Space Active Modular Materials ExperimentS
(SAMMES)

Low Earth Orbital Mission aboard the Space Test Experiments Platform (STEP-3)

David E. Brinza, Ph.D.
SAMMES/STEP-3 Principal Investigator
Jet Propulsion Laboratory
Pasadena, California

Prakash Joshi and Vic DiCristina
SAMMES Prime Contractor
Physical Sciences, Inc.
Andover, Massachusetts

NASA/DoD Flight Experiments Technical Interchange Meeting
Monterey, California
October 7, 1992
SAMMES/STEP-3 Overview

- SAMMES Description
 - SAMMES/STEP-3 Team Members
 - System Architecture
 - System Control Module
 - Test Modules and Sensors

- SAMMES/STEP-3 Mission Overview
 - Mission Objectives
 - Mission Requirements
 - Orbital Operations
 - Data Analysis, Dissemination

- SAMMES Follow-on Efforts
 - SAMMES Enhancements
 - Health Monitor Applications
 - Potential Flight Opportunities
SAMMES/STEP-3 Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Manager</td>
<td>Lt. Col. Michael Obal, USAF (SDIO/TNI)</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td>David Brinza (Jet Propulsion Laboratory)</td>
</tr>
</tbody>
</table>
| Experiment Support Group | John Durrett, Leader (W.J. Schafer Associates)
 | Graham Arnold (Aerospace Corp.) |
| | Michael Robyn (Aerospace Corp.) |
| | Robert Kraus (W.J. Schafer Associates) |
| Prime Contractor | Physical Sciences, Inc. |
| Program Manager | Vic DiCristina |
| Project Engineer | Prakash Joshi |
| Major Sub-Contractors | Research Support Instruments, Inc. |
| Test Modules | Northeastern University |
| System Control Module | Fairchild Space Co. |
| Environmental Test | |
| STEP-3 Mission Manager | Lt. Janet Mayer, USAF (SMC/CUL) |
| STEP-3 Experiment Integrator | Douglas Wille (TRW) |
SAMMES System Architecture

- Autonomous Modular System
 - System Control Module
 - Distributed Test Modules
 - Internal MIL-STD-1553 Communications Bus

- Spacecraft Interface Adaptability
 - Host 1553, RS-232, RS-422 Standard Interfaces
 - TM Operations Controlled by SCM
 - Data Storage (8 Mbyte) Within SCM

- Flight Experiment Flexibility
 - Up to 8 Test Modules Controlled by SCM
 - Data Acquisition Asynchronous to Spacecraft Operations
 - On-board Data Processing Capability
 - Uplinkable Code for Operations and Data Processing

- STEP-3 Configuration
 - One System Control Module and Five Test Modules
 LEO Environment Monitor Module, Ram/Wake Calorimeter Modules,
 TQCM/Actinometer Module and Solar Photovoltaic Module
SAMMIES System Control Module

- **Electronic Design**
 - **Host Microcontroller**
 - S/C Commands, Data Transfer
 - **TM Microcontroller**
 - TM Operations, Data Acquisition
- **Program Memory**
 - 128 kByte + 16 kByte Dual Port
- **Data Memory**
 - 1 MByte EEPROM, 7 Mbyte DRAM (battery back-up)
- **Communications**
 - SCM/TM: MIL-STD-1553B
- **Power Management**
 - Auto-quiescent Mode, Conditioning, Heaters
- **Health and Status**
 - Temperatures, Microcontroller Status
- **Mechanical**
 - **Dimensions**: 7.875" x 7.500" x 6.063"
 - **Weight**: 4.71 kg (Mg), 6.08 kg (Al)
SAMMES Test Module (Typical)

- **Architecture**
 - Microcontroller
 - SCM Commands, Experiment Control, Data Transfer
 - **Analog Signal Conditioning & ADC**
 - **Sensor Temperature Measurement and Control**
 - **Sensors**
 - Temperature-Controlled Quartz Crystal Microbalances
 - Temperature-Controllable Reichard-Triolo Calorimeters
 - Temperature-Controlled Atomic Oxygen Actinometers
 - RADFET Total Radiation Dose Monitors
 - Sun Position Sensors, Photodiodes
 - Solar Photovoltaic I-V Diagnostics
 - Temperature Sensors (PRT & AD590)

- **Operational Modes**
 - Quiescent Mode: Maintain Specimen Temperatures
 - Acquisition Mode: Sensor Sampling, Temperature Control

- **Mechanical**
 - Dimensions: 6.500" x 6.000" x 5.500" (excluding radiators)
 - Weight: 2.5 - 3.2 kg
SAMMES on STEP-3

- Test Module Configuration on STEP-3 Vehicle

Solar Photovoltaic Module
LEO Environment Monitor
Ram Calorimeter Module
TQCM/Actinometer Module
Wake Calorimeter Module
System Control Module (Internal)
SAMMES/STEP-3 Mission Objectives

- Assess LEO Space Environmental Effects on SDIO Materials
 - Performance (a/e) of Thermal Control Materials (Ram/Wake)
 - Durability of Optical, Thermal Control, Protective Coatings
 - Performance of Advanced Solar Photovoltaics

- Quantify Orbital and Local Environments
 - Measure Atomic Oxygen Flux and Fluence
 - Assess Contaminant Accretion, Species ID, and Effects
 - Determine Sun Angle, Earth Albedo and Irradiance
 - Measure Total Radiation Dose

- Demonstrate Modular Experiment Concept
 - Autonomous Operations
 - Internal Power Management
 - Uplink Operational and Data Processing Code
SAMMES/STEP-3 Mission Requirements

- Orbit Parameters, Mission Duration
 - LEO Circular Orbit (~500km)
 - Ram and Wake Exposure Environments
 - 1-Year Minimum, 3-Year Goal

- Data Integrity and Validation
 - Material Pedigree
 - Contamination Control
 - Complete Environmental History (Early Mission Phase)
 - Test Material Temperature Control/Knowledge
 - Benchmark Material Performance

- SAMMES/STEP-3 System Requirements
 - System Mass: < 25 kg
 - System Power:
 - Peak (Operating): < 30 W
 - Average (Quiescent): < 20 W
 - Data (average) < 1 Mbyte/day
SAMMIES/STEP-3 Orbital Operations

- Early Operations (Insertion --> Post-Checkout)
 - Power-up SAMMIES, Early Operations Initiate Command
 - Verify SCM Status (if not operating, recycle power & initiate)
 - Activate Specimen Heaters
 - Autonomous SAMMIES Operation:
 - Sample and Store Data from Selected Sensors (up to 8 Mbyte)
 - Power: ~28 W (Power-fault tolerant)
 - Downlink up to 8 Mbyte Data at end of Check-out Phase

- Nominal Operations
 - Initiate Normal Operations Command (once per day)
 - Autonomous Operation:
 - Deactivate Calorimeter Heaters, Stabilize (2 orbits @ ~15W)
 - Acquire Sensor Data (1.1 orbits @ ~28 W)
 - Transfer Data to S/C Onboard Storage
 - Re-activate Calorimeter Heaters
 - Return to Quiescent Mode (12 orbits @ ~18W)
 - Downlink ~1Mbyte Data

- Special Operations
 - Thermo-Gravometric Analysis (QCM's), Etc. (TBD)
SAMMES Data Analysis & Dissemination

- **Time-Variant Sensor Data**
 - Full Orbital Temperature Profiles for Calorimeters
 - Frequency/Temperature Data for TQCMs
 - Resistance Measurements for Actinometers and Radiation Monitor
 - I-V and Temperature Data for Solar Photovoltaics
 - Current Measurements for Sun Sensors, Photodiodes

- **Data Conversion and Analyses**
 - Conversion to Engineering Units
 - Calibration Factors
 - Analysis Algorithms
 - Contamination Effects Assessment

- **Data Dissemination**
 - SDIO SEE Database
 - Interim and Final Reports
 - Workshops, Conferences and Publications
SAMMIES Enhancements

- Test Module Autonomy
 - Eliminate Need for System Control Module
 - Expanded TM Data and Program Memory
 - MIL-STD-1553 (Option for: RS-422, RS-232)

- Test Module Miniaturization and Hardening
 - ASIC, Hybrid Circuitry
 - Extensively Remoted Sensors
 - Radiation Hardening via Spot Shielding, Parts Selection

- Expanded Sensor Suite
 - Optical Properties Monitoring
 - Micrometeoroid and Debris Impact Sensing
 - Proton Spectrometer
SAMMIES Health Monitor Applications

- **General Spacecraft Engineering Data**
 - Temperature Monitoring
 - Accelerations, Structural Deformations
 - Power System Monitoring
 - Solar Array Diagnosis
 - Battery Charge Rates

- ** Orbital Environment Monitoring**
 - Atomic Oxygen Flux
 - Internal Radiation Dosage
 - Debris Cloud Detection

- **Payload and Mission Specific Monitoring**
 - Contamination Events and Effects
 - Optical System Diagnosis
 - Solar Exclusion Monitor (Safing)
SAMMES Potential Flights

- **SDIO TECHSAT**
 - Low Earth Orbital Mission
 - Mid-altitude Earth Orbital Mission

- **SDIO Testbed and Demonstration Vehicles**
 - Brilliant Pebbles Orbital Flight Test Vehicles
 - Brilliant Eyes Dem/Val Spacecraft

- **SDIO Operational Spacecraft**
 - Brilliant Eyes
 - Brilliant Pebbles

- **Other Satellites and Platforms**
 - Space Station Freedom and Free-Flyers
 - DoD Spacecraft
 - Civil Spacecraft (NASA, NOAA, Commercial)