NASA-CR-193102
April 1993 UILU-ENG-93-2215
CRHC-93-06

Center for Reliable and High-Performance Computing

;A

/N 5
s/ e / V4O
S &

COMPILER-ASSISTED
MULTIPLE INSTRUCTION
ROLLBACK RECOVERY
USING A READ BUFFER

Neal Jon Alewine

(NASA-CR~- 193102) COMPILER- ASSISTED N93-27239
MULTIPLE INSTRUCTION QOLLBACK
RECOVERY USING A READ BUFFER Ph.D.
Thesis (Illinois Univ. at
urbana-Champaign) 149 p

unclas

G3/60 0166346

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA- CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE.

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified None '
2a. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING QRGANIZATION REPORT NUMBER(S)
UILU-ENG-93-2215 CRHC-93-06
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION .
Coordinated Science Lab (If applicable)
University of Illinois N/A National Aeronautics &Space Admin.
6c ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)
1101 W. Springfield Avenue
Urbana, IL 61801 Moffett Field, CA
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT I[DENTIFICATION NUMBER
ORGANIZATION 7 (If applicable)
a
8¢. ADORESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
7b ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Compiler-Assisted Multiple Instruction Rollback Recovery Using a Read Buffer

12. PERSONAL AUTHOR(S)

ALEWINE, Neal Jon

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE QF
1%9§EPOAPgRYf‘ar, féfgﬂrh, Day) I'5. PAGE COUNT

Technical FROM_________TO

16. SUPPLEMENTARY NOTATION

17.

COSATI CODES 18. SUBJECT TERMS (Continue on reverse if arecessary and identify by block number)

FIELD

GROUP SUB-GROUP

multiple instruction rollback, read buffer,

compiler-assisted

19. ABSTRACT

Multiple instruction rollback (MIR) is'a technique to provide rapid recovery from transient procesor failures
and has been iplemented in hardware by researchers and slo in mainframe computers. Hardware-based MIR
designs eliminate rollback data hazards by providing data redundancy implemented in hardware. Compiler-
based MIR designs have also been developed which remove rollback data hazards directly with data flow
manipulations, thus eliminating the need for most data redundancy hardware.

This theis focuses on compiler-assisted techniques to ahieve multiple instruction rollback recovery. We
observe that data some hazards resulting from instruciton rollback can be resolved more efficiently by pro-
viding hardware redundancy while others are resolved more efficiently with compiler transformations. A
compiler-assisted multiple instructionrollback scheme is developed which combines hardware-implemented
data redundancy with compiler-driven hazard removal transformations. Experimental performance evalua-
tions were conducted which indicate improved efficiency over previous hardware-based and compiler-based
schemes. Various enhancements to the compiler transformations and to the data redundancy hardware de-
veloped for the compiler-assisted MIR scheme are described and evaluated. The final topic of this thesis
deals with the application of compiler-asisted MIR techniques to aid in exception repair and branch repair
in a speculative execution architecture.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
FJUNCLASSIFIEDAUNUIMITED [SAME AS RPT. CJ oTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

—

—

OD FORM 1473, 83 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete.
UNCLASSIFIED

UNCLASSIFIED -
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

© Copyright by Neal Jon Alewine, 1993

PREGEDING PAGE i Aivie #'C1 FILMED

COMPILER-ASSISTED MULTIPLE INSTRUCTION
ROLLBACK RECOVERY USING A READ BUFFER

BY

NEAL JON ALEWINE

B.S., Florida Atlantic University, 1980
M.S., Florida Atlantic University, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the -
University of Illinois at Urbana-Champaign, 1993

Urbana, Illinois

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

THE GRADUATE COLLEGE

MAY 1993

WE HEREBY RECOMMEND THAT THE THESIS BY

NEAL JON ALEWINE

ENTITLED._COMPILER-ASSISTED MULTIPLE INSTRUCTION

ROLLBACK USING A READ BUFFER

BE ACCEPTED IN PARTIAL FULFILLMENT OF THLE RLEQUIREMENTS FOR

DOCTOR OF PHILOSOPHY

o (S

THE DEGREE OF

Director of Thesis Research

Head of Department

Committee on Final Examinationt

N == .
@(E {bwﬁ Chairperson

Jomr B RN
v

t Required for doctor’s degree but not for master's.

0-517

iil

COMPILER-ASSISTED MULTIPLE INSTRUCTION
ROLLBACK RECOVERY USING A READ BUFFER

Neal Jon Alewine, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1993
W. Kent Fuchs, Advisor

Multiple instruction rollback (MIR) is a technique to provide rapid recovery from
transient processor failures and has been implemented in hardware by researchers and also
in mainframe computers. Hardware-based MIR designs eliminate rollback data hazards
by providing data redundancy implemented in hardware. Compiler-based MIR designs
have also been developed which remove rollback data hazards directly with data flow
manipulations, thus eliminating the need for most data redundancy hardware.

This thesis focuses on compiler-assisted techniques to achieve multiple instruction roll-
back recovery. We observe that data some hazards resulting from instruction rollback can
be resolved more efficiently by providing hardware redundancy while others are resolved
more efficiently with compiler transformations. A compiler-assisted multiple instruction
rollback scheme is developed which combines hardware-implemented data redundancy
with compiler-driven hazard removal transformations. Experimental performance evalu-
ations were conducted which indicate improved efficiency over previous hardware-based
and compiler-based schemes. Various enhancements to the compiler transformations

and to the data redundancy hardware developed for the compiler-assisted MIR scheme

v
are described and evaluated. The final topic of this thesis deals with the application

of compiler-assisted MIR techniques to aid in exception repair and branch repair in a

speculative execution architecture.

DEDICATION

Dedicated to Kuky, Joey, and Larry.

vi

ACKNOWLEDGEMENTS

On the technical side, I would like to thank my thesis advisor Professor W. Kent
Fuchs for his guidance and support throughout my time here at the University of Illinois.
I would also like to express my appreciation to my committee members, Professor Wen-
mei Hwu, Professor Janak H. Patel, Professor Prithviraj Banerjee, and Professor Chung
La.ﬁng Liu, for their support and suggestions. I extend special thanks to Scott Mahlke,
William Chen, Roger A. Bringmann, and John Christopher Gyllenhaal, for their excellent
technical suggestions, and especially to Dr. Chung-Chi Jim Li and Shyh-Kwei Chen, for
their help with the compiler aspects of this thesis.

On the support and human understanding side, I would like to thank my friends from
IBM, Dick Smith, Sue Parliament, Bill Burger, John Klein, and particularly Mike Kelly,
for their unfailing interest in my well-being. I would also like to thank my new friends, in
addition to those already mentioned, Jonathan Simonson, Grant Edward Haab, John G.
Holm, Yi-Min Wang, Paul Chen, Antoine Mourad, Bob Janssens, Professor Saab, and
Vicki McDaniel, to name only a few.

Finally, I would like to thank my wife, Kuky, and my sons, Joey and Larry, for their

love and support.

vii

TABLE OF CONTENTS

1. INTRODUCTION . . . i ittt e e e e e et e et et e e e e e s
1.l Motivation . « « v v v v v e e e e e e e e e e e e e e e e e e e
1.2 Thesis Contributions ¢ .« ot v vt e it e
1.3 Thesis Organization« v v v v v v v oo vt et

2. BACKGROUND . . . ittt et e e i e e e e e e e e et e e e
2.1 ErrorDetection« « vt v v v i i i e e
22 Rollback Recovery vt

2.2.1 System-level checkpointing and recovery
2.2.2 Multiple instruction rollbacko
2.3 Hardware Implemented Instruction Retry
23.1 ThelBM4341. it i ii e
232 TheIBM308l. ottt i ittt
233 TheVAX 8600 ottt iii e
234 The VAX 9000 o vt vt v v vt ooy
2.3.5 IBM Patent number 4,912,707o
2.3.6 IBM Patent number 4,044,337o
2.3.7 Delayed writebuffer
2.38 Historybuffer
2.39 Historyfile
2.3.10 The IBMES/9000
2.4 Compiler-Assisted Rollback Recovery
2.4.1 Compiler-assisted checkpoint placement
2.4.2 Compiler-assisted multiple instruction rollback
2.5 SUMMALY .« v v vt v o v e v ettt e e e e e e e

3. COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK

3.1 Imtroduction v v i e

=N =

AUt

11
12
13
14
16
18
19
20
23
23
24
26

28
28

viil

3.2 Error Model and Hazard Classification
3.2.1 Rollback data hazard model
3.2.2 Hazard classificationo
3.2.3 Definitions and terminologyo

3.3 Compiler Resolution of On-path and Branch Hazards
3.3.1 Pseudo register renaming. oo
332 Nodesplitting v v
333 Loop expamsion oo e ee e e e
334 Loopprotection oo
3.3.5 Machineregisterso
3.3.6 Interprocedural hazards
3.3.7 Nopinsertion
338 SUMMALY . . o v« v v v v v o oo e e oo et e e e s

3.4 Hardware-Assisted Hazard Resolution
34.1 Thereadbuffero
3.4.2 Covering on-path hazards
3.4.3 Post-pass transformation

3.5 Performance Evaluation
3.5.1 Implementation
3.5.2 Application programs oo e
3.5.3 Performanceanalysis e e e e e
3.54 Results: Compiler 2o
355 Results: PP . . . v v v it it i v e et e e
3.5.6 Results: Comp/PP [

3.6 Concluding Remarkso

. TRANSFORM ENHANCEMENTS

4.1 Introduction v v i v v i i e e e e e e

4.2 NodeSplitting oo
4.2.1 lterative node splitting algorithm
422 Conflict definition« . oo
4.2.3 Node splitting using graph coloring
4.2.4 One-pass node splitting algorithm

4.3 Loop Protection
4.3.1 Dynamic loop protectiono

4.4 Performance Enhancements Through Profiling
4.4.1 Post-pass transformation versus loop protection
4.4.2 Profiling effectivenesso

4.5 SUMMATY .+ « o v o v o oo b e e n e e i e

29
29
30
32
33
34
35
37
39
40
40
41
42
42
42
43

45
45
45
47
48
49
49
39

57
57
87
57
61
62
65
67
68
70
70
74
76

ix

5. READ BUFFER SIZE REQUIREMENT 7
51 Introduction v v i vt bt e e e e e e e e 77
5.2 Read Buffer Configurations 78

52.1 Read bufferdesigns 80
5.3 Application Program Execution and Read Buffer Simulation 82
5.3.1 Simulationapproach 82
5.3.2 Implementation 83
54 Resultsand Analysisot 87
5.4.1 Detailed analysis: QUEEN 87
5.4.2 Evaluation of all application programs 91
5.5 SUMMATY . o v o o o o v v v n v m v oo me o e oo e oo e e e 98

6. MIR TECHNIQUES APPLIED TO SPECULATIVE EXECUTION REPAIR 99
6.1 Objectives o ittt 99
6.2 Imtroduction vt v it it e 100
6.3 Speculative Execution e 101

6.3.1 Branchrepair 101
6.3.2 Exceptionrepair 103
6.3.3 Schedule reconstructiono 106
6.4 Implicit Index Schedule Reconstruction 107
6.4.1 Exception repair using the speculation read buffer 107
6.4.2 Branch repair using the speculation read buffer 110
6.5 SRBFlushPenaltyo 112
6.6 Performance Evaluation 115
6.6.1 Evaluation methodology 115
6.6.2 Evaluationresults. 120
6.7 SUMIMATY . - v o v e e o o vt et e oo oo e e e 125

7. CONCLUSIONS . . . ittt i e e e e e e e e e e e e e 127
71 SUMMATY . . v v v v e o v e e e e e e e e e e 127
7.2 Limitations e e 128
73 FutureResearch i e 129
REFERENCES . . . o it it i e e e e it e e e et e e e e 130

VI A . . o e 134

LIST OF TABLES

Table Page
3.1: Application programs: run-time and code size overhead evaluation. . 46
4.1: Node splitting algorithm comparisons: COMPRESS. 66
5.1: Application programs: read buffer size study. oo 87

5.2: Result SUMMATY. . . . o o« o v v oo e v v oo e 91

Figure

2.1:
2.2:
2.3:
2.4:
2.5:
2.6:
2.7
2.8:
2.9:
2.10:
3.1
3.2:
3.3:
3.4:
3.5:
3.6:
3.7:
3.8:
3.9:
3.10:
3.11:
3.12:
3.13:
3.14:
3.15:
3.16:
3.17:
3.18:

LIST OF FIGURES

LSSD double latch design. ¢ oo e
Checkpoint retry mechanism: U.S. patent number 4,912,707.
GPRF duplicate store mechanism: U.S. patent number 4,044,337.

Cache duplicate store mechanism: U.S. patent number 4,044,337.

Delayed writebuffer. o
History buffer.o
History file. oo i
Virtual register management for the IBM ES/9000.
Instruction retry and recovery for the IBM ES/9000.
Dependencies and their impact during rollback.
On-path and branch hazards.
Register renaming.« oot
Node splitting. v v ot
Node splitting algorithm. oo
On-path hazard traversing a loop back edge.
Percentage of total I;’s that are on-path and branch hazards.
Loop protection from hazard variablez.
On-path and branch machine register hazards.
Read buffer. o o o e e e e e e e e e e
Covering on-path hazard.
Run-time overhead and code size overhead: QUEEN.
Run-time overhead and code size overhead: WC.
Run-time overhead and code size overhead: COMPRESS.
Run-time overhead and code size overhead: CMP.
Run-time overhead and code size overhead: PUZZLE.
Run-time overhead and code size overhead: QSORT.
Run-time overhead and code size overhead: GREP.
Run-time overhead and code size overhead: LEX.

Page

13
15
16
17
18
19
21
22
24
32
34
35
36
38
39
40
41
42
44
50
50
51
51
52
52
53
53

xii

3.19: Run-time overhead and code size overhead: YACC. 54
3.20: Run-time overhead and code size overhead: TBL. 54
3.21: Run-time overhead and code size overhead: CCCP. 55
4.1: lterative node splitting algorithm. 58
4.2: Node splitting: original subgraph. 59
4.3: Node splitting relative to hazard variablez. 60
4.4: Node splitting relative to hazard variables z andy. 60
4.5: Optimal node splitting relative to hazard variableszand y.. 61
4.6: Conflict definition. o v v v it e 62
4.7: Node splitting using graph coloring; QSORT.. 63
4.8: Parent conflict graph coloring heuristic. 64
4.9: One-pass node splitting algorithm. 65
4.10: Loop protection from hazard variablez. 68
4.11: Static loop protection algorithm. 69
4.12: Dynamic loop protection algorithm.o 70
4.13: Post-pass hazard removal using read insertion. 71
4.14: Run-time overhead: PUZZLE. oo 72
4.15: Run-timeoverhead: TBL. oo 72
4.16: Loop protection versus read imsertion.o 74
4.17: TBL: profile data used for loop protection decisions. 75
51: Read bufferofsize 2N.« oot i i vt v it 78
5.2 Read bufferofsize <2N.« v 79
5.3: Read buffer configurations. e 81
5.4: Instrumentation codesegment.. 84
5.5: rbuff.save codesegment.o 85
5.6: Cycle overhead: QUEEN.o 88
5.7: Read buffer configurations A2 and B1: buffer size=2. 89
5.8: Cycleoverhead: WC.o 93
5.9: Cycleoverhead: QSORT. oo 94
5.10: Cycle overhead: CMP. e e e e e e e e e e 94
5.11: Cycle overhead: GREP. 95
5.12: Cycle overhead: PUZZLE. cv v 95
5.13: Cycle overhead: COMPRESS.o v vven v 96
5.14: Cycle overhead: LEX. v 96
5.15: Cycle overhead: YACC. oo 97
5.16: Cycleoverhead: CCCP.. 97
6.1: Speculative execution.o oo 101
6.2: Branchrepair. o ot i i 102
6.3: Exceptionrepair.o 105
6.4: Exception repair using a speculation read buffer (SRB). 108
6.5: Branch repair using a speculation read buffer (SRB). 111

6.6: SRB with reduced content. oo 114

xiii

6.7: Instrumentation code placement.
6.8: Instrumentation code sequences. oo
6.9: Branch error procedure operation.ol

6.10: Flush penalty
6.11: Flush penalty
6.12: Flush penalty
6.13: Flush penalty
6.14: Flush penalty

: QUEEN, WC.
: COMPRESS,

s s s a s e s s e e & s s s o 2 e e s s 0 0

CMP. i

: PUZZLE,QSORT.. oo v i e e n s

: GREP, LEX.

:YACC,CCCP. o i it i i i it e e

115
117
118
122
123
123
124
124

1. INTRODUCTION

1.1 Motivation

Instruction retry is an effective technique to allow rapid recovery from transient faults
in a processing system. Multiple instruction rollback recovery may be appropriate when
error detection latencies or when error reporting latencies are greater than a single in-
struction cycle. Single and multiple instruction rollback recovery has been implemented
in hardware by researchers and main-frame computer designers. In general, complex
implementations strive to minimize impacts to system performance while less complex
implementations permit some performance impact. Compiler-ass;isted multiple instruc-
tion rollback has also been developed which replaces dedicated data redundancy hardware
with compiler transformations that remove rollback data hazards. This thesis introduces
a multiple instruction rollback recovery scheme, which uses the compiler to remove some
rollback data hazards and uses dedicated data redundancy hardware to remove all re-

maining hazards. The scheme results in less hardware than required for the least complex

hardware implementations and performance approaching that of the most complex hard-

ware implementations.

1.2 Thesis Contributions

The contributions of this thesis are grouped into four topics. The first extends previ-
ous compiler-based multiple instruction rollback to a broad class of code execution fail-
ures. Data hazards that result from instruction rollback are classified and shown to be of
two types: 1) on-path hazards, and 2) branch hazards. Previous compiler-driven data-
flow manipulations resolve on-path hazards only. These transformations are extended to
resolve both on-path and branch hazards. Evaluations of the extended compiler-based
scheme indicate slightly increased performance impacts over transformations that resolve
only on-path hazards. Using the hazard classification, a new compiler-assisted scheme is
proposed which utilizes a hardware implemented read buffer to remove on-path hazards
and compiler transformations to remove branch hazards. Performance evaluations of the
ne;v compiler-assisted multiple instruction rollback scheme indicate a lower performance
penalty than with either a compiler-based approach or a comparable hardware-based
approach.

The second develops enhancements to previous compiler transformations used for
rollback hazard removal. A one-pass node splitting algorithm is developed which uses

the concept of conflicting parents and graph coloring to eliminate constraints that forced

previous node splitting algorithms to operate iteratively. Experimental evaluations show

that the one-pass node splitting algorithm reduces code growth and achieves a compile-
time speedup of 30 over iterative algorithms. To complement the one-pass node splitting
algorithm, a one-pass static loop protection algorithm was also developed along with a
dynamic loop protection algorithm incorporated into the one-pass node splitting algo-
rithm. The use of profile data to aid in loop protection decisions was evaluated and found
to be effective for some cases in improving application run-time performance.

The third studies the read buffer size requirement. A flexible evaluation methodology
is developed and used to study ten read buffer configurations. The evaluation methodol-
ogy used updates a read buffer model at dynamically occurring application instructions
boundaries. It was found that a 55% read buffer size reduction is achievable with an
average reduction of 39.5% over the ten applications evaluated, given the most efficient
read buffer configuration, but that additional control logic to handle read buffer overflows
may limit the overall hardware savings.

The final topic of the thesis studies the application of compiler-assisted multiple
instruction rollback to aid in speculative execution repair. It is shown that the handling
of speculated excepting instructions and the handling of mispredicted branches in a
speculative execution architecture are similar to the handling of on-path and branch
hazards, respectively, in multiple instruction rollback. A speculative scheduling method
referred to as implicit index scheduling is proposed which utilizes a modified read buffer
to remove on-path hazards and compiler transformations to remove branch hazards. The

viability of the read buffer to aid in branch repair is also investigated and shown to

be contingent on the expected read buffer flush penalty. Estimates of flush penalties are
obtained using the same evaluation methodology developed for the read buffer size study.

Evaluation results indicate that read buffer flush costs under 15% are achievable.

1.3 Thesis Organization

Chapter 2 presents a background of error detection strategies and rollback recovery
schemes. Chapter 3 describes the error model and classifies data hazards that result
from instruction rollback. Compiler transformations that remove rollback hazards are
presented, along with resulting performance evaluations of a compiler-only multiple in-
struction rollback scheme. Chapter 3 also presents a new compiler-assisted multiple
instruction rollback recovery scheme along with experimental evaluations of the new
scheme. Chapter 4 describes enhancements to compiler transformations used for rollback
hazard removal. These enhancements focus on reducing compile times and improving
run-time performance. Chapter 5 assesses the minimum size requirements of the read
buffer proposed in Chapter 3 and gives performance evaluations for ten read buffer con-
figurations. Chapter 6 investigates the viability of applying the new compiler-assisted
multiple instruction rollback scheme to aid in speculative execution repair. Chapter 7

contains summary remarks, limitations, and future research directions.

2. BACKGROUND

2.1 Error Detection

Various error detection strategies have been studied, resulting in a range of efficien-
cies in both implementation complexities and error detection latencies. Error detection
schemes that utilize error correcting codes [1] or low level functional redundancy (2] typ-
ically detect errors within the same cycle, however, can result in increased cycle times.
Some time redundant [3], algorithm-based [4], high level functional redundancy (5], and
control-flow checking [6,7] error detection schemes achieve error detection latencies of a
few cycles without impacting system cycle times. In designs for which error detection
latencies are greater than a single instruction cycle, multiple instruction rollback recovery

may be appropriate.

2.2 Rollback Recovery

2.2.1 System-level checkpointing and recovery

System-level checkpointing is a well-understood method for implementing rollback
recovery when system errors occur [8-10]. In the case of a detected fault, the system
is rolled back to a previous checkpoint containing a consistent state of the system [11].
System-level checkpointing is implemented in software (typically included in the oper-
ating system) with the checkpointed system state being stored on stable media such as
the system disk. To minimize overall system performance impacts given the significant
overhead associated with taking a checkpoint, checkpoint intervals must be great (from
from minutes to hours). This strategy permits long error detection latencies, however,

has the disadvantage of long recovery times and significant lost work during repair.

2.2.2 Multiple instruction rollback

When transient processor errors occur, multiple instruction rollback (also referred to
as multiple instruction retry or simply instruction retry) can be an effective alternative
to system-level checkpointing and rollback recovery [12,13]. Multiple instruction retry
within a sliding window of a few instructions [12], or re-execution of a few cycles (5],
can be implemented in parallel with concurrent, algorithm-based, or control-flow error
detection methods for rapid recovery from transient processor errors. Rapid error de-

tection ensures minimal system state changes between detection and rollback and allows

hardware to efficiently save and restore the required system state. Multiple instruction
rollback recovery is f‘easible only when error detection latencies are sufficiently small.
The issues associated with instruction retry are similar to the issues encountered with
exception handling in an out-of-order instruction execution architecture. If an instruction
is to write to a register and N is the maximum error detection latency (or exception
latency), two copies of the data must be maintained for N cycles. Hardware schemes
such as reorder buffers, history buffers, future files [14], and micro-rollback (12] differ
in where the updated and old values reside, circuit complexity, CPU cycle times, and

rollback efficiency.

2.3 . Hardware Implemented Instruction Retry

Multiple instruction retry and system level checkpointing are similar concepts differ-
ing in implementation (i.e., hardware versus software) and scope (i.e., the error detection
latency and amount of system state involved). Similar to system level checkpointing,
hardware implemented instruction retry schemes belong to one of two groups: 1) full
checkpointing and 2) incremental checkpointing. Full checkpointing maintains “snap-
shots” of the required system state space at regular, or predetermined, intervals. Upon
error detection, the system can be rolled back to the appropriate checkpointed system
state. Incremental checkpointing maintains changes to the system state in a “sliding win-
dow”. Upon error detection the system state is restored by undoing, or “backing-out”

the system state changes up to the instruction in which the error occurred.

Several examples from each instruction retry group will be discussed. The exam-
ples are drawn from research, commercial processors, and patent applications. These
examples, along with a discussion of compiler-assisted instruction retry, will serve as
a background and comparison for the proposal of a new multiple instruction rollback

approach presented in Chapter 3.

2.3.1 The IBM 4341

The IBM 4341 supports the capability for single instruction retry by making use of
a level sensitive scan design (LSSD), which was originally proposed to provide increased
observability and controllability in LSI circuits and also to make sequential logic oper-
ations independent of circuit delays and wire delays [15]. Figure 2.1 illustrates both of
these features.!

During normal operation CLK _a and C LK b operate as interleaved, nonoverlapping
system clocks. CLK _a latches state changes and provides stable inputs to the second
stage of the latch pair. C LK_b modifies the system state using these stable values. LSSD
ensures that the steady-state output is independent of the sequence of input signals or
signal rise/fall times. Scanning is accomplished by substituting CLK s for CLK .a in
the normal operation. In this way, a complete system state image can be loaded serially
through the SCAN_n line. Likewise, the current system state image can be obtained

serially through the SC AN out line.

1Derived from pp. 438, “Logic Design Principles”, E. J. McCluskey [16].

X1 X2 Xn Z1 22 Zm
Combinational Logic
Y1 Y1 Ijz Y2 I;a Y1
D1 D1 D1
SCAN__in —_—1D2 D2 (R —) ¥ SCAN_out
L P - -
C1 Q C1 Q _l— C1 Q T—
2 , C2 C2
CLK_a r j eoe |
CLK s L cee
R Q P Q P q
CLK_b ——C C e e —(C
axka I LT L T axs | LT L I
akb Ll L_T 1 cLkb™_ [T L_T1
Normal Operation Scan_in / Scan_out

Figure 2.1: LSSD double latch design.

10

The 4341 incorporates three error detection strategies; 1) duplication and compare,
2) odd-parity, and 3) special error conditions such as invalid combination of control lines.
When one of these mechanisms deiects an error, the system clocks are “frozen.” The
current system state is then scanned out by a separate service processor which makes
the proper adjustments to the system state. The updated state is then scanned back
into the processor where the faulty instruction is retried. A more complete description
of fault handling on the IBM 4341 can be found in [17]. The 4341 is best classified as a
full checkpointed rollback recovery scheme, with a checkpoint interval of one instruction

(via LSSD state duplication) and a rollback distance of one.

2.3.2 The IBM 3081

The instruction unit of the IBM 3081 establishes a checkpoint every 10 to 20 instruc-
tions. This checkpoint is then used as a re-entry point for rollback repair in the event
that an error is detected. The local cache array includes hardware which saves the old
value of an updated cache line into a push-down array. Flushing the push-down array in
reverse order restores the cache array to its state at the time of the last checkpoint. This
method is similar to the history buffer which is described in Section 2.3.8 [14].

The 3081 uses LSSD to read and write system state information. Scanning out the
entire system state, including the general purpose register file (GPRF) and local cache
arrays, can be very time-consuming. The hardware support previously mentioned obvi-

ates full scanning. The IBM 3081 implements full checkpointed rollback recovery with a

11

checkpoint interval of 10 to 20 instructions and corresponding rollback distance. A more

complete description of fault handling on the IBM 3081 can be found in [13,18].

2.3.3 The VAX 8600

The VAX 8600 uses parity checking on internal buses including the arithmetic logic
unit (ALU) and shifter. The instruction fetch and decode unit (I box), floating point unit
(F box), and execution unit (E box) each have a copy of the GPRF. Writes to one GPRF
cause simultaneous writes to the other two GPRF’s in order to maintain consistency. If
a parity error is detected in one of the GPRF’s, the other GPRF’s can be used to correct
the invalid GPRF.

For performance reasons, parity checking and correction in the local cache (M box)
occur after the data has been sent to the requester. If an error is detected by the M
box, it is corrected with Error-Correcting Code (ECC) logic and an error signal is sent to
ihe E box so that the instruction can be retried. The VAX 8600 is a pipelined complex
instruction-set architecture which does not guarantee that all updates to the system state
are held until the write state of the pipeline. If the CPU has not performed an operation
that makes retry impossible, the instruction is retried. The ability to retry is determined
by the abort bit which is set when the current instruction: 1) is an I/O read, 2) is a
memory write, or 3) results in a modification of the system state by the E box. The VAX
8600 can be classified as a full checkpointed rollback recovery scheme, with a checkpoint
interval of one instruction and a rollback distance of one. A more complete description

of fault handling on the VAX 8600 can be found in [19].

12
2.3.4 The VAX 9000

The VAX 9000 system is organized such that all storage elements, i.e., latches ;nd
flip flops, are connected to form a “visibility chain.” The system state is therefore visible
and can be read and written by the service processor through a serial diagnostic bus. The
visibility chain operates much like a scan ring design [15,16]. The VAX 9000 is a pipelined
complex instruction-set architecture. The user visible system state (i.e., memory contents
and register values) is well-defined at macroinstructions boundaries; however, during
actual operation, several instructions will be executing at once, with each instruction at
a different stage in the pipeline. This make identification of macroinstructions boundaries
difficult. Also, errors cannot be expected to occur at well-defined instruction boundaries.

The VAX 9000 execution unit (E-box) accepts operands, computes the result, and
delivers the result for storage. An error interfering with one or more of these operations
causes a trap when the E-box requests data from the faulty subéystem. If the program
visible state of the machine has not been modified by the current instruction, the in-
struction is backed up to the beginning and restarted. This is usually possible since the
system state typically changes in the final stages of the pipeline. If memory or register
values were modified early in the pipeline, status flags are updated so that instruction
retry can be disabled.

The VAX 9000 can best be classified as a full checkpointed rollback recovery scheme,
with a checkpoint interval of one instruction and a rollback distance of one. A more

complete description of fault handling on the VAX 9000 can be found in [20].

13

write
: -o— rollback
INTERRUPT
: INT. RETURN SHADOW
: FILE
INTERRUPT
END SERVICE
ROUTINE
MAIN ROUTINE

Figure 2.2: Checkpoint retry mechanism: U.S. patent number 4,912,707.

2.3.5 IBM Patent number 4,912,707

The checkpoint retry mechanism described in U.S. patent number 4,912,707 deals
primarily with checkpoint placement in a hardware implemented multiple instruction
rollback scheme. Many instruction retry schemes have a rollback distance of one instruc-
tion making checkpoint placement trivial. Nontrivial checkpoint placements are handled
by software in system level checkpointing but are more difficult in hardware implemen-
tations without precise placement rules.

As shown in Figure 2.2, this mechanism automatically takes checkpoints at one of
three points in a dynamic instruction stream: 1) immediately after a write instruction,
2) immediately after a return from interrupt, or 3) immediately after the first instruction
in an interrupt handler routine. This approach avoids the need to take a checkpoint
after every instruction and ensures that a rollback will never cross a write or interrupt

boundary.

14

The checkpoint is taken by storing a copy of the GPRF and program status word
(PSW) into a shadow file, as shown in Figure 2.2. For rollback, the GPRF is restored from
the shadow ﬁie. This checkpoint retry mechanism implements full checkpointed rollback
recovery with a variable checkpoint interval and corresponding rollback distance. A more
complete description of the mechanism can be found in U.S. patent number 4,912,707

[21].

2.3.6 IBM Patent number 4,044,337

The instruction retry mechanism described in U.S. patent 4,044,337 resolves the prob-
lem of register file and cache memory corruption due to a defective instruction cycle.?
The mechanism maintains duplicate copies of such data to be used for restoration in the
event of corruption.

For each register in the GPRF, two duplicate locations are maintained, as shown in
Figure 2.3. Each time register r; is written in the GPRF by instruction I, one of these

two duplicate registers, r., or r%, is also written with the same value. The duplicate

z
locations used, alternate with instruction count, that is, I, writes to ., Iy+1 writes to
r/, I,42 writes to 7, etc. If I, writes r; more than once, each subsequent write of I,
overwrites the previous value in the duplicate location leaving only the last written value
of r, in the location upon completion of I,. This scheme ensures that, given an error in

I,+1, the GPRF contents which existed prior to the execution of I 4, can be recovered

from the duplicate register locations.

27 S. patent 4,044,337 refers to register file storage as local store and cache storage as buffer store.

15

JSourcel | GENERAL (L——wme
PURPOSE |
source 2 REGIS'I'ER k
fps———— FILE e o
l ‘ D——n
Y
GPRF GPRF instr_cnt; sg
Duplicate Duplicate
Store 2 Stare 1
(r;') (r;) restore —»
! !

Figure 2.3: GPRF duplicate store mechanism: U.S. patent number 4,044,337.

A mechanism similar to the one used for GPRF duplication is used for the cache
duplication. Since triplication of the cache results in a significant circuit overhead, the
total cache duplicate store size is significantly smaller than the cache size. As shown
in Figure 2.4, a store controller accepts the cache address and maps it into the smaller
duplicate stores. The duplicate stores operate the same as the register file duplicate
stores, except that in addition to the cache data, cache addresses are also saved. If a
cache store occurs when the duplicate stores are full, a replacement algorithm in the store
controller submits a request for the cache to write out an appropriate cache line to main
memory. This makes a corresponding duplicate store pair available for the current cache
write.

The checkpoint retry mechanism, described in U.S. patent number 4,044,337, imple-
ments incremental checkpointing and rollback recovery, where changes to the system state

are maintained and backed out during recovery. The mechanism supports a maximum

read/write

(- address
source gTC}Am - k - ﬂ data
trCA' N
— |
DATA DATA
CACHE CACHE Store | |
X Control
Duplicate Duplicate
Store 2 -l Store 1]
Y Y
¥ Y

Figure 2.4: Cache duplicate store mechanism: U.S. patent number 4,044,337.

rollback distance of one instruction. A more complete description of this checkpoint retry

mechanism can be found in [22].

2.3.7 Delayed write buffer

The delayed write buffer (DWB), also referred to as micro-rollback [12], establishes
data redundancy to aid in rollback recovery by delaying writes to the appropriate storage
location. Given a GPRF DWB of depth N, the last IV register writes are contained in
the DWB while the unmodified copies are maintained in the GPRF. Figure 2.5 gives an
example of a high-level DWB design, where the DWB is organized as a first-in-first-out

(FIFO) queue. Included in the illustration is a sample code segment and the resulting

17

data address gnstrucﬁon
valid equence
source 1 ! ‘ ‘ r
G N % ser_val(rg) |5(1 I rp=rn+r
urce 2 PURPOSE p |swvallr)) [1]1 L =7,

- =— | REGISTER A [swvallr,) Ta]1 L rmrer
o FILE - s [sw_vallr,) 1)1 3 172776
J I rg=r; + 1

Figure 2.5: Delayed write buffer.

DWB contents. For simplicity, it will be assumed that the example processor is a simple
pipelined load/store machine, executing one instruction each machine cycle.

A value written to register r; in the GPRF is denoted as str_val(rs) and is shown
in the DWB along with the register address z. Since the most recent value of a register
may be contained in the DWB, bypass logic is included to inspect the DWB during all
register accesses to determine if a more recent value is available. If more than one copy
of an accessed register is present in the DWB, priority logic contained in the bypass unit
forwards the most recent value to the appropriate source bus. This latter case occurs
during instruction I, where r; is accessed and two copies are present in the DWB. The
delayed write buffer is very similar in operation to the reorder buffer proposed to aid in
exception repair for out-of-order execution architectures [14].

As long as an error is detected withig N cycles (for this example one instruction
is completed each cycle), the contents of the DWB can be invalidated, restoring the
GPRF to a precise state [11] prior to the faulty instruction. The DWB can be applied

to any system storage unit, however, it is best suited to units that are accessed through

18

Qsource 1 GENERAL data
~_source 2 PURPOSE Instruction
- REGISTER address Sequence
FILE I
I

=

<l
vl

T Ts Ly =1,
_ValTs L rp=ry+,

- 1= 2% 7%
ld_vai(r)) |1 | rollback L: pomp 41
ld_val(r,) 12 (flush) ¢ 51
ld_val(rl) 1

Figure 2.6: History buffer.

an address. For storage units that can be accessed directly, e.g., the program counter,
instruction counter, and program status word, a state history can be maintained in a
simple first-in-first-out (FIFO) queue. The delayed write buffer can be classified as an

incremental checkpointing and recovery scheme.

2.3.8 History buffer

The history buffer (HB) is derived from the reordering version proposed as an aid
in exception repair for out-of-order execution architectures [14]. Figure 2.6 illustrates
a high-level HB design to aid in rollback recovery, along with an example instruction
sequence and the corresponding HB contents. Each time register r, is written in the
GPRF, the old contents of r;, denoted as ld_val(rz), are read out and placed in the HB.
The HB is organized as an FIFO queue.

In an HB organization, the most recent values of all registers are maintained in

the GPRF; therefore, bypass logic is not required as with the DWB. In a pipelined

19

1
<SIC | GENERAL |- data
5 PURPOSE "
source REGISTER addre Instruction
~— FILE - = Sequence
valid
AN 11: rp=rytr
rollback —w- L
Yy 12; r2 =7,
str_val(rg) |51 L.
HISTORY | sir_valir,) 1|1 ¥ 1=t
FILE str_val(r,) [2[1 Ig rg=r+1
- str_val(r,) |1]1

Figure 2.7: History file.
architecture, reads from both ports of the GPRF in each cycle are common. An efficient
HB design requires an extra GPRF read port, complicating the GPRF design. Rollback
| to a precise state is accomplished by flushing the HB in reverse order, up to and including
the faulty instruction. The flush operation requires many cycles in contrast to the single
cycle invalidate of the DWB. The HB is classified as an incremental checkpointing and

recovery scheme.

2.3.9 History file

The history file (HF) is derived from the future file proposed to aid exception repair
in out-of-order execution architectures [14]. Figure 2.7 shows a high-level HF design
consisting of the system GPRF and a duplicate register file. A write buffer depth of N,
delays writes to the HF and ensures that the HF state is the precise state of the system

that existed N cycles in the past. Since the most recent register values are contained in

20

the GPRF and therefore no bypass logic is required. Unlike the HB, no additional read
port is required for the GPRF, instead a full duplication of the GPRF is required along
with the write buffer.

Rollback of exactly N instructions is very efficient, requiring a global load from the
HF to the GPRF and an invalidate of the write buffer. These two operations can be
performed in a single cycle. Variable rollback requires that the write buffer be flushed to
the HF, up to but not including the faulty instruction prior to the global load from the
HF to the GPRF. Like the DWB and HB, the HF is an incremental checkpointing and

recovery scheme.

2.3.10 The IBM ES/9000

Prior to the invention of cache memory, main memory load latency was a significant
performance limiter in high-end processing systems. In an effort to maximize CPU pro-
ductivity during main memory accesses, IBM developed out-of-order execution [23]. The
out-of-order execution feature was dropped by IBM in 1968 after the introduction of the
cache.

Due to the availability of higher density technology and the need for higher perfor-
mance, IBM has once again incorporated out-of-order execution into its high-end ES/9000
system. The virtual register management and branch misprediction repair schemes in-
clude data redundancy useful for multiple instruction retry. Although the design point
for the ES/9000 is to detect errors within the current machine cycle, through ECC,

parity, or checking, the reporting and recording of the error may take several cycles.

21

value(Rz) o[+ Load State
value(Rg) 1 Instruction Number
value(R14) 2 Branch Dependence
- - L
\ . P "y
value(R,) 30 4e—}— Register Number
value(Rs) 31 Previous Assignment
GPRF ACL

Figure 2.8: Virtual register management for the IBM ES/9000.

The ES/9000 has considerable fault-tolerance capability; however, only the instruction
retry facility will be discussed here. qu a more detailed description of the fault-tolerant
characteristics of the ES/9000, see [24]. For a complete description of virtual register
management, see [25,26]. .

The virtual register management system (RMS) maps 16 architectural registers into
32 physical registers. Architectural registers identified in a decoded instruction locate
pointers in the decode-time register assignment list (DRAL) shown in Figure 2.8. These
pointers locate the appropriate physical register from the GPRF. The array control list
(ACL) has entries which correspond to the entries in the GPRF. The ACL contains
the required physical register status such as the load state of the physical register (i.e.,
available, pending but not loaded, pending and loaded, assigned), instruction number,
branch dependence, architectural register assignment, and previous assignment. The
branch register assignment lists, BRAL-A and BRAL.B, contain exact images of the

DRAL at the time a branch path is predicted. If the branch is mispredicted, the DRAL

22

can be restored to its value prior to the branch. The two BRAL’s allow a total of two
pending branch predictions. A third branch prediction causes a stall until one of the two
pending branches is resolved.

The RMS supports multiple instruction retry by holding the availability of physical
registers until the appropriate instructions have been determined to be fault free. In
this way, a faulty instruction can never overwrite the contents of an architectural regis-
ter. Figure 2.9 illustrates this instruction retry feature.® Out-of-order execution forces

Decode

Add
o,

E’L— Finish
Ch_F omplete
o e - C]

(L 1
~[&H_ -1 !
E m PURGE
ravLr A 1] l

(2, o]

RECOVERY

T,

m g~

Figure 2.9: Instruction retry and recovery for the IBM ES/9000.

instructions to complete in order but allows instructions to finish in any order. Only

upon completion is the physical register marked available for reassignment. In Figure

3Figure 2.9 source: Proc. 22th Int. Symp. Fault-Tolerant Comput. [24].

23

2.9, instructions 3 and 4 (I3, I4) finish prior to I. I, completes at time T1, and a fault
in I3 is recorded at time T2. Registers modified by I; and I have not been released for
reassignment; therefore, their contents are available for the retry sequence shown. The
instruction rollback and recovery scheme of the ES/9000 can best be described as an

incremental checkpointing scheme with a variable rollback distance.

2.4 Compiler-Assisted Rollback Recovery

2.4.1 Compiler-assisted checkpoint placement

Recently, compiler-based approaches to checkpointing and recovery have been inves-
tigated. The studies have been conducted in two areas: 1) system/application level
checkpointing and recovery, and 2) multiple instruction rollback recovery. As an alter-
native to system and application level checkpointing, a compiler-assisted checkpointing
and recovery scheme has been proposed [27]. The scheme uses compile-time information
to create checkpoints adaptively. Efficient use of compile-time information allows for the
determination of optimal checkpoint placements, the minimization of checkpoint sizes
by exploiting large variations in memory usage, and the generation of sparse checkpoint
code. A training technique was also developed resulting in checkpoints with lower cost
and higher coverage. The compiler-assisted checkpointing scheme was shown to result in
reduced checkpoint size while maintaining transparency at the programmer, operating

system and hardware levels.

24

@ o o
x&ad [} ‘..Il.'...... X inconect ® ‘---.oc-..... p 4 dead @ amgeccersa,,, v,
(] ., [) o“ [] o..
3 I;[x=a+b

[] @

@
. Lenseasssssdmn ® Xxcorrect '......un--— : X dead ’”.-o-oo-ub : X dead

o
1 E=2d) 1/ [E=xd 1 F=e=d
@ []

°
x correct @ <%-~..,, x correct @ ===, x correct 8 ~e--..,

Jessnontenseay,,
o,

Jeesnesseesuay,,
)

L T

o

‘...'....“".".i“'oltﬂ.::WC".' ..."'c-uon-uo ul..l‘:.:l".’. '.... x ‘..'. ‘....
() () ()
flow anti output

Figure 2.10: Dependencies and their impact during rollback.

2.4.2 Compiler-assisted multiple instruction rollback

In contrast to system level checkpointing, compiler-assisted multiple instruction roll-
back supports the rollback of a few instructions by using compiler-driven da.ta.-ﬂovw ma-
nipufations to' remove hazards that result from rollback.

Figure 2.10 illustrates three data dependencies relative to variable z and their effect
on rollback hazards.* For the flow dependency, the instruction I; writes variable ¢ and
then the subsequent instruction I; reads z. If an error is detected after I; and rollback
is below I, z has not been modified and there is no hazard. If the rollback is between I;
and [;, again z is correct and no rollback hazard exists. If the rollback is to a position
above I;, z has been corrupted since it was modified by I;. In this latter case, there is
still no data hazard since z will be rewritteﬁ by I; prior to its use in I, i.e., the variable

z is dead. Given an output dependency, if an error is detected after [; and rollback is

4For a complete presentation of data-flow properties and manipulation methods, see [28].

25

below I;, z is correct and no rollback hazard is present. If the rollback is either between
I; and I; or above I[;, = is dead an no ha.éard exists.

A data hazard is presént, however, given an antidependency, an error detection below
I;, and a rollback to a position above I;. In this case I; corrupts z and after rollback, I;
uses the corrupted z value. Hardware rollback schemes maintain a redundant copy of z so
that it can be restored to the correct value in the event of a rollback. By using compiler
transformations to remove all antidependencies of length < N, where N represents the
maximum rollback distance, the compiler-assisted rollback scheme removes data hazards
and the requirement for redundancy hardware.

Antidependencies are removed at three levels: 1) pseudo code, 2) machine code, and
3) post-pass. Pseudo code is the code level prior to variables being assigned to physical
registers. The primary compiler transformation to remove antidependencies is variable
renaming. For the antidependency case of Figure 2.10, variable z of instruction I; would
be renamed z’, requiring all subsequent uses of z to be renamed z'. Variable renaming
becomes difficult when the renaming of z in I; results in the need to rename z in J;. This
occurs when backedge; exist (i.e., loops) and also through the equivalence relationships
of variables [29]. These difficulties are handled with node splitting, loop ezpansion, and
loop protection transformations (28, 29].

Once all antidependencies have been removed at the pseudo level, register allocation
may result in the re-emergence of some antidependencies. An example of this would be

if renamed variable z’ of instruction I; in Figure 2.10 and variable z of I; were assigned

26

to the same physical register. To prevent this, arcs are added to the dependence graph
used in the register allocation algorithm.

Due to register spills and register save/restore conventions at procedure boundaries,
some antidependencies remain in the compiler emitted code. These hazards are resolved
by a post-pass transformation which inserts no-operation (nop) instructions to increase
the antidependency distance to > N. The post-pass transformation carries a significant
performance penalty since up to N nop’s could potentially be inserted in a frequently
executed portion of the code. For this reason, all possible antidependencies are removed
prior to the post-pass level. The overall performance of the compiler-assisted multiple
instruction rollback scheme is comparable to that of hardware schemes, with the primary
advantage being the reduced hardware requirement and the ability to select the rollback.

distance at compile time.

2.5 Summary

Several full checkpointing and incremental checkpointing instruction retry schemes
have been presented as background for the development of a new multiple instruction
rollback approach. These schemes demonstrate the variety, design trade-offs and contin-
ued viability of multiple instruction rollback as a key fault tolerance feature.

This thesis focuses on multiple instruction rollback techniques and specifically compiler-

based techniques similar to those presented in Section 2.4.2. Previous compiler-based

27

schemes produced average performance impacts similar to comparable hardware imple-
mented schemes such as the delayed write buffer [12]. The performance impact of the
compiler-based scheme, however, varied greatly between applications. This.thesis extends
compiler-based multiple instruction rollback recovery to a broad class of code execution
failures and reduces the average and peak performance impacts observed in previous
schemes. The new compiler-assisted scheme combines compiler-driven rollback hazard

removal with hardware implemented hazard removal.

28

3. COMPILER-ASSISTED MULTIPLE INSTRUCTION ROLLBACK

3.1 Introduction

This chapter extends the compiler-based [29] instruction retry scheme discussed in
Chapter 2 to include a broad class of code execution failures.! Given a more general
error model, data hazards which occur as a result of multiple instruction rollback are
formally classified. This classification proves useful in the development of two new mul-
tiple instruction retry schemes. The first scheme extends the compiler-based scheme
while the second scheme combines compiler-driven hazard removal with hardware data
redundancy techniques. The new compiler-assisted approach exploits the unique charac-
teristics of different hazard types. Ten benchmarks were used to measure the performance
penalty of hazard resolution. Experimental results indicate that the enhanced compiler-
based approach can achieve overall performance consistent with existing hardware and

compiler-based approaches, and that the new compiler-assisted resolution strategy can

1Portions of Chapter 3 were derived from (30].

29

achieve superior performance to either a hardware-only or compiler-based instruction

retry scheme.

3.2 Error Model and Hazard Classification
3.2.1 Rollback data hazard model
The following are assumptions used in the error model:
1. The maximum error detection latency is N instructions.
2. Memory and I/O have delayed write buffers and can rollback NV cycles.

3. The states of the program counter and program status word (PSW) are preserved
by an external recording device or by shadow registers as described in the micro

rollback scheme {12].

4. The CPU state can be restored by loading the correct contents of the register file,

program counter, and PSW.

Given the above assumptions, any error which does not manifest itself as an ille-
gal path in the control-flow graph (CFG) of the program is allowed provided that the

following conditions are satisfied:
1. Register file contents do not spontaneously change.

2. Data can not be written to an incorrect register location.

30

The following is a list of targeted errors:
1. CPU errors such as those caused by an ALU.

2. Incorrect values being read from 1/0, memory, the register file, or external func-

tional units such as the floating point unit.

3. Correct/incorrect values being read from incorrect locations within the I/O, mem-

ory, or register file.

4. Incorrect branch decisions resulting from error types 1, 2, or 3.

3.2.2 Hazard classification

The code can be represented as a CFG G(V, E), where V is the set ;)f nodes denoting
instructions and E is the set of edges denoting control-flow. If there is a direct control-
flow from instruction i, denoted I;, to I;, where I; € V and I; € V, then there is an edge
(I;,I;) € E. Let dmin(li, I;) denote the smallest number of instructions along any path
from I; to I;.

The hazard set H,., of the error model is defined as the set of pseudo registers
(or ma.chixie registers) whose values are inconsistent during different executions of an
instruction sequence due to retry. A formal classification of hazard set H,q, follows.

Property 1: z € H,.y, iff there exists a sequence of instructions Iy, I2, ..., Iy which

form a legal walk? in G such that z is live at I, and z is defined during the walk.

2A walk is a sequence of edge traversals in a graph where the edges visited can be repeated [31].

31

Proof: For the if case, an error occurring in I will be detected by Iy. During the
retry of I;, z will be in an inconsistent state since it was defined during the walk. Since
z is live at I‘l, there is some path along which z is used prior to its redefinition, and since
£ is in an inconsistent state, z € Hyeg,. For the only if case, we suppose the contrary.
Assume that among all legal walks of length N in G, either z is not live at the beginning,
or z is not defined during the walk. It then follows that = either has no use, or z is not
changed. (The error model does not allow a write to a wrong location and the contents
of register z can not spontaneously change.) Therefore there is no inconsistency problem
for z, which implies z &€ H.eg,.

Property 2: All hazards can be classified as one of two types: 1) those that appear
as antidependencies of length < N in G(V, E), referred to as on-path hazards, and 2)
those that appear at branch boundaries, referred to as branch hazards. These two hazard
types may overlap.

Proof: Since z € H, there exists a legal walk W; = I, I,...,In in G, such that
z is live at I;, and after the execution of I,I,...,In in sequence, z has a different
value. The latter implies that there is at least one instruction defining z along W)
(the error model does not allow a write to a wrong location and the content of register
£ can not spontaneously change). Let i be the largest index that I; defines =, where
i€ {1,2,..., N}. Property 1 implies that there exists a legal walk W, in G, beginning
with I;, such that the first instruction I; along W; referring r is a use. Case 1: if

W, C W,, instructions I; and I; constitute an antidependency of length < N, and there

32

®
[) ~djocustcssceanencasany,,
®o,

—

°
°®
. . o -«— rollback
S [o
® ..-_.. h (ij,x)'
[] ., @ (L
o hy(ikx. ~j®

| P

i

error detected -——%-----"

."0..

Figure 3.1: On-path and branch hazards.

is an on-path hazard on z. Case 2: if Wo € W, there exists a branch instruction I

between I; and I;—1. Since dmin(lk, ;) £ N, there is a hazard on z at a branch boundary.

3.2.3 Definitions and terminology

An on-path or branch data hazard occurs when I; defines variable z, and after roll-
back, I; uses the corrupted z value prior to its being redefined. To simplify subsequent
discussion, such on-path and branch hazards will be denoted h,(i,7,z) and he(i,5,7)
respectively. Figure 3.1 illustrates this hazard notation. A few definitions are now pre-

sented to simplify subsequent discussions.?

3A complete description of data-flow terminology can be found in “Compilers: Principles, Techniques,
and Tools”, Aho et al., [28]. More on equivalence can be found in [29].

33

Definitions:
1. If I; defines variable z, then def(i) = z.
9. If the k** operand of I; uses variable z, then usex(i) = z.

3. If there is some path beginning with I; which encounters a use of z prior to a

definition of z, then z € live_in(i).

4. If there is some path from I; to J; which does not encounter a redefinition of def(i),

then def(i) reaches j.
5. If def(i) reaches j and def(i) = usex(j) for some k, then def(i) reaches usei(j).
6. If def(i) reaches j then: € reaching_in(j).

7. If renaming def(i) requires the renaming of use(§) for any k, then equiv(i,j) = 1.

3.3 Compiler Resolution of On-path and Branch Hazards

Previously developed compiler transformations restrict hazard resolution to on-path
hazards [29]. The transformations are performed in four phases. Phase 1 resolves pseudo
register hazards, phase 2 resolves machine register hazards, phase 3 resolves interprocedu-
ral register hazards, and phase 4 uses nop insertion to resolve the remaining hazards. The
expanded error model of Section 3.2 permits branch hazards in addition to on-path haz-
ards. What follows is a discussion of the viability of these same compiler transformations

in application to branch hazard resolution.

34

® ®
@ “Woeny,, @ -
[

*, -a— rollback
[
o
1}E

;

rename to y

.,
hLLTYON

e o' 4 4 os®
error detected —>;.(.. 8 ermor detected ——x
ho(ijx) hy(ikx)

Figure 3.2: Register renaming.

3.3.1 Pseudo register renaming

The basic compiler transformation to remove hazards is register renaming. Figure
3.2 shows how hazard A,(%,j,z) can be removed by renaming def(i) from z to y. It can
be seen from Figure 3.2 that register renaming is equally effective in resolving branch
hazard h(%, k, z) by renaming def(i) from z to y. If ho(i,j,z) and hs(i, k, z) coexist as in
Figure 3.1, both hazards are resolved simultaneously, i.e., given ho(%,J,z) and (i, &, z),
resolution of ho(i, j,z) through renaming resolves hs(i, k,z). In addition to renaming z
to y in I;, some uses of z in other instructions must also be renamed to y. The variables
requiring renaming are determined by the equivalence property [29]. If equiv(i,j)=11in
the examples of Figure 3.2, then use;(j) would ultimately be renamed to y, negating the
hazard resolution. Equivalence can negate both on-path hazard resolution and branch

hazard resolution.

35

11
A
(YY)
(YY)
oo

Figure 3.3: Node splitting.

To break the equivalence relationship, node splitting and loop ezpansion transforma-
tions are used. A loop protection transformation ensures that loop integrity is maintained

during the node splitting and loop expansion transformations.

3.3.2 Node splitting

Given h,(i,j,z) or hs(i,],), node splitting forces equiv(i,j) = 0. Figure 3.3 shows
an example of data dependence requiring node splitting and the result of a node splitting

algorithm. Since def(i) reaches use;(!), renaming z in I; to y forces the the renaming of z

36

disable back edges;
calculate hazards;
while(changed), do;
changed = 0;
for all z in H,.,, do;
for all V € G(V,E), do;
if z & livein(V)

continue;
if multiple definitions of z reach V, do;
split(V);
changed = 1;
endfor
endfor

endwhile
enable back edges;

Figure 3.4: Node splitting algorithm.
to y in I;. Since def(k) also reaches useq(l), def(k) must be renamed to y. Finally, def(k)
reaches use;(j), requiring use;(j) to be renamed to y. Hazard h,(%,,z) has changed to
ko(3,7,y) but it has not been resolved. Register renaming cannot resolve h,(2,j,z) or
hy(i, 7,) given equiv(i,j) = 1. The simple node splitting algorithm shown in Figure 3.4
forces equiv(i,j) = 0 given h,(i, j,) or hs(i,], z).

When two definitions of a hazard variable reach a node, the node is split. The effect
is an “unzipping” of instructions which stops when the hazard variable becomes dead or
when a loop header is reached. In the former case, the equivalence relationship can no
longer be affected by the instruction. In the latter case, a split of the loop header would

compromise the integrity of the loop. It would be possible to treat the loop as a node

37

and duplicate the entire loop; however, this would result in significant code growth. The
loop protection algorithm is responsible for ensuring that no loop header is split.

After node splitting, a hazard node i * has a “persona.lfzed” path to each of the use
nodes it reaches. More formally, given A,(i, j, z) or hs(i, j, z), no usex(m) that is reached
by def(i) is reached by def(n), where def(n) = def(i). Node splitting does not break direct
equivalence. Direct equivalence is equiv(i,j) = 1 such that d;f(i) reaches usek(j). For
ho(%,j, =) and hs(i, j, z) this occurs when def(i) reaches usei(j) by traversing a loop back
edge.® For this reason, the node splitting algorithm of Figure 3.4 is run with the back

edges of G(V, E) disabled. On-path hazards that remain after node splitting are resolved

with loop expansion.

3.3.3 Loop expansion

Loop expansion involves unrolling a loop in an effort to remove on-path hazards
which remain after node splitting. Figure 3.5 gives an example of a loop which requires
expansion due to an on-path hazard. It can be seen that the rollback traverses the loop
back edge. For this example, the loop is unrolled once by duplicating the loop body one
time. The second copy of the loop body has all occurrences of z renamed to y. The

length of the loop-carried antidependency present in the original loop has increased from

4Hazard node i is defined as the node representing I; in G(V, E) given the existence of either h,(i, j, z)
or hy(i, k, z).

SIn contrast to on-path hazards, direct equivalence for branch hazards can exist without loop back
edges; however, was observed to be infrequent for the eleven application studied. The handling of these
hazards is presented in Chapter 4.

38

: ~ =
o e error

loop
back —e detected 'k —e| irollback e

edge i — E edge ;D

unroll 1 time,
. rename xtoy

Figure 3.5: On-path hazard traversing a loop back edge.

< N to > N. Loop expansion to resolve on-path hazards results in significant code
growth, reaching 350% for some applications [29].

Although on-path hazards which traverse loop back edges are common, we have ex-
perimentally observed a low rate of occurrence of branch hazards traversing loop back
edges. This is due to three factors. The first is that branch hazards are less common
than on-path hazards. Figure 3.6 shows the percentage of all nodes that are on-path
and branch hazard nodes given various rollback distances for the QUEEN and PUZZLE
applications. Details on the evaluation methodology can be found in Section 3.5. The
second factor is that resolving A,(i, j, z) through renaming resolves hy(z, k, z). Since on-
path hazards are resolved prior to the resolution of branch hazards, many branch hazards
which traversed loop back edges are no longer present. Finally, the most common code

structure which results in a branch hazard traversing a loop back edge also causes the

39

50%_‘L —on-pamhazards 50%_“_ —on-pathhazards
4591 -~ branch hazards 459 -~ branch hazards
40 % + 40% +
35% + 35% +
30% + 30% 1
25% + 25% +
20% + 20% +
15% + 15% +
10% + / 10% +
5% 1 5% T
= —t—t—t—t—t—t—t—t=N N
1 23456 78910
QUEEN PUZZLE

Figure 3.6: Percentage of total I;’s that are on-path and branch hazards.

loop to be protected by inserting a save/restore pair around the loop. The save/restore
pa.ii‘ breaks the direct equivalence of the branch hazard and thereby resolves it without
the need for loop expansion. Due to the significant code growth potential of loop expan-
sion and the infrequency of branch hazards traversing loop back edges, all such hazards

are left to be resolved in the nop insertion phase.

3.3.4 Loop protection

Figure 3.7 demonstrates how loop [is protected from hazard node i, where def(i) =
z. The loop header will not be split since z & live_in(hdr_node(l)), where hdr_node(l)
represents the header node of loop /. The loop protection transformation operates on two
inputs. The first is the pseudo register z which is defined in I; given hazard h,(1, j, z).

The second is the live-out analysis of the CFG. The loop protection transformation is

40

save node

Loop {

tot's

Figure 3.7: Loop protection from hazard variable z.

not dependent on the type of hazard which identifies the pseudo register and will protect

loops from header splitting that would occur as a result of branch hazards.

3.3.5 Machine registers

Once hazards have been eliminated through renaming, they may reappear as physical
registers are assigned. It is also possible that new hazards will emerge. Figure 3.8 shows
the elimination of on-path and branch hazards by adding arcs to the dependency graph

used for register allocation.

3.3.6 Interprocedural hazards

Interprocedural register saving conventions can create immediate on-path hazards.
For example, if register r} is read and saved prior to a procedure call, and then initialized
in the called procedure, an antidependency is created. Previous work used a disjoint

register block scheme to guarantee that any read prior to a procedure call and any

41

all assigned Dependence Graph
o1,

; . --— pollback
L ~
""
Y
\-. [] \ []

: A H
\ AN
I I;
— —
error
detected add arcs

Figure 3.8: On-path and branch machine register hazards.

definition during procedure initialization use registers from different blocks [29]. Branch
hazards are not immediately created at procedural boundaries. All remaining branch
hazards are resolved in the nop insertion phase described in the next section or by the

post-pass transformation described in Section 3.4.3 (p. 44).

3.3.7 Nop insertion

Spill code as a result of register allocation can create on-path and branch hazards. A
similar problem exists with the stack pointer and frame pointer. Some branch hazards
may also remain that were unresolved with the loop expansion transformation. On-path
hazards are resolved by inserting nop instructions directly before the hazard instruction
so that the rollback will be below the last use of the hazard register. This technique
does not work for branch hazards since the distance between the definition and the use

instructions is not relevant. Instead, nop insertion is used to increase the distance from

42

N

Register
File
L
{ <— Read Buffer
A B II C

Figure 3.9: Read buffer.

the hazard instruction to its nearest predecessor branch. In this case, a rollback will be

below the branch.

3.3.8 Summary

It has been shown that compiler techniques previously developed to resolve on-path
hazards are equally effective in resolving branch hazards. A compiler-based multiple
instruction rollback recovery scheme utilizing theses transformations was developed and

evaluated. The results of the evaluations are presented in Section 3.5.

3.4 Hardware-Assisted Hazard Resolution

3.4.1 The read buffer

Figure 3.9 shows a hardware scheme to resolve on-path hazards. A read buffer is

attached to the output ports of the register file. Each time a register is used it appears

43

on the read port and is saved in the read buffer. If a register r; is defined in I; and it is
an on-pa.th hazard, then r; must have been read within the last N cycles. In this case,
the read buffer will contain the old value and it is permissible to write the new value into
the register file. In the event of a rollback of N instructions, the contents of the read
buffer are flushed in reverse order and stored back to the register file. For an on-path
hazard, the path taken after the rollback will be the same as the path taken prior to
rollback and each read of ri will produce the same value as before. Branch hazards will
be removed by the compiler transformation presented in Section 3.3. It is assumed that
the read buffer is an integral part of the register file and any error in the system does
not corrupt the transfer to the read buffer or its contents.

In contrast to a history buffer which forces a read of rj prior to writing & , the read
buffer monitors the register file ports and stores only the values read as part of the normal
program flow and, therefore, should not significantly impact the register file performance
or CPU cycle time. The read buffer is twice the width of a register with a depth of
N. This is twice the size of a delayed write buffer, but eliminates the requirement for

complex bypassing and prioritization logic.

3.4.2 Covering on-path hazards

In addition to resolving all on-path hazards, the read buffer will resolve some branch
hazards. Figure 3.10 shows an on-path hazard and a branch hazard both with definitions
of z in I; and uses of z, after rollback, in instructions I; and I;, respectively. Note that

if path [is initially taken, the read buffer will contain the old value of z and rollback

-s—— rollback

Figure 3.10: Covering on-path hazard.

would be successful. However if path m is taken, the read buffer will not contain the old
value of z and rollback would be unsuccessful. If only paths such as [exist, the presence
of the on-path hazard assures successful rollback or “covers” the branch hazard. In this

case, resolution of the branch hazard using compiler techniques is not necessary.

3.4.3 Post-pass transformation

Given the efficiency of the read buffer in resolving on-path hazards, a post-pass trans-
formation on assembler-level code becomes possible as a replacement for the nop insertion
transformation described in Section 3.3.7 (p. 41). The post-pass transformation creates

on-path hazards when necessary to assure that all branch hazards are resolved by the

45

read buffer. Given one such branch hazard which defines physical register ri at instruc-
tion I;, the transformation inserts an MOV r, ri instruction immediately before I;. This

guarantees that all paths leading to I; are like path [in Figure 3.10.

3.5 Performance Evaluation

3.5.1 Implementation

The transformation algorithms presented in Section 3.3 have been implemented in
the MIPS code generator of the IMPACT C compiler [32]. Transformations resolving
pseudo register hazards (loop protection, node splitting, and loop expansion) are called
just before register allocation. Transformations resolving machine register hazards are
called after the live range constraints have been generated and before physical register
allocation. The nop insertion algorithm, or post-pass algorithm, is called before the

assembly code output routine.

3.5.2 Application programs

Table 3.1 lists the eleven application programs used in the evaluations. The applica-
tions were cross-compiled on a SPARCserver 490 and run on a DECstation 3100. Size
is the number of assembly instructions emitted by the code generator, not including the
library routines and other fixed overhead.

The results are summarized in Figures 3.11 through 3.21 (pp. 50 through 55). Each

figure contains two plots, the first plot shows the percent of run-time overhead (Time

46

Table 3.1: Application programs: run-time and code size overhead evaluation.

[Program “ Size | Description |

QUEEN 148 | eight-queen program
wC 181 | UNIX utility
QSORT 252 | quick sort algorithm
CMP 262 | UNIX utility

GREP | 007 | UNIX utility

PUZZLE 932 | simple game
COMPRESS || 1826 | UNIX utility
LEX 6856 | lexical analyzer
YACC 8099 | parser-generator
[TBL 8197 | table formatting preprocessor
CCCP 8775 | preprocessor for gnu C compiler

OH) of the referenced hazard resolution scheme, and the second plot shows the percent
of code growth overhead (Size OH) relative to the base values in Table 3.1.

Four hazard resolution techniques were evaluated. Compiler I resolves on-path haz-
ards only, using the compiler-driven data-flow manipulations presented in Chapter 3.
Compiler 2 extends the compiler transformations to resolve both on-path and branch
hazards. PP (post-pass) disables the compiler transformations and relies solely on the
post-pass transformation presented in Section 3.4. Comp/PP uses compiler transforma-
tions to resolve branch hazards, assumes a read buffer to resolve on-path hazards, and
uses the post-pass transformation to remove remaining branch hazards.

Due to the excessive compile times of Compiler 1 and Compiler 2, for large appli-
cations, the evaluations of these schemes were restricted to a.pplica.tions QUEEN, WC,

COMPRESS, CMP, PUZZLE, and QSORT. The compiler transformations to resolve

47

branch hazards for Comp/PP have been enhanced to reduced compile times. These en-

hancements are described in Chapter 4. Both Comp/PP and PP were evaluated for all

eleven applications.

3.5.3 Performance analysis

Compiler transformations used for the removal of data hazards can impact perfor-
mance in several ways. Loop protection inserts save/restore operations at the head and
tail of the loop. This increases the path length and, therefore, the run time. Additional
arcs in the dependency graph can cause more spill code to be generated, increasing mem-
ory references and cache misses. Nop insertion can be costly since up to N nops could be
inserted for each unresolved hazard. The insertion of MOV ry, 7y instructions to create
covering on-path hazards in the post-pass transformation also increases path lengths, al-
though typically less than with nop insertions. Finally, the increase in code size, mainly
due to loop expansion, may cause more run-time cache misses.

The loop expansion transformation can improve performance over a compiler that
does not have this optimization technique [33] as demonstrated by the negative run-time
overhead measurements for COMPRESS, CMP, and PUZZLE, shown in Figures 3.13,
3.14, and 3.15 (pp. 51 and 52), respectively. Once the loop is expanded, some condition
checks and index operations can be eliminated. Also the save/restore operations from
loop protection shorten the live ranges of some registers thus allowing more efficient

register allocation. Only the latter optimization is implemented in the current software.

48
3.5.4 Results: Compiler 2

As can be seen in Figures 3.11 through 3.16 (pp. 30 through 52), extending the com-
piler hazard resolution scheme to include branch hazards introduces little incremental
performance impact or code growth overhead. Given a rollback distance of 10, resolving
both on-path and branch hazards using compiler transformations resulted in a maxi-
mum performance impact of 32.6% and an average performance impact of 12.6%. This
compares with maximum and average impacts of 35.4% and 15.4%, respectively, for
compiler-driven on-path hazard resolution only. The maximum code size overhead mea-
sured for the extended compiler-based was 328% with an average overhead of 207%, for
a rollback distance of 10. This c‘ompa.res with a maximum and average overhead of 372%
and 225%, respectively, for the unextended compiler-based scheme.

These results indicate a small incremental run-time performance overhead and a small
code size overhead given compiler-based branch hazard removal compared to compiler-
based on-path hazard removal alone. Three factors account for these small incremental
impacts. First, on-path hazards dominate in frequency of occurrence. Second, resolving
an on-path hazard at instruction I; through renaming can sometimes resolve a branch
hazard at instruction I;. Third, resolving on-path hazards with nop insertion may resolve
a corresponding branch hazard by increasing the distance between the hazard node and

its nearest predecessor branch node.

49
3.5.5 Results: PP

Figures 3.11 through 3.21 (pp. 50 through 55) show the run-time a.nd code size
overheads for each application studied assuming the read buffer to resolve on-path hazards
and the post-pass transformation described in Section 3.4 to cover all branch hazards.
The results are worst case in that many of the branch hazards could have been resolved
with no performance impact using the compiler techniques of Section 3.3. Instead, they
are resolved by the insertion of MOV instructions which cause a guaranteed, although
small, performance impact. Given a rollback distance of 10, the post-pass transformation
produced a maximum performance impact of 7.69% with an average performance impact
of 2.43%, significantly below the levels produced by the compiler-based scheme. Code
growth overhead measurements were correspondingly lower with a maximum overhead

of 13.0% and an average overhead of 8.59%.

3.5.6 Results: Comp/PP

-

The compiler-assisted scheme achieved consistently low performance overheads across
all applications and slightly better performance than with the post-pass transformation
only. Given a rollback distance of 10, the compiler-assisted scheme produced a maximum
performance impact of 6.57% with an average performance impact of 2.03%, and a max-
imum code growth overhead of 51.2% with and an average overhead of 15.5%. The run
time results of PUZZLE, YACC, and CCCP indicate that compiler techniques are still

useful in reducing run-time performance penalties. These compiler techniques, however,

50

have the disadvantage of requiring recompilation and additional code growth. The pri-

mary advantage of the compiler-assisted and post-pass schemes are their utilization of

the read buffer to resolve the more frequent on-path hazards.

123456782910 0123456782910
Rollback Distance Rollback Distance

12345678910 0123456780910
Rollback Distance Rollback Distance

Figure 3.12: Run-time overhead and code size overhead: WC.

51

Time OH Size OH
(%) (%)
354 Compiler 1: -~ 4004 Compiler 1: -o-
304 Sgmpiler2: %" 350 Gompiler2: -o-
254 Comp/PP: —4 'P 300 Comp/PP: -&-
20 - 250 1
15 4 200 -
104 150 1
5- 100 B
0 50 =
-5 4+———1—1——+r—1 0-
12345678910 0123456782910
Rollback Distance Rollback Distance

Figure 3.13: Run-time overhead and code size overhead: COMPRESS.

Time OH Size OH
(%) (%)

35- Compiler 1: -~ 4004 Compiler 1: -e-

30 Sgmpiler2: -2~ 350 ompiler2: -o-

254 Comp/PP: —& 300- Comp/PP: -4

20 250 -

15 4 200 4

10+ 150- e
54 100 -

04 SSaha—gi it 50

S+—T-TTTTTT T T 0- — T T T T 1

12345678910 0123456788910
Rollback Distance Rollback Distance

Figure 3.14: Run-time overhead and code size overhead: CMP.

52

Time OH Size OH
(%) (%)
354 Compiler 1: -o- 4004 Compiler 1: -
30-{ §mpiler 2: 70 350 Sompiler2: 9"
25 Comp/PP: —h 300 Comp/PP' e
20+ 250 1
15 1 200 -
10- 150]
§ -
0-
54— —————T

T T H T 0_ oo Jovvo MesoaMarachesas
12345678910 0123456782910
Rollback Distance Rollback Distance

Time OH Size OH
(%) (%)
354 Compiler 1: —o- @ 400
30- Clg.mptlcr2 -a- 350 -
25 Comp/PP: & 300 -
20 250
154 200 -
101 150 4
54 ' 100 -
0- e Bnisssli— it 5()
-5 —TrTT 1 7 1 1 1 1 0"1—*'-*-*—*—%44
123456782910 012345678910
Rollback Distance Rollback Distance

Figure 3.16: Run-time overhead and code size overhead: QSORT.

PREGEDING PAGE BLANK MOT FILMED

94
Time OH Size OH
(%) (%)
10+ PP: -t 3541 PP —
Comp/PP: -4- Comp/PP: -4-
8 30 -
6 25 4
4 - 20 1
24 _-"_A--A"A"A--A--A" 15 1
0 ‘-_A__A_-A--A"A
.2-
‘4 1 T T T T L] 1 L] T 1 o T 1 § ¥ ¥ T 1 1 1 1
123456728091 12345678910
Rollback Distance Rollback Distance

Figure 3.19: Run-time overhead and code size overhead: YACC.

Time OH Size OH
(%) (%)
104 PP — 60 -
g Comp/PP: -&- 50 - & bbb yan-a
A--
6- 40 S PP -
44 o A A . Comp/PP: -4-
% S a A 30
24 ‘\‘ "' \‘A—_‘l' &
0- ’\L./\'\"‘)_'\‘ 20 -
2 N W
-4 1 T 1 ¥ I i i 1 I L} 0 T T 1 1 I L]] T T I
1234567891 12345678910
Rollback Distance Rollback Distance

Figure 3.20: Run-time overhead and code size overhead: TBL.

59

Time OH Size OH
(%) (%)

101 PP: —— 354 PP: —-
g | Comp/PP: -#- 30| Comp/PP: -3
6- 25 - a
4- 20- A
2 M 15 1 A._A“A_-‘
0+ ":' ~‘\“ ’_A--“’A“ﬁ--"’ 10 - A-_‘__A"‘

24 4 A 5.

4 T T 1 1 T ¥ T 1 1 1 0 ¥ T T L 1 1 L ¥ T T

12345678910 12345678910
Rollback Distance Rollback Distance

Figure 3.21: Run-time overhead and code size overhead: CCCP.

3.6 Concluding Remarks

A compiler-based and a compiler-assisted scheme have beep described which support
multiple instruction rollback with branch recovery. Hazard classification has proved useful
in construction of the compiler-assisted scheme. Compiler transformations such as pseudo
register renaming, node splitting, loop protection, and loop expansion were shown to
be effective in resolving on-path and branch hazards with little performance impacts
over resolving on-path hazards alone. The compiler-based approach yields performance
impacts consistent with previous compiler techniques [29] and hardware techniques [12].
A hardware assisted scheme was introduced to resolve on-path hazards by maintaining a
window of instruction read history.

The hardware assisted scheme introduces little performance impact and reasonable
additional circuitry. Compiler techniques are used to resolve the remaining branch haz-

ards with a modest increase in overall compile time. The performance measurements

56

indicate that the compiler-assisted scheme can achieve lower performance impact than
eitl}er a compiler-based scheme or a delayed write hardware scheme. It should be noted
that the combined scheme applies only to the CPU and requires additional hardware to
maintain the states of the program counter, program status word, etc.. The read buffer
is twice the size of a delayed write buffer but avoids the requirement for bypassing and

prioritization logic.

37

4. TRANSFORM ENHANCEMENTS

4.1 Introduction

In Chapter 3, a compiler-assisted multiple instruction rollback recovery scheme was
presented. The scheme uses an operand read buffer to resolve on-path rollback hazards -
and uses compiler-driven data-flow ma.nipula.tions to remove branch rollback hazards.
This chapter presents enhancements to previously proposed compiler transformations
used for hazard resolution [29]. These enhancements result in improved compile times

and improved application run times.

4.2 Node Splitting

4.2.1 Iterative node splitting algorithm

As discussed in Chapter 3, node splitting breaks equivalence relationships which would

prevent pseudo register renaming, i.e., given A,(3, j,z) or hy(i, j, z), node splitting forces

58

= rollback
. calculate hazards hazard_set = Q
®
. hazard _set # O
[]
®
EZ] } resolve first r€ hazard_set
detected *

r“j.}f)(=7] Iterative Node Splitting Algorithm
! y

: dead
=]
)

dead

Figure 4.1: Iterative node splitting algorithm.
equiv(i, 7) = 0. Figure 4.1 shows an example code sequence requiring splitting and an
iterative node splitting algorithm.

The code segment of Figure 4.1 contains two branch hazards. The first hazard involves
pseudo register z and the second involves pseudo register y. When two definitions of a
hazard variable reach a node in which the hazard variable is live, the node is split. In
this case, node splitting to resolve the hazard variable z also resolves the hazard variable
y. This implies that the hazard set should be recalculated after splitting takes place for
each hazard register. Previous node splitting algorithms used this iterative algorithm to

avoid unnecessary node splitting [29].

ns‘ =x’ { =y}n6

Figure 4.2: Node splitting: original subgraph.

Figures 4.2 through 4.4 demonstrate the effect of the iterative node splitting algorithm
on an example subgraph. Node splitting relative to hazard variable z ensures that the
definition of z in node n, and the definition of z in node n3 do not both reach the same
use of z in node ns. Node splitting relative to y ensures that the definition of y in node
ns and the definition of y in node n, do not both reach the same use of y in node ns.

Figure 4.3 shows the subgraph after splitting relative to hazard variable z, and Figure
4.4 shows the subgraph after splitting relative to hazard variables z and y. Although
the iterative algorithm was initially intended to prevent excessive node splitting, this
example demonstrates that excessive node splitting is still possible. Figure 4.5 shows an
optimal subgraph which resolves both hazards with less splittiﬁg than produced by the

iterative algorithm.

60

Partially Split Subgraph
o, LW
- S

-,

hazard node

Figure 4.3: Node splitting relative to hazard variable z.

Split Subgraph

ny

W _

hazard node

n

nsC=x) " =x (=y)"6(=y)"8

Figure 4.4: Node splitting relative to hazard variables z and y.

61

Optimally Split Subgraph

ns(C=xns(=x) =y 6@"’6

Figure 4.5: Optimal node splitting relative to hazard variables z and y.

4.2.2 Conflict definition

To ensure minimal splitting, a new node splitting algorithm is developed using the
concept of conflicting parents. Given a CFG with back edges disabled, let Hpnodes represent

the set of all hazard hazard nodes! present in a CFG with back edges disabled. A conflict

exists between node n’s parent nodes, p, and ps, if
e m € Hpoueo N reaching_out(p,) for some m, and
e [€ reaching_out(p) for some ! # m, and

o def(m) = def(l), where def(m) € live_in(n)

1A hazard node n is defined as the node representing I, in G(V, E) given the existence of either
ho(n,m, z) or hy(n,l,z). See Chapter 3 for notation details.

t = reaching ﬂ = hazard
m
—— hazard use
non-hazard def
@ Pa ’—— hazard def
@ conflicting parents

Figure 4.6: Conflict definition.

Any node with one or more conflicting parents must be split. Note that parent conflicts
are not based on a single hazard variable.

Figure 4.6 illustrates the conflict definition. Double arrows represent a hazard pair,
where z is defined in node ps, and after rollback, is used prior to re-definition in node
m. Single arrows represent reaching definitions and show that if variable z in node py
is renamed to z, then z in node m would ultimately require renaming to z. Node n,
of Figure 4.6, has conflicting parents p, and ps. Ensuring that node n does not have

conflicting parents enables resolution of the hazard using variable renaming.

4.2.3 Node splitting using graph coloring

Given the definition of conflicting parents, the node splitting strategy for a particular
node is to group the parents of that node such that elements within a group do not
conflict. Each group becomes a parent node for a duplicate of the original node. For

example, if node n has six parent nodes and these nodes can be organized into three

63

4D 52 Parent conflict graph

> @ @

Node 48, 48’, and 48" after splitting
Figure 4.7: Node splitting using graph coloring; QSORT.

nonconflicting groups, then only three total copies of n are required. Figure 4.7 shows
node 48 from Lecode emitted by the IMPACT compiler for the QSORT application shown
in Table 3.1 (p. 46). Node 48 has six parent nodes prior to splitting. These nodes can
be arranged in a parent conflict graph, where each arc of the graph represents two nodes
which conflict. Establishing groups can be achieved by finding the minimum coloring of
the parent conflict graph, i.e., coloring the nodes such that no two nodes connected by an
arc have the same color. For the example shown in Figure 4.7, three colors are sufficient
to cover the parent conflict graph, resulting in the splitting of node 48 into nodes 48, 48’
and 48".

Determining whether a graph is k-colorable is NP-complete in general: however,

linear-time heuristics have been developed. Figure 4.8 shows the heuristic used for col-

64

Given parent_conflict_graph (V, E)

int color_graph (parent_conflict_graph)

graph_struct parent_conflict_graph;

(.
int i, 3j, k;
graph_struct temp_graph;
node_struct v[MAX_ PARENTS];

temp_graph = parent_conflict_graph;
while (temp graph != null) {
v{i] = min_degree_node{all V in temp_graph(V,E)}:
k = degree of (v([i]);
delete v[iT and all edges of v[i] from temp_graph (V,E);
++i;
}
++k;
for (j=i; 3j<0; =-=3j)
color v[j] in parent_conflict_graph with one of k colors;
return(k);

Figure 4.8: Parent conflict graph coloring heuristic.

oring the parent conflict graph. The heuristic is a modified version of an algorithm used
for register allocation [28]. The algorithm selects the node with the fewest edges, records
the node, and then removes it from the parent conflict graph. This process continues
until the parent conflict graph is empty. If node n has the fewest edges (i.e., k edges),
then at least k + 1 colors are required to color the graph. One color is required for node
n and k colors are required for the nodes connected to n. Node n can be removed leaving
a subgraph. Once the subgraph is colored with k colors, then node n can be colored with
the remaining color. The reverse order of the node recordings can therefore be used to

color the parent conflict graph.

65

disable backedges;

calculate hazards;

for all nodes n, in a topological traversal, do {
compute reaching_in set for n from reaching out set of n’s
parents;
build a parent conflict graph (PCG) ;
return to k the # of colors required to color the PCG;
color PCG with k colors;
delete node n;
create k-1 duplicates of n;
use coloring to connect parent nodes to n and duplicates;
if n was a hazard node, add duplicate nodes to hazard list;
compute reaching_out set for n and duplicates;

}
enable backedges;

Figure 4.9: One-pass node splitting algorithm.

4.2.4 One-pass node splitting algorithm

Both live_in(n) and reaching.out(n) analyses are required to identify conflicting par-
ent nodes. A one-pass node splitting algorithm becomes possible by precalculating live_in
and H,ode, and, then, beginning with the root node, splitting in a topological traversal
of the CFG. The one-pass node splitting algorithm is shov\vn-in Figure 4.9. A topological
traversal ensures than when processing node n, all ancestors of n have been processed
and no descendants of n have been processed. This latter case ensures that the presplit
calculation of live_in(n) can be used for parent conflict identification when processing
a given node. Unlike live_in(n), reaching_out(n) is affected by the splitting of ancestor
nodes. Since reaching_out(n) is based solely on node n and its ancestors, reaching_out(n)
can be calculated as node splitting proceeds. If a hazard node is split, each duplicate of
the node must be added to the Hpnodeo set. Since the root node does not have conflict-
ing parents, a topological traversal of the CFG using the graph coloring node splitting

technique ensures that no node in the resulting graph has conflicting parents.

66

Table 4.1: Node splitting algorithm comparisons: COMPRESS.
o Iterative Algorithm run time = 614.0 seconds
o One-pass Algorithm run time = 20.3 seconds

e Speedup = 30.2

Orig. Node Cat. || Iterative Alg. | % Increase || One-pass Alg. [% Increase
547 601 9.9 566 3.5
461 499 8.2 496 7.6
144 147 2.1 147 2.1
181 209 15.5 207 14.4
75 80 6.7 80 6.7
21 28 33.3 27 28.6
45 79 75.6 48 6.7

Table 4.1 illustrates the improvement of the one-pass node splitting algorithm over
the iterative algorithm for the COMPRESS application. The COMPRESS application
was compiled on a SPARCserver 490 using the IMPACT C compiler [32] and a rollback
distance of 10. Node count values represent pseudo (Lcode) instructions created by the
IMPACT C compiler before and after splitting. Seven of the 14 COMPRESS functions
which required splitting are listed. Algorithm run times represent the overall compile
times given each node splitting algorithm.

Table 4.1 shows a marginal overall code growth reduction for the one-pass algorithm.
Although one function demonstrated a significant code growth reduction (6.7% down
from 75.6%), the function is small and has minimal effect on the overall code size. The

improvement in compile-time of the one-pass algorithm is more dramatic, resulting in a

67

speedup of 30.2. The compile-time improvement can be explained as follows. If 60 hazard
variables are present in a given function, the iterative algorithm may require up to 60
passes through the CFG of that function, including 60 data-flow analysis and hazard
calculations. Although processing a given node in the one-pass algorithm is slightly more
complex, a single data-flow analysis calculation and a single pass through the CFG are

sufficient.

4.3 Loop Protection

As discussed in Chapter 3, due to the significant code growth potential of loop expan-
sion and the infrequency of branch hazards traversing loop back edges, all such hazards
are left to be resolved by the post-past transformation. Node splitting therefore be-
comes the dominant pseudo level hazard removal transformation, eliminating the need
for loop protection to aid in loop expansion. A new loop protection algorithm, aimed at
maintaining loop integrity only during node splitting, is now developed.

A similar approach to the conflict definition of Section 4.2 can be used to determine
if a loop has to be protected. The header node of loop ! will be defined as hdr_node(l).
The requirement to split loop [due to hazard node n will be defined as split(l,n) = 1,

and this occurs given the following conditions:

o n € Hoo4., N reaching_in(hdr_node(l)) for some n, and
e m € reaching_in(hdr_node(l)) for some m # n, and

o def(n) = def(m), where def(n) € livein(hdr_node(l))

68

Figure 4.10: Loop protection from hazard variable z.

Given the one-pass node splitting algorithm of Section 4.2 and no loop protection
requirement for loop expansion, loop ! will require protection from hazard node n if
split(ln) = 1. Figure 4.10 demonstrates how loop ! is protected from hazard node n,
where def(n) = z. The loop header will not be split since z ¢ livein(hdr_node(l)). A
loop protection algorithm, referred to as static loop protection, is shown in Figure 4.11,
where outer(l) indicates the outer loop of loop I. The static loop protection algorithm is
executed prior to node splitting. Each loop is processed twice: the first time to record the
hazard variables for which the loop must be protected, and the second time to protect

the loop.

4.3.1 Dynamic loop protection

Since the static loop protection algorithm shown in Figure 4.11 is executed prior to
node splitting, it does not predict loop header splits that result from new hazard nodes

created during ancestor splitting. Given the topological traversal of the one-pass node

69

disable backedges;
calculate hazards;
for all loops 1, from outer loops to inner loops, do {
for each hazard node n, in hazard _node_set, do ({
if (split(l,n) == 1), do {
if (n is not in loop_hazard set (outer(l))), do {
add n to loop_hazard set(l);

}

}

}
for all loops 1, do {
for all nodes n in loop hazard_set(l), do {
protect loop 1 for hazard variable def(n);

}

enable backedges;

Figure 4.11: Static loop protection algorithm.

splitting algorithm, loop protection can be performed dynamically when a loop header is
encountered.

The set containing all of the nodes in loop [is defined as loop_nodes(l). Protection of
loop 1 relative to hazard variable z can affect livein(n) for all n € loop-nodes(l). Every
exit node of loop [in which z is live will have a restore node placed between it and its
children nodes as shown in Figure 4.10. Changes to livein(n) for n € loop.nodes({)
is therefore contained to loop /. Figure 4.12 shows a simple dynamic loop protection
algorithm which includes updating of the presplit /ive_in analysis result.

The creation of restore nodes during loop protection can occasionally result in ad-
ditional branch hazards. Static loop protection ensures that these additional hazards
are identified and removed by the node splitting algorithm. Dynamic loop protection
can create branch hazards that are not guaranteed to be identified and removed by the

node splitting algorithm. The approach used for branch hazard removal therefore is

70

dyn_loop_protect (1, x)
insert save node s ahead of node hdr_node(l);
copy live_in(hdr_node) into live_in(save_node);
copy s into loop_nodes(l);
for all exit nodes e of loop 1, do {
insert restore node r;
copy live_in(e) into live_in(r);
copy r into loop_nodes(l):
}
for all nodes n in loop_nodes(l), do {
if (x in live_in(n)), do {
delete x from live in(n);
add t to live_in(n);
}
}

return;

Figure 4.12: Dynamic loop protection algorithm.

to: 1) execute static loop protection, 2) use dynamic loop protection within the node
splitting algorithm, and 3) re-execute the node splitting algorithm if previous dynamic
loop protection resulted in additional hazards. Experimental results have shown that
re-execution of the node splitting algorithm is rarely necessary. Two executions of the
node splitting algorithm were sufficient to remove all required branch hazards for the

eleven applications shown in Table 3.1 (p. 46).

4.4 Performance Enhancements Through Profiling

4.4.1 Post-pass transformation versus loop protection

\

After hazards are removed by the compiler, some hazards remain and must be re-
moved using the post-pass transformation. Previous post-pass transformations used nop

insertions to increase all antidependency distances to > N [29]. Since nop insertion can be

(g}

— 1

insertion

[]
error detected —= S

Figure 4.13: Post-pass hazard removal using read insertion.

costly to perforina.nce, previous compiler transformations removed all hazards possible,
leaving only unresolvable hazards to be removed by the post-pass transformation.

In Chapter 3, a new post-pass transformation was introduced in which nop insertion
was replaced by read insertions as the primary hazard removal technique. As illustrated
in Figure 4.13, up to two branch hazards can be removed by a single read instruction.
The new post-pass transformation is very efficient and in some cases can resolve branch
hazards with less performance impact than pseudo-level transformations. Figures 4.14
and 4.15 show performance overhead comparisons between compiler-driven data-flow ma-
nipulations and the new post-pass transformation. Comp/PP indicates that hazards are
resolved by the compiler where possible, with the remaining hazards being resolved at
the post-pass level. PP (post-pass) indicates that compiler transformations have been
disabled and that all hazards are removed at fhe post-pass phase. Performance evalua-
tions were obtained using the methods described in Chapter 3. The TBL application is

a table formatting preprocessor for nroff, a text processing facility. PUZZLE is a game.

72

Time OH
(%)

—

PP:
g | Comp/PP: -4-

04 xfa--%--a--a--8--a--4--4--a

123456 8 910
Rollback Distance

Figure 4.14: Run-time overhead: PUZZLE.

| S S AU S RN BN R R N |
12345678910
Rollback Distance

Figure 4.15: Run-time overhead: TBL.

73

For the PUZZLE application, compiler transformations produce better performance
than the post-pass transformation alone. For the TBL application, shown in Figure
4.15, using the post-pass transformation to remove all hazards produces slightly better
performance than the combination of compiler and post-pass transformations. Hazard
elimination via read insertion introduces a guaranteed but small performance impact due
to the longer instruction path length. As demonstrated in Figure 4.14, pseudo register
renaming can eliminate hazards without impacting performance when loop protection is
infrequent. The save/restore operations of loop protection can result in more performance
impact than read insertion when loop protection is frequent, as demonstrated in Figure
4.15.

Figure 4.16 illustrates the potential effect on performance given the following two
types of hazard removal: 1) hazard removal using register renaming that results in loop
protection, and 2) hazard removal using read insertion. If the protected loop is executed
90 times and the hazard instruction is executed two times, loop protection would require
the execution of 40 additional instructions, where read insertion would require the exe-
cution of only two additional instructions. If the loop and hazard instruction execution
frequencies were reversed, then read insertion would produce more performance impact
than loop protection. As shown in Figure 4.16, profiling data can be used to aid in loop

protection decisions.

74

Loop Protection Read Insertion
1 .
save r,=r, 20.0 o rollback B
-, dead Loop ~ —
header . .
® [J
) change = FEEE
tor’s
© R] proflecan
L]
error ——).(------""
) detected o
restore r.=r

Figure 4.16: Loop protection versus read insertion.

4.4.2 Profiling effectiveness

Profiled data was included in the pseudo-level transformations of Chapter 3. The pro-
file data is comprised of both dynamic profile sampling and static prediction. The static
prediction is used as a supplement for areas of the application code that are unexecuted
during profile sampling. For static profiling, a loop is assumed to iterate ten times. Inner
loops, therefore, iterate multiples of 10 times depending on the depth of loop nesting.
All loop header nodes and hazard nodes are assigned weights based on the profile data.

Protection of loop ! due to hazard node n, is required based on the following con-
dition: if nyweight > 3 » (hdr_node(l)-weight), then protect loop /. The constant 3
adjusts the weights to account for both direct and indirect loop protection costs. Direct

loop protection costs result from the save/restore instruction pair shown in Figure 4.16.

75

Figure 4.17: TBL: profile data used for loop protection decisions.

Indirect loop protection costs result from: 1) an increased number of hazards which in
turn required more node splitting and more loop protection, and 2) increased register
usage due to the save/restore instructions which can result in additional register spills.
Figure 4.17 shows the run-time overhead for the TBL application with rollback distances
from 1 to 10. Prof/PP indicates that profiling data was used in loop protection decisions.

The results show that the use of profile data can improve application performance by
postponing some hazard resolutions until the post-pass phase. Using profile data to aid
in loop protection decisions did not produce performance equal to that for the post-pass
transformation, for the TBL application. As an extension to this work, profile data can
be used to aid in register allocation. As discussed in Chapter 3, hazards that are present
after pseudo register renaming are resolved by adding arcs to the register allocation

dependency graph. These additional constraints can cause additional register pillage and

76

impact performance. Similar techniques to those developed for loop protection can be

used to enhance register allocation decisions.

4.5 Summary

In this chapter, compiler transformations used for the removal of branch hazards have
been enhanced, resulting in reduced compile times and increased application performance.
A one-pass node splitting algorithm was developed which uses the concept of conflicting
parents to reduce the number of duplicate nodes required. A graph coloring heuristic
was developed to connect split nodes to parents. For the COMPRESS application, the
one-pass node splitting algorithm resulted in marginally reduced code growth and a
compile-time speedup of 30 over previous iterative node splitting algorithms. Similar
techniques used in the node splitting algorithm were used to develop a one-pass static
loop protection algorithm. Due to the splitting of hazard nodes, it was shown that the
static loop protection algorithm did not predict all loop header splitting. A dynamic
loop protection algorithm was developed which allows loops to be protected as they
are encountered by the node spitting algorithm. It was also shown that read insertion
used in the post-pass hazard removal phase could produce less performance impact than
pseudo register renaming when the latter results in loop protection. Profiling was shown
to be effective in making better loop protection decisions, resulting in improved overall

application performance.

7

5. READ BUFFER SIZE REQUIREMENT

5.1 Introduction

In Chapter 3, a compiler-assisted approach to multiple instruction rollback in which
a read buffer of size 2N (where N represents the maximum instruction rollback distance)
was used to aid in hazard removal. This chapter examines the size and design of the
read buffer. A practical lower bound and average size requirement for the read buffer
are established by modifying the design to save only the data required for rollback. The
study measures the effect on the performance of ten application programs using six read
buffer configurations with varying read buffer sizes. Two alternative configurations are
shown to be the most efficient and differed depending on whether split-cycle-saves are

assumed.

78

Instruction
rollback 4 Sequence Read Buffer
AN
.»-””Kr r=r+5 [valuewr) | | [value(r) T
{ L:n="r il value(r,) u N
{ f” ’133 rs=5 + 5| value(r,) | b | value(r)
\Wi L:rg=r+14 value(r,) ,
/ e) [[
rollback 2
S1 f——o—
GPRF
S2 ’ﬁ e

Figure 5.1: Read buffer of size 2N.

5.2 Read Buffer Configurations

Given a read buffer configuration as shown in Figure 5.1, rollback is accomplished by
. first flushing the read buffer back to the general purpose register GPREF in the reverse
order of which the values were saved. Figure 5.1 shows the two FIFO read buffers above
the source 1 (S1) and source 2 (S2) buses to better illustrate the buffer’s content given
the instruction sequence shown. As long as the depth of the dual FIFO read buffers are
N, redundant copies of the appropriate register values (denoted value(rs)) are available
to restore the register file given a rollback of < N.

The read buffer size requirement of 2NV is the worst case. The buffer maintains the
last IV register reads from the GPRF, assuring data redundancy fqr all values required.
The read buffer may also save data which is not required during rollback. Register reads
that must be saved can be determined at compile time. If this information is added to

the instruction encoding (e.g., as an extra bit field for source 1 and for source 2), then the

79

Instruction Memory

rollback 4 Sequence

\ * f* .

o Lin=nth overflow overflow

[pinTh value(ry) ||} Read Buffer

|/ hin=g 0 valuer) [T valuery [1,

\ 4 I‘:r6=r,+1 !)

X
rollback 2 s1 f
GPR
S2 f— 4

Figure 5.2: Read buffer of size < 2N.

read buffer can be designed to save only those values required. As long as the required
values are maintained for N cycles, a less than 2N read buffer size design is possible.
Figure 5.2 illustrates a case in which all register reads do not have to be placed in the
read buffer. The registers required to be saved are marked with an “*.” Since only the
required values are saved, the read buffer total size can now potentially be less than N.
In this case, however, the instruction count must also be saved so that the value can be
maintained for at least N cycles. In the event that the read buffer overflows, the oldest
value in the buffer must be pushed to memory and a record kept so that during rollback
the value can be retrieved from memory. Given a dual FIFO depth of M, memory would
serve the function of the remaining N — M of the two FIFOs. This read buffer design
reduces the buffer size while introducing potential performance impacts due to buffer

overflows.

80

A key to the evaluation of a given read buffer design is the set of assumptions made
relative to overflow handling. For example, if a memory store buffer were assumed, there
would be no stall if a single FIFO overflowed and the store buffer was available, given that
the current instruction were not a store. However, if the store buffer were full or if the
current instruction were a store, then a stall would occur. The problem with including
a store buffer in the model is that the performance impact measured would depend on
the store buffer size, clouding the performance impact due to the read buffer alone. The
same difficulty arises if a cache is included in the model.

It is assumed in this evaluation that a read buffer overflow will always cause a stall
of one cycle. If both FIFOs overflow, a stall of two cycles will occur. This simplifying
assumption is pessimistic relative to a store buffer which may have empty locations, while
optimistic relative to a full store buffer requiring a write to cache. These assumptions
guarantee that all measured performance impacts are directly due to changes in the read

buffer size or configuration.

5.2.1 Read buffer designs

The most straightforward design for the read buffer is that of configuration Al, shown
in Figure 5.3. The obvious problem with configuration Al is that if the FIFO connected
to S1 is full and the current S1 value must be saved, a stall occurs due to overflow even
though the FIFO connected to 52 may have an available entry. Configuration A2 in

Figure 5.3 resolves this inefficiency by giving both S1 and S2 access to either FIFO.

Configuration Al

Configuration B2
S1

§2 ——\

\

81

Configuration A2

S1
S2 —

Configuration C

§1 — g

S2

Configuration Bl
S1
§2 ——\

\

Configuration D

S2

o Configuration B1: Can store buses S1 and S2 simultaneously.

o Configuration B2: Must stall on second store to single buffer.

o Configurations C & D: Assumes stall on second store to single buffer.

Figure 5.3: Read buffer configurations.

82

Configuration B1 also resolves the inefficiency of configuration Al by having a single
FIFO with both S1 and S2 connected to it. Configuration Bl assumes that the S1 value
and the S2 value can be saved within the same cycle. This would be possible if the S1
value is saved during the first half of the cycle and the 52 value is saved during the second
half of the cycle. This split-cycle-save assumption is consistent with the design of register
files which write back during the first half of the cycle and read during the second half
of the cycle [34].

Configuration B2 is identical to configuration Bl except that two saves during the
same cycle are not permitted. If two saves are required during the same cycle (e.g., an
instruction of the form: r; = rj +r}), then a stall to save the second value occurs.

Configuration C attempts to lessen the impact due to the bottleneck in configuration
B2 by adding two single level queues between the S1 and S2 buses and the single FIFO.
Configuration C can absorb one simultaneous save, processing the first in the current cycle
and the second in the next cycle assuming the next instruction does not also require a
simultaneous save. Configuration D extends configuration C to allow both S1 and S2

access to either queue.

5.3 Application Program Execution and Read Buffer Simulation

5.3.1 Simulation approach

The read buffer is simulated at the instruction level. Prior to each instruction execu-

tion, a procedure is called to update the read buffer model. Parameters such as which

a2

83

register reads to save and instruction type are passed to the simulation program. The
drawbacks to this approach are the code growth in the original application program and
the reduction in application run time.

The instructions inserted to branch to the simulation procedure prior to each original
application instruction cannot be added in the high level language. If this were done,
the one-to-one correspondence between original instructions and simulation procedure
calls would be lost. Also the simulation procedure cannot be permitted to affect the
original application by changing register assignments, live ranges, etc. For this reason,
calculation of hazards and subsequent determination of which register reads should be
saved are performed at the s-code level (after register assignment) and the appropriate s-
code level instructions inserted prior to each original s-code instruction of the application

program.

5.3.2 Implementation

To minimize the application code growth, a simple s-code sequence (written for the
MIPS 2000/3000 architecture) shown in Figure 5.4 is inserted prior to each instruction.
The code segment pushes register 31 and register 4 on the stack, loads register 4 with in-
formation relative to the saving of S1 or S2 for this particular instruction, calls rbuf2_save,
and then upon return from rbuf2_save restores registers 31 and 4. Register 31 is used
as a return address during procedure calls and therefore will be corrupted. Register 4 is

used to pass parameters in the MIPS compiler convention.

84

Begin instrument segment: save_srcl = 1, save_src2 = 0
subu $sp, 28
sSwW $31, 20($SP)

sw 54, 24 ($sp)

1i 54, 1 —¢———— directs read buffer to
jal rbuf2_save save source 1 value
1w $31, 20($SP)

1w 54, 24 ($sp)

addu $sp, 28
End instrument segment.

Figure 5.4: Instrumentation code segment.

Begin rbu’f2_save procedure

.verstamp 2 10
.extern _iob 60

.extern _pctype 4
.extern _ctype__

.text

rbuf2_save:
.option Ol

subu $sp,
sw $31,
sw $30,
.

[|

sw $2,

.align 2
.file 2 "rbuf2_save.c"
.globl rbuf2_save
.loc 2 10

.ent rbuf2_save 2

85

-4

4
.mask OxB8ffffff,
160, $31

.frame $sp,
.loc 2 11
.livereqg Ox8ffffff,Oxfff

—
o o

jal rbuf2_sim

16 ($sp)

0
20 ($sp)

§ .loc 2 12
H 1w $31,

f lw $30,

H °

: o

; ®

H 1w $2, 132 ($sp)

: addu $sp, $sp, 160
i 3 $31

; .end rbuf2_save

C-level read buffer
simulation program

160

$spr
16 ($sp)
20 (Ssp)

132 ($sp)

pesas

Figure 5.5: rbuf2_save code segment.

The code sequence of Figure 5.4 only saves the two registers necessary to branch to a

procedure. Prior to calling the read buffer simulation procedure, the remaining registers

which are used must be saved. This was not done in the code segment of Figure 5.4

to limit application code growth. The code sequence, rbuf2_save, shown in Figure 5.5

conservatively saves all remaining registers on the stack. Both callee and caller saved

registers are saved since the standard conventions are corrupted by the code insertion.

The read buffer simulation procedure, rbuf2_sim, is called from the code segment shown

in Figure 5.5. rbuf2_sim can now be modified and re-compiled without a corresponding

modification to the application program or the two previous s-code segments.

86

Similar s-code segments handle initialization and summary calculations. The initial-
ization procedure call is placed in the “main” module prior to the first instruction. The
summary procedure calls are placed prior to all “jal ezit” instructions in all modules and

prior to the “j $31” instructions in the %main” module. Performance impact (% increase)

is computed as

stall_cycles

100 » base_cycles

Stall cycles result from read buffer overflows. All instructions are assumed to require
one cycle to complete in a pipelined architecture. This is a pessimistic assumption for
performance impact measurement since load and branch delays would give the read buffer
an extra cycle to handle an overﬂowv. The assumption is again made to help isolate read
buffer effects on performance fr6m those of various delay slot filling strategies.

The hazard analysis transformation operates on the s-code emitted by the MIPS code
generator of the IMPACT C compiler (32]. The transformation determines which register
reads should be saved by the read buffer and inserts calls to the initialization, simulation,
and summary procedures as described earlier. The resulting s-code modules are then
compiled and run on a DECstation 3100. For the study, a rollback distance of 10 was
selected. Given a rollback distance of 10, a read buffer size of 20 (for configurations Al,
A2, and B1) will produce zero performance impact. Table 5.1 lists the ten application
programs studied. Size is the number of assembly instructilons emitted by the code

generator, not including the library routines and other fixed overhead.

87

Table 5.1: Application programs: read buffer size study.

Program Size | Description

QUEEN 148 | eight-queen program
wC 181 | UNIX utility
QSORT 252 | quick sort algorithm
CMP 262 | UNIX utility

GREP 907 | UNIX utility
PUZZLE 932 | simple game
COMPRESS || 1826 | UNIX utility

LEX 6856 | lexical analyzer
YACC 8099 | parser-generator
CCCP 8775 | preprocessor for gnu C compiler

5.4 Results and Analysis

5.4.1 Detailed analysis: QUEEN

Figure 5.6 shows changes in performance overhead (Cycles OH) for various read buffer
sizes and configurations running the QUEEN application. Looking at Figure 5.6, con-
figuration Al, it can be seen that significant performance impact is incurred even with
a modest reduction in read buffer size. As can be seen from the other application runs,
shown in Figures 5.8 through 5.16 (pp. 93 through 97), configuration Al is consistently
the least efficient of the six configurations studied.! This is due to the fact that the dual
FIFO’s are dedicated to a single source bus. In many cases saving S1 will cause an over-
fow because the S1 FIFO is full, even though there is room in the 52 FIFO. Configuration
A1 does allow for simultaneous saves of S1 and S2, given sufficient room in each, but this

feature does not compensate for the latter inefficiency. Configuration A2 demonstrates

1An efficient configuration is one with a low performance overhead given a small read buffer size.

0 1 T 1 1) T T] -
0 4 8 12 16 20 0 4 ' 8 12 16
Read Buffer Size Read Buffer Size

1

20

Figure 5.6: Cycle overhead: QUEEN.

the improvement gained by allowing either source bus access to either FIFO. Configura-
tion Bl was the most efficient of the six configurations for the QUEEN application. In
this configuration a total read buffer size of 13 would produce zero performance iﬁlpa.ct
with a 35% reduction in read buffer size.

Comparing configurations A2 and Bl of Figure 5.6, it can be seen that configuration
A2 out-performs configuration Bl at the smaller buffer sizes while B1 performs slightly
better at the larger buffer sizes. Figure 5.7 illustrates the operation of read buffer con-
figurations A2 and B1 given an example instruction sequence. Instruction operands that
require saving are marked with an «* » For the instruction sequence shown, a read buffer
size of two, and a maximum rollback distance of four, it can be seen that configuration
B1 results in one extra overflow. In configuration A2, value(ry) is loaded into the 52
buffer and remains there during subsequent loads of the S1 buffer. After instruction Iy,

value(ry) becomes invalid since a rollback of four instructions would be to I;. A similar

89

Instruction Sequence Configuration A2 Configuration Bl
. - S1 S1
1. r =r +r
v et e h s2 s2
Ly ro=r.+71, ! \
L r,=r,+r, [value(r)] [value(r;) value(r;)
. value(r_)
Ig Ty = Te +rn, 2
1.7 =1 +r overflow value(r‘)
s T overflow value(r,) overflow value(r,)
overflow value(r,) overflow value(r_)

r,and ry become invalid
(maximum rollback = 4) extra overflow overflow value(r,)
overflow value(r,)

Figure 5.7: Read buffer configurations A2 and B1: buffer size = 2.

scenario is possible with configurations Al. Due to the arrangement of configuration Bl,
value(ry) overflows before it becomes invalid, resulting in one extra overflow. As the
buffer size increases, values in the Bl buffer have more time to become invalid before
they reach the head position; extra overflows become less frequent.

Configuration Bl can also produce less overflows than configuration A2. When two
operands require saving in the buffer of configuration B1, the head position and the
head — 1 position of the Bl buffer are checked to see if those positions contain valid
data. When two operands require saving in the buffers of configuration A2, the head
positions of the S1 buffer and S2 buffer are checked. Configuration A2 can require and
extra overflow if one of its two head positions have valid data and one of the head — 1
positions has invalid data. The advantage of configuration B1 (relative to configuration
A2) becomes visible at large read buffer sizes where the previously mention disadvantage

of configuration Bl (relative to configuration A2) diminishes.

90

This characteristic of configuration A2 versus configuration Bl is present in most of
the application results. It should be noted that configuration Bl assumes that simulta-
neous saves of S1 and S2- can be handled within the same cycle. If this latter assumption
is invalid, Figure 5.6, configuration B2, shows that no less than 9.4% performance im-
pact is achieved regardless of the read buffer size. The “leveling off” of B2 is due to the
bottleneck at the single FIFO entry point and not the depth of the FIFO. The flat part
of the curve shows the percent of instructions requiring simultaneous saves of S1 and 52
in the QUEEN application.

Figure 5.6, configuration C, shows how a single level dual queue placed between the
source bus and the single FIFO can alleviate some of the bottleneck effects. The dual
queue can absorb a single simultaneous save of S1 and S2, distributing the saves over
multiple cycles. A nonzero minimum performance overhead is still present due to cases
in which the dual queue has not emptied before the next simultaneous save occurs.

Figure 5.6, configuration D, shows the results of an improved queue structure which
permits saves from either bus into either queue. This configuration avoids stalls in some
cases (e.g., S2 must be saved while the queue dedicated to S2 in configuration C is full and
the other queue is empty). Configuration D also has a nonzero minimum performance
overhead but gives better performance than configuration C.

The simulation results for QUEEN show that configuration Al is the least efficient
and that given the ability to do split-cycle-saves, configuration B1 is the most efficient.

Without the split-cycle-save capability, configuration D is the best of the single FIFO

91

Table 5.2: Result Summary.

RB._size | OH_level (%)
Program A2][Bl| A2 | Bl

QUEEN 141 12 | 1.66 1.36

WC [10] 8 |0.00] 254
QSORT || 16 | 15 [2.28 | 0.94
CMP 12 11 [0.00] 0.00
GREP T10 [10018 0.8

PUZZLE || 10 | 9 |2.87| 0.32
COMPRESS || 12 | 12 | 2.87| 1.12

e

LEX 1212 [273] 1.55
YACC 16 15 [1.07] 0.00
CCCP [z 12 [234] 174

designs resulting in a minimum performaace overhead of 4.5%, and configuration A2 is
the best of the dual FIFO designs resulting in a 1.7% performance overhead with a read
buffer size of 14. For configurations B1, B2, C, and D, a total read buffer size of 13 is

sufficient to maximize performance.?

5.4.2 Evaluation of all application programs

Results for the other nine application programs are similar to those for QUEEN and
can be found in Figures 5.8 through 5.16 (pp. 93 through 97). The differences between
the application results are the points at which the curve “levels off” (i.e., the buffer size)
and, in the case of conﬁgurations- B2 through D, at what level the performance overhead
stabilizes. Table 5.2 summarizes measurements obtained for the ten applications given

the two most efficient configurations, A2 and Bl. It is assumed for this study that

2Two must be added to each read buffer size value in C and D to account for the queues.

92

minimal performance overhead can be tolerated as a result of read buffer size reduction.
For this reason, configuration comparisons are made at read buffer size values which
produce low values of performance overhead. Configuration A2 does not level off like
configuration D and does not rapidly approach zero like configuration Bl. For a better
comparison of configurations A2 and Bl, Table 5.2 gives the read buffer size value where
the performance overhead value drops below 3%. The read buffer size value is referred
to as RB_size and the performance overhead value is referred to as OH_level.

It can be seen from Table 5.2 that the read buffer size requirement is roughly the
same, per application, regardless of the split-cycle-save assumption (i.e., comparing con-
figurations A2 and B1). The size requirement is application dependent - from 8 for WwC,
to 15 for QSORT and YACC. The measurements show that a considerable reduction
in read buffer size is achievable. Given the split-cycle-save assumption and configura-
tion B1, a minimum of 25%, a maximum of 60%, and an average of 42% reduction was
achieved. For configuration A2 and no split-cycle-save assumption, a minimum of 20%, a
maximum of 50%, and an average of 38.0% reduction was achieved. The measurements
indicate that care should be taken relative to the ultimate selection of read buffer size.
Given the steepness of the Bl curve around the RB_size value, small decreases in size
can produce large performance overheads.

As seen in these results, the full 2N read buffer size is not required for full on-path
hazard resolution and negligible performance overhead given a wide variety of applica-

tion programs. Slightly smaller read buffer sizes are possible given the split-cycle-save

93

capability. As indicated by our measurements, placing a single level queue between the
source buses and a single FIFO (configurations C and D) was not as effective as a dual
FIFO where each source bus has access to each FIFO (configuration A2). When the split-
cycle-save capability was not assumed and a single FIFO was used, QUEEN, QSORT,
COMPRESS, LEX, YACC, and CCCP showed moderate performance overheads regard-

less of buffer size.

™1 1 1 FT'T—FWW
0 4 8 12 16 20 0 4 8 12 16 20
Read Buffer Size Read Buffer Size

Figure 5.8: Cycle overhead: WC.

94

Cyc(l&s)OH Cycles OH
100 4 Conf. Al: - 100+ Conf. B2: -
. Conf. A2: -©- Conf.C: -&-
80 COnf. Bl x
60 4
40 -
20 4 20 4
_ b‘saauauau
0 T v 1) L] ¥ T 3 o 1 | 1 T) T T T | T
0 4 8 12 16 20 0 4 8 12 16 20
Read Buffer Size Read Buffer Size

Figure 5.9: Cycle overhead: QSORT.

4 8 12 16 20 0 4 8 12 16 20

Read Buffer Size Read Buffer Size

Figure 5.10: Cycle overhead: CMP.

95

8 12 16
Read Buffer Size

¢
1
£
¢
1]
€
[
‘*
Q
<
b
t
1
i
i
i
[]
%

20

MY -4t 2t A
0 4 8 12 16 20
Read Buffer Size

Figure 5.11: Cycle overhead: GREP

Cycles OH
%)

Coanl -

8 12 16

20
Read Buffer Size

12 16
Read Buffer Size

Figure 5.12: Cycle overhead: PUZZLE

20

96

cles OH
Cy(&s)
100 4 Conf. Al: -e-
. Conf. A2: -o-
80 Conf. B1: -x

I T

4 8 12 16 20 0 4 8 12
Read Buffer Size Read Buffer Size

Figure 5.13: Cycle overhead: COMPRESS.

4 8 12 16 20 0 4 8 12 16 20
Read Buffer Size Read Buffer Size

Figure 5.14: Cycle overhead: LEX.

97

4 8 12 16 20 0 4 8 12 16 20
Read Buffer Size Read Buffer Size

Figure 5.15: Cycle overhead: YACC.

4 8 12 16 20 0 4 8 12 16 20
Read Buffer Size Read Buffer Size

Figure 5.16: Cycle overhead: CCCP.

98

5.5 Summary

By adding extra bits to the operand field for source 1 and source 2, it becomes possible
to design the read buffer proposed in Chapter 3 to save only those values required,
thus reducing the read buffer size requirement. The performance cost of the buffer size
reduction is occasional read buffer overflows which result in stall cycles. Results show
that two read buffer configurations were the most efficient. The dual FIFO with source
bus access to each and the single FIFO with the split-cycle-save capability consistently
out-performed the other configurations. There were moderate variances between the
buffer sizes required for minimum performance impact between the ten applications and
the performance stabilization value assuming no split-cycle-save capability. Up to a 55%
read buffer size reduction is achievable with an average reduction of 39.5% given the
most efficient read buffer configuration for the applications. It was also found that given
the split-cycle-save assumption and single FIFO configuration, significant changes in the
performance overhead result from small changes in the read buffer size. This indicates

that care should be taken in the final selection of read buffer size in any given design.

99

6. MIR TECHNIQUES APPLIED TO SPECULATIVE EXECUTION REPAIR

6.1 Objectives

Speculative execution is an effective method to increase instruction level parallelism
which can be exploited by both super-scalar and VLIW architectures. The key to a
successful general speculation strategy is a repair mechanism to handle mispredicted
branches and accurate reporting of exceptions for speculated instructions. Speculative
execution repair (SER) strategies have been proposed which trade-off speculation scope,
hardware complexity, and software complexity. Many of the difficulties encountered
during recovery from branch misprediction, or from instruction re-execution due to ex-
ceptions, are similar to those encountered during multiple instruction rollback (MIR).
This chapter investigates the applicability of compiler-assisted instruction rollback to aid

in SER.

100

6.2 Introduction

Super-scalar and VLIW architectures have been shown effective in exploiting instruc-
tion level parallelism (ILP) present in a given application [32,35,36]. Creating additional
ILP in applications has been the subject of much study in recent years [37-39]. Code
motion within a basic block is insufficient to unlock the full potential of super-scalar
and VLIW processors with issue rates greater than two [32). Given a trace of the most
frequently executed basic blocks, limited code movement across block boundaries can
create additional ILP at the expense of requiring complex compensation code to ensure
program correctness [40]. Combining multiple basic blocks into superblocks permits code
movement within the superblock without the compensation code required in standard
trace scheduling [32].

General upward and downward code movement across trace entry points (joins) and
general downward code motion across trace exit points (branches, or forks) is permitted
without the need for special hardware support [40]. Sophisticated hardware support is
required, however, for upward code motion across a branch boundary. Such code motion
is referred to as speculative ezecution and has been shown to substantially enhance per-
formance over nonspeculated architectures [41-43]. This chapter focuses on the support
hardware for speculative execution, which is raponsible to ensure correct operation in

the presence of excepting speculated instructions and mispredicted branches.

101

[] [
° °
° °
ﬂrl).-- r,+rg] |7,=MEM(r,)J<—trapoccurs
." ~ [.-f ®
i ° H °
m . branch taken o > branch take
i i C n
o[Junct ek o[etk
i€ ° ° i ° : °
3 [° 4 ol d
'.“. ® ° —~ _.- .“ L
.' rpEr+ry [r4=r5+(rl)J §r1=MEM(’2),5 r J
° °« ° °
® [] ® []
° ° ° °
ry in live_out of taken path speculated instruction traps

Figure 6.1: Speculative execution.

6.3 Speculative Execution

Figure 6.1 illustrates the two basic problems which are encountered when attempting
upward code motion across a branch. First, if the speculated instruction (i.e., an instruc-
tion moved upward past one or more branches) modifies the system state, and due to
the branch outcome the speculated instruction should not have been executed, program
correctness could be affected. Second, if the speculated instruction causes an exception,
and again due to the branch outcome, the excepting instruction should not have been

executed, program performance or even program correctness could be affected.

6.3.1 Branch repair

Figure 6.2 shows an original instruction schedule and a new schedule after speculation.

Instructions d, i, and f have been speculated above branches ¢ and g from their respective

102

a a RB c: d

b ®q e
[c}=i ®; f

d b jump L1

e ®f

f [} RB_g: h
" :

1

h k jump L2
i h :
L2:
Original Speculated Recovery
Schedule Schedule Blocks

Figure 6.2: Branch repair.

fall-through paths.! Speculated instructions are marked “(s).” The motivation for such
a schedule might be to hide the load delay of the speculated instructions or to allow more
time for the operands of the branch instructions to become available. If ¢ commits to the
taken path (i.e., it is mispredicted by the static scheduler), some changes to the system
state that have resulted from the execution of d, i, and f, may have to be undone. No
update is required for the PC; execution simply begins at j. If instead, c commits to the
fall-through path but g commits to the taken path, then only #’s changes to the system
state may have to be undone.

Not all changes to the system state are equally important. If for example, d writes to
register r; and r; € live_in(j), then the original value of r, does not have to be restored.

Inconsistencies to the system state as a result of mispredicted branches exhibit similarities

1For this example it is assumed that the fall-through paths are the most likely outcome of the branch
decisions at ¢ and g.

103

to branch hazards in multiple instruction rollback. The two differences in how branch
hazards are determined for speculative execution are: 1) the walk to record variable
assignments, described in Properties 1 and 2 of Section 3.2, begins at the immediate
predecessor of the branch in question (I) and proceeds in a backwards progression, i.e.,
D 1,_y, O, .. () I,_n, and 2) only speculated instructions are considered in the walk.
The walk distance N for speculative execution is the maximum distance from) ,_; to
(9], along any backwards walk, where I, was speculated above I. A branch hazard
hy(d, j) exists in Figure 6.2 if d writes to register r; and j reads rs.

Given the similarity between branch hazards due to instruction rollback and branch
hazards due to speculative execution, compiler-driven data-flow manipulations, similar
to those presented in Chapter 3, can be used to resolve branch hazards that result from
speculation. Such compiler transférmations have been proposed for branch misprediction
handling [42]. Since re-execution of speculated instructions is not required for branch

misprediction, compiler resolution of branch hazards becomes a sufficient branch repair

technique.

6.3.2 Exception repair

Figure 6.2 also demonstrates the handling of speculated trapping instructions. If
d is a trapping instruction and an exception occurred during its execution, handling
of the exception must be delayed until ¢ commits so that changes to the system state
are minimized, and in some cases to ensure that repair is possible in the event that

¢ is mispredicted. If ¢ commits to the taken path, the exception is ignored and d is

104

handled like any other speculated instruction given a branch mispredict. If ¢ was correctly
predicted, three exception repair strategies are possible. The first is to undo the effects
of only those instructions speculated above c (i.e., d, ¢, and f) and then branch to a
recovery block RB.c [43] as shown in Figure 6.2. The address of the recovery block can
be be obtained by using the PC value as an index into a hash table. This strategy ensures
precise interrupts [14, 44] relative to the nonspeculated schedule but not relative to the
original schedule. Recovery blocks can cause significant code growth [43]. The second
strategy undoes the effects of all instructions subsequent to d (i.e., i, b, and f), handles
the exception and resumes execution at instruction i [42]. This latter strategy provides
restartable states and does not require recovery blocks. A third exception repair strategy
undoes the effects of only those subsequent instructions that are speculated above c (i.e.,
only # and f), handles the exception, and resumes execution at instruction ¢, however, this
time only executing speculated instructions until ¢ is reached. The improved efficiency
of strategy 3 over that of strategy 2 comes at the cost of slightly more complex exception
repair hardware.

When a branch commits and is mispredicted, the exception repair hardware must
perform three functions: 1) determine whether an exception has occurred during the
execution of a speculated instruction, 2) if an exception has occurred, determine the
PC value of the excepting instruction, and 3) determine which changes to the system

state must be undone. Functions 1 and 2 are similar to error detection and location in

105

PS = Mm(rz ll‘oucununuanno...

S\ i s

from oy
below —» r’-ﬂ =T *(’AI
branch e

o
asee®®

rollback ———»

.
[(’1)" r, + r3J
T .

r J————' —
gl;nch

taken

Figure 6.3: Exception repair.
multiple instruction rollback. Function 3 is similar to on-path hazard resolution in mul-
tiple instruction rollback. As discussed in Chapter 3, on-path hazards assume that after
rollback, the initial instruction sequence from the faulty instruction to the instruction,
where the error was detected, is repeated.

Figure 6.3 illustrates the speculation of a group of instructions and re-execution strat-
egy 3. The load instruction traps, but the exception is not handled until the branch
instruction commits to the fall-through path. Control is then returned to the trapping
instruction. This scenario is identical to multiple instruction rollback where an error oc-
curs during the load instruction and is detected during the branch instruction. For this
example, only r; must be restored during rollback since 4 and rs will be rewritten prior

to use during re-execution. Figure 6.3 shows that exception repair hazards in speculative

106

execution are the same as on-path hazards in multiple instruction rollback, and a read
buffer as described in Chapter 3 can be used to resolve these hazards. The depth of the
read buffer is the maximum distance from I, to I, along any backwards walk, where I,

is a trapping instruction and was speculated above branch instruction ;.

6.3.3 Schedule reconstruction

Assumed in Figures 6.2 and 6.3 are mechanisms to: 1) identify speculative instruc-
tions, 2) determine the PC value of excepting speculated instructions, and 3) determine
how many branches a given instruction has been speculated above. An example of the
latter case is shown in Figure 6.2 where instructions d, ¢, and f, are undone if ¢ is
mispredicted; however, only i must be undone if g is mispredicted.

If the hardware had access to the original code schedule, the design of these mecha-
nisms would be straightforward. Unfortunately, static scheduling reorders instructions at
compile-time and information as to the original code schedule is lost. To enable recovery
from mispredicted branches and proper handling of speculated exceptions, some infor-
mation relative to the original instruction order must be present in the compiler-emitted
instructions. This will be referred to as schedule reconstruction.

By limiting the flexibility of the scheduler, less information about the original schedule
is required. For example, if speculation is limited to one level only (i.e., above a single
branch), a single bit in the opcode field is sufficient to indicate that the instruction has
been moved above the next branch [41]. The hardware would then know exactly which

instruction effects to undo (i.e., the ones with this bit set). Also, removing branch hazards

107

directly with compiler-driven data-flow manipulations permits general speculation with

no schedule reconstruction for branch repair [42].

6.4 Implicit Index Schedule Reconstruction

Implicit indez scheduling supports general speculation of regular and trapping in-
structions. The scheme was inspired by the handling of stores in the sentinel scheduling
scheme [42] and was designed to exploit the unique properties of the read buffer hardware
design described in Chapter 3. Schedule reconstruction is accomplished by marking each
instruction speculated or nonspeculated and using this marking to maintain an operand
history of speculated instructions in a FIFO queue called a speculation read buffer (SRB).
The SRB operates similar to a read buffer with some additional provisions for exception

handling.

6.4.1 Exception repair using the speculation read buffer

Figure 6.4 shows an original code schedule and two speculative schedules, along with
the contents of the SRB at the time branches I. and I, commit. Instructions Iy and
I; have been speculated above branch instruction I., and I; has been speculated above
both I, and I.. Speculated instructions are marked. This marking identifies the source
operands to be saved in the SRB. Along with the source operand values and corresponding
register addresses, the PC of the speculated instruction is also recorded in the SRB.

Speculated instructions execute normally unless the)f trap. If a speculated instruction

traps, the exception bit in the SRB which corresponds to the trapping instruction is set

Original Schedule

Ia: ’I =r

2* 73

Ib: r3=r4+r5
I: boe r;, 15, 1
rsg=rye Ty
I: r8='8+4
;r7=r7+4
I: boe rg, 1;, I,
I; r6=r6+4

I: 7, = MEM(r;)

Except bit

!

;

; Reg. No. -‘

o
\

I .

value(r,)

value(ra)

value(r,)

2

30 2 = ey e

value('2)

NIOINj|IwN]O

NEESSS

-
-————— L O OO

SRB Contents

108

S Schedule 1

I’: chk_except(00111 1)

I rg=rg+ 4
bne rg, 7y I,
chk_except(110000) —

Ik: r6=r6+4

S ted Schecule 2

r: chk_except(110011) ——
I rg=rg+ 4

I: boe rg, 750 I,

I;: chk_except(001100) —

Ih: r6=r6+4

o
@ 5 v ey eee————
>

Ll - |o }
i

If value(r,) 7
L] - |o }

e
I value(r,) | 2
1, | value(ry | 8
1,|value(r,)|7 =
74 7. A
=T

SRB Contents

Figure 6.4: Exception repair using a speculation read buffer (SRB).

109

and program execution continues. Subsequent instructions that use the result of the
trapping instruction are allowed to execute normally.

A chk_ezcept(k) instruction is placed in the home block of each speculated instruction.
Only one chk_ezcept(k) instruction is required for a home block. As the name implies,
chk_ezcept(k) checks for pending exceptions. The command can simultaneously interro-
gate each location in the SRB by utilizing the bit field k. As shown in schedule 1 of
Figure 6.4, chk_ezcept(001111) in I} checks for exceptions for instructions I and Iy. If a
checked exception bit is set, the SRB is flushed in reverse order, restoring the appropriate
register and PC values. Execution can then begin with the excepting instruction.

Figure 6.4 illustrates several on-path hazards which are resolved by the SRB. In
schedule 1, if I; traps and the branch I. commits to the taken path, I; has corrupted r;
and I; has corrupted r7. Flushing the SRB upl through I; restores both registers to their
values prior to the initial execution of I;. Note that register rg is also corrupted but not
restored by the SRB, since after rollback rg will be rewritten with a correct value before
the corrupted @ue is used.

Instead of checking for exceptions in each home block, the exception could be handled
when the exception bit reaches the bottom of the SRB. This is very similar to the re-
order buffer used in dynamic scheduling [14]. This eliminates the cost of the chk ezxcept(k)
command, however, and increases the exception handling latency which can impact per-

formance depending on the frequency of exceptions. In addition, the technique guarantees

110

that exceptions will be processed in the original home block order. For example, in sched-
ule 2 of Figure 6.4, if both I; and I; trap, chk_ezcept(k) ensures that Iy will be handled
first.

Implicit index scheduling derives its name from the ability of the compiler to locate a
particular register value within the SRB. This is possible only if the dynamically occurring
history of speculated instructions is deterministic at branch boundaries. Superblocks
guarantee this by ensuring that the sole entry into the superblock is at the header and
by limiting speculation to within th; superblock. For standard blocks, bookkeeping code

[40] can be used to ensure this deterministic behavior.

6.4.2 Branch repair using the speculation read buffer

Branch repair can be handled by removing branch hazards with the compiler. As
shown in Chapter 3, branch hazard removal in multiple instruction rollback can be as-
sisted by the read buffer when “coveﬁng” on-path hazards are present, reducing the per-
formance cost of variable renaming. In a similar fashion, the SRB can assist in branch
repair. Figure 6.5 shows the original code schedule and the two speculative schedules of
Figure 6.4. For this example, it is assumed that rg, r3, re, and ry are elements in both
live_in(I;) and livein(I).

As shown in schedule 1, if branch instruction I, commits to the taken path, r;, s,
and ry, which were modified in I;, I4, and Iy, respectively, must be restored. If instead,
I. commits to the fall-through path and I, commits to the taken path, only r; must

be restored. Registers r; and r7 are rollback hazards that result from exception repair;

e T e e T

111

Original Schedule Speculated Schedule 1 Speculated Schedule 2

I; rn=rs*r;
I ry=r,+7;
I: boe 7;, 73, IJ.
rg=rys Ty

I: r8=r8+4

If: I, =r,+ 4
I‘: bne rg, 75, It
Ig 76= rs+ 4 I bne 75 7, I,
I: r,= MEM(7,) L; rg=rg+ 4
[[)
™ ™
° ° °
I.: flush(101110) -—xy 1.: flush(111010) ——
I ° I '
. °
° ™
I; flush(100000) I: flush(001000)
° °
° °
Except bit d ®
‘ ch.No.-‘
) [}
If - 0 If - 0
If value(r7) 7| |- If value(ry) |7 -
r I, value(ry) 8] |- £ r I; - 0
e B c]
c N I, value(r,) | 7| |= lll g IN L value(r,) 2 - -—
(; I, . 0 s 1 _Ii value(ry) | 8
d 1, |valuetry [2] | < < h d 1,|value(ry) [7] |e—
= . L
= =T
Y Y
SRB Contents SRB Contents

Figure 6.5: Branch repair using a speculation read buffer (SRB).

112

therefore, the SRB contains their unmodified values. By including a flush(k) command at
the target of I, and I,, the SRB can be used to restore r; and/or r7 given a misprediction
of I, or I,.

The flush(k) command selectively flushes the appropriate register values given a
branch misprediction. For example, in schedule 2 of Figure 6.5, if I. is predicted cor-
rectly and I, is mispredicted, the SRB is flushed in reverse order up through I;, restoring
value(r;) from I; but not restoring value(ry) from I;. Since speculation is always from
the most probable branch path, the flush(k) command is always placed on the most
improbable branch path, minimizing the performance penalty. Not all branch hazards
are resolved by the presence of on-path hazards. These remaining hazards can either
be resolved with compiler transformations or by inserting MOV ry, r; instructions as
described in Section 3.3. It would be necessary to mark the MOV instruction speculated

to ensure that r. is loaded into the SRB.

6.5 SRB Flush Penalty

The examples of Section 6.4 demonstrate that the compiler-assisted multiple instruc-
tion rollback scheme presented in Chapter 3 can be applied to both branch repair and
exception repair in a speculative execution architecture. The flush penalty of the read
buffer is not a key concern in multiple instruction rollback applications since instruction
faults are typically very rare. In application to exception repair in speculative execution,

the SRB flush penalty is also not a major concern due to the infrequency of exceptions

113

involving speculated instructions. However, in application to branch repair, the SRB
flush penalty could produce significant performance impacts. Studies of branch behav-
ior show a conditional branch frequency of 11% to 17% [34]. Static branch prediction
methods result in branch mispredictions in the range of 5% to 15%. This results in a
branch repair frequency as high as 2.5%. Assuming a CPI (clock cycles per instruction)
rate of one and an average SRB flush penalty of ten cycles, the performance overhead
of the flush mechanism would reach 22.5%. This indicates the importance of minimizing
the amount of redundant data stored in the SRB so that the flush penalty is reduced.

In Chapter 5, several read buffer configurations were studied. A technique was pro-
posed to reduce the amount of redundant data in the read buffer so that the read buffer
size could be reduced. A similar technique can be used to assure that only the data
required for branch and exception repair is stored in the SRB. In the implicit index
scheme of Section 6.4, a bit indicating whether an instruction is speculated is added to
the opcode field. By expanded this field to two bits, operand storage requirements can be
specified. Figure 6.6 shows the reduced contents of the SRB given schedule 1 of Figure
6.5. In the modified scheme, only the first read of r; must be maintained. Register rg
is not required since it was not modified. The improved scheme also eliminates blank
spaces in the SRB. For this example, the misprediction of I, in schedule 1 of Figure 6.5
results in four less variables to flush.

The coding of the two speculation bits would be as follows: 00) no save required,

01) save operand 1, 10) save operand 2, and 11) save both operands. If neither operand

114

Except bit
Pf Reg. No. 1
b [1,[vaiuary |7
I, | value(ry |2
f e
e on
L)
S r
h 4
db _d
—
Y | I l

SRB Contents

Figure 6.6: SRB with reduced content.

of a speculated instruction has be saved in the SRB, the instruction is not marked as
speculated. This is not a problem for branch repair: however, if such an instruction traps,
the hardware would have no way of knowing not to handle the exception immediately.
There would also be no entry in the SRB for the exception bit or for the corresponding
PC value. One solution to the problem would be to add another bit to the opcode field
which marks speculated trapping instructions. A better solution is to code all speculated
trapping instructions as 01. This will indicate that exception handling is to be delayed
and cause a reservation of an entry in the SRB. This latter approach will slightly increase
the flush penalty during branch repairs. Separate SRBs could be maintained for branch

and exception repairs.

115

Original s-code instructions

Seus

Figure 6.7: Instrumentation code placement.

6.6 Performance Evaluation

6.6.1 Evaluation methodology

In this section, the read buffer flush penalty is evaluated using a similar strategy to
the one presented in Chapter 5. The instrumentation code segments of Figure 6.7 call a

branch error procedure which performs the following functions:
1. Update the read buffer model.

9. Force actual branch errors during program execution, allowing execution to proceed

along an incorrect path for a controlled number of instructions.

3. Terminate execution along the incorrect path and restore the required system state

from the simulated read buffer.
4. Measure the resulting flush cycles during the branch repair.

5. Begin execution along the correct path until the next branch is encountered.

116

An example instrumentation code segment is shown in Figure 6.8. Parameters, such
as operand saving information, current PC, branch fall-though PC, and branch target
PC values, are passed by the instrumentation code to the branch error procedure. An
additional miscellaneous parameter contains instruction type and information used for
debugging.

Figure 6.9 gives a high level flow of operation for branch error procedure. When a
branch instruction in the original application program is encountered, an arm_branch flag
is set. Prior to the execution of the next application instruction, the arm_branch flag is
checked, and if set, the branch decision made by‘the application program is set aside.
The braich is then predicted by the branch prediction model. Four models are used in
the evaluation: 1) predict taken, 2) predict not taken, 3) dynamic prediction, and 4)
static prediction from profiling information. The dynamic prediction model is derived
from a two bit counter branch target buffer (BTB) design [45] and is the only model that
requires updating with each prediction outcome. |

After the branch is predicted, the prediction is checked against the actual branch
path taken by the application program. If the prediction was correct execution proceeds
normally. If the prediction was incorrect, the correct branch path is loaded into the
recovery queue along with a branch error detection (BED) latency, and the predicted path
is loaded into the PC. The BED latency indicates how long the execution of instructions is
to continue along the incorrect path. The branch error time-out flag is set when the BED

latency is reached. When a branch error is detected, the register file state is repaired by

117

$ simlb 2 24_0:
¥ instruction 24

Begin brsim _sim hook: sl = 16, s2 = 0: normal

subu Ssp, 44

la $at, $ simlb_2_ 24_0 «e—— hook address

sw $at, 20 ($sp)

la Sat, $_simlb_2 24_1 —e— instruction adress
sw $at, 24 ($sp)

la sat, $ simlb 2 25_0 -e— next hook address
sw $at, 28 ($sp)

1i $at, 8216 w- miscellaneous

sw $at, 32($sp)

1i $at, 16 - directs read buffer to save
sw $Sat, 40 ($sp) register 16

move $at, $sp

3 brsim_save
End brsim_sim hook.
$_simlb_2_24_1:

addu $1e6, $le, 4

~«—————— original instruction

$_simlb 2 2 5_0:
instruction 25

Begin brsim_sim hook: sl = 16, s2 = 9: branch

subu $sp, 44 _
la $at, $ simlb_2 25_0 -e— hook address
sw $at, 20 ($sp)
la $at, $_simlb_2_25_1 -e— instruction adress
sw $at, 24 ($sp)
la Sat, $ main_6 - next hook address
sw $at, 28 ($sp).
1i Sat, 532505 = miscellaneous
sw $at, 32 (Ssp)
la Sat, $ main_5 ~e———— target address
sw Sat, 36 ($sp)
1i Sat, 304 - directs read buffer to save
sw Sat, 40 ($sp) registers 16 and 9
move Sat, $sp
3 brsim save
End brsim sim hook.
$_simlb_2_25_1%
bne $16, $9, $_main_5 |-e— original instruction

$_main_6:

Figure 6.8: Instrumentation code sequences.

118

Y

e restore GPRF from
RB model, record
flush cycles
update || update @ load PC from
BPM || BPM recovery queue
L —t
!)
- predicted update
*PC< path RB model
® load recovery queue .
with not predicted path Y
update
w recovery
set branch error queue
detection latency
in recovery queue
L . o

PC - program counter
GPRF - general purpose register file
RB - read buffer

BPM - branch prediction model

Figure 6.9: Branch error procedure operation.

119

the read buffer. The PC value of the correct branch path is obtained from the recovery
queue. The number of cycles required to flush the read buffer during branch repair is
also recorded.

It is assumed for this evaluation that two read buffer entries can be flushed in a single
cycle. This corresponds to the split-cycle-save assumption of Chapter 5. Performance

overhead due to read buffer flushes (% increase) is computed as

flush_cycles

Flush . OH =100 » Total.cycles

All instructions are assumed to require one cycle for execution. This is conservative
since the MIPS processor used for the evaluation requires two cycles for a load. The
additional cycles would increase the total_cycles and theréby reduce the observed perfor-
mance overhead. In addition to accurately measuring flush costs, the evaluation verifies
the operation of the read buffer and its ability to restore the appropriate system state
over a wide range of applications.

The instrumentation insertion transformation operates on the s-code emitted by the
MIPS code generator of the IMPACT C compiler [32]. The transformation determines
which operands require saving in the read buffer and inserts calls to the initialization,
branch error, and summary procedures. Initialization and summary calculations are
handled as in Chapter 5. The resulting s-code modules are then compiled and run on a
DECstation 3100. For the evaluation, BED latencies from 1 to 10 were used. Table 5.1

(p. 87) lists the ten application programs evaluated.

120
6.6.2 Evaluation results

Experimental measurements of read buffer flush overhead (Flush OH) for various
BED latencies are shown in Figures 6.10 through 6.14 (pp. 122 through 124). The four
branch prediction strategies used for the evaluation are referred to as: 1) predict taken
(P-Taken), 2) predict not taken (P.N_Taken), 3) dynamic prediction based on a branch
target buffer (Dyn_Pred), and 4) static branch prediction using profiling data (Prof_Pred).

As expected, flush costs were closely related to branch prediction accuracies, i.e., the
more often a branch was mispredicted, the more often flush costs were incurred. In a
speculative execution architecture, branch prediction inaccuracies result in performance
impacts in addition to the impacts from the branch repair scheme. Branch mispredic-
tion increases the base run time of an application by permitting speculative execution
of unproductive instructions. Increased levels of speculation increase the performance
impacts associated with branch prediction inaccuracies. Only the performance impacts
associated read buffer flushes are shown in Figures 6.10 through 6.14.

For nine of the ten applications, P_N_Taken was significantly more accurate or marginally
more accurate in predicting branch outcomes than P_Taken. For QSORT, P_Taken was
significantly more accurate than P_N_Taken. This result demonstrates that in a spec-
ulative execution architecture, it is difficult to guarantee optimal performance across a
range of applications given a choice between predict-taken and predict-not-taken branch

prediction strategies.

121

For all but one application, Prof Pred was more accurate than either P.Taken or
P_N.Taken. For CMP, Prof_Pred, P_N_Taken, and Dyn_Pred were nearly perfect in their
prediction of branch outcomes. Prof_Pred marginally outperformed Dyn_Pred in all ap-
plications except LEX.

The purpose of measuring read buffer flush costs given the recovery from injected
branch errors is to establish the viability of using a read buffer design for branch repair
for speculative execution. Although in such a speculative schedule only static prediction
strategies would be applicable, the Dyn_Pred model was included to better assess how
varying branch prediction strategies impact flush costs. Overall, the accuracy of Dyn_Pred
fell between P.Taken/P.N_Taken and Prof.Pred.

Over the ten applications studied, read buffer flush overhead ranged from 49.91% for
the P_Taken strategy in CCCP to .01% for the P_N_Taken strategy for CMP given a
BED of ten. It can be seen from Figures 6.10 through 6.14 that a good branch prediction
strategy is key to a low read buffer flush cost. The results show that given a static branch
prediction strategy using profiling data, an average BED of ten produces flush costs
no greater than 14.81% and an average flush cost of 8.12% across the ten applications
studied. This performance overhead is comparable to the overhead expected from a
delayed write buffer scheme with a maximum allowable BED of ten [12]). However, given
a maximum BED of ten and an average BED of less than ten, the flush costs of the read

buffer would be less than that of a delayed write buffer, because a delayed write buffer

122

is designed for a worst-case BED and the flush penalty of a read buffer is based on the
average BED.

The BED for a given branch in this evaluation corresponds to the number of instruc-
tions moved above a branch in a speculative schedule. The results of the evaluation
indicate that if the average number of instructions speculated above a given branch is <

10, then the read buffer becomes a viable approach to handling branch repair.

Figure 6.10: Flush penalty: QUEEN, WC.

123

(
504 P_Taken: -o- 504 P_Taken: -o-
4 P_N ;gn:-o- > PD_N_Taken,.a-
i cedhons] _Pred: %
40_ Erﬁ"_'?md —- 40 Pr%?_?md. —-
30 30~

12345678910
BED Latency

Figure 6.11: Flush penalty: COMPRESS, CMP.

Figure 6.12: Flush penalty: PUZZLE, QSORT.

124

LA~

£ X
0 opue -' ' '
1 23 4 6 7 8 910
BED Latency

Figure 6.13: Flush penalty: GREP, LEX.

Figure 6.14: Flush penalty: YACC, CCCP.

125

6.7 Summary

Speculative execution has been shown to be an effective method to create addi-
tional instruction level parallelism in general applications. Speculating instructions above
branches requires schemes to handle mispredicted branches and speculated instructions
that trap.

This chapter showed that branch hazards resulting from branch mispredictions are
similar to branch hazards in multiple instruction rollback recovery. It was shown that
compiler techniques similar to those presented in Chapter 3 can be used as an effective
branch repair scheme in a speculative execution architecture. It was also shown that
data hazards as a result of rollback due to exception repair are similar to on-path hazards
described in Chapter 3, indicating that a read buffer approach to exception repair was
viable.

Implicit index scheduling was introduced to exploit the unique characteristics of roll-
back recovery using a read buffer approach. The read buffer design was expanded to
include PC values to aid in rollback from excepting speculated instructions. Similar to
“covering” on-path hazards discussed in Chapter 3, the read buffer was shown to resolve
some branch hazards without the need for compiler transformations.

Read buffer flush penalties were measured by injecting branch errors into ten target
applications and measuring the flush cycles required to recover from the branch errors

using a simulated read buffer. It was shown that with a static branch prediction strategy

; 126

using profiling data, flush costs under 15% are achievable. The results of these evalua-
tions indicate that the compiler-assisted multiple instruction rollback scheme presented
in Chapter 3 is viable in application to branch and exception repair in a speculative

execution architecture.

127

7. CONCLUSIONS

7.1 Summary

This thesis has presented a compiler-assisted multiple instruction rollback scheme
which combines compiler-driven data-flow manipulations with dedicated data redundancy
hardware to remove all data hazards that result from multiple instruction rollback. Ex-
perimental evaluation of the proposed compiler-assisted scheme with a maximum rollback
distance of ten showed performance impacts of no more than 6.57% and an average im-
pact of 1.80%, over the ten application programs studied. The performance evaluation
indicates lower performance penalties than for previous compiler-only approaches or com-
parable hardware-only approaches. Compiler transformations used for hazard removal
have been enhanced reducing application code growth and compile times, and in some
cases improving application execution performance. Ten read buffer configurations were
studied to determine the minimum size requirement for general applications. It was

found that a 55% read buffer size reduction is achievable with an average reduction of

128

39.5%, but that additional control logic to handle read buffer overflows may limit the
overall hardware savings. It was also shown that the proposed compiler-assisted multi-
ple instruction rollback technique can be applied to speculative execution repair. The
problems associated with recovery from mispredicted branches and excepting speculated
instructions were shown to be similar to problems encountered with multiple instruc-
tion rollback recovery. A speculative scheduling scheme was proposed which utilizes
compiler-driven hazard removal transformations and the read buffer to aid in hazard

removal during exception handling and mispredicted branch handling.

7.2 Limitations

The compiler-assisted rollback recovery scheme presented limits system state space
restoration to the register file. Other methods, such as history buffers, would be required
to maintain an N cycle history of the program counter and program status word. Cache
memory and main memory would require an N cycle rollback capability which could
be implemented with an N depth delayed write buffer. Functional units such as the
floating point unit and I/O units would require a rollback capability or a capability
to be flushed and restarted. A spontaneous change to the contents of the register file
is not recoverable by the compiler-assisted recovery scheme, although the propagation
of such errors is recoverable if the errors are detected within ¥ cycles. For enhanced
fault tolerance, error detection/correction codes could be used in the register file. A

similar limitation exists for cache and main memories.. Unlike the previously mentioned

129

limitations, the requirement that an error does not cause an illegal path in the control-
flow graph of the program is unique to compiler-assisted rollback recovery. For enhanced
fault tolerance, a control-flow error detection mechanism with a latency no greater than
one cycle would be required. Finally, the compiler-assisted rollback recovery scheme

requires recompilation of application programs and libraries.

7.3 Future Research

The use of profile data can be extended to the register allocation phase and is expected
to result in further reduction in performance overhead. Application of compiler-assisted
multiple instruction rollback recovery to super-scalar, VLIW, and parallel processing ar-
chitectures is an area with great potential. Given the flexibility of the IMPACT compiler
platform used for current hazard removal transformations, studies of rollback recovery
schemes for the three architectures are feasible and should produce near-term results.
Further evaluations of compiler-assisted rollback recovery applied to speculative execu-
tion repair would include modifying compiler transformations to operate in a super-scalar
and VLIW environment. Again, the flexibility of the IMPACT compiler platform should
simplify this investigation. An additional extension would be to develop and evaluate
a scheme which handles both instruction rollback recovery and speculative execution

repair.

(1]

(2]

(3]

[4]

(5]

[6]

[7]
(8]

[9]

130

REFERENCES

C. L. Chen and M. Y. Hsiao, “Error Correcting Codes for Semiconductor Memory
Applications: A State-of-the-art Review,” IBM J. Res. Dev., vol. 28, no. 2, pp.
124-134, Mar. 1984.

R. M. Sedmak and H. L. Liebergot, “Fault Tolerance of a General Purpose Computer
Implemented by Very Large Scale Integration,” IEEE Trans. Comput., vol. 39, pp.
548-554, Apr. 1990.

J. H. Patel and L. Y. Fung, “Concurrent Error Detection in ALU’s by Recomputing
with Shifted Operands,” IEEE Trans. Comput., vol. C-31, no. 7, pp. 589-591, July
1982.

J. G. Holm and P. Banerjee, “Low Cost Concurrent Error Detection in a VLIW
Archtecture using Replicated Instructions,” in Proc. 1992 Int. Conf. Parallel Pro-
cessing, pp. 192-195, Aug. 1992.

Y. Tamir, M. Liang, T. Lai, and M. Tremblay, “The UCLA Mirror Processor: A
Building Block for Self-Checking Self-Repairing Computing Nodes,” in Proc. 21th
Int. Symp. Fault-Tolerant Comput., pp. 178-185, June 1991.

M. Schuette and P. J. Shen, “Processor Control Flow Monitoring Using Signatured
Instruction Streams,” IEEE Trans. Comput., vol. C-36, no. 3, pp. 264-276, Mar.
1984.

T. Sridhar and S. M. Thatte, “Concurrent Checking of Program Flow in VLSI
Processors,” in Proc. 1982 IEEE Int. Test Conf., pp. 191-199, 1982.

L. Svobodova, “Resilient Distributed Computing,” IEEE Trans. Softw. Eng.,
vol. SE-10, no. 3, May 1984.

L. Lin and M. Ahamad, “Checkpointing and Rollback-Recovery in Distributed Ob-
ject Based Systems,” in Proc. 20th Int. Symp. Fault-Tolerant Comput., pp. 97-104,
1990.

131

[10] K. Tsuruoka, A. Kaneko, and Y. Nishihara, “Dynamic Recovery Schemes for Dis-
tributed Processes,” in IEEE 2nd Symp. Reliability Distributed Softw. Database
Syst., pp- 124-130, 1981.

[11] W.-M. W. Hwu and Y. N. Patt, “Checkpoint Repair for High-Performance Out-of-
Order Execution Machines,” IEEE Trans. Comput., vol. C-36, pp- 1496 -1514, Dec.
1987.

[12] Y. Tamir and M. Tremblay, “High-Performance Fault-Tolerant VLSI Systems Using
Micro Rollback,” IEEE Trans. Comput., vol. 39, pp. 548-554, Apr. 1990.

[13] M. S. Pittler, D. M. Powers, and D. L. Schnabel, “System Development and Tech-
nology Aspects of the IBM 3081 Processor Complex,” IBM J. Res. Dev., vol. 26,
pp- 2-11, Jan. 1982.

(14] J. E. Smith and A. R. Pleszkun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans. Comput., vol. 37, pp. 562-573, May 1988.

[15] E. B. Eichelberger and T. W. Williams, “A Logic Design Structure for LSI Testa-
bility,” in Proc. 1{th Design Autom. Conf., pp. 462-468, 1977.

(16] E. J. McClusky, Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1986. '

[17] M. L. Ciacelli, “Fault Handling on the IBM 4341 Processor,” in Proc. 11th Int.
Symp. Fault-Tolerant Comput., pp. 9-12, June 1981.

[18] R. N. Gustafson and F. J. Sparacio, “IBM 3081 Processor Unit: Design Considera-
tions and Design Process,” IBM J. Res. Dev., vol. 26, pp. 12-21, Jan. 1982.

[19] W. F. Bruckert and R. E. Josephson, “Designing Reliability into the VAX 8600
System,” Digital Tech. J. Digital Equip. Corp., vol. 1, no. 1, pp. 71-77, Aug. 1985.

(20] D. B. Fite, T. Fossum, and D. Manley, “Design Strategy for the VAX 9000 System,”
Digital Tech. J. Digital Equip. Corp., vol. 2, no. 4, pp. 13-24, Fall 1990.

[21] P. M. Kogge, K. T. Truong, D. A. Richard, and R. L. Schoenike, “Checkpoint Retry
Mechanism.” United States Patent, no. 4912707, Mar. 1990. Assignee: International
Business Machines Corporation, Armonk, N.Y.

[22] G. L. Hicks, D. Howe, Jr., and A. Zurla, Jr., “Insruction Retry Mechanism for a
Data Processing System.” United States Patent, no. 4044337, Aug. 1977. Assignee:
International Business Machines Corporation, Armonk, N.Y.

(23] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,”
IBM J. Res. Dev., vol. 11, pp. 25-33, Jan. 1967.

132

[24] L. Spainhower, J. Isenberg, R. Chillarege, and J. Berding, “Design for Fault-
Tolerance in System ES/9000 Model 900,” in Proc. 29th Int. Symp. Fault-Tolerant
Comput., pp. 38—47, July 1992.

[25] J.S. Liptay, “Computer System with Logic for Writing Instruction Indentifying Data
into Array Control Lists for Precise Post-Branch Recoveries.” United States Patent,
no. 4901233, Feb. 1990. Assignee: International Business Machines Corporation,
Armonk, N.Y.

[26] J. S. Liptay, “The ES/9000 High End Processor Design,” IBM J. Res. Dev., vol. 36,
no. 3, May 1992.

[27] C.-C. J. Li and W. K. Fuchs, “CATCH - Compiler-Assisted Techniques for CHeck-
pointing,” in Proc. 20th Int. Symp. Fault-Tolerant Comput., pp. 74-81, June 1990.

(28] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Reading, MA: Addison-Wesley, 1986.

[29] C.-C. J. Li, S.-K. Chen, W. K. Fuchs, and W.-M. W. Hwu, “Compiler-Assisted
Multiple Instruction Retry.” Manuscript, May 1991.

[30] N.J. Alewine, S.-K. Chen, C.-C. J. Li, W. K. Fuchs, and W.-M. W. Hwu, “Branch
Recovery with Compiler-Assisted Multiple Instruction Retry,” in Proc. 22th Int.
Symp. Fault-Tolerant Comput., pp. 66-73, July 1992.

[31] J. A. Bondy and U. Murty, Graph Theory with Applications. London, England:
Macmillan Press Ltd., 1979.

[32] P. Chang, W. Chen, N. Warter, and W.-M. W. Hwu, “IMPACT: An Architecture
Framework for Multiple-Instruction-Issue Processors,” in Proc. 18th Annu. Symp.
Comput. Architecture, pp. 266-275, May 1991.

[33] S. Weiss and J. E. Smith, “A Study of Scalar Compilation Techniques for Pipelined
Supercomputers,” in Proc. 2nd Int. Conf. Architecture Support Programming Lan-
guages and Operating Syst., pp. 105-111, Oct. 1987.

[34] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Ap-
proach. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

[35] R.P. Colwell, R. P. Nix, J. O'Donnell, D. B. Papworth, and P. K. Rodman, “A VLIW
Architecture for a Trace Scheduling Compiler,” in Proc. 2nd Int. Conf. Architecture
Support Programming Languages and Operating Syst., pp. 105-111, Oct. 1987.

[36] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, “QOverlapped Loop Support in the Cy-
dra 5, in Proc. 3rd Int. Conf. Architecture Support Programming Languages and
Operating Syst., pp. 26-38, April 1989.

133

[37] B. R. Rau and C. D. Glaeser, “Some Scheduling Techniques and an Easily Schedu-
lable Horizontal Architecture for High Performance Scientific Computing,” in Proc.
20th Annu. Workshop Microprogramming Microarchitecture, pp. 183-198, Oct. 1981.

[38] M. S. Lam, “Software Pipelining: An Effective Scheduling Technique for VLIW
Machines,” in Proc. ACM SIGPLAN 1988 Conf. Programming Language Design
Implementation, pp. 318-328, June 1988.

[39] A. Aiken and A. Nicolau, “Optimal Loop Parallelization,” in Proc. ACM SIGPLAN
1988 Conf. Programming Language Design Implementation, pp. 308-317, June 1988.

[40] J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compaction,”
IEEE Trans. Comput., vol. ¢-30, no. 7, pp. 478-490, July 1981.

[41] M. D. Smith, M. S. Lam, and M. Horowitz, “Boosting Beyond Scalar Scheduling in a
Superscalar Processor,” in Proc. 17th Annu. Symp. Comput. Architecture, pp. 344
354, May 1990.

[42] S. A. Mahlke, W. Y. Chen, W.-M. W. Hwu, B. R. Rao, and M. S. Schlansker,
“Sentinel Scheduling for VLIW and Superscalar Processors,” in Proc. 5th Int. Conf.
Architecture Support Programming Languages and Operating Syst., pp. 238-247, Oct.
1992.

[43] M. D. Smith, M. A. Horowitz, and M. S. Lam, “Efficient Superscalar Performance
Through Boosting,” in Proc. 5th Int. Conf. Architecture Support Programming Lan-
guages and Operating Syst., pp. 248~259, Oct. 1992.

[44] M. Johnson, Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1991.

[45] J. K. Lee and A. J. Smith, “Branch Prediction Strategies and Branch Target Buffer
Design,” IEEE Comput., vol. 17, no. 1, pp. 6-22, Jan. 1984.

134

VITA

Neal Jon Alewine was born i [NSRS, o- DR E- roccived

his B.S. degree in Electrical Engineering from Florida Atlantic University, Boca Raton,
Florida in March of 1980. He was employed by the International Business Machines
Corporation, Boca Raton, Flérida, and held several technical and management positions
including design engineer, lead designer, first-level manager, technical assistant to the
General Manager, program manager, and second-level manager. He received his M.S.
degree in Electrical Engineering from Florida Atlantic University in December of 1988
and was selected to participate in the IBM Resident Study Program to pursue doctoral
studies at the University of [llinois at Urbana-Champaign.

After completing his doctoral dissertation, Mr. Alewine will return to IBM at the
Boca Raton facility. His research interests include high-performance microarchitecture,

fault-tolerant computing, and performance evaluation.

