Technology for Space Station
Evolution Workshop

JSC ECLSS R&T Program Overview

Dallas, TX
January 16-19, 1990
Content

• Advancements in Electrochemical CO2 Removal
• Supercritical Water Waste Oxidation
• Electrooxidation for Post-treatment of Reclaimed Water
• Photocatalytic Post-Treatment of Reclaimed Water
Advancements in Electrochemical CO2 Removal

Objective

- Investigate and develop fundamental process enhancements in electrochemical CO2 removal

Benefit

- Improve performance and reliability
 - CO2 removal efficiency improvement (5-10% improvement achieved)
 - Cell composition improvement
 - Hydrogen feed elimination
Advancements in Electrochemical CO2 Removal

Technical Description

• Air passes through electrochemical cell where CO2 is absorbed at cathode and evolved at anode

• Electrochemical CO2 removal with hydrogen utilizes alkaline hydrogen/oxygen fuel cell reaction
 - O2 from air supplied at cathode where CO2 is absorbed
 - H2 supplied at anode where CO2 is evolved
 - CO2 reacts with hydroxyl ions (OH⁻) to form carbonate and bicarbonate ions (CO₃²⁻ and HCO⁻) which migrate to anode where heat energy from the fuel cell reaction releases the CO2
 - Half-cell reactions at both electrodes are thermodynamically spontaneous
 - Process generates electricity

• Same process can be carried out without supply of hydrogen
 - Series of reactions not spontaneous
 - Power must be supplied (approximately 105W/per person)
Advancements in Electrochemical CO2 Removal

\[\text{CO}_1\text{ Transfer: } 2\text{CO}_2 + 2\text{H}_2 + 2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + 2\text{CO}_2 + \text{Electric Power} + \text{Heat} \]

\[\text{HCO}_3^- \text{ Transfer: } 2\text{CO}_2 + \text{H}_2 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + 2\text{H}_2\text{O} + \text{Electric Power} + \text{Heat} \]

Schematic

Electrochemical Carbon Dioxide Removal with Hydrogen
Advancements in Electrochemical CO₂ Removal

\[
\begin{align*}
\text{CO}_3^= \text{ Transfer:} \quad & \text{CO}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{CO}_2 + \frac{1}{2}\text{O}_2 \\
\text{HCO}_3^- \text{ Transfer:} \quad & 2\text{CO}_2 + \frac{1}{2}\text{O}_2 \rightarrow 2\text{CO}_2 + \frac{1}{2}\text{O}_2
\end{align*}
\]

Schematic

Electrochemical Carbon Dioxide Removal without Hydrogen
Advancements in Electrochemical CO2 Removal

Status

- Program with Life Systems, Inc./Texas A&M; Initiated in December 1987
- 2 year Phase I to investigate and develop fundamental process enhancements
 - Literature review to identify areas of study for improved performance and operational flexibility
 - Bench-scale laboratory testing of cell components to identify best candidates for integrated testing
 - Single cell unit design, fabrication, and testing
- Single cell testing being completed now
- 1 year Phase II for multi-cell unit design, fabrication, and test
Advancements in Electrochemical CO2 Removal

Results

- Determined optimum electrocatalyst loading and binding agent content for gas diffusion electrodes
- Developed an improved electrode fabrication method using ultrasonic device for the dispersion of gas diffusion electrode components
- Proved that the electrolyte matrix thickness can be reduced to half of the baseline matrix thickness for improved performance without sacrificing the differential pressure capability
- Identified and developed electrode materials for the anode of the "without hydrogen" electrochemical CO2 removal cell

FY90 Activity

- Documentation of Phase I Results
- Initiation of Phase II Multi-cell Unit Design and Fabrication
Supercritical Water Waste Oxidation

Objective

- Expand the fundamental understanding of the SCWO waste treatment process
- Determine reaction mechanisms and effect of SCWO process variables (temperature, residence time, feed concentration, pressure) for simple compounds - methane, ammonia, etc.
- Determine mechanism of reaction residue (salt) formation - rate, temperature, etc.
Supercritical Water Waste Oxidation

Benefit

- System and crew waste approximately 6-8 lb/person-day (approximately 0.25 ft³/person-day)

- SCWO process potentially
 - Reduces waste storage (35 ft³ reduced to approximately 0.1 ft³)
 - Produces excess water
 - Enhanced hygiene
 - Radiation protection supplement
 - EVA support
Supercritical Water Waste Oxidation

Technology Description

- SCWO process converts organic waste (feces, urine, trash) to carbon dioxide, nitrogen, and water
- Process operation above the water critical point (3200 psia, 705 °F; 218 atm, 374 °C)
- Organic material is oxidized leaving reaction residue in the form of salts and oxides
- Process depends upon containment and removal of reaction ash

Status

- M.I.T. grant in final phase
 - September 1987 to September 1990
- Focus upon reaction kinetics and salt formation with analysis and experimental results
HUMAN WASTE TREATMENT AND RECYCLE
BY OXIDATION IN SUPERCritical WATER (SCW)
(MODAR PROCESS)

PROCESS STEPS

HUMAN WASTE
- metabolic wastes
- other wastewater

HOMOGENIZATION

PRESSURIZATION

PREHEAT

SCW OXIDATION

SALT SEPARATION

HEAT RECOVERY

GAS/LIQUID SEPARATION

DEPRESSURIZATION

GAS/LIQUID SEPARATION

ION EXCHANGE

MIT FUNDAMENTAL RESEARCH

KINETIC STUDIES
Oxidation of model compounds
- Ammonia
- Hydrocarbons
- Alcohols
- Mixtures
Global kinetic models
Elementary reaction models

SALT STUDIES
Nucleation and Growth Kinetics
Solubility of salts in SCW
- Sodium Chloride
- Mixed salts
"In situ" Light Scattering Expts.
- High Pressure and Temperature Optical Cell
Supercritical Water Waste Oxidation

Results

• Reaction kinetics
 - Expanded experimental capability to 700 °C, 300 atm
 - Measurement of kinetics and correlation to analytical models for carbon monoxide, ethanol, methanol, methane, ammonia, ammonia/ethanol, carbon monoxide/ethanol

• Salt formation
 - Completed test apparatus assembly and initial checkout with water
 - Initiated preliminary sodium chloride experiments
 - Progressing with numerical modeling of salt mixing and precipitation

FY90 Activity

• Complete salt nucleation and precipitation experiments and modeling
• Expand kinetic database to examine pressure variation, alternate oxidants, dissolved salts, heat transfer rate
ELECTROOXIDATION FOR POST-TREATMENT OF RECLAIMED WATER

OBJECTIVE

• DEMONSTRATE FEASIBILITY OF ELECTROOXIDATION TECHNIQUE FOR POST-TREATMENT OF RECLAIMED WASTE WATERS (DISTILLATES, PERMEATES AND HUMIDITY CONDENSATES) FOR POTABLE AND HYGIENE USAGE

BENEFITS

• NEW COMPETING TECHNOLOGY FOR PURIFYING RECLAIMED WASTE WATERS
• NO EXPENDABLES
• REMOVES TOTAL ORGANIC IMPURITIES TO < 500 PPB
• SHOWS POTENTIAL FOR PROVIDING DISINFECTION
ELECTROOXIDATION FOR POST-TREATMENT OF RECLAIMED WATER

TECHNICAL DESCRIPTION

- ELECTROCHEMICAL CELL PROVIDES GENERATION OF STRONG OXIDIZING RADICALS (HO·)
- LIQUID ELECTROLYTE (0.7 M SODIUM PERCHLORATE)
- 170 W-HR REQUIRED TO OXIDIZE 50 PPM OF ORGANIC IMPURITY TO < 500 PPB IN 1 LITER OF WATER
- NO MOVING PARTS

STATUS

- GRANT INITIATED WITH TAMU IN APRIL 1989
- EVALUATING FEASIBILITY OF CONCEPT AND OBTAINING PARAMETRIC DATA FOR DESIGN AND FABRICATION OF A BREADBOARD SYSTEM
- COMPLETION OF RESEARCH GRANT IN APRIL 1990
ELECTROLYSIS TEST CELL: INCORPORATING AN ION-CONDUCTING MEMBRANE

TYPICAL DISSOLVED ORGANIC CONTAMINANTS

- Acetic Acid: CH₃COOH + 2H₂O → 2CO₂ + 4H₂
- Benzene Acid: C₆H₅COOH + 12H₂O → 7CO₂ + 15H₂
- Octanoic Acid: CH₃(CH₂)₆COOH + 14H₂O → 8CO₂ + 22H₂
- Urea: NH₂CONH₂ + H₂O → 2CO₂ + N₂ + 3H₂

ORGANIC OXIDATION REACTIONS

SCHEMATIC OF ELECTROCHEMICAL WATER POST-TREATMENT UNIT
ELECTROOXIDATION FOR POSTTREATMENT OF RECLAIMED WATER

FUTURE PLANS

- DEVELOP A BREADBOARD SYSTEM USING A SOLID POLYMER ELECTROLYTE FROM FUEL CELL TECHNOLOGY
PHOTOCATALYTIC POST-TREATMENT OF RECLAIMED WATER

OBJECTIVE

- DEVELOP A BREADBOARD PHOTOCATALYTIC SYSTEM FOR POST-TREATMENT OF RECLAIMED WASTE WATERS (DISTILLATES, PERMEATES AND HUMIDITY CONDENSATE) FOR POTABLE AND HYGIENE USAGE

BENEFITS

- NEW COMPETING TECHNOLOGY FOR PURIFYING RECLAIMED WASTE WATERS
- REMOVES ORGANIC IMPURITIES TO LEVELS < 500 PPB
- PROVIDES DISINFECTION
- NO EXPENDABLES
PHOTOCATALYTIC POST-TREATMENT OF RECLAIMED WATERS

TECHNOLOGY DESCRIPTION

- ORGANIC IMPURITIES IN WATER ARE OXIDIZED BY POWERFUL OXIDIZING HYDROXAL RADICALS (OH•) AND HOLES (h +) PRODUCED WITH THE COMBINATION OF FINE METAL OXIDE CATALYST PARTICLES DISPERSED IN WATER WITH UV LIGHT AND DISSOLVED O2
- BATCH SYSTEM PROCESSES 12 LITERS OF WATER EVERY 2 HOURS
- SEPARATES CATALYST PARTICLES BY CROSS-FILTRATION THROUGH MICROPOROUS MEMBRANE
- RECOVERS PARTICLES FOR REUSE BY BACKFLUSHING OF MEMBRANE
- OPERATES CLOSE TO AMBIENT TEMPERATURE (35 °C)
SCHEMATIC OF PHOTOCATALYTIC
BATCH REACTOR POST-TREATMENT SYSTEM

POST-TREATMENT SYSTEM PROCESSES
12 LITERS PURIFIED WATER PER HOUR
PHOTOCTALYTIC POST-TREATMENT OF RECLAIMED WATER

STATUS

- PHASE II SBIR WITH PHOTOCATALYTICS, INC. BOULDER, CO INITIATED IN APRIL 1987

- BREADBOARD SYSTEM IN FABRICATION AND SCHEDULED FOR COMPLETION FEBRUARY

FY 90 ACTIVITY

- TEST BREADBOARD SYSTEM WITH RECLAIMED WASTE WATERS TO DEMONSTRATE PERFORMANCE FOR
 - REMOVAL OF ORGANIC IMPURITIES TO < 500 PPB
 - DISINFECTION FROM 10 EXP 7 CFU TO O MICROORGANISMS

- CONTRACT COMPLETION IS APRIL 1990

FUTURE PLANS

- CONTINUE TECHNOLOGY DEVELOPMENT