
] ''_l I I II 'II 'I II I I I I I I -,, I I,)

Automatic Mana ement of
:o
I"11

esources_= Parallel and Distributed S stem R
"o
_3
rtl

= • NASA Ames Research Center (Dr. Jerry Yan)r"
Z=

• Stanford University (Tin Fook Ngai)
Z
O
,--t
"11
r'-

__ Dr. Stephen F. LundstromI'1'1
t,o
b3

Consultant

__.. PARSA

(415) 723-0140

Consulting Associate Professor, Electrical Engineering;z

Computer Systems Laboratory :2;

_ Stanford University ¢_

• __ t

Program Focus

(at NASAAmes ResearchCenter)

• ParallelProcessingis notconfinedtoanyone levelof the softwarehierarchy-- fromapplicationsto operatingsystemsand
machines

• Applications must be formulated with sufficient inherent•parallelism to exploit the underlying parallel architecture

The focus in the area of parallel applications is:

• Scalable, highly parallel symbolicapplications

• Application development environmentOO

• The mappingof hardware resourcesto the applicationmust be able to respondto dynamic load variations and faults

on the system. The focus in the area of intelligent managementof multiprocessing systems is:

• High performance and integrity '

• Highly adaptive

• For space applications, the parallel hardware has to be subject to low weight, power and volume constraints. The

focus in the performance evaluation of parallel architectures is:
i

• Standardizedbenchmarks

,. • Simulation and prediction tools for parallel systems

I } I I I I I _ ! I I I I I l I J J J !

t_
t,3
_D

This is how our project fits together

• We are currently working on "parallelizing" three applications (at NASA Ames Research Center)

• KATE -- A Frame-based reasoning system monitoring the subsystem of the shuttle launch system

• CLIPS -- A C-based productionsystem shell

• Space Station Workloads -- We are looking at the possibilities to model part of the OMA

• We are also working on resource management strategies for multiprocessors

• "Post-Game" Analysis -- Static, rule-based module assignment system

• "Mid-Game" Analysis -- Dynamic load-balancing system on hypercube type archileclures

• Modeling

• Axe -- we can simulate parallel program execution of MultiComputers and Token-ring based distributed systems

• BDL -- We can model/specify parallel program behavior

• We can also "visualize" how the program executed and in turn, discover bottlenecks due to software and hardware architectural

characteristics. (contact Dr. Jerry Yan at NASA Ames Research Center to request a short demonstration video tape.)

\
I J I I I I I I] _1 I I I I l J" J J I I

g

L_
C_

00

Stanford University- Computer Systems Lab.

,Dynamic Concurrent Program and Its Resource Allocation

Our research (at Stanford University) has been primarily focused on dyn'amicconcurrentprograms that create

networksof communicatingsequential processesduring their course of execution. These networks of processes are

defined dynamically. Run-timevariables includethe number and type of processes to be spawned and how these

processes communicate. The number of available processors is another run-time variable. Once a network is

created, these run-timevariables remain unchanged.t_3

The resourceallocation problem is how to assign the concurrentprocesses to available processors and how to schedule

them for fast program execution. This problemis known to be a difficult and tedious one. The objective of our

research is to investigate automatic means to this resource allocation problem.

I J 1 1 I I I I)1 t I I I I I / 1 !

i ",, I 1 1 "I 1 t ! 1 1 I I '{ I 1 ! ", l 1
) ,_)

Dynamic Concurrent Programs

create networks of communicating sequential processes

I

time run-time variables;

1. # processes

.
- 2. process types

4
communications

Ir _(_,_ 4. # available processors

Resource Allocation:
• Assign processes to avail, processors
• Schedule process execution

Stanford University - Computer Systems Lab.

Compiler-Directed System Approach

We believe that both program-specific informationand system information should be fully utilized in order to achieve

good resource allocation. Our approach to automatic resource allocation is to extract program-specific information

during compile-time and to do resource allocation based on these information and other run-time scheduling

parameters during run-time. During compile-time, the compiler also modifies the program by inserting in run-

time calls to the run-time resource management system. During program execution, when a network of concurrent

processes is aboutto be created, a scheduler somewherein the system is called, and all relevant run-time
schedulingparametersare gathered and passed to it. The scheduler thenallocates the available processors and

invoke their residentlocal schedulersto scheduleand execute the assigned processes. We call this approachthe

compiler-directed system approach. (Note that the resource allocation in this approach is distributed and

substantial overlapping of scheduling activities with useful computation is possible.)

! ._ _ I I I I / I [i I I I 1) '_ .,' I]

I ") T 1 'I _, i 'I _ _ I } 'l j 1 I l 1, I I

Compiler-Directed System Approach

Compile time
• compile scheduling parameters
• insert run-time scheduling routines

Run time

RUN-TIMESCHEDULINGPARAMETERS

• I
SCHEDULER

t_
¢.o

" Run-Time Resource
'..M.a_n_a.q,ement S_stemj

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

Experimentswere performedon hypercubesimulator. System Ioadbalancing, a common system technique, which

distributes the processesevenly across all available processors is used as our reference of comparison. Results

obtainedfrom commonly-adoptedmanualplacementstrategiesare also compared. This test case was chosen because

an ideal partitioning onto parallel resources is known. The results for the automatic, dynamic resource management

techniqueare shownboth with and without the schedulingoverhead (relatingto the cases where the schedulingof the

dynamically spawned tasks can be done in parallel with other work, or not.)

Lattice Gaseous Cellular Automata (LGCA)

Problem Instance:

• fhp: Simulation of 256x256 point cells for 100 time steps

Program Description:

• Point-space is partitioned into 64 (8x8) macro-cells.¢o
-,3

• Program .spawns off 64 concurrent processes, one for each macro cell.

• The master proceSs dispatches and assembles data implicitly.

(ideal allocation ,of resources is knownfor this .case).

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

When the application 'latticegaseouscellular automata'was run on full hypercubesof 4, 8and 16 nodes,automatic

schedulingperforms nearlyas well as the best manual placement (blockplacement),and obviouslybetter than

m scattering manual placement (+ 8-38%) and system load balancing (+ 15-36%). Even when scheduling overhead

is included, automatic scheduling is better than system load balancing (+ 8-15%).

'I ") 'I1 I ! I I1 ,/I I 'I I I "] 1 "_
' j I " l

Lattice Gaseous Cellular Automata (LGCA)

Comparison of Automatic Scheduling on hypercubes
with Load Balancing & Manual Methods

fhp, 8x8, comm. x20, 100 steps
3500 -

" 4

3000 - " .-a- system load balancingJ ',.
,_, % ._- manual placement - scattering
_ 2500-A- manual placement - blocko "

to ._ 2000 --'- automatic
•-#.- automatic (incl. o/h)

× 1500 x sys. loadbal.-max
. sys. load bal. - min

1000

500
0 5 10 15 20

availableprocessors

Stanford University - Computer Systems Lab.

Test Case 1 - Lattice Gaseous Cellular Automata

We believe that dynamic allocationof resourcesis important both in cases where the application is dynamic and in cases

where the resources available in the system change dynamically. Our automatic, run-time resource allocation

adapts well to changingsystem environments. When one node in a full hypercube is unavailable for allocation,

automatic scheduling performs better than system load balancing (+ 14-28% w/o overhead, + 5-24% including

overhead). Pleasenote that automaticschedulinguses only 13 nodes when there are 15 available nodes.
t_3

-. -. .

[' ") I 1 '1 I I I]] I ! I] I 1 ' '_ 1 1,) •)

Lattice Gaseous Cellular Automata (LGCA)
Comparison of Automatic Scheduling on hypercube with one failed node

with Load Balancing

fhp, 8x8, comm x20, 100 steps,Node 2 out
5000 x - 20

executiontime

4000 _ -e-
...........+ 16 system load balancing

!"'1
_" _ _iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii___--- " " _ -o- auto+oh

g 3000 _ _- !!i!iiiiiil 12 __ "-#- auto

bO O .:.:.:.:.:. ou
_ o
"= i !_i_i_ii!il _ x sys. load bal.- max

2000 "........... 8 _ + sys. load bal. - min× ::::::::::::::::::::::............

0 5 10 15 20

available processors

Stanford University - Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

A portion of a sparse matrix multiplicationproblemis shownhere as a testcase. This testcase is chosenbecause the

number of parallel processes spawned is directly related to the input parameters and are not known until execution

is in progress. Experiments were performed on hypercube simulator and results were compared with that by

system load balancing. Two problem sets were tried - one related to finite element structures in aircraft design

(can24) and one related to power system networks (494bps).
to

to

] ._ _ I I I I I } "_I I I } I I I , ./] l

Sparse Matrix Cholesky Factorization

Problem Instances:
1. can24: finite element structures in aircraft design (24 columns, 96 non-zeros)
2. 494bps: power system networks (494 columns, 1080 non-zeros)

Program Description:
• Program spawns off a concurrent process for each column.
• Each process sends and receives according to the cholesky structure

_ili_i_?_: ::::::::::::::::

::<::::

:::::::::::
:::::::::::

Stanford University - Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

For the problem 'can24', automaticschedulingperforms better than system load balancingwhen the number of

available nodes is no more than 16 (+ 6-30%). System load balancing appears better (~20%) when 32 nodes are

available. However, automaticschedulingallocatesat most 9 nodes even when there are more nodes available. As

a result, in the 32 processor case, the automaticscheduling method,which is using 9 nodes, is only slightly slower

than system load balancingwhich is using 32 processors. The amount of schedulingoverhead for this small problem
is negligibly small.

€=

I _) 1 I I I I I _1) 1 } . l I I j ! I

Sparse Matrix Cholesky Factorization - can24 example

Comparison of Automatic Scheduling on hypercube
with Load Balancing

can24,x1000 executiontime
6000 ,40

-1 -.a- systemload balancing
.. -.e.- auto+oh

5000 -,_............... --1 30
, .- auto

1/3

_ 4000
__._ o x sys.10adbal.-max

d:= o_
01 o

._ 3000 _ 20 _ + sys. loadbal.-min2000 x ._
_ ,- 10 processorallocationbyauto

_: _ i_i_ii_ notused
0 , , 0

0 10 20 30 40

availableprocessors

Stanford University- Computer Systems Lab.

Test Case 2 - Sparse Matrix Cholesky Factorization

For the larger problem '494bps', the performanceof automatic scheduling is significantly better than that of system

load balancing (+ 36-120% w/o overhead, + 17-95% including overhead). When a full hypercube of 32 nodes is

available, automatic schedulingallocates only 25 nodes while the load balancing method is using all 32 nodes.

t,,o
€=
o_

• _ , • ,

I) I [I t I I I ,JI 1 I I I I 1 _j I i

Sparse Matrix Cholesky Factorization - 494bps example

Comparison of Automatic Scheduling on hypercube
with Load Balancing

494bps, xlO00
20000 - 40 execution timex

......... -a- sYstemload balancing
r"l --0- auto+oh

_. 15000 --- 30
_ _ ,x _ _ auto

•-z o o x sys. load bal. - max
E 10000 "," _........... _:_:_:_:_:_ 20 _ + sys. load bal. - min"= !iiiiiiiiii: €_

5000 _;i 10 processor allocation by auto
iiiiiiiiiii _iiI

..... '..........' '......................... _i::iiiiiii_i................... D allocated

0 iii_iii!i!iilii_i!!i!!!i!i, . , . , :!_:_:i_:_:i: 0 I'-] notused

0 5 10 15 20 25 30 35 40

available processors

