Sensor and Actuator Technology Development

Eric Anderson and Nesbitt W. Hagood

January 23, 1992
Outline

- Sensor and Actuator Placement for Robustness
- Self-Sensing Actuators
- Nonlinear Actuation Models
Sensor/Actuator Selection

- Sensor and actuator selection/placement sets an \(a \text{ priori} \) limit on closed loop performance.

- Correct placement can improve nominal performance for any specific control design technique.

- Placement problem has been investigated previously
 - open loop vs. closed loop algorithms
 - optimal vs. heuristic algorithms

- Degrees of freedom for sensor and actuator suite design:
 - Number
 - Type
 - Location
 - subject to design constraints

- Placement is typically done using initial inaccurate model.
Sensor/Actuator Selection for Robustness

- Concept: Select sensors and actuators to minimize impact of model inaccuracies on achievable performance and stability.

- Motivation:
 - Placement and resulting closed-loop performance/stability are a strong function of model.
 - Only have uncertain model on which to base placement decisions.
 - Implies large uncertainties in achievable closed-loop performance or robustness.

- Method: Incorporate model uncertainty information into open or closed loop placement algorithms.
Achievable Performance Robustness

- Control design must use actuator and sensors it is given.
 - Example: Loss of controllability when actuator is unwittingly placed at a node.
- Can enable control task by introducing performance robustness through s/a set.
Representing the Uncertain System

- All system matrices affected by model uncertainty
- Focus on finite element errors, not ID errors
- Determine eigenvector uncertainty to expected errors:
 - Stiffness of components
 - Boundary conditions
 - Mass distribution
- Two approaches:
 - *Range* of possible plants/systems over all uncertain parameters
 - *Sensitivity* of nominal plant/system to uncertain parameters
Figures of Merit

- Open loop analysis of sensor/actuator options used to reduce number of choices to manageable number

- Use controllability and observability gramians

\[W_c(t_0, t_1) = \int_{t_0}^{t_1} \phi(t_1, \tau) B(\tau) \phi^T(t_1, \tau) d\tau \]

- Calculate with Lyapunov equation for each value of uncertainty

\[0 = A_i W_{c_i} + W_{c_i} A_i^T + B_i \sum_{w} B_i^T ; \]

- Closed loop cost

\[J_{cl} = tr\{Q C_i^T C_i\} \]

where

\[0 = A_i Q_i + Q_i A_i^T + B_i B_i^T \]
Design Algorithms

- Open loop
 - Compute expected value of gramians over entire uncertainty set
 - Reduce number of s/a options by straight ranking

- Closed loop
 - Use existing techniques for optimization
 - Cost is expected value over uncertainty set

- Trade off degree of open loop reduction vs. size of set for closed loop optimization
Current Efforts

- Analytical sample problem: cantilevered beam
 - 6 sensors, 6 actuators
 - LQG control (SISO and TITO)

- Interferometer testbed
 - Analysis based on finite element model
 - Uncertainty description provided from system ID data
 - Main focus is active strut placement problem
 - Experimental demonstration of improved closed loop performance based on sensor/actuator location and type
Piezoelectric Actuation and Sensing

- Structure with piezoelectric actuators/sensors.

- Governing Equations of Motion:
 \[
 (M_s + M_p)\ddot{\mathbf{r}} + (K_s + K_p)\mathbf{r} - \Theta \mathbf{v} = B_f \mathbf{f} \text{ Actuator Eq.}
 \]
 \[
 \Theta^T \mathbf{r} + C_p \mathbf{v} = B_q \mathbf{q} \text{ Sensor Eq.}
 \]
Simultaneous Sensing and Actuation

- **Concept:** Use the same piece of piezoelectric simultaneously as both a structural sensor and an actuator.

- **Motivation:**
 - Eliminates need for separate sensor. Reduced signal conditioning.
 - Perfectly collocated dual sensor useful for structural control.

- **Modelling:** If the applied current and piezoelectric electrode voltage is known, one can reconstruct the mechanical strain or strain rate.

\[\Theta^T r = q - C_p \nu \quad \Theta^T \dot{r} = i - C_p \dot{\nu} \]

- The \(\Theta^T r \) term is proportional to averaged strain state as for the charge based sensor.

\[\Theta^T r = \int_{V_p} \left[e_{31} S_1 + e_{31} S_2 + e_{33} S_3 \right] dv \]

- More insight can be gained on the physical significance of the terms by using a piezoelectric circuit analogy.
Physical Interpretation

- The piezoelectric transformer analogy is useful for determining the physical significance of the terms. The piezoelectric element is represented as a transformer converting mechanical energy to electrical and vice versa.

- The sensor equation can be interpreted physically as measuring the difference in between applied current and the capacitance current.

\[
\Theta^T \dot{r} = i - C_p \dot{v} \\
\text{with} \quad i \rightarrow i_{\text{mech}} \quad i_{\text{tot}} \quad i_{\text{elec}}
\]
Simple Circuit Implementation

- **Strain Rate Circuit**

```
+----------------+    +----------------+
  |                |    |                |
  | Piezoceramic  |    | Reference       |
  | Wafer         |    | Capacitor      |
  +----------------+    +----------------+
    |                |    |                |
    | Applied Voltage|    | Current         |
    +----------------+    +----------------+
                      |    |                |
                      +----------------+    +----------------+
                          |    |                |
                          v    |                |
                              +----------------+
                                |                |
                                v                |
                              +----------------+
```

B) Strain-Rate Sensing Configuration

- Also possible to implement simple strain sensing circuit by measuring applied charge rather than current.
System for Experimental Demonstration

- Cantilevered beam with PZT wafers on the surface.

![Diagram of a cantilevered beam with PZT actuators and an aluminum beam.](attachment:image.png)

TOP VIEW

SIDE VIEW
Open Loop Results

- Model compares well with measurement
- Zero location matching hindered by PZT hysteresis
Closed Loop Results

- Tip displacement/force input with "sensuato" loop closed

 - LQG

 - Positive position feedback (PPF)
Applications

• Retrofit of sensing capability on existing actuator systems
 - Information on local deformation
 - Information for collocated control (addition of damping)
• Linearization of actuator response
• Health monitoring and system identification
• Active structural control (high gain collocated loops)
Nonlinear Actuation Models

• **Concept:** Develop models of actuated structures capable of handling actuation material nonlinearities

• **Motivation:**
 - Piezoelectric material properties are nonlinear at high strains.
 - Higher actuation performance available from inherently nonlinear materials.
 - Electrostrictive materials
 - New high-strain, shape-memory ceramics.

• **Approach:**
 - Microscopic material models for capturing relevant physics.
 - Macroscopic phenomenological models for nonlinear structural response using energy methods.
Conclusions

• Ongoing work in three areas:
 - Robust Actuator and Sensor Placement
 – Self-Sensing Actuation
 - Nonlinear Actuation Modeling

• Robust actuator and sensor placement addresses a clear need but faces the difficulty of good error model development.

• Self-sensing actuation has been demonstrated and modeled, works well in active control systems for simple structures, and is being applied to built up structures.

• New research on nonlinear actuation models holds promise for high fidelity modeling of high strain actuation materials.