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Abstract

Wave packet motions of a single electron in harmonic potentials or a magnetic field
are obtained analytically. The phase of the wave function which depends on both time
and space is also presented explicitly. The probability density of the electron changes
its width and central position periodically. These results are visualized using computer
animation techniques.

1 Introduction

We investigate a time evolution of the electron wave packet through analytical methods. The
time evolutions of restricted initial wave packets were obtained [1]-[3]. Here, we consider a
general initial wave packet and obtain a classical harmonic oscillation of the center of mass of
the probability density and an oscillation of its variance. We have also obtained the analytic
form of the phase of the wave packet.

2 One-dimensional harmonic potential

We consider the Schrédinger equation for the one-dimensional harmonic potential
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‘Lﬁa = —%5;2-1/) + EIL‘ P. (1)
The stationary solution is
, 1
pn(2,t) = un(z) exp(—iw(n + 5)t), (2)
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where w = \/E and u,(z) is expressed using the Hermite polynominal H,(z)
un(z) = N,,H,,(aa:)exp(—%a%z) (3)

with o = /¥ and the normalization factor N,(z) = \ T
Next, we shall expand an initial wave function by these functions and trace its time evolution.
Hereafter, the unit length o = 1is used. Without loss of generality, we choose the initial wave

where z is a complex number 2z = z; + iz;. We shall expand this wave packet in terms of the
stationary solutions

Y(z,0) = ZC’ u,(z). (5)

n=0
We calculate a expansion coefficient C,, with the help of the generating function of the Hermite
polynominal and obtain the following expression.

V2m2r(1 + 202) P 214 20?) 40?2 Z mli(n — 2m).
Thus we obtain the time evolution of the wave packet by the following infinite series
| 40 2? 22 z? iwt
H= |———— —_— __ —_
P(z,t) \J 127 exp( N +207) 17 7) exp(— ) exp(——-)
00 (3] i= n—-2m
exp(—iwt) ., <5 (— 1+2,z) (7%7)
8 ,E, Ha(2) 2 ) rnz=0 mi(n - 2m)! (7)
When o2 equals 3, this summation is evaluated easily.
2 2 2 ¢ 2
Y(z,t) = \'/gexp(—%- - —22—1 - x2 )exp(-z%) exp(—% exp(—2iwt) + zz exp(—iwt)).  (8)

The center of mass of the probability density of the wave packet oscillates sinusoidally. On the
other hand, the variance of the probability density is constant during the motion.

When the variance o2 is not %, we shall eliminate the time dependent phase factor in eq.(7)
by the following transformations.

" exp(—2iwt) = ——, (9)

A = (10)
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From eqgs.(9) and (10) we obtain

40% + i(1 — 40* sin(2wt))

(1 + 20%) + (1 = 40%) cos(2ut)) (11)

5=60+i61=

2(zo cos(wt) + 22302 sin(wt)) + 2i(z cos(wt) — 2290 sin(wt))
(14 404) + (1 — 40*) cos(2wt) '

Inserting these values into the expression (7), we have

(12)

w=w+ 1w =

40 z? 2 z? iwt
t) = | =———exp(- ~ — =) exp(——-
viat) J\/Z—ﬂ'(l+2a2) (51207 T 302 P! 7 ) exp(=7)
5] 1-26\ym( 2w_\n—2m
— 13 (_1+25) (1+26)
2 @5 2 e o] (13)

Comparing this and the expression (7) at ¢ = 0, we see that this is also the expansion formula
of a Gaussian wave packet. After a straight forward but lengthy calculation we obtain

Wz ) = exp(m).' e -E D expl- ), (14

where exp(i7) is a phase factor which depends only on time

_ —(z3 = 2})sin(2wt) + 420210%(cos(2wt) — 1) 1

= arctan( tan(wt)
2(cos(2wt)(1 — 40*) + 1 + 40t) 2

20

)- (15)

The center of mass of the wave packet oscillates sinusoidally between — ;a, an 7

The variance of the probability density changes periodically in the range between ﬁ and o
( 02 > 1) or between o? and 27 ( 0% < 1). The period of its change is half of that of the
oscillatory motion of the center of mass[5]. The motion of the probability density function is

presented in FIG. 1.
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FIG. 1. The motion of the probability density function. Here, we choose the
variance of the probability density of the initial wave packet as 1 (a) bird’s-eye

s
view. (b) contour line.
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3 Two-dimensional Harmonic Potential
Next, we consider the two dimensional Schrddinger equation for an isotropic harmonic potential

h2V2 kz(mz + yz)
Y+ 5

N
ihs = - P. (16)

2m

We choose the initial wave packet as
¥(z,y,0) = N exp(—£(z —0)* +ikso(z ~20) =n(y — %0)* + ikyo(y — o) + Az —20) (y = 30)), (17)
where £, 7 and ) are complex constants,
E=6b+1i&, n=m+im, A=do+ik, (18)
which satisfy the following inequalities
€ >0, n>0, 4&mno— A >0, (19)

and N is a normalization constant

/ _ 12
N 4&om0 — Ag (20)
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Using the same techniques and procedure in the one-dimensional case, we obtain the time
evolution of the wave packet in terms of an infinite series.

Y(z,y,t) = ij:o[un(y) io Comnltim(z) exp(—iw(m + n + 1)t)], (21)

The expansion coefficients Cy, », are also calculated explicitly.

1/)(1:1 Ys 0) = v -@exp(—f(z - I0)2 + ikzo(.’li - IEQ) - ’7(3/ - y0)2 + ikyo(y - yO)): (22)

we can evaluate the infinite series

_ / 1 (z =z  (y=y)? . .
1/'(31 Y, t) - 27"03:th¢ exp( 403t - 4035 . ) exp(z]c:rtm + Z’Cyty)

(1 - 404y sin(2wt + 27;)(z — z,)? N (1—4oy)sin(2wt + 29,)(y — y¢)2)

1

x exp(1

160202, 160307,
ks k : t .
x exp(—1 ;zt - z—;zg - z% arctan( a;(c;)t)) + 16,)
01
kyeye  kypoyo L1 tan(wt), .
L 8 23
x exp(—1i 5 =5 15 arc an( 207 )+ 18,), (23)
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where

ol = (1-4(& + &) (24)
=7 (- 16(€Z + €1)7 + 4(88 — €3)) cos?(:) + (1 — 4(€3 — €7)) sin’(vz)
o2 = (1= 4(nd + n3))no (25)
Y (—16(nd + nd)? + 4(n§ — nd)) cos?(v,) + (1 — 4(nd — ni)) sin® ()
46 1 4m
. = - arctan(——2——) , 7, = = arct , 26
e g g T 2 T ) (26)
,  sin®(wt + ;) + 405 cos?(wt + 7,) ,  sin(wi+ )+ 40) cos’(wt + )
Ozt = 2 ’ oyt = 2 ’ (27)
402 40,
Here 8, and @, are time independent phase factors
(1 — 402)sin(2v;) . 1 tan(vz)
6, = —(— z = arct , 28
(4(sz(%) T 40t cos? (7)) + &)y + 5 arc an( 202 ) (28)
(1 = 40} sin(2y,) L1 tan(y)
= - = —). 29
b = ~({emitny) + 403 cos(7,)) | M)y + 5 arctan( 202 ) (29)
We obtain the explicit time dependence of the following parameters
Ty = zo cos(wt) + kzosin(wt) ,  y = yo cos(wt) + kyo sin(wt), (30)
kye = kyocos(wt) — zgsin(wt) |,  kye = kyo cos(wt) — yosin(wt) . (31)

The trajectory of the center of mass of the probability density function is an elliptic motion
around the origin with an angular frequency w.

4 TUniform magnetic field

The Schrédinger equation for a single electron in a uniform magnetic field perpendicular to the
two dimensional flat plane is

0 1 eAd
h—1 = —(—ih —)? 32
ihap = s —(—ihV + 2, (32)
where the vector potential A in Landau gauge is
A = (-By,0) (33)
We separate a special solution of the wave equation as

Y(z,y,t) = exp(ikz)f(k,y,t) (34)

The wave equation for f(k,y,t) becomes

bl 1,0) = S 2 + 0%y = V)R 0.0) (39)



where B
e -
a= 5 (36)

This is the one dimensional Schrédinger equation for the harmonic potential centered at y =

k/a. Thus above techniques and procedures can be applied in order to obtain the time evolution

of the wave packet [6]. We choose the initial wave packet eq.(17). The comlete descriptions

are presented in the literatutre [6]. The major difference between two dimensional isotropic

harmonic potential and magnetic field is the period of the change of the variance. The former

is the half of the latter. This fact is also interpreted by the pass integration technique [6], [8].
For the following initial condition

E:r}, )\:5 (37)

the shape of the contour lines of the probability density function remains circular during the
motion.
For the following initial condition

1 i
= = - A _— e
¢=n=7, 5 (38)

the shape of the probability density remains unchanged.

5 Conclusion

Using a frame buffer NVS2000 and video recorder BVW-75, we have made CG animations
which can give us an intuitive understanding of the wave packet motions.

The potentials are simple but due to the quantum mecanical property the analytic form of
the wave packet motions are very complicated.
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