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Abstract

In this report, we have designed an Essentially Non Oscillatory reconstruction for functions
defined on finite-element type meshes. Two related problems are studied : the interpola-
tion of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction
of a function from its averages in the control volumes surrounding the nodes of the mesh.
Concerning the first problem, we have studied the behaviour of the highest coefficients of
two polynomial interpolations of a function that may admit discontinuities of locally reg-
ular curves : the Lagrange interpolation and an approximation such that the mean of the
polynomial on any control volume is equal to that of the function to be approximated. This
enables us to choose the best stencil for the approximation. The choice of the smallest pos-
sible number of stencils is addressed. Concerning the reconstruction problem, two methods
have been studied : a first one base on an adaptation of the so-called reconstruction via
deconvolution method to irregular meshes and a second one that lies on the approximation
on the mean as defined above. The first method is conservative up to a quadrature formula
and the second one is exactly conservative. The two methods have the expected order of
accuracy, but the second one is much less expensive than the first one.

Some numerical examples are given which demonstrate the efficiency of the reconstruction



Rksum!

Dans ce rapport, nous definissons un algorithme de reconstruction essentiellement non
oscillant pour des fonctions definies sur des maillages de type elements finis. Deux problemes
sont etudies : celui de 1'interpolation sur un maillage arbitraire d'une fonction (ou Tune de ses
derivees) pouvant admettre des discontinuites et celui de la reconstruction de cette fonction
a partir de la donnee de ses valeurs moyennes dans des cellules de controle autour des n
noeudsdu maillage.

Deux type d'approximations polynomiales sont etudiees : l'interpolation par polynomes
de Lagrange et une approximation ou l'on impose les valeurs moyennes dans des cellules de
controle.

Dans les deux cas, on a etudie le comportement des coefficients du polynome d'appro.
ximation, en particulier dans le cas ou la fonction r. ^:+ A;.t donnee admet des discontinuites
situees sur des courbes regulieres par morceaux.

Ces resultats, qui generalisent des resultats classiques, permettent d'obtenir un critire
de detection des zones de r6gulaxit6 dune fonction ; dont on a deduit la construction d'une
interpolation essentiellement non oscillante.

Le probleme de la reconstruction non oscillante it partir des valeurs moyennes est aussi
aborde. Deux techniques sont proposees : la premiere qui utilise une methode de deconvolu-
tion et la seconde qui utilise ('approximation polynomiale a partir des valeurs moyennes. Le
premier type de reconstruction n'est conservatif qu'k une formule de quadrature pros tandis
que la seconde 1 'est formellement. Son cout est aussi bien moindre.

Le proWme du choix dun ensemble minimal de stencils permettant Pinterpolation ou
la reconstruction est aussi traite. On presente un critere heuristique, qui, pour tous les
exemples que noun avons traites, semble suffisant.
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Notations

• R,.(X, Y) : finite dimensional vector space of two variable polynomials over R,

• N(n) = n + 1 n + 2 : dimension of R„(X, Y1,

• SW admissible stencil for solving the Lagrange problem in R..(X, YJ, see section 1.2,

• IJUJI is the euclidean norm of U,

• D...0 = eu where i + j = 1,

• Dau : n-th derivative of u.

u(=)^
• < u >c,= ICQ

area ,)
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Introduction

During the past few years, a growing interest h%s emerged for building high order accurate
schemes (i.e of order greater that 2) for compressible flows simulations. It is well known that
even for smooth initial conditions, these flows may develop discontinuities that make linear
schemes useless.

At the beginning of the 80's, the class of Total Variation Diminishing schemes appeared
and they have been successfully and widely used with many types of meshes (see for example,
111 for a review and, among many others, (21 for simulations on finite element type meshes).
Nevertheless, one of their main weaknesses is that the order of accuracy falls to first order
in regions of discontinuity and at extreme, leading to excessive numerical dissipation.

Various methods have been proposed to overcome this difficulty (adaptation of the mesh
for example) but one promising way may also be the class of the Essentially Non-Oscillatory
schemes (E.N.O. for short) introduced by Harten, Osher and others 13,4,5,6,71.

The basic idea of E.N.O schemes is to use a Lagrange type interpolation with an adapted
stencil : when a discontinuity is detected, the procedure looks for the region around this
discontinuity where the function is the smoothest. Then a reconstruction technique may be
applied which enables approximation of the function to any desired order of accuracy from
its averages in control volumes surrounding the mesh points. The approximation is done so
that it is conservative.

Some attempts have been made to extend these ideas to multidimensional flows (see for
example 191), but only for structured meshes.

In this report, we intend to study the problem of the reconstruction, up to any order
of accuracy, of a given function given either by its value at the nodes of a triangulation or
by its averages on control volumes defined around these nodes so that, in the second case,
the reconstruction is conservative. This latter problem has already been studied, for smooth
functions only, by Barth et al. 1101.

The outline of this report is as follows. In the first part, we consider two ways of approxi-
mating functions by means of polynomials : the Lagrange interpolation and a approximation
that conserves the mean on control volumes surrounding given points. In particular, we study
the problem of the localization of region of smoothness from the coefficients of the polyno-
mial. We recall the results concerning the approximation of smooth functions by Lagrange
interpolation and we show that the same results are also true for the second approximation
we consider in this paper. In the case of unsmooth functions (or more precisely the function
which regions of possible unsmoothness lies on locally C' curves), we give the asymptotic
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behaviour of the coefficients of highest degree in the approximation. These latter results
seem to be new.

Then we propose an algorithm for ENO interpolation. We try to give some indication
for selecting the smallest of possible stencils for any order of accuracy. We also propose two
algorithms for reconstructing a function from its mean values in control volume. The first
one follows from an adaptation of the so-called reconstruction via deconvolution procedure
that was originally built for regular meshes. We indicate why, in general, the conservation
property is formally lost to ensure a high order of approximation when using deconvolution
technique ; conservation up to a high order quadrature formula is guaranty. Then a secnd
algorithm, directly inspired from Bath et al. (101 and Haden et al (81 is proposed and
analysed. This latter one ensure formal conservation and, form a computational point of
view, is much more economical than the first one.

Some numerical tests are proposed indicate the performance of the various methods.
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Chapter 1

Two approximations by polynomials
in Ili,'

1.1 The polynomials in 1R2

We will denote by IR(X, YJ the vector space of the polynomials of two variables (X ane Y)
with coefficients in R. An element of IP4X, YJ may be described by its (finite) expansion in
terms of powers of X and Y :

w

P;X,Y) = F'	 F, n.,X'Yr 	(1.1)
1=1 .+) :i %J >0

The highest integer such that at least one of the coefficients of the monomials X •YJ is non
zero is called the total degra of P.

If (zn, yn) is a point of R2 , another expansion of P may be written in terms of the
monomials (X — zo)'(Y — ynY with the help of the Taylor formula. The total degree of P
does not depend on the point (zn, yn).

In the sequel, we will denote by IR„(X,Y) the (finite) vector space of the polynomials
of IRIX, YJ with total degree less or equal to n. This vector space has dimension N(n) =
n+l n+2 a basis of which is the set of monomials (X — zn)4(Y — yny of total degree

i + j less or equal to n.
Let us now describe another interesting basis of Ifl„(X, YJ. Consider (A, B, C) a triangle of

1112 and let us denote by A A , A B , Ac the barycentric coordinates of the three points (A, B, C)
defined, for any point M, by :

M=AAA+ABB+AcC
(1.2)

AA+As+Ac=1

It is easy to see that, for any pair of points, say A and B. the set (AA AB 	 is also a
basis of 1R„(X, YJ.
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1.2 The approximation problem in W
Throughout this paper, we will consider the following approximation problem : let us con-
sider the following problem ;Z) defined for regular enough real val ied functions on R=

Given N a -ad n, two integers, a family of N linear forms defined on
Cr(iR2 ) (p > n), find an element P of R..(X,YJ such that for any point i , one
has L.(P) = L s (u) for 1 < i < N.

In the sequel, two kind of linear forms are considered :

• if S (" ) = (A.), <.<,v is a family of N points in R= , the first approximation ( Lagrange
interpolation) is associated with :

L.(u)=u(A.), 1 <i<N,

• if (A.), < .< ,v is a family of N points in R2 and if (C.,1 < i < N) is a fa oily of control
volume around the nodes A., the second approximation we consider is associated with:

L,(u) =< u >c, .

In this second case, we set S("^ = (A„ C.),< .<N . Thcs zt will be also called a "stencil"
(though this is not very appropriate in this case) in order to simplify the text.

In the sequel, we will often make no distinction between i. pout element A. of 64" ) and its
coordinates in a suitable frame, (s., y.). We always assume that the control volume satisfies
the following properties :

I. C. n C, is of empty interior when i # j (generally speaking, a collection of segments or
an empty set),

2. C. is convex,

3. we assume that there is a continuous dependency of C. in term of the points of the
stencil. This guaranties in particular that the area of C, and the mean values of X'Yj
on Ci depend continuously of the points of the stencil.

Some examples of control volume are shown in section 2.
For this problem to have a solution, two conditions must be fulfilled

1. one must have N = n + 1 n + 2

8



2. the following generalized Van der Monde determinant must be non zero :

Asia$ = de' ( L,( X' Y')) i + j < n

I l < 1<N

LIM 14 1( X ) Li(Y) ... L,(X") Lt(X*-'Y) ...L3(Y")	
(1.3)

L( 1) LN(X) L H (Y) ... L(X*) LN (X*''Y) . LN(YO;

We will say that the set SW is udmissibk if Ap-) # 0. If a set S(O is admissible, for
n + 1 n + 2any function u there exist 	 coefficients , (a. ), such that the solution of the

problem (Z) is
w

P= t 	a.,X'Y'.	 (,A)
lot %ysl •.)>0

In the seque;, the polynomial P will often be denoted as Il L (u) in the case of the Lagrange
interpelation (i.e L,(u) = u(A.)) and II M (u) in the case of the approximation in the mean
(i.e L,(u) =< u >c,).

The problem of characterizing the admissible sets fc-r the Lagrange interpo ,'ation has been
widely studied, see (11) for example and the references therein. We do not know any.aiteria
for selecting admissible stencils for the approximation in the mean.
Remarks:

1. The condition (1.3) has been -iven for the basis X'Yi of R* (X,Y). A similar and
equivalent condition could have been given for the two other bases we have mentioned.
The formula (1.4), provided that the monamials X'Y) are replaced by the elements of
the new basis, is also true.

If card SO) = 3 and if the Lagrange problem is considered, this condition is nothing
more than the one which says that the three points must not be aligned.

3. If we were in K this determinant, for the Lagrange problem, would be the classical
van der Monde determinant.

4. In the case of the Lagrange problem, the set of (n + 1 n + 21 .uplets where the con-
dition (1.3) is not fulfilled is an algebraic curve of 111 1"wi and consequently a closed
subset of measure zero in IRN( * I . In the second case, this i!! also true, at least for the
kind of control volume we consider with boundary are made of segments, the equation
of which depend linearly of the coordinates of the nodes of S").

In the iiext section, we address the question of the practical calculation of the coefficients
a. ,

9
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1.2.1 Determination of the polynomial expansion
In thia section, we use the monomials X'YJ for expanding polynomials, but any other basis
would be suitable and the results are immediately transposable.

The coefficients of the Lagrange expansion are the solution of the linear N(n) x N(n)
system :

	

Lj(u) _	 a, ^LI(X'Y)) for all 1 < 1 < N	 (1.5)

This Lagrange type interpolation problem have been considered by several authors,
among which Muhlbach 112,13.

Since condition ( 1.3) is true, the Cramer formula applied to (1.5) gives the answer, but
this solution is not computationally very efficient. Several authors have tried to generalize
the Newton formula that make the Lagrange interpolation in R efficient from a numerical
point of view, and a very general answer has been given by Muhlbach 112,13.

In these papers, he addresses the problem of the "interpolation" by a set of functions
(f,),Ej such that the property (1) is true. He calls the set (f,) a Cebysev-system if given
any function f, for any pair of subsets of 1, L and M, having the same (finite) nULAer of
elements, there exist real numbers o, such that :

U,	 JL,(f:), for all i E G.	 (1.6)
1EM

For the sake of clarity, we may assume that L = M = f 1, • • • N}. He uses the notation :

f,...ik	
f]L, .. Lk

for denoting the coefficients of fk in the development (1.6). Then, in (13], he shows that if
one has a Cebysev system (theorem 4.1 pp. 106) :

Lzf,... f.	 ..LA ,	 L,. .L,.- ^
L.	 A ... f„_,(1.7)

^_[ L2	 L, I f	 [ L,...L,	 f ]
This expression is a direct generalization of the classical Newton formula. Let us make
sevc. al comments on this formula when applied to our problem :

I. If one adopts the lexicographic ordering 1, X, Y,X 2 , X Y, YZ,• • • , X",X °-'Y, • • •,X Y"-', Y",

the previous formula (l.?) must be applied n + 1 times to go from a total degree n to
a total degree n + 1. One must also store quite a lot of terms like

If
l.. ". .A 

IfL,Lk

10



to build the divided difference table. For example, to go from degree one to degree two,
one must evaluate and store Cs approximations of gradients by mean of approximations
on triangles, combine them to obtain approximation on sets of four points (Ca sets),
five points (C,-s' sets) and six points (one set). Moreover, to go from approximation on
k points to k + 1 points, (k + 1) x (k + 1)-determinants must be evaluated.

2. From a numerical point of view, the basis X'Yi or (X — a)'(Y — by are not well suited
to calculations. This can easily be seen since for any pair (a, b),

[ L(X'Yi)] i + j < n = 
IL 1 1(z — a)' (y — by]] i + j < n

I I < I < N	 I I < I < N

If (a, b) is any point of S (" ) and if h = maz(=#,tv)ES")OZI — aj, jy, — bl), because for
both kind of linear forms we consider here, we have IL I 1(X — ar(Y — by(` < h4+-,,
Hadaniard's inequality shows that :

IOS,. ► l <_ V(n),

where rc(n) = 1 + Ei=, . p + Igp+ 2 = O(n4 ) so that one reaches very quickly
machine zero though the linear system may be well conditioned.

An alternative to this last point is to use local coordinates such as the barycentric ones. In the
E.N.O. method we will develop in a further section, for each point, the natural barycentric
coordinates are not known u priori so that the work has to be repeated at each interpolation
call. If this is included in an iterative algorithm, the cost (and the storage) seems to be much
too important at least for the cases we have considered in this report. For all these reasons,
we have preferred to use classical inversion techniques for linear systems.

1.3 A recurrence formula
In this section, we wish to show another recurrence formula that enables us to obtain the
coefficients of the expansion of total degree n from those of the expansion of total degree
less than n in only one step. This recurrence formula may probably be viewed as another
versi ,-n of that given in 113), theorem 3.1, page 400 and will be useful in section 1.4.

Let us begin with some notations. Let P1 , - . •, PN(„) be a basis of RR 1X, Y( such that
P,, • • -, PN(p), p < n, is a basis of R*1X, Y). The three basis we have considered in section
1.2 are of that kind. Let S W be an admissible stencil. We set :

1% = (Li(PI ) ... 
L`( pN(a))`T

so that the solution of the Lagrange-type problem (Z) (where the u,'s are given),

a,,L,(P,) for all i,
1<J<N(n)

11
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may be seen as the solution of the linear system

M (a,... amn)`T 
= U = (gl ... UN(,&)) T ,	 (1.8)

where the 1-th row of Jul is A. The solutions of system (1.8) are :

ct(A) — 
det(R I ... A ... RN(.))

	

det(R, ... A ... RN(„))' 	
(1.9)

where A = U denotes the l-th column.

Lemma 1.3.1 Let (A,),<,<N(q) be an admissible set in which any of its N(p),p < n, subsets
is admissible. Then, for a given p < n, let I = {: l , • • • : N(p) I and J be ordered sets such that
I U J = {1, • • - N(n)). If A = (a, j ) is a N(n) x N(n) matrix, we set

det(A)t = det(a,	 1 < i < N(p)
I	 jEI

and det(A)i = det(a, ^) N(p)+ 1 < i < N(n)
j E J

Let us also denote by ai i the coefficieni of P(p) of the Lagrange problem of degree p for nodes
in I (for degree n, we omit the subscript I).

Then for any l` < N(p), we have

aim) _ ^t.n►.a(t)=N(P) -Xt r dept

(1.10)a'r = (-1)"(t) det(RI ... Rr ... RN(p))t det(RN(r)+r ... Rt, ... RN(„))j
det R, - RN(.,)

where o(1) = 1 + p(p + 1)/2 + E,Et i. In (1.10), Re appears a first time at the 1'-th row of

det(RI ... Rr ... RN(r))t and a second time at the l—N(p)-th row of det(RN(p)+I • • • Re • • • RN(R))J.

Proof : By switching columns l and l' in (1.9), one gets :

— det(RI ... A ... Rr ... RN(.))
det(R I ... Rr ... RN(.))

Then, a direct application of the generalized Lagrange formula (see 1141,pp 19-22) to the
previous expression gives

det(RI ... j^ ... RN(p))t det(RN(n)+i ... Re ... RN(.))J^t.a,.eu)=NU)(- 1)"(t)

12
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Since any N(p) subset is admissible, one has

U) _ det(RI ... Rt ... RNU ► )t
or 

t — det(RI ...	 RN(, &'

and the results follows immediately. e

Lemma 1.3.2 With the assumptions of lemma 1.3.1, then, for p < n, if N(p) :5 l < N(n)
and F < N(p),

Proof : Apply the Lagrange formula to

det(RI ... Re ... RN(p)RN(p)+, ... Re RN(.) ) = p,

and interpret the coefficients in terms of a's, all equal to 1, and A's. The lemma 1.3.1 gives
the result •

1.4 Approximation of smooth and unsmooth function
by polynomials

The problem of interest in this section is the following : Let u be a real function defined on
an open subset 0 of RF. We assume that u is n times continuously differentiable on n except
perhaps on a subset of A consisting of a finite collection of locally C' curves. Let now T be
a mesh. For each point of T, we consider one of the two Lagrange-type interpolation of u
considered above. Is it possible to localize the regions of smoothness of u from the coefficients
of the polynomial approximation of u ? The answer is yes if additional assumptions are made
on the n►esh. These assumptions guarantee that one can solve the problem (T) for any order
from 1 to n, and may be seen as a very natural generalization of classical conditions uzed in
the finite elements theory 1151.

For functions defined on K one knows that the divided differences of u satisfy

e If u is smooth on an interval 1 containing z l , - - - z., then there exists f E 1 such that

	

(_1,=2,...,z„ JU1=	 ►n.

• if u(k) has a jump [u(t) ] on 1, one has

	

(k)	 k-.

13



In this section, we intend to generalize these relations, and in particular, the second one
since this problem seems (surprisingly) not to have been studied yet. The proof appears to
be rather technical. It is divided into two parts. In the first part, we study the case of a
stencil S("^ of N(n) points where u admits two values, 0 and 1. We give the asymptotic
behaviour of the highest coefficient of the polynomial of degree n that approximates u when
it is exactly of total degree n. Then, we define a condition on the stencils that appears to
be a generalization of the one that says that triangles must not have too small angles to
ensure a uniform error bound for classical finite elements ( 15). Then, using Lemmas 1.3.1
and 1 .3.2, we obtain our result. Let us begin with the case of a stencil in which convex hull
u is smooth. We first recall the results or Ciarlet and Raviart for Lagrange interpolation and
we show that their proof is also true for the second kind of approximation, so that a high
order of approximation is ensured.

1.4.1 Case of a "smooth" stencil

This problem, for Lagrange and Hermite interpolation, has been studied by for example
Ciarlet and Raviart in (161. As we show it in the paragraph 1.4.1, their error study of the
Lagrange interpolation can easily be extended to the second problem we consider in this
paper. In the following theorem, K denotes the convex hull of the points of the stencil S(O
in the case of the lagrange interpolation and the convex hull of the reunion of the control
volumes C, for the approximation in the mean.

Theorem 1.4.1 Let SW be an admissible (for degree n) stencil of 1R2 , and let h and p be
respectively the diameter of K and the suprenum of the diameters of the spheres contained
in K. Let u be a function that admits everywhere in K a n + 1 th derivative D"+lu with

M"+1 = sup(( ( D"+1u(z)(( ; i E K) < +oo.

If lI denotes either II I or flu, the projectors on the space of polynomials of degme less than
n, we have for any integer m With 0 < m < n,

h"+1

supJJJD'"u(x) — D'"II(u) (x)JJ;z E K) < CM"+1 Pm +

for some constants
C = C(n, m, S(")).

Moreover, if S (" )' is obtained from S(") by an affine transformation, then C(n, m, S(0))
C(n, m, S(")').

From this inequality, one sees that the "flatter" K is, the poorer the estimation is. A
direct application of this theorem gives a generalization of our first statement.
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Proof of the error estimate for approximations in the mean

The proof of this results is directly inspired form Ciarlet k Raviart without almost any
change. In all what follows, K denotes the convex hull of Ul<,< N(„ ) C,.

Lemma 1.4.2 Let n > 1 be an integer number, let us assume that S(") _ (a:,C:)1<:<N(N)
is admissible and let u E Cr with p > n. Then, for any z E K and for any integer in,
0<m<n, one have:

D'nn(u) = D'u + I F [D'"+1u(V•(z))(a: - z)l+11 D-p,	 (1.11)
1<:<N(s) l	 1

where the p, 's are the polynomials defined by

i
the a. 's are some point of C, and the Pi 's are

v,(z) = B,z + ( 1 — 9,)a,

for 0<0,<1

Proof : The proof follows the one given by Ciarlet and Raviart in (161.
From the definition of the p, 's, we have:

II AI (u) _	 < u >C, p;

Since C, is connex and u continuous on C,, there exist some a, such that < u >c; = u(a,)
and consequently:

N(n)	 N(w)

	

11m(u) _ E u(a:)p:, D'"nm(u) _	 u(a,)Dp:

Let z E K. One apply the Taylor formula to order n :

u(a.) = it(z) + Du(z).(a, — z) + ... n^ D*u(z).(a, — 
z)" + (n ♦ 

1)1 Dn+lu(
Vi(Z))•(a: — z)w+1

where v, satisfies the conditions of lemma 1 .4.2. From this, one obtain :

II
NrraD,nM( u) _	 1 

N^ 
{Dlu(z)•(a' — z) l } Dr`p'+ n ♦ 1 	

f Dn+1u( v^(=)) (a' — 
z )w+ll D-ps

1=0 ^ '=1	 (	 )I '=1	 1	 1

(1.12)

15



As in 116), let us show now that

	

N(w)	 0	 for 0< 1< m— 1

{D^u(z).(a, — r)^} DMP, = D'u(z)	 for l = m	 (1.13)
	l! ^_^	 0	 for m+I < I < n

One first show that

N(n)

{D'u(z).(a; — z)'} Dp, =0 for 1 E (0,1,---,m— I).
=1

For m = 0, one notice that 1 = E a(*) p, (because nw let the polynomials of total degree
less than n > 0 invariant), so that for any constant An,

N(n)
0 = E An D-p.,

6_l

and, in particular, for the constant function An = u(z). This shows (1.13) for I = 0.
The proof of (1.13) for 1 _< m — 1 follows by induction : assume (1.13) for l = 0, 1, • - - , In

with In < m — 2. If Ay, is a constant In-multilinear symetric form on R 2 , one can associate
to it a polynomial P such that D''P = Ay, (P = nA4 .z''). From (1.12), and from the
induction assumption, one has :

N(w)

0= , JAw,.(a. — z)'^} D-p„ for allz E R2
._i

If one sets Al. = Dbu(z), one gets (1.13) for l = In and the result is true for all 1, 0 < 1 _<
M-1.

If l = m, if A. is a constant m-multilinear symetric form on Rs , since that flu let
invariant the polynomials of degree less than n, the formula ( 1.12) combined with what we
have just shown indicate that :

N(n)

A.,,= 1: {A..(a. — z)'6}D-p„ for all zER2
ml

In particular for A. = D-u(z) and then (1.13) is true for l = m.
The proof for m 1 1 < n is similar and follows by induction. •

From that proof, one can see that the key point is the invariance of polynomials by flw,
the fact that _(" ) p, = 1 and the existence of the a,'s. Only that latter point is particular
to the projection IIw we have chosen here.

The rest of the proof of theorem for II = nu is exactly as in (161, so that we only indicate
the lemmas that are needed.
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Lemma 1.4.3 Let S(O ) = {a, C,) be an admissible stencil. Let S(" ► = {a,, C,) be an equiv-
alent stencil, i.e then exist a matrix B and a point zo such that :

a,=M4+=o

C, = BC, + zo

Then S(" ► is admissible.

Lemma 1.4.4 If h is the diameter of K and p is the diameter of the circles contained in
K, then, if S(n) and S4"► are two equivalent stencils,

II BII <_ p

IIB-l ll < h
The combination of lenlnlas 1.4.3 and 1 .4.4 combined with lemma 1.4.2 gives the theorem

1.4.1.

1.4.2 Case of an "unsmooth" stencil

Study of a simplified problem

Let us consider S (" ) an admissible stencil of cardinality n + 11(n + 2 and So, St two non-
empty subsets of S(" ) having empty intersection, the union of which is S (" ) . Let us consider
a polynomial P of total degree n such that for all points of So, P has value 0 and for those
of Sl , P has value 1. We define, for c > 0, the set P.' of possible stencils for which the total
degree of P is exactly n :

Property 1.4.5 The stencil S(" ) belongs to Ta if and only if, for any vector U which com-
ponents are either 0 or 1 such that both values are represented,

N(a)	

Idet	 R"	 RN("-3)	
RN(s)	 1.14

^	 ^I1^11	 II RN(a_ 3 ► II	 IIRN(a,ll^ I > E	 (	 )

where jt=U

In the definition of property 1.4.5, we have adopted the lexicographic ordering
Remarks :

• There are only 2 N(") — 2 such vectors U, so that the number of conditions ( 1.14) remain
finite.
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• The condition (1.14) is homogeneous of degree 0.

• For first and second order approximation, we have the following result :

Lemma 1.4.6 If any subset of cardinality k + 1 k + 2) , k < n, of is admissible,
then the polynomial approximations are of maxim degree for n = 1, 2

Proof :

- Degree one. The stencil is made of three points A, B, C that make a triangle. P
is either of type A A or 1 - A A and is of degree exactly one.

- Degree 2. Let us assume that P is at most of degree 1. Set N = card(So) and
M = Si . We have N + M = N(2) = 6. One may assume that N < M by
changing P into 1 - P. So, 2N < 6. Then, one can see that there is always,
for degree 2, at least 3 points that have the same valLie. Since these three points
are admissible for degree one and since by assumption, P is either a constant or
of degree 1, we see that it must be a constant which is absurd since it takes two
different values. •

The same argument applied to degrees n=3,4,5 shows that P must be of degree exactly
n - 1 because we always have

(n + 1) (n+ 2) > n (n + 1)
4	 -	 2

but fails for degrees greater or equal to 6 (because the previous inequality does not
hold if n > 5).

With this in hand, we get the following result, if !i; is the following vector:

R. 1 = (L I I(X — Ta)'(Y — yoYI ... LN ((X — an)'(Y — 
yo)'J)T .

Lemma 1.4.7 Let (zo, yo) be any point of the convex hull K of S(" ) . Assume that the stencil
satisfies property 1.4.5 for some e > 0. Let P be a polynomial that is 1 on S, and 0 on So.

If h = maz{(Izi - zol, jyt - yol), (zip yi) E S (" ) ), then there exist two constants Cl (n, e) > 0
and C2(n) > 0 such that the coefficients of the Taylor expansion of P around (xo, yo)

P _ E a. 1 (X - zo)'(Y - y0y,
s+ j <e

satisfy
C2(n)h " >	 Ia. r I > C,(n,e)h-".	 (1.15)
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Proof : We adopt the lexicographic ordering of monomials. The set of admissible stencils
satisfying property (1.4.5) and I h l < C is a compact subset C of IRNlw) because the determi-
nant is continuous and the values of the mean of X'Y' depend continuously of the point of
the stencil. Let us consider the real functions defined on C by :

Oi,(A,,...,AN) _	 Idet(,% ... U. s... 1" )I,
IM LS

and
Idet	 ... V) ... Ra.))

O.I(Al ... AN)) 	
det(R, ... RN)	 ,

in which the vector U,, stands at the "ij"-th column and has the value

T

and a:so V. , be ^<w P(A,,)U,, where the "1" is at the L-th position (we refer to the
lexicographic order). Let us note that P(A,j ) is zero or one, and its value depends only on
ij and not S(").

It is clear that Ojj is the sbsolute value of the coefficient of (X — za)'(Y — ya^ in the
Taylor expansion of P. It is also clear that

06+1) Idet[Rn a ... & , ... Ro a ll < O. ,,

by the triangle inequality and because I Li I(X — za)'(Y — yn)')1 < h". So,

Ih
"

det(Raa ... ^Vi

'
 ...Ron)

I a, , 1 ? E
i+jaw	 i+j=w

The left hand side of this inequality is a continuous and homogeneous of degree zero function
on C and hence reaches its minimum. This minimum cannot be zero because that would
mean that all of the a, i s are zero which is absurd by assumption, and is also independent
of h (because of the homogeneity property).

Now let us turn to the second inequality. We have

h"	 14,1= E 10.11•

The left hand side is also a continuous function on C and is bounded above. Clearly, the
latter constant does not depend on e. •

Corollar 1.4.8 With the assumptions of lemma 1.4.7, let n and p be integers satisfying
p < n. Choose l and l' such that N(p — 1) < l' < N(p) and N(n — 1) < l < N(n). Then
there exist two constants C, and Cz such that

Ci(n)h 
n+r >	 E	 IA, r

1 > C,(n,e)h a+t',
1.ra.e(1) =r

for any subset of cardinality p.
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Proof : We apply the definition of A li t' and the same techniques as used in the previous
lemma •

Now, we may state our main result

Theorem 1.4.9 Let S(" ) be a stencil satisfying the assumption of Lemma 1.4.7, and for
some e, > 0 the property 1.4.5. Let us also assume that the following condition, for some
0 < a < I

	 111RD 	

11
Min {ta E K, (det 

	
A(' ... III wllJ (} > a, 	(1.16)

Let u a real function defined on an open subset of f2 in )JW being C' except perhaps
on a locally C' curve where its n - th order derivative may have a jump (D"u) such that the
intersection Z of that curve and the convex hull of S (*) is not empty. Then there exits a
constant C(n, en, a) > 0 such that the coefficients in the Taylor expansion towards a point of
Z aahsfy

(D" u)

•+)_•►

Remark : In the case of the Lagrange interpolation, for n=1, the condition (1.16) just says
that the smallest angle of the triangle is not too small.
Proof :

Let u be a real valued function that admits continuous derivative up to order p - 1 and a
jump in its p"" derivative across a locally C' curve. C. Let us remind the recurrence relation
of lemma 1.3.1

a(") 	! 1 a(r)

where the subscript 1 (resp. 1') corresponds to (i, j) with i + j = n (resp. i + j = p) in the
lexicographic ordering.

For the sake of simplicity, we arsume that the curve C divides K in two parts, K + and
K- , each of them being on one side of C. Let (to, yo) be a point of K, say in K+ . We
establish first the proof of the theorem for the Lagrange interpolation and show at the end
of it how to adapt it for the approximation in the mean. The Taylor formula gives, for
aES(")UK+:

u(a) _ Fr- 1
 n ^.+^=1 D.^u(za,ya)(^ - za)'(ay -1tn1'

P^•+^=r D,^u(v(tn,1l - 0))(a: - za)"(ay - ya^

where v(tn, yn) stands for (v to+(1-v)as , v ya+ ( 1-v)ay) for some v E 10, 1), D,, u(v(tn, ya)) —►
D+

For a point of S (" ) n K + , one gets

P-1 1	 1
u(a) = E - E D.,u(za, ya)(a., - zn)' ( ay - ya)! + i	 A,, (a, - xn)'(S - yaY (1.18)

!=a •+1X1	 p' •+) =A

20



UI
are _

-L NG i(( X — zn)'(Y —
.f

where An 	D-. in order to get this result, on has to consider, on the straight fine
((zn, yo), al, the function v defined by

• if z E (( zo, yn), aJ is between (zo, ye) and zc = on, yn), aJ nC, v = u,

• if z E ((zn, yo), aj is between zc and a,

V = u + —1 E ( D.)l(z — zn) ' (y — yn?'
P•.+)=r

where (D.,] represents the jump of D.,u at zc.

This function admits a continuous p`" derivative over ((zn, yn), a], so one obtains the result
1.18.

Let c > 0 be given. If the diameter of K is small enough, from these relations and the
rules of evaluation of determinants, one gets :

I
D.̀, L,t( X —zn )'(Y—yn)'1	

I

D*LT((X — zn)'(Y — ynY]
Ran ... D^^L((. >< 	 zn)'(Y — ynYl ... Rn,,

(1.19)

o( I ) L i(( X — z.,)'(Y — yo)']

°( I ) L.I(X — zn)'( Y — yn Y1
Roo ... o(1)L,.+,((X — zn)'(Y — yny) ... 4

I ) LN(n)[ ( X — zn)'( Y — yo

where the index I' stands for (i, j) in the lexicographic order, L,(u) = u(a.) and (o ( 1)(< e.
For the sake of simplicity, let us denote by µ, and v, the coefficients obtained from the

first part of the right hand side of equation 1.19 by replacing D.* by I and D.; by 0 for µ1

and vice versa for v, so that

a^^l = (D++o(1))µ,+(D-+o(l))v,.

We have to notice that the sum of µ, and v, is one, and that if all the points of I are on the
same side of C, then either µ, or v, is zero. Then, using lemma 1.3.2 and the above remarks,
we have:

al l = ( D•1]	 vrair +	 o(I)Wair +
rAMMUP
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so that

II D.J hl~"	
vlai `. 

<— h"Iall + e hl* E tIµll + Ivl1) la, rI .	 ( 1.20)

I	 !/

Because of inequality (1.16) and from Hadamard's inequality, one has :

L.((X - xa)'(Y - yn)0 I 2 +	 L.I(X - 
20

)'(Y - ynyJ2
•f$+	 .Ed_

(Note that we have identify the point of the point a and its index in the ordering.) This
latter expression is bounded above by a constant CO because C corresponds to (i, j) in the
lexicographic order, without any additional conditions on the geometry and because L. is
continuous. With the help of lemma 1.3.2, the expression 11 of (1.20) is bounded above by
• constant C,.

The term / of (1.20), with the help of lemma 1.3.1 can be seen as the lsa coefficient of
• polynomial that admits the values L.((X - in)'(Y - yny ) where a E K - . At least one of
these value is not zero because the curve C cuts K so that there are points of S (" ) on both
sides of C and (_o, yo) E K + . When summing up these equalities for i + j = n, the same
proof as in lemma 1.3.1 shows that this expression is bounded above by a constant Cz # 0.
Then, one gets our result fore small enough.

In the case of the approximation of the mean, the same kind of arguments may be applied
because :

• if C. C K + or K', these exist a. E C. such that

< u >C, = u(a-)

• if C. cuts C, then there exists a. E C. n K+ and ae E C. n K- such that :

aire(C. n K + ) aire(C, n K-)
< u >C,=	

aire(C.) 
u(a"

+
 ) +	 aire(C.) u(a; ). •

This result enables us to detect the regions of smoothness from those where a jump in
one of the derivatives occurs.
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Chapter 2

An E.N.O. Reconstruction Technique

In recent papers, Harten and several other authors 13,4,5,6,7 have tried to derive numerical
methods that are able to achieve a higher order of accuracy than classical TVU methods.
These are several versions of these techniques, but they can be generally viewed in the
following way : starting from sonic approximation of a real function u (point values or
average values in sonic control volumes), find a pointwise high order approximation u. Two
tools are then used :

a an essentially non oscillatory Lagrange interpolation of a function w,

this function w may be u itself if one starts from point values or either the primitive
function of u or its convolution product with the characteristic function of a copy of
the control volume if one can pass from one to another by a translation.

The latter deconvolution technique can only be applied, at least in its standard version, to
regular .neshes as shown in section 2.2.1.

In this section, we want to adapt both tools to the situation of unstructured meshes. At
least for the second point, the situation seems at first glance very bad : the reconstruction
via primitive function cannot be applied in the case of unstructured meshes because the only
solution would be to apply it to integrals over domains like Dw = [a,, a] x la2i 62], possibly
with a suitable transformation of the plane as in 191, which are not in general the union of
control volumes.

Now, the reconstruction via deconvolution technique can only be applied to regular
meshes (i.e. meshes where the control volumes are translated form one node to another). In
this section, we show how to adapt this technique for irregular meshes.

In what follows, T is a triangulation of 0, a domain of 111 2 , u is a function defined on
that domain. Around each node i of T, we may define a control volume C, in many different
ways. An example is (see Figure 2.2) the control volume whose boundary is the segment
joining the centroids C of the triangles (i, j, k) having i as a vertex and the middles 11,12
of the segments of those triangles (type I). Another type of control volume is obtained by
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considering each triangle as the control volume of its centroid. The triangulation we need
to describe the ENO algorithm is not T but another one built from the centroids of the
triangles of T.

2.1 Non oscillatory interpolation
Let us consider n > 0. In this section, we show how to generalize the n + 1-th order E.N.O.
interpolation technique exposed in (4,S) to unstructured meshes. As the results of chapter
1 indicate it, we must deal with meshes where the stencils we need satisfy the property of
theorems 1.4.1 and 1 .4.9. This will be the case for most meshes.

Let T be a triangulation of 0, a domain in R2, and u a function defined on that domain.
The results we have obtained in chapter 1 can be summarized as follows:

• if S (" ) is an admissible stencil such that u is smooth in its convex hull, then

jai ,I,
.+^cn

remains finite,

• if in the convex hull of S (" ) , u admits continuously differentiable derivatives only up
to the order k < n, then

E la• )I = 0([U (a) ) h"),
.+j="

where h is the diameter of S(")

Then, as suggested by 14,51, the E.N.O. algorithm we propose is to consider II,(u) defined
on C, by the following recursive algorithm

For a node i,

1. Let {T,) be the set of triangles of T having i as a vertex. Consider all the linear
interpolations where the T,'s are the stencils. Choose the one, T,.," , where the sum

Ia. , I,
is minimal. We set $('} = the nodes of T,„,".

2. Let S ("-1) be the stencils defined at the previous step. Consider all the nodes sur-
rounding S(''' ) in T and consider all the stencils obtained form S ("-' ) by adding n+ 1
of the nodes surrounding	 Choose the stencil minimizing :

I a. ,l-
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We have intentionally left the second point imprecise because it is obvious that the
number of stencils to consider is in general huge. To give an example, if one considers Figure
2.3 for which n = 2, one sees that possible stencils are the vertices of triangles T",,,, and 3 of
the ten other triangles. This can be repeated for each of the three edges of T... and leads
to a total of 3 x C, = 360 possible stencils ! So, one has to define criteria for choosing the
"good" and "bad" stencils. These criteria are essentially heuristic and a priori ones .

One that seems natural is that when one considers the control volume around each node,
the collection of the control volumes of all points of the stencil should be convex. Another
one is that the criteria leads to the smallest possible number of stencils, but the stencils must
not be confined in a particular angular area of the plane, in order not to favor any direction.

With this in mind, two possible sets of stencils for third order interpolation are (see
Figure 2.3) :

• the nodes of triangle T,.. plus, for each of its edges, the three additional nodes of
triangles T,, T2i T3. This leads to a maximum of three stencils per triangle,

• or the nodes of triangles of T„„" plus, for each of its edges, the three additional nodes
of triangles of

- Ti , T11 , T3,

- T,, T2 and T4 or Ts,

- T1 , T3 and T6 or T,,

- T,, T-j or TIO and one of the six triangles T2i T3 ,T+, Ts, T6 , Ti.

The second solution leads to a maximum number of 52 stencils once T,q,R has been found.
We have made several tests to evaluate the "performance" of each type of stencil. They are
given in section 3 and indicate that the first kind of stencil is sufficient.

These experimental results suggests the following algorithm for selecting stencils for
higher order of accuracy (of course, in this case, the problem of choosing the smallest number
of possible stencils is much more critical than for third order interpolation !).

To begin with, we notice that the six points of T„„., T,, T2 and T3 , denoted by S(3) in the
sequel, form a set isomorphic to the standard stencil for P2 interpolation (see Figure 2.4).
Now, this stencil can be embedded in the standard stencil for P3 interpolation (Figure 2.4)
where the additional points 7,8,9,10 are the new points introduced for 4`' approximation.

Let us consider a "side" of S O) , say the points 4,5,6. Since the mesh is conformal, the
segment 4-5 is the edge of two triangles in general, T, and a new one, T4. The same is
true for the segment 5-6 and a new triangle Ts is introduced. Then the sides of these new
triangles are the edge of some triangle, T6 and possibly Ts for T+. So, at most four new
triangles, T6 , T7 , Ts. T9 are introduced and the new stencils are made of S (3) and the points
of {T4 ,T6 ,Te,Ts) or T4 ,T5 ,T9 ,T,} or {T& ,Ts,T9 ,Ts) when To 0 T,. These two or three
new stencils are isomorphic to the standard P3 stencil as shown on Figure 2.4. These new
procedure may be repeated for the three sides of S(3) and so at most 12 stencils must be
considered for S(3).
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By using the similarity between S 4"^ and the standard stencil for P. interpolation, in-
duction can easily be applied to construct a small, but probably sufficient, set of stencils
S(a+I

This particular interpolation is n + 1-th order accurate; because u is a polynomial of
degree less than n, we have n I ( u) = u. This property ensures the n+ 1-th order accuracy
1161, and in particular, we have the estimations of theorem 1.4.1.

2.2 Two conservative ENO reconstruction
Two kinds of reconstructions are now considered. A first one inspired from the so-called
reconstruction technique and a second one, already considered by Harten et al. without
rigorous justification in a very recent paper 181-

2.2.1 Deconvolution technique revisited
If (x),Epv is a regular mesh of R and u is a real valued function on IR, the reconstruction by
the deconvolution technique consists of applying the previous algorithm, not to u but to

u,(y) =
	 1:. i '

 u(x + y — x,)dx,

where, as usual, the mesh size Ox = x,+1 — x, is constant and x,+1/2 = x, + Ax/2. In
particular, we see that u, does not depend on i and that u ( x,) is the average of u on
(x.- 112 , X,+112). These values are assumed to be known. Let n, (u) be the m + 1-th order
Lagrange interpolation as described in the previous section, with m _> n. Then, the idea is
to perform a Taylor expansion of u and its successive derivatives around x;, to truncate them
at order n — k, to replace the values ti, • • •, i'ti •) by Rr(tii) and its n successive derivatives,
and to replace the values of u by those of HAU), the approximation of u we are looking for :

n i(u)(x^) = E 1 a:H2 
u

11101)"(x,) = EL I  a! 
112 u ( ^ +E1 XJ
 '
	

(2.2)

n,(u)(")(x.) = 
C1.1 11 2( u)

n. 

x,

where
(x — x,)' dx

ai 

I 
Ax

The linear system is easily invertible because the matrix is upper triangular and its diagonal
consists of all "1 " s. Furthermore, it is shown in (4), for example, that the average value of
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n=(u) over (z;_,n, z;+,n) is exactly %- Last, this approximation has the desired order of
accuracy when u is smooth because polynomials are left invariant by the construction.

This latter point is the fundamental reason why one achieves the expected order of
accuracy . Polynomials are left invariant by the construction because the shape of the
control cells does not change from one point to another. If this where not the case, Le if
Ox;;, /z = x;+ , - z; were not constant, the formula (2.1) would indeed depend on the point
z. and this property would be lost. In order to show this, we simply consider u(z) = z and
a m + 1-th order interpolation that has values u; at points z;. Assuming that {z Q, x,, • • I is
the stencil selected by the E.N.O. algorithm, we have :

n l(U) = 'rb + K(x - zo) + - • - where K= 
1
2 + 

4&Z3/2 + 4&Z-1/2,4&Z-1/2

Ox, z

When the mesh is not regular, K 9E 1 in general. To obtain n2(u) = u, one must have:

NOW = u(y) + aluly),
112(U) ' (Y) = K = u^(y)-

The second equation indicates that one must have K = 1 which is, in general, not true.
To overcome this problem, we propose the following technique : apply the ENO search

algorithm not to u defined by equation 2.1 but to :

1
U(y) - area(Cs(")) JC,,.) u(x + y - xn)dz,

wherte S(" ) is any possible stencil around the node za that one has to test and Cs, ") is the
union of the control volumes of each node in S(")

Cs, ") = U C;.	 (2.4)
iES'")

Now, one has to evaluate the integral (2.3) from the average value of u. This cannot generally
be achieved for any function, but is possible for the polynomials of R,.(X, YJ, at least in
general. This will be true for the N(n) linear forms over R,.[X,YJ when

< P >C,=	 f P(x) dz, for all P E R,.(X, YJ,	 (2.5)
aC;,

are independent. For all the meshes we have considered, these linear forms where always
independent, so the problem had a solution. If this is true, then one can find coefficients
a! (y), l < l < N(n) so that

1	 x(")
u(x + y - xo) dy =	 al(y) < u >C,,	 (2.6)

when u belongs to 11.(X, Y]. If not, the equation ( 2.6) gives a n + 1-th order quadrature
formula. With all this, we get the following theorem whose proof is obvious.

(2.3)
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Theorem 2.2.1 The algorithm defined by the E.N.O. technique with (8.5), (8.0,(8.5) and
(8.6) leaves invariant the polynomials of IR„(X, Y) and hence gives a n + 1-th order ap.
proximation of smooth functions. Moreover, this approximation is conservative up to the
quadrature formula (8.6).

2.2.2 A formally conservative reconstruction

A second reconstruction technique, which is formally conservative, may be the following: as
noticed in theorems 1.4.1 and 1.4.9, the regions of smoothness of a function u may be detected
from the behaviour of the highest order coefficients of the approximation in the mean flu(u)
for all the possible stencils surrounding a given node i. The reconstruction we consider is
the defined by the polynomial having the lower highest order coefficients because, as in the
previous section, the results of chapter may be summarised as follow for the approximation
in the mean :

• if SW is an admissible stencil such that u is smooth in its convex hull, then

E lai jl,
a+j=n

remains finite,

• if in the convex hull of S ( " ) , u admits continuously differentiable derivatives only up
to the order k < n, then E la, 11 _ 0((u(")] ht-"),

'+r="

where h is the diameter of S(")

Then exactly the same algorithm as before may be applied in order to select the "smoothest"
stencil for the approximation around a given node. Since this node always belongs to any
possible stencil, then the reconstruction is conservative from the definition of 11w. For the
same reasons than in the previous paragraph, the same accuracy properties are also true,
and the constant of theorem 1.4.1 is the suprenum of all the C(n, S ( ") ') for all the stencils
considered in the reconstruction.

In practice, the set of possible stencils is defined by induction from the algorithm we
propose in paragraph 2.1.

2.3 Some remarks for the practical calculation of the
reconstruction

In section 1.2.1, we have discussed the problem of the practical determination of the coeffi.
cients of a Lagrange interpolant because the linear systems to be solved have in general small
coefficients. The same problem also arises here if one uses the mononuals (X—xo)'(Y—yoy to
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determine the a l (y) of equation 2.6. This can easily be seen by using Hadamard's inequality
as in section 1.2.1.

For a given node xo, the E.N.O. technique we propose naturally introduces one triangle
having that node as vertex, the triangle T,,,,. as in Figure 2.3 . So, as in section 1.2.1, we
will use the barycentric coordinates towards that triangle for practical computations.
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Chapter 3

Numerical examples

We have performed several tests on the second, third and fourth order E.N.O. interpolation
and E.N.O. reconstruction, but we only report the third and fourth order results since they
are a priori more challenging. In particular, we intend to check numerically that the expected
order of accuracy is in fact reached for smooth functions.

In all these examples, we have assumed that the control volumes are of "type I". The
practical calculations of the averages in these control volumes have been performed with a
5-th order quadrature formula 1151.

The tests on smooth functions are performed on

u(x, y) = cos(2r(z2 + y2)).

The mesh size h has been measured by choosing the largest segment of the triangulation.
All the error estimates have been obtained on irregular meshes as the one presented on Figure
3.5. These meshes are obtained as random perturbations of regular structured meshes. The
set of points that one obtains is triangulated by the Brower algorithm to get a Delaunay
triangulation. The main difference between such a mesh and the regular structured one is
that the number of triangles each node belongs to is different. We also have done the same
tests with regular meshes, and we have not seen any degradation of the convergence.

The locally smooth function we have chosen is obtained by a modification of that used
by Harten in 171 for example: if 0 is any angle, let f# be :

if r < —J, fi(z,y) _ — rsin(r2),
f+(z + y) = if r >_ 1, fi(x, y) = 2r — S sin (3^rr), where r = x + tan (¢)y,	 (3.1)

if Irl < 1, f♦(z, y) _ sin (2^rr)l,

and let u be:

if t < cos rry, u(z, y ) = f .12(z, y).
if z > cos rry, u(z, y) = f_ *12 (z, y) + cos (2ry).	

(3.2)
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The function defined by (3.1)-(3.2) shows discontinuities in the function itself and its first
order derivatives; some of the discontinuities are straight lines (never aligned to the mesh),
one is a curved line where the jump changes from one point to another. Last, the behaviour of
u is basically one-dimensional on the left of the curve x = cos ay/2 and really two-dimensional
on the right.

A plot of this function is given in Figure 3.6. One should obtain straight lines and smooth
discontinuity transitions contrary to what is shown in the Figure : this is an effect of the
graphic device adapted to P, interpolation.

Third order interpolation and reconstruction No visible difference can be seen be-
tween the two kind of reconstructions (directly from mean values and by deconvolution),
except on the cost of each algorithm. Because of that, most of the results are presented from
the "reconstruction on the mean" technique except if specified.

The two types of stencils (as presented in section 2.1 ) have been tested in this case. The
use of the second type of possible stencils results in a much more expensive approximation
(in general, one must test 52 stencils per triangle versus only 3 in the simplest version) and
the results have never been dramatically improved. All the results that are presented bellow
have been obtained with the 3 stencil version of the method.

We have displayed in Figure 3.7 the P' error of the interpolation for the smooth test
case. The plain curve with squares is obtained with the E.N.O. interpolation, the plain curve
with circles is obtained with the E.N.O. reconstruction. The dashed line indicates the slope
—3. One can see that the expected order of accuracy is indeed reached.

In Figures 3.9-(a) and 3.10-(a), we have displayed the node values of the E.N.O. recon-
struction for two meshes (1600 nodes and 6400 nodes). To better see the behaviour of both
approximation techniques, we also present cross-section on three lines: Y = 0.75, Y = 0 and
Y = —0.45 (Figures 3.12, 3.13 and 3.14. The approximations are obtained from the 1600
nodes mesh (see Figure 3.5) by the deconvolution technique. The latter line goes through
one of the triple points (see Figure 3.6). One can see that the various discontinuities and
the smooth regions are well captured by both techniques.

The Figure 3.11 represents the overall values of the reconstructed function by deconvo-
lution and can be compared to Figure 3.10-(a).

Fourth order interpolation and reconstruction The same tests have been performed
for the fourth order interpolation and reconstruction of the smooth function. The Figure 3.8
shows the L' error of the ENO reconstruction for random meshes. The Figures 3.9-(a) and
3.10-(b) shows an overall picture of the fourth order ENO reconstruction. A better capture
of the area surrounding the triple points is the only visible difference between third and
fourth order reconstruction.

To end this section, we must note that the algorithm for choosing the stencils may lead
to some difficulties at the bc;undaries as can be seen in Figure 3.6 on the left upper corner :
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the most left upper triangle of the mesh (Figure 3.5) does not admit any additional points
of the type we consider to make a stencil.
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Conclusion

In this report, we have developed and analyzed three methods for the reconstruction of a
function admitting discontinuities only on regular planar curves from their node values or
from their averages in control volumes that surround them. They are based on two polyno-
mial approximations of real valued functions, the Lagrange interpolation and what we have
called the approximation in the mean. In order to give a firm basis to the Essentially Non-
Oscillatory interpolation and reconstruction, we have studied the behaviour of the highest
order coefficients of these two polynomial approximations of smooth functions and unsmooth
ones for which the discontinuities lie on regular curves. We have also given an adaptation
of the so called "reconstruction via deconvolution" to irregular triangulated meshes. The
approximation in the mean leads to a very efficient ENO reconstruction that seems to be
the cheapest one. We also propose an heuristic algorithm for selecting the smallest number
of possible stencils.

These techniques have been shown to work quite well on smooth and unsmooth functions.
In particular, we have shown in these examples that the minimum number of possible stencils
was sufficient for our purpose. We have not been able to make a rigorous study of the quality
in term of convergence of these new approximation; that study is clearly needed. In a future
paper, we will give application of these new approximation for deriving new algorithm for
compressible Fluid Mechanics.

Acknowledgements : This work has been partly done under contract NAS-18605 while
the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia.
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Figure 2.1: Stencil and discontinuity curve

Figure 2.2: Control volume around i
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Figure 2.3: Some possible interpolation points. Circles : points of T,,,;. (second order in-
terpolation), black circles : points that may be added to obtain a stencil for third order
interpolation.
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Figure 2 . 4: Construction of a stencil for fourth order approximation : the black circles
represent the points to be added to a stencil for third order approximation ( circles). The
standard P3 stencil is shown.
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Figure 3.5: Typical mesh. 1600 nodes, 3042 triangles.
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Figure 3.6: Exact function. Mlin=-1.331, Max=2.650, b = 0.1.
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Figure 3.7: L'° error for f (_, y) = cos (27r( X2 + y2 )). Squares : E.N.O. interpolation only,
Circles : E.N.O. + reconstruction. Dashed line : slope -3
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(a) Third order

I

(b) Fourth order

Figure 3.9: E.N.O reconstruction "in the mean" with the 1600 nodes mesh. Min=-1.30,
Man=2.6, b = 0.1. 	 43



(a) Third order

^, y
(b) Fourth order

l;

Figure 3.10: E.N . O. reconstruction "in the mean" with the 6400 nodes mesh. Min=-1.30,
Max=2.6, 6 = 0.1.	 44



Figure 3.11: 3th order E.N.O. reconstruction with the 6400 nodes mesh from the deconvo-
lution technique. Nlin=-1.325, hiax=2.650. b = 0.8281 10 -2.

45



x

0	 —0.5	 0.0	 0.5	 +.0

x

(b) E.N.O. reconstruction.

-+.0 L

-1.

+.s

+.o

oa

0.0

-0s

&	 . `fit . ^.

(a) E.N.O. interpolation.

x

Figure 3.12: Cross-section at Y = 0 of the E.N.O interpolation (a) and the E.N.O. recon-
struction (b) for 1600 nodes the mesh. 	 46
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Figure 3.13: Cross-section at Y = 0.75 of the E.N.O interpolation (a) and the E.N.O.
reconstruction (b) for the 1600 nodes mesh. 47
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