RISK-BASED
SPACECRAFT FIRE SAFETY EXPERIMENTS

G. Apostolakis, I. Catton, F. Issacci,
T. Paulos, S. Jones, K. Paxton and M. Paul
Mechanical, Aerospace and Nuclear Engineering Department
University of California, Los Angeles

Flight Experiments Technical Interchange Meeting
Monterey, California, October 5-9, 1992

Sponsored by NASA Lewis Research Center
Spacecraft fire risk can never be reduced to a zero probability.

Probabilistic risk assessment is a tool to reduce risk to an acceptable level.

MAJOR STEPS:

1. Identification of "critical" locations and the assessment of the frequency of fires: overheating, spills, smoldering, ignition, etc.

2. Estimation of the fraction of fires that can lead to damage of specified components: fire growth time and the competing detection and suppression times

3. Estimation of the fraction of fires that can lead to mission damage
Page 1: Event Tree for Closed Space Fire
Page 2: Event Tree for Open Space Fire
\[\lambda_{\text{loss}} = \sum \lambda_j Q_{d/j,k} Q_{\text{loss} d/j,k} \]

- \(\lambda_{\text{loss}} \) frequency lost
- \(\lambda_j \) frequency of class j fires
- \(Q_{d/j,k} \) fraction of class j fires that lead to damage of the k\text{th} critical system
- \(Q_{\text{loss} d/j,k} \) fraction of class j fires leading to damage of the k\text{th} system that cause the loss of the spacecraft

\[Q_{d/j} = \text{Fr} \left[T_G < T_H / \text{fire} \right] \]

- \(T_G \) growth time
- \(T_H \) hazard time

\[T_H = T_f + T_d + T_s \]

- \(T_f \) time to detection
- \(T_d \) detector response time
- \(T_s \) suppression time
Source - Transport - Deposition

Terrestrial

Microgravity
Fire Safety Assessment

Target Identification
- Crew
- Station System

Modes Identification
- Heat
- Smoke
- Toxins

Event Description
- Source
- Transport
- Deposition

Damage Time

Detection & Suppression Time
Wire Overload Phenomena

- Insulation
- Conductor
- Combustion Products
- Product Flow
Damage Modes Tests Models

Source
- Heat Release: temperature measurements, $f(T)$
- Smoke Release: obscuration, TEM grids, $f(T)$
- Toxin Release: IR/Mass spec. (White Sands), sampling, $f(T)$

Transport
- Heat Transport: temperature measurements, fluid flow, temp., etc
- Smoke Transport: TEM grids/visualization, fluid flow, temp., etc
- Toxin Transport: fluid flow, temp., etc

Deposition
- Adjacent Wire Damage: pairs, bundles, heat release, qualitative
- Particulate Deposition: TEM grids, TBD
- Corrosivity: thin copper target plate, qualitative
NASA Lewis 2.2 sec Drop Tower

Sample Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Interior wiring</th>
<th>Smoke Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE - Teflon</td>
<td>Interior/Exterior</td>
<td>Acidic Production</td>
</tr>
<tr>
<td>[-CF<sub>2</sub>-CF<sub>2</sub> -]</td>
<td>Exterior/Exterior</td>
<td>Combustible Production</td>
</tr>
<tr>
<td>ETFE - Tefzel</td>
<td></td>
<td>+ Adjacent Wire Damage</td>
</tr>
<tr>
<td>[-CF<sub>2</sub>-CH<sub>2</sub>]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bundles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twisted Pairs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PTFE
Polytetrafluorethylene
Thermal Degradation Products

\[
\begin{array}{c}
\text{TFE Monomer} \\
\text{CF}_2=\text{CF}_2 \\
\text{Perfluoroisobutylene} \\
(\text{CF}_3)_2\text{C}=\text{CF}_2 \\
\text{Hexafluoropropylene} \\
\text{CF}_3\text{CF}=\text{CF}_2 \\
\text{Carbonyl Fluoride} \\
\text{CF}_2\text{O} \\
\text{Hydrofluoric Acid} \\
\text{HF} \\
\text{Carbon Dioxide} \\
\text{CO}_2 \\
\text{Carbon Dioxide} \\
\text{CO}_2 \\
\text{Carbon Tetrafluoride} \\
\text{CF}_4 \\
\end{array}
\]

Approximate Melting Temperature

\[300^\circ\text{C}\]

\[350\]

\[400\]

\[450\]

\[500\]

\[550\]

\[600\]

\[650\]

\[700\]