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Processor arrays can provide an attractive architecture for some applications. Featuring 

modularity, regular interconnection and high parallelism, such arrays are well-suited for 

VLSI/WSI implementations, and applications with high computational requirements, such as 

real-time signal processing. 

Preserving the integrity of results can be of paramount importance for certain applications. 

In these cases, fault tolerance should be used to ensure reliable delivery of a system's service. 

One aspect of fault tolerance is the detection of errors caused by faults. Concurrent error detec-

tion (CED) techniques offer the advantage that transient and intermittent faults may be detected 

with greater probability than with off-line diagnostic tests. Applying time-redundant CED tech-

niques can reduce hardware redundancy costs. However, most time-redundant CED techniques 

degrade a system's performance. 

Periodic Application of Concurrent Error Detection (PACED) is a technique introduced in 

this thesis to reduce the performance costs incurred through the use of time-redundant CED in 

processor array architectures. To check computations periodically instead of continuously, 

PACED varies the application of such CED techniques to a processor array in both time and 

space. The purpose of PACED is to provide probabilistic detection of transient, intermittent. 

and permanent failures in processor arrays while reducing the overhead of performing detection. 
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Since CED is not performed continuously when PACED is used, undetected errors may 

occur prior to an error indication. Therefore, upon error detection, not only the current outputs 

of the array but both recent and subsequent outputs may also be erroneous. This thesis investi­

gates the confidence to place on system outputs when PACED is applied, deriving formulae to 

predict the amount of output to suspect as possibly erroneous for single processors, linear unidi­

rectional and two-dimensional mesh-connected processor arrays. The error coverage afforded 

by PACED in these architectures is also studied. Finally, the performance impact of using 

PACED in each array type is studied using both an array simulation model that gives estimates 

of application completion times with low computational cost and results of experiments using an 

Intel iPSCI2 hypercube to simulate a 16-node unidirectional linear array and a 4x4 two­

dimensional mesh array. 
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CHAPTER!. 

INTRODUCTION 

Processor arrays can provide an attractive architecture for some applications. Featuring 

modularity, regular interconnection, and high parallelism, such arrays are well-suited for 

VLSIIWSI implementations and applications with high computational requirements, such as 

real-time signal processing. 

Preserving the integrity of results can be of paramount importance for certain applications. 

In these cases, fault tolerance features should be used to handle component failures that could 

upset reliable delivery of a system's service .. One aspect of fault tolerance is the detection of 

errors caused by faults. Techniques for error detection may be classified as either off-line. in 

which diagnostic tests are applied to the system, or concurrent, in which normal system opera­

tions are checked for errors. Concurrent error detection (CEO) techniques offer the advantage 

that transient and intermittent faults may be detected with greater probability than with off-line 

methods. 

This thesis considers the application of CEO techniques to processor array architectures. 

To minimize the overhead caused by fault tolerance, both hardware and time redundancies 

should be minimized. Applying time-redundant CEO techniques can reduce the hardware costs. 

Table 1.1 lists some examples of such techniques, which are described below. 



TABLE 1.1. 
EXAMPLE TIME-REDUNDANT CED TECHNIQUES. 

Alternating logic 
Recomputing with shifted operands (RESO) 
Comparison with concurrent redundant computation (CCRC) 
Recomputing by alternate path 
Data redundancy 
Triple time redundancy 
Algorithm-based fault tolerance 
Saturation 
Spare capacity 

[1,2] 
[3] 
[4] 
[5] 
[6] 

[7,8] 
[9,10] 
[11] 
[12] 
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Time-redundant CED techniques have been used to detect faults in digital circuits. For 

example, in alternating logic, both the true and complemented values of a circuit's inputs are 

applied serially to produce two versions of the output [1,2]. The two error-free versions are 

complementary for self-dual functions. Although all faults which manifest themselves as single 

stuck-at faults can be detected, this technique could require hardware modification to create self-

dual functions from non-self-dual ones, as well as extra flip-flops for the sequential parts of the 

circuit. Recomputing with shifted operands (RESO) [3] also achieves error detection by com-

paring two results. Each computation is followed by a similar one which uses bit-shifted ver-

sions of the operands; the bit-shifted result is then shifted back and compared with the original 

result. RESO can detect all errors in ripple-carry and carry-Iookahead adders due to one faulty 

bit slice, and all errors in array multipliers and array dividers due to one faulty cell. 

At a higher architectural level. the method called comparison with concurrent redundant 

computation (CCRC) [4] compares the results of two identical computations performed concur-

rently on different processors. Similar to CCRC are the recomputing by alternate path method, 
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designed specifically for use in an FFr processor array [5], and the data redundancy technique, 

which uses idle processors to perform duplicate computations [6]. All three techniques can 

detect any errors caused by faults confined to a single processor. 

Many CED techniques have been applied to processor arrays (see Table 1.2). Some exam-

pIes include: alternating logic in divider arrays [14], RESO in linear logic arrays [15] and 

matrix-multiply arrays [16], CCRC in divider and bidirectional systolic arrays [4], data redun-

dancy in both linear and mesh matrix-multiply arrays [6], triple time redundancy in linear sys-

tolic arrays [8], and algorithm-based fault tolerance in FFI' arrays [9] and matrix operations 

arrays [10]. In triple time redundancy, adjacent triples of processors perform triple modular 

redundancy (TMR), a standard error-masking technique. Triple time redundancy can detect up 

to r n/3l faulty cells before reconfiguration is necessary, where n is the size of the array. How-

ever, two extra processing elements (PEs) are required, as well as additional interconnect and 

switches throughout the array. An earlier version of triple time redundancy used even more 

TABLE 1.2. OVERHEADS OF TIME-REDUNDANT CED 
IN PROCESSOR ARRAYS. 

technique CED overhead 

Algorithm-based fault tolerance <50% [13] 
Alternating logic ~ 100% [14] 
RESO ~ 100% [15, 16] 
CCRC ~ 100% [4] 
Data redundancy ~ 100% [6] 
Triple time redundancy ~2oo% [8] 
r -processes ~2oo% [ 17] 
Overlapping H-processes ~300% [ 18] 
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hardware: approximately 3n/2 cells were required, as well as increased complexity of the PEs 

and the interconnect [7]. 

Algorithm-based fault tolerance is a technique which, by modifying an algorithm to oper-

. ate on specially encoded data. can provide both error detection and location. Though not as 

generally applicable as other CEO techniques, extremely low performance cost can be realized 

since the fault-tolerance scheme is tailored to the specific application. Error coverages ranging 

from 85% to 100% have been reported with less than 10% performance degradation [13]. 

The r-processes [17] and overlapping H-processes [18] techniques employ different pat­

terns of neighboring PEs within mesh-connected two-dimensional processor arrays to perform 

redundant computations. The r -processes technique can detect errors caused by faults confined 

to one of every three PEs, but requires an extra row and an extra column of PEs. Designed for 

algorithms whose main PE computation is of the form (a· b) * (c· d) (where· and * represent 

general binary operators), overlapping H-processes can detect any errors from one PE of any 

4x4 sub array of an array. 

The problem with most time-redundant CED techniques is that their use may degrade a 

system's performance. IfPE utilization is less than 100% in an array, then such techniques may 

possibly be applied with very little performance cost. Data redundancy and CCRC rely on idle 

cycles at PEs within an array, caused by a 50% PE utilization inherent to the algorithm, in which 

to launch redundant computations. Though the completion time of a single problem is unaf­

fected, the array loses its ability to interleave problems: its throughput is cut 50%. These tech­

niques would incur an overhead of 100% if used in algorithms in which the PEs of the array 

were used continuously. The application of RESO to band matrix multiplication also relies on 
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idle cycles. Of three designs proposed [16], two had PE utilizations under 50% (33% and 50%), 

enabling application of RESO in the idle cycles. The third design's utilization was 100% until 

RESO was added: the data rate was halved to create artificial idle cycles between computations. 

Without resorting to such measures, RESO can incur a time overhead of 100% or more, since 

shifting of operands is required in addition to the replicated computation. When alternating 

logic is applied to divider arrays, at least 100% overhead results since the complemented ver­

sions of the inputs are applied interleaved with the actual inputs [14]. Both triple time redun­

dancy and r -processes require every PE to perform three times as much work, which causes an 

overhead of at least 200%, ignoring the overhead due to the increased message traffic. Overlap­

ping H-processes can reduce the throughput of a mesh array by 75% - a time overhead greater 

than 300%. 

Periodic Application of Concurrent Error Detection (PACED) is a technique introduced in 

this thesis to reduce the performance degradation incurred through the use of time-redundant 

CED in processor array architectures. To check computations periodically instead of continu­

ously, PACED varies the application of time-redundant CED techniques to a processor array in 

both time and space. The purpose of PACED is to provide probabilistic detection of transient, 

intermittent, and permanent failures in processor arrays, while reducing the overhead of per­

forming detection. Error recovery is not provided by PACED. Other techniques, such as roll­

back or forward recovery, are necessary to handle recovery from detected errors. 

Since CED is not performed continuously when PACED is used, undetected errors may 

occur prior to an error indication. Therefore, when an error.is detected. not only the current out­

puts of the array but both recent and subsequent outputs may also be erroneous. This thesis first 
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investigates the confidence to place on a single processor's outputs when PACED is applied, 

deriving fonnulae to predict the amount of output to suspect as possibly erroneous. In linear 

processor arrays, checking patterns are created when constituent PEs perfonn PACED at differ­

ent times; optimal scheduling of these patterns to minimize the error detection latency has been 

studied [19]. By use of these checking patterns, if errors can be propagated by PEs, then the 

amount of output to suspect upon error detection as possibly erroneous can be limited. It is then 

shown that high confidence in most linear array outputs can be achieved using CED applied rel­

atively infrequently. Similar patterns of checking are then studied in two-dimensional mesh­

connected processor arrays, to detennine which outputs from the array to suspect as possibly 

erroneous upon error detection. The error coverages afforded by PACED in the single proces­

sor, linear array, and two-dimensional mesh array are also studied. 

Finally, the perfonnance impact of using PACED in each array type is studied using both 

an array simulation model that gives estimates of application completion times with low compu­

tational cost and results of experiments using an Intel iPSCI2 hypercube to simulate a 16-node 

unidirectional linear array and a 4x4 two-dimensional mesh array. 

This thesis focuses on the use of PACED in processor array architectures. The idea of peri­

odic checking has previously been applied to multicomputer systems: saturation [11] and spare 

capacity [12] use idle processors in large-grain parallel architectures to perfonn redundant 

copies of other processor's processes. Error detection is achieved by voting at each processor 

on the process results. The perfonnance is affected only by the increased message traffic. which 

can be negligible when certain specific protocols are used [11]. 
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Other architectures may profit from the application of PACED. for example. fine-grained 

parallel architectures that use very long instruction words (VLIW) to address multiple functional 

units (pus). In the PUs of the CRAY-l scalar unit. idle cycles have reduced the performance 

cost of using RESO to check computations to the range 0.2% to 17.3% for the Livermore For­

tran kernels [20]. A similar result was obtained through simulations with the IMPACT VLIW 

machine model [21]. From those simulations. it was found that idle cycles in a 4-PU architec­

ture running a set of integer Unix utilities limited the performance penalties from almost nil 

(0.2% for we) to quite significant (grep: 161%) [22]. In both of these studies. however. check­

ing was performed for every checkable computation. and the performance costs were dependent 

upon the chance coincidences of redundant computations with idle functional units. A form of 

PACED in which compile-time information is used to schedule redundant computations only 

during idle slots could reduce the performance costs. This technique has been employed with 

good results for control-flow checking on the Multifiow TRACE 141300 [23]. Since 100% of 

the checking operations used otherwise idle resources. there was no estimated performance 

penalty (neglecting increased memory traffic). and greater than 99% of all control-flow errors 

were detected in the benchmarks tested. A compiler-assisted PACED scheme to provide data 

integrity could meet with similar success. 

The contributions of this thesis are as follows. A method is introduced to reduce the per­

formance costs of using time-redundant CEO through periodic application. An analysis is pro­

vided to determine. upon error detection at a single processor using PACED, the confidence to 

place on that processor's outputs. Similar analyses are performed for the linear unidirectional 

and two-dimensional mesh-connected processor array architectures. assuming that errors can be 
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propagated through the array. The error coverage afforded by PACED in each architecture is 

also studied. A PACED checking-pattern simulator and analyzer are described that facilitate 

choosing PACED parameter values in the two-dimensional array to minimize the error detection 

latency and the amount of suspected output at error detection time. A performance simulation 

model is described that estimates the performance costs of PACED applied to the linear and 

two-dimensional arrays; results of experiments using the simulation model are also given. 

Finally, empirical data collected from experiments using the Intel iPSCI2 hypercube are pro­

vided that show PACED in linear and two-dimensional arrays can reduce the performance 

degradation incurred through the use of CED. 

The organization of this thesis is as follows. Chapter 2 outlines the PACED technique. In 

Chapter 3, the confidence and error coverage analyses of a single processor using PACED are 

described, and similar analyses of PACED applied to linear unidirectional arrays and two­

dimensional mesh arrays are presented in Chapters 4 and 5, respectively. Those chapters also 

discuss the performance of the array architectures using PACED. Finally, Chapter 6 summarizes 

and presents conclusions. 
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CHAPTER 2. 

THE PACED TECHNIQUE 

This thesis considers processor array architectures in which the constituent processing ele­

ments (PEs) are regularly interconnected and each PE communicates only with its local neigh­

bors. The computational activity at each PE, called a computation cycle, consists of receiving 

input, performing a task with or without applying CED, and sending output. A task is a fine­

grained set of data manipulations, such as a multiply-accumulate operation. "Fine-grained" 

means that many such tasks are required to complete a problem execution. 

When PACED is applied to one PE of an array, it can be parameterized as follows. Let M 

be the period of CED application and let N be the duration of CED application, where 

° ~ N ~ M. The parameters M and N govern the time distribution of CED at the processor: in 

any period of M computation cycles, N tasks are checked and M - N tasks are unchecked. As a 

mathematical abstraction to facilitate analysis of the PACED technique, let the checking 

sequence, CSM,N' be an array of M values as follows: 

CSM,N[r] = 1, for ° ~ r ~ N - 1, 

CSM,N[r] = 0, for N ~ r ~ M - 1. 

EXAMPLE 2.1: The checking sequence for M = 13 and N = 5 is 

CS13 ,s = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0,0, 0, 0). o 
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Each value in the checking sequence represents the checking activity at a PE during one 

computation cycle. The entire sequence represents one M-computation cycle (M-cycle) period. 

The N checked computation cycles are represented by the N consecutive "l"s in CSM,N' The 

M - N unchecked computation cycles are represented by the M - N subsequent "O"s in CSM •N . 

The checking activity at a PE over time may be represented as a cyclic reading of the checking 

sequence array. Note that the definition of the checking sequence gives but one possible way to 

perform N checks in M cycles; there are a maximum of (~) different ways to perform N-out-of-

M checking (some combinations are simply shifts of other patterns). In the remainder of this 

thesis, only checking sequences as defined above are considered; a value from a CS M.N array 

will represent the checking activity at a particular PE at a particular computation cycle. Figure 

2.1 shows a portion of the activity at a processor using PACED with M = 5 and N = 2. When 

NIM is small, less performance degradation can usually be expected, but small NIM also reduces 

the probability of error detection. 

When PACED is applied to the constituent PEs of a processor array, M and N may in gen-

eral vary at each PE in the array. A third parameter, the PE checking offset 0, determines the 

task & check 

task 

~M ~I 

__ ! !"-------J 
computation cycles 

Figure 2.1. PACED parameters ¥ and N. 

i ~ 
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initialization of each PE's first M-cycle period; 0 is an offset into the checking sequence CSM,N' 

By varying 0 at each PE in an array, checking is performed at different times at different PEs. 

Snapshots of the checking acti~ty in the array then reveal patterns of checking. 

EXAMPLE 2.2: Given a UxV two-dimensional processor array using PACED, let the slope 

of the checking pattern be given by RISEIRUN and let the checking pattern be set by OJ,} = 

(M i ,) + i + j - (U -1- i)RUN - (V -1- j)RISE) mod M i ,} at each PEi,}.l Figure 2.2 shows 

snapshots of a lOxlO mesh-connected array using PACED with Mi,}= 12, N i ,} = 4, and 

RISEIRUN = 113, where each snapshot shows the checking activity in the array during one com-

putation cycle. This checking pattern sets up waves of checking which advance upstream 

through the array, "catching," in effect, errors propagating downstream. o 

The parameters described in this chapter are but one possible way to define PACED. As 

noted above, there are a maximum of (~) different ways to perform N-out-of-M checking; this 

thesis only considers N consecutive checked cycles followed by M - N unchecked cycles. A 

variation of PACED could be designed for arrays running algorithms with inherent idle cycles, 

so that CED would only be performed during PE idle times. Although the arrival of the idle 

cycles may be periodic, instead of a strict N-out-of-M schedule they may follow a more compli-

cated pattern involving several different N and M values that change value in a periodic manner. 

1 Here and in the remainder of this thesis, the binary mod function is assumed to return a positive integer. To 
ensure this condition, multiples of the modulus can be added until the result is nonnegative while still less than the 
modulus. 
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j j j 

i 0 1 2 3 4 5 6 7 8 9 i 0 1 2 3 4 5 6 7 8 9 i 0 1 2 3 4 5 6 7 8 9 

0 x x x x - - - - - - 0 X X X - - - - - - - 0 x x - - - - - - - -
1 x - - - - - - - - x 1 - - - - - - - - x x 1 - - - - - - - x x x 
2 - - - - - - x x x x 2 - - - - - x x x x - 2 - - - - x x x x - -
3 - - - X X X X - - - 3 - - x x x x - - - - 3 - x x x x - - - - -
4 x x x x - - - - - - 4 x x x - - - - - - - 4 x x - - - - - - - -
5 - - - - - - - - - x 5 - - - - - - - - x x 5 - - - - - - - x x x 
6 - - - - - - x x x x 6 - - - - - x x x x - 6 - - - - x x x x - -
7 - - - x x x x - - - 7 - - x x x x - - - - 7 - x x x x - - - - -
8 x x x x - - - - - - 8 x x x - - - - - - - 8 x x - - - - - - - -
9 x - - - - - - - - x 9 - - - - - - - - x x 9 - - - - - - - x x x 

computation cycle c computation cycle c + 1 computation cycle c + 2 

Figure 2.2. PACED in a lOx 10 mesh-connected array. 

In another variation, M and N values could be dynamic. assuming different values accord-

ing to the particular application under execution, time of day, system workload fluctuations, or 

even the presence of detected errors. For example, normal PACED could prevail until an error 

is detected, to which the system might respond by increasing N or setting N = M for some prede-

termined length of time. If no other errors are detected in this interval. then normal PACED 

would be resumed. This scheme could give assurance that an error arrival process has become 

inactive. 

Finally, another variation might allow each PE to perform CED at its discretion. based on 

conditions such as individual workload or input data, thereby having no fixed values of M and N 

at all. This method of applying PACED could have potentially greater savings in performance 

costs than the type of PACED considered in this thesis. especially if CED can be scheduled to 

occur during idle cycles. If errors produced at PEs that are not checking can be propagated 

through the array, error coverage could still be very high. The use of these PACED variations. 

though not considered in this thesis, certainly merit further investigation. 
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CHAPTER 3. 

PACED IN A SINGLE PROCESSOR 

In this chapter, an analysis of PACED applied to a single processor will determine the con­

fidence to place on that processor's outputs upon error detection. Because a processor using 

PACED does not perform CED continuously and because it is possible that the CEO method 

employed does not have perfect detection (cannot detect all possible errors), there is a probabil­

ity that some outputs produced prior and subsequent to an error indication may be erroneous. In 

some applications, e.g., image edge detection and image smoothing, a small number of errors 

may be tolerable. In other applications, however, high confidence in array outputs may be 

desired. For these cases, when an error is detected, it is important to know what confidence to 

place on outputs: which outputs to trust, and with what probability, and which outputs to suspect 

as possibly incorrect. Following the confidence analysis, the error coverage that can be 

expected when using PACED in a single processor will be investigated. 

3.1. Error Arrival Model 

Faults are generally characterized as one of three types: transient, intermittent, or perma­

nent. Much work has been done in modeling the behavior of intermittent faults [24-27]. 

Because the primary interest of this study lies in the correctness of outputs, this thesis concen­

trates on errors; no assumptions are made concerning either the types or the distributions of 

faults that cause the errors. It has been shown that errors often arrive in clusters or 
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bursts [28,29]. perhaps caused by "incomplete fixes" in which repairs after an error detection 

insufficiently address the cause of the error, or error propagation, which can cause additional 

errors to appear after an initial detection. Thus. it is assumed that errors arrive in clusters (of 

one or more errors). that error clusters follow a Poisson arrival process with a constant mean 

arrival rate. and that the errors within clusters themselves follow a Poisson distribution. The fol­

lowing examples demonstrate that errors may arrive either clustered or singly. These examples 

confirm that the Poisson distribution serves as a good approximation to the error arrival process. 

EXAMPLE 3.1: A Poisson arrival process was fitted to actual error arrivals measured on one 

machine of a "VAXcluster" distributed system. The system was composed of seven machines 

and four mass storage controllers, interconnected by the Computer Interconnect (el) bus. The 

data were collected by the V AXNMS operating system during normal operation of the machine 

"Earth," from 8 December 1987 to 14 August 1988 [29]. 

The SAS procedure NLIN (nonlinear regression) [30] was used to fit a two-phase hyperex­

ponential function to the data for the machine "Earth" because a single exponential could not be 

found to fit the data well. The density of the fitted distribution Jet) is 

Jet) = O. 88(0. 829 e~·829t) + O. 12(0.012 e-O·Ol2t ) , 

where t is measured in minutes. Figure 3.1 shows ~ f (t) superimposed upon the histogram of 

the time-between-error (TBE) data, where the bin size ~ = 5 min. Note that the ordinate axis is 

shown on a log scale as the values quickly become very small. The sample mean and sample 

standard deviation for the data are also given in the figure. The fit was tested using the chi­

square test and could not be rejected at the 0.28 significance' level, with ,2 = 0.99997. The error 
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Figure 3.1. TBE histogram and fitted pdf for VAX "Earth." 
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arrival process is thus approximated by two homogeneous Poisson processes. Approximately 

88% of the errors arrive in clusters with interarrival time 1.21 min [1/(0.829 error/min)] while 

approximately 12% of the arrivals signal new clusters with interarrival time 80.S min [1/(0.012 

error/min)]. o 

Two-phase hyperexponential density distributions have also been used to model software 

error interarrivals on the VAXcluster taken as a whole and on a Tandem Cyclone 

multiprocessor [31]. In the following distributions, t is measured in days. 

JVAX(t) = 0.67(0. 20e-O·20t
) + 0.33(2. 75e-2.75t) 

1 Cyclone(t) = 0.87(0. lOe-O· lOt ) + O. 13(2. 78e-2
.
78t ) 

These distributions also can be interpreted as modeling errors that arrive in clusters. The VAX. 

system has an intracluster rate of 2.75 error/day with new clusters arriving at a rate of O.20/day; 

the Cyclone has an intracluster rate of 2.78 error/day and a cluster arrival rate of O.W/day. 



16 

EXAMPLE 3.2: Single event upsets (SEUs) in spacecraft electronics have been studied 

extensively to develop techniques to estimate the rate at which such errors might occur [32]. 

Table 3.1 summarizes some observed SEU rates from various spacecraft. The wide range in 

SEU rates can be attributed to both the dependence of the error rate on the orbital environment 

and the sensitivity of the circuitry to the ionizing particles [33]. Again using NUN, a single 

exponential was fit to the data from Pioneer, collected 10 January 1979 to 16 August 1990. The 

first row of Table 3.1 shows the mean arrival rate of the data. The density of the fitted distribu-

tion J(t) is 

J(t) = O. 03ge~·039t , 

where t is measured in days. Figure 3.2 shows the histogram of the data overlaid with ~ J(t), 

using a bin size ~ of 15.8 days. The figure shows the sample mean and sample standard de via-

tion for the data as well. Using the chi-square test. the fit could not be rejected at the 0.11 

TABLE 3.1. 
OBSERVED SEU RATES. 

observed SEU rate, 
satellite errorslbitlday 

Pioneer 3.3 x 10-2 [34] 
Hughes Leasat 1. 26 x 10-4 [32] 
Hughes Leasat 2.44 x 10-4 [32] 
Hughes Leasat 2.71 x 10-4 [32] 

Pioneer < 2 x 10-5 [35] 

Unspecified 4.1 x 10-6 [36] 
Unspecified 7.5 x 10-6 [37] 
Unspecified 2.07 x 10-7 [38] 

Voyager < 2.6 x 10-9 [35] 
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significance level with ,2 = 0.9958. This exponential distribution models the arrival of clusters 

of errors which are composed of only single errors and that have mean interarrival time of 25.6 

days [1/(0.039 error/day)]. o 

3.2. Confidence Analysis 

Suppose that a processor, perhaps a constituent of a processor array, is using PACED. 

When an error is detected, the current outputs of the processor should be suspected as being pos-

sibly erroneous. Use of PACED implies that checking may not have been performed continu-

ously; this casts some doubt on both the recent and future outputs of the processor. 

In the following sections, formulae are derived for determining how much output to sus-

pect as possibly erroneous when an error is detected at a processor employing PACED. Given 

the evanescent nature of transient and intermittent faults, it is assumed that the error arrival 

0.6 

Mean = 29.9 

0.4 
Std. Dev. = 35.8 

Relative 
f(t) = O. 039 e-O·039t 

Frequency 

0.2 
~l p-value = 0.11 

-0 50 100 150 200 
t (days) 

Figure 3.2. TBE histogram and fitted pdf for Pioneer. 
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process dies after a certain time; however. while active, the process is assumed to behave as a 

Poisson process. Assuming an error arrival distribution like that discussed in Section 3.1 in 

which errors arrive in clusters, the intracluster arrival rate is used as the parameter of the Pois-

son distribution (0.829 error/min from Example 3.1). By ensuring that the time to perform M 

cycles is small compared to the intercluster arrival time (80.5 min in Example 3.1), it can be fur-

ther assumed that the detection of an error is independent of whether any other error is detected. 

With these assumptions. it is first shown that detected error arrivals also follow a Poisson 

process. Let Et represent the number of error arrivals in a time interval of length t. Since it is 

assumed that error arrivals follow a Poisson process. then their interarrival times are exponen-

tially distributed. Let Dr represent the number of detected error arrivals in a time interval of 

length t. If the detected error interarrival time is exponentially distributed, this implies that 

detected error arrivals also follow a Poisson process. This lemma introduces the variable q, the 

detection probability, which is the probability that when a particular CEO technique is applied 

(e.g .• RESO). it will detect an error if one exists. 

LEMMA 3.1: In a single processor using PACED with 1 S N S M and where the CEO 

technique has detection probability q S I, detected error arrivals are exponentially distributed. 

PROOF: 

00 ( ) ( N )k( N )n-k Pr{Dt = k} = ! Pr{Et = n} ~ q M 1 - q M 

( 
q ~ Jk ~ (At t -/..l n! ( N In 

= l-q; .=: -;;Je . k!(n-k)! l-q M 



19 

( N)k ')...q-t 
M _'),.qN, 

= k! e M 

This is a Poisson distribution, with modified error arrival rate ')..' = ')...qNIM. o 

When an error is detected at a processor running PACED, some of the previously produced 

unchecked outputs may be erroneous. Also, some of the previously produced checked outputs 

may be erroneous, if the CED technique employed does not have perfect detection (i.e., q < I). 

In addition, future outputs from the processor should also be suspected, since the detected error 

signals that a fault process is active and may be producing errors. 

The next two subsections determine, when an error is detected, the intervals of time during 

which outputs should be suspected as possibly erroneous, given the desired level of confidence 

to place on unsuspected outputs. For each detected error, two time intervals in which to suspect 

outputs are found: one interval prior, and one subsequent, to the detected error. The lengths of 

these intervals are determined using two different criteria. 1) Fault-Active Intervals: Suspect all 

output produced in time intervals in which the fault was probably active. 2) Undetected-Errors 

Intervals: Suspect all output produced in time intervals that start from the time of the current 

detected error and extend backward to include, with a desired probability, the first undetected 

error, and forward to include, with a desired probability, the last undetected error. The length of 
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the time intervals found using the first criterion is called K and is derived in the following sub­

section; that found using the second criterion is called L and is derived in Section 3.2.2. 

3.2.1. Fault-active intervals 

Let K be the length of a time interval such that the probability that a detected error arrives 

within K is greater than some desired value C, where C, the confidence, is set arbitrarily close to 

1. When an error is detected, if no other errors were detected within a time interval of length K 

prior to the detection, outputs produced earlier than K units of time before the time of the 

detected error can be trusted with confidence C (Le., are correct with probability C): had the 

fault that caused the detected error been active K units of time previously, another detected error 

should have been observed, with probability C. With no other detected errors observed, the 

fault was probably (with probability C) inactive and outputs produced before that time are cor­

rect (can be trusted) with probability C. All outputs produced within K time units of the time of 

the detected error should be suspected as possibly erroneous: the outputs may be used, but the 

user should be aware that some of this suspected output may be incorrect 

In addition, outputs produced in the time interval of length K after the time of the detected 

error should also be suspected. If no other errors are detected in a time interval of length K after 

the time of the detection, then outputs produced later than K units of time after the time of the 

detected error can be trusted (are correct) with confidence C. Figure 3.3 illustrates the time 

intervals of length K. Theorem 3.1 gives an expression for K in terms of C, the PACED parame­

ters, and the parameters of the detected-error arrival process. 
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Figure 3.3. Outputs to suspect in fault-active intervals of length K 
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THEOREM 3.1: Let a processor use PACED where I ~ N ~ M and the CED technique has 

detection probability q ~ l. Upon error detection, outputs produced prior to a time interval of 

length Jr before the time of the detected error, or after an interval of length Jr subsequent to the 

time of the detected error, can be trusted with confidence C. The length Jr satisfies 

Ml 
Jr ~ - N 'A.q In( 1 - C) . 

Outputs produced within Jr time units before or after the time of the detected error should be 

suspected as possibly erroneous, since the fault was active with probability C in those intervals. 

PROOF: Let D represent the detected error interarrival time. Since detected errors follow a 

N N 
Poisson process with parameter 'A.qNIM, Pr{D > t} = e -).qJ;i and Pr{D ~ t} = 1 - e -f..q Mt. 

Let Jr be the length of a time interval such that Pr{D ~ Jr} ~ C. Then. 

Ml 
Jr ~ - - - In(1 - C) 

N 'A.q . 
o 
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This expression for K can be used to predict, at error detection time, how much of both the 

most recent outputs and the subsequent future outputs to suspect as possibly erroneous. Con­

versely, given the length of time between the initial detected error and any preceding (or subse­

quent) detection, the level of confidence to place on outputs produced before (or after) that time 

interval may be determined, using Theorem 3.l. 

For multiple detections, time intervals of length K are simply taken about each detection 

with no special significance attached to overlaps. Hence, if a second error detection occurs 

within K of a first, then the following outputs should be suspected: those produced within K 

before the first detection, those produced between the two detections and those produced within 

K after the second detection. 

ExAMPLE 3.3: Let q = 1, NIM = 0.5, and C = 0.99. Using A. = 0.829 error/min from Exam­

ple 3.1, if an error is detected, then by Theorem 3.1, outputs generated earlier than 11.1 min 

prior to the detected error, or later than 11.1 min after the detected error, can be trusted with a 

confidence of 0.99, provided no other errors were detected in those time intervals. All outputs 

produced less than 11.1 min before or less than 11.1 min after the detected error should be sus-

pected as possibly erroneous. o 

Figure 3.4(a) shows how the confidence is affected by the error arrival rate A. and the time 

interval length K, given a constant CED detection probability q = 1 and a constant amount of 

checking NIM = 0.5. The confidence varies from 0 to 1 on the z (vertical) axis; K varies on the 

x-axis (increasing to the right) and A. varies on the y-axis (increasing into the page). Figure 

3.4(b) shows a zoom of Figure 3.4(a), focusing on confidences greater than 0.95 (the grid on the 
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floor of the plot is not part of the function). As can be seen, K has to be larger if the error arrival 

rate A. is smaller, to achieve a given level of confidence. The assumption that errors arrive in 

clusters allows small values of K to reach high confidence levels: when A. ~ 0.5 error/min. confi-

dences greater than 0.95 can be achieved with K> 12 min when the checking ratio NIM is just 

0.5. 

Figure 3.5 shows how the confidence is affected by varying amounts of checking, given a 

constant error arrival rate A. = 0.829 error/min and a constant CED detection probability q = 1. 

As on the previous plot, confidence is shown on the z-axis; here, however, K increases into the 

page (though still on the x-axis) and N increases to the left on the y-axis. Given a time interval 

K of just 12 min, a checking ratio value NIM greater than 0.3 will suffice to give greater than 

0.95 confidence in outputs. Figure 3.5(b), a zoom of Figure 3.5(a) for C ~ 0.95. shows this 

clearly. This is an encouraging result as it allows designers utilizing PACED in a processor to 

use less than continuous checking (the goal of PACED. after all) and still achieve high confi-

dence in outputs produced near a detected error. 

Figure 3.6 shows how the confidence is affected by the CED detection probability q, given 

a constant error arrival rate A. = 0.829 error/min and a constant checking ratio NIM = 1. The 

axes are similar to Figure 3.5 except q replaces N on the y-axis. If K > 12 min is used. confi-

dences over 0.95 can be achieved for any q ~ 0.3 (Figure 3.6(b». This. too. is an encouraging 

result as it may be difficult in practice to estimate q accurately. This result shows that the pre-

cise value of q is not critical. for large enough K. 

The similarity of Figures 3.5(a) and (b) to Figures 3.6~a) and (b). respectively. is not coin-

N 

cidental. From Theorem 3.1, C :::; 1 - e -M{"M
K

• Holding q constant at 1 while varying NIM from 
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o to 1 (Figures 3.5(a), (b» is equivalent to holding NIM constant at 1 while varying q from 0 to 

1 (Figures 3.6(a), (b». Thus, Figures 3.5 and 3.6 show identical plots but were both included 

and shown from different viewpoints to simplify the exposition. 

When using the time intervals of length K to determine the confidence to place on outputs, 

it is assumed that if no other detected errors are found in the intervals, then with a certain proba-

bility the fault has become inactive. By using the times between the detected error and the first 

undetected error (looking backward) or the last undetected error (looking forward), time inter-

vals of length L < K can be obtained and fewer outputs need be suspected as possibly erroneous. 

The next subsection derives L using two different approaches: one to determine L looking back-

ward in time from a detected error and the second to determine L looking forward in time from a 

detected error. 

3.2.2. Undetected-errors intervals 

To begin, it is shown that undetected errors, like detected errors, arrive following a Poisson 

distribution. Let Et represent the number of error arrivals in a time interval of length t and V t 

represent the number of undetected error arrivals in a time interval of length t. The proof of the 

following lemma is substantially similar to that of Lemma 3.1. 

LEMMA 3.2: In a processor using PACED with 1 :::; N :::; M and where the CEO technique 

has detection probability q :::; 1, undetected error arrivals are Poisson distributed. 

PROOF: 

00 ( ) ( N Jk( N In-

k 
Pr{Vt = k} = ~ Pr{Et = n} ~ 1 - q" M q M 
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= (1 -q ~ Jk e-~ - (At J (q ~ J 
N k!! (n-k)! q-
M 

({ N))k l-q- t 
= M e -A.(1-q ;), 

k! 

This is a Poisson distribution, with modified error arrival rate A" = A( 1 - qNIM). o 

Lemma 3.3 establishes that the detected and undetected error Poisson processes are inde-

pendent This result will be used in Theorem 3.2 to form a joint pdf. 

LEMMA 3.3: 

Pr{U, = k & Dt = l} = Pr{Ut = k} . Pr{Dt = l} 

PROOF: 

Pr{U, = k & D, = l} 
Pr{Dt = l} 

= 

= 

(k+I)( N )k( N JI Pr{E,=k+l} k l- q "M qM 

( N)I Aq-t 
M _A.q Nt 

l! e M 

(At)k+1 (k + I) (_ N )k( N JI 
(k + I)! k 1 q M q M 

(Aq MN t)1 N 
-A.q-t 

I! e M 
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( ( N) Jk A. l-q- t 
M _A.<l_qN)t = ..;.... ........ --~-'-- e M 

k! 

= Pr{Ut = k} 

Thus, 

Pr{Ut = k & Dt = I} = Pr{Ut = k} . Pr{Dt = I} . 
o 

In the previous section, Theorem 3.1 determined the length K of time intervals during 

which the fault was probably active. Outputs from intervals -of length K backward and forward 

from the time of an error detection were then suspected as possibly erroneous. The following 

two theorems use a less stringent criterion: looking backward from a detected error, only those 

outputs produced since the first undetected error need be suspected; or, looking forward, only 

those outputs produced up to the last undetected error need be suspected. These two intervals 

have length L: Theorem 3.2 determines L for the backward case and Theorem 3.3 determines L 

for the forward case. As will be shown, L S K. Figure 3.7 shows the relationship between the 

time intervals of lengths K and L, as well as which outputs to suspect and which to trust when 

using the L-Iength intervals. 

THEOREM 3.2: Let a processor use PACED where 1 S N S M and the CED technique has 

detection probability q S 1. Upon error detection, outputs produced prior to a time interval of 

length L before the detected error can be trusted with confidence C, where the time interval 

extends backward from the time of the detected error to reach the first undetected error with 

probability C. The length L satisfies 
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Figure 3.7. Outputs to suspect in undetected-errors intervals of length L. 
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Outputs produced within length of time L before the detected error should be suspected as possi-

blyerroneous. 

PROOF: Let D and U represent the detected and undetected error interarrival times, respec-

tively. From Lemmas 3.1 and 3.2, both random variables are exponentially distributed with 

parameters A' = ')...qNIM and A" = A.( 1 - qNIM), respectively. 

The quantity D - U represents the time between the first undetected error and the first 

detected error. The probability Pr{ D - U > t} is now determined using a joint probability distri-

bution. 

00 00 

Pr{D - U > t} = f f ')..," e-i.."x . ')..,' e-i..'y dydx 
o x+t 
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00 

= J A" e -"A." x • e -"A.'(x+t) dx 

o 

o 

A" = -"A.'t 
A" + A' e 

A" , 
It follows that Pr{U -0 S t} = 1 - A" +A' e-"A.t. Let L be the length of a time interval 

such that Pr{O - US L} ~ C. Then, 

'\" 
II. -"A.'L 

1 - A" + A' e ~ C 

Hence, with confidence C, the first undetected error occurred within a time interval of 

length L before the time of the detected error. Outputs produced prior to L time units before the 

time of the detected error can be trusted with confidence C and outputs produced within L units 

of time prior to the time of the detected error should be suspected as possibly erroneous. 0 

THEOREM 3.3: Let a processor use PACED where 1 S N S M and the CEO technique has 

detection probability q S 1. Upon error detection, outputs produced subsequent to a time inter-

val of length L after the detected error can be trusted with confidence C. where the time interval 

extends forward from the time of the detected error to reach the last undetected error with prob-

ability C. The length L satisfies 
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M I (I-C) L~-Nr-In N' 
q I-q-

M 

Outputs produced within length of time L after the detected error should be suspected as possi-

bly erroneous. 

PROOF: Let U represent the time to the last undetected error before the next detected error, 

and V, the time to the next detected error. From Lemmas 3.1 and 3.2, detected and undetected 

errors are exponentially distributed with parameters A' = ')...qNIM and A" = A( I - qNIM), respec-

tively. 

First, the probability is determined that the last undetected error occurs in some infinitesi-

mal time slice du at time u while the next detected error occurs in some infinitesimal time slice 

dv at time v, where v ~ u. (If it were known that v < u, i.e., no undetected errors occur before 

the next detected error, then none of the outputs produced between the two error detections 

would have to be suspected.) 

The expression below has a term for each of the following conditions: 1) no errors are 

detected in a time interval of length u starting from the time of the current error detection; 2) at 

least one error is undetected in an interval of length du; 3) no errors occur in an interval v - u; 

and 4) at least one error is detected in an interval dv. (The variable U should be defined as the 

time of the last undetected error before the fault becomes inactive, but since the distribution of 

fault lifetimes is unknown, U is predicated instead on the next error detection. In the derivation, 

then, the next detection is allowed to take place at any time slice dv from u to infinity, in effect 

allowing the fault to become inactive.) 
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The terms 1 - e-A"du and 1 - e-A'dv have been simplified using the approximation 1 - e-x 
:; 

x + o(x) as x ~ O. 

Now, the probability that U is greater than some L is determined, using the joint probability 

just derived. 

to 1. 

... ... 
Pr{U ~ L} = J J ')..,?,"e-A'UeAMe-A"dvdu 

L U 

= (l - q N )e-A'L 
M 

L is determined such that Pr{U~} S 1 - C, where C, the confidence, is set arbitrarily close 

Pr{U~L} S l-C 

o 

Note that Theorems 3.2 and 3.3 arrive at the same expt:ession for L. It is attractive that the 

same time interval L is used both looking backward and forward from an error detection, as in 
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the case using K. It is also reasonable that the interval from the first undetected error to the first 

detected error should be the same length as that from the last detected error (the current detec­

tion can be considered the "last") to the last undetected error, given that the error distributions 

used in each case are the same. Also, it can be seen that the expression for L leads to smaller 

values than that for K: they differ only in the natural logarithm term. Both the numerator and 

denominator of this term in the expression for L are less than one. Hence, the quantity I - C is 

increased closer to 1, reducing the absolute value of the natural logarithm of the fraction and 

making L smaller than K for equal values of the other parameters. 

EXAMPLE 3.4: If a single processor uses PACED with the same parameter values as in 

Example 3.3, viz., q = 1, A. = 0.829 error/min, NIM = 0.5, and C = 0.99, then when an error is 

detected, using Theorem 3.2, the outputs generated prior to 9.4 min before, or subsequent to 9.4 

min after, the detected error can be trusted with a confidence of 0.99, as long as no other errors 

are detected in those time intervals. All outputs produced less than 9.4 min before the detected 

error or less than 9.4 min after should be suspected as possibly erroneous. o 

In Example 3.3, outputs produced 11.1 min before and after the detected error had to be 

suspected, since Theorem 3.1 suspects all outputs generated while the fault was probably active. 

By suspecting only those outputs generated since the first or before the last undetected error, a 

time savings of about 15% can be realized in this case. Figure 3.8 plots the time savings 

(K - L)/ K of using L instead of K as a function of NIM, when q = 1, A. = 0.829 error/min. and C 

=0.99. 
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Figure 3.8. Time savings using L instead of K. 
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Figures 3.9-3.11 show the effect of L on the confidence. These graphs use the same axes 

and scales as Figures 3.4-3.6, respectively, and can be compared therewith directly. (As with 

Figures 3.5 and 3.6, Figures 3.10 and 3.11 show identical plots from different points of view.) 

For each figure a zoom plot shows confidences over 0.95. 

N 

By Theorems 3.2 ud 3.3, C S 1 - (1 - qNI M)e -"J,.q'M L
• As L --+ 0, the confidence C 

becomes bounded above by qNIM. In Figure 3.9(a), qNIM = 0.5, so the plot never falls below 

0.5; in Figures 3.1O(a) and 3.11(a), qNIM varies from 0 to 1 and bounds C when L is close to O. 

All the figures show that for a given set of parameter values, a desired confidence level can 

be achieved with a value of L smaller than the necessary value of K. Figure 3.10 shows that the 

confidence, as in the case for K, is relatively insensitive to the checking ratio NIM, given L > 10 

min; likewise, Figure 3.11 shows that for large enough L (> 10 min) the confidence is relatively 

unaffected by q. These results again indicate that high confidence can be achieved without the 
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Figure 3.9(a). Undetected-errors intervals, C vs. A. 
(0 ~ C ~ I). 
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Figure 3.9(1)). Undetected.errors intervals. C vs. " 
(C~ 0.95). 
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A, = 0.829 error/min, M=lO, q=l 
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Figure 3.10(a). Undetected-errors intervals, C vs. N 
(0:::; C:::; 1). 
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Figure 3.10(b). Undetected-errors intervals, C vs. N 
(C ~ 0.95). 
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A. = 0.829 error/min, N=lo, M=lO 
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Figure 3.11(a). Undetected-errors intervals, C vs. q 
(OSCSl). 

43 



Conf 

A. = 0.829 error/min, N=lO, M=10 
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Figure 3.11(b). Undetected-errors intervals, C vs. q 
(C?:! 0.95). 

44 



4S 

need for either precise values of q or high checking ratios. Yet marked improvement on the 

amounts of output to suspect upon error detection will be made in the following two chapters, in 

which PACED is applied to processor array architectures. It will become evident that through 

cooperation among the constituent PEs, the amounts of output to suspect can be significantly 

reduced. 

3.3. Error Coverage 

The error coverage of the PACED technique is the probability that if an error occurs then it 

will be detected. In a single processor using PACED, the error coverage can be estimated as 

qNIM: the processor perfonns checks NIM of the time, and each check has detection probability 

q. Even with perfect detection (q = 1), it is clear that low values of the checking ratio NIM 

would have low error coverage. 

Consider, however, the undetected-errors intervals of length L calculated in the previous 

section. When an error is detected, the backward interval will, in effect, "detect" all the unde­

tected errors in that interval, by casting them under suspicion; the forward interval would simi­

larly "detect" any future undetected errors. Hence, an error can only escape "detection" if no 

other errors are actually detected in the time intervals of length L before and after it. 

The following theorem detennines an expression for the estimated error coverage of a sin­

gle processor using PACED. It first finds the probability that an error goes undetected; this 

probability depends on the average number of errors in an interval of length L. As an approxi­

mation, there will be an average of UJl errors in an L-Iength interval, where Il is the mean inter­

arrival time and L is given by Theorem 3.2 or 3.3. If error arrivals are modeled by a two-phase 
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hyperexponential distribution (as in Example 3.1) of the fonn Jet) = a A.i e-A.[t + 

(1- a) ~ e-~t, the mean interarrival time ~ can be found as follows . 

.. 
~ = J t J (t) dt 

o 

00 

= J t (oA l e-A.lt + (1 - a)~e-~t) dt 
o 

a (I-a) 
= 1..1 + ~ 

If error arrivals are modeled by a simple exponential distribution of the fonn ) (t) = A. e-A.t. the 

mean interarrival time ~ = III... 

THEOREM 3.4: Let a single processor use PACED where 1 ::; N::; M and the CEO tech-

nique has detection probability q ::; 1. The estimated error coverage of the processor is given by 

N 2L 
--+1 

l-(1-q-)JJ. 
M 

PROOF: The probability that an error goes undetected is the probability that the error itself 

is not detected, and that no other errors are detected in the time intervals of length L before and 

after the error. The following expression for the probability of an undetected error has tenns for 

each of the following conditions: 1) no errors are detected in a time interval of length L prior to 

an undetected error, 2) the error is itself undetected; and 3) no errors are detected in an interval 

of length L after an undetected error. 

Pr{ error undetected} 



N 2L 
-+1 

= (l-q-)J.L 
M 
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If an error is detected in either of the two L-Iength intervals, then when the two L-Iength 

intervals are taken around the error detection according to Theorems 3.2 and 3.3, the error in 

question will be "detected" in the sense that the outputs it could have corrupted will be sus-

pected as possibly erroneous. Since Pr{ error detected} = 1 - Pr{ error undetected}, then 

estimated error coverage o 

EXAMPLE 3.5: For a single processor using PACED, let the CED technique have perfect 

detection (q = 1), NIM = 0.1, C = 0.99, and the error interarrival time be modeled by the two-

phase hyperexponential distribution given in Example 3.1, viz., J (t) = 0.88(0.829 e-O.829t) + 

0.12(0.012 e-O·OI2t
). This gives Il = 11.1 min. From Theorems 3.2 and 3.3, L = 86.9 min, so the 

expected number of error arrivals in time L is Ull = 7.8. The estimated error coverage is then 

1 - (1 - 0.5)16.6 = 0.99993. Hence, with only 10% checking, an estimated error coverage 

greater than 99% can be achieved. 

Figure 3.12 plots the estimated error coverage for the above error arrival distribution as a 

function of NIM when q = 1, M = 10, and C = 0.99. It can be seen that the coverage is very 

high: over 99.99% for all values of NIM ~ 0.1. This makes sense for values of NIM close to 1. 

since an error is more likely to be detected when more checking is performed. When NIM is 

small, high coverage is still obtained because the length L of the undetected-errors interval is 

very long. Thus, many error arrivals would be expected to occur in a time interval of length 2L. 

For any given error, then, it would be quite likely that at least one error in an interval of length 
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2L would be detected, leading to the "detection" of the error by casting suspicion on outputs 

produced at the time of the error. 

Estimated 
Error 

Coverage 

(%) 
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NIM(M= 10) 

Figure 3.12. Single processor estimated error coverage. 
q = 1, J.l = 11.1 min/err. 

o 
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CHAPTER 4. 

PACED IN A LINEAR ARRAY 

This chapter considers a unidirectional linear processor array composed of V linearly con­

nected PEs (Figure 4.1). Inputs enter at the top and left; outputs are produced at the bottom and 

right Data Bow only from left to right and from top to bottom. Such arrays have been used to 

implement algorithms such as FFT processing [39], matrix computations [40], and image edge 

detection [41]. For two PEs in the array PEj and PEi , if i < j, then P~ is upstream of PEi and 

PEi is downstream from PE j • 

When PACED is used in this array, checking patterns can be designed so that PEs check 

the unchecked computations of upstream PEs. Each PE j in the array may have its own separate 

values of M and N: M j and N j • The offset parameter OJ, introduced in Chapter 2, determines 

the pattern of checking that appears in the array. It is implemented as an offset into a PEi ' s 

CSM,N array and governs at what point in its Mj-cycle checking sequence to begin. With 

o 1 2 . . . V -1 

Figure 4.1. A V-PE unidirectional linear processor array. 
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PACED applied to the linear array, this chapter will study the confidence to place on array out-

puts upon error detection, the error coverage, and the perfonnance of the array. 

Having investigated the confidence in a single processor's outputs under PACED, the con-

fidence in the outputs from a unidirectional linear processor array using PACED upon error 

detection will be examined first. The confidence analysis is based on three assumptions. 1) All 

communication channels in the array are fault-free. 2) If an erreneous array output is produced 

by a PE, an erroneous propagating output will also be produced and sent downstream (e.g., by 

using the AN-code [42]: see Section 4.5.1.) 3) PEs are code-disjoint: use of erroneous inputs or 

state values causes erroneous PE outputs to propagate. 

Assumption 2) ensures that no erroneous array outputs can be produced without the possi-

bility that a downstream PE will detect a propagated error. To ensure that errors are propagated, 

each PE may produce an additional propagating check output, generated from all of its array 

outputs using some code-preserving operation (e.g., the sum of all its array outputs if the AN-

code is used). This additional check output can be piggy-backed onto an existing data message 

-
to avoid increasing the message traffic. Any downstream PE that is checking will check this 

output as well, and then clear it; any downstream PE that is not checking will simply include the 

output when calculating its own check output to send further downstream. Since errors are of 

interest only if they affect PE outputs, Assumption 3) ensures that detecting errors at PE outputs 

will catch input and state errors as well. 

Two time intervals are detennined in which to suspect linear array outputs upon error 

detection. The analysis begins with a discussion of the error detection latency in the array and 

the error propagation distance. This distance is used in the detennination of the backward time 
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interval. After the forward time interval is determined, the error coverage in the linear array is 

examined, followed by a study of the performance of the linear array using both simulations and 

experiments. 

4.1. Error Detection Latency 

If an error occurs, of interest is the error detection latency in the array. The error detection 

latency, L, is the number of computation cycles through which an output is propagated until it is 

detected. The maximal value of L is denoted by Lmax. 

Lemma 4.1 determines the detection latency for errors created at any given PEj for each of 

its M j - N j unchecked cycles in one Mj-cycle period. Here and in the remainder of this chapter, 

the CED scheme in all PEs is assumed to have perfect detection (i.e., q = 1) and the checking 

pattern is assumed to be set by OJ = (N j • i) mod M j • This choice of checking pattern has been 

shown to minimize Lmax in linear arrays [19]. 

LEMMA 4.1: Given a V-PE unidirectional linear processor array using PACED with perfect 

detection (q = 1), let M j = M, Ni = N, and 1 S N SM. Using OJ = (Ni) mod M, the detection 

latency of an error created in the unchecked cycle rat PEj , Lro is reM - r)/Nl, where N ~ r ~ 

M - 1 and i < V - Lmax. The maximum error detection latency in the array, Lmax. is 

reM - N)/ Nl ' for all PE j such that i < V - Lmax. 

PROOF: By design of the checking pattern, if CSM,N[r] is the checking activity at PE j in 

some computation cycle c, then CSM,N[(r + yeN -1) + z) mod M] is the checking activity at 

PE j+y in cycle c + z. With perfect detection, errors only propagate through unchecked cycles, so 

the proof only considers N S r S M - 1. 
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If an error occurs at PE j during its ~ cycle, it will go undetected: this cycle is unchecked 

(CSM,N[N] = 0). In the next cycle, the error will propagate to PE j+1 and be detected if 

CSM,N[(2N) mod M] = 1 (Le., if PE j+1 is checking). If CSM,N [(2N) mod M] = 0, then the error 

will propagate to PEi+2 in the next cycle, where it will be detected if CSM,N[(3N) mod M] = 1, 

and so on. 

The latency of detection of this error, L N , is the number of computation cycles required for 

the error to reach a checked cycle. In terms of the checking sequence, LN is the smallest integer 

number of N-bit hops needed to reach s such that CSM,N[S] = 1 (Le., 0 ::;; S ::;; N - 1) from N, 

where CSM,N[N] = O. This is a distance of M - N bits. 

LN·N ~ M-N 

LN = f(M - N)lNl 

Similarly, LN+1, the latency of an error created during the N + 1 st cycle (an unchecked 

cycle, since CSM,N[N + 1] = 0), is r(M - N -l)INl. In general, an error created during cycle r 

(an unchecked cycle: CSM,N[r] = 0) will have latency Lr = r(M - N - (r - N)INl = 

reM - r)INl, N ::;; r::;; M -1. Clearly, LN ~ LN+1 ~ ••• ~ L M- 1• Therefore, the maximum error 

detection latency, Lmu, is LN: Lmu = LN = f(M - N)I Nl. 

This analysis applies to all PEs in the array except the end elements, PE; where i ;::: 

V - Lmax. At these PE j , an error may propagate undetected out of the array since for these PE; 

there are fewer than Lmax PEs downstream. o 

EXAMPLE 4.1: Figure 4.2 shows the checking pattern.in a 7-PE unidirectional array as it 

begins work on a problem, with M; = 5, Ni = 2, and OJ = (2i) mod 5; CSS,2 = (1, 1,0, 0, 0). 
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Computation cycles are shown on the vertical axis; each row shows the checking activity in the 

array during a cycle. Notice that the checking pattern sets up waves of checked cycles that 

advance upstream over time to catch propagating errors. 

In the figure, ~ for an error created at P~ in cycle 10 (marked by *) is r(S - 2)/2l = 2: the 

error would be detected two cycles later, by PE4 in cycle 12 (labeled ~). For an error created at 

P~ in cycle 11 (marked by 0), ~ = reS - 3)/21 = 1: the error would be detected by P~ in cycle 

12 (labeled ~). For an error created at P~ in cycle 12 (*), L4 = reS - 4)/2l = 1, since the error 

would be detected by P~ in cycle 13 (labeled L4). Finally, Lmax = ~ = 2. o 

computation PE 
cycle 0 1 2 3 4 S 6 

0 x I I I I I I 
1 x I I I I I 
2 I I I I 
3 x x I I I 
4 x x I I 
S x x x I 
6 x x x 
7 x x 
8 x x 
9 x x x 

10 x x * x x 
11 x 0 x x 
12 

* L3 ~ 
13 X L4 
14 x x x 
15 x x x x 

1= PE idle - = PE doing task x = PE doing checked task 

Figure 4.2. Checking pattern in a 7-PE array. 
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To prevent errors from propagating out of the linear array and escaping detection, a modifi­

cation to PACED can be applied in which the last PE in the array, PEv-I> performs 100% check­

ing. This variation of PACED, PACED', can be implemented by duplicating PEV- 1 in hardware; 

this can prevent PEV- 1 from becoming a performance bottleneck. Only the normal PACED per­

formance costs would then be incurred. A less hardware-expensive implementation of PACED' 

might monitor the outputs of PEV- 1 using a hardware code checker. 

4.2. Error Propagation Distance 

The following lemma gives an expression for the maximum number of unchecked cycles 

through which a detected error could have propagated. This result will be used in Theorem 4.1 

to determine the amount of previously produced output to suspect as possibly erroneous from 

each PE in the linear array, upon error detection. 

LEMMA 4.2: Given a V-PE unidirectional linear processor array using PACED with perfect 

detection (q = 1), let M; = M, N; = N, and 1 ~ N ~ M. Using 0; = (NI) mod M, an error detected 

by CSM,N[r] at PE;, 0 ~ r ~ N -1, propagated through at most Dr unchecked cycles, where Dr = 

min(i, reM + r + 1)1 Nl- 2). 

PROOF: Let CSM,N[O] at PE; detect an error in computation cycle c. The checking activity 

at PE;-l during cycle c -1 is CSM,N[(-N) mod M]. The maximum number of unchecked cycles 

through which the detected error may have propagated, Do, is the number of computation cycles 

required to reach a checked cycle, minus 1, counting backwards in time. In terms of the check­

ing sequence, Do + 1 is the smallest integer number of N-bit hops needed to reach CSM,N[r], 0 ~ 

r ~ N - 1, from CSM,N[O]. This is a distance of M - N + 1 bits. 



(Do + I)N ~ M - N + 1 

Do =f(M - N + 1)IN1-l 

=f(M + 1)INl-2 
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Similarly, Dl = reM + 2)1 Nl- 2. In general, Dr = reM + r + 1)1 Nl- 2, 0 S r ::;; N - 1. For 

PEs near the beginning of the array, there may be fewer than Dr PEs through which the error 

propagated. Hence, at PEj, Dr = mine;, r (M + r + 1)1 Nl- 2), for 0 ::;; r ::;; N - 1. 0 

EXAMPLE 4.2: Using the array of Example 4.1 (Figure 4.2), Do for an error detected at PE3 

at computation cycle 12 is r (5 + 0 + 1 )/21- 2 = 1, because PEl checked computation cycle 10. 

For an error detected at P~ at computation cycle 13, Dl = r(5 + 1 + 1)/21- 2 = 2, because PEo 

checked computation cycle 10. o 

4.3. Suspected Outputs 

Upon error detection, outputs produced both in the recent past and the near future should 

be suspected as possibly erroneous. The following theorem determines which of the previously 

produced outputs to suspect when an error is detected by a PE in the linear array; Theorem 4.2 

considers which of the future outputs to suspect 

THEOREM 4.1: Given a V-PE unidirectional linear array using PACED with perfect detec­

tion (q = 1), let M j = M, N j = N, 1 ::;; N::;; M, and OJ = (Ni) mod M. If PE j detects an error at its 

rth checked cycle in computation cycle c, 0 ::;; r ::;; N - I, then the output from PE j in c should be 

suspected as possibly erroneous. In addition, the outputs produced by PEi - k in cycle c - k, for 1 

::; k ::;; Dr' should be suspected. All other unsuspected, previously produced outputs can be 
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trusted with a confidence of 1, unless a later error detection makes it necessary to suspect them. 

PROOF: By Lemma 4.2, the detected error propagated through at most Dr unchecked 

cycles to reach PE j • Thus, the error was created at some PEj - k in a cycle c - (k + y), where 1 :::; 

k:::; Dr and y = 1, 2, 3, .... 

Figure 4.3 shows the checking activity in a lO-PE array in the midst of a problem, with 

M = 00 and N = 2. The X marks an error detection at PEs in cycle c and the *s mark the Dr 

cycles through which an error may have propagated to reach PEs. 

Suppose that the error had occurred at PE4 in cycle c - 2, c - 3, or c - 4. The error would 

have been detected by PE6 in cycle c, c - 1, or c - 1, respectively. Suppose the error had 

occurred at P~ in cycle c - 3, c - 4, or c - 5. This error would have been detected by P~ in 

cycle c or c - 1, or by P~ in cycle c - 1, respectively. 

computation PE 
cycle 0 1 2 3 4 5 6 7 8 9 

c -12 
c -11 
c-lO 
c-9 
c-8 
c-7 
c-6 
c-5 * 
c-4 * x 
c-3 * x x 
c-2 * x x 
c-l * x x 
c X x 

Figure 4.3. Error propagation in a lO-PE array. 



57 

In general, any error created at PEt- k before cycle c - k would either have been detected by 

cycle c (and the appropriate outputs. already suspected), or gone undetected (if the error propa­

gated out of the array). This is a result of the checking pattern, in which each PEj perfonns its 

last checked cycle (CSM,N[N -1]) during the same computation cycle that PEi - 1 perfonns its 

first checked cycle (CSM,N[O]). Hence, only the outputs from PEj-k in cycles c - k need be sus­

pected, 1 S; k S; Dr> as well as that from PEj in c. All other unsuspected, previously produced 

outputs can be trusted with a confidence of 1, unless a later error detection makes it necessary to 

suspect them. o 

EXAMPLE 4.3: Figure 4.4 shows the checking pattern in a lO-PE unidirectional linear array 

in the midst of a problem, with M j = 13, N j = 3, and OJ = (3i) mod 13. Let PEs detect an error 

in cycle c (X in the figure) by check CS13,3[2]. The output from PEs in cycle c should be sus­

pected. Also, since D2 = f(13 + 2 + 1)/3l- 2 = 4 (Lemma 4.2), the outputs of P~, PE6 , PEs, 

and PE4 in cycles c - I, c - 2, c - 3, and c - 4, respectively, (marked by *) should be suspected 

as possibly erroneous, by Theorem 4.1. All other outputs generated up through cycle c can be 

trusted with a confidence of I, unless a later error detection makes it necessary to suspect them.o 

Section 4.1 mentioned a modification of PACED , PACED', which eliminates the possibil­

ity that errors escape undetected from the linear array. Besides this boon, PACED' also has the 

advantage that, upon error detection, only outputs produced just prior to the detection need be 

suspected. Since all errors are eventually detected, there is no need to suspect outputs produced 

after an error detection unless a later error detection warrants it However, future outputs have 
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computation PE 
cycle 0 1 2 3 4 5 6 7 8 9 

c-12 x x x 
c-ll x x x 
c-10 x x 
c-9 x x 
c-8 x 
c-7 x x 
c-6 x 
c-5 x x 
c-4 x * x 
c-3 x x * x 
c-2 x * x x 
c-1 x x * x 
c x x X 

Figure 4.4. Suspected previously produced outputs, 10-PE array. 

to be suspected if normal PACED is used in the linear array and an error is detected at one of the 

end elements PEj , where i ~ V - Lmax. Theorem 4.2 determines which future outputs to suspect 

if an error is detected at one of these PEs. 

THEOREM 4.2: Given a V-PE unidirectional linear array using PACED with perfect detec-

tion (q = 1), let M j = M, N; = N, 1 S N S M, and OJ = (Ni) mod M. If PEv-Lm.x+i detects an 

error at its rib checked cycle in computation cycle c, where 0 S r S N - 1 and 0 SiS Lmax - 1, 

then the following outputs should be suspected as possibly erroneous. 

a) If (r + (Lmax - 1 - i)N + k) mod M ~ N, then the outputs from PEv-Lm.x+i+j in cycle 

c + j + k should be suspected, where 0 S j S Lmax - 1 - i; if r < N - 1, then k = 0, otherwise ° S k 

S M - N (r = N - 1). 
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b) All output from PEV- 1 in cycles c + Lmax -1 - i until its next checked cycle should be 

suspected. 

All other unsuspected, future outputs can be trusted with a confidence of 1, unless a future 

error detection makes it necessary to suspect them. 

PROOF: By use of OJ = (Ni) mod M in the linear array, when PEj in cycle c performs its rth 

checked task (CSM,N[r] = 1), then PEj+y in cycle c + z will perform CSM,N[(r + y(N -1) + z) 

modM]. 

Now, let PEv-L"..,,+i detect an error in cycle c by CSM,N[r], for 0 ~ i ~ Lmax - 1. These 

PEv-La.x+i are those PEs that could create errors that propagate undetected out of the array. The 

detected error will propagate to PEV-1 in cycle c + L.nax - 1 - i. In that cycle. if PEV- 1 is not 

checking (i.e., (r + (L~ - 1 - i)N) mod M ~ N), then this error will propagate out of the array 

and outputs from all PEs and cycles through which the error propagated should be suspected as 

possibly erroneous. That is, if (r + (Lmax -1- ON) mod M ~ N. then the output from 

PEv-L..-+j+} in cycle c + j should be suspected, 0 ~ j ~ Lmax - 1 - i. If PEV-L,.,.,.+i will check at 

the next cycle c + 1, then this gives part a) when r < N - 1 (k = 0). 

If r = N - 1 (PEv-L,.,.,.+i won't check in cycle c + 1), then as in the above case when r < 

N - 1, if (r + (Lmax - 1 - i)N + k) mod M ~ N, then the output from PEV-L",.,.+i+} in cycle 

c + j + k should be suspected, where 0 ~ j ~ Lmax - 1 - i and k = O. In addition. for each of the 

next M - N unchecked cycles, errors may propagate out of the array. This is likely since an 

error has already been detected at PEV-L,.,.,.+i and the fault may still be active while that PE is not 

checking. The additional outputs to suspect depend upon whether PEV- 1 is not checking when 
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the errors arrive there. That is, for each cycle c + k, 1 ~ k ~ M - N, if (r + (Lmax - 1 - i)N + k) 

mod M ~ N, then the output from PEY-L",.,,+i+j in cycle c + j + k should be suspected, for 0 ~ j S 

Lmax - 1 - i. This completes part a) when r = N - 1. 

Once an error propagates to PEY_1 while it is not checking, all of its outputs until its next 

checked cycle should be suspected as possibly erroneous since its outputs are not checked by 

any other PE. Hence, all of the outputs from PEY_1 in cycles c + Lmax - 1 - i (the earliest that 

the error. first detected at PEY-L",." .... in cycle c, could corrupt PEV- 1) until its next checked cycle 

should be suspected as possibly erroneous. This gives part b) in the statement of the theorem. 

All other unsuspected, future outputs from the array can be trusted with a confidence of 1, 

unless a future error detection makes it necessary to suspect them. o 

EXAMPLE 4.4: Figure 4.5 shows the lO-PE linear array of Example 4.3, in which M j = 13. 

N j = 3. and OJ = (3i) mod 13; by Lemma 4.1, Lmax = 4. PE6 has detected an error at check r = 2 

in cycle c (marked X in the figure). Using Theorem 4.2, the future outputs to suspect will be 

determined. Since P~ will not check cycle c + 3 (since (2 + (4 - 1 - 0)3) mod 13 ~ 3). then the 

outputs from the following PEs should be suspected: P~ in cycle c + 1. PEs in cycle c + 2, and 

P~ in cycle c + 3. 

As PE6 detected the error at its Nih check (r = N - 1), its next M - N cycles may also cre­

ate undetected errors. But PE9 begins checking in cycle c + 5, so only the outputs from the fol­

lowing PEs need be suspected: P~ in cycle c + 1, P~ in cycle c + 2. PEg in cycle c + 3, and 

P~ in cycle c + 4. In addition. the outputs from P~ in cycles c + 3 to c + 4 should be suspected 

(both already are), since P~ doesn't begin checking again until cycle c + 5. The outputs to 
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suspect are marked * in the figure, plus the site of the detection (X). All other unsuspected, 

future outputs can be trusted with a confidence of 1, unless a later error detection makes it nec-

essary to suspect them. o 

The detection of an error by one of aPE's N checks leads to two static patterns of outputs 

to suspect as possibly erroneous: one for the previously produced outputs and one for the future 

outputs. For example, Figure 4.4 shows the pattern of previous outputs to suspect if Mi = 13, 

Ni = 3, OJ = (30 mod 13, and CS13•3[2] detects an error. Figure 4.5 shows the pattern of future 

outputs to suspect for the same parameter values when the error is detected at PEV- Lmax . For 

computation PE 
cycle 0 1 2 3 4 5 6 7 8 9 

c-6 x x x 
c-5 x x x 
c-4 x x x 
c-3 x x x 
c-2 x x x 
c-l x x 
c x X 
c+l x * * 
c+2 x x * * 
c+3 x * * 
c+4 x x * 
c+5 x x 
c+6 x x x 
c+7 x x x 
c+8 x x x 
c+9 x x x 
c+ 10 x x X 

c+ 11 x x x 

Figure 4.5. Suspected future outputs, 10-PE array. 
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these parameter values, there would be a total of 3(Lmax + 1) possible patterns of outputs to sus­

pect: three patterns for previous outputs (one for each check CS 13•3[r], 0 ~ r ~ 2) and 3Lmax pat­

terns for future outputs (one for each check CS 13•3[r], 0 ~ r S 2 at each PEv-L..-+i' 0 SiS 

Lma,x - 1). These patterns can be computed once for the array and stored, indexed by r and i. 

Upon error detection, given the PE and which of its checks detected the error, the outputs to sus­

pect can be detennined with no extra computation by simply using the template stored for that 

check. 

The amount of output to suspect upon error detection in the linear array is much less than 

that necessary upon error detection in a single processor using PACED. Example 3.4 showed 

that using the undetected-errors intervals in the single processor, 18.8 min worth of outputs (9.4 

min both prior and subsequent to an error detection) should be suspected. In the linear array, the 

outputs from perhaps only a few tens of computation cycles need be suspected; with cycles 

times in the range of 15 ~ to 20 ms in VSLI array implementations [41], this means on the 

order of just one second's output need be suspected. By using the ability of PEs to check other 

PE outputs, PACED can give high confidence in most array outputs upon error detection with 

less than continuous checking. 

4.4. Error Coverage 

If it is assumed that errors occur unifonnly distributed among the constituent PEs of the 

linear array, an estimate of the error coverage can be made. This assumption can be valid in 

arrays with homogeneous PEs running the same algorithm: no PE would be more or less suscep­

tible to errors than any other PE. In any M consecutive cycles in the array, each PE will have 
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completed one pass through its CS M,N[] array. Hence, one M-cycle period has the same cover­

age as any other M-cycle period, so it suffices to examine a single such period. 

In one M-cycle period in a V-PE linear array, there are MV potential sites at which errors 

may occur: one for each PE of the array, in each cycle. Since it is assumed that errors propagate 

through the array and are not masked, when normal PACED is applied to the array, only some of 

these sites could lead to the propagation of undetected errors out of the array, if an error were to 

occur. (When PACED' is used, the estimated coverage is 100% for all values of NIM, since no 

errors can escape undetected from the array.) By counting these sites and dividing by the total 

number of potential sites, an estimate of the error coverage can be made. 

Figure 4.6 shows the estimated error coverage for a 16-PE linear array as a function of 

NIM, when M = 10 and q = 1. It can be seen that even for small values of NIM, the error cover­

age is quite high (greater than 70% for NIM = 0.1). The coverage climbs quickly as NIM 

increases, so that any checking ratio greater than 0.4 will have an estimated error coverage 

greater than 95%. The cooperation among the PEs that allows propagated errors to be detected 

causes this rise in coverage for small NIM. Hence, low values of the checking ratio can yield 

high error coverage. This result is promising, as it allows the possibility of low checking ratios, 

and thus, low performance cost, while still maintaining good error coverage. 

4.5. Performance 

The performance of linear processor arrays using PACED was studied in two ways. First, 

the performance costs were estimated by using an algorithm-independent. simulation-based. 

analysis model that was written in C to study the effect of PACED when used in linear, square, 
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Figure 4.6. Estimated error coverage for a 16-PE linear array. 

and triangular processor array architectures. The simulator uses mean execution times required 

by basic arithmetic operations, so that the activity in the array PEs can be simulated without 

actually being performed. This event-driven, reduced simulation gives an estimate of the com-

pletion times for algorithms with and without the use of PACED, allowing the PACED overhead 

to be determined. 

Second, full simulations of a linear array performing an image processing edge-detection 

algorithm were run on an Intel iPSCI2 hypercube, to obtain more accurate values of the perfor-

mance costs to expect when using PACED. The results from these two performance analyses 

are presented in the following two subsections. 
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4.5.1. Simulation model 

The inputs to the simulation model include the dimension(s) of one of the modeled archi­

tectures, the mean task and check times for the PEs, the values of Mi, Ni , and OJ PACED 

parameters, and the desired length of simulation (the number of computational cycles required 

by the PE producing the final output). Given these inputs, the model can estimate the perfor­

mance costs incurred through the use of PACED in the array. 

The task time is the user's estimate of the mean time that a PE requires to complete a task. 

Similarly, the check time is the mean time that a PE requires to complete the CED for a task. It 

is assumed that the deviations from these means are small. (This assumption has been verified 

from actual simulations, described in the next section. However, in cases where the assumption 

is not valid, the simulation results will be more inaccurate.) These times are determined by ana­

lyzing the implementations of the task and check algorithms. If the array consists of more than 

one type of PE, task and check times for each type of PE require specification. Communication 

costs are not explicitly modeled; they can, however, be incorporated into the mean task and 

check times. 

The model uses these parameters to simulate the activity of the array PEs without perform­

ing the computations specified by the algorithm. The partial-simulation saves time and affords 

the model algorithm independency. Though not as accurate as a full simulation, this reduced 

simulation model is intended to provide good results at a low computation cost. 

EXAMPLE 4.5: The simulation model was used to estimate the performance costs of using 

PACED in a linear unidirectional array running an image edge-detection algorithm [41]. Two 
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CED schemes were considered in determining the mean task and CED times: RESO and AN­

coding. Briefly, in RESO-k, each arithmetic operation is performed twice: the first normally, the 

second using k-bit arithmetic-shifted operands to produce a bit-shifted result. Different amounts 

of shifting can be used, depending on the operation, to obtain maximum error coverage. For 

these experiments, the basic RESO recommendations were employed: RESO-2 for addition and 

multiplication [3], and RESO-2,3 for division (Le., 2-bit shift of numerator and 3-bit shift for 

denominator) [43]. 

In AN-coding, every operand is encoded by multiplying by the base A. All results, inter­

mediate as well as final, must be 0 modulo A or an error has occurred [42]. For a low-cost 

encoding, the base A should be 2c 
- I, where c is the number of bits needed to represent A [44]. 

Table 4.1 shows how the approximate mean task and CED times were determined. The 

first column in the table shows the different types of basic arithmetic operations that were 

counted· for one computation cycle in each of three versions of the algorithm: the basic algo­

rithm, one using RESO, and a third using AN-coding. The operations are integer add, integer 

multiply, modulo, arithmetic shift left. and two types of compare: compare register-with­

memory and compare register-with-immediate. The second column shows the number of clock 

cycles required to perform each operation. These were taken from the Intel 80386 instruction 

timing data as an example ALU [45]. The columns headed "Basic" show. for the basic algo­

rithm. how many of each operation and how many clock cycles are required for one computa­

tion cycle. The columns headed "RESO" and "AN-coding" show the same information for each 

of the CED versions. The penultimate row of the table sho..ys the total clock cycles required per 

computation cycle of each algorithm. Since the simulator uses these numbers to control the 
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number of time-slice iterations performed for each computation cycle, these totals were reduced 

and rounded to small, whole integers, and are given in the last row. 

Using the reduced clock cycles, the simulator was run for 1024 computation cycles (to 

simulate processing an image of 1024 rows) with M = 10, N varied from 0 to 10, and the detec-

tion probability q = 1. Figure 4.7 shows the relative completion times to be expected from run-

ning the three versions when the amount of checking is varied from 0% to 100%. The simula-

tion predicts that the performance cost for RESO should be approximately linear with the 

amount of checking performed. The slight deviation from linearity arises from the initialization 

of the array, during which no checking is performed in many of the PEs, thereby slightly reduc-

ing the overhead due to CED. 

The simulation also predicts that the cost of using AN-coding will be higher than that of 

RESO. This can be attributed to the large number of clock cycles required to perform a modulo 

TABLE 4.1. 
COMPUTATION CYCLE TIMES, EDGE DETECTION PEs. 

operation Basic RESO AN-coding 
type cycles per # tot cycles # tot cycles # tot cycles 

+ 7 54 378 104 728 54 378 
x 17 27 459 54 918 27 459 

mod 114.5 21 2404.5 38 4351 62 7099 
« 5 108 540 

cmp w/mem 5 9 54 
cmp w/imm 2 41 82 

total cycles 324l.5 6591 8018 
reduced cycles 2 4 5 
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Figure 4.7. Simulated linear array performance, edge detection. 
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operation, which forms the crux of the checking in the AN-coding technique. All of the data for 
, 

the graph were obtained from 22 runs of the simulator, which required less than 8 min. Hence. 

the simulator can be a valuable tool to estimate the performance costs of different CED tech-

niques when used with PACED in the linear array. o 

4.5.2. Hypercube simulations 

A simulation of a linear processor array was performed on an Intel iPSCI2 hypercube using 

the nodes as PEs and the shortest internode connections to minimize the communication over-

head. The application was the image edge-detection algorithm modeled in Section 4.5.1. Using 
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this algorithm, a I-by-VI3 array of homogeneous PEs can process a UxV image. Figure 4.8 

shows an example input image to the array and its corresponding output. (Due to the data delay 

through the array, the first row of output image is blank, and the last row is absent.) The algo-

rithm repeatedly convolves a 3x3 mask with 3x3 windows of the image. First, the mask is sent 

by the host to each PE; three columns of image are then sent to each PE, row by row. As the 

data are processed, intermediate results are sent by each PE to its predecessor and outputs are 

sent back to the host row by row, three columns at a time from each PE. 

The first simulation used all 16 nodes of the hypercube to process a 1024x48 image. Two 

CEO techniques were employed: RESO and AN-coding. The base A of 255 = 28 
- I was used 
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Figure 4.8. Sample input and output, edge detection algorithm. 
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in the experiments, so that the largest encoded numbers generated by the application would still 

fit in 32 bits, the size of an integer on the hypercube. 

Figure 4.9, constructed from completion times of the three versions of the algorithm. 

shows how the performance was degraded by the use of CED in varying checking ratios NIM. 

The completion times do not include the initializations of either the host programs or the indi-

vidual node programs. For each run, the individual completion times of each of the 16 nodes 

were averaged together. The averages from five runs were then averaged to obtain each data 

point on the graph. Just five runs were deemed sufficient for two reasons: 1) the greatest stan-

dard deviation for the individual node completion times was less than 0.15% of the average 
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Figure 4.9. Linear array pelformance, edge detection. 
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node completion time, and 2) the greatest standard deviation for the run averages was less than 

1.1 % of the average run completion times. The figure displays the 95% confidence interval for 

each datum as a set of vertical bars above and below the point: these intervals are quite small. 

From the figure, it can be seen that the use of CEO, either AN-coding or RESO, in any 

checking ratio had little effect on the completion time. When the algorithm was checked using 

AN-coding, a very slight increase in the completion times is noticed (= 0.25%), but this slight 

difference is probably spurious, due to slight differences in the operating conditions of the 

hypercube when the separate experiments were performed. It was hypothesized that communi­

cation costs in the hypercube were much larger than anticipated. Since VLSI processor arrays 

were developed in part to achieve great processing speed, the communication costs in such 

arrays should be quite small. Apparently, in this experiment, communication costs dominated 

the computation time so both the RESO and AN-coding results showed very little overhead. 

To test this hypothesis and to obtain more accurate results of a simulated processor array 

using the hypercube, all inter-PE communication was removed from the algorithm's implemen­

tation and the experiments were repeated. As expected, the completion times of the application 

were very much smaller than when the PEs performed communication, even when a larger input 

image (l6384x48) was used. 

The results are shown in Figure 4.lO. The RESO and AN-coding performances are shown 

as dotted lines; the right vertical side of the graph shows the performance scale. These results 

were closer to expectation: the performance exhibited gradual degradation as the checking ratio 

NIM increased, with very little degradation at N = 0 and rising linearly to just over lOO% degra­

dation for AN-coding and just about 100% degradation for RESO. (The 95% confidence 
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interval bars are too small to be seen on the graph.) The RESO curve exhibits a slight degrada-

tion even when no checking is performed (N = 0). This is due to a slight increase in code size, 

as modifications were made to some operations that would normally destroy an operand needed 

to perform RESO. 

Figure 4.10 also overlays on the same axes -the estimated error coverage as a function of 

NIM from Figure 4.6. The left vertical side of the graph shows the scale for the error coverage 

in percent Coverages over 95% can be achieved with NIM ;:: 0.4: fairly low values of the 

checking ratio can yield good error coverage, for which the performance penalty can be under 

50%. 
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From these experiments it can be concluded that the use of PACED can reduce the perfor­

mance costs incurred through the use of CED in a linear processor array, while still maintaining 

good error coverage. A designer of such an array can trade off between performance and the 

amount of output to suspect when an error is detected (and thereby, the error coverage) by 

choosing the checking ratio NIM, provided a coding technique is used to allow error propagation 

between the PEs in the array (e.g., the AN-code for integer applications). 

These experiments also validate the simulation model described in Section 4.5.1. There, 

the simulator had predicted that RESO would perform better under PACED than AN-coding, on 

a 16-node linear array running the edge detection algorithm to process a 1024-row image. The 

overhead at 0% checking of the CED versions was not predicted by the simulator since the 

mean task and check times used in the model did not reflect the code expansion required by the 

RESO and AN-coding versions. Also, the simulator predicted a higher-than-realized overhead 

for the AN-coding technique when applied continuously. However, considering the short time 

required to generate the simulation results, in this example, the simulator provided a fast and 

fairly accurate estimate of the performance costs to expect when using PACED in a linear array. 
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CHAPTERS. 

PACED IN A TWO-DIMENSIONAL ARRAY 

The two-dimensional (2-D) processor array considered in this chapter is composed of UxV 

mesh-connected PEs (Figure 5.1). which accept data at their top and left inputs and send data 

through their right and bottom outputs. The PEs on the top and left edges of the array accept 

external inputs; PEs on the right and bottom edges produce external outputs. Data may only 

flow from left to right and from top to bottom. Note that at the onset of problem execution some 

PEs may be idle until their input data arrive. Such arrays have been used to implement algo­

rithms to perform matrix operations [46]. image processing [47]. digital filtering [48], and poly­

nomial evaluation [49]. For two PEs in the array PEj,j and PEk,J' if i < k or j < I, then PEj,j is 

upstream of PEk,L and PEk,L is downstream from PEj,}. 

Checking patterns in these arrays can be designed so that PEs cJ'teck the unchecked compu­

tations of upstream PEs. As in the linear array, each PEj,} may have its own distinct Mj,j and 

N i,} values. The offset OJ,j creates checking patterns in the array and is determined by two 

parameters called RISE, and RUN: RISEIRUN gives the slope of the waves of checking in the 

checking pattern. With PACED applied to the 2-D array, this chapter will investigate the confi­

dence to place on array outputs at error detection time, the error coverage, and the performance 

of the array. 
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First, the use of PACED in a· 2-D array will be analyzed to determine which outputs to sus-

pect upon error detection. The confidence analysis is based on three assumptions similar to 

those used in Chapter 4. 1) All communication channels in the array are fault-free. 2) If an 

erroneous output is produced by a PE, it will be propagated downstream both rightward and 

downward. 3) PEs are code-disjoint: use of erroneous inputs or state values causes erroneous 

PE outputs to propagate both rightward and downward. 

5.1. Error Detection Latency 

In order to alert the external world of an error detection in the array, an error signal must 

reach a PE that produces external outputs. The error detection latency does not include this sig-

nal delay. Upon error detection. a message is sent by the 'detecting PEi,j downstream with its 
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output data indicating the PE and computation cycle of the detection. The time for a user to 

become aware of an error detection at PEi,} is proportional to min(U - i-I, V - j - 1). 

In 2-D arrays, an algorithm is used to determine Lmax and LT , the latency of an error cre­

ated in an unchecked computation cycle r of PEi,}, Ni,} S r S Mi,}-l' When PACED is applied to 

a 2-D array, the checking pattern is set by Oi,} = (Mi,j+ i + j - (U - 1 - i)RUN -

(V - 1 - j)RISE) mod Mi,j' This particular Oi,} was derived empirically, based on the shape of 

the optimal checking pattern for linear arrays: since errors propagate downstream i~ the array, 

waves of checking that proceed upstream in time were desired to reduce the detection latency. 

The algorithm propagates an error from PEi,} in cycle c downstream through the array until it is 

detected in cycle c + z, giving LT = z. The algorithm uses the fact that when the checking activ­

ity at PEi,} in cycle c is CSM,N[r], the checking activity at PEi+y,}+x in cycle c + z is 

CSM,N[(r + xRJSE + yRUN + z) mod M i ,}]. 

As in the linear processor array, errors may be created that propagate undetected out of the 

array. However, in the linear array, the checking pattern was designed such that only a few of 

the endmost PEi could create undetected errors. Such is not the case for the 2-D array, in which 

RISE and RUN can be chosen to create a variety of checking patterns. Therefore, Lmax for the 

2-D array is defined as the largest finite error detection latency. 

EXAMPLE 5.1: Figure 5.2 shows several snapshots of a IOxlO array in the midst of some 

computation, with Mi,}= 10, Ni,} = 3, RISEIRUN = 211, and Oi,} = (2i + 3j - 17) mod 10. The 

detection latency for an error created at P~,s in cycle c (marked in the figure bye), when the 

checking activity at PEz.5 is CS IO,3[5], is called Ls and equals 2, since both PE3,6 and PEz,7 
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detect the error in cycle c + 2. The figure shows how the error propagates through the array (* 

in the figure) until detection (in the figure, X). For this array, Lmax = LN = L, = 3. o 

S.2. Suspected Outputs 

This section considers which outputs to suspect as possibly erroneous when an error is 

detected at PEi,j in a 2-D processor array. As in the single-processor and linear-array discus-

sions, outputs produced both prior to the detection as well subsequent thereto are considered. 

For the first case, a simple algorithm works backwards in time from the point of detection, to 

determine through which upstream PEs the error could have propagated; the outputs from those 

PEs should be suspected. The algorithm runs in O(UV . Ni,j) time, assuming Ni,j is constant for 

all PEi,j . 

ExAMPLE 5.2: Figure 5.3 shows five snapshots of a lOxlO processor array using standard 

PACED with Mi,j= 13, Ni,j= 5, RISE/RUN = 311, and Oi,j= (2i + 4j - 23) mod 13. Each grid 

j 
i 012 3 4 5 6 7 8 9 

a ----x----x 
1 - - - x x - - - x x 
2 - - - x - e - - x -
3 - - x x - - - x x -
4 --x----x--
5 - x x - - - x x - -
6 -x----x---
7 x x - - - x x - - -
8 x----x----
9 x - - - x x - - - x 

computation cycle c 

j 
i a 1 2 3 4 5 6 7 8 9 

a - - - x x - - - x x 
1 - - - x - - - - x -
2 - - x x - - * x x -
3 - - x - - * - x - -
4 - x x - - - x x - -
5 - x - - - - x - - -
6 x x - - - x x - - -
7 x - - - - x - - - -
8 x - - - x x - - - x 
9 ----x----x 

computation cycle c + 1 

j 
i 012 3 4 5 6 7 8 9 

a ---x----x-
1 - - x x - - - x x -
2 --x----X--
3 - x x - - - X x - -
4 - x - - - * x - - -
5 x x - - - x x - - -
6 x----x----
7 x - - - x x - - - x 
8 ----x----x 
9 - - - x x - - - x x 

computation cycle c + 2 

Figure 5.2. Error detection latency. 
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represents the checking activity in the array in one computation cycle. The outputs to suspect 

are marked either as @ (where the error was detected) or * (from where the error might have 

propagated). 

If an error is detected at P~,9 in cycle c, its output should be suspected as possibly erro-

neous. Also, the outputs from the following PEs should be suspected as possibly erroneous: 

P~,s and PEs,9 in cycle c - 1; P~,7' PEs,s, and PE,,9 in cycle c - 2; PE"s and PE6,9 in cycle 

c - 3; and PE4,9 in cycle c -4. All other unsuspected, previously produced outputs can be 

trusted with a confidence of 1, unless a later error detection makes it necessary to suspect them.o 

The PACED' modification in the 2-D array performs 100% checking at PEu-I,v-1> either by 

duplicating PEU-I, V_lor by monitoring its outputs with a hardware code checker. With PACED' 

in use, errors cannot escape undetected from the array. As in the linear array case, this modifi-

cation obviates the need to suspect any future outputs from the array: all errors are eventually 
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Figure 5.3. Suspected previously produced outputs, lOx 10 array_ 
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detected, so only previously produced outputs have to be suspected at error detection time. 

However, in the standard PACED implementation, some detected errors may propagate down­

stream, corrupting other outputs before escaping the array. 

An algorithm similar to that used to find the suspected previous outputs first works back­

wards from each unchecked cycle of PEU-1,v-l to detennine from which upstream PEs, in earlier 

checked cycles, undetected errors may have propagated. Also, potential sites of suspected out­

puts are marked in this step. From these detection sites, errors are then propagated forward 

retracing the paths found in the first step; errors on paths that do not lead to subsequent detec­

tions are marked suspect This algorithm runs in O(UV· N i,)) time, assuming N i.) is constant 

for all PEi ,) . 

ExAMPLE 5.3: Figure 5.4 shows three snapshots of a IOxlO processor array using standard 

PACED with Mi,) = 10, N j ,) = 3, RISE/RUN = 211, and OJ,) = (2i + 3j - 17) mod 10. The figure 

is notated as in Figure 5.3. 

If an error is detected at PEs,8 in cycle c (marked @ in the figure), its output should be sus­

pected as possibly erroneous. Furthermore, the outputs from the following PEi ,) should also be 

suspected as possibly erroneous: PEg,9 and P~,8 in cycle c + I, and PE9,9 in cycle c + 2 (all 

marked by *). All other unsuspected, future outputs can be trusted with a confidence of 1 (until, 

of course, the next error detection). o 

The detection of an error by one of the N i ,) checks at PEi ,) leads to static patterns of previ­

ous and future outputs to suspect as possibly erroneous. F9r example, Figure 5.3 is the pattern 

of previous outputs to suspect if Mi,) = 13, Ni,) = 5, RISE/ RUN = 311 (giving OJ,) = 
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computation cycle c 

~ checked task 0 unchecked task ~ error detected (suspect) [!] suspected output 

Figure 5.4. Suspected future outputs, 10x10 array. 

(2i + 3j - 23) mod 13), and CS13,s[O] detects an error; Figure 5.4 is the pattern of future outputs 

to suspect if Mi,j= 10, Ni,j= 3, RISEIRUN = 211 (giving Oi,j = (2i + 3j - 17) mod 10). and 

PEu-2•v-2 detects an error by CStO,3 [1]. 

For given values of Mi,j' Ni,j' RISE, and RUN, there are a fixed number of possible pat­

terns of suspected outputs: one for each CS13,s[r], 0 ~ r ~ 4, for the previously produced out­

puts, and a variable number of patterns generated from each CS 13,s[r], 5 ~ r ~ 12, for the future 

outputs. Because the PACED parameter values are known, these patterns can be computed once 

for the array using the algorithms described and stored, indexed by r, i, andj. Upon error detec­

tion, given which check detected the error (the index of CSM,N) at which PEi•j , the outputs to 

suspect can be determined with no extra computations by recalling the appropriate template. 

In the linear array case, it was possible to determine analytically which checking pattern, 

for a given M i•j and N i•j , would lead to the minimal maximum error detection latency [19]. 
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Such an analytical treatment is less tractable for the 2-D array, so a pattern generator program 

and analyzer program were written in C to examine the search space. The pattern generator pro­

gram takes as input the architecture of the array (linear, 2-D, or triangular), the dimensions of 

the array, values of the PACED parameters M, N, and 0 (for the linear array case) or RISE and 

RUN (for the other architectures), and the number of computation cycles to generate. It pro­

duces a series of snapshots of the array for the requisite number of computation cycles, showing 

the checking pattern generated by the PACED parameter values. The analyzer program takes 

the output of the pattern generator as input and determines Lmax, as well as the number of out­

puts to suspect, both forward and backward, for the particular PACED parameter values. 

A 20x20 array was tested, setting Mi,j = 15, Ni,j = 1, 2, ... 15, Oi,j = (15 + i + J 

- (19 - i)RUN - (19 - J)RISE) mod 15, and q = 1. By varying RISE and RUN, patterns with 

waves of different slopes were generated. These patterns were then analyzed to determine their 

maximum error detection latency, as well as the pattern and number of both previous outputs 

(Table 5.1) and future outputs (Table 5.2) to suspect when an error is detected. 

For each row of the tables, the first two columns give the checking ratio and percentage, 

and the third column gives the particular RISE and RUN values used to obtain the other values 

in that row. The fourth column, Lmax , gives the minimal maximum error detection latency that 

achieves the minimum number of previous outputs (Table 5.1) or future outputs (Table 5.2) that 

should be suspected as possibly erroneous (sixth column). The fifth column gives the number of 

computation cycles that these suspected outputs span. 
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TABLE 5.1. 
NUMBER OF SUSPECTED PREVIOUS OUTPUTS, 2-D ARRAY. 

% min#bwd min # fwd 
NIM checking RlSEIRUN Lmax # cycles susp.o/p susp.o/p 

1115 6.7 0/0 III 3/3 14 15 120 679 
2115 13 212 4 5 30 68 
3/15 20 212 4 5 45 102 
4115 27 414 2 3 24 36 
5115 33 414 2 3 30 45 
6/15 40 -7/S 515 SIS 2 3 27 36 
7/15 47 -sn 6/6 7n 2 3 24 27 
8115 53 <S options> 1 2 22 21 
9/15 60 <32 options> 1 2 21 18 

10/15 67 <72 options> 1 2 20 15 
11115 73 <12S options> 1 2 19 12 
12115 80 <200 options> 1 2 18 9 
13/15 87 <325 options> 1 2 17 6 
14115 93 <544 options> 1 2 16 3 
15115 100 <all options> 0 0 0 0 

It is interesting to note that particular patterns that work well in the backward interval do 

not generally work well in the forward interval. The last columns in each table are provided for 

the purposes of comparison. For example, with N = 1, Table 5.1 suggests that using RISEIR UN 

= 0/0, 111, or 3/3 gives a minimum of 120 previously produced outputs to suspect. but when 

these slopes are used. 679 outputs must be suspected subsequent to certain error detections. The 

reverse is also true: with N = 5, Table 5.2 suggests using RISE/RUN = -114 to limit the amount 

of future suspected outputs to 25, yet 205 previously produced outputs should also be suspected 

upon error detection. Clearly. the search space is large and complex; use of the pattern genera-

tor and analysis programs can aid a designer of such a system to choose the best RISEIRUN for 

a desired checking ratio, to minimize the amount of output to suspect 
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TABLE 5.2. 
NUMBER OF SUSPECTED FUTURE OUTPUTS, 2-D ARRAY. 

% min # fwd min#bwd 
NIM checking RlSEIRUN Lmax # cycles susp.o/p susp.o/p 

1/15 7 -1/4 2 3 5 41 

2115 13 -1/4 2 3 10 82 
3/15 20 -1/4 2 3 15 123 
4115 27 -1/4 2 3 20 164 
5/15 33 -1/4 2 3 25 205 
6/15 40 -1/5 -1/8 2 3 21 186 
7/15 47 -1/6 -117 2 3 17 167 

8/15 53 -1/6 -117 1 2 14 148 
9/15 60 -1/5 -1/6 -117 -1/8 1 2 12 129 

10/15 67 -1/4 -1/5 -1/6, 1 2 10 110 
-117 -1/8 -1/9 

11/15 73 <32 options> 1 2 8 11 
12115 80 <40 options> 1 2 6 12 
13/15 87 <64 options> 1 2 4 13 
14115 93 <83 options> 1 2 2 14 
15/15 100 <all> 0 0 0 0 

The tables show that only about one second's worth of output (on the order of 10 cycles' 

worth with cycle times less than 100 ms) need be suspected, either forward or backward in the 

2-D array, upon error detection. As in the linear array case, this is a great improvement over the 

amount of suspected output in the single processor case and shows again how PACED utilizes 

the cooperation of PEs checking other PE outputs to afford high confidence in outputs with only 

periodic checking. 

5.3. Error Coverage 

As in the linear array case, the error coverage in the 2-D array can be estimated if it is 

assumed that errors occur uniformly distributed in space among the PEs in the array. Again, 
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only one M-cycle period has to be examined, as all other M-cycle periods are identical and have 

the same coverage. 

In one M-cycle period in a UxV 2-D mesh array, there are MUV potential sites at which 

error may occur: one for each PE of the array, in each cycle. Since it is assumed that errors 

propagate through the array and are not masked, only a fraction of the potential sites can lead to 

the propagation of undetected errors out of the array, if an error occurs. (This is when normal 

PACED is applied; use of PACED' would result in 100% error coverage, as no errors can escape 

from the array undetected.) The estimated error coverage is just the total number of sites from 

which undetected errors may propagate out of the array, divided by the total number of potential 

sites. 

Figure 5.5 shows the estimated error coverage for a 4x4 PE mesh array as a function of 

NIM. when M = 10 and q = 1. When NIM is small, the error coverage is low; but the coverage 

increases quickly as NIM increases: greater than 95% coverage can be achieved with NIM just 

0.5 or greater. As in the linear array case, low values of the checking ratio can yield high error 

coverage - and low checking ratios can lead to reduced performance cost of applying CEO. 

5.4. Performance 

As in the linear array case, the performance of 2-D processor arrays was studied in two 

ways: from reduced simulations using the C simulation model. and from full simulations on the 

Intel iPSC/2 hypercube running a matrix-multiply algorithm. The results from these two perfor­

mance analyses are presented in the following two subsections. 
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Figure 5.5. Estimated error coverage for a 4x4 mesh array. 

5.4.1. Simulation model 

The simulation-based analysis model introduced in Section 4.5.1 was also used to estimate 

the performance of PACED when applied to square and triangular processor array architectures. 

One array investigated was a triangular array running an adaptive beamforming algorithm. 

EXAMPLE 5.4: Digital adaptive beamforming is a signal processing algorithm that opti-

mizes the reception of a desired signal received at an antenna array. A triangular processor 

array has been designed for high-performance, adaptive, digital beamforming [50], and is shown 

in Figure 5.6. The triangular array consists of four types of PEs: boundary, internal, Y-column 

and a residual former. During each computation cycle, PEs of each of the first three types 
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Figure 5.6. Triangular array for adaptive digital beamforming. 
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compute outputs and update an internal state variable; the residucil former does not maintain any 

state, and only computes an output. 

The modeled CED scheme replicated with duplicate data the computations at each PE. A 

full simulation using the OODRA (Object-Oriented Design of Reliable/reconfigurable Architec­

tures) workbench [51] was used to determine the mean task and check times for each type of PE 

in the array, for one computation cycle. The mean task times are given in the second column of 

Table 5.3; the units in the table are defined such that three units equal the average time required 

for the residual former to complete one task. 

The table shows that the boundary PE task required at least an order of magnitude more 

time than any of the other PE tasks, because of its costly state update computation (involving a 

square root). Therefore, five different variations of the CED scheme were considered. In each 



PE type 

Boundary 
Internal 

Y-column 
Residual 

TABLE 5.3. 
TASK AND CHECK TIMES, 

ADAPTIVE BEAMFORMING PEs. 

check time using CEO scheme: 
task time I II ill IV V 

104 106 17 17 88 88 
15 16 16 8 8 0 
15 16 16 8 8 0 
3 4 4 4 0 0 
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variation, only a subset of the computations performed at each PE in a computation cycle were 

checked whenever the CEO technique is performed. 

Jj All output and state computations at each PE were checked. This provided the greatest 

probability of detecting an error, if one were to occur. 

III All output and state computations except the boundary PE state update computation were 

checked. This scheme attempted to check as many of the computations as possible, while 

saving the most time by not replicating the longest operation. 

IIIJ Only output computations at each PE were checked. ~ 

IV I Only state update computations at each PE were checked. 

VI Only the boundary PE state update computation was checked. This scheme covered the 

most time at the boundary PEs while trying to minimize the number of computations to 

replicate. 

The last five columns of Table 5.3 show the mean check times for each PE type, for each of the 

five CEO schemes~ again, the units are relative to the residual former task time. 
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The simulation-based analysis model detennined the perfonnance of a 4x4 triangular array 

running the adaptive, digital, beamfonning algorithm using PACED with Mi,j = M, Ni,j = N, 

and q = 1. The simulation was run for 500 computation cycles. For each of the five CED 

schemes, five different checking patterns were applied, in which different subsets of the PEs in 

the array were checking at any particular computation cycle: the entire array, a row, a column, a 

forward wavefront with slope 1, and a backward wavefront with slope 1. (These simulations 

were perfonned before the 2-D array was analyzed. Hence, the fonnula given for OJ,) in Section 

5.1 was not used; other fonnulas for OJ,} were derived to fit the desired PE subsets.) If To and 

T c represent the time units estimated by the model to run an algorithm without and with using 

CED, respectively, then the degraded perfonnance is TofTe and the checking overhead is 

(Tc - To)fI'o. Figure 5.7(a) shows the perfonnances, and Figure 5.7(b), the checking over­

heads, of each of the five CED schemes as a function of NIM. 

It was found that the perfonnance degradations resulting from the five checking patterns 

were practically identical, for any of the CED schemes employed: the perfonnance impact of 

PACED depended only upon M and N. Therefore, each curve in Figure 5.7(a) represents the 

(identical) perfonnances using the five checking patterns considered, and each curve in Figure 

5.7(b) represents the (identical) overheads of those patterns. o 

For N = 0, the modeled PACED system suffers no perfonnance degradation, regardless of 

the CED scheme used. Since checks involve a replicated computation plus a comparison. for 

NIM = 1. the checking overhead for CED scheme I exceeds 100% and the perfonnance is 

slightly less than 50% of the basic performance. The pair of CED schemes II and III have the 
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Figure 5.7. Adaptive beamforming array. 
(a) Performance degradation. (b) Checking overhead. 

same performance and overhead, as do the pair N and V. This means that even though CED 

scheme II replicates the state update computations (which scheme ill does not), these extra com-

putations can be done essentially with no added cost, because the large boundary task time 

forces the other PEs in the array to wait and it is in these idle times that the checking of schemes 

II and III is performed. Since no extra wait states are propagated to the residual former, and 

since the residual former performs the same amount of checking in the two schemes, no perfor-

mance difference is observed. For the same reason, if the boundary PE state update computa-

tions are checked (scheme V), then all PE state update computations can be checked with no 

extra performance cost (scheme N). Hence, of these five CED schemes, I, II and N represent 

the most intelligent options. 
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In this example the perfonnance degradation and overhead were constant for any PACED 

checking pattern chosen, given a particular CED scheme. This has been shown to be true for the 

linear array [19] and should be true in general, since the Oi.jparameter only affects the initializa­

tion of PACED at each PE in the array: the perfonnance depends only upon the checking ratio 

NIM. 

5.4.2. Hypercube simulations 

A simulation of a 2-D mesh processor array was perfonned on an Intel iPSC/2 hy.percube, 

with the nodes serving as the PEs and using the shortest internode connections to minimize the 

communication overhead. A matrix-multiply algorithm was implemented in C in which rows 

and columns of each input matrix were distributed to the PEs through the top and left edges of 

the array and sent thereon through the array. Each PE computed a submatrix of the final matrix 

result; the final result was collected by the host at the end of computation. 

The simulations used all 16 nodes of the hypercube to multiply together two 136x136 

matrices of random floating-point numbers. With Mi,j= M and Ni,j= N, two CED techniques 

were employed: RESO and neighbor-assist. (AN-coding only applies to integer applications; to 

date, there are no known arithmetic codes for floating-point numbers.) The RESO employed 

was the same as that used in the simulations of the linear array performing image edge detection 

(Section 4.5.2). In the neighbor-assist technique, each PEi,j requests a recomputation of N of its 

computations from a nearest neighbor PE, which then sends back the results. Both PEs perform 

a comparison of the two sets of results and any discrepancy greater than an error tolerance 

(1. 5 X 10-15 times the value of a reSUlt) triggers an error detection. The neighbor assist 
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technique is patterned after CORP (concurrent retry procedure) of Manolakos et al. [52], which 

is used by NEAR (neighbor-assisted recovery) [53], the f-processes [17], and the overlapping 

H-processes [18] for 2-D processor arrays. In this implementation of NEAR, to reduce the num-

ber of CED-related messages, each PEi,i saves N-out-of-M sets of its operands and requests 

CED assistance only once every M computation cycles. 

Figure 5.8 shows the performance cost of using CEO in varying checking ratios NIM, by 

comparing the completion times of the different versions of the algorithm. The completion 

times do not include the initializations of the host or node programs. For each run, the individ-

ual completion times of each of the 16 nodes were averaged together. The averages from five 
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runs were then averaged to obtain each data point on the graph. Just five runs were deemed suf­

ficient for two reasons: 1) the greatest standard deviation for the individual node completion 

times was less than 3.4% of the average node completion time, and 2) the greatest standard 

deviation for the run averages was less than 0.15% of the average run completion times. The 

graph does show the 95% confidence intervals for each data point but they are too small to be 

seen. 

Unlike the linear array performance results, the use of RESO or neighbor-assist clearly 

degrades the performance of the 2-D mesh array, in an almost linear fashion. This is probably 

because each computation cycle in the matrix-multiply algorithm has but four data 

sends/receives, compared with ten in the edge detection algorithm, and only 136 iterations of the 

computation cycle were required for the 136x136 matrix multiply, whereas 1024 iterations were 

performed in each run of the edge detection algorithm: overall, the matrix-multiply algorithm 

required far less communication than the edge detection algorithm so that the effects of CED 

were more pronounced on the completion time of the matrix-multiply algorithm. 

Both the neighbor-assist and RESO curves show a significant amount of overhead at NIM = 

o since both techniques replace each operand-destroying assignment statement with two state­

ments and a temporary variable, resulting in code expansion. However, the short overall execu­

tion time of the matrix-multiply algorithm amplifies the apparent overhead introduced by CED. 

The absolute time overhead for RESO at NIM = 0 is about 1 second; this is approximately the 

same absolute time overhead exhibited by RESO in the edge detection array. Since the matrix­

multiply execution time is smaller, the percent overhead is ~uch larger. 
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The figure shows that at 100% checking, both the RESO and neighbor-assist techniques 

display almost 250% overhead. In the basic version of the algorithm, the main computation 

consists of one floating-point multiply and one floating-point add. Use of RESO adds six extra 

floating-point multiplies as well as one extra floating-point add for each checked computation 

cycle. Though this more than triples the original amount of computation, more overhead is not 

apparent since the extra work incurred by RESO is a smaller proportion of the total amount of 

computation performed in each computation cycle. 

The basic version of the algorithm performs two data receives and two data sends each 

computation cycle. In the neighbor-assist case, every M cycles, two extra CED messages are 

both sent and received. This is the cause of the jump in execution time exhibited between NIM 

= 0 and NIM = 0.1. Thereafter, the extra-message overhead remains constant, and the increase 

of overhead with increased NIM comes from the extra computations each node performs as CED 

for a neighbor. The slope of the curve from NIM = 0.1 to NIM = 1 is gentler than that of the 

RESO case, as less extra computation is performed: just one extra floating-point multiply and 

add, for each checked computation cycle, in addition to copying the operands and partial prod­

ucts for its own neighbor assistant. 

From these experiments, it can be concluded that, as expected, use of PACED can reduce 

the performance costs incurred through the use of CED in a 2-D processor array. A designer of 

such an array can trade off between performance and the amount of outputs to suspect (and 

thereby, the error coverage) by choosing appropriate levels of the checking ratio NIM, provided 

a coding technique is used that facilitates error propagation iJ;l the array. 
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CHAPTER 6. 

SUMMARY 

In this thesis, it was shown that the use of periodic application of concurrent error detection 

(PACED) in VLSI processor array architectures can be an attractive alternative to the continu­

ous use of CEO in linear and two-dimensional processor array architectures. 

It was shown that for PACED applied in a single processor, high confidence can be 

achieved when only a small amount of output is suspected as possibly erroneous. This is possi­

ble assuming that errors arrive in clusters, with a fairly high arrival rate occurring for intraclus­

ter errors and a very small arrival rate for clusters themselves. 

For PACED applied in a unidirectional linear or two-dimensional mesh-connected proces­

sor array, even fewer of the array's previous outputs have to be suspected upon error detection, 

if a suitable coding scheme can be found to ensure the propagation of errors. Then, PEs in such 

arrays can cooperate to check the unchecked outputs of other PEs. Furthermore, future outputs 

have to be suspected only for PEs near the ends of linear arrays, since only these PEs can create 

errors that could possibly propagate undetected from the array. Any PE in a two-dimensional 

array can create an undetected error, and in these cases, somewhat more output has to be sus­

pected, depending on the position of the PE in the array. However, the sum total of outputs and 

the time interval which they encompass are smaller than those required for PACED in a single 

processor. 
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For each possible error detection site in the linear or two-dimensional array, a static pattern 

of outputs to suspect can be predetermined and stored. Upon error detection, knowledge of the 

particular check and PE that detected the error can be used to retrieve an error pattern that deter­

mines which outputs to suspect. Therefore, very little run-time overhead is required at error 

detection time to determine which outputs should be suspected. 

For all three of the architectures considered, the error coverage was found to be quite high 

even for low values of the checking ratio NIM. In the single processor case, this was due to the 

ability of the undetected-errors intervals to, in effect, "detect" errors that would otherwise have 

gone undetected, by casting suspicion on outputs that may have been corrupted. In the array 

cases, high coverage is achieved by the cooperation of the constituent PEs in the arrays to check 

the unchecked outputs of other PEs. 

In empirical studies of the performance cost of PACED in linear and two-dimensional 

arrays, it was found that performance was degraded approximately linearly with the amount of 

checking performed. Hence, PACED can reduce the performance cost of performing CED in 

such architectures by performing CED periodically instead of continuously. Coupled with the 

potentially high confidence that can be placed on most outputs at error detection time as well as 

the high error coverages possible even with infrequent checking, PACED can be an attractive 

alternative to continuous CED for some applications. 

This thesis has also described a simulation model that can estimate the performance cost of 

PACED in unidirectional linear, two-dimensional mesh and triangular processor arrays. This 

model, plus the confidence theorems and algorithms as well-as the error coverage estimates pre­

sented in this thesis, form a powerful package that can aid a designer in choosing the PACED 
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parameter values to trade off the performance cost of using CED for a minimal error detection 

latency, minimal number of outputs to suspect, and high error coverage. 
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