
April 1993
NASA-CR-193102

UILU-ENG-93-2215

CRHC-93-06

Center for Reliable and High-Performance Computing

COMPILER-ASSISTED
MULTIPLE INSTRUCTION
ROLLBACK RECOVERY
USING A READ BUFFER

Neal Jon Alewine

(NASA-CR-193102) COMPILER-ASSISTED

MULTIPLE INSTRUCTION ROLLBACK
RECOVERY USING A READ BUFFER Ph.D.

Thesis (Illinois Univ. at

Urbana-Champaign) 149 p

N93-ZTZ39

Uncl as

G3/60 0166346

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distn_oution Unlimited.

b_CL4SS IFIED
SECURITY CLASSIFIC_A[ION OF 'r'Hl_ PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

2b. OEELASSIFICATION I DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-93-2215

6,1. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab

University of Illinois

6c. ADDRESS (City, State, and ZlPCode)

1101 W. Springfield Avenue

Urbana, IL 61801

8,1. NAME OF FUNDING/SPONSORING
ORGANIZATION

7a

'8c. ADDRESS (City, State, and ZIP Code)

REPORT DOCUMENTATION PAGE

lb. RESTRICTIVE MARKINGS

None
' 3 . DISTRIBUTION 1AVAILABILITY OF REPORT

Approved for public release;

distribution unlimited

S. MONITORING ORGANIZATION REPORT NUMBER(S)

CRHC-93-06

6b. OFFICE SYMBOL

(If applicable)

N/A

7b

11. TITLE (Include Securi'cy Clarification)

8b. OFFICE SYMBOL
(If appdicable)

7a. NAME OF MONITORING ORGANIZATION

National Aeronautics &Space Admen.

7b. ADDRESS (rjty, State, and ZIP Codc)

Moffett Field, CA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNOING NUMBERS

ELEMENT NO. NO.
WORK UNIT

ACCESSION NO.

Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer
I

12. PERSONAL AUTHOR(S)
ALEWINE, Neal Jon

13a. TYPE OF REFtORT 113b. T, ME COVERED 114. DATEl%Fg_EPO_RE_ir, y_4_h, DaY) I S- PAGE COUNTTechnical I FROM TO
16. SUPPLEMENTARY NOTATION

17. COSATI CODES I 18. SUBJECT TERMS (Continue on rever_ if Reces_ry and identify by block number)

FIELD I GROUP I SUB-GROUP I multiple instruction rollback, read buffer,I I compiler-asses ted

:9. ABSTRACT Multiple instruction rollback (MIR) isa techhl_lue to provide rapid recovery from transient procesor failures

and has been iplemented in hardware by researchers and slo in mainframe computers. Hardware-based MIR

designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-

based MIR designs have also been developed which remove rollback data hazards directly with data flow

manipulations, thus eliminating the need for most data redundancy hardware.

This theis focuses on compiler-assisted techniques to ahieve multiple instruction rollback recovery. We

observe that data some hazards resulting from instruciton rollback can be resolved more efficientlyby pro-

viding hardware redundancy while others are resolved more efficientlywith compiler transformations. A

compiler-assisted multiple instructionrollback scheme is developed which combines hardware-implemented

data redundancy with compiler-driven hazard removal transformations. Experimental performance evalua-

tions were conducted which indicate improved efficiencyover previous hardware-based and compiler-based

schemes. Various enhancements to the compiler transformations and to the data redundancy hardware de-

veloped for the compiler-assisted MIR scheme are described and evaluated. The final topic of this thesis

deals with the application of compiler-asisted MIR techniques to aid in exception repair and branch repair

in a speculative execution architecture.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT J21. ABSTRACT SECURITY CLASSIFICATION
PE]UNCLASSIFIEDAJNLIMITED I--I SAME AS RPT. I"1DTIC USERS I Unclassified

22,. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE(Ir_IudeAreiCode) I22c. OFFiCE SYMBOL

OD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

_:CLASSIFIED

(_) Copyright by Neal Jon Alewine, 1993

PRE6C_)ING PAGE i_i..Al'_h t'C! FIL_Ei.)

COMPILER-ASSISTED MULTIPLE INSTRUCTION

ROLLBACK RECOVERY USING A READ BUFFER

BY

NEAL JON ALEWINE

B.S.,Florida Atlantic University,1980

M.S., Florida Atlantic University,1988

THESIS

Submitted in partialfulfillmentof the requirements

for the degree of Doctor of Philosophy in ElectricalEngineering

in the Graduate College of the

University of Illinoisat Urbana-Chaznpaign, 1993

Urbana, nlinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

MAY 1993

WE HEREBY RECOMMEND THAT THE THESIS BY

NEAL JON ALEWINE

ENTITLED COMPILER-ASSISTED MULTIPLE INSTRUCTIO.N

ROLLBACK USING A READ BUFFER

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE I(E!2UIREMENTS

DOCTOR OF PHILOSOPHY
THE DEGREE OF

F 0 R

_Director of Thesis Research

Head of Department

Committee on Final Examinationt

,i

j.f"/ /.:

Chairperson

* Required for doctor's degree but not for master's.

0.517

.oo

Ul

COMPILER-ASSISTED MULTIPLE INSTRUCTION

ROLLBACK RECOVERY USING A READ BUFFER

Neal Jon Alewine, Ph.D.

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 1993

W. Kent Fuchs, Advisor

Multiple instructionrollback (MIR) is a technique to provide rapid recovery from

transientprocessorfailuresand has been implemented in hardware by researchersand also

in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards

by providing data redundancy implemented in hardware. Compiler-based MIR designs

have also been developed which remove rollback data hazards directlywith data flow

manipulations, thus eliminating the need for most data redundancy hardware.

This thesisfocuseson compiler-assistedtechniques to achieve multiple instructionroll-

back recovery. We observe that data some hazards resultingfrom instructionrollback can

be resolved more efficientlyby providing hardware redundancy while others are resolved

more efficientlywith compiler transformations. A compiler-assistedmultiple instruction

rollback scheme is developed which combines hardware-implemented data redundancy

with compiler-driven hazard removal transformations. Experimental performance evalu-

ations were conducted which indicate improved eillciencyover previous hardware-based

and compiler-based schemes. Various enhancements to the compiler transformations

and to the data redundancy hardware developed for the compiler-assistedMIR scheme

iv

are described and evaluated. The final topic of this thesis deals with the application

of compiler-assisted MIR techniques to aid in exception repair and branch repair in a

speculative execution architecture.

V

DEDICATION

Dedicated to Kuky, Joey, and Larry.

vi

q

ACKN OWLED GEMENTS

On the technical side, I would liketo thank my thesisadvisor Professor W. Kent

Fuchs for his guidance and support throughout my time here at the University of Illinois.

I would alsoliketo express my appreciation to my committee members, Professor Wen-

mei Hwu, Professor Jana,k H. Patel,Professor PrithvirajBanerjee, and Professor Chung

Laung Liu, for their support and suggestions. I extend special thanks to Scott Mahlke,

William Chen, Roger A. Bringmann, and John Christopher GyUenhaal, for theirexcellent

technicalsuggestions,and especiallyto Dr. Chung-Chi Jim Li and Shyh-Kwei Chen, for

theirhelp with the compiler aspects of thisthesis.

On the support and human understanding side,I would llketo thank my friendsfrom

IBM, Dick Smith, Sue Parliament, BillBurger, John Klein,and particularlyMike Kelly,

for theirunfailinginterestin my well-being.Iwould alsoliketo thank my new friends,in

addition to those already mentioned, Jonathan Simonson, Grant Edward Haab, John G.

Holm, Yi-Min Wang, Paul Chen, Antoine Mourad, Bob Janssens, Professor Saab, and

Vicki McDaniel, to name only a few.

Finally,I would liketo thank my wife,Kuky, and my sons, Joey and Larry, for their

love and support.

vii

TABLE OF CONTENTS

Page

1.

.

.

INTRODUCTION

1.1 Motivation

1.2 Thesis Contributions

1.3 Thesis Organization

BACKGROUND

2.1 Error Detection

2.2 Rollback Recovery

2.2.1 System-level checkpointing and recovery

2.2.2 Multiple instruction rollback

2.3 Hardware Implemented Instruction Retry

2.3.1 The IBM 4341

2.3.2 The IBM 3081

2.3.3 The VAX 8600

2.3.4 The VAX 9000

2.3.5 IBM Patent number 4,912,707

2.3.6 IBM Patent number 4,044,337

2.3.7 Delayed write buffer

2.3.8 History buffer

2.3.9 History file

2.3.10 The IBM ES/9000

2.4 Compiler-Assisted Rollback Recovery

2.4.1 Compiler-assisted checkpoint placement

2.4.2 Compiler-assisted multiple instruction rollback

2.5 Summary

COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK . .

3.1 Introduction

5

5

6

6

6

7

8

i0

11

12

13

14

16

18

19

20

23

23

24

26

28

28

,.°

VIII

°

3.2 Error Model and Hazard Classification

3.2.1 Rollback data hazard model

3.2.2 Hazard classification

3.2.3 Definitions and terminology

3.3 Compiler Resolution of On-path and Branch Hazards

3.3.1 Pseudo register renaming

3.3.2 Node splitting

3.3.3 Loop expansion

3.3.4 Loop protection

3.3.5 Machine registers

3.3.6 Interprocedural hazards

3.3.7 Nop insertion

3.3.8 Summary

3.4 Hardware-Assisted Hazard Resolution

3.4.1 The read buffer

3.4.2 Covering on-path hazards

3.4.3 Post-pass transformation

3.5 Performance Evaluation

3.5.1 Implementation

3.5.2 Application programs

3.5.3 Performance analysis

3.5.4 Results: Compiler 2

3.5.5 Results: PP

3.5.6 Results: Comp/PP

3.6 Concluding Remarks

TRANSFORM ENHANCEMENTS

4.1 Introduction

4.2 Node Splitting

4.2.1 Iterative node splitting algorithm
4.2.2 Conflict definition

4.2.3 Node splitting using graph coloring

4.2.4 One-pass node splitting algorithm

Loop Protection

4.3.1 Dynamic loop protection

Performance Enhancements Through Profiling

4.4.1 Post-pass transformation versus loop protection

4.4.2 Profiling effectiveness

Summary

4.3

4.4

4.5

29

29

30

32
33
34

35
37

39
40
40

41

42
42
42
43

44

45
45

45

47

48

49

49

55

57

57

57

57

61

62
65

67

68

70

70

74

76

ix

o

o

.

5.1

5.2

5.3

5.4

5.5

I:_EAD BUFFER SIZE REQUIREMENT

Introduction

Read Buffer Configurations

5.2.1 Read buffer designs

Application Program Execution and Read Buffer Simulation

5.3.1 Simulation approach

5.3.2 Implementation

Results and Analysis

5.4.1 Detailed analysis: QUEEN

5.4.2 Evaluation of all application programs

Summary

MIR

6.1

6.2

6.3

TECHNIQUES APPLIED TO SPECULATIVE EXECUTION REPAIR

Objectives
Introduction

Speculative Execution

6.3.1 Branch repair

6.3.2 Exception repair

6.3.3 Schedule reco_truction

6.4 Implicit Index Schedule Reconstruction

6.4.1 Exception repair using the speculation read buffer

6.4.2 Branch repair using the speculation read buffer

6.5 SRB Flush Penalty

6.6 Performance Evaluation

6.6.1 Evaluation methodology

6.6.2 Evaluation results

6.7 Summary

CONCLUSIONS

7.1 Summary

7.2 Limitations

7.3 Future Research

REFERENCES

77

77

78

80

82

82

83

87

87

91

98

99

99

I00

i01

101

103

106

107

107

II0

112

115

115

120

125

127

127

128

129

130

VITA 134

X

LIST OF TABLES

Table Page

3.1: Application programs: run-time and code size overhead evaluation.
4.1: Node splitting algorithm comparisons: COMPRESS

5.1: Application programs: read buffer size study

5.2: Result Summary

46

66

87

91

xi

LIST OF FIGURES

Figure Page

2.1:

2.2:

2.3:

2.4:

2.5:

2.6:

2.7:

2.8:

2.9:

2.10:

3.1:

3.2:

3.3:

3.4:

3.5:

3.6:

3.7:

3.8:

3.9:

3.10:

3.11:

3.12:

3.13:

3.14:

3.15:

3.16:

3.17:

3.18:

LSSD double latch design

Checkpoint retry mechanism: U.S. patent number 4,912,707

GPRF duplicate store mechanism: U.S. patent number 4,044,337. . .

Cache duplicate store mechanism: U.S. patent number 4,044,337. . .

Delayed write buffer

History buffer

History file

Virtual register management for the IBM ES/9000

Instruction retry and recovery for the IBM ES/9000

Dependencies and their impact during rollback

On-path and branch hazards

Register renaming

Node splitting

Node splitting algorithm

On-path hazard traversing a loop back edge

Percentage of total I_'s that are on-path and branch hazards

Loop protection from hazard variable z

On-path and branch machine register hazards

Read buffer

Covering on-path hazard

Run-time overhead and code s,ze overhead: QUEEN

Run-time overhead

Run-time overhead

Run-time overhead

Run-time overhead

Run-time overhead

Run-time overhead

Run-time overhead

and code slze

and code slze

and code slze

and code slze

and code slze

and code slze

and code slze

overhead: WC

overhead: COMPRESS

overhead: CMP

overhead: PUZZLE

overhead: QSORT

overhead: GREP

overhead: LEX

9

13

15

16

17

18
I9

21

22

24

32

34

35

36
38

39

40

41

42

44

5O

5O

51

51

52

52

53

53

xii

3.19:

3.20:

3.21:

4.1:

4.2:

4.3:

4.4:

4.5:

4.6:

4.7:

4.8:

4.9:

4.10:

4.11:

4.12:

4.13:

4.14:

4.15:

4.16:

4.17:

5.1:

5.2:
5.3:
5.4:

5.5:
5.6:

5.7:

5.8:

5.9:
5.10:
5.11:

5.12:
5.13:
5.14:

5.15:
5.16:
6.1:

6.2:

6.3:

6.4:

6.5:

6.6:

Run-time overhead and code size overhead: YACC

Run-time overhead and code size overhead: TBL

Run-time overhead and code size overhead: CCCP

Iterative node splitting algorithm

Node splitting: original subgraph

Node splitting relative to hazard variable x

Node splitting relative to hazard variables x and y

Optimal node splitting relative to hazard variables x and y

Conflict definition

Node splitting using graph coloring; QSORT

Parent conflict graph coloring heuristic

One-pass node splitting algorithm

Loop protection from hazard variable x

Static loop protection algorithm

Dynamic loop protection algorithm

Post-pass hazard removal using read insertion

Run-time overhead: PUZZLE

Run-time overhead: TBL

Loop protection versus read insertion

TBL: profile data used for loop protection decisions

Read buffer of size 2N

Read buffer of size < 2N

Read buffer configurations

Instrumentation code segment

rbu/2_save code segment

Cycle overhead: QUEEN

Read bufferconfigurationsA2 and BI: buffersize- 2.........

Cycle overhead: WC

Cycle overhead: QSORT

Cycle overhead: CMP

Cycle overhead: GREP

Cycle overhead: PUZZLE

Cycle overhead: COMPRESS

Cycle overhead: LEX

Cycle overhead: YACC

Cycle overhead: CCCP

Speculative execution

Branch repair

Exception repair

Exception repair using a speculation read buffer (SRB)

Branch repair using a speculation read buffer (.SRB)

SRB with reduced content

54
54

55

58

59

60

60

61

62

63

64

65

68

69

70

71

72

72

74

75

78

79

81

84

85

88

89

93

94

94

95

95

96

96

97

97

101

102

105

108

111

114

Xll'I• •

6.7: Instrumentation code placement

6.8: Instrumentation code sequences

6.9: Branch error procedure operation.

6.10: Flush penalty: QUEEN, WC

6.11: Flush penalty: COMPRESS, CMP.

6.12: Flush penalty: PUZZLE, QSOI_r

6.13: Flush penalty: GREP, LEX

6.14: Flush penalty: YACC, CCCP.

115

117

118

122

123

123

124

124

1. INTRODUCTION

I.i Motivation

Instructionretryisan effectivetechnique to allow rapid recovery from transientfaults

in a processing system. Multiple instructionrollback recovery may be appropriate when

error detection latenciesor when error reporting latenciesare greater than a single in-

struction cycle.Single and multiple instructionrollbackrecovery has been implemented

in hardware by researchersand main-frame computer designers. In general, complex

implementations striveto minimize impacts to system performance while lesscomplex

implementations permit some performance impact. Compiler-assisted multiple instruc-

tion rollbackhas alsobeen developed which replacesdedicated data redundancy hardware

with compiler transformations that remove rollback data hazards. This thesisintroduces

a multiple instructionrollbackrecovery scheme, which uses the compiler to remove some

rollback data hazards and uses dedicated data redundancy hardware to remove all re-

maining hazards. The scheme resultsin lesshardware tl_anrequired for the leastcomplex

2

hardware implementations and performance approaching that of the most complex hard-

ware implementations.

1.2 Thesis Contributions

The contributions of thisthesisare grouped into four topics.The firstextends previ-

ous compiler-based multiple instructionrollback to a broad classof code execution fail-

ures. Data hazards that resultfrom instructionrollbackare classifiedand shown to be of

two types: 1) on-path hazards, and 2) branch hazards. Previous compiler-driven data-

flow manipulations resolveon-path hazards only. These transformations axe extended to

resolve both on-path and branch hazards. Evaluations of the extended compiler-based

scheme indicateslightlyincreased performance impacts over transformations that resolve

only on-path hazards. Using the hazard classification,a new compiler-assistedscheme is

proposed which utilizesa hardware implemented read bufferto remove on-path hazards

and compiler transformations to remove branch hazards. Performance evaluations of the

new compiler-assistedmultiple instructionrollback scheme indicatea lower performance

penalty than with either a compiler-based approach or a comparable hardware-based

approach.

The second develops enhancements to previous compiler transformations used for

rollback hazard removal. A one-pass node splittingalgorithm isdeveloped which uses

the concept ofconflictingparents and graph coloringto eliminate constraintsthat forced

previous node splittingalgorithms to operate iteratively.Experimental evaluations show

3

that the one-pass node splittingalgorithm reduces code growth and achieves a compile-

time speedup of 30 over iterativealgorithms. To complement the one-pass node splitting

algorithm, a one-pass staticloop protection algorithm was also developed along with a

dynamic loop protection algorithm incorporated into the one-pass node splittingalgo-

rithm. The use of profiledata to aid in loop protectiondecisionswas evaluated and found

to be effectivefor some cases in improving applicationrun-time performance.

The third studiesthe read buffersizerequirement. A flexibleevaluation methodology

isdeveloped and used to study ten read bufferconfigurations.The evaluation methodol-

ogy used updates a read buffermodel at dynamically occurring application instructions

boundaries. It was found that a 55% read buffer size reduction is achievable with an

average reduction of 39.5% over the ten applications evaluated, given the most e_cient

read buffer configuration, but that additional control logic to handle read buffer overflows

may limit the overall hardware savings.

The final topic of the thesis studies the application of compiler-assisted multiple

instruction rollback to aid in speculative execution repair. It is shown that the handling

of speculated excepting instructions and the handling of mispredicted branches in a

speculative execution architecture are similar to the handling of on-path and branch

hazards, respectively, in multiple instruction rollback. A speculative scheduling method

referred to as implicit index scheduling is proposed which utilizes a modified read buffer

to remove on-path hazards and compiler transformations to remove branch hazards. The

viability of the read buffer to aid in branch repair is. also investigated and shown to

4

be contingent on the expected read buffer flush penalty. Estimates of flush penalties are

obtained using the same evaluation methodology developed for the read buffer size study.

Evaluation results indicate that read buffer flush costs under 15% are achievable.

1.3 Thesis Organization

Chapter 2 presents a background of error detection strategies and rollback recovery

schemes. Chapter 3 describes the error model and classifies data hazards that result

from instruction rollback. Compiler transformations that remove rollback hazards are

presented, along with resulting performance evaluations of a compiler-only multiple in-

struction rollback scheme. Chapter 3 also presents a new compiler-assisted multiple

instruction rollback recovery scheme along with experimental evaluations of the new

scheme. Chapter 4 describes enhancements to compiler transformations used for rollback

hazard removal. These enhancements focus on reducing compile times and improving

run-time performance. Chapter 5 assesses the minimum size requirements of the read

buffer proposed in Chapter 3 and gives performance evaluations for ten read buffer con-

figurations. Chapter 6 investigates the viability of applying the new compiler-assisted

multiple instruction rollback scheme to aid in speculative execution repair. Chapter 7

contains summary remarks, limitations, and future research directions.

5

2. BACKGROUND

2.1 Error Detection

Various error detection strategies have been studied, resulting in a range of efficien-

cies in both implementation complexities and error detection latencies. Error detection

schemes that utilize error correcting codes [1] or low level functional redundancy [2] typ-

ically detect errors within the same cycle, however, can result in increased cycle times.

Some time redundant [3], algorithm-ba_ed [4], high level functional redundancy [5], and

control-flow checking [6, 7] error detection schemes achieve error detection latencies of a

few cycles without impacting system cycle times. In designs for which error detection

latencies are greater than a single instruction cycle, multiple instruction rollback recovery

may be appropriate.

2.2 Rollback Recovery

2.2.1 System-level checkpointing and recovery

System-level checkpointing is a well-understood method for implementing rollback

recovery when system errors occur [8-10]. In the case of a detected fault, the system

is rolled back to a previous checkpoint containing a consistent state of the system [11].

System-level checkpointing is implemented in software (typically included in the oper-

ating system) with the checkpointed system state being stored on stable media such as

the system disk. To minimize overall system performance impacts given the significant

overhead associated with taking a checkpoint, checkpoint intervals must be great (from

from minutes to hours). This strategy permits long error detection latencies, however,

has the disadvantage of long recovery times and significant lost work during repair.

2.2.2 Multiple instruction rollback

When transient processor errors occur, multiple instruction rollback (also referred to

as multiple instruction retry or simply instruction retry) can be an effective alternative

to system-level checkpointing and rollback recovery [12, 13]. Multiple instruction retry

within a sliding window of a few instructions [12], or re-execution of a few cycles [5],

can be implemented in parallel with concurrent, algorithm-based, or control-flow error

detection methods for rapid recovery from transient processor errors. Rapid error de-

tection ensures minimal system state changes between detection and rollback and allows

7

hardware to efficiently save and restore the required system state. Multiple instruction

rollback recovery is feasible only when error detection latencies are sufficiently small.

The issues associated with instruction retry are similar to the issues encountered with

exception handling in an out-of-order instruction execution architecture. If an instruction

is to write to a register and N is the maximum error detection latency (or exception

latency), two copies of the data must be maintained for N cycles. Hardware schemes

such as reorder buffers, history buffers, future files [14], and micro-rollback [12] differ

in where the updated and old values reside, circuit complexity, CPU cycle times, and

rollback etticiency.

2.3 Hardware Implemented Instruction Retry

Multiple instruction retry and system level checkpointing are similar concepts differ-

ing in implementation (i.e., hardware versus software) and scope (i.e., the error detection

latency and amount of system state involved). Similar to system level checkpointing,

hardware implemented instruction retry schemes belong to one of two groups: 1) full

checkpointing and 2) incremental checkpointing. Full checkpointing maintains "snap-

shots" of the required system state space at regular, or predetermined, intervals. Upon

error detection, the system can be rolled back to the appropriate checkpointed system

state. Incremental checkpointing maintains changes to the system state in a "sliding win-

dow". Upon error detection the system state is restored by undoing, or "backing-out"

the system state changes up to the instruction in which the error occurred.

8

Severalexamples from each instruction retry group will be discussed. The exam-

ples are drawn from research, commercial processors, and patent applications. These

examples, along with a discussion of compiler-assisted instruction retry, will serve as

a background and comparison for the proposal of a new multiple instruct]on rollback

approach presented in Chapter 3.

2.3.1 The IBM 4341

The IBM 4341 supports the capability for single instruction retry by making use of

a level sensitive scan design (LSSD), which was originally proposed to provide increased

observability and controllability in LSI circuits and also to make sequential logic oper-

ations independent of circuit delays and wire delays [15]. Figure 2.1 illustrates both of

these features. 1

During normal operation CLK_a and CLK_b operate as interleaved, nonoverlapping

system clocks. CLK.a latches state changes and provides stable inputs to the second

stage of the latch pair. CLK_b modifies the system state using these stable values. LSSD

ensures that the steady-state output is independent of the sequence of input signals or

signal rise/fall times. Scanning is accomplished by substituting CLK_s for CLK_a in

the normal operation. In this way, a complete system state image can be loaded serially

through the SCAN._n line. Likewise, the current system state image can be obtained

serially through the SCAN_out line.

tDerived from pp. 438, _Logic Design Pr/neip/es _, E. J. McC!uskey [16].

9

X1 X2 Xn Zl Z2 Zm

Combinational Logic

SCAN in _-. SCAN_out

CLK_a

CLK_s

CLK_b

Normal Operation

CLK_s
CLK_b

Scan in / Scan out

Figure 2.1: LSSD double latch design.

10

The 4341 incorporates three error detection strategies;i) duplication and compare,

2) odd-parity,and 3) specialerrorconditions such as invalidcombination of controllines.

When one of these mechanisms detects an error,the system clocks are "frozen." The

current system state is then scanned out by a separate service processor which makes

the proper adjustments to the system state. The updated state is then scanned back

into the processor where the faultyinstructionis retried.A more complete description

of fault handling on the IBM 4341 can be found in [17].The 4341 isbest classifiedas a

fullcheckpointed rollbackrecovery scheme, with a checkpoint intervalof one instruction

(via LSSD state duplication) and a rollback distance of one.

2.3.2 The IBM 3081

The instructionunit of the IBM 3081 establishesa checkpoint every 10 to 20 instruc-

tions. This checkpoint is then used as a re-entry point for rollback repair in the event

that an error isdetected. The local cache array includes hardware which saves the old

value of an updated cache lineinto a push-down array. Flushing the push-down array in

reverseorder restoresthe cache array to itsstate at the time of the lastcheckpoint. This

method issimilarto the history bu_'erwhich isdescribed in Section 2.3.8 [14].

The 3081 uses LSSD to read and write system state information. Scanning out the

entiresystem state,including the general purpose registerfile(GPRF) and local cache

arrays, can be very time-consuming. The hardware support previously mentioned obvi-

ates fullscanning. The IBM 3081 implements fullcheckpointed rollback recovery with a

11

checkpoint interval of 10 to 20 instructions and corresponding rollback distance. A more

complete description of fault handling on the IBM 3081 can be found in [13, 18].

2.3.3 The VAX 8600

The VAX 8600 uses parity checking on internal buses including the arithmetic logic

unit (ALU) and shifter. The instruction fetch and decode unit (! box), floating point unit

(F box), and execution unit (E box) ear_ have a copy of the GPRF. Writes to one GPR.F

cause simultaneous writes to the other two GPRF's in order to maintain consistency. If

a parity error is detected in one of the GPRF's, the other GPRF's can be used to correct

the invalid GPRF.

For performance reasons, parity checking and correction in the local cache (M box)

occur alter the data has been sent to the requester. If an error is detected by the M

box, it is corrected with Error-Correcting Code (ECC) logic and an error signal is sent to

the E box so that the instruction can be retried. The VAX 8600 is a pipelined complex

instruction-set architecture which does not guarantee that all updates to the system state

are held until the write state of the pipeline. If the CPU has not performed an operation

that makes retry impossible, the instruction is retried. The ability to retry is determined

by the abort bit which is set when the current instruction: 1) is an I/O read, 2) is a

memory write, or 3) results in a modification of the system state by the E box. The VAX

8600 can be classified as a fun checkpointed rollback recovery scheme, with a checkpoint

interval of one instruction and a rollback distance of one. A more complete description

of fault handling on the VAX 8600 can be found in [19].

12

2.3.4 The VAX 9000

The VAX 9000 system is organized such that all storage elements, i.e., latches and

flip flops, are connected to form a _visibility chain." The system state is therefore visible

and can be read and written by the service processor through a serial diagnostic bus. The

visibility chain operates much like a scan ring design [15, I6]. The VAX 9000 is a pipelined

complex instruction-set architecture. The user visible system state (i.e., memory contents

and register values) is well-defined at macroinstructions boundaries; however, during

actual operation, several instructions will be executing at once, with each instruction at

a different stage in the pipeline. This make identification of macroinstructions boundaries

difficult. Also, errors cannot be expected to occur at well-defined instruction boundaries.

The VAX 9000 execution unit (E-box) accepts operands, computes the result, and

delivers the result for storage. An error interfering with one or more of these operations

causes a trap when the E-box requests data from the faulty subsystem. If the program

visible state of the machine has not been modified by the current instruction, the in-

struction is backed up to the beginning and restarted. This is usually possible since the

system state typically changes in the final stages of the pipeline. If memory or register

values were modified early in the pipeline, status flags are updated so that instruction

retry can be disabled.

The VAX 9000 can best be classified as a full checkpointed rollback recovery scheme,

with a checkpoint interval of one instruction and a rollback distance of one. A more

complete description of fault handling on the VAX 9000 can be found in [20].

13

WRITE

Z

INTERRUPT

|

END

MAIN ROUTINE

FIRST INT. INSTR.

!
J

WRITE

INTERRUPT
SERVICE
RO_

source 1

source 2

duc/_o/m

PURPOSE write

REGISTER J_

Figure 2.2: Checkpoint retry mechanism: U.S. patent number 4,912,707.

2.3.5 IBM Patent number 4,912,707

The checkpoint retry mechanism described in U.S. patent number 4,912,707 deals

primarily with checkpoint placement in a hardware implemented multiple instruction

rollbackscheme. Many instructionretryschemes have a rollback distance of one instruc-

tion making checkpoint placement trivial.Nontrivial checkpoint placements are handled

by software in system levelcheckpointing but are more difficultin hardware implemen-

tations without preciseplacement rules.

As shown in Figure 2.2, this mechanism automatically takes checkpoints at one of

three points in a dynamic instructionstream: I) immediately after a urr/teinstruction,

2) immediately after a return from interrupt, or 3) immediately after the first instruction

in an interrupt handler routine. This approach avoids the need to take a checkpoint

afterevery instructionand ensures that a rollback willnever cross a write or interrupt

boundary.

14

The checkpoint is taken by storing a copy of the GPRF and program status word

(PSW) into a shadow file, as shown in Figure 2.2. For rollback, the GPRF is restored from

the shadow file. This checkpoint retry mechanism implements full checkpointed rollback

recovery with a variable checkpoint interval and corresponding rollback distance. A more

complete description of the mechanism can be found in U.S. patent number 4,912,707

[211.

2.3.6 IBM Patent number 4,044,337

The instruction retry mechanism described in U.S. patent 4,044,337 resolves the prob-

lem of register file and cache memory corruption due to a defective instruction cycle. _

The mechanism maintains duplicate copies of such data to be used for restoration in the

event of corruption.

For each register in the GPRF, two duplicate locations are maintained, as shown in

Figure 2.3. Each time register r= is written in the GPRF by instruction I_, one of these

two duplicate registers, _ or r_, is also written with the same value. The duplicate

locations used, alternate with instruction count, that is, I v writes to r=, Iy+l writes to

r_, Iy+2 writes to 4, etc. If I_ writes r_ more than once, each subsequent write of I_

overwrites the previous value in the duplicate location leaving only the last written value

of r# in the location upon completion of Iy. This scheme ensures that, given an error in

I_+1, the GPRF contents which existed prior to the execution of Iy+l can be recovered

from the duplicate register locations.

2U.S. patent 4,044,337 refers to register file storage as local store and cache storage as buffer store.

15

source 1

source 2
i GENERAL

PURPOSE
REGISTER

I LE

GPI_

I_plicate

1

GPI_

Duplicate
Smm 1

inarr..cntLsB

Figure 2.3: GPRF duplicate store mechanism: U.S. patent number 4,044,337.

A mechanism similar to the one used for GPRF duplication is used for the cache

duplication. Since triplication of the cache results in a significant circuit overhead, the

total cache duplicate store size is significantly smaller than the cache size. As shown

in Figure 2.4, a store controller accepts the cache address and maps it into the smaller

duplicate stores. The duplicate stores operate the same as the register file duplicate

stores,, except that in addition to the cache data, cache addresses are also saved. If a

cache store occurs when the duplicate stores are full, a replacement algorithm in the store

controller submits a request for the cache to write out an appropriate cache line to main

memory. This makes a corresponding duplicate store pair available for the current cache

write.

The checkpoint retry mechanism, described in U.S. patent number 4,044,337, imple-

ments incremental checkpointing and rollback recovery, where changes to the system state

are maintained and backed out during recovery. The mechanism supports a maximum

16

read/write

DATA
CACHE

address

DATA DATA Store
CACHE CACHE Control
Duplicate Duplicate
Store 2 Store 1

Figure 2.4: Cache duplicate store mechanism: U.S. patent number 4,044,337.

rollback distance of one instruction. A more complete description of this checkpoint retry

mechanism can be found in [22].

2.3.7 Delayed write buffer

The delayed write buffer (DWB), also referred to as micro-rollback [12], establishes

data redundancy to aid in rollback recovery by delaying writes to the appropriate storage

location. Given a GPRF DWB of depth N, the last N register writes are contained in

the DWB while the unmodified copies are maintained in the GPRF. Figure 2.5 gives an

example of a high-level DWB design, where the DWB is organized as a first-in-first-out

(FIFO) queue. Included in the iUustration is a sample code segment and the resulting

17

data address

I,
source 1/_.eJ I i - -

- str va#r) 1 1
source 2 ._'_"J_ I PURPOSE) -REGISTER ! s_r 2) 2 1

_ str_val(rI) 1 !

valid
Instruction
Sequence

Ii: rlf r2 + rz

½:r2=r4

q: rl = r2+
I4: rs= + l

Figure 2.5: Delayed write buffer.

DWB contents. For simplicity, it will be assumed that the example processor is a simple

pipelined load/store machine, executing one instruction each machine cycle.

A value written to register r, in the GPRF is denoted as str_val(r_) and is shown

in the DWB along with the register address z. Since the most recent value of a register

may be contained in the DWB, bypass logic is included to inspect the DWB during all

register accesses to determine if a more recent value is available. If more than one copy

of an accessed register is present in the DWB, priority logic contained in the bypass unit

forwards the most recent value to the appropriate source bus. This latter case occurs

during instruction 14 where rl is accessed and two copies are present in the DWB. The

delayed write buffer is very similar in operation to the reorder buffer proposed to aid in

exception repair for out-of-order execution architectures [14].

As long as an error is detected within N cycles (for this example one instruction

is completed each cycle), the contents of the DWB can be invalidated, restoring the

GPRF to a precise state [11] prior to the faulty instruction. The DWB can be applied

to any system storage unit, however, it is best suited to units that axe accessed through

18

source I

_ source 2
GENERAL
PURPOSE
REGISTER
FILE

1 rollback
2 (flush)

1

Instruction
Sequence

I1:rl=r2+r3

I2: rz = r4

r2 + re

Figure 2.6: History buffer.

an address. For storage units that can be accessed directly, e.g., the program counter,

instruction counter, and program status word, a state history can be maintained in a

simple first-in-first-out (FIFO) queue. The delayed write buffer can be classified as an

incremental checkpointing and recovery scheme.

2.3.8 History buffer

The history buffer (HB) is derived from the reordering version proposed as an aid

in exception repair for out-of-order execution architectures [14]. Figure 2.6 illustrates

a high-level HB design to aid in rollback recovery, along with an example instruction

sequence and the corresponding HB contents. Each time register r_ is written in the

GPRF, the old contents of r=, denoted as ld_val(r=), are read out and placed in the HB.

The HB is organized as an FIFO queue.

In an HB organization, the most recent values of all registers are maintained in

the GPRF; therefore, bypass logic is not required as. with the DWB. In a pipelined

19

source1

source 2

ro///_k

GENERAL
PURPOSE
REGISTER
FILE

HISTORY

data

address

IsI
_trv_r l) 1:

s'tr-'_r2)]str_va/(•l)

I

Instruction
Sequence

II: r_= r2+ r3

I3: rI = r2 + r6

14 rs= rl + l

Figure 2.7: History file.

architecture,reads from both ports of the GPRF in each cycle are common. An efficient

HB design requires an extra GPRF read port, complicating the GPRF design. Rollback

to a precise state is accomplished by flushing the HB in reverse order, up to and including

the faultyinstruction.The flush operation requiresmany cyclesin contrast to the single

cycle invalidate of the DWB. The HB is classified as an incremental checkpointing and

recovery scheme.

2.3.9 History file

The history file(HF) isderived from the future fileproposed to aid exception repair

in out-of-order execution architectures [14]. Figure 2.7 shows a high-level HF design

consisting of the system GPRF and a duplicate register file. A write buffer depth of N,

delays writes to the HF and ensures that the HF stateis the precisestate of the system

that existed N cycles in the past. Since the most recent register values are contained in

2O

the GPRF and thereforeno bypass logicisrequired. Unlike the HB, no additional read

port isrequired for the GPRF, instead a fullduplicationof the GPRF isrequired along

with the write buffer.

Rollback of exactly N instructionsisvery efficient,requiring a global load from the

HF to the GPRF and an invalidateof the write buffer. These two operations can be

performed in a singlecycle.Variable rollbackrequiresthat the write bufferbe flushed to

the HF, up to but not including the faultyinstructionprior to the global load from the

HF to the GPRF. Like the DWB and HB, the HF isan incremental checkpointing and

recovery scheme.

2.3.10 The IBM ES/9000

Prior to the invention of cache memory, main memory load latency was a significant

performance lirnlterin high-end processing systems. In an effortto maximize CPU pro-

ductivity during main memory accesses,IBM developed out-of-orderexecution [23].The

out-of-orderexecution feature was dropped by IBM in 1968 afterthe introduction of the

cache.

Due to the availabilityof higher density technology and the need for higher perfor-

mance, IBM has once again incorporated out-of-orderexecution intoitshigh-end ES/9000

system. The virtual registermanagement and branch misprediction repair schemes in-

clude data redundancy usefulfor multiple instructionretry.Although the design point

for the ES/9000 is to detect errors within the current machine cycle, through ECC,

parity, or checking, the reporting and recording of the error may take several cycles.

21

R0

R1

R2

1 [value(Ro) [1 Instruction Number

2_ 2 ..._; Branch Dependence

--- 3 31 -_ Previous Assignment

DRAL GPRF ACL

Figure 2.8: Virtual register management for the IBM ES/9000.

The ES/9000 has considerable fault-tolerance c_pability; however, only the instruction

retry facility will be discussed here. For a more detailed description of the fault-tolerant

characteristics of the ES/9000, see [24]. For a complete description of virtu_l register

management, see [25, 26].

The virtual register management system (RMS) maps 16 architectural registers into

32 physical registers. Architectural registers identified in a decoded instruction locate

pointers in the decode-time register assignment list (DRAL) shown in Figure 2.8. These

pointers locate the appropriate physical register from the GPRF. The array control list

(ACL) has entries which correspond to the entries in the GPRF. The ACL contains

the required physical register status such as the load state of the physical register (i.e.,

available, pending but not loaded, pending and loaded, assigned), instruction number,

branch dependence, architectural register assignment, and previous a-qsignment. The

branch register assignment Usts, BRAL_A and BRAL_B, contain exact images of the

DRAL at the time a branch path is predicted. If the branch is mispredicted, the DRAL

22

can be restored to its value prior to the branch. The two BR_L's allow a total of two

pending branch predictions.A third branch predictioncauses a stalluntilone of the two

pending br_nches is resolved.

The RMS supports multiple instructionretry by holding the availabilityof physical

registersuntil the appropriate instructionshave been determined to be fault free. In

thisway, a faulty instructioncan never overwrite the contents of an architecturalregis-

ter. Figure 2.9 illustratesthisinstructionretry feature.3 Out-of-order execution forces

T

I

M

E

Decode

_ ._F'_--L Fetch
, -i ,L__Ezecute

' "_ _ L_' I " Finish
[I3] _1 1 .l_rmi_l_ Complete

T2

I Is h ! '2 r'l_l x2 i-, RECOWRY

I_ hL.-I--_--h _1 _ I'L..r--_--L
/ [I3 h_, . .,-z ,L... I I2 I
u..'11, h _"I '_ rL.._' '

_1 _ _. - ' " '_l _, I
'_-I _ It.. I _, I_L.I "_ I

Figure 2.9: Instructionretry and recovery for the IBM ES/9000.

instructions to complete in order but allows instructions to finish in any Order. Only

upon completion is the physical registermarked availablefor reassignment. In Figure

3Figure 2.9 source: Proc. 22th Int.Symp. Fault-TolerantComput. [24].

23

2.9, instructions 3 and 4 (/'3, I4) finish prior to I2. I1 completes at time T1, and a fault

in Is is recorded at time T2. Registers modified by Is and I3 have not been released for

reassignment; therefore, their contents are available for the retry sequence shown. The

instruction rollback and recovery scheme of the ES/9000 can best be described as an

incremental checkpointing scheme with a variable rollback distance.

2.4 Compiler-Assisted Rollback Recovery

2.4.1 Compiler-assisted checkpoint placement

Recently, compiler-based approaches to checkpointing and recovery have been inves-

tigated. The studies have been conducted in two areas: 1) system/application level

checkpointing and recovery, and 2) multiple instruction rollback recovery. As an alter-

native to system and application level checkpointing, a compiler-assisted checkpointing

and recovery scheme has been proposed [27]. The scheme uses compile-time information

to create checkpoints adaptively. Efficient use of compile-time information allows for the

determination of optimal checkpoint placements, the minimization of checkpoint sizes

by exploiting large variations in memory usage, and the generation of sparse checkpoint

code. A training technique was also developed resulting in checkpoints with lower cost

and higher coverage. The compiler-assisted checkpointing scheme was shown to result in

reduced checkpoint size while maintaining transparency at the programmer, operating

system and hardware levels.

24

x dead • -.. x incorrect • -.. ".. x dead • .9
• . . • ..

Ii:lx=a+b I ! I_:lafx+bl ! Ii:lx=a+bl _.

" i " i.....--.- ...- • x correct i _. • x dead- • x dead
.- . :.-" • - ...-" •

" i i Ij:lx=c+dJ t. Ij: + •" Ij:lc=x+dl : : i [x=c dJ ij • •X C_ t "_....,. t X COITeCt • "4".... : t x correct • ._..... "

•... _ / "... .o. / ./_...,,,.;...... :...........4"-"" _'''" "" "'" _ ""
flow anti output

Figure 2.10: Dependencies and their impact during rollback.

2.4.2 Compiler-assisted multiple instruction rollback

In contrast to system level checkpointing, compiler-assisted multiple instruction roll-

back supports the rollback of a few instructions by using compiler-driven data-flow ma-

nipulations to remove hazards that result from roUback.

Figure 2.10 illustrates three data dependencies relative to variable z and their effect

on rollback hazards. 4 For the flow dependency, the instruction Ii writes variable z and

then the subsequent instruction Ij reads z. If an error is detected after Ij and roUback

is below Ij, z has not been modified and there is no hazard. If the rollback is between I;

and It, again z is correct and no rollback hazard exists. If the rollback is to a position

above Ii, z has been corrupted since it was modified by I_. In this latter case, there is

still no data hazard since z will be rewritten by Ii prior to its use in Ij, i.e., the variable

z is dead. Given an output dependency, if an error is detected after Ij- and rollback is

4For a complete presentation of data_flow properties and manipulation methods, see [28].

25

below Ij,z iscorrect and no rollback hazard ispresent. Ifthe rollback iseitherbetween

Ii and Ij or above Ii, z is dead an no hazard exists.

A data hazard is present, however, given an antidependency, an error detection below

Ij, and a rollback to a position above Ii. In this case Ij corrupts z and after rollback, Ii

uses the corrupted z value. Hardware rollbackschemes maintain a redundant copy of x so

that itcan be restored to the correctvalue in the event of a rollback.By using compiler

transformations to remove allantidependencies of length _ N, where N represents the

maximum rollbackdistance,the compiler-assistedrollback scheme removes data hazards

and the requirement for redundancy hardware.

Antidependencies are removed at three levels:1) pseudo code, 2) machine code, and

3) post-pass. Pseudo code isthe code levelprior to variablesbeing assigned to physical

registers.The primary compiler transformation to remove antidependencies is variable

renaming. For the antidependency case of Figure 2.10,variablez of instructionlj would

be renamed z_,requiringallsubsequent uses of z to be renamed z_. Variable renaming

becomes difficultwhen the renaming of z in irjresultsin the need to rename z in li.This

occurs when bar.kedgesexist (i.e.,loops) and also through the equivalencerelationships

of variables [29]. These cliflEiculties axe handled with node splitting, loop expansion, and

loop protection transformations [28, 29].

Once all antidependencies have been removed at the pseudo level, register allocation

may result in the re-emergence of some antidependencies. An example of this would be

if renamed variable x' of instruction Ij in Figure 2.10 .and variable x of Ii were assigned

26

to the same physical register. To prevent this, arcs are added to the dependence graph

used in the register allocation algorithm.

Due to register spills and register save/restore conventions at procedure boundaries,

some antidependencies remain in the compiler emitted code. These hazards are resolved

by a post-pass transformation which inserts no-operation (hop) instructions to increase

the antidependency distance to > N. The post-pass transformation carries a significant

performance penalty since up to N nop's could potentially be inserted in a frequently

executed portion of the code. For this reason, all possible antidependencies axe removed

prior to the post-pass level. The overall performance of the compiler-assisted multiple

instruction rollback scheme is comparable to that of hardware schemes, with the primary

advantage being the reduced hardware requirement and the ability to select the rollback

distance at compile time.

2.5 Summary

Several full checkpointing and incremental checkpointing instruction retry schemes

have been presented as background for the development of a new multiple instruction

rollback approach. These schemes demonstrate the variety, design trade-offs and contin-

ued viability of multiple instruction rollback as a key fault tolerance feature.

This thesis focuses on multiple instruction rollback techniques and specifically compiler-

based techniques similar to those presented in Section 2.4.2. Previous compiler-based

27

schemes produced average performance impacts similarto comparable hardware imple-

mented schemes such as the delayed write buffer [12]. The performance impact of the

compiler-based scheme, however, variedgreatlybetween applications.This thesisextends

compiler-based multiple instructionrollbackrecovery to a broad classof code execution

failuresand reduces the average and peak performance impacts observed in previous

schemes. The new compiler-assistedscheme combines compiler-driven rollback hazard

removal with hardware implemented hazard removal.

28

3. COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK

3.1 Introduction

This chapter extends the compiler-based [29] instruction retry scheme discussed in

Chapter 2 to include a broad class of code execution failures. 1 Given a more general

error model, data hazards which occur as a result of multiple instruction rollback are

formally classified. This classification proves useful in the development of two new mul-

tiple instruction retry schemes. The first scheme extends the compiler-based scheme

while the second scheme combines compiler-driven hazard removal with hardware data

redundancy techniques. The new compiler-assisted approach exploits the unique charac-

teristics of different hazard types. Ten benchmarks were used to measure the performance

penalty of hazard resolution. Experimental results indicate that the enhanced compiler-

based approach can achieve overall performance consistent with existing hardware and

compiler-based approaches, and that the new compiler-assisted resolution strategy can

1Portions of Chapter 3 were derived from [30].

29

achieve superior performance to either a hardware-only or compiler-based instruction

retry scheme.

3.2 Error Model and Hazard Classification

3.2.1 Rollback data hazard model

The following are assumptions used in the error model:

1. The maximum error detection latency is N instructions.

2. Memory and I/O have delayed write buffers and can rollback N cycles.

3. The statesof the program counter and program status word (PSW) axe preserved

by an external recording device or by shadow registersas described in the micro

rollback scheme [12].

4. The CPU state can be restored by loading the correct contents of the register file,

program counter, and PSW.

Given the above assumptions, any error which does not manifest itselfas an ille-

gal path in the control-flowgraph (CFG) of the program is allowed provided that the

following conditions are satisfied:

i. Register filecontents do not spontaneously change.

2. Data can not be written to an incorrectregisterlocation.

30

The following is a list of targeted errors:

i. CPU errorssuch as those caused by an ALU.

2. Incorrect values being read from i/O, memory, the registerfile,or external func-

tionalunits such as the floatingpoint unit.

3. Correct/incorrect values being read from incorrectlocationswithin the I/O, mem-

ory, or register file.

4. Incorrect branch decisionsresultingfrom error types 1, 2, or 3.

3.2.2 Hazard classification

The code can be represented as a CFG G(V, E), where V isthe set of nodes denoting

instructionsand E isthe set of edges denoting control-flow.Ifthere isa directcontrol-

flow from instructioni,denoted li,to Ij,where IiE V and I.iE V, then there isan edge

(li,lj) E E. Let d_i,,(Ii,Ij) denote the smallest number of instructionsalong any path

from I_ to Ij.

The hazard set H, eeo of the error model is defined as the set of pseudo registers

(or machine registers) whose values are inconsistent during different executions of an

instruction sequence due to retry. A formal classification of hazard set H, egm follows.

Property 1: x E H,e#m iffthere exists a sequence of instructions I1, I2,..., IN which

form a legal walk 2 in G such that x is live at/1, and x is defined during the walk.

2A wa& is a sequence of edge traversals in a graph where the 'edges visited can be repeated [31].

31

Proof: For the if case, an error occurring in I1 will be detected by IN. During the

retry of I1, z will be in an inconsistent state since it was defined during the walk. Since

z is live at Ix, there is some path along which z is used prior to its redefinition, and since

z is in an inconsistent state, x E H,s,. For the only if case, we suppose the contrary.

Assume that among alllegalwalks of length N in G, eitherz isnot liveat the beginning,

or z isnot defined during the walk. It then followsthat z eitherhas no use, or z isnot

changed. (The error model does not allow a write to a wrong location and the contents

of registerz can not spontaneously change.) Therefore there isno inconsistency problem

for z, which implies z _ H.0,.

Property 2: All hazards can be classified as one of two types: 1) those that appear

as antidependencies of length __ N in G(V, E), referredto as on-path hazards, and 2)

those that appear at branch boundaries, referredto as branch hazards. These two hazard

types may overlap.

Proof: Since z 6 H, there existsa legalwalk W', -- Ii,12,...,IN in G, such that

z is liveat /I, and after the execution of Ii,/2,...,IN in sequence, z has a different

value. The latterimplies that there is at least one instructiondefining x along W'I

(the error model does not allow a write to a wrong location and the content of register

z can not spontaneously change). Let i be the largestindex that I_ defines x, where

i E {I, 2, ..., N}. Property I implies that there existsa legalwalk W'2 in G, beginning

with II, such that the firstinstructionlj along W2 referringz is a use. Case i: if

W_ C WI',instructionsI/and I_ constitutean antidependency of length _< N, and there

32

Ik:_o ly:_ ._.|'q_"r°llback
• "... ho(id, x):_ i
• ",.. . • [
• hb(iJc,X) "',.,,, f •

I::_'|'(x)= I [

.0 ..."
ermz detec_ .---_

Figure 3.1: On-path and branch hazards.

is an on-path hazard on z. Case 2: ifW2 _ WI, there existsa branch instruction/k

between 11 and h-1. Since d,,,i,_(lk,ll)(_ N, there isa hazard on z at a branch boundary.

3.2.3 Definitionsand terminology

An on-path or branch data hazard occurs when I_ definesvariable z, and afterroll-

back,/j uses the corrupted z v_lue prior to itsbeing redefined. To simplify subsequent

discussion,such on-path and branch hazards will be denoted ho(i,j,z) and hb(i,j,x,)

respectively.Figure 3.1 illustratesthishazard notation. A few definitionsare now pre-

sented to simplifysubsequent discussions.3

3A complete description of data-flow terminology can be found'in #Compilers: Principles, Techniques,

and Tools', Aho et al., [28]. More on equivalence can be found in [29].

33

Definitions:

1. If ar_ defines vnxiable z, then def(0 = z.

2. If the k th operand of h uses variable z, then useh(i) = z.

3. If there is some path beginning with /i which encounters a use of z prior to a

definition of z, then z E live_in(i).

4. If there is some path from h to Ij which does not encounter a redefinition of def(i),

then def(i} reaches j.

5. If def(i) reaches j and def(i) = usek(j) for some k, then de/(i) reaches usek(j).

6. If def(i) reaches j then i E reaching_in(j).

7. If renaming def(i) requires the renaming of usek(j) for any k, then equiv(i,j) - 1.

3.3 Compiler Resolution of On-path and Branch Hazards

Previously developed compiler transformations restricthazard resolution to on-path

hazards [29].The transformations are performed infour phases. Phase i resolvespseudo

registerhazards, phase 2 resolvesmachine registerhazards, phase 3 resolvesinterprocedu-

ralregisterhazards, and phase 4 uses hop insertionto resolvethe remaining hazards. The

expanded error model of Section 3.2 permits branch hazards in addition to on-path haz-

ards. What followsisa discussionof the viabilityof these same compiler transformations

in applicationto branch hazard resolution.

34

• -_..tJ,-- rollback

mmy

enor detected

3.3.1

: :)
I_:_] IF I =X I Ii:_ .

.O. .." : .o. ."
T • ¢r_r detected _m_

ho(ij_c) hb(i,k,x)

Figure 3.2: Register renarning.

Pseudo register renaming

The basic compiler transformation to remove hazards is register renaming. Figure

3.2 shows how hazard ho(i,j,x) can be removed by renaming def(i)from z to y. It can

be seen from Figure 3.2 that registerrenaming isequally effectivein resolving branch

hazard hb(i,k,z) by renaming def(i)from x to !t. If ho(i,j,x) and hb(i,k,z) coexist as in

Figure 3.1, both hazards are resolved simultaneously, i.e., given ho(i,j, x) and h_(i, k, z),

resolution of ho(i,j, z) through renaming resolves hb(i, k, x). Ill addition to renaming z

to y in Ii, some uses of x in other instructions must also be renamed to y. The variables

requiring renaming are determined by the equivalence property [29]. If equiv(i,j) = 1 in

the examples of Figure 3.2, then usel(j) would ultimately be renamed to y, negating the

hazard resolution. EquivMence can negate both on-path hazard resolution and branch

hazard resolution.

35

/- :'_-., •• •• ••
/ • ,., • • •
• • _ iimoeoeeaoaJoeoo__ _]]]_k 1 I-,,-- : :---.-I I

v : _, w_ _ ,_ " '

• . • • •• . /. O..eU,.o.f. A..--. • • •., • • •
; emeoeeen'eeomSh

_, _ I IoeoaoooeoooeaJee " -- "

:_- x_.ad_ng • : _ • • •• • •

• _ : .o. \

"-.j "_" \

-.....r----n ,-_ ')•, i- • • l

It:_ ,J •
• xdead

omoleeolmoNel_emmoamiQeQomm_

Figure 3.3: Node splitting.

To break the equivalence relationship, node splitting and loop ezpansion transforma-

tions axe used. A loop protection transformation ensures that loop integrity is maintained

during the node splitting and loop expansion transformations.

3.3.2 Node splitting

Given ho(i,j, z) or hb(i,j, x), node splitting forces equiv(i,j) = 0. Figure 3.3 shows

an example of data dependence requiring node splitting and the result of a node splitting

algorithm. Since def(i) rear.hes usel(l), renaming z in h to y forces the the renaming of x

36

disable back edges;

calculate hazards;

while(changed), do;

changed - O;

for all z in H.e,.. do;

for all V E G(V,E), do;

if z _ live_in(v)
c onl:inue;

if mul£iple definitions of x reach V. do;

split (V) ;

changed - 1;
endfor

endfor

endwhile

enable back edges;

Figure 3.4: Node splitting algorithm.

to y in I,. Since def('k} also reaches use1 (1), de/(k] must be renamed to y. Finally, def(k}

reaches use,(j), requiring usel(j) to be renamed to y. Hazard ho(i,j,z) has changed to

ho(i,j,y) but it has not been resolved. Register renaming cannot resolve ho(i,j,x) or

hb(i,j, z) given equiv(i,j) = 1. The simple node splitting algorithm shown in Figure 3.4

forces equiv(i,j) = 0 given ho(i,j,z) or hb(i,j,z).

When two definitions of a hazard variable reach a node, the node is split. The effect

is an "unzipping" of instructions which stops when the hazard variable becomes dead or

when a loop header is reached. In the former case, the equivalence relationship can no

longer be affected by the instruction. In the latter case, a split of the loop header would

compromise the integrity of the loop. It would be possible to treat the loop as a node

37

and duplicate the entire loop; however, this would result in significant code growth. The

loop protection algorithm is responsible for ensuring that no loop header is split.

After node splitting, a hazard node i 4 has a _personalized" path to ear_ of the use

nodes it reaches. More formally, given ho(i,j, z) or h6(i,j, x), no used(m) that is reached

by def(iJ is reached by def(uJ, where def(n) = def(i). Node splitting does not break direct
\

equivalence. Direct equivalence is equiv(i,j) --- 1 such that def(i) reaches usek(j). For

ho(i,j,z) and h6(i,j,z) this occurs when def(i) reaches u.seh(j) by traversing a loop back

edge. 5 For this reason, the node splitting algorithm of Figure 3.4 is run with the back

edges of G(V, E) disabled. On-path hazards that remain after node splitting are resolved

with loop expansion.

3.3.3 Loop expansion

Loop expansion involves unrolling a loop in an effort to remove on-path hazards

which remain after node splitting. Figure 3.5 gives an example of a loop which requires

expansion due to an on-path hazard. It can be seen that the roLlBack traverses the loop

back edge. For this example, the loop is unrolled once by duplicating the loop body one

time. The second copy of the loop body has all occurrences of z renamed to y. The

length of the loop-caxried antidependency present in the original loop has increased from

4Hazard node i is defined as the node repreaenting Ii in G(V, E) given the existence of either ho(i, j, z)
or hb(i, k, z).

5In contrast to on-path hazards, direct equivalence for branch hazards can exist without loop back
edges; however, was observed to be infrequent for the eleven application studied. The handling of these
hazards is presented in Chapter 4.

38

loop

_ge

I

i "'--X"*"-- &t_-t_d
[rollback **

loop
back --_
edge

I unron I time,
• renan_ xtoy

r (',, l
I •

I I
•rollback •

! •

Figure 3.5: On-path hazard traversing a loop back edge.

_< N to > N. Loop expansion to resolve on-path hazards results in significant code

growth, reaching 350% for some applications [29].

Although on-path hazards which traverse loop back edges are common, we have ex-

perimentally observed a low rate of occurrence of branch hazards traversing loop back

edges. This isdue to three factors. The firstisthat branch hazards are lesscommon

than on-path hazards. Figure 3.6 shows the percentage of allnodes that are on-path

and branch hazard nodes given various rollbackdistancesfor the QUEEN and PUZZLE

applications. Detailson the evaluation methodology can be found in Section 3.5. The

second factoristhat resolvingho(i,j,z) through renaming resolveshb(i,k,z). Since on-

path hazards are resolved priorto the resolutionof branch hazards, many branch hazards

which traversed loop back edges are no longer present. Finally,the most common code

structure which resultsin a branch hazard traversing.aloop back edge also causes the

39

50 %

45 %

40 %

35 %

30 %

25%

20 %

15%

10%

5%

-- on-path hazards
•---. branch hazards

50 %

45 %

%

3O %

25%

2O%

15%

2:"
12345678910

QUEEN

-- on-path hazards

-.-- branch hazards

I I I I I I I | I ._ _Y
I

12345678910

PUZ2Z,E

Figure 3.6: Percentage of total Ii's that are on-path and branch hazards.

loop to be protected by inserting a save/restore pair around the loop. The save/restore

pair breaks the direct equivalence of the branch hazard and thereby resolves it without

the need for loop expansion. Due to the significant code growth potential of loop expan-

sion and the infrequency of branch hazards traversing loop ba_:k edges, all such hazards

are left to be resolved in the hop insertion phase,

3.3.4 Loop protection

Figure 3.7 demonstrates how loop I is protected from hazard node i, where def(i) =

z. The loop header will not be split since z _ live_in(halt_node(1)), where halt_node(l)

represents the header node of loop I. The loop protection transformation operates on two

inputs. The first is the pseudo register z which is defined in I_ given hazard ho(i,j, z).

The second is the live-out analysis of the CFG. The loop protection transformation is

40

I r=x Isavenode
- x d_ _-----._. _

_Loo l"
..-, noae(t_] P i- i

• _H_s
• tO fS i

i

[X't]restore node

Figure 3.7: Loop protection from hazard variable z.

not dependent on the type of hazard which identifies the pseudo register and will protect

loops from header splitting that would occur as a result of branch hazards.

3.3.5 Machine registers

Once hazards have been eliminated through renaming, they may reappear as physical

registersare assigned. It isalsopossible that new hazards willemerge. Figure 3.8 shows

the elimination of on-path and branch hazards by adding arcs to the dependency graph

used for registerallocation.

3.3.6 Interprocedural hazards

Interprocedural registersaving conventions can create immediate on-path hazards.

For example, ifregisterrk isread and saved priorto a procedure call,and then initialized

in the called procedure, an antidependency is created. Previous work used a disjoint

registerblock scheme to guarantee that any read prior to a procedure calland any

41

anassigned
to rk .."

Dependeme_ Graph

\ I _, Iij/ ,, !
/ \.-

- -\-

I ": Ilk I"x"]Ii

+
serm_,......._I_.,.",L add arcs

Figure 3.8: On-path and branch machine register hazards.

defimtion during procedure initialization use re_sters from different blocks [29]. Branch

hazards are not immediately created at procedural, boundaries. All remaining branch

hazards are resolved in the nop insertion phase described in the next section or by the

post-pa_ transformation described in Section 3.4.3 (p. 44).

3.3.7 Nop insertion

Spillcode as a resultof registerallocationcan createon-path and branch hazards. A

similar problem existswith the stack pointer and frame pointer. Some branch hazards

may alsoremain that were unresolved with the loop expansion transformation. On-path

hazards are resolved by insertingnop instructionsdirectlybefore the hazard instruction

so that the rollback willbe below the last use of the hazard register.This technique

does not work for branch hazards since the distance between the definitionand the use

instructionsisnot relevant.Instead, nop insertionisused to increase the distance from

42

A

Register
File

= Read Buffer

Figure 3.9: Read buffer.

C

the hazard instructionto itsnearest predecessor branch. In this case,a rollback willbe

below the branch.

3.3.8 Summary

It has been shown that compiler techniques previously developed to resolve on-path

hazards are equally effective in resolving branch hazards. A compiler-based multiple

instruction rollback recovery scheme utilizing theses transformations was developed and

evaluated. The results of the evaluations are presented in Section 3.5.

3.4 Hardware-Assisted Hazard Resolution

3.4.1 The read buffer

Figure 3.9 shows a hardware scheme to resolve on-path hazards. A read buffer is

attached to the output ports of the register file. Each time a register is used it appears

43

on the read port and is saved in the read buffer. If a register rk is defined in I_ and it is

an on-path hazard, then rk must have been read within the last N cycles. In this case,

the read buffer will contain the old value and it is permissible to write the new value into

the register file. In the event of a rollback of N instructions, the contents of the read

buffer are flushed in reverse order and stored back to the register file. For an on-path

hazard, the path taken after the rollback will be the same as the path taken prior to

rollback and each read of r, will produce the same value as before. Branch hazards will

be removed by the compiler transformation presented in Section 3.3. It is assumed that

the read buffer is an integral part of the register file and any error in the system does

not corrupt the transfer to the read buffer or its contents.

In contrast to a history buffer which forces a read of rk prior to writing rk , the read

buffer monitors the register file ports and stores only the values read as part of the normal

program flow and, therefore, should not significantly impact the register file performance

or CPU cycle time. The read buffer is twice the width of a register with a depth of

N. This is twice the size of a delayed write buffer, but eliminates the requirement for

complex bypassing and prioritization logic.

3.4.2 Covering on-path hazards

In addition to resolvingallon-path hazards, the read bufferwillresolvesome branch

hazards. Figure 3.10 shows an on-path hazard and a branch hazard both with definitions

of x in I_and uses of x, afterrollback,in instructions./jand]j,respectively.Note that

ifpath I is initiallytaken, the read bufferwill contain the old value of z and rollback

44

om1 iy
Ix- _ lIi ..,

i--,..-.-rollback

Figure 3.10: Covering on-path hazard.

would be successful.However ifpath m istaken, the read bufferwillnot contain the old

value of • and rollbackwould be unsuccessful. Ifonly paths such as Iexist,the presence

of the on-path hazard assures successfulrollback or "covers" the branch hazard. In this

case, resolutionof the branch hazard using compiler techniques isnot necessary.

3.4.3 Post-pass transformation

Given the efficiencyof the read bufferin resolvingon-path hazards, a post-pass trans-

formation on assembler-levelcode becomes possibleas a replacement forthe nop insertion

transformation described in Section 3.3.7 (p. 41). The post-pass transformation creates

on-path hazards when necessary to assure that allbranch hazards are resolved by the

45

read buffer.Given one such branch hazard which definesphysical registerrk at instruc-

tionI_,the transformation insertsan MOV rk,r_ instructionimmediately before I_.This

guarantees that allpaths leading to I_ are likepath Iin Figure 3.10.

3.5 Performance Evaluation

3.5.1 Implementation

The transformation algorithms presented in Section 3.3 have been implemented in

the MIPS code generator of the IMPACT C compiler [32]. Transformations resolving

pseudo registerhazards (loop protection,node splitting,and loop expansion) are called

just before registerallocation.Transformations resolving machine registerhazards are

called al'terthe liverange constraintshave been generated and before physical register

allocation. The nop insertionalgorithm, or post-pass algorithm, is called before the

assembly code output routine.

3.5.2 Application programs

Table 3.1 liststhe eleven applicationprograms used in the evaluations.The applica-

tions were cross-compiled on a SPARCserver 490 and run on a DECstation 3100. Size

isthe number of assembly instructionsemitted by the code generator, not including the

libraryroutines and other fixed overhead.

The resultsare summarized in Figures 3.11 through 3.21 (pp. 50 through 55). Each

figurecontains two plots,the firstplot shows the percent of run-time overhead (Time

46

Table 3.1: Application programs:

Program [] Size

QUEEN 148
WC 181

QSORT 252

CMP 262

GILEP 907

PUZZLE 932

COMPRESS 1826

LEX 6856
YACC 8099

TBL 8197

CCCP 8775

run-time and code size overhead evaluation.

[Description

eight-queen program

UNIX utility

quick sort algorithm

UNIX utility

UNIX utility

simple game

UNIX utility

lexicalanalyzer

parser-generator

table formatting preprocessor
preprocessor for gnu C compiler

OH) of the referenced hazard resolutionscheme, and the second plot shows the percent

of code growth overhead (Size OH) relativeto the base values in Table 3.1.

Four hazard resolutiontechniques were evaluated. Compiler 1 resolveson-path haz-

ards only, using the compiler-driven data-flow manipulations presented in Chapter 3.

Compiler _ extends the compiler transformations to resolve both on-path and branch

hazards. PP (post-p_s) disablesthe compiler transformations and reliessolelyon the

post-pass transformation presented in Section 3.4. Comp/PP uses compiler transforma-

tions to resolve branch hazards, assumes a read bufferto resolveon-path hazards, and

uses the post-pass transformation to remove remaining branch hazards.

Due to the excessive compile times of Compiler I and Compiler 2, for large appli-

cations,the evaluations of these schemes were restrictedto applicationsQUEEN, WC,

COMPRESS, CMP, PUZZLE, and QSORT. The compiler transformations to resolve

47

branch hazards for Comp/PP have been enhanced to reduced compile times. These en-

hancements are described in Chapter 4. Both Comp/PP and PP were evaluated for all

eleven applications.

3.5.3 Performance analysis

Compiler transformations used for the removal of data hazards can impact perfor-

mance in several ways. Loop protection insertssave/restoreoperations at the head and

tailof the loop. This increasesthe path length and, therefore,the run time. Additional

arcs in the dependency graph can cause more spillcode to be generated, increasingmem-

ory referencesand cache misses. Nop insertioncan be costlysinceup to N nops could be

inserted for each unresolved hazard. The insertionof MOV rk,rk instructionsto create

covering on-path hazards in the post-pass transformation alsoincreasespath lengths,al-

though typicallylessthan with nop insertions.Finally,the increase in code size,mainly

due to loop expansion, may cause more run-time cache misses.

The loop expansion transformation can improve performance over a compiler that

does not have thisoptimization technique [33]as demonstrated by the negative run-time

overhead measurements for COMPRESS, CMP, and PUZZLE, shown in Figures 3.13,

3.14,and 3.15 (pp. 51 and 52), respectively.Once the loop isexpanded, some condition

checks and index operations can be eliminated. Also the save/restore operations from

loop protection shorten the liveranges of some registersthus allowing more efficient

registerallocation.Only the latteroptimization isimplemented in the current software.

48

3.5.4 Results: Compiler

As can be seen in Figures 3.11 through 3.16 (pp. 50 through 52), extending the com-

piler hazard resolution scheme to include branch hazards introduces little incremental

performance impact or code growth overhead. Given a rollback distance of 10, resolving

both on-path and branch hazards using compiler transformations resulted in a maxi-

mum performance impact of 32.6% and an average performance impact of 12.6%. This

compares with maximum and average impacts of 35.4% and 15.4%, respectively, for

compiler-driven on-path hazard resolution only. The maximum code size overhead mea-

sured for the extended compiler-based was 328% with an average overhead of 207%, for

a rollback distance of 10. This compares with a maximum and average overhead of 372%

and 225%, respectively, for the unextended compiler-based scheme.

These results indicate a small incremental run-time performance overhead and a small

code size overhead given compiler-based branch hazard removal compared to compiler-

based on-path hazard removal alone. Three factors account for these small incremental

impacts. First, on-path hazards dominate in frequency of occurrence. Second, resolving

an on-path hazard at instruction I_ through renaming can sometimes resolve a branch

hazard at instruction Ii. Third, resolving on-path hazards with nop insertion may resolve

a corresponding branch hazard by increasing the distance between the hazard node and

itsnearest predecessor branch node.

49

3.5.5 Results: PP

Figures 3.11 through 3.21 (pp. 50 through 55) show the run-time and code size

overheads for each application studied assuming the read buffer to resolve on-path hazards

and the post-pass transformation described in Section 3.4 to cover all branch hazards.

The results are worst case in that many of the branch hazards could have been resolved

with no performance impact using the compiler techniques of Section 3.3. Instead, they

are resolved by the insertion of MOV instructions which cause a guaranteed, although

small, performance impact. Given a rollback distance of 10, the post-pass transformation

produced a maximum performance impact of 7.69% with an average performance impact

of 2.43%, significantly below the levels produced by the compiler-based scheme. Code

growth overhead measurements were correspondingly lower with a maximum overhead

of 13.0% and an average overhead of 8.59%.

3.5.6 Results: ComF/PP

The compiler-assisted scheme achieved consistently low performance overheads across

all applications and slightly better performance than with the post-pass transformation

only. Given a rollback distance of 10, the compiler-assisted scheme produced a maximum

performance impact of 6.57% with an average performance impact of 2.03%, and a max-

imum code growth overhead of 51.2% with and an average overhead of 15.5%. The run

time results of PUZZLE, YACC, and CCCP indicate that compiler techniques axe still

useful in reducing run-time performance penalties. These compiler techniques, however,

50

have the disadvantage of requiring recompilation and additional code growth. The pri-

mary advantage of the compiler-assisted and post-pass schemes are their utilization of

the read buffer to resolve the more frequent on-path hazards.

"r_me OH S_ OH
(%) (%)

itComi_ler 2: -o- Compiler 2: -o- Y
pp. ..K.-. _ pp. .._.. /?
ComWPP: --_ .- .-

15 .w" 200
10 150

lO0

5

1 _ 3 45 _ 7 8 9,0 o i 2 3 4 5 6 7 8 9_o
Rolll_ Distance Ro_lbac,k Distance

Figure 3.11: Run-time overhead and code size overhead: QUEEN.

'r_e OH Size OH
(%) (%)

3._ t CompS" er 1: 4--

_Cgm[_iler 2: -o-
--_Ko-o

'-°t15

10

- ! !

RollbackDistance

00-

350 -

250-

200-

150 -

Coml_.'_er 211C_r
pP" -.K---
Co_p_..._..

I00-

50-

0
ol :_ 3 4 5 6 7 8 9 10

Rollback Distance

Figure 3.12: Run-time overhead and code sizeoverhead: WC.

51

3iiCom o.X:
Comi_iler 2:

pp. ..K... ,_
.- Camp/PP. _

15-

10-

5-

0-

-5

°ta.° °°Q . "taS

...,,...._,...._...._._t

Rollback Distance

Size OH
(%)

400- Compiler 1: -*-
350- Compiler 2: -o-

pp. .-K...
300- Cotnp/PP:. -._,-.

250

2OO

150

5O

....

RollbackDistance

Figure 3.13: Run-time overhead and code sizeoverhead: COMPRESS.

TtmeOH
(%)

25

2O

15

10

5

0

-5

Coml_._er h -e--
Comi)iler 2: -o-
pp. .._...
Comp/PP: --w-

A . A A A A

- _ -_- - _.w.._--

Rollback Distance

Size OH
%)

400 Compiler 1:--0-
350 Compiler2: -o-

pp. .-_--.
300 Comp/PP:. .-_..

2.50

200-

150- m__jt.jt_,lt._lI00-

50-
A A A A

0 _.=._...___A __..._..................
0 i i _ _ _ ÷ _ _xb

RollbackDistance

Figure 3.14: Run-time overhead and code size overhead: CMP.

52

3_t Coml_." cr I:
C_..m[_il_ 2:
coi_,_, ii_

20--t

15-

10-

5 " ..X.... _....]I(....K..... _'''''X'''_

0- ,....x...._'" A _ • • - ,_
--w- U -w- -- ---_--w--_ "-'-z

"5 I I 1 I] I

1 2 345 678910

Rollback Distance

Size OH

400- Compiler 1: -0-

350- pC_m_iler2:-o-
c_..._,..300-

250-

200-

150-

100-

50-

YYllllllll

012345678910
RoH_k _stance

Figure 3.15: Run-time overhead and code size overhead: PUZZLE.

Ttme OH Size OH
(_) (_)

35-

30-

I5-

10-

.

0-

-5

Coml_er h --s-- _ 400
Comi_ilcr 2: -o- _ ,7'

'" / 350

Co_ 3(30

25O

2011.

150 -

1_-

* " _" A _ ^ A _A_ 50

llffill[ll

12345678910

RoU_k _s_

Compiler 1: -s-
Com_3ilcr 2: -o-
pp. -....

ComI_PP:. -._,-- ,,,,_

0
012345678910

Ron_k_

Figure 3.16: Run-time overhead and code size overhead: QSORT.

54
PRE_-O'ING pPK_'E BLANK _.!OT FILMEO

T,,,,cOH
(_)

10 -

_

6-

4

2

0

-2

.-4

Size OH
e,)

pp. _,,. 35
Comp/Pp. -e- v 30

20-

15-

10-

5"

Rollback Distance

0

pp.. -.4,--

Comp/PP:. -_,-

°o&o°&°'_

I I I I Ii2 _4] _7 s_0
RollbackDistance

Figure 3.19: Run-time overhead and code size overhead: YACC.

Time OH
(_,)

10-

8-

6

4

2

0

-2

-4

PP.
Comp_p. -e-

A ,A'A

"', g'" A, A'"A .A"

Rollback Distance

Size OH

60-

50-

40-

30-

20-

10-

0

&..&--&
• -.&__&._A

A..,t'"
eS

, pp.
,,,A" Comp/PP: -.a,-

A"

'''''' '_'o1234567 1
Rollback Distance

Figure 3.20: Run-time overhead and code size overhead: TBL.

55

Time OH
_)

I0 pp.

8 Comp/PP:

6

4

2

0

-2

-4

• s S "" --A" "i A A A A"

' ! ! I 2111; iilo
Rollback I)_

Size OH
(it)

35- pp:

30- Comp/PP:

20-

15-

10-

5-

0

q

.A
A"
s

e°

A..A.-A --£

&..&.-A --&"

ITJllll|l[

12345678910
k D

Figure 3.21: Run-time overhead and code size overhead: CCCP.

3.6 Concluding Remarks

A compiler-based and a compiler-assisted scheme have been described which support

multiple instruction roUback with branch recovery. Hazard classification has proved useful

in construction of the compiler-assisted scheme. Compiler transformations such as pseudo

register renaming, node splitting, loop protection, and loop expansion were shown to

be effective in resolving on-path and branch hazards with little performance impacts

over resolving on-path hazards alone. The compiler-based approach yields performance

impacts consistent with previous compiler techniques [29] and hardware techniques [12].

A hardware assisted scheme was introduced to resolve on-path hazards by maintaining a

window of instruction read history.

The ldardware assisted scheme introduces little performance impact and reasonable

additional circuitry. Compiler techniques are used to resolve the remaining branch haz-

ards with a modest increase in overall compile time. "The performance measurements

56

indicate that the compiler-assisted scheme can achieve lower performance impact than

either a compiler-based scheme or a delayed write hardware scheme. It should be noted
1

that the combined scheme appliesonly to the CPU and requires additional hardware to

maintain the statesof the program counter, program status word, etc..The read buffer

istwice the sizeof a delayed write bufferbut avoids the requirement for bypassing and

prioritizationlogic.

57

4. TRANSFORM ENHANCEMENTS

4.1 Introduction

In Chapter 3, a compiler-assisted multiple instruction rollback recovery scheme wa_

presented. The scheme uses an operand read buffer to resolve on-path rollback hazards

and uses compiler-driven data-flow manipulations to remove branch rollback hazards.

This chapter presents enhancements to previously proposed compiler transformations

used for hazard resolution [29]. These enhancements result in improved compile times

and improved application run times.

4.2 Node Splitting

4.2.1 Iterative node splitting algorithm

As discussed in Chapter 3, node splitting breaks equivalence relationships which would

preve_at pseudo register renaming, i.e., given ho(i,j,x) or hb(i,j, x), node splitting forces

58

lY:']

Ix,, I

ly" I

I

luo.ardjet_,(_

IterativeNode SplittingAlgorithm

Figure 4.1: Iterative node spli_ting algorithm.

equiv(i,j) - 0. Figure 4.1 shows an example code sequence requiring splitting and an

iterative node splitting algorithm.

The code segment of Figure 4.1 contains two branch hazards. The first hazard involves

pseudo register z and the second involves pseudo register y. When two definitions of a

hazard variable reach a node in which the hazard variable is live, the node is split. In

this case, node splitting to resolve the hazard variable z also resolves the hazard variable

y. This implies that the hazard set should be recalculated after splitting takes place for

each hazard register. Previous node splitting algorithms used this iterative algorithm to

avoid unnecessary node splitting [29].

59

Subgraph

hazard node

n, n6

Figure 4.2: Node splitting: original subgraph.

Figures 4.2 through 4.4 demonstrate the effect of the iterative node splitting algorithm

on an example subgraph. Node spUtting relative to hazard vaxiable x ensures that the

definition of x in node nl and the definition of x in node n2 do not both reach the same

use of x in node ns. Node splitting relative to y ensures that the definition of y in node

n3 and the definition of y in node n4 do not both reach the same use of y in node he.

Figure 4.3 shows the subgraph after splitting relative to hazard variable x, and Figure

4.4 shows the subgraph after splitting relative to hazard variables x and y. Although

the iterative algorithm was initially intended to prevent excessive node splitting, this

example demonstrates that excessive node splitting is still possible. Figure 4.5 shows an

optimM subgraph which resolves both hazards with less splitting than produced by the

iterative algorithm.

6O

PartiallySplitSubgraph

nl

hazard node

Figure 4.3: Node splittingrelativeto hazard variablex.

SplitSubgraph

n

hazard node

n5 n6 n"6

Figure 4.4: Node splitting relative to hazard variables x and y.

61

OlximaUy Split Subgraph

hazard node

4.2.2

Figure 4.5: Optimal node splitting relative to hazard variables z and y.

Conflict definition

To ensure minimal splitting, a new node splitting algorithm is developed using the

concept of conflicting parents. Given a CFG with back edges disabled, let H,,,d_m represent

the set of all hazard hazard nodes 1 present in a CFG with back edges disabled. A conflict

exists between node n's parent nodes, p. and/_, if

* rn E Hnode. (3 reaching.out(p_) for some m, and

• l E reaching-out(I_) for some l _k m, and

• def(m) = def(l), where def(m) E live_in(n)

IA hazard node n is defined as the node representing In in G(V, E) given the existence of either
ho(n, m, z) or hb(n, i, z). See Chapter 3 for notation details.

62

I _ n_aching _ m

\J\
def

n _ _ conflictingparents

Figure 4.6: Conflictdefinition.

Any node with one or more conflictingparents must be split.Note that parent conflicts

are not based on a singlehazard vaxiable.

Figure 4.6 illustratesthe conflictdefinition.Double arrows represent a hazard p_r,

where z is defined in node pb, and afterrollback,is used prior to re-definitionin node

m. Single arrows represent reaching definitionsand show that ifvariable z in node Pb

is renamed to z, then x in node m would ultimately require renaming to z. Node n,

of Figure 4.6,has conflictingparents p_ and Pb. Ensuring that node n does not have

conflictingparents enables resolutionof the hazard using variable renaming.

4.2.3 Node splittingusing graph coloring

Given the definition of conflicting parents, the node splitting strategy for a particular

node is to group the parents of that node such that elements within a group do not

conflict. Each group becomes a parent node for a duplicate of the original node. For

example, if node n has six parent nodes and these no'des can be organized into three

63

Node 48 before splitting

Parent conflict graph

Node 48, 48', and 48" after spliuing

Figure 4.7: Node splitting using graph coloring; QSORT.

nonconflicting groups, then only three total copies of n are required. Figure 4.7 shows

node 48 from [,code emitted by the IMPACT compiler for the QSOItT application shown

in Table 3.1 (p. 46). Node 48 has six parent nodes prior to splitting. These nodes can

be arranged in a parent conflict graph, where each arc of the graph represents two nodes

which conflict. Establishing groups can be achieved by finding the minimum coloring of

the parent conflict graph, i.e., coloring the nodes such that no two nodes connected by an

arc have the same color. For the example shown in Figure 4.7, three colors are sufficient

to cover the parent conflict graph, resulting in the splitting of node 48 into nodes 48, 48'

and 48".

Determining whether a graph is k-colorable is NP-complete in general: however,

linear-time heuristics have been developed. Figure 4.8"shows the heuristic used for col-

64

Given parentconflict_graph (V, E)

int color_graph (parent conflict graph)

graph_struct parent_conflict_graph;
{

int i, j, k;

graph struct tamp_graph;
node_struct v[MAXPARENTS] ;

temp_graph - parentconflictgraph;
while (temp graph !- null) {

viii - n_n_degree_node{all V in temp_graph (V,E) };

k - degree of(v[i]);
delete v[iT and all edges of viii from temp_graph(V,E) ;
++i;

}
++k;

for (j-i; j<0; --j)

color v[j] in parent conflict_graph with one of k colors;
return (k) ;

Figure 4.8: Parent conflict graph coloring heuristic.

oring the parent conflictgraph. The heuristicisa modified versionof an algorithm used

for registerallocation[28].The Mgorithm selectsthe node with the fewest edges, records

the node, and then removes itfrom the parent conflictgraph. This process continues

until the parent conflictgraph isempty. Ifnode n has the fewest edges (i.e.,k edges),

then at leastk + 1 colorsaxe required to color the graph. One color isrequired for node

n and k colorsare required for the nodes connected to n. Node n can be removed leaving

a subgraph. Once the subgraph iscolored with k colors,then node n can be colored with

the remaining color. The reverse order of the node recordings can thereforebe used to

color the parent conflict graph.

65

disable backedges;
calculate hazards;

for all nodes n, in a topological traversal, do {

compute reaching_in set for n from reaching_out set of n's

parents;
build a parent conflict graph (PCG);
return to k the # of colors required to color the PCG;

color PCG with k colors;

delete node n;

create k-1 duplicates of n;

use coloring to connect parent nodes to n and duplicates;
if n was a hazard node, add duplicate nodes to hazard list;

compute reaching_out set for n and duplicates;
}

enable backedges;

Figure 4.9:One-pass node splittingMgorithrn.

4.2.4 One-pass node splittingalgorithm

Both live_in(n) and reaching_out(n) maalyses axe required to identifyconflictingpax-

ent nodes. A one-pass node splittingalgorithm becomes possibleby precalculatinglive_in

and H,,_,,Iand, then, beginning with the root node, splittingin a topologicaltraversM

of the CFG. The one-pass node splittingalgorithm isshown in Figure 4.9. A topological

traversalensures than when processing node n, allancestors of n have been processed

and no descendants of, have been processed. This lattercase ensures that the presplit

calculationof five_in(hican be used for paxent conflictidentificationwhen processing

a given node. Unlike five_in(hi,reaching_our(hi isaffectedby the splittingof ancestor

nodes. Since reaching_our(hiisbased solelyon node n and itsancestors,reaching_out(n]

can be calculated as node splittingproceeds. Ifa hazard node issplit,each duplicate of

the node must be added to the H,_,° set. Since the root node does not have conflict-

ing parents, a topologicaltraversalof the CFG using the graph coloring node splitting

technique ensures that no node in the resultinggraph has conflictingparents.

66

Table 4.1: Node splitting Mgorithm comparisons: COMPRESS.

• Iterative Algorithm run time -- 614.0 seconds

• One-pass Algorithm run time = 20.3 seconds

• Speedup - 30.2

Orig. Node Cnt.

547
461

144

181

75
2I

45

Iterative Alg.

601

499
147

Incre&9_

9.9

8.2
2.1

One-p_a Alg.

566
496
147

209 15.5 207

80 6.7 80

28

79

33.3
75.6

27
48

% Increase

3.5
7.6

2.1

14.4

6.7

28.6

6.7

Table 4.1 illustrates the improvement of the one-pass node splitting algorithm over

the iterative algorithm for the COMPRESS application. The COMPRESS application

was compiled on a SPARCserver 490 using the IMPACT C compiler [32] and a rollback

distance of 10. Node count values represent pseudo (Lcode) instructions created by the

IMPACT C com}iler before and after splitting. Seven of the 14 COMPRESS functions

which required splitting are listed. Algorithm run times represent the overall compile

times given each node splitting algorithm.

Table 4.1 shows a marginal overall code growth reduction for the one-pass algorithm.

Although one function demonstrated a significant code growth reduction (6.7% down

from 75.6%), the function is small and has minimal effect on the overall code size. The

improvement in compile-time of the one-pass algorithm is more dramatic, resulting in a

67

speedup of 30.2. The compile-time improvement can be explained as follows. If 60 hazard

variables are present in a given function, the iterative algorithm may require up to 60
1

passes through the CFG of that function, including 60 data-flow analysis and hazard

calculations. Although processing a given node in the one-pass algorithm is slightly more

complex, a single data-flow analysis calculation and a single pass through the CFG are

sufficient.

4.3 Loop Protection

As discussed in Chapter 3, due to the significant code growth potential of loop expan-

sion and the iafrequeney of branch hazards traversing loop back edges, all such hazards

are left to be resolved by the post-past transformation. Node splitting therefore be-

comes the dominant pseudo level hazard removal transformation, eliminating the need

for loop protection to aid in loop expansion. A new loop protection algorithm, aimed at

maintaining loop integrity only during node splitting, is now developed.

A similar approach to the conflict definition of Section 4.2 can be used to determine

if a loop has to be protected. The header node of loop l will be defined as hdr_node(l).

The requirement to split loop l due to hazard node n will be defined as split(l,n) = 1,

and this occurs given the following conditions:

• n E H,u_o f3 reaching_in(halt_node(1)) for some n, and

• rn E reaching_in(hdr_node(l)) for some rn _ n, and

• def(n} = def(m}, where def(n} E live.in(halt_node(l))

68

I t =x
•. x dead _.....--....:

..-. hdr_nade(l)l L°°p l i

• all _'S •
• !

tot's i

Figure 4.10: Loop protection from hazard variable z.

Given the one-pass node splitting algorithm of Section 4.2 and no loop protection

requirement for loop expansion, loop 1 will require protection from hazard node n if

split(l,n) = I. Figure 4.10 demonstrates how loop I is protected from hazard node n,

where def(n) - z. The loop header will not be split since z ¢. live_in(hdr_node(l)). A

loop protection algorithm, referred to as static loop protection, is shown in Figure 4.11,

where outer(l) indicates the outer loop of loop 1. The static loop protection algorithm is

executed prior to node splitting. Each loop is processed twice: the first time to record the

hazard variables for which the loop must be protected, and the second time to protect

the loop.

4.3.1 Dynamic loop protection

Since the static loop protection algorithm shown in Figure 4.11 is executed prior to

node splitting,itdoes not predict loop header splitsthat resultfrom new hazard nodes

created during ancestor splitting. Given the topological traversal of the one-pass node

69

disable backedges;
calculate hazards;

for all loops i, from outer loops to inner loops, do

for each hazard node n, in hazard_node_set, do {

if (split(l,n) --- I), do {

if (n is not in loop_hazard_set(outer(l))),

add n to loop_hazard set(l);
}

loops i, do {

}
}

for all

for all nodes n in loop_hazard_set(l), do {
protect loop 1 for hazard variable def(n);
}

)

enable backedges;

do

Figure 4.11: Staticloop protection algorithm.

splittingalgorithm, loop protectioncan be performed dynamically when a loop header is

encountered.

The set containing all of the nodes in loop I is defined as loop_nodes(l). Protection of

loop I relative to hazard variable z can affect live_in(n) for all n E loop_nodes(l). Every

exit node of loop I in which x islivewillhave a restorenode placed between itand its

children nodes as shown in Figure 4.10. Changes to live_in(n) for n E loop_nodes(1)

is thereforecontained to loop I. Figure 4.12 shows a simple dynamic loop protection

algorithm which includes updating of the presplit live_in analysis result.

The creation of restore nodes during loop protection can occasionally resultin ad-

ditionalbranch hazards. Static loop protection ensures that these additional hazards

axe identified and removed by the node splitting algorithm. Dynamic loop protection

can create branch hazards that are not guaranteed to be identified and removed by the

node splittingalgorithm. The approach used for branch hazard removal therefore is

7O

dyn_loop_protect (i, x)

insert save node s ahead of node hdr node(l);

copy live in(hdr node) into live_in(save node);
copy s into loop_--nodes (I) ;

for all exit nodes e of loop i, do {
insert restore node r;

copy live in(e) into live in(r);

copy r into loop_nodes (i).
}

for all nodes n in loop nodes (i), do {
if (x in live in(n)), do {

delete x f_om live in(n);

add t to live in(n);

)
}

return;

Figure 4.12: Dyna_nic loop protection algorithm.

to: 1) execute static loop protection, 2) use dynamic loop protection within the node

splitting algorithm, and 3) re-execute the node splitting algorithm if previous dynamic

loop protection resulted in additional hazards. Experimental results have shown that

re-execution of the node splitting algorithm is rarely necessary. Two executions of the

node splitting algorithm were suf_cient to remove all required branch hazards for the

eleven applications shown in Table 3.1 (p. 46).

4.4 Performance Enhancements Through Profiling

4.4.1 Post-pass transformation versus loop protection

After hazards are removed by the compiler, some hazards remain and must be re-

moved using the post-pass transformation. Previous post-pass transformations used nop

insertions to increase all antidependency distances to > N [29]. Since nop insertion can be

71

9

I I
II

• I
1 =5 I 15" I

14=- mnba_

-- _._on

Figure 4.13: Post-pass hazard removal using read insertion.

+

costly to performance, previous compiler transformations removed all hazards possible,

leaving only unresolvable hazards to be removed by the post-pass transformation.

In Chapter 3, a new post-pass transformation was introduced in which hop insertion

was replaced by read insertionsas the primary hazard removal technique. As illustrated

in Figure 4.13, up to two branch hazards can be removed by a singleread instruction.

The new post-pass transformation isvery efficientand in some cases can resolve branch

hazards with lessperformance impact than pseudo-level transformations. Figures 4.14

and 4.15 show performance overhead comparisons between compiler-driven data-flow ma-

nipulationsand the new post-pass transformation. Cornp/PP indicatesthat hazards axe

resolved by the compiler where possible,with the remaining hazards being resolved at

the post-pass level. PP (post-pass)indicatesthat compiler transformations have been

disabled and that allhazards are removed at the post-pass phase. Performance evalua-

tions were obtained using the methods described in Chapter 3. The TBL application is

a table formatting preprocessor for nroff, a text processing facility. PUZZLE is a game.

?2

ThneOH

I0- pp.
8- Comp]Pl_. -_-

4-

2-

0-

-2

4 | i | i | i i | | [

I 2 3 4 5 6 7 8 9 10
Rollback DisLauce

Figure 4.14: Run-time overhead: PUZZLE.

Time OH

10-

8

6

4-

2

0

-2

-4

ComplPl_. -*-

A & A

IIIIIIIII2345678910
1 Di_

Figure 4.15: Run-time overhead: TBL.

73

For the PUZZLE application, compiler transformations produce better performance

than the post-pass transformation alone. For the TBL application, shown in Figure

4.15, using the post-pass transformation to remove all hazards produces slightly better

performance than the combination of compiler and post-pass transformations. Hazard

elimination via read insertion introduces a guaranteed but small performance impact due

to the longer instruction path length. As demonstrated in Figure 4.14, pseudo register

renaming can eliminate hazards without impacting performance when loop protection is

infrequent. The save/restore operations of loop protection can result in more performance

impact than read insertion when loop protection is frequent, as demonstrated in Figure

4.15.

Figure 4.16 illustrates the potential effect on performance given the following two

types of hazard removal: 1) hazard removal using register renaming that results in loop

protection, and 2) hazard removal using read insertion. If the protected loop is executed

20 times and the hazard instruction is executed two times, loop protection would require

the execution of 40 additional instructions, where read insertion would require the exe-

cution of only two additional instructions. If the loop and hazard instruction execution

frequencies were reversed, then read insertion would produce more performance impact

than loop protection. As shown in Figure 4.16, profiling data can be used to aid in loop

protection decisions.

74

Loop Protection ReadInsertion

I
I Loop..,.. _dead 9

• change

• aLlr_'s
• tO rt's

I
.... ; :::_ _: ::::7 ::7 -_7 ::_:

i

o

I

• mllb_k

8

detected •

Figure 4.16: Loop protection versus read insertion.

4.4.2 Profiling effectiveness

Profiled data was included in the pseudo-level transformations of Chapter 3. The pro-

file data is comprised of both dynamic profile sampling and static prediction. The static

prediction is used as a supplement for areas of the application code that are unexecuted

during profile sampling. For static profiling, a loop is assumed to iterate ten times. Inner

loops, therefore, iterate multiples of 10 times depending on the depth of loop nesting.

All loop header nodes and hazard nodes are assigned weights based on the profile data.

Protection of loop l due to hazard node nh is required based on the following con-

dition: if rib_weight > 3 • (hdr_node(1)_weight), then protect loop I. The constant 3

adjusts the weights to account for both direct and indirect loop protection costs. Direct

loop protection costs result from the save/restore instruction pair shown in Figure 4.I6.

75

T'mac OH

10 pp.
Comp/PP:. -_-

8 Prof/PP:. ._--
6

4 A + A ,-A
2 ', _ -"- ":'- _: _""

0
-2

Rollba_ Distance

Figure 4.17: TBL: profile data used for loop protection decisions.

Indirect loop protection costs result from: 1) an increased number of hazards which in

turn required more node splitting and more loop protection, and 2) increased register

usage due to the save/restore instructions which can result in additional register spills.

Figure 4.17 shows the run-time overhead for the TBL application with rollback distances

from 1 to 10. Prof/PP indicates that profiling data was used in loop protection decisions.

The results show that the use of profile data can improve application performance by

postponing some hazard resolutions until the post-pass phase. Using profile data to aid

in loop protection decisions did not produce performance equal to that for the post-pass

transformation, for the TBL application. As an extension to this work, profile data can

be used to aid in register allocation. As discussed in Chapter 3, hazards that are present

after pseudo register renaming are resolved by adding arcs to the register allocation

dependency graph. These additional constraints can cause additional register pillage and

76

impact performance. Similar techniques to those developed for loop protection can be

used to enhance register allocation decisions.

4.5 Summary

In this chapter, compiler transformations used for the removal of branch hazards have

been enhanced, resulting in reduced compile times and increased application performance.

A one-pass node splitting algorithm was developed which uses the concept of conflicting

parents to reduce the number of duplicate nodes required. A graph coloring heuristic

was developed to connect split nodes to parents. For the COMPKESS application, the

one-pass node splitting algorithm resulted in marginally reduced code growth and a

compile-time speedup of 30 over previous iterative node splitting algorithms. Similar

techniques used in the node splitting algorithm were used to develop a one-pass static

loop protection algorithm. Due to the splitting of hazard nodes, it was shown that the

static loop protection algorithm did not predict all loop header splitting. A dynamic

loop protection algorithm was developed which allows loops to be protected as they

are encountered by the node spitting algorithm. It was also shown that read insertion

used in the post-pass hazard removal phase could produce less performance impact than

pseudo register renaming when the latter results in loop protection. Profiling was shown

to be effective in making better loop protection decisions, resulting in improved overall

application performance.

77

5. READ BUFFER SIZE REQUIREMENT

5.1 Introduction

In Chapter 3, a compiler-assisted approach to multiple instruction rollback in which

a read buffer of size 2N (where N represents the maximum instruction rollback distance)

was used to aid in hazard removal. This chapter examines the size and design of the

read buffer. A practical lower bound and average size requirement for the read buffer

are established by modifying the design to save only the data required for rollback. The

study measures the effect on the performance of ten application programs using six read

buffer configurations with varying read buffer sizes. Two alternative configurations are

shown to be the most efficient and differed depending on whether split-cycle-saves are

asSUlned.

78

Instruction Read Buffer
rollback 4 Sequence

rollback 2 SI I _ GPRF
IS2 I

Figure 5.1: Read buffer of size 2N.

5.2 Read Buffer Configurations

Given a read bufferconfigurationas shown in Figure 5.1,rollbackisaccomplished by

firstflushing the read buffer back to the general purpose registerGPRF in the reverse

order of which the values were saved. Figure 5.1 shows the two FIFO read buffersabove

the source I ($I) and source 2 ($2) buses to better illustratethe buffer'scontent given

the instructionsequence shown. As long as the depth of the dual FIFO read buffersare

N, redundant copiesof the appropriate registervalues (denoted value(r=)) axe available

to restorethe registerfilegiven a rollbackof _<N.

The read buffersizerequirement of 2N isthe worst case. The buffer maintains the

lastN registerreads from the GPRF, assuring data redundancy for allvalues required.

The read buffermay alsosave data which isnot required during rollback.Register reads

that must be saved can be determined at compile time. If thisinformation isadded to

the instructionencoding (e.g.,as an extra bitfieldforsource 1 and forsource 2),then the

79

Instruction [Memory I

rollback 4 Sequence __.

/"_-""_'I,: rt = rz*+ ¢ overflow overflow

(.,....._:r_-r_ value(rp,i t,', +¢ vat=#'p value#',)
\ i 14-r,= 5+I '

×

rollback2 S1 I -"

S2 ,=

Read Buffer

GPR

Figure 5.2: Read buffer of size < 2N.

read buffer can be designed to save only those values required. As long as the required

values are maintained for N cycles, a less than 2N read buffer size design is possible.

Figure 5.2 illustrates a case in which all register reads do not have to be placed in the

read buffer. The registers required to be saved are marked with an "*." Since only the

required values axe saved, the read buffer total size can now potentially be less than N.

In this caae, however, the instruction count must also be saved so that the value can be

maintained for at least N cycles. In the event that the read buffer overflows, the oldest

value in the buffer must be pushed to memory and a record kept so that during rollback

the value can be retrieved from memory. Given a dual FIFO depth of M, memory would

serve the function of the remaining N - M of the two FIFOs. This read buffer design

reduces the buffer size while introducing potential performance impacts due to buffer

overflows.

80

A key to the evaluation of a given read buffer design is the set of assumptions made

relative to overflow handling. For example, if a memory store buffer were assumed, there

would be no stall if a single FIFO overflowed and the store buffer was available, given that

the current instruction were not a store. However, if the store buffer were full or if the

current instruction were a store, then a stall would occur. The problem with including

a store buffer in the model is that the performance impact measured would depend on

the store buffer size, clouding the performance impact due to the read buffer alone. The

same dif_culty arises if a cache is included in the model.

It is assumed in this evaluation that a read buffer overflow will always cause a stall

of one cycle. If both FIFOs overflow, a stall of two cycles will occur. This simplifying

assumption is pessimistic relative to a store buffer which may have empty locations, while

optimistic relative to a full store buffer requiring a write to cache. These assumptions

guarantee that all measured performance impacts are directly due to changes in the read

buffer size or configuration.

5.2.1 Read buffer designs

The most straightforward design forthe read bufferisthat ofconfiguration A1, shown

in Figure 5.3. The obvious problem with configuration AI isthat ifthe FIFO connected

to $1 isfulland the current $1 value must be saved, a stalloccurs due to overflow even

though the FIFO connected to $2 may have an availableentry. Configuration A2 in

Figure 5.3 resolvesthis inefficiencyby giving both $I and $2 access to eitherFIFO.

81

S1

82

Configuration A1

$1

$2

Configur_on A2 Configuration B1

$1

$2

Configuration B2 ConfigurationC Configuration D

$1 $1 S1
$2 $2 $2

o Configuration BI: Can store buses S1 and $2 simultaneously.

o Configuration B2: Must stall on second store to single buffer.

o Configurations C & D: Assumes stall on second store to single buffer.

Figure 5.3: Read buffer configurations.

82

Configuration B1 also resolves the inefficiency of configuration A1 by having a single

FIFO with both $1 and $2 connected to it. Configuration B1 assumes that the $1 value

and the $2 value can be saved within the same cycle. This would be possible if the $1

value is saved during the L_st half of the cycle and the $2 vaJue is saved during the second

half of the cycle. This spLit-cycle-save assumption is consistent with the design of register

files which write back during the fLrst half of the cycle and read during the second half

of the cycle [34].

Configuration B2 is identical to configuration B1 except that two saves during the

same cycle are not permitted. If two saves are required during the same cycle (e.g., an

instruction of the form: rz = r; + r;), then a stall to save the second value occurs.

Configuration C attempts to lessen the impact due to the bottleneck in configuration

B2 by adding two single level queues between the S1 and $2 buses and the single FIFO.

Configuration C can absorb one simultaneous save, processing the first in the current cycle

and the second in the next cycle assuming the next instruction does not also require a

simultaneous save. Configuration D extends configuration C to allow both S1 and $2

access to either queue.

5.3 Application Program Execution and Read Buffer Simulation

5.3.1 Simulation approach

The read buffer is simulated at the instruction level. Prior to each instruction execu-

tion, a procedure is called to update the read buffer model. Parameters such as which

83

register reads to save and instruction type are passed to the simulation program. The

drawbacks to this approach are the code growth in the original application program and

the reduction in application run time.

The instructions inserted to branch to the simulation procedure prior to each original

application instruction cannot be added in the high level language. If this were done,

the one-to-one correspondence between original instructions and simulation procedure

calls would be lost. Also the simulation procedure cannot be permitted to affect the

original application by changing register assignments, live ranges, etc. For this reason,

calculation of hazards and subsequent determination of which register reads should be

saved are performed at the s-code level (after register assignment) and the appropriate s-

code level instructions inserted prior to each original s-code instruction of the application

program.

5.3.2 Implementation

To minimize the application code growth, a simple s-code sequence (written for the

MIPS 2000/3000 architecture) shown in Figure 5.4 is inserted prior to each instruction.

The code segment pushes register 31 and register 4 on the stack, loads register 4 with in-

formation relative to the saving of S1 or $2 for this particular instruction, calls rbuf2_save,

and then upon return from rbufR_save restores registers 31 and 4. Register 31 is used

as a return address during procedure calls and therefore will be corrupted. Register 4 is

used to pass parameters in the MIPS compiler convention.

84

Instrumentation codz :/"_'_-...

: _ "--,_ _L "- Original s-code instructions
_ _ _oO°° o G° oo

*. % s °" .." o"

Begin instrument segment: save_srcl - 1, save_src2 - 0

subu $sp, 28
sw $31, 20 ($sp)

sw $4, 24 ($sp)
li $4, I _ l directs read b_er to
jal rbuf2 save save source 1 value
lw $31, 20 ($sp)

lw $4, 24 ($sp)

addu $ sp, 28
End instrument segment.

I addu $25, $23,

Figure 5.4: Instrumentation code segment.

85

Begin rbuf2 save procedure

.verstamp 2 10

.extern lob 60

•extern _pctype 4

•extern ctype 0
•text

•align 2
•file 2 "rbuf2 save.c"

•globl rbuf2_save
•loc 2 10
.ent rbuf2 save 2

rbuf2 save :

._ption Ol

subu Ssp, Ssp, 160
sw $31, 16 ($sp)

sw $30, 20 ($sp)

sw $2, 132 (Sap)

i

i

_o_m_n_ooomoeo_g o
i
i .mask 0x8ffffff, -4

.frame Ssp, 160, $31
i .ioc 2 11

.livereg 0x8ffffff, 0xfff

: .loc 2 12

lw $31, 16($sp)
lw $30, 20($sp)

lw $2, 132 ($sp)

addu Ssp, $sp, 160
j $31
.end rbuf2 save

C-level read buffer
simuladon program

1Ni H i NQ-INII, I H ONg NIN0 _

Figure 5.5: rbufS_save code segment.

The code sequence of Figure 5.4 only saves the two registers necessary to branch to a

procedure. Prior to calling the read buffer simulation procedure, the remaining registers

which axe used must be saved. This was not done in the code segment of Figure 5.4

to limit application code growth. The code sequence, rbufS_save, shown in Figure 5.5

conservatively saves M1 remaining registers on the stack. Both callee and caller saved

registersaxe saved since the standard conventions axe corrupted by the code insertion.

The read buffer simulation procedure, rbuf__sim, is called from the code segment shown

in Figure 5.5. rbufP,.sim can now be modified and re-compiled without a corresponding

modification to the application program or the two previous s-code segments.

86

Similar s-code segments handle initialization and summary calculations. The initial-

ization procedure call is placed in the _main _ module prior to the first instruction. The

summary procedure calls are placed prior to all _jd ex/t n instructions in all modules and

prior to the "j $31 _ instructions in the _main _ module. Performance impact (% increase)

is computed as

stall.cycleJ
100 •

base.cyc/es

Stall cycles result from read buffer overflows. All instructions are assumed to require

one cycle to complete in a pipelined architecture. This is a pessimistic assumption for

performance impact measurement since load and branch delays would give the read buffer

an extra cycle to handle an overflow. The assumption is again made to help isolate read

buffer effects on performance from those of various delay slot filling strategies.

The hazard analysis transformation operates on the s-code emitted by the MIPS code

generator of the IMPACT C compiler [32]. The transformation determines which register

reads should be saved by the read buffer and inserts calls to the initialization, simulation,

and summary procedures as described earlier. The resulting s-code modules are then

compiled and run on a DECstation 3100. For the study, a rollback distance of 10 was

selected. Given a rollback distance of 10, a read buffer size of 20 (for configurations A1,

A2, and B1) will produce zero performance impact. Table 5.1 lists the ten application

programs studied. Size is the number of assembly instructions emitted by the code

generator, not including the library routines and other fixed overhead.

Table 5.1: Application

Program I!Size
QUEEN 148

WC 181

,QSO T 252.
CMP 262

GREP 9O7

PUZZLE 932
COMPRESS 1826

LEX 6856

YACC 8099

CCCP 8775

87

programs: read buffer sizestudy.

]Description

eight-queen program

UNIX utility

quick sort algorithm

UN'IX utility

UNIX utility

simple game

UNIX utility

lexicM analyzer

parser-generator

preprocessor for gnu C compiler

5.4 Results and Analysis

5.4.1 Detailed analysis: QUEEN

Figure 5.6 shows changes in performance overhead (Cycles OH) for various read buffer

sizes and configurations running the QUEEN application. Looking at Figure 5.6, con-

figuration A1, it can be seen that significant performance impact is incurred even with

a modest reduction in read buffer size. As can be seen from the other application runs,

shown in Figures 5.8 through 5.16 (pp. 93 through 97), configuration A1 is consistently

the least efficient of the six configurations studied. 1 This is due to the fact that the dual

FIFO's are dedicated to a single source bus. In many cases saving S1 will cause an over-

flow because the S1 FIFO is full, even though there is room in the $2 FIFO. Configuration

A1 does allow for simultaneous saves of S1 and $2, given sufficient room in each, but this

feature does not compensate for the latter inefficiency. Configuration A2 demonstrates

IAn efficient configuration is one with a low performance overhead given a small read buffer size.

88

Cy_l_s)OH

:t
Conf. AI: 4.-
Conf. A2: -o-
Conf. BI: ..a-.- 80

60: 6O
re.

4o: 4o

2o: 2o

0 0
0 4 8 12 16 20

Read Buffer Size

Conf. B2: --e-
Conf. C: -o-
Conf. D: ..x...

0 4 8 12 16 20
Read Buffer Size

Figure 5.6: Cycle overhead: QUEEN.

the improvement gained by allowing eithersource bus accessto eitherFIFO. Configura-

tion B1 was the most efficientof the six configurationsfor the QUEEN application. In

thisconfiguration a total read buffersizeof 13 would produce zero performance impact

with a 35% reduction in read buffersize.

Comparing configurationsA2 and B1 of Figure 5.6,itcan be seen that configuration

A2 out-performs configuration BI at the smaller buffersizeswhile BI performs slightly

better at the largerbuffersizes.Figure 5.7 illustratesthe operation of read buffer con-

figurationsA2 and BI given an example instructionsequence. Instructionoperands that

require saving are marked with an "*." For the instructionsequence shown, a read buffer

sizeof two, and a maximum rollbackdistance of four,itcan be seen that configuration

BI resultsin one extra overflow. In configuration A2, value(rb) is loaded into the $2

bufferand remains there during subsequent loads of the $I buffer.After instruction/4,

value(r,) becomes invalidsince a rollbackof four instru,ctionswould be to/2. A similar

89

Instaztion Sequeac, C_tio_ A2

S2

................15: r_ =r_=*-==-=_-i+rJ [..... overflow°Verfl°wv_(Gvat_(r"))

r and rb become invalid overflow valuar.)

(maxinmm mUback = 4)

Configuration B1

$2

t val_(r_)

erllow w/(r)

overflow ,,.va/ue(rr)

e traovernow
overflow value(r)

Figure 5.7: Read buffer configurations A2 and BI: buffer size = 2.

scenario is possible with configurations A1. Due to the arrangement of configuration B1,

value(rb) overflows before it becomes invalid, resulting in one extra overflow. As the

buffer size increases, values in the B1 buffer have more time to become invalid before

they reach the head position; extra overflows become less frequent.

Configuration B1 can also produce less overflows than configuration A2. When two

operands require saving in the buffer of configuration B1, the head position and the

head - 1 position of the B1 buffer are checked to see if those positions contain valid

data. When two operands require saving in the buffers of configuration A2, the head

positions of the $1 buffer and $2 buffer are checked. Configuration A2 can require and

extra overflow if one of its two head positions have valid data and one of the head - 1

positions has invalid data. The advantage of configuration B1 (relative to configuration

A2) becomes visible at large read buffer sizes where the previously mention disadvantage

of configuration B1 (relative to configuration A2) diminishes.

90

This characteristic of configuration A2 versus configuration B1 is present in most of

the application results. It should be noted that configuration B1 assumes that simulta-

neous saves of S1 and $2 can be handled within the same cycle. If this latter assumption

is invalid, Figure 5.6, configuration B2, shows that no less than 9.4% performance im-

pact is achieved regaxdless of the read buffer size. The "leveling oil" of B2 is due to the

bottleneck at the single FIFO entry point and not the depth of the FIFO. The fiat part

of the curve shows the percent of instructions requiring simultaneous saves of S1 and $2

in the QUEEN application.

Figure 5.6, configuration C, shows how a single level dual queue placed between the

source bus and the single FIFO can alleviate some of the bottleneck effects. The dual

queue can absorb a single simultaneous save of S1 and $2, distributing the saves over

multiple cycles. A nonzero minimum performance overhead is still present due to cases

in which the dual queue has not emptied before the next simultaneous save occurs.

Figure 5.6, configuration D, shows the results of an improved queue structure which

permits saves from either bus into either queue. This configuration avoids stalls in some

cases (e.g., $2 must be saved while the queue dedicated to $2 in configuration C is full and

the other queue is empty). Configuration D also has a nonzero minimum performance

overhead but gives better performance than configuration C.

The simulation results for QUEEN show that configuration AI is the least efficient

and that given the ability to do split-cycle-saves, configuration B1 is the most efficient.

Without the split-cycle-save capability, configuration D is the best of the single FIFO

91

Table 5.2: Result Summary.

RB_size

A2[B1
14 12

8

15

11

10

9

12

12

15

12

WC 10
, .|

QSORT 16
CMP "12"

GREP I0

PUZZLE 10

COMPRESS' 12

LEX 12

YACC 16

CCCP 12

OH_level (_)

A2 I B1

1.66 1.36

0.00 2.54

2.28 0.94
0.00 0.00

0.18 0.18

2.87 0.32

2.87 1.12

2.73 1.55

1.07 0.00
2.34 1.74

designs resulting in a minimum performance overhead of 4.5%, and configuration A2 is

the best of the dual FIFO designs resulting in a 1.7% performance overhead with a read

buffer size of 14. For configurations B1, B2, C, and D, a total read buffer size of 13 is

sufficient to maximize performance. 2

5.4.2 Evaluation of allapplicationprograms

Results for the other nine applicationprograms are similarto those for QUEEN and

can be found in Figures 5.8 through 5.16 (pp. 93 through 97). The differencesbetween

the applicationresultsare the points at which the curve "levelsoff" (i.e.,the buffersize)

and, in the case of configurationsB2 through D, at what levelthe performance overhead

stabilizes.Table 5.2 summarizes measurements obtained for the ten applicationsgiven

the two most efficientconfigurations,A2 and BI. It is assumed for this study that

2Two must be added to each read buffersizevalue in C and D to account for the queues.

92

minimal performance overhead can be tolerated as a result of read buffer size reduction.

For this reason, configuration comparisons are made at read buffer size values which

produce low values of performance overhead. Configuration A2 does not level off like

configuration D and does not rapidly approach zero like configuration B1. For a better

comparison of configurations A2 and B1, Table 5.2 gives the read buffer size value where

the performance overhead value drops below 3%. The read buffer size value is referred

to as RB_size and the performance overhead value is referred to as OH_level.

It can be seen from Table 5.2 that the read buffer size requirement is roughly the

same, per application, regardless of the split-cycle-save assumption (i.e., comparing con-

figurations A2 and B1). The size requirement is application dependent - from 8 for WC,

to 15 for QSORT and YACC. The measurements show that a considerable reduction

in read buffer size is achievable. Given the split-cycle-save assumption and configura-

tion B1, a minimum of 25%, a maximum of 60%, and an average of 42% reduction was

achieved. For configuration A2 and no split-cycle-save assumption, a minimum of 20%, a

maximum of 50%, and an average of 38.0% reduction was achieved. The measurements

indicate that care should be taken relative to the ultimate selection of read buffer size.

Given the steepness of the B1 curve around the RB..size value, small decreases in size

can produce large performance overheads.

As seen in these results, the full 2N read buffer size is not required for full on-path

hazard resolution and negligible performance overhead given a wide variety of applica-

tion programs. Slightly smaller read buffer sizes axe possible given the split-cycle-save

93

capability. As indicated by our measurements, placing a single level queue between the

source buses and a single FIFO (configurations C and D) was not as effective as a dual

FIFO where each source bus has access to each FIFO (configuration A2). When the spLit-

cycle-save capability was not assumed and a single FIFO was used, QUEEN, QSORT,

COMPRESS, LEX, YACC, and CCCP showed moderate performance overheads regard-

less of buffer size.

oH oa
I00-_ Conf. AI: -0- I00

Conf. A2: -a-
Conf. BI: ..N...

'k2
v I I I I " T--T'-T--T-- T--T

0 4 8 12 16 20

Coaff. B2: -.e-
Conf. C: -0-

80 Conf. D: ..x-.-

t "; D

1 l I T--T--T--T--T-- F- T

0 4 8 12 16 20
Read Buffer Size

Figure 5.8: Cycle overhead: WC.

94

Cycles)OH
I00-_

I

80.1

40-

0
0

Conf. AI:
Conf. A2: -Q-
Conf BI _¢

• : 80
6O

2O

a._ 0
I I i I I | I T'-T--T

4 8 12 16 20
Read Buffer Size

Cycl_)OH

I00 C(mf. B2: --e--
Conf. C: -a-
Conf. D: .-K...

0 4 16 20
Read Buffer Size

Figure 5.9: Cycle overhead: QSORT.

CyclesOH
%)

100 Conf.AI: -.e--
Conf.A2: -a-

80 ___K"x Conf.BI: ..K...

t.

I 1 I I 1 "-r T T--T -T

0 4 8 12 16 20
Read Buffer Size

Cycle.s OH
(%)

I00-

0 ' _

0

Conf. B2: -0-
Conf. C: -o-
Conf. D: --K...

4 8 12 16 20
Read Buffer Size

Figure 5.10: Cycle overhead: CMP.

95

Cycl_%)OH
100- Conf. AI: -e-

Cy_l_)OH

100

' _,_...._",'._,,. Conf.A2: -o-so_ _nf.m: ..,,.-. so
%_ i

o
0 4 20

Conf. B2: -o-.
Conf. C: -o-
Conf. D: ..x...

8 12 16
Read Buffer Size

_ _k'2_"2_"2 "2_"2"2__ e'__ "2

, , , ,_7-"7-_-_--_-_ "
0 4 8 12 16 20

Read Buffer Size

Figure 5.11: Cycle overhead: GREP.

Cycle)OH

J

t511-

4o-

20_
ol

0

Conf. AI: -4-
Conf. A2: -o-
Conf. BI: ..K...

"s

4 8 12 16 20
Read Buffer Size

Cycles OH

100 -.] Conf. B2: --e-
-4 Conf. C: -o-

80 Conf. D: ..K---

60

4O

20

0G i.§___'_'_
I I I I --T-'T "-I -'T'-T "]4 8 12 16 20

Read Buffer Size

Figure 5.12: Cycle overhead: PUZZLE.

96

Cy_l_s) OH

100-

0
0

Conf. AI: _--
Conf. A2: -a-

_._x.N.x Conf. BI: ..K... 80

411

, , , , , ,--_-_-_-',V 0
4 8 12 16 20 0

Read Buffer Size

Cycles OH
(%)

I00- Cmlf. B2: --e-
Conf. C: -a-

Conf. D: ..x--.

.K..K.K.K.K.K-K.K

1 _ i _ I l I I I T12 16 20
Read Buffer Size

Figure 5.13: Cycle overhead: COMPRESS.

Cycles OH
(%)

100"_'_. x Conf.AI: -o--
- "__ _x Conf.A2: -a-

"_Conf.
80 - BI: .-K...

o: ,...iiii20

0 4 8 12 16 2O
Read Buffer Size

Cycl_%)OH

I00. _ Conf.B2: --_
'_.;/:s Conf.C: -o-

80 " "k"_. Conf. D: .-K.--

40

I I I I I I I I I I

0 4 8 12 16 20
Read Buffer Size

Figure 5.14: Cycle overhead: LEX.

97

Cycles OH
%)

100 s_.sN._. Conf. AI: 4.-
-x._,% Conf. A2: -o-

80 _'_ Conf. BI: ..K...

0 ,,,,,, ,-?_T---_
0 4 8 12 16 20

Read Bufl'_" Size

Cycles OH
(%)

100:

so:

4o:

20-

0
_, I l I ! l I I I0 8 12 16 20

Read Buffer Size

Conf. B2_ 4-
Conf. C: -0-

•_¢ Conf. D: .-K.-.

X:QQ_
x.g._ x.x-g.x.x

Figure 5.15: Cycle overhead: YACC.

Cycles OH

1004

40-

211

0
0

ConL AI: .-e-
,.K _. Conf A2" -o-

_ ..,,..
""% i

I I I I I I V - r -]- -T

4 8 12 16 20
Read Buffer Size

CyclesOH
(%)

I00._

I
I
I

I

1
)

411 I
I

20

0
0

Conf. B2:
Conf. C: -o-
Conf. D: .._.,-

X.

I I 1 I I I I ! I I

4 8 12 16 20
Read Buffer Size

Figure 5.16: Cycle overhead: CCCP.

98

5.5 Summary

By adding extra bits to the operand field for source 1 and source 2, it becomes possible

to design the read buffer proposed in Chapter 3 to save only those values required,

thus reducing the read buffer size requirement. The performance cost of the buffer size

reduction is occasional read buffer overflows which result in stall cycles. Results show

that two read buffer configurations were the most et_cient. The dual FIFO with source

bus access to each and the single FIFO with the split-cycle-save capability consistently

out-performed the other configurations. There were moderate variances between the

buffer sizes required for minimum performance impact between the ten applications and

the performance stabilization value assuming no split-cycle-save capability. Up to a 55%

read buffer size reduction is achievable with an average reduction of 39.5% given the

most efficient read buffer configuration for the applications. It was also found that given

the split-cycle-save assumption sad single FIFO configuration, significant changes in the

performance overhead result from small changes in the read buffer size. This indicates

that care should be taken in the final selection of read buffer size in any given design.

99

6. MIR TECHNIQUES APPLIED TO SPECULATIVE EXECUTION REPAIR

6.1 Objectives

Speculative execution isan effective method to increa_ instructionlevelparallelism

which can be exploited by both super-scalar and VLIW architectures. The key to a

successful general speculation strategy is a repair mechanism to handle mispredicted

branches and accurate reporting of exceptions for speculated instructions. Speculative

execution repair (SER) strategieshave been proposed which trade-offspeculation scope,

hardware complexity, and software complexity. Many of the difficultiesencountered

during recovery from branch misprediction,or from instructionre-execution due to ex-

ceptions, are similar to those encountered during multiple instructionrollback (MIR).

This chapter investigatesthe applicabilityof compiler-assistedinstructionrollbackto aid

in SER.

6.2 Introduction

100

Super-scalarand VLIW architectureshave been shown effectivein exploitinginstruc-

tion levelparallelism(ILP) present in a given application[32,35,36]. Creating additional

ILP in applicationshas been the subject of much study in recent years [37-39]. Code

motion within a basic block is insufficientto unlock the fullpotential of super-scalar

and VLIW processors with issue rates greater than two [32].Given a trace of the most

frequently executed basic blocks, limited code movement across block boundaries can

create additional ILP at the expense of requiring complex compensation code to ensure

program correctness[40].Combining multiple basic blocks into superbloc_ permits code

movement within the superblock without the compensation code required in standard

trace scheduling [32].

General upward and downward code movement across trace entry points (joins)and

general downward code motion across trace exitpoints (branches, or forks)ispermitted

without the need for specialhardware support [40].Sophisticated hardware support is

required,however, for upward code motion acrossa branch boundary. Such code motion

is referred to as speculative ezecution and has been shown to substantially enhance per-

formance over nonspeculated architectures [41--43]. This chapter focuses on the support

hardware for speculative execution, which is responsible to ensure correct operation in

the presence of excepting speculated instructions and mispredicted branches.

101

"2'" J
7 Q
,' @
! •
_m

iv t• i

.: r,=r,+r,.. . i [r4=r_+
V

rz in liveou$ of taken path

!m

C • •

I i

Sl:_cudaledi_L_u'ucdontraps

Figure 6.1: Speculative execution.

6.3 Speculative Execution

Figure 6.1 illustrates the two basic problems which are encountered when attempting

upward code motion across a branch. First, if the speculated instruction (i.e., an instruc-

tion moved upward past one or more branches) modifies the system state, and due to

the branch outcome the speculated instruction should not have been executed, program

correctness could be a_fected. Second, if the speculated instruction causes an exception,

and again due to the branch outcome, the excepting instruction should not have been

executed, program performance or even program correctness could be affected.

6.3.I Branch repair

Figure 6.2 shows an original instruction schedule and a new schedule after speculation.

Instructions d, i, and f have been speculated above branches c and g from their respective

102

a a

b (S)d

d b

• (s)f

f [_-_j

LI: [_-_ k _e

h
i h

L2:

RB._c: d

c

f

jumpL1

RB_g: h

i

jumpL2

Original Recovery
Schodule Schedule Blocks

Figure 6.2: Branch repair.

fall-through paths. 1 Speculated instructions are marked "(s)." The motivation for such

a schedule might be to hide the load delay of the speculated instructions or to allow more

time for the operands of the branch instructions to become available. If c commits to the

taken path (i.e., it is mispredicted by the static scheduler), some changes to the system

state that have resulted from the execution of d, i, and f, may have to be undone. No

upcl_te is required for the PC; execution simply begins at j. If instead, c commits to the

fall-through path but 9 commits to the taken path, then only i's changes to the system

state may have to be undone.

Not all changes to the system state are equally important. If for example, d writes to

register r= and r= _ live_in(j), then the original value of r= does not have to be restored.

Inconsistencies to the system state as a result of mispredicted branches exhibit similarities

1For this example it is assumed that the fall-through paths are the most likely outcome of the branch

decisions at c and 9-

103

to branch hazards in multiple instruction rollback. The two differences in how branch

hazards are determined for speculative execution are: 1) the walk to record variable

assignments, described in Properties 1 and 2 of Section 3.2, begins at the immediate

predecessor of the branch in question (Ib) and proceeds in a backwards progression, i.e.,

(m)Ib-x, (')I_-2, ... (°)I6-_, and 2) only speculated instructions are considered in the walk.

The walk distance N for speculative execution is the maximum distance from (')Ib-1 to

(°)I,_ along any backwards walk, where I_ was speculated above Ib. A branch hazard

hb(d,j) exists in Figure 6.2 if d writes to register rz and j reads rz.

Given the similarity between branch hazards due to instruction rollback and branch

hazards due to speculative execution, compiler-driven data-flow manipulations, similar

to those presented in Chapter 3, can be used to resolve branch hazards that result from

speculation. Such compiler transformations have been proposed for branch misprediction

handling [42]. Since re-execution of speculated instructions is not required for branch

misprediction, compiler resolution of branch hazards becomes a sufficient branch repair

technique.

6.3.2 Exception repair

Figure 6.2 aJso demonstrates the handling of speculated trapping instructions. If

d is a trapping instruction and an exception occurred during its execution, handling

of the exception must be delayed until c commits so that changes to the system state

are minimized, and in some cases to ensure that repair is possible in the event that

c is mispredicted. If c commits to the taken path, the exception is ignored and d is

104

handled like any other speculated instruction given a branch mispredict. If c was correctly

predicted, three exception repair strategies are possible. The First is to undo the effects

of only those instructions speculated above c (i.e., d, i, and f) and then branch to a

recovery block RB_c [43]as shown in Figure 6.2. The address of the recovery block can

be be obtained by using the PC value as an index intoa hash table.This strategy ensures

precise interrupts [14,44] relativeto the nonspeculated schedule but not relativeto the

originalschedule. Recovery blocks can cause significantcode growth [43]. The second

strategy undoes the effectsof allinstructionssubsequent to d (i.e.,{,b,and f), handles

the exception and resumes execution at instructioni [42].This latterstrategy provides

restartablestatesand does not requirerecovery blocks. A third exception repairstrategy

undoes the effectsof only those subsequent instructionsthat axe speculated above c (i.e.,

only iand f), handles the exception, and resumes execution at instructioni,however, this

time only executing speculated instructionsuntilc is reached. The improved efficiency

of strategy 3 over that of strategy 2 comes at the costof slightlymore complex exception

repairhardware.

When a branch commits and is mispredicted, the exception repair hardware must

perform three functions: i) determine whether an exception has occurred during the

execution of a speculated instruction,2) if an exception has occurred, determine the

PC value of the excepting instruction,and 3) determine which changes to the system

state must be undone. Functions 1 and 2 are similarto error detection and location in

105

fl_m

below --_
branch

fl',:_('2)1-......................
:',,,

I i

•o° rollback --"_i

• a
•

I I ' t'''"
• nCX. •
• taken •

Figure 6.3: Exception repair.

multiple instruction rollback. Function 3 is similar to on-path hazard resolution in mul-

tiple instruction rollbarak. As discussed in Chapter 3, on-path hazards assume that after

rollback, the initial instruction sequence from the faulty instruction to the instruction,

where the error was detected, is repeated.

Figure 6.3 iUustrates the speculation of a group of instructions and re-execution strat-

egy 3. The load instruction traps, but the exception is not handled until the branch

instruction commits to the faLl-through path. Control is then returned to the trapping

instruction. This scenario is identical to multiple instruction rollback where an error oc-

curs during the load instruction and is detected during the branch instruction. For this

example, only rx must be restored during rollback since r4 and r5 will be rewritten prior

to use during re-execution. Figure 6.3 shows that exception repair hazards in speculative

106

execution are the same as on-path hazards in multiple instructionrollback,and a read

buffer as described in Chapter 3 can be used to resolvethese hazards. The depth of the

read bufferisthe maximum distance from]'6to In along any backwards walk, where In

isa trapping instructionand was speculated above branch instruction16.

6.3.3 Schedule reconstruction

Assumed in Figures 6.2 and 6.3 are mechanisms to: I) identifyspeculativeinstruc-

tions,2) determine the PC value of excepting speculated instructions,and 3) determine

how many branches a given instructionhas been speculated above. An example of the

lattercase is shown in Figure 6.2 where instructions d, /, and /, are undone if c is

mispredicted; however, only / must be undone ifg ismispredicted.

Ifthe hardware had access to the originalcode schedule, the design of these mecha-

nisms would be straightforward.Unfortunately, staticscheduling reorders instructionsat

compile-time and information as to the originalcode schedule islost.To enable recovery

from mispredicted branches and proper handling of speculated exceptions, some infor-

mation relativeto the originalinstructionorder must be present in the compiler-emitted

instructions.This willbe referredto as schedule reconstruction.

By limitingthe flexibilityof the scheduler,lessinformation about the originalschedule

is required. For example, ifspeculation islimited to one levelonly (i.e.,above a single

branch), a singlebit in the opcode fieldissu_cient to indicate that the instructionhas

been moved above the next branch [41].The hardware would then know exactly which

instructioneffectsto undo (i.e.,the ones with thisbitset).Also,removing branch hazards

107

directly with compiler-driven dat_-flow manipulations permits general speculation with

no schedule reconstruction for branch repair [42].

6.4 Implicit Index Schedule Reconstruction

Implicit inde= scheduling supports general speculation of regular and trapping in-

structions. The scheme was inspired by the han,:lling of stores in the sentinel scheduling

scheme [42] and was designed to exploit the unique properties of the read buffer hardware

design described in Chapter 3. Schedule reconstruction is accomplished by marking each

instruction speculated or nonspeculated and using this marking to maintain an operand

history of speculated instructions in a FIFO queue called a speculation read buffer (SRB).

The SRB operates similar to a read buffer with some additional provisions for exception

handling.

6.4.1 Exception repair using the speculation read buffer

Figure 6.4 shows an original code schedule and two speculative schedules, along with

the contents of the SRB at the time branches Ic and Ig commit. Instructions Id and

I! have been speculated above branch instruction Ic, and I_ has been speculated above

both Ig and Ic. Speculated instructions are marked. This marking identifies the source

operands to be saved in the SRB. Along with the source operand values and corresponding

register addresses, the PC of the speculated instruction is also recorded in the SRB.

Speculated instructions execute normally unless they trap. If a speculated instruction

traps, the exception bit in the SRB which corresponds to the trapping instruction is set

108

Original Schedule Speculated Schedule 1 Speculated Schecule 2

I.: rl - r2 * r3 I.: r1= r2* r_ x.: r+= ,'_. r3

rs

I,: line rI, r,, I/ I_:_ 7)* rs I,:[_)=l"_"_MEM-_)

It: rs=rs+4 Ij,:_._)+ 4 If: _)=_i+ 4

II: v;,"v;,+4 Ic: tmc v1, r3, Ij Ic: tmc v1, r3,

It: tree r8, r7, It I_: chk_except(O01111) Ic: chk_except(llO011)

Ih: v6ffiv6+4 I,: rsfVs+4 I+: rsfvs+4

If: r2 = MEM(r 2) I_ bne rs, r7, Ik Is: bne rs, r7, I t

I_: chk except(110000) I;: chk..except(001100)

I_ =r6 r6+4 Ih: r6 = re + 4

PC Except bit ...] PC F"xcept bit --1

! Reg.No._0 I _ Reg. Ho.-_ [' t l;_i - I1/ x, - o,I/_

, : / I,,1,,,,,_,_181 I i - O ll.4_."

iI+lv . 1Ol I d m/ue(r s) 8 I/
_ Ix,I_-+_l+-I. x,,_ 7 IJ-

SRB Contents SRB Contents

Figure 6.4: Exception repair using a speculation read buffer (SRB).

109

and program execution continues. Subsequent instructionsthat use the resultof the

trapping instructionare allowed to execute normally.

A chILeacept(_)instructionisplaced in the home block of each speculated instruction.

Only one chlc.ezcept_)instructionisrequired for a home block. As the name implies,

ch_eacept_) checks for pending exceptions. The command can simultaneously interro-

gate each location in the SRB by utilizingthe bit field_. As shown in schedule 1 of

Figure 6.4,chh_e.zcept(O01111)in I"checks forexceptions for instructionsId and Id. Ifa

checked exception bit isset,the SRB isflushedin reverseorder,restoringthe appropriate

registerand PC values. Execution can then begin with the excepting instruction.

Figure 6.4 illustratesseveral on-path hazards which axe resolved by the SRB. In

schedule 1,ifI_traps and the branch I= commits to the taken path, I_ has corrupted r_

and 11 has corrupted fT. Flushing the SRB up through I_restoresboth registersto their

values prior to the initialexecution of I#.Note that registerrs isalso corrupted but not

restored by the SRB, sinceafterrollbackre willbe rewritten with a correctvalue before

the corrupted value isused.

Instead of checking forexceptions in each home block,the exception could be handled

when the exception bit reaches the bottom of the SRB. This is very similar to the re-

order bufferused in dynamic scheduling [14].This eliminatesthe costof the ch_ezcept(l_)

command, however, and increasesthe exception handling latency which can impact per-

formance depending on the frequency ofexceptions. In addition,the technique guarantees

110

that exceptions will be processed in the original home block order. For example, in sched-

ule 2 of Figure 6.4, if both I_ and 1f trap, chl_eacept(k) ensures that 1f will be handled

first.

Implicit index scheduling derives its name from the ability of the compiler to locate a

particular register value within the SRB. This is possible only if the dynamically occurring

history of speculated instructions is deterministic at branch boundaries. Superblocks

guarantee this by ensuring that the sole entry into the superblock is at the header and
o

by limiting speculation to within the superblock. For standard blocks, bookkeeping code

[40] can be used to ensure this deterministic behavior.

6.4.2 Branch repair using the speculation read buffer

Branch repair can be handled by removing branch hazards with the compiler. As

shown in Chapter 3, branch hazard removal in multiple instruction rollback can be as-

sisted by the read buffer when "covering" on-path hazards are present, reducing the per-

formance cost of variable renaming. In a similar fashion, the SRB can assist in branch

repair. Figure 6.5 shows the original code schedule and the two speculative schedules of

Figure 6.4. For this example, it is assumed that r2, ra, re, and rr are elements in both

live..in(I_) and live.in(t,).

As shown in schedule 1, if branch instruction I, commits to the taken path, r2, r6,

and rr, which were modified in Ii, Id, and 11i, respectively, must be restored. If instead,

/, commits to the fall-through path and [_ commits to the taken path, only r2 must

be restored. Registers r2 and rr are rollback hazards that result from exception repair;

111

Original Schedule Speculated Schedule I. Speculated Schedule 2

I,: rl f r2 * rs

It,." r3f r4 + r5

Ic: bner 1, r_, Ij

I_ r6 = rT . r8

It: rs= rs + 4

If: ,7= r7+ "1

Is: bne r&, r7, I,

Ih: r6= r6 + 4

I_: r2 = MEM(r 2)

2N

14

I i

Exceptbit--]
Reg'N°'l _ [

[
I i

- oil|

I,: rl=r2* r_ L: rl=r2* r._

Ib:_+ r5 :ibi_Tr?})

I,: bne _, "3, lj x_: bnc r_, _, Xj

Ic: r&=r a+4 It:

I_ brm rs, rT, Ik I_

Ih: r6= r6+ 4 Ih:

I j:

Ik:

If - 0

Ii - 0

I_ va/ue(r2) 2

Id va/ue(r)

,,i

I c 2N
tl 0

$ r

h d

Ij:_.Io111o)

It: flushe(lO0000)

rs= rs+ 4

bne rs, r7, Ik

r_= r_ + 4

fl_h(111010) _

fl_001000) -]

SRB Contents SRB Contents

Figure 6.5: Branch repair using a speculation read buffer (SRB).

112

therefore, the SRB contains their unmodified values. By including a flush(k) command at

the target of Ie and Ig, the SRB can be used to restore r2 and/or r_ given a misprediction

of Ic or I_.

The flush(k) command selectively flushes the appropriate register values given a

branch misprediction. For example, in schedule 2 of Figure 6.5, if Ie is predicted cor-

rectly and I e is mispredicted, the SRB is flushed in reverse order up through li, restoring

value(r2) from Ii but not restoring value(r_) from I 1. Since speculation is always from

the most probable branch path, the flush(k) command is always placed on the most

improbable branch path, minimizing the performance penalty. Not all branch hazards

are resolved by the presence of on-path hazards. These remaining hazards can either

be resolved with compiler transformations or by inserting MOV r0, r= instructions as

described in Section 3.3. It would be necessary to mark the MOV instruction speculated

to ensure that r= is loaded into the SRB.

6.5 SRB Flush Penalty

The examples of Section 6.4 demonstrate that the compiler-assisted multiple instruc-

tion rollback scheme presented in Chapter 3 can be applied to both branch repair and

exception repair in a speculative execution architecture. The flush penalty of the read

buffer is not a key concern in multiple instruction rollback applications since instruction

faults are typically very rare. In application to exception repair in speculative execution,

the SRB flush penalty is also not a major concern due. to the infrequency of exceptions

113

involving speculated instructions. However, in application to branch repair, the SRB

flush penalty could produce significant performance impacts. Studies of branch behav-

ior show a conditional branch frequency of 11% to 17% [34]. Static branch prediction

methods result in branch mispredictions in the range of 5% to 15_. This results in a

branch repair frequency as high as 2.5%. Assuming a CPI (clock cycles per instruction)

rate of one and an average SRB flush penalty of ten cycles, the performance overhead

of the flush mechanism would reach 22.5%. This indicates the importance of minimizing

the amount of redundant data stored in the SRB so that the flush penalty is reduced.

In Chapter 5, several read buffer configurations were studied. A technique was pro-

posed to reduce the amount of redundant data in the read buffer so that the read buffer

size could be reduced. A similar technique can be used to assure that only the data

required for branch and exception repair is stored in the SRB. In the implicit index

scheme of Section 6.4, a bit indicating whether an instruction is speculated is added to

the opcode field. By expanded this field to two bits, operand storage requirements can be

specified. Figure 6.6 shows the reduced contents of the SRB given schedule 1 of Figure

6.5. In the modified scheme, only the first read of r7 must be maintained. Register rs

is not required since it was not modified. The improved scheme also eliminates blank

spaces in the SRB. For this example, the misprediction of Ic in schedule 1 of Figure 6.5

results in four less variables to flush.

The coding of the two speculation bits would be as follows: 00) no save required,

01) save operand 1, 10) save operand 2, and 11) save both operands. If neither operand

114

[!I
I c 2N
U 0

$ r

11 d

PC F-_c_IXbit

Reg. No.

I_ va/ue(r 7) 7

I_ va/ue(r_ 2

SRB C(_tents

Figure 6.6: SRB with reduced content.

of a speculated instruction has be saved in the SP_B, the instruction is not marked as

speculated. This is not a problem for branch repair: however, if such an instruction traps,

the hardware would have no way of knowing not to handle the exception immediately.

There would also be no entry in the SRB for the exception bit or for the corresponding

PC value. One solution to the problem would be to add another bit to the opcode field

which marks speculated trapping instructions. A better solution is to code all speculated

trapping instructionsas 01. This willindicate that exception handling is to be delayed

and cause a reservation of an entry in the SRB. This latter approach will slightly increase

the flush penalty during branch repairs. Separate SRBs could be maintained for branch

and exception repairs.

115

Instrumentation code -"/__._....

i ". "._..I... ...: Originalsco_ _m_c_o_
• _ oo o ooo •

'... /
/

Figure 6.7: Instrumentation code placement.

6.6 Performance Evaluation

6.6.1 Evaluation methodology

In this section,the read buffer flush penalty isevaluated using a similar strategy to

the one presented in Chapter 5. The instrumentation code segments of Figure 6.7 calla

branch error procedure which performs the followingfunctions:

1. Update the read buffermodel.

2. Force actual branch errors during program execution, allowing execution to proceed

along an incorrect path for a controlled number of instructions.

3. Terminate execution along the incorrectpath and restorethe required system state

from the simulated read buffer.

4. Measure the resultingflushcyclesduring the branch repair.

5. Begin execution along the correct path until the next branch is encountered.

116

An example instrumentation code segment is shown in Figure 6.8. Parameters, such

as operand saving information, current PC, branch faLl-though PC, and branch target

PC values, are passed by the instrumentation code to the branch error procedure. An

additional miscellaneous parameter contains instruction type and information used for

debugging.

Figure 6.9 gives a high level flow of operation for branch error procedure. When a

branch instruction in the original application program is encountered, an arm_branch flag

is set. Prior to the execution of the next application instruction, the arm_branch flag is

checked, and if set, the branch decision made by the application program is set aside.

The branch is then predicted by the branch prediction model. Four models are used in

the evaluation: 1) predict taken, 2) predict not taken, 3) dynamic prediction, and 4)

static prediction from profiling information. The dynamic prediction model is derived

from a two bit counter branch target buffer (BTB) design [45] and is the only model that

requires updating with each prediction outcome.

After the branch is predicted, the prediction is checked against the actual branch

path taken by the application program. If the prediction was correct execution proceeds

normally. If the prediction was incorrect, the correct branch path is loaded into the

recovery queue along with a branch error detection (BED) latency, and the predicted path

is loaded into the PC. The BED latency indicates how long the execution of instructions is

to continue along the incorrect path. The branch error time_oat flag is set when the BED

latency is reached. When a branch error is detected, the register file state is repaired by

117

$ simlb 2 24 0:

T instruCtiOn 24

Begin brsim sim hook: sl - 16, s2 - 0- normal

_sp, 44subu
la Sat,

sw Sat,

la Sat,
sw Sat,

la Sat,

sw Sat,
li Sat,

sw Sat,

li Sat,
sw Sat,

move Sat,

#

$ simlb 2 24 i:

addu $16,

$ simlb 2 25 0:

$ s imlb 2 24 0 _ hook_d_ss
2_($sp)

$ simlb 2 24 1 _ _Iuc_onadress
2_ ($sp)
$ s imlb 2 25 0 _ next hook address

2_($sp)
8216 -_

32 ($#p)
16 _

40 ($sp)

$sp

m_w_r_ous

directs read buffer to save
register 16

j brsim save
End brsim sim hook.

$16, 4 --

Q

instruction 25

Begin brsim sim hook: sl - 16, s2 - 9: branch

_sp, 44subu
la Sat,

sw Sat,

la Sat,

sw $ at,

la Sat,

sw Sat,

ii Sat,

sw Sat,

la Sat,

sw Sat,

li Sat,

sw Sat,

move $at,

#

$_simlb 2 25 i--

bne $16,

$ main_6 :

$ s imlb 2 25 0 _ hook address

2_ ($sp)
$ s imlb 2 25 1 _ _uucdo_ adress

24 ($sp)

$ main 6 _ , ncxthookadd_ss
2 ($sp7
532505 • m_lL_neous

32 ($sp)

$ main 5 _ mrget addr_s

($sp7
3 0 4 -_ directs read buffer to save
40 ($sp) _ 16 and 9

$sp
j brsim save

End brsim sim ho_k.

$9, $_main_5 on n-Iksu o.

Figure 6.8: Instrumentation code sequences.

118

I: PC <- p_c_ paz.h
load recovery queue
with not _dicted path

I set branch error
detection latency
in x_covcry queue

I

recovery
queue

: restore GPRF fi'om

RB model, record
flush cycles

load PC from
recovez _queue

PC

GPRF

RB

BPM

- program counter

- general purpose register file

- read buffer

- branch prediction model

Figure 6.9: Branch error procedure operation.

119

the read buffer.The PC value of the correct branch path isobtained from the recovery

queue. The number of cyclesrequired to flush the read bufferduring branch repair is

alsorecorded.

Itisassumed for thisevaluation that two read bufferentriescan be flushed in a single

cycle. This corresponds to the split-cycle-saveassumption of Chapter 5. Performance

overhead due to read bufferflushes(% increase)iscomputed as

flush_cycle8
Flush_OH -" 100 *

total_cycles

All instructions axe assumed to require one cycle for execution. This is conservative

since the MIPS processor used for the evaluation requires two cycles for a load. The

additional cycles would increase the total_cycles and thereby reduce the observed perfor-

mance overhead. In addition to accurately measuring flush costs, the evaluation verifies

the operation of the read buffer and its ability to restore the appropriate system state

over a wide range of applications.

The instrumentation insertion transformation operates on the s-code emitted by the

MIPS code generator of the IMPACT C compiler [32]. The transformation determines

which operands require saving in the read buffer and inserts calls to the initialization,

branch error, and summary procedures. Initialization and summary calculations axe

handled as in Chapter 5. The resulting s-code modules are then compiled and run on a

DECstation 3100. For the evaluation, BED latencies from 1 to 10 were used. Table 5.1

(p. 87) lists the ten application programs evaJuated.

120

6.6.2 Evaluation results

Experimental measurements of read buffer flush overhead (Flush OH) for various

BED latencies are shown in Figures 6.10 through 6.14 (pp. 122 through 124). The four

branch prediction strategies used for the evaluation are referred to as: 1) predict taken

(PoTal_en), 2) predict not taken (P_NoTaken), 3) dynamic prediction based on a branch

target buffer (DymaVred), mad 4) static branch prediction using profiling data (Prof_Pred).

As expected, flush costs were closely related to branch prediction accuracies, i.e., the

more often a branch was mispredicted, the more often flush costs were incurred. In a

speculative execution architecture, branch prediction inaccuracies result in performance

impacts in addition to the impacts from the branch repair scheme. Branch mispredic-

tion increases the base run time of an application by permitting speculative execution

of unproductive instructions. Increased levels of speculation increase the performance

impacts associated with branch prediction inaccuracies. Only the performance impacts

associated read buffer flushes are shown in Figures 6.10 through 6.14.

For nine of the ten applications, P_N. Taken was significantly more accurate or marginally

more accurate in predicting branch outcomes than P_Taken. For QSORT, P_Taken was

significantly more accurate than P..N_Takem This result demonstrates that in a spec-

ulative execution architecture, it is difficult to guarantee optimal performance across a

range of applications given a choice between predict-taken and predict-not-taken branch

prediction strategies.

121

For all but one application, Prof_Pred was more accurate than either P_Taken or

P_N_ Taken. For CMP, Prof.Pred, P_N. Taken, and Dyn.Pred were nearly perfect in their

prediction of branch outcomes. Prof.Pred marginally outperformed Dyn_Pred in all ap-

plications except LEX.

The purpose of measuring read buffer flush costs given the recovery from injected

branch errors is to establish the viability of using a read buffer design for branch repair

for speculative execution. Although in such a speculative schedule only static prediction

strategies would be applicable, the Dyn..Pred model was included to better assess how

varying branch prediction strategies impact flush costs. Overall, the accuracy of D_ln_Pred

feU between P_ Taken/ P_N_ Taken and Prof.Pred.

Over the ten applications studied, read buffer flush overhead ranged from 49.91% for

the P_Taken strategy in CCCP to .01% for the P_N_Taken strategy for CMP given a

BED of ten. It can be seen from Figures 6.10 through 6.14 that a good branch prediction

strategy is key to a low read buffer flush cost. The results show that given a static branch

prediction strategy using profiling data, an average BED of ten produces flush costs

no greater than 14.81% and an average flush cost of 8.12% across the ten applications

studied. This performance overhead is comparable to the overhead expected from a

delayed write buffer scheme with a maximum allowable BED of ten [12]. However, given

a maximum BED of ten and an average BED of less than ten, the flush costs of the read

buffer would be less than that of a delayed write buffer, because a delayed write buffer

122

isdesigned for a worst-case BED and the flushpenalty of a read buffer isbased on the

average BED.

The BED for a given branch in thisevaluation corresponds to the number of instruc-

tions moved above a branch in a speculative schedule. The resultsof the evaluation

indicate that ifthe average number of instructionsspeculated above a given branch is <

10, then the read bufferbecomes a viableapproach to handling branch repair.

FlushOH Flush OH
(%) (%)

50-

40-

30-

P_Tak_
P_N Takem- o-
I ,-Pmd: ..,,...
Prof..Pred: .-4.-

i_ P_Talmn: -._

P_N_Taken:- a-
Dyn_Pred: .._,...
Prof_Pred: -4.

3

I _ I"Q.... x..... 20

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
BED Latency BED Latency

Figure 6.10: Flush penalty: QUEEN, WC.

123

Flush OH
%)

50" P Taken:
P N3aken:-o-

40-Df :: .--.-.
_ -A-

Flush OH
(%)

50- p Taken:
P-_N_Takem- o -

40- Dyn_Pred: ..o,...
Pmf_Pred: --4--

30-

20 20"

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 910
BED Latency BED Latency

30-

Figure 6.11: Flush penalty: COMPRESS, CMP.

FlushOH Flush OH
(%) (%)

_t P_Taken: _-
p N T_-o-
D KPred:
Prof_Pred: -4.-

307

20-

I0"

0

50"[p Taken:
/

P_N_Taken:-o-

20__]_ ,,,Q""'::'.__.. g -_
.._ _--_.-6--_--_'

I I I I I 1 I

2 3 4 5 6 7 8 6 10 1 2 3 4 5 6 7 8 9 10
BED Latency BED Latency

Figure 6.12: Flush penalty: PUZZLE, QSORT.

124

Flush OH Flush OH
(gt) (%)

50- P_Taken: -_- 50- P_Taken: _.-
- P_N_Taken:-o- - P_N_Taken:-o-

_ _:_i-_' _ _:_ ___
30_ 30-

-

20- 20-
°. -- .. 6°. Q""

lO] 1_
2 3 4. 5 6 7 8 910 1 2 3 4. 5 6 7 8 910

BED Latency BED Latency

Figure 6.13: Flush penalty: GREP, LEX.

Flush OH
(%)

50- P_Taken: -w-
- P..N_Takem-_-

40- Dyn_Pred: ...-...
Pr0f_Pred: ...4-

30-

1234.5678910
BED Latency

,^ [\ / P_Taken:
_u'] u P_N_Taken:-o -

t "'20

1o[_ .. =.-=--e-.'._..'..'._

O,_,_',m::, , , , , , ,
1234.5678910

BED Latency

Figure 6.14: Flush penalty: YACC, CCCP.

125

6.7 Summary

Speculative execution has been shown to be an effectivemethod to create addi-

tionaiinstructionlevelparallelismingeneral applications.Speculating instructionsabove

branches requires schemes to handle mispredicted branches and speculated instructions

that trap.

This chapter showed that branch hazards resultingfrom branch mispredictions are

similar to branch hazards in multiple instructionrollback recovery. It was shown that

compiler techniques similarto those presented in Chapter 3 can be used as an effective

branch repair scheme in a speculativeexecution architecture. It was also shown that

data hazards as a resultof rollbackdue to exception repairare similarto on-path hazards

described in Chapter 3, indicating that a read bufferapproach to exception repair was

viable.

Implicitindex scheduling was introduced to exploitthe unique characteristicsof roll-

back recovery using a read buffer approach. The read buffer design was expanded to

include PC values to aid in rollback from excepting speculated instructions. Similar to

%overing" on-path hazards discussed in Chapter 3, the read buffer was shown to resolve

some branch hazards without the need for compiler transformations.

Read buffer flush penalties were measured by injecting branch errors into ten target

applications and measuring the flush cycles required to recover from the branch errors

using a simulated read buffer. It was shown that with a static branch prediction strategy

, 126

using profiling data, flush costs under 15% are achievable. The results of these evalua-

tions indicate that the compiler-assisted multiple instruction rollback scheme presented

in Chapter 3 is viable in appUcation to brsach and exception repair in a speculative

execution architecture.

127

7. CONCLUSIONS

7.1 Summary

This thesis has presented a compiler-assist_d multiple instruction rollback scheme

which combines compiler-driven data-flow manipulations with dedicated data redundancy

hardware to remove all data hazards that result from multiple instruction rollback. Ex-

perimental evaluation of the proposed compiler-assisted scheme with a maximum rollback

distance of ten showed performance impacts of no more than 6.57% and an average im-

pact of 1.80%, over the ten application programs studied. The performance evaluation

indicates lower performance penalties than for previous compiler-only approaches or com-

parable hardware-only approaches. Compiler transformations used for hazard removal

have been enhanced reducing application code growth and compile times, and in some

cases improving application execution performance. Ten read buffer configurations were

studied to determine the minimum size requirement for general applications. It was

found that a 55% read buffer size reduction is achievable with an average reduction of

128

39.5%, but that additional control logic to handle read buffer overflows may limit the

overall hardware savings. It was also shown that the proposed compiler-assisted multi-

ple instruction rollback technique can be applied to speculative execution repair. The

problems associated with recovery from mispredicted branches and excepting speculated

instructions were shown to be similar to problems encountered with multiple instruc-

tion rollback recovery. A speculative scheduling scheme was proposed which utilizes

compiler-driven hazard removal transformations and the read buffer to aid in hazard

removal during exception handling and mispredicted branch handling.

7.2 Limitations

The compiler-assisted rollback recovery scheme presented limits system state space

restoration to the register file. Other methods, such as history buffers, would be required

to maintain an N cycle history of the program counter and program status word. Cache

memory and main memory would require an N cycle rollback capability which could

be implemented with an N depth delayed write buffer. Functional units such as the

floating point unit and I/O units would require a rollback capability or a capability

to be flushed and restarted. A spontaneous change to the contents of the register file

is not recoverable by the compiler-assisted recovery scheme, although the propagation

of such errors is recoverable if the errors are detected within N cycles. For enhanced

fault tolerance, error detection/correction codes could be used in the register file. A

similar limitation exists for cache and main memories.. Unlike the previously mentioned

129

limitations, the requirement that an error does not cause an illegal path in the control-

flow graph of the program is unique to compiler-assisted rollback recovery. For enhanced

fault tolerance, a control-flow error detection mechanism with a latency no greater than

one cycle would be required. Finally, the compiler-assisted rollback recovery scheme

requires recompilation of application programs and libraries.

7.3 Future l_esearch

The use of profile data can be extended to the register allocation phase and is expected

to result in further reduction in performance overhead. Application of compiler-assisted

multiple instruction rollback recovery to super-scalar, VLIW, and parallel processing ar-

chitectures is an area with great potential. Given the flexibility of the IMPACT compiler

platform used for current hazard removal transformations, studies of rollback recovery

schemes for the three architectures are feasible and should produce near-term results.

Further evaluations of compiler-assisted rollback recovery applied to speculative execu-

tion repair would include modifying compiler transformations to operate in a super-scalar

and VLIW environment. Again, the flexibility of the IMPACT compiler platform should

simplify this investigation. An additional extension would be to develop and evaluate

a scheme which handles both instruction rollback recovery and speculative execution

repair.

130

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

Is]

[9]

C. L. Chen mad M. Y. Hsiao, "Error Correcting Codes for Semiconductor Memory

Applications: A State-of-the-artReview," IBM J. R_. Dev., vol. 28, no. 2, pp.

124-134, Mar. 1984.

11.M. Sedmak and H. L. Liebergot, =FaultTolerance ofa General Purpose Computer

Implemented by Very Large Scale Integration,"IEEE Trans. Comput., vol.39, pp.

548-554, Apr. 1990.

J. H. Patel and L. Y. Fung, =Concurrent Error Detection in ALU's by Recomputing

with Shifted Operands," IEEE Trans. Comput., vol.C-31, no. 7, pp. 589-591, July

1982.

J. G. Holm and P. Banerjee, =Low Cost Concurrent Error Detection in a VLIW

Archtecture using Replicated Instructions," in Proc. 199/2 Int. Conf. Parallel Pro-
cessing, pp. 192-195, Aug. 1992.

Y. Tamir, M. Liang, T. Lai, and M. Tremblay, _The UCLA Mirror Processor: A

Building Block for Self-Checking Self-RepairingComputing Nodes," in Proc. 21th

Int. Syrup. Fault-Tolerant Comput., pp. 178-185, June 1991.

M. Schuette and P. J. Shen, =Processor Control Flow Monitoring Using Signatured

Instruction Streams," IEEE Trans. Comput., vol. C-36, no. 3, pp. 264-276, Mar.

1984.

T. Sridhar and S. M. Thatte, _Concurrent Checking of Program Flow in VLSI

Processors," in Proc. 198_ IEEE Int. T_t Conf.,pp. 191-199, 1982.

L. Svobodova, "Resilient Distributed Computing," IEEE Trans. Softw. Eng.,

vol. SF_,-10, no. 3, May I984.

L. Lin and M. Ahamad, "Checkpointing and Rollback-Recovery in Distributed Ob-

jectBased Systems," in Proc. _Oth Int.Syrup. Fault-Tolerant Comput., pp. 97-104,

1990.

131

[10]

[11]

[12]

[13]

[14]

[15]

K. Tsuruoka, A. Ksneko, and Y. Nishihara, "Dynamic Recovery Schemes for Dis-
tributed Processes," in IEEE _nd Syrup. Reliability Distributed Soflw. Database

Syst., pp. 124-130, 1981.

W.-M. W. Hwu and Y. N. Part, aCheckpoint Repair for High-Performance Out-of-

Order Execution Machines, _ IEEE Trans. Comput., vol. C-36, pp. 1496 -1514, Dec.
1987.

Y. Tamlr and M. Tremblay, "High-Pefformance Fault-Tolerant VLSI Systems Using
Micro Rollback," IEEE Trans. Compet., vol. 39, pp. 548-554, Apr. 1990.

M. S. Pittler, D. M. Powers, and D. L. Schnabel, aSystem Development and Tech-

nology Aspects of the IBM 3081 Processor Complex," IBM J. Res. Dee., vol. 26,

pp. 2-11, Jan. 1982.

J. E. Smith and A. 1L Pleszkun, aImplementing Precise Interrupts in Pipelined

Processors," IEEE Trans. Comput., vol. 37, pp. 562-573, May 1988.

E. B. Eichelberger and T. W. Williams, "A Logic Design Structure for LSI Testa-

bility, _ in Proc. l_th Design Aetom. Conf., pp. 462--468, 1977.

[16] E. J. McClusky, Logic Design Principles.Englewood Cliffs,N J: Prentice-Hall,Inc.,
1986.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. L. Ciacelli, "Fault Handling on the IBM 4341 Processor," in Proc. 11th Int.
Syrup. Fault-Tolerant Comput., pp. 9-12, June 1981.

R. N. Gustafson and F. J. Sparacio, "IBM 3081 Processor Unit: Design Considera-

tions and Design Process," IBM J. Res. Dev., vol.26, pp. 12-21,Jan. 1982.

W. F. Bruckert and tL E. Josephson, _Designing Reliability into the VAX 8600

System, _ Digital Tech. J. Digital Equip. Corp., vol. 1, no. 1, pp. 71-77, Aug. 1985.

D. B. Fite, T. Fossum, and D. Manley, _Design Strategy for the VAX 9000 System,"

Digital Tech. J. Digital Equip. Corp., vol. 2, no. 4, pp. 13-24, Fall 1990.

P. M. Kogge, K. T. Tmong, D. A. Richard, and R. L. Schoenike, "Checkpoint Retry

Mechanism." United States Patent, no. 4912707, Mar. 1990. Assignee: International

Business Machines Corporation, Armonk, N.Y.

G. L. Hicks, D. Howe, Jr.,and A. Zurla, Jr.,"Insruction Retry Mechanism for a

Data Processing System." United States Patent, no. 4044337, Aug. 1977. Assignee:

International Business Machines Corporation, Armonk, N.Y.

IL M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic Units,"

IBM J. Res. Dev., vol. 11, pp. 25-33, Jan. 1967.

132

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

[33]

[34]

[35]

[36]

L. Sp_inhower, J. Isenberg, 11. ChiUarege, and J. Berding, "Design for Fault-
Tolerance in System ES/9000 Model 900," in Proc. _h Int. Syrup. Fault-Tolerant

Comput., pp. 38--47, July 1992.

J. S. Liptay, "Computer System with Logic for Writing Instruction Indentifying Data

into Array Control Lists for Precise Post-Branch Recoveries." United States Patent,

no. 4901233, Feb. 1990. Assignee: International Business Machines Corporation,
Armonk, N.Y.

J. S. Liptay, _l'he ES/9000 High End Processor Design," IBM J. Res. Dev., vol. 36,

no. 3, May 1992.

C.-C. J. Li and W. K. Fuchs, "CATCH - Compiler-Assisted Techniques for CHeck-
pointing," in Proc. Y2OthInt. Sgmp. Fault-Tolerant Comput., pp. 74-81, June 1990.

A. V. Aho, tL Sethi, and J. D. Ullman, Compilers: PrincQ_les, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

C.-C. J. Li, S.-K. Chen, W. K. Fucks, and W.-M. W. Hwu, "Compiler-Assisted

Multiple Instruction Retry." Manuscript, May 1991.

N. J. Ahwine, S.-K. Chen, C.-C. J. Li,W. K. Fuchs, and W.-M. W. Hwu, "Branch

Recovery with Compiler-Assisted Multiple Instruction Retry," in Proc. _2_h Int.

Syrup. Fault-Tolerant Comput., pp. 66-73, July 1992.

J. A. Bondy and U. Murty, Graph Theory with Applications. London, England:

Macmillan Press Ltd., 1979.

P. Chang, W. Chen, N. Wafter, and W.-M. W. Hwu, "IMPACT: An Architecture

Framework for Multiple-lnstruction-lssueProcessors," in Proc. 18th Annu. Syrup.

Comput. Architecture,pp. 266-275, May 1991.

S. Weiss and J. E. Smith, "A Study of Scalar Compilation Techniques for Pipelined

Supercomputers," in Prod. l_nd Int. Conf. Architecture Support Programming Lan-

guages and Operating Syst., pp. 105--111, Oct. 1987.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-

proach. San Mateo, CA: Morgan Kauhnann Publishers, Inc., 1990.

IL P. ColweU, R. P. Nix, J. O'Donnell, D. B. Papworth, and P. K. Rodman, "A VLIW

Architecture for a Trace Scheduling Compiler," in Proc. _nd Int.Conf. Architecture

Support Programming Languages and Operating Syst.,pp. 105-111, Oct. 1987.

J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, "Overlapped Loop Support in the Cy-

dra 5," in Proc. 3rd Int. Conf. Architecture Support Programming Languages and
Operating Syst., pp. 26-38, April 1989.

133

[3r]

[381

[39]

[40]

[41]

[421

[43]

[44]

[45]

B. R. Rau and C. D. Glaeser, "Some Scheduling Techniques and an Easily Schedu-
lable Horizontal Architecture for High Performance Scientific Computing," in Proc.
JdOth Annu. Workshop Microprogramming Microarchiteeture, pp. 183-198, Oct. 1981.

M. S. Lava, "Software PipeUning: An Effective Scheduling Technique for VLIW

Machines," in Proc. ACM SIGPLAN 1988 Conf. Programming Language Design

Implementation, pp. 318-328, June 1988.

A. Aiken mad A. Nicolan, "Optimal Loop Psrallelization," in Proe. ACM SIGPLAN

1988 Conf. Programming Language Design Implementation, pp. 308-317, June 1988.

J. A. Fisher, '_rrace Scheduling: A Technique for Global Microcode Compaction,"
IEEE Trans. Comput., vol. c-30, no. 7, pp. 478-490, July 1981.

M. D. Smith, M. S. Lean, and M. Horowitz, "Boosting Beyond Scalar Scheduling in a

Superscalar Processor," in Proc. 17th Annu. Syrup. Comput. Architecture, pp. 344-
354, May 1990.

S. A. Maktlke, W. Y. Chela, W.-M. W. Hwu, B. It. Rao, and M. S. Schlansker,

"Sentind Scheduling for VLIW and Superscalsr Processors," in Proc. 5th Int. Conf.

Architecture Support Programming Languages and Operating Syst., pp. 238--247, Oct.

1992.

M. D. Smith, M. A. Horowitz, and M. S. Lava, "Ettleient Supersealar Performance

Through Boosting," in Proc. 5th Int. Conf. Architecture Support Programming Lan-

guages and Operating Syst., pp. 248-259, Oct. 1992.

M. Johnson, Superscalar Microprocessor Design. Engiewood Cliffs, N J: Prentice-

Hall, Inc., 1991.

_I. K. Lee and A. J. Smith, "Branch Prediction Strategies and Branch Target Buffer
Design," IEEE Comput., vol. 17, no. 1, pp. 6-22, Jan. 1984.

134

VITA

Neal Jon Alewine was born in , on He received

his B.S. degree in Electrical Engineering from Florida Atlantic University, Boca Raton,

Florida in March of 1980. He was employed by the International Business Machines

Corporation, Boca Raton, Florida, and held several technical and management positions

including design engineer, lead designer, first-level manager, technical assistant to the

General Manager, program manager, and second-level manager. He received his M.S.

degree in Electrical Engineering from Florida Atlantic University in December of 1988

and was selected to participate in the IBM Resident Study Program to pursue doctoral

studies at the University of lllinois at Urbana-Champaign.

After completing his doctoral dissertation, Mr. Alewine will return to IBM at the

Boca Raton facility. His research interests include high-performance microarchitecture,

fault-tolerant computing, and performance evaluation.

