region

Force-Free Absorption of Gyrosynchrotron Radiation in Solar Microwave Bursts


Solar Flare Theory


Mass Motion in Solar Flares


Test for Planetary Influences in Solar Activity


Magnetosphere Structure and Radiation Mechanisms of Pulsars


Synchrotron Source I: Extension of Theory for Small Pitch Angles


A Generalization of the Equations Governing the Evolution of a Particle Distribution in a Random Force Field


Impulsive Solar X-Ray Bursts: Bremsstrahlung Radiation from a Beam of Electrons in the Solar Chromosphere and the Total Energy of Solar Flares


Two-fluid Model of the Solar Corona


A Model of Coronal Holes

Impulsive Solar X-Ray Bursts: II. Statistical Correlation of Observations with Solar Longitude


Thermal Instability in Loop Prominence Systems


Influence of Magnetic Field Structure on the Conduction Cooling of Flare Loops


Linear Force-Free Fields in the Lower Corona


Solar Activity, Geomagnetic Fields and Terrestrial Weather


Search for Correlation between Geomagnetic Disturbances and Mortality


Report on the Solar Physics-Plasma Physics Workshop held at Stanford University, September 17-20, 1974


Reverse current in solar flares


Evaporative Cooling of Flare Plasma


The Exterior Source Surface for Force-Free Fields


The Rapid Heating of Coronal Plasma During Solar Flares: Nonequilibrium Ionization Diagnostics and Reverse Currents
Dynamo Action in a Thin Slab

Stochastic Acceleration of Solar Protons

A Sunspot Periodicity and Its Possible Relation to Solar Rotation

A Model of Active Prominences

Radiative Dominated Cooling of the Flare Corona and Transition Region

The Minimum Flux Corona: Theory or Concept?

The Evolution of Active Region Loop Plasma


Is the Galactic Corona produced by Galactic Flares?

The Differential Emission Measure of Dynamic Coronal Loops

Numerical Studies of the Energy Balance in Coronal Loops

Coronal Heating by Stochastic Magnetic Pumping


The Cooling and Condensation of Flare Coronal Plasma


Temperature Minimum Heating in Solar Flares by Resistive Dissipation of Alfvén Waves


Examination of Time Series Through Randomly Broken Windows


A Giant X-Ray Flare in the Hyades


Plausible Mechanisms for Rapid Acceleration of Protons During Solar Flares


Characteristics of Gamma-Ray-Line Flares as Observed in Hard X-Ray Emissions and Other Phenomena


A Dynamic Model for the Transition Region


Energy Release in Solar Flares


Thermal Stability of Static Coronal Loops: I. Effects of Boundary Conditions


Characteristics of Gamma-Ray-Line Flares


Spicules and Surges


Confirmation of a 152-day Periodicity in the Occurrence Rate of Solar Flares Inferred from Microwave Data


The Structure of the Static Corona and Transition Region


Classification of Solar Flares and Phenomena Observed during the First and Second Phases of Flares


Two Classes of Gamma-Ray/Proton Flares: Impulsive and Gradual


Superactive Regions and Production of Major Flares


A Flare-Induced Cascade Model of Gamma-Ray Bursts


Rapid Fluctuations in Solar Flares
(Dordrecht: Reidel), 411-412.

Accretion Disk Magnetospheres

Meudon, France, 1984 (Boulder, CO: NOAO and Bedford, MA: Hanscom
Air Force Geophysical Lab.

Physical Aspects of the Prediction of Solar Flares

Vlahos, L., Bai, T., et al., 1986, Chapter 2 "Particle Acceleration" of Energetic
Phenomena on the Sun, the SMM Workshop Proceedings (NASA:
Washington, DC).

Particle Acceleration


Force-Free Magnetic Fields: The Magneto-Frictional Method


Distributions of Flares on the Sun: Superactive Regions and Active
Zones


Periodicity of the Flare Occurrence Rate in Solar Cycle 19


On the 152-Day Periodicity of the Solar Flare Occurrence Rate


Physical Aspects of the Prediction of Solar Flares.


Solar Flares and Magnetic Topology

Non-Linear Force-Free Magnetic Fields: Calculation and Application to Astronomy

Distribution of Flares on the Sun during 1955-1985: 'Hot Spots' (Active Zones) Lasting for 30 Years

Directionality of Continuum Gamma Rays from Solar Flares

Coronal Magnetic Fields Produced by Photospheric Shear

When and Where to Look to Observe Major Solar Flares

Classification of Solar Flares

Magnetic Properties of CIV Doppler Shift Patterns

Force-Free Magnetic Fields: Is There a 'Loss of Equilibrium'?

Energy Conversion in Solar Flares

The Role of Eruption in Solar Flares

Solar 'Hot Spots' are Still Hot

A 154-Day Periodicity in the Occurrence Rate of Proton Flares


A 154-Day Periodicity in the Occurrence Rate of Flares for Solar Cycle 19 through 21


Shear-Induced Inflation of Coronal Magnetic Fields


Maximum energy of semi-infinite magnetic field configurations


Episodic Coronal Heating


A New Model For the Formation of Solar Prominences


The 154-Day and Related Periodicities as Subharmonics of a Fundamental Period


The Practical Application of the Magnetic Virial Theorem


Maximum Energy of Semi-Infinite Magnetic Field Configurations.

Methods of Periodicity Analysis: Relationship between the Rayleigh Analysis and a Maximum Likelihood Method

Note: The papers are ordered chronologically. Within the same year, they are ordered alphabetically in authors' names. The total number of papers is 92, of which 72 are papers published in refereed journals.