• Requirements

Resupply (PMC)

ECLSS Fluids \(\sim 3200 \) lbs \(N_2 \) per year

LAB Fluids \(\sim 3500 \) lbs \(O_2 \) per year

Contingency

ECLSS Fluids

\(\sim 700 \) lbs \(N_2 \) on station

\(\sim 900 \) lbs \(O_2 \) on station
Space Station Fluid Resupply

Space Station Freedom

- Design Considerations:

 Resupply

 Resupply Frequency ~ 180 days
 Transportation State High pressure gas
 Contingency Supercritical fluid
 Supply Frequency On station @ PMC; as required thereafter
 Transportation State High pressure gas (3000 psi)
 Supercritical fluid
Space Station Fluid Resupply

Space Station Freedom

Pressurized Logistics Module (PLM)
(3 required)
- Cargo:
- Crew Support:
 - Food
 - Personnel supplies
 - Housekeeping supplies
- Station Support:
 - Maintenance supplies
 - Spares
 - EVA support
- Customer Support:
 - USL Equipment & supplies
 - JEM Equipment & supplies
 - Columbus equipment & supplies
- GSE Roller Floor

- Unpressurized Logistics Carrier (ULC) (4 required)
- Carriers
 - Station spares
 - Platform and satellite supplies (refill and ORU's)
 - Attached payloads
 - Inflatable launch integrable fluid/propellant subcarriers
 - Direct mounting for a variety of non-conventional cargo configurations

- Subcarriers
 - Provides multiple combinations of subcarriers with the ULC
 - Efficient manifesting
 - Subcarriers are attached by automatic attachment and umbilical mechanisms

- High Pressure Gas subcarrier (HPSC) (6 required)
- Oxygen subcarrier (OSC) (3 required)
- Fluids subcarrier (FSC) (3 required)
- Dry Cargo subcarrier (DCSC) (8 required)
Space Station Fluid Resupply

Space Station Freedom

- Unpressurized Logistics Carrier

Outfitting
- Cargo Accommodations
 - Subcarrier Attach Mechanisms
 - Nor: Containerized Cargo Attachments
- Subsystems
 - EPS
 - DMS
 - TSS
 - MS
 - Passive Thermal Control System (PTCS)
- Mechanisms
 - Automated Umbilical Mechanism
 - Subcarrier Attachment Mechanisms

Characteristics
- Empty Weight: 2,251 lbs
- Cargo Accommodation capability
 - Combinations of Subcarriers (FSC, OSC, HPSC, DCSC)
 - Seat Track on Member Faces for Oversized Cargo
Space Station Fluid Resupply

Space Station Freedom

- Fluids Subcarrier (FSC)

Outfitting
- Cargo accommodations
 - 3 ECLSS Supercritical \(N_2 \) (SCN\(_2\)) tanks
 - 1 Lab SCN\(_2\) tank

- Subsystems
 - MS
 - FPS
 - DMS
 - TSS
 - Passive Thermal Control System (PTCS)
 - Tanks and Plumbing
 - Mechanisms
 - Automated Umbilical Mechanism
 - UL-C Attachment Mechanism
 - ITA Attachment Mechanism

Characteristics
- Total Dry Weight - 1940 lbs
- Cargo Accommodations Capability
 - ECLSS SCN\(_2\) - 1434 lbs
 - Lab SCN\(_2\) - 478 lbs
Space Station Fluid Resupply

- Oxygen Subcarrier (OSC)

Outfitting
- Cargo accommodations
- 3 ECLSS Supercritical O₂ (SCO₂) tanks

- Subsystems
 - MS
 - EPS
 - DMS
 - TSS
 - Passive Thermal Control System (PTCS)
 - Tanks and Plumbing
 - Mechanisms
 - Automated Umbilical Mechanism
 - ULC Attachment Mechanism
 - ITA Attachment Mechanism

Characteristics
- Total Dry Weight - 1459 lbs
- Cargo Accommodations Capability
 - ECLSS SCO₂ - 2.75 lbs
Space Station Fluid Resupply

- High Pressure Subcarrier (HPSC)

Outfitting
- Cargo accommodations
 - 3 High Pressure N₂ (HPN₂) tanks
 - 2 HP O₂ tanks

- Subsystems
 - MS
 - EPS
 - DMS
 - TSS
 - Passive Thermal Control System (PTCS)
 - Mechanisms
 - Automated Umbilical Mechanism
 - ULC Attachment Mechanism
 - ITA Attachment Mechanism

Characteristics
- Total Dry Weight - 3226 lbs
- Cargo Accommodations Capability
 - HPN₂ - 588 lbs
 - HPO₂ - 506 lbs
Space Station Fluid Resupply

- Transportation and Transfer Plan – Resupply
 - Prelaunch and post launch operations phases
 - Load fluids into supercritical tanks on the subcarriers
 - Transport fluids to the SS in a liquid state
 - On station operations phase
 - Change state of fluid from liquid to supercritical by turning on tank heaters
 - Transfer fluids from subcarriers to users
 - Complete unloading of subcarriers
 - Prelanding operations phase
 - Return subcarriers with residual gas
Space Station Fluid Resupply

Space Station Freedom

Operations Phase Definitions

- All LE's go through complete operations cycles consisting of 6 primary phases
- Hab and US Lab go through operations cycles 1, 2 and 3 **TOTAL CYCLE**

Phase Definitions

1. **Pre Launch Phase**
 Begins at start of preparations and processing for launch and ends at launch.

2. **Post Launch Phase**
 Begins at launch and ends at completion of element installation on SS.

3. **On Station Operations Phase**
 Begins at completion of element's installation on SS and ends at start of transfer of returning LE from SS to the orbiter.

4. **Prelanding Phase**
 Begins at start of transfer of returning LE from SS to the orbiter and ends at landing.

5. **Post Landing Phase**
 Begins at landing and ends at completion of LE offload operations.

6. **LE Turnaround**
 Begins at completion of LE unloading operations and ends at start of LE prelaunch operations.
Space Station Fluid Resupply

- Operations Flow - FSC and OSC

Fluids State (N₂ and O₂):
- Loaded @ ~ 20 psia and ~ 320°F (N₂) and TBD°F (O₂)
- Tank Pressure @ Launch ~ 31.5 psia

Timeline Hrs/Days:
- -568 Hrs (1)
- -560 Hrs (1)
- -544 Hrs (1)
- -400 Hrs (1)
- -72 Hrs (1)
- 0
- +1.5 Hrs (2)
- +31 Hrs (2)
- +45 Hrs (2)

Operations:
- Start Loading
- Complete Loading Fluids
- Emplace Subcarriers into ULC
- Emplace ULC into Orbiter
- Close PLB Doors
- Launch Orbiter
- Open PLB Doors
- Dock Orbiter on-Station
- Connect SSRMS to ULC

Note: While in the liquid state, pressure and temperature will slowly rise in the tanks.

Note: 4 day contingency allowance included in this timeline.

(1) Preliminary timeline estimate
(2) Preliminary timeline estimate from NSTS Integration and Operations Office
Space Station Fluid Resupply

- Operations Flow - FSC and OSC (continued)

Fluids States
(N_2 and O_2)

Timeline Hrs/Days

Operations

(1) Preliminary timeline estimate

(2) Preliminary timeline estimate NSTS Integration and Operations Office
Space Station Fluid Resupply

Operations Flow - FSC and OSC (continued)

- Fluids State
 \(\text{N}_2\) and \(\text{O}_2\)

- Residual Gas

- Returned @ 120 psia and \(-130^\circ\text{F} (\text{N}_2\) and \(\text{O}_2)\)

Timeline

- Hrs/Days

Operations
- + TBD
- + TBD
- + TBD
- + 185.7 Days
- + 186.9 Days
- + 187 Days

- Emplace first subcarrier set into ULC
- Start Transfer of ULC from ITA to Orbiter
- Emplace ULC into Orbiter
- Unlock Orbiter from Station
- Close PLB doors
- Land

(1) Preliminary timeline estimate
(2) Preliminary timeline estimate from NSTS Integration and Operations Office
Space Station Fluid Resupply

- Transportation and Transfer Plan – Contingency
 - Prelaunch and post launch operations phases
 - Load fluids into high pressure tanks on the HPSC
 - Transport fluids to the SS in a gaseous state
 - On station operations phase
 - Transfer fluids as required
 - Replace HPSC as required
Space Station Fluid Resupply

- Summary
 - SSF is resupplied with supercritical O₂ and N₂ for the ECLSS and USL on a 180 day resupply cycle
 - Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required
 - ECLSS contingency fluids (O₂ and N₂) are supplied and stored on station in a gaseous state
 - Efficiency and flexibility are major design considerations
 - Subcarrier approach allows multiple manifest combinations
 - Growth is achieved by adding modular subcarriers