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Abstract

The unsteady aerodynamic effects due to the separated flow around slender delta wings

in motion have been analyzed using an extension of the Brown and Michael model, as

first proposed by Arena. By combining the unsteady flow field solution with the rigid

body Euler equations of motion, self-induced wing rock motion is simulated. The

aerodynamic model successfully captures the qualitative characteristics of wing rock

observed in experiments. For the one degree of freedom in roll case, the model is used to

look into the mechanisms of wing rock and to investigate the effects of various

parameters, like angle of attack, yaw angle, displacement of the separation point and

wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional

degree of freedom is added. However, no limit cycle was observed in the two degree of

freedom case. Nonetheless, the model can be used to apply various control laws to

actively control wing rock using, for example, the displacement of the leading edge

vortex separation point by inboard spanwise blowing.
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introaucuon

At high angles of attack the leeward flow field for slender delta wings is dominated by a

highly organized vortical flow structure emanating from the sharp leading edges. The

vortex sheet shed from the leading edge rolls up into a pair of strong vortices. As the

angle of attack is increased, these leading edge vortices interact with each other and the

wing itself, to create a sustained and large amplitude rigid body oscillation called wing

rock. Such oscillations lead to a significant loss in lift and can present a serious safety

problem during maneuvers, such as in landing. The maneuvering envelope of an aircraft

exhibiting this behavior is also seriously restricted because the maximum incidence angle

is often limited by the onset of wing rock before the occurrence of stall

In recent years, the effectiveness of active control to alleviate this problem has been

explored at the Stanford low speed wind tunneL Wong[ 18] has demonstrated that one

degree of freedom wing rock can be suppressed by using tangential blowing as a roll

control actuator and Pedreiro[ 15] is examimn" g the roll and yaw coupling for two degree

of freedom wing rock and its elimination. However, the development of efficient control

techniques and algorithms is constrained by the limited understanding of the basic

aerodynamic mechanism and effect of various parameters on this phenomenon. This

information must be understood so that wing rock may be avoided through design or

efficiently controlled by active means. Also, due to the various conditions involved in the

wing rock experiments, one lacks a general aerodynamic model where control laws can

be tested for various configurations before actual implementation. These were the

motivations for developing the following aerodynamic model.

Aerodynamic Model

Assumptions

An aerodynamic model isneeded to obtaina fastestimateof thevelocityand pressure

fields around a delta wing which when combined with the equations of motion will

capture wing rock. The vortex model for the vortical flow around the delta wing, first

suggested by Brown and Michael[ 4] and later expanded to the unsteady case by Arena[l]

is adequate for this purpose and is chosen to investigate the characteristics of wing rock.

The model developed is an extension of the Arena model in the sense that for the one

degree of freedom case parameters such as sideslip and displacement of the separation

lmlle 9



_int were added and yaw motion in the plane of the wing i.e., an additional degree of

eedom was included.

?he actual flow field around the wing is illustrated in figure l(a). In the model, separated

t'low on the delta wing is represented by a pair of line vortices connected to the leading

edge by a straight vortex feeding sheet, as shown in figure l(b). It has been shown

experimentally[17], that most of the axial vorticity of the leading edge vortex is confined

to a viscous core region having a diameter of the order of 5% of the local semi-span. This

fact justifies using a model where all the leading edge vortex vorticity is concentrated

into two single line vortices.

Usually aircraft operate in the range of high Reynolds number, where the viscous effects

are confined to very thin boundary layers along the surfaces and free shear layers in the

fluid. Thus, it will be assumed that the only role of viscosity is to provide the mechanism

for flow separation. It will also be understood that the Mach numbers to be used are

sufficiently low to assume incompressible flow.

The pre.sent model does not predict vortex breakdown and no attempt is made to include

this phenomena. Wing rock is observed at angles of attack where vortex breakdown does

not occur[ 2] and therefore the dynamic simulations will be applied at incidence angles

where vortex breakdown does not affect the aerodynamics of the wing. The steep

pressure gradient between the minimum pressure and the primary separation line causes

an additional flow separation, which usually takes the form of a small secondary vortex.

The effect of the secondary vortex on wing rock is small and will not be considered. It

will also be assumed that the flow field is conical. The conical assumption requires that

the wing geometry be conical and therefore all physical quantities are constant alongrays

emanating from the wing vertex. For a finite delta wing, subsonic conicality is an

approximation that stems from ignoring the singular nature of the apex and the trailing

edge effects. Nonetheless, it has been observed that the subsonic flow past a delta wing is

approximately conical in a region downstream of the apex and upstream of the trailing

edge. Later a slender body assumption will be used to simplify the governing equations.

Wing Geometry and Coordinate System

The unsteady aerodynamics of an aircraft maneuvering at high angles of attack are very

configuration dependent. Therefore, to provide some insight into the unsteady

aerodynamics, we will look into a simple configuration to effectively eliminate any

configuration effects, namely that of a plain slender delta wing.
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The schematics of the delta wing and coordinate system to be used in the dynamic

simulations are shown in figure 2. It is assumed that the wing has zero thickness and is

mounted on a pivot.

Two coordinate systems are used: one inertial ground fixed frame of reference and one

moving frame attached to the wing. All measurement and operations made with respect

to the inertial frame are denoted with capital letters while lower case letters are used for

the moving frame. The numerical problem is posed in the body fixed coordinate system.

Therefore the relationship between variables in these two frames must be examined.

V R =V,

r R

=p(e,,)

In the inertial frame of reference, the X axis is aligned with the freestream velocity.

Before the dynamic simulation the wing is moved to its initial position by the following

sequence:

(a) a yaw-like rotation around the original Z axis through the angle 13followed by

(b) a pitch like rotation around the new position of Y axis through the angle a followed

by

(c) a roll like rotation around the final position of the X axis through the angle V.

Once the initial position of the wing is fixed the dynamic simulation uses Euler angles _,

1"1and _ to provide the wing motion.

The base vectors in the inertial frame and the freestream velocity are related to the body

fixed frame as follows:

where

./

cos tzcos/3
[C]_ = sin 7 sin a cos ,8 - cos 7 sin 13

cos 7sin a cos/3 +sin 7 sin 13

cosa sin/3

sin y sin a sin/3 + cos 7 cos/3

cos 7 sin a sin/3 -sin y cos/3

-sina

sinycosa

cos y cos a
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[c]2
cosr/cos¢

= sin ¢ sin 17cos (- cos # sin _"

cos Csin r/cos(+sin # sin (

cost/sin(

sin ¢ sin r/sin (+ cos _ cos(

cos _ sin 77sin ( -sin _ cos (

-sin r/ ]

sinCcosr/|

cos¢cosr/J

Complex Potential

The Prandtl-Glauert equation

(1- o

is valid for supersonic and well as subsonic Mach numbers. If the wing is slender and the

crossflow effect is dominant, the x derivative must be smaller than the other terms and

the Laplace equation for the crossflow is obtained.

- r-o
Unlike the original Brown and Michael model, due to the asymmetry of the flow field,

the delta wing cross plane will be transformed by conformal mapping to a circle plane

and the circle theorem, which allows one immediately to write the complex potential in

terms of the vortex system and its image will be used. The advantage of this approach is

that the boundary conditions on the wing surface are satisfied exactly and the time

dependency can be introduced through the boundary conditions.

The conformal mapping function is given as

_ =1(O'+40"_ - 4a2 )

where _ represents the circle plane while o represents the physical plane. Figure 3. is a

sketch of the approximated flowfield in the crossfiow physical plane and the circle plane.

For a conical flow, the vortex strength increases linearly in the chordwise direction and

therefore a feeding sheet is necessary in the model This sheet is represented by a

mathematical branch cut so that the potential function is single valued and is represented

by the dotted line in figure 3. The cross flow velocities vb and wb are functions of the

angle of attack, sideslip and roll angles and are defined previously. The steady flow field

in the circle plane is represented by the superposition of a doublet with flow coming from

two directions and two vortices. To satisfy the tangency condition, image vortices of the

palle 12



opposite strength placed at a:/_, must be used. Using these elements, the steady

complex potential can be written as

(a) (dF _ 1+_. T vb +tW_._(_)=-_=v-iw-iw, + 1--_

-i2-2_ll'}(_j-_jr)-J_li _--r Inf_la-_2 1

k ':;,J

The expression for the velocity at any point can be obtained by differentiating the

previous equation with _.

i", 1
2n

_i F, 1 +i F, 1
2_ _-_, 2tr_ a 2

,,-(

iF_ 1

£

In order to allow for unsteady motion of the wing the complex potential and the

boundary conditions must be modified. The governing equation is the same for the

unsteady case. However, since the Laplace equation does not explicitly depend on time,

the boundary conditions must be time dependent and should be solved at each time step.

The tangency condition for the unsteady case should be modified to state that the local

fluid velocity normal to the wing should be equal to the local velocity of the wing itself.

To satisfy this condition in the unsteady case, a potential function must be Superimposed

with the steady case to account for the unsteady boundary conditions. The derivation for

this unsteady velocity potential is similar to that of Bisplinghoff, Ashley and Halfman[ 3]

for the unsteady flow on a pitching airfoil. The unsteady condition due to roll of the wing

can be satisfied by using a source-sink sheet on the circle and the unsteady condition due

to yaw can be satisfied using a doublet and freestream. The complex potential for a

source-sink sheet around the circle and the doublet with freestream from the yaw can be

expressed as

(,1/F_.._.o : ½ [_'H÷ in( _la_° )adO- (x- l'_Cr )[}, 4"

The unsteady flow field can be obtained by differentiating the expression with respect to

ptle 13



la21W_"*_=-2"-_ J° _-ae

The unknown source-sink strength per unit length H + is given in terms of the local

velocity of the wing as H+=2Vw. The expressions will be transformed to the circle plane

where

V,_ip_,_ = yf2, = 2a_, cos0

V_,i,_ = 2yf_, sin0 : 4a£1, sin 0cos0

The expression for the unsteady complex velocity in the circle plane can be written as

(°')W,,,,,,,,,o = 4a=f_, [2,, sin0cos0 (x-A.Cr)D., l-
tt Jo __aeiO dO- -_

Therefore, the total complex velocity in the circle plane can be written as

r, 1 i r, 1 .r, 1--!
• ( a=_ ( a2"_ .

+''"_/ . dff-(x- MCr)fl: 1-
x Jo __ae _e

+iF, 1

2=¢_£

To obtain the pressure distribution on the wing, the tangential velocity due to the

unsteady motion must be known. However, the equation for the unsteady velocities is

singular on the wing surface and cannot be used. Therefore, the expression for the

tangential velocity on the circle plane due to the roll and yaw given by Bisplinghoff et.

al.[3] will be used

Vi --'_J: V"sini O ..dO+ 2(x-}l.Cr)i'i, sinO
C05 t_ -- C05 ill

By substituting the expression for the wing velocity in the physical plane, the tangential

velocity can be found.

V, _4fl'a l" c°s Osin2 O dO+ 2(x-_Cr)fl, sinO _- f_,a 1', cosO- cos' OdO
-=x,o cosO-cosO x ,o cosO-cosO

+2( x - mr )l'l. sin 0 = -2fi.a( 1- 2 sin _O) + 2( x - gCr )El, sin 0

l_lle 14



Kutta Condition

Normally, the separation point for a slender sharp edged delta wing is fixed at the leading

edge. However, to study the effects of displaced separation, it is assumed that the

separation point is located at an arbitrary point a s. This requirement of a separation point

at c s is expressed in the present formulation as

w(,,.)=w(¢.) =w(¢.)_-:-W =o
$ $

Therefore, for the left and right separation points we obtain the following two conditions.

I I a÷l"' '" 1 , ,-Tf + v_, 1- +t -a= i

! a÷)+i 1", 1 a 2 + 4a2f_x So:" sin_,-ae_eOcos Odo - (x - 2Cr)fl z 1- = 0

2_,. *,

Note that the integral is singular but has a f'mite value at _, = ae _e. Hence to avoid any

numerical problems an adaptive integration scheme is used.

Force Free Condition

In an actual fluid, the fluid pressure is continuous everywhere. However, for the present

model the feeding sheet is modeled by a branch cut which gives a jump in the potential

function which in turn creates a pressure discontinuity. The force-free condition is based

on the fact that there can be no unbalanced forces in the fluid, hence the pressure forces

from the feeding sheet must be balanced by the force on the vortices.

The pressure jump across the feeding sheet in terms of the pressure coefficient can be

shown to be

)aC'=v', a=

The force exerted by the feeding sheet can be obtained by integrating ACp from the

separation point to the vortex and multiplying by the dynamic pressure.

F_ /..d_,,a_., f --ip(ub--'_+ l"_)(Ot--G.) F,_,.f..,_.,.., = i_ub--_+ I". )(G. -G,)

The force exerted on the vortex itself is given by the Kutta-Joukowski theorem

italic 15



do., da, [ ]
w(o,)-,, a°' F.,,.o...--ipr. W(a.)-u,

dr dt IR3 dr dt R

I dcrwhere do.. is the velocity of the vortex with respect to the inertial frame and u_ _ is
dt It_ dr

due to the inclination of the line vortices with respect to the freestream velocity.

From the force free conditions, the force from the feeding sheet must cancel the force

from the vortex. Combining the equations for both the left and right vortex we have

Ido.. ----u, do._____.+ W(o..)- u_
at, dr dr _ r.

To simplify the equations, the conical flow assumption will be used. For conical flow the

vortex strength and position are linearly increasing functions of x. Therefore,

do.__.__,= O.---:"tane dr. = r. tane
dr 2a dr 2a

All the equations up to this point have been defined with respect to the ground f'uted

inertial frame. Since the wing will go into motion, it is convenient to transform the

equations to the body fixed frame. We have previously shown that for the two ground

fixed and body fixed coordinate systems

aa.I +.×,dt _ dt I,

All equations will be solved in the circle plane and can be transformed by

O.=¢ +_ do.,I = do',d._,.l= _j_-a2 d_.._,[at I, at. at I, _. at I,

Milne-Thompson[ 11] has shown that one must be careful when transforming equation

carrying vortex expressions to different planes, because the solution will not be the same

when transformed back to the physical plane. Therefore to calculate the velocity at the

vortex center, the following term must be added.

' 2"(¢-a'
The final form of the force free condition can be written as

d_._. __ j:2'_2a 2"IW('_'''e2'2 2 +F ,.a 2 u, _za el(2 ,. +7"q.a2](- _, +7"q,a2]]
dt l, ,,- [ _, -a 2rt (¢2_a 2)2
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"' ¢(¢:+':)-(:-;tCr)r_,

The finn step is to transform the equations into conical variables to eliminate the

chordwise dependence of the steady terms. The vortex position, strength and time will be

non-dimensionalized by the following variables.

=- F tV._" _ sc=_ t'=_
a 2zraV. Cr

The final system of equations is

-i-- I+-7_I+T7--,fl--7_.,)+i I¢, _

v. ¢,,) "-t _,: [(-_;

K'!

<_;-¢ <_

,.,,.,co,,._,,2xtane_:_ _';-_ d61_t_r.r_/1 ' l'l; 1 1:0-I. tl'Cr

,_,:" • ,: • 12<,
<"' +'-'ll +"-'+'(c-')']s_-+

u_ 2 _,
v.

<r:-""I _:(_:'+,),. ¢,__c,h.

+ ,,c., J; _:_,,. ,,,,-{-C-;-:<ll:l 1

We now have six unknowns (two normal and spanwise vortex positions and two vortex

strengths) and six equations (two from the Kutta condition and four from the zero force

condition).
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Equations of Motion

For a thin delta wing mounted on a ball and socket sting at point c, as shown in figure 2,

the Euler rigid body rotational equations of motion are of the form

where M, is the external moments around point c, _ is the wing angular velocity vector

and Ic is the inertia matrix about c. For the special case of principal axes,

where

I= 0 0
I¢=OInO

o o I,,

I= = 1 p_Cr 4 tan_e In = pwCr 4 tane

,::,=+,:r=::+,
=L-T- 77

The equation of motion can be written in component form

M. = I=f,'lx + (I,, - In )fl,fly

M, =Inn , +(I=-l=)n:n,

B

The components of i"l

relations.

 71
t -g) J

p.Cr 4 tane

M= = l=fi, + ( In - l= )fl;,fi,,

can be written in terms of Euler angles using the following

n,/=/sinCcosn cost o 0
_=J Lcos¢cosr/ -sin0 o

Differentiating these equations and noting that Izz=lr/+lxx, the equations of motion can
be rewritten as

M: = I= (¢- sin rl¢)+ I= [cosOsin O(cos: rl_ i- i]2)_ 2 cos r/sin 2+fill

M, = In (cos 0_ + sin Ocos r/n)+/.[sin rl(cos r/cos O_' - 2sin Olin)]

M, = I: (cos ¢ cos r/: - sin 00)+ I= (sin r/cos rl sin 0_= - 2 sin +cos r/¢_ - 2 cos ¢_)

- I n (sin T/cos rl sin 0_-2+ 2cos Osin rifle')

i_¢ 18



The external moment terms are generated by gravity, frictional damping and the

aerodynamic forces.

sin0 os  /gravity

damping terms: -/a_ (_ -sin r/_)i" -/.t, (cos _ + sin # cos r/_)]-/./: (cos# cos r/_ - sin #f/) ic

moment terms: 1 pV2Cr 3tan e(C_i + C,] + C_'k)aerodynamic

where

tan_ f2_ (,- c._G= 3 ,_,-_,.,sinocosoeo
1 2x

The pressure coefficient is obtained using the unsteady Bernoulli equation.

5+ 2+_ 2o_ II

_v. j v2 v2 v2

C_=0

To transform the Cp expression to the body fixed frame, we have previously shown that

All the dynamic simulation results which will be shown later do not contain the frictional

damping term. Nonetheless, these terms can be added to simulate the friction from the

bearings which is present in the actual experiments.

The equations of motion can be rewritten in matrix form

where

= cos# -sin#

sin # / cos r/ cos# / cos r/JLR_ J

_/__(__ sin r/_)_ cos#sin #(cos 2 r/_2- r/2)+ 2 cost/sin 2#f/_

- sin IT(cos r/cos #¢ 2- 2sin #_¢)

R_ ½PV2.Cr 3 tane C
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I_ I_ sinr/c°sr/sin0_'_+2z-c°s¢Psinr/t/_'t,.

For the two degree of freedom case, (= _"= (= 0. After some manipulation of the

equations and changing into non-dimensional form for roll and yaw we obtain

¢. 1 5 tan e C Cr g_ ¢. _ cos ¢ sin ¢¢'_

= -]lzCr_.p, Cr' (2__.) ¢_+I..2__tan#._.¢" _ V 1= V2 tan e "3 g tan I,,

For the one degree of freedom case there is an additional constraint, (= _ = (= O. In

non-dimensional form, the equation of motion for roll is given as

1 5tane Cr U, ¢.
=TpCr%--c. v.

To begin the dynamic simulation, the wing is first set at an initial position. The static

flow field is then solved and the wing is released. The pressure distribution is calculated

and the aerodynamic moments are obtained by integrating the pressure distributions. The

new wing position and angular velocities are found from solving the equations of motion.

Because the method can only predict unit time steps, a predictor-corrector method by

Carnahan[ 5] is used for time marching instead of a Runge-Kutta method. Using the new

wing position and velocity, the unsteady vortex position and strength are obtained using

the Kutta and zero-force conditions. A flow chart of the described process can be seen in

figure 4.
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Results and Discussion

For analyzing wing rock aerodynamics, an extremely useful tool is the concept of energy

exchange proposed by Nguyen et. 91114]. During wing rock motion, the energy added or

extracted from the system for a certain time interval can be expressed as

1 . ,,, • 1 2 r#=
zxe=-_pv'.Cr J,.c,(t)ep(t)at= _ pv'.crj_ c,(,)a_.

Therefore, for a steady_ wing rock limit cycle the ne(enezgy exchange is given by

From figure 5 it can be- seen i_t for a counterclockwise loop, energy is added to the

system therefore the motion is destabilized while for a clockwise loop, energy is

extracted from the system and the motion is stabilized. The amount of the net energy

exchange, zkE is proportional to the area contained in the loop.

One Degree of Freedom Wing Rock

Figure 6 shows the time history of one degree of freedom wing rock where there is no

sideslip and separation point displacement. The angle of attack is 20 ° and the semi-apex

angle of the delta wing is 10°. The wing is released at two different initial angles, 0.5 °

and 85 ° . The wing rock amplitude and frequency is the same for both cases assuring that

the motion is independent of the initial conditions and is a true limit cycle.

The steady state total sectional roll moment coefficient plots are shown in figure 7(a).

Using the energy exchange concept, it is shown that the clockwise destabilizing lobe

occurs at small roll angles, while the two counterclockwise stabilizing lobes occur at

large roll angles. The area of the destabilizing lobe is identical to the area of the two

damping lobes indicating there is no energy exchange and hence steady state is observed.

By showing the sectional roll moment coefficients for the top and bottom surfaces

separately in figure 7(b), we can see that all the instability comes from the top surface

while the bottom surfaces only contributes to the damping.

The roll moment coefficients plots have shown when and where the damping and

destabilizing occur but do not tell us the aerodynamic mechanism for this phenomena.

The physics underlying the motion can be explained by figure 8, the dynamic vortex

position and strength. Figures 8(a) & (b) show the static and dynamic, spanwise and

normal position of the vortex. The spanwise vortex position does not vary much from the

static position during wingrock and leads or lags depending on the roll angle. However,

the vortex position normal to the wing surface always lags the static position by a large

pale21



amount, regardless of the roll angle. This vortex position lag gives the destabilizing

moments which initiate the wing rock motion. The hysteresis is largest at small roll

angles and this coincides with the roll angles where the destabilizing lobes appear in

figure 7(a). If there were no damping the wing rock motion would continue to grow

without bound and therefore damping is necessary to generate limit cycle motion. The

damping lobes can be explained from the static and dynamic vortex strength shown in

figure 8(c). The dynamic vortex strength is constantly leading the static vortex strength.

This leading is largest at large roll angles and this also coincides with the damping lobe

positions shown in figure 7(a). Steady state oscillation occurs when the instability from

the vortex normal position lag balances the damping from the vortex strength lead.

With the mechanisms of wing rock identified, the model was used to investigate the

effects of various parameters on the aerodynamics of wing rock.

Effect ef Angle of Attack

It is well known that wing rock does not occur at low angles of attack and as the angle of

attack is increased an aircraft is more susceptible to wing rock motion. Therefore, the

effect of angle of attack on the wing rock motion was studied.

Figure 9 shows that by keeping the wing semi-apex angle the same as in the previous

case but by lowering the angle of attack to 10°, the wing rock motion will damp and no

limit cycle will be observed. Figure 10(a) shows the total sectional roll moment

coefficient for one cycle. The counterclockwise loop direction shows that the whole cycle

is damped and figure 10(b) shows that both the top and bottom wing surfaces contribute

to the damping. No instability lobes are present. However, if the angle of attack is raised

to 30 ° with the same wing configuration, figure 11 shows that the wing motion will

diverge. Again by examining the total sectional roll moment coefficient diagram, figure

12(a), the loop is in the clockwise direction, indicating an energy addition to the system

and hence destabilization. Figure 12(b) shows that the bottom surface adds damping to

the motion. However, the top surface instability lobe is so large that it overwhelms the

bottom surface and gives oscillatory divergence. In actual flight, oscillatory divergence

will not occur because as the wing rock motion grows vortex bursting will occur. The

vortex bursting contributes to a sudden loss of lift of the wing and consequently has a

stabilizing effect on wing rock. The present model does not predict vortex breakdown

and therefore oscillatory divergence behavior is exhibited.

The aerodynamic model shows the effect of angle of attack by qualitatively explaining

why wing rock does not appear at certain low incidence angles and why wing rock is

more susceptible at higher angles of attack.
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Effect of Yaw Angle

To see the effect of yaw on the one degree of freedom wing rock, it is assumed that the

wing is placed at a certain fLxed yaw angle and left free to roll. Even though the wing is

symmetric, figures 13(a) and (b) show asymmetric amplitudes of wing rock due to the 5 °

sideslip angle of the wing. Again, it can be seen that even for the case with sideslip the

wing rock amplitude and frequency is independent of the initial roll angle.

Figure 14(a) shows the total sectional roll moment coefficient during one steady wing

rock cycle at 5 ° yaw angle. It is interesting to note that the shape of the curve is almost

identical to that of figure 7(a), the wing rock case with no yaw. The only difference is

that the curve in figure 14(a) is shifted to the fight by 14°. Again, figure 14(b) gives an

identical plot to that of figure 7(b) and the only difference is the shift to the right. All

other trends, like the damping and instability lobe sizes or top and bottom--wing surface

contributions to the wing rock motion are yaw independent. It has been shown that the

wing rock motion is strongly dependent on the angle of attack, yaw angle and semi-apex

angle of the wing. Therefore, this shifting to the fight can be explained by the concept of

effective angle of attack, effective sideslip and effective semi-apex angle.

An effective angle is defined as the angle that the wing "feels". For example, even if the

angle of attack is fixed, as the wing rolls, the angle of attack that the wing feels, i.e. the

effective angle of attack will reduce as the roll angle increases and will reach 0 ° as the

roll angle goes to 90 ° when there is no yaw.

From simple trigonometry, the effective angle expressions are given as

a_ tan-liw---b i " _f sintzcosflcos(y+_)+sinflsin(y+cp)]- L

k ub J

=tan-'[ sinac°s'(c°sysinc-sinyc°s')+sinfl(c°syc°s'+sinysin')]cosa cos,

Figure 15 shows these effective angles for both 0 ° and 5 ° sideslip. It can be seen from the

figure that the effect of the sideslip is to shift the effective angles which determine the

vortex position and strength. Hence the wing rock motion shifts to the fight as the angle

of sideslip goes from 0 ° to 5 °. The effective angles are also shifted about 14 °, which is

the same amount that the sectional roll moment diagrams were displaced.
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If we compare the wing rock amplitude for the zero side slip case (figure 6) and the 5°

sideslip case (figure 13), again we can see that for the positive roll angles the Wing rock

amplitude is increased by an amount of 14° while for the negative roll angles the

amplitude is decreased by 14°. The dynamic spanwise and normal vortex positions and

unsteady vortex strength diagrams are shown in figure 16. These show the same shape

and magnitude as for the zero sideslip case, but are once again shifted to the right by 14° .

Therefore, the wing rock mechanism for wing rock with sideslip is the same as the zero

sideslip case, but the effect of sideslip is to shift the roll angles by an amount which

depends on the amount of the initial yaw angle of the wing.

Effect of Separation Point Displacement

It has been shown by Wong[ 18] that one degree of freedom wing rock can be controlled

by active means such as changing the leading edge vortex separation point by blowing.

Although for thin delta wings the separation point is ffLxedat the leading edge, the model

was generalized to be able to change the separation point locations and to observe the

corresponding effect on the wing rock motion.

The Brown and Michael model shows that the general effect of moving the separation

point inboard is to move the vortex inward and slightly downward and also to weaken the

vortex strength. Figure 17 shows the wing rock time history for two initial conditions

when the right separation point is displaced inboard by 1% of the semi-span. In can be

seen that there is very little change in the negative roll angle wing rock amplitude

compared to the no separation displacement case, figure 6, while the positive roll angle

wing rock amplitude is reduced. The total sectional roll moment diagram, figure 18(a)

shows that unlike the case of wing rock with sideslip, there is no roll angle shifting. The

damping lobe areas are identical to the area of the unstability lobe indicating there is no

energy exchange. However, the enclosed areas of the two damping lobes are different,

which explains why the wing rock amplitudes for positive and negative roll angles are

different. Once again it can be seen from figure 18(b) that the bottom surface contributes

only to the damping while all the instability comes from the top surface. For positive roll

angles, the top surface shows a very small damping lobe while the damping lobe for the

negative roll angles is quite large. Figure 19(b), the vortex normal position hysteresis

which gives the unstability at small angles is quite symmetric with respect to 0°. This

corresponds to the nearly symmetric clockwise instability lobe in figure 18. The vortex

strength hysteresis responsible for the damping has a small magnitude for positive roll

angles and a large magnitude for negative roll angles which is again consistent with the

results in figure 18. Therefore, the asymmetry of the wing rock amplitude for the
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displacement separation case results mainly from the different size damping lobes caused

by the asymmetric vortex strength hysteresis.

The fact that even a small separation point displacement (1% of the semi-span) can give

a large difference in wing rock amplitude, suggests that moving the separation point by

inboard spanwise blowing can be a powerful mechanism for controlling the wing rock

motion.

Effect of Wing Inertia

To see the effect of wing inertia, the roll moment of inertia, Ixx of a wing of semi-apex

angle 10° at an angle of attack of 20 ° was varied from 90 kg-m 2 to 210 kg-m 2 in 30 kg-

m2 intervals.

Figure 20(a) shows that the wing rock amplitude is independent of the wing inertia. The

wing rock frequency was also examined. Figure 20(b) shows that the inverse square root

of the inertia was almost linearly proportional to the wing rock frequency. This indicates

that the wing rock behaves like a second order linear oscillator. The same results for the

inertia variation were seen in the experiments of Arena[ l ] and once again shows that the

model captures the qualitative trends seen in experiments.

Two Degree of Freedom Wing Rock

Experiments to understand and actively control the two degrees of freedom wing rock in

roll and yaw are being conducted in the Stanford low speed wind tunnel by Pedreiro.

However, before an efficient control algorithm to stabilize the motion can be devised, the

aerodynamics of this phenomena must be fully understood. Also because of the various

parameters involved in the experiments, a general aerodynamic model were various

control laws can be tested before actual implementation in the wind tunnel is necessary.

Therefore, the previous one degree of freedom model was extended to accommodate yaw

motion in the wing plane as an additional degree of freedom.

Figures 21(a) and (b) show how the roll and yaw Euler angles and the effective angle of

attack, effective sideslip and effective roll angle change with time. Unlike the one degree

of freedom case, no limit cycle was observed. Various initial conditions and damping

terms of different magnitudes were added to the equations of motion but still no limit

cycle could be noticed. Figure 22 shows how the top and bottom wing surface sectional

roll moment coefficients change as a function of roll and yaw angles. The energy

exchange concept cannot be used, because no organized damping or instability lobes are

formed. Figures 23 and 24 show how the unsteady spanwise and normal vortex positions

and strength change with the Euler roll and yaw angles. Unlike the one degree of

I_¢ 25



freedom case, no analysis of the mechanism of the motion can be made by looking at the

lead or lag of the vortex position or strength.
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Conclusions

Following the work of Arena, an aerodynamic model using an extension of the Brown

and Michael model has been developed to capture the dominant features of wing rock

motion. For the one degree of freedom case, the model explains the mechanisms which

generate and sustain wing rock. Instability which drives the wing rock motion comes

from the lag in the vortex position normal to the wing surface which mainly occurs at

small roll angles while the damping comes from the unsteady vortex strength lead.

Steady state wing rock occurs when the instability from the vortex position lag, balances

the damping from the vortex strength lead.

The effect of increasing the angle of attack is to enlarge the instability lobe and to make

the wing more susceptible to wing rock. The effect of sideslip on the wing rock motion

has been shown to give a shift in the roll angle and hence give an asymmetric wing rock

amplitude. The reason behind this roll shifting has been explained by the effective angle

concept. Moving the separation point also gives asymmetric wing rock amplitudes by

changing the sizes of the damping lobes.

For the two degree of freedom case no limit cycle was observed. However, the two

degree of freedom model can still be used to test various control algorithms.

Future work can include adding a pitching motion of the wing to create a three degree of

freedom wing rock model.
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Figure 1. Actual and Approximated Flow Fields
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Figure 9. Wing Rock Time History (_o=85 °, (z--10 °, 15----0°, e=10 °, 8--0%)
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