Thermal Energy Storage Flight Experiment in Microgravity

David Namkoong, Principal Investigator
Andrew Szaniszlo, Project Manager / Scientist

NASA Lewis Research Center
Cleveland, Ohio

Presented at the NASA / DOD Flight Experiments Technical Interchange Meeting, Monterey, California

October 5-9, 1992
Heat Pipe Performance Experiment

Flight Experiments Technical Interchange Meeting

Sponsored by
Space Technology Interdependency Group
Flight Experiments Committee

October 5-9, 1992
Monterey, CA

George Fleischman
Hughes Aircraft Company
CRYOGENIC HEAT PIPE EXPERIMENT
FY 93 PLANS

• SUPPORT FLIGHT OPERATIONS
• REDUCE FLIGHT DATA AND RESOLVE ANY ANOMALIES
• PERFORM POST FLIGHT TESTS ON EXPERIMENT AND HEAT PIPES
• INCORPORATE RESULTS INTO GROOVE ANALYSIS PROGRAM AND SUBMIT TO COSMIC
• COMPLETE FINAL REPORT
CRYOGENIC HEAT PIPE EXPERIMENT
CURRENT STATUS

• DELIVERED TO KSC AND INSTALLED ON SHUTTLE
• FINAL INTERFACE VERIFICATION TEST COMPLETED
• ALL DOCUMENTATION COMPLETE
• LAUNCH DUE ON NOVEMBER 16, 1992
CRYOHP INSTRUMENTATION

<table>
<thead>
<tr>
<th>TYPE</th>
<th>QUANTITY</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum Resistance Thermometers (PRTs)</td>
<td>26</td>
<td>13 each heat pipe system</td>
</tr>
<tr>
<td>Thermistors</td>
<td>24</td>
<td>UEP, EBP, pillars, heat pipe structure, cryo-coolers, electronics</td>
</tr>
<tr>
<td>Thermistors</td>
<td>9 (HH)</td>
<td>EBP, Canister, & CECM Mounting Brackets</td>
</tr>
<tr>
<td>Pressure Transducers</td>
<td>1</td>
<td>Canister Internal Pressure</td>
</tr>
<tr>
<td>Current Monitors</td>
<td>13</td>
<td>CECM</td>
</tr>
<tr>
<td>Voltage Monitors</td>
<td>18</td>
<td>1 for bus voltage, 17 for temperature calibration</td>
</tr>
<tr>
<td>Heaters (Kapton foil)</td>
<td>11</td>
<td>4 per heat pipe, 3 survival</td>
</tr>
<tr>
<td>Thermostats</td>
<td>33</td>
<td>Tri-series circuit for each heater</td>
</tr>
</tbody>
</table>
HAC HEAT PIPE TRANSIENT COOLDOWN
TEST DATE: 04-09-92

TEMPERATURE (K)

TIME (HOURS)

\[T_e = 82 \]
\[T_t = 61 \]
HEAT PIPE - CONCEPT
SCHEMATIC -- CRYOHP OPERATION

Cryocoolers
Heat Out

Thermal Shunt

Kapton Foil Heaters
Heat In

Heat Pipe
CRYOHP OPERATIONS SCENARIO

ASCENT
- Vent to 2 PSIA
- Hitchhiker Avionics On
- Survival Heaters On
- Vent to 10^{-4} Torr or Less
- CRYOHP On
- Cooldown TRW Heat Pipe
 - Start Up
- Cooldown
 - Transport/Recovery
- Cooldown
 - Transport/Recovery/Minimum Temperature
- Cooldown Hughes Heat Pipe
 - Repeat
- Cooldown TRW Heat Pipe
 - Repeat - Total Five Cycles Each Pipe
- CRYOHP Off
- Descent

ORBIT
CRYOHP SUBSYSTEM IMPLEMENTATION

Cryogenic Coolers

Cryogenic Cooler/Heat Pipe Interface

Heat Pipes

Electronic Module

Bumper Assembly
CRYOHP DESCRIPTION (cont.)

- **Heat Pipes**
 - Two Independent Designs
 - Axially Grooved Aluminum Extrusion
 - TRW
 - Hughes

- **Cryo-Coolers**
 - Five Split Stirling Cycle Coolers
 - Hughes Model No. 7044H
 - 3.5 Watts Each @ 80K
 - Mounted to HH Canister UEP
 - Helium at 450 Psia Maximum
 - 95 W Power, 7.5 Amp Startup for 100 Millisecond Max.
CRYOHP DESCRIPTION

o Shuttle/HH Carrier Flight Experiment (Minus Avionics) Less Than 345 lbs

o HH Canister
 - Modified Upper End Plate (UEP)
 o Thermal Mass
 o Radiator
 o Flown on CPL/GAS and CPL/HH-1

o Uninsulated Top Plus Sides

o Vented Can (Valves in Lower End Plate (LEP))
 - 16 Psia Prior to Launch
 - 2 Psia Differential Pressure Relief Valves on Ascent
 - Solenoid and Butterfly Valves Provide Flight Vacuum

o HH Avionics
 - Provides Power, Signal, Command, and Data
 - 3 HH Ports Required
CRYOGENIC HEAT PIPE EXPERIMENT

OBJECTIVE

CONDUCT A SHUTTLE EXPERIMENT TO DEMONSTRATE THE RELIABLE OPERATION OF TWO OXYGEN HEAT PIPES IN MICROGRAVITY.

1. DEMONSTRATE STARTUP OF THE PIPES FROM THE SUPER-CRITICAL STATE.
2. MEASURE THE HEAT TRANSPORT CAPACITY OF THE PIPES
3. MEASURE EVAPORATOR AND CONDENSER FILM COEFFICIENTS
4. WORK SHUTTLE SAFETY ISSUES

APPROACH

✓ FLY TWO AXIALLY GROOVED OXYGEN HEAT PIPES ATTACHED TO MECHANICAL STIRLING CYCLE TACTICAL COOLERS
✓ INTEGRATE EXPERIMENT IN HITCHHIKER CANISTER
✓ FLY ON SHUTTLE AND CONTROL FROM GROUND
<table>
<thead>
<tr>
<th>CRYOGENIC HEAT PIPE EXPERIMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACKGROUND</td>
</tr>
</tbody>
</table>

- No micro-gravity data available for oxygen or nitrogen heat pipes
- Poor wicking and low transport make 0-G extrapolation difficult
- Reliable start up from super critical temperature needs to be demonstrated
- Micro-gravity information on cryo (<100 K) heat pipes identified as critical technology need by NASA and the Air Force - 1988 Thermal Fluids in Space Workshop and in STEP 88 Workshop
- Oxygen and nitrogen pipes built and evaluated
TES Flight Schedule

<table>
<thead>
<tr>
<th>Activities</th>
<th>FY 1990</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR MILESTONES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Advocate Review</td>
<td>Δ Δ Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Experiment Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Design Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Protolight Payload Design Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Ship Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CY 1990</th>
<th>91</th>
<th>92</th>
<th>93</th>
<th>94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ Δ Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Δ Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ Δ Δ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>