G3WTId LON ¥NY1g i9vd SNIGS‘QBHd

LTG

T CVIVHOTINTIN /) {

Automatic Management of
Parallel and Distributed System Resources

« NASA Ames Research Center (Dr. Jerry Yan)

« Stanford University (Tin Fook Ngai)

Dr. Stephen F. Lundstrom

Consultant
PARSA
(415) 723-0140

Consulting Associate Professor, Electrical Engineering
Computer Systems Laboratory
Stanford University

€12 p8-E6N
c09 €9/
To- g

8G3G

Program Focus

(at NASA Ames Research Center)
« Parallel Processing is not confined to any one level of thé éoftware hierarchy — from applications to operating systems and
machines ' '

» Applications must be formulated with sufficient inherent parallelism to exploit the underlying parallel architecture
The focus in the area of parallel applications is:

« Scalable, highly parallel symbolic applications
« Application development environment

« The mapping of hardware resources to the application must be able to respond to dynamic load variations and faults
on the system. The focus in the area of intelligent management of multiprocessing systems is:

« High performance and integrity
+ Highly adaptive

« For space applications, the parallel hardware has to be subject to low weight, power and volume constraints. The
focus in the performance evaluation of parallel architectures is:

+ Standardized benchmarks
+ Simulation and prediction tools for parallel systems

N

0€g

This is _how our project fits together

+ We are currently working on “parallelizing” three applications (at NASA Ames Research Center)

+ KATE — A Frame-based reasoning system monitoring the subsystem of the shuttle launch system
+ CLiPS — A C-based production system shell
+ Space Station Workloads — We are looking at the possibilities to model part of the OMA

« We are also working on resource management strategies for multiprocessors

+ "Post-Game" Analysis — Static, rule-based module assignment system
+ “Mid-Game" Analysis — Dynamic load-balancing system on hypercube type architectures

+ Modeling

+ Axe — we can simulate parallel program execution of MultiComputers and Token-ring based distributed systems
+ BDL — We can model/specify parallel program behavior

» We can also “visualize” how the program executed and in turn, discover bottlenecks due to software and hardware architectural
characteristics. (contact Dr. Jerry Yan at NASA Ames Research Center to request a short demonstration video tape.)

N

[\)
w
[un—y

(444

Stanford University - Computer Systems Lab.

Dvnamic Concurrent Program and Its Resource Allocation

Our research (at Stanford University) has been primarily focused on dynamic concurrent programs that create
networks of communicating sequential processes during their course of execution. These networks of processes are
defined dynamically. Run-time variables include the number and type of processes to be spawned and how these
processes communicate. The number of available processors is another run-time variable. Once a network is
created, these run-time variables remain unchanged.

The resource allocation problem is how to assign the concurrent processes to available processors and how to schedule
them for fast program execution. This problem is known to be a difficult and tedious one. The objective of our
research is to investigate automatic means to this resource allocation problem.

N

€€3

1 B I | i |) o 1

Dynamic Concurrent Programs

create networks of communicating sequential processes

run-time variables:

time
1. # processes

m

L~ 2. process types
A
B B { 3. inter-process
~ communications
Lf 4. # available processors

v

Resource Allocation:
. Assign processes to avail. processors .

. Schedule process execution

1454

Stanford University - Computer Systems Lab.

Compiler-Directed System_ _Approach

during compile-time and to do resource allocation based on these information and other run-time scheduling
parameters during run-time. During compile-time, the compiler also modifies the program by inserting in run-
time calls to the run-time resource management system. During program execution, when a network of concurrent
processes is about to be created, a scheduler somewhere in the system is called, and all relevant run-time
scheduling parameters are gathered and passed to it. The scheduler then allocates the available processors and
invoke their resident local schedulers to schedule and execute the assigned processes. We call this approach the

‘compiler-directed system approach. (Note that the resource allocation in this approach is distributed and

substantial overlapping of scheduling activities with useful computation is possible.)

GEC

A S R T T P g

Compiler-Directed System Approach

Compile time
« compile scheduling parameters.

* insert run-time scheduling routines
Run time

RUN-TIME SCHEDULING PARAMETERS

}

-~
.
-

SCHEDULER

SCHEDULER| T
SCHEDULER

r....-.....-___

'\

R
-Management _System

Commwm- L I Ny Sy - o= -

C——

9€¢

N

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

Experiments were performed on hypercube simulator. ~System load balancing, a common system technique, which
distributes the processes evenly across all available processors is used as our reference of comparison. Results
obtained from commonly-adopted manual placement strategies are also compared. This test case was chosen because
an ideal partitioning onto parallel resources is known. The results for the automatic, dynamic resource management
technique are shown both with and without the scheduling overhead (relating to the cases where the scheduling of the
dynamically spawned tasks can be done in parallel with other work, or not.)

WAH4

Lattice Gaseous Cellular Automata (LGCA)

Problem | Instance:

« fhp: Simulation of 256x256 point cells for 100 time steps

Program Description:
« Point-space is partitioned lnto‘ 64 (8x8) macro-cells.
» Program ’sp:awn"s off 64 concurrent processes, one for each macro cell.

« The master process dispatches and assembles data implicitly.

(ideal allocation of resources is known for this case)-

8€¢3

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

When the application 'lattice gaseous cellular automata’ was run on full hypercubes of 4, 8 and 16 nodes, automatic .
scheduling performs nearly as well as the best manual placement (block placement), and obviously better than
scattering manual placement (+ 8-38%) and system load balancing (+ 15-36%). Even when scheduling overhead
is included, automatic scheduling is better than system load balancingﬁ (+ 8-15%).

6€3

Lattice Gaseous Cellular Automata (LGCA)

Comparison of Automatic Scheduling on hypercubes
with Load Balancing & Manual Methods

fhp, 8x8, comm. x20, 100 steps

3500
] A
3000 J -8~ system load balancing
o~ A- manual placement - scattering
E 2500] -A- manual placement - block
‘é 2000 -~ automatic
' ‘é : 1 -0~ automatic (incl. o/h)
% 1500 x sys. load bal. - max
1000] + sys. load bal. - min
500 !
0 20

available processors

0¥¢

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

We believe that dynamic allocation of resources is important both in cases where the application is dynamic and in cases
where the resources available in the system change dynamically. Our automatic, run-time resource allocation
adapts well to changing system environments. When one node in a full hypercube is unavailable for allocation,
automatic scheduling performs better than system load balancing (+ 14-28% w/o overhead, + 5-24% including
overhead). Please note that automatic scheduling uses only 13 nodes when there are 15 available nodes.

Ive

Lattice Gaseous Cellular Automata (LGCA)

Comparison of Automatic Scheduling on hypercube with one failed node
with Load Balancing

fhp, 8x8, comm x20, 100 steps, Node 2 out

50007 x -20 o
execution time
4000 16 -8~ system load balancing
g o | auto+oh
= 3000 129 |-+ auo
g § x sys. load bal. - max
g 2000 8 B | + sys.load bal. - min
:g 3t
1000 T -4 processor allocation by auto
_ ' allocated
0+ P e 1 0 [J notused

0 5 10 15 20
available processors

¢ve

Stanford University - Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

A portion of a sparse matrix multiplication problem is shown here as a testcase. This testcase is chosen because the
number of parallel processes spawned is directly related to the input parameters and are not known until execution
is in progress. Experiments were performed on hypercube simulator and results were compared with that by
system load balancing. Two problem sets were tried - one related to finite element structures in aircraft design
(can24) and one related to power system networks (494bps).

g€ve

Sparse Matrix Cholesky Factorization

Problem Instances:
1. can24: finite element structures in aircraft design (24 columns, 96 non-zeros)

2. 494bps: power system networks (494 columns, 1080 non-zeros)

Program Description:
- Program spawns off a concurrent process for each column.

. Each process sends and receives according to the cholesky structure

2

(‘\

&

1449

Stanford University - Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

For the problem ‘can24', automatic scheduling performs better than system load balancing when the number of
available nodes is no more than 16 (+ 6-30%). System load balancing appears better (~20%) when 32 nodes are
available. However, automatic sch‘eduling allocates at most 9 nodes even when there are more nodes available. As
a result, in the 32 processor case, the automatic scheduling method, which is using 9 nodes, is only slightly slower
than system load balancing which is using 32 processors. The amount of scheduling overhead for this small problem
is negligibly small. o

144

Sparse Matrix Cholesky Factorization - can24 example

Comparison of Automatic Scheduling on hypercube
with Load Balancing

6000 can24, x1000 40 execution time
e -
-~ system load balancing
5000 T — 30 ~o- auto+oh
o -~ auto
4000 @
:E: v § x sys. load bal. - max
E 30001 20 3 + sys. load bal. - min
: - B
5 2000] 10 % processor allocation by auto
allocated
[0 notused
N T ‘ 0
0 10 20 40

available pfocessors

9v¢

Stanford University - Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

For the larger problem '494bps’, the performance of automatic scheduling is significantly better than that of system
load balancing (+ 36-120% w/o overhead, + 17-95% including overhead). When a full hypercube of 32 nodes is
available, automatic scheduling allocates only 25 nodes while the load balancing method is using all 32 nodes.

Lve

Sparse Matrix Cholesky Factorization - 494bps example

Comparison of Automatic Scheduling on hypercube
with Load Balancing

494bps, x1000

20000 - 40

15000 [30
&
[}

E 10000 - 20
g
5

5000 10

0 0

I | LA | v LI 7 1

10 15 20 25 30 35 40

available processors

processors

execution time

-8 system load balancing
-o- auto+oh

- auto

x sys. load bal. - max
+

sys. load bal. - min

processor allocation by auto

allocated
[J notused

