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ABSTRACT

A Multidomain Euler Code has been developed 10 numerically simulate flows of gases of
different nature around complex configurations with an emphasis on supersonic and
hypersonic flows. The main choices concerning computational and numerical aspects are
described. The code has been wrinien in order to allow casy implementation of new boundary
weatmants oc further extensions to more complex sews of equations. Some typical results
concemning classical shapes, supersonic and hypersonic Hermes shute and transverse hot jets
are shown. :

INTRODUCTION

The development of industrial numerical codes 10 solve the equations of fluid mechanics
represents an important investment with some uncerain prospective choices 10 be made.
These last years quite an important number of auractive methods have been proposed for the
simulation of perfect fluid flows around 3D configurations: finite volume of finilc element
methods, using structured or unstructured grids, having a centered or a non-centered numerical
scheme, eic... The selection of the most promising method seems to be an hazardous and
difficult choice, 2 matter of compromise between different considerations which are genenlly
contradictory. Moreover some important elements of choice, such as the available computer
technology are difficult 10 be estimated and it is clear that the evaluation of the algorithm
efficiency is quite different according to the kind of processing: scalar, vector or parallel.
From an industrial point of view once the desired level of accuracy is reached by the method,
the most important quality of the code is robustness which can lead w select algorithms not
very computationally efficient. An other imporant point to be considered is the extension of
the code 10 a more complex set of equations of the same family. For instance numerical codes
solving the Euler set of equations for a perfect gas will probably have to be exiended 10 more
complex suate equations oe 10 multi-species gas sooner or later. The easy implementation of
new boundary treatments by means of a modular coding, as well as ergonomic considerations
are also very important matters for future development and use of the code. The aim of this
paper is tc present a 3D Euler code developed for the numerical simulation of lows of gases
of different nature keeping in mind all the points suated before. The different gases considercd
are perfect gas, real gas at equilibrium and non-reactive two-species mixture. [n a first pan,
the choices lcading 10 the architecture of the code are described. The second pan deals with the
numerical scheme and its implementation. Lastly the third part exhibits some first results
obtained.
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1. ARCHITECTURE OF THE CODE: GENERAL CONSIDERATIONS

The architecture of the code has been dictated by constraints conceming geometrical
considerations, computational aspects and the specific nature of the {low.

The weaunent of complex geometries has led us 10 adopt & multiblock grid made of several
structured, possibly overlapping or paiched domains. This choice considerably simplifies the
mesh construction and allows the same generality as unsructured grids. Such multiblock grid
srategies are curenuly being developed at ONERA (1) and AEROSPATIALE [2] and will be
implemented with the code. Another interesting possibility has been introduced to enable
different kinds of boundary conditions on a given domain face.

The constrainis conceming the computational aspects are clearly linked 0 the available
computer technology. From this point of view, vecicr and panaliel processing have been
considered. A natural ides in mulidomain codes is 10 distnbute each domain on 8 processor,
but this could be not so interesting practically since the dornains have very different numbers
of points in usual situations and most of the processors will have 1 wait for those dealing
with the greatest domains. From this synchronization waiting-time point of view a code
based on the computation of separated planes seems more interesting. Another favorable
compuuational aspect of a plane structure is that the working arrays for the numerical scheme
are addressed by two indices and hence not very expensive in core for the present lime
computers. This can be very intcresting especially in the case of implicit algorithms. Of
course this way of limiting the arrays indexed by three indices restricis the choice of 3D
algodithms. For instance ADI in the 3 directions is no more possible. With this choice and
for meshes of a current industrial size that is 10 say about 200000 nodes it is possible w
work without any massive /O on 8 compuier with a few megawords of memory core.

BElow patern

For supersonic {lows il is very important 10 lake advanuge of the hyperbolic propernty of the
sieady Euler equations (see [3] for instance) in the main direction by using space marching
techniques whenever possible. Doing so the CPU tme required decreases by an order of
magnitude. The fact that a plane of s domain can be compuled separately allows 10 make
mulublock space-marching computations plane by plane without any additional effort.
Another consequence of this supersonic nature is that for sieady problems the nature of the
computation can be different depending on the domain. A block with a subsonic pocket such
as the blunt body part will have 1o be cakulated in an unsicady way, the downsueam pan of
the Now with a spuce-marching suralegy. Possibly some real gas effects will have 1o be
considered in some pans of the Now and not in achers. The order in which the different blocks
have 10 be computed is not obvious, and il is N0 more possible to iterate similarly in all the
domains as it can be done [or transonic computations. The computation has 10 be managed
by a command interpreter 10 allow a cenain flexibility.

It results in a code organisation built around 3 key units: a command interpreter which
assumes the user interface, a plane monitoring unit which decides of the type of the
computation, and a plane processor including the numerical scheme. The plane processot is
described thoroughly in the second pan. We now detail a litte more the two first units.

Command interpreter

The command interpreter is a language, this means that the input file is interpreted
dynamically. As 3 language it has 10 own classical control instructions such as DO loops or
[F statements.

Its main functions are the followings.
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Monitoring the core : The memory allocation is made 30 that the armays indexed by the
whole 3D dau are reduced 10 the minimum, namely for unsicady applications the three
coordinales plus the necessary conservative varisbles (in number equal to that of the
equations of the sysiem). This kind of dau is stored sequentially domain afier domain in the
core by the mean of pointers. Monitoring the core consists in auributing pointers when a
new domain is created or reorganizing it when a domain has been computed and is no more
useful. The same kind of monitoring is made for the data necessary to coupling boundary
conditions where 4 wilinear interpolating data have 10 be kepe for each node involved [4).

Defining thermodynamic states : According to the serodynamic conditions different kinds of
systems of units can be appropriste. For low supersonic computations it might be interesting
10 define the variables relatvely 10 critical conditions that is 10 s3y values delined for a sonic
flow. For hypersonic flow the use of Mollier tables leads 10 S1 units. From an ergonomic
point of view it has also seemed interesing 1 give the opponunity 10 the user 10 use 3 large
set of possible ways of defining thermodynamic states.

Defining scheme parameters and boundary conditions : For insance the Courant number
the nawre of the boundary condivon.

Initiglizing domain variables : Many options can be used. Initialization can be made by
means of formaued or unformatted files, with uniform swates previously defined. 1f necessary
it can be done on a pant of a domain only.

Exrracting dara - This includes not only resuh files to be interpreced but also intermediate
printings and creation of PHIGS metaliles containing graphical daca

Calling the plane monitor : And so doing calling the aumerical scheme.

a - » ’

As the calculation is based on the computation of separated planes, difTerent kinds of
calculations can be made according ©© the way these planes are computed

Unsteady flows : The time step is the same for every cell of every domain.

Pseudo unsteady flows : The solution is sdvanced in an unsicady way but without Laking
care of the physical meaning of the flow before convergence.

Space marching compwiation : The solution on a physical plane is advanced tll convergence
before computing the next physical plane.

Since there are basically two kinds of calculation, space marching and unsteady
computations, there are also two kinds of multidomain surategies. A plane multidomain
strategy where all the planes of different domains corresponding 10 8 physical plane are

calculated together, and 3 more classical way where the solution is advanced on a whole
domain before considering anoher one.,

2. THE NUMERICAL SCHEME

The unnieady 3D Euler equations are wriucn in conservation form:
W‘oFxOGyoHl-O
where, (or instance, [or 2 one species perfect gas

Wslip, pu. pv. pw, ¢)
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Fal{pu, p*puz. puv, puw, (e+p)u)

GeYpv, puv. p+pv2, pvw, (e+p)v)

Ha'pw. puw, pvw, pepwl, (cop)w)
with  ps(y1Xe- lﬂp.(uzwzowz))

To solve them we use an implicit upwind TVD finite volume scheme of Van Leer MUSCL
type. To oblain the maximum benefit from the stuctured organisation of the grid and the
organisation by piane of the code, the implicit part consists in an ADI like inversion in each
plane coupled with a Gaus:-Seide! like relaxation in the third direction. Basically the scheme
comprises the 3 following steps:

1) Introduction of a linear distridution for each direction in each cell 1o compute the cell
buerfaces

Uisg, jok, ke = Uijk ¢ 0 shijk + A glijc + u g5k

where UnP1(W) is a set of variables. To preserve suability near discontinuities it is necessary
w© introduce limiwers in each directon:

d g1 Vi1 jx-Vijk
g'ijk=limiter(a;412. 05.102)

Many limiters have been implemented among them the “minmod™ [5),Van Leer (6].Van Albeda (7],
and “superbee” (5] formulavons, The set of variables can de chosen among the conservative, the
primitive (p.u,v,w,p) or the characteristic one. Then the scheme fulfills a2 monodimensional TVD
property.

2) Compuuation of the explicit part
AWeyp = -AWO'(Fa.m-Fi-ln'Gjoxrszoxrz‘Hmfz-Hk.m)

where Fi 1 (resp. G, H) is an evaluation of the fluxes at an interface of the cell control
volume by means of an approximate Riemann Solver between the two states on each side of
the interface calculawed in the (irst siep.

Many approximate Riemann Solvers have been tested:

For perfect gus: The Van Leer (8], Roe (9] and Osher [ 10] formulations

For 3 mixwure of non reactive two species gas: Abyrall [11) extension of Roe fluxes and
Abgrall-Monwagné | 12] extension of Osher fluxes

For real gas with an equilibrium assumption: Vinokur-Montagné [13) exwension of Van Leer
and Roe scheme, and Abgrall-Monugné {12) exiension of Osher scheme.

3) Computation of the implicit part in each plane
ASWaaWe,,

where A can be seen as an approximation of
(1 + 8t 3F/3w)

where F is an approximation of Fy+Gy+H,

Two approximations have been tested: the linearized conscrvative implicit formulation of
Steger-Warming and the linearized non conservative formulation of Harten-Yee [14] or
Chakravarthy (18]
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For boundary conditions many treaumnents have been considered. from Viviand-Veuillot [16]
compatibility rclations to more classical flux meatments and their impliciwtions.

As it can be seen, Van Leer’s MUSCL approach presents several advantages :

The scheme is TVD and so well suited for flows with strong discontinuities.

The exiension to more complicated state equations or multispecies convective Mows is
smaightforward by implemeanting the comresponding new approximate Riemann solver and
new jacobian of the Nuxes. The modifications are made very locally in the computer code and
the overall architecwre is fully kept. Moreover all the modifications can be added 50 that we
have a unique source [or all the different kinds of flows.

For most of the variants of the scheme, no parameter have o be fixed by the user.

Programming noigs
To implement this numerical scheme the following steps are coded in the plane processor
which advances the solution on 3 plane k ¢f a domain,

1. Research of iniersecting boundary condirions.

This step determincs among the boundary conditions that have been declared those which are
concerned with this plane.

2. Treament of geometric singularities.

In those routines boundary nodes including fictitious points might be moved in order 10 treat
some geometrical singularities like axes oe some special boundary weatments like those
dealing with hall conuol volume cell (for instance wall like conditions) or symmetTy.

3. Compuiation of meirics.

From the dau of either the cell centers or the cell vertex, the attributes of the control volume
such as volume, diameter of the included sphere or outward normal vectors are computed.

4. Compuwation of ume step.

And then repeat i following steps S 1o 11 for the 3 directions i j.k.

S. Treaiment of boundary nodes.

According to the boundary treamment involved, conservative values of (rontier nodes (possibly
fictitious nodes) might have 10 be assigned belore the computation of the slopes. It concerns
nearly all the boundary conditions since the fictitious points have at least w be extrapolated.
It is crucial for maiching boundary conditions where the nodes might be interpolated into
another domain.

6. Computation of slopes.

This is the pan 1) of the numerical scheme described above,

1. Trearment of boundary imerfaces.

It concemns boundary treatments for which the values are treated on he interfaces rather than
at the nodes.

8. Computation of fluxc

This is the pun 2) of the numerical scheme.

9. Treaimeni of boundary fluzes.

Here, boundary Nuxes are possibly modified. For insuance for a wall weaunent the flux
computed by the scheme is replaced by 2 pressure flux.

10. Compuiation of implicit coefficients.

This is part 3 of the numerical scheme.

11. Treatment of boundary implicit coefficients

According 1o the boundary conditions the implicit matrices are modified.

12. Explicit result.

Obuained by summing the fluxes it constitutes the right hand side of the implicit part

13. Resolution of the implicit sysiem.

It consists of an ADI like inversion but several other options such as a Gauss-Seidel, Jacobi
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algorithms can easily be implemenied.

14, Compatibality relation trearmen: of a wall boundary.

It consists in a modification of the values at the frontiers according o compatibility
relations.

This decomposition of the algorithm coding allows the implementation of a large variety of
geatments. To be more concrete, let us take the case of the implemenuation of an explicit
wall weatment condition and a matching condition and see some of their possible
implemenutions.

For a first order like cell mirror condition the (ictitious node can be imposed symmetrically
10 the boundary node and so sip 5 can be used.

Foe a second order like cell mirror condition the outward interface value can be imposed
symegically 10 the inner interface value so that swep 7 is used.

For a classical flux reatment, first a half control volume can be defined next the wall and
then the wall Nlux is explicily computed as a pressure flux. Step 2 and 9 are used in this
case.

For a compaubility relation treatment of a slip boundary (see (16] ) only step 14 is used.

For a marching condition among many possibilities the two following oncs have been
implemented:

for an arca with a smooth flow, 8 second order matching condition can be applied. The
boundary node and its fictitious counterpan are interpolated in the coupling domain. Then
only siep 5 is used. '

for an area with strong gradients a (irst order mawching condition can be used. A constant
disuribution is invoduced in the boundary cell for the outward direction and the extemal
interface value is interpolated in the coupling domain. This can be done with steps Sand ?

3. CODE VALIDATION

In this pan some preliminary results showing some possibilitics of the code are presenied.
The first case permils the validation of the mukidomain space-marching strategy. The second
case exhibits some results obuined on a more complex shape, the Hermes shuttle, in
supersonic and hypersonic acrodynamic configurations. The Last case illustrates a mulublock
computation of a non reactive two species gas flow with an adequate refinement

Ogivecylinder-flare confi )

Experimenual resulis on this configuraticn are available in [17). In the selected test case the
Mach number is 2.96 and the incidence 4 degrees. Three space marching computations have
been made. The first one with a monodomain grid, the second one with a continuous two
domain grid. the lust one with a discontinuous two domain grid (figure 1). Figure 2 shows
the Mach numbcr contours oa the body and in the plane of symmeury. It can be scen that
results are very similar except a small wave issued from the intersection of the ogive atached
shock with the coupling frontier, Figure 3 puts into evidence the very weak infuence of the
different grids on body pressures and shows a rather good comparison of the computed results
with experimentl ones. The small differences between the curves come from the intersection
of the previous wave with the body.

Hermes shuutle configuration

Two supersonic computations have been made for 2 Mach number of 2.5 and incidences of 0
and 10 degrees. The Mach number contours on the body and in the symmcury plane are
displayed on figure 4, comparison of the lift with experimental duta has been found 1o be in
very good agrecment. Figure § shows density contours obuined on Hermes forchody for an
hypersonic flow of Mach number 12 without incidence. The Muxes uscd 1n this case are the
Van Leer-Vinokur-Montagné ones.
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Hot transverse jet cakulation

This simulation deals with the interactions occuring between a jet emerging sgaight up from
a fat plate into a flow panallel to this one (18] (see figure 6 for the initial acrodynamic
conditions). In a peactical situation the hot jet has a specific heat ratio different [rom the
outflow. This can be simulated numerically by considering non reactive mixtures of (wo
species flows. An imporant experimental festure of these Mows is the existence of a
subsonic area that could not be observed on the inital coarse grid. So in order to capture this
subsonic pocket a refined domain has been added on its supposed location (sce the frame
figure 7 and the computational grids figure 8). This domain has been initialized with the
solution obtained in t 3 coarse grid and then the calculation has been achieved only on the
refined domain (weak coupling). Figure 9 shows the concentration distribution of the hot et
in the refined area for the two meshes. One can see the szong influence of the grid refinement
on the jet shape. Figure 10 shows the Mach number distribution in e flowfield. Clearly the
subsonic pocket is nicely captured o the refined grid (minimum Mach sumber of 0.67).

CONCLUSION

A 3D multidomain Euler code has been developed, its very modular coding allows the
implemenution of various numerical variants of Van Leer MUSCL xcheme and a large
variety of boundary conditions. The extension to different state equations of multispecies
flows has been shown o be siaightforward. Its ability to handle unpatched grids eases
considerably the multiblock gridding and permits 1o make refincments wherever wanied. The
code is monitored by a command intrpreter which possesses the necessary flexibility w0
handle supersonic and hypersonic computaiions around complex shapes.
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¢) Discontinuous two-domain grid.

Computation grids of the ogive-cylinder-flare configuration.
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b) Two-domain computation
using a continuous grid.

¢) Two-domain computation
using a discontinuous grid.

Figure 2. Mach number contours on the body and in the plane of symmeury
for the ogive-cylinder-flare configuradon.
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Figure 3. Computations-experiment comparison.
Evolution of the ¢c fficient of pressure along the winward side.
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2) M. =2.5 - c=0® - Roe solver b) M =2.5 - @=10° - Van Leer solver

Figure 4. Supersonic HERMES compugtions - Mach number contours on the
body and in the plane of symmieury.

Meen12 - am0® - Von Leer-Vinokur-Montagné solver.

Figure 5. Hypersonic HERMES forebody computations - Density contours cn
the body.
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Mem2 | Yeuuid
M=2.5 ., cold et vj=ld hot jet: ',rJ-l.Z
P;j/Pieen’ (towai pressure o)

Figure 6. Acrodynamic conditions for the flat plate configuration.

Figure 7. The frame,
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a) Coarse grid case.

b) Refined grid case.

Figure 9. Concentration contours.
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a) Coarse grid case.

b) Refined grid case.

Figure 10. Mneh aumber contours.
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Numerical Simulation of perfect fluid flows around complex 3D
Configurations by a multidomain solver using the MUSCL approach

Ph. Guillen, M. Borrel
ONERA
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29 Av. de la Division Leclerc

92320, Chadllon sous Bagneux

and
M. Dommieux
Acrospatiale, DET
2,18 rue Béranger,
92320, Chadllon sous Bagneux

General considerations

This poster presents a 3D Euler code developed for the numerical simulation
of flows of gases of different natures around complex configurations with an
emphasis on supersonic and hypersonic flows. The numerical scheme of the MUSCL
type uses approximate Riemann solvers of the Van Leer, Roe, and Osher types which
have been developed for perfect gas flows and recently extended to non reactive
mixtures ot two species and real gas flows by Abgrall, Montagne and Vinokur. The
architecture of the code has been dictated by constraints concerning geometrical
considerations, computational aspects, the specific nature of the flow, and
ergonomy. :

Geometrical considerations

The treatment of complex geometries has led us to adopt 2 multiblock grid
made of several structured, possibly overlapping or patched, domains. This choice
considerably simplifies the mesh construction. Another interesting possibility has
bccrr} introduced to enable different kinds of boundary conditions on a given domain
surface. ‘

Computational aspects

The numerical scheme is based on the computation of isolated planes. This
structure presents several advantages. Working arrays for the numerical scheme are
plane addressed and hence not very expensive in core for present time computers.
This can be very interesting especially in case of implicit algorithms. For future
adaptation to parallel machines, synchronization waiting times are considerably
decreased since every plane requires about the same amount of CPU, which is not the
case for domains in practical cases.

Flow patten

For supersonic flows it is very important to take advantage of the hyperbolic
property of the steady Euler equations in the main direction by using space marching
techniques whenever possible. Doing so the CPU time decreases by an order of
magnitude(1). The fact that a plane of 2 domain can be computed separately allows to
make multiblock space marching computations physical plane by physical plane
without any additional effort. The presence of strong shocks in this kind of flow
leads us to select upwind TVD schemes which have proved to be well suited for
accurate capture of discontinuities.
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Ergonomy

For this kind of application the order in which the domains are computed is
not always straightforward. Some domains have to be converged before others, and
the type of computation in each domain can be different (pseudo unsteady, space
marching, time accurate...). Thus, in order to add flexibility and user-friendliness a
command interpreter has been implemented.

It results in a code organisation built argund 3 key units: a command
interpreter which assumes the user interface, a plane monitoring unit which decides
ocfh the type of the computation, and a plane processor including the numerical
scheme,

The numerical raethod
The unsteady 3D Euler equations are written in consgrvation law:
Wt Fx+Gy+H,=0
where, for instance, for a one specie perfect gas :

Wal(p pu.pv.pw.c)
Fal(pu,p+pu,puv,puw,(e+p)u)
Gal(pv.puv.p+pvi,ovw,(e+p)v)
H-f(pw.puw,pvw,p‘?wz,(up)w)
with p=(y-1)(e-172p(u2+v24+w2)) .

To solve them we use an implicit upwind TVD-finite-volume scheme of Van
Leer MUSCL type. To use the maximum potential of the structured organisation of
the grid and the plane organisation of the code, the implicit part is constirued by an
ADI like inversion in each plane coupled with a Gauss-Seidel like relaxation in the
third direction. Basically the scheme is constitued by the 3 following steps:

1) Introduction of a linear distribution for each direction in each cell 1o
compute the cell interfaces:

Uise jod kop =Uijx + T8iik + Aglix + meik

where U=P-1(W) is a set of variables, to preserve stability near
discontinuities it is necessary to introduce limiters in each direction, if

ois1/2= Uil j x-Uijk
ghijx=limiter(@i+1/2,9i.1/2)

Many limiters have been implemented among them the "Minmod™(2),"Van
Leer(*3),"Van Albada"(4), and “Superbee”(2). The set of variables can be chosen
among the conservative, the primitive (p,u,v,w,p) or the characteristic one. Then the
scheme assumes monodimensional TVD property.

2) Computation of the explicit part
AWexp= "8ty 1(Fis1/2-Fi-12 + Gj+172 -Gj-12+Hk+12-Hx-12)

where Fi 172 is an evaluation of the fluxes at an interface of the cell control volume.
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I his 15 made with the help of an‘approximate Riemann Solver between the (wo states

on each side of the interface calculated in the first step.

Many approximate Riemann Solvers have been tested:

-For perfect gas: The Van Leer(5), Roe(6) and Osher(7) formulations

-For a mixture of non reactive two species gas: Abgrall(8) extension of Roe
fluxes and Abgrall-Montagné(9) extension of Osher fluxes .

.For real gas with an equilibrium assumption: Vinokur-Montagné(10)
extension of Van Leer and Roe scheme, and Abgrall-Montagné(9) extension of
Osher scheme.

3) Computation of the implicit part in each plane

where A can be seen as an approximation of
1+ 8tdE fy4)
where E is an approximation of Fx+Gy+H;

Two approximations have been tested, the linearized conservative
implicitation of Steger-Warming or the linearized non conservative formulation of
Haren-Yee(11) or Chakravarthy(12). The inversion is made by a DDADI algorithm
(Diagonal Dominant Altemate Direction Implicit).

For Boundary Conditions many treatments have been considered, from
Viviand-Veuillot(13) compatibility relations to more classical fluxes treatments and
their implicitation(14).

After a description of the organization of the code, some typical test cases are
presented. First, some results obtained by the implicit multidomain 3D algorithm on
a classical test case consisting of a cylinder in a supersonic flow. Then same iD
results obtained with the explicit algorithm alone. The interaction of a transyerse jet
with 2 supersonic flow which enables to see differences obtained when using hot or
cold jets (14) (y=1.2 or y=1.4) or when using different fluxes. The spreading of the
iso-concentration lines which should be gathered on a thin surface theoretically,
shows the diffusive aspest of the schemes. A computation to demonstsate the
possibility to refine locally the mesh by the multidomnain capability is shown. Finally
some flowfields around Hermes at supersonic speeds or its forebody alone at
hypersonic regime show the ability of the methed of dealing with realistic
geometries.
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ANNEXE C
UNE NOUVELLE METHODE VARIATIONNELLE POUR LA GENERATION
DE MAILLAGES ADAPTES BI ET TRIDIMENSIONNELS
EN MECANIQUE DES FLUIDES

Par 0.P. JACQUOTTE et J. CABELLO
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A NEW VARIATIONAL METHOD FOR THE GENERATION
OF TWO- AND THREE DIMENSIONAL ADAPTED GRIDS
IN COMPUTATIONAL FLUID DYNAMICS

Ollvier-Plerre JACQUOTTE and Jean CABELLO
Aerodynamics Department
Office. National d'Etudes et de Recherches Aérospatisles (ONERA)
B.P. 72 - 92322 CHATILLON FRANCE

SUMMARY

A variational method for the optimisation and adaptation of structured grids is presented. This
method is applicable to two- or three-dimensional structured mesh as well as to surface mesbh. [t relies
upon the introduction of a proper measure of a cell deformation that is derived from basic principles of
continuum mechanics. Several properties are prescribed, which guarantee the well-posedness of the mesh
optimizstion problem and the efficiency of the solution algorithm. The ability of the method for the
mesh adaptation is also described. Examples of two- and three-dimensional grids are shown aad
illustrate the success of the presented method.

1. INTRODUCTION

In recent years, remarkable progress has been observed in Computational Fluid Mechanics; first, they
bave concerned the complexity of the physical phenomena and enable us to consider the solution of
turbulent flow equations including chemical effects. They have also concerned the improvement of
oumerical algorithms for the computation of approximate solutions so as to obtain more efliciently more
accurate solutions. Finally, s new field of research - generation and optimization of grids necessary to the
computations - is now being thoroughly investigated, and even becomes a priority for applied CFD.

Numerous strategies have been developed and more and more sophisticated algorithms have been
introduced for the optimization of mesh, e.g. (1, 2|. In particular, adaptation has recently become a very
important topic of research. This feature allows for instance a redistribution of a fixed number of nodes
30 as to concentrate the points in regions where large variations of the solution occur, and thus increase
the accurracy of the solution with a fixed number of nodes. However this localized refinement cannot be
accomplished in any agbitrary way and the quality of the mesh (regularity, non skewness) must be
carefully controlled. A method able to meet these requirements would generate the “optimal mesh” that
would enable us tc obtain the best possible solution for a ixed computational eflort {3]. In this paper, we
briefly review a method developed in an attempt to more sharply resolve these questions (see also [+-8))
and we show the latest results it has provided. The method realizes a tradeoff between the geometrical
qualizy of the mesh, the ability to handle adaptation with respect to a given criterion, and the robustness
and efficiency of the computational algorithm.

2. FORMULATION FOR A GRID GENERATOR

A measure of the grid deformation

The objective of the method is first to obtain a structured and regular mesh as orthogonal as possible
in 8 curvilinearly quadrilateral domain in R? or on a surface in R?, or in a hexahedral domain in RY; the
ability of the method to adapt a mesh is obtained in a simple way as it will be shown. In order to reach
the objective, we consider the mesh generation as the finite element discretization of a continuous problem
consisting in finding a trassformation x(€) from the reference unit cube (space £) into the domain to be
meshed (space x), and we want to exhibit a proper measure ¢ of this transformation. Four axioms and
geometrical properties can be stated [4]; they are basic principles of continuurn mechanics {7], and they

4
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allow the definition of functionals that are not defined in terms of regularity, orthogonality or cell
skewness, but rather in terms of measure of the deformation of the current cell (with respect to a
reference cell for instance); these functionals take into account the whole metric of the grid and thus
define new criteria that measure the mesh quality. Indeed, it can be shown that functiooals satisfying
these axioms must only depend on the invariants /|, [,, J; of the left Cauchy-Green tensor C of the
transformation x(§):

cma(l,1,,1;) (1)
where

Iy mtrC;I,mtrCof C; [, mdet C (2)
and

FmVx;C=F'.F 3)

Furthermore, we want the orientation of the cell to be taken into account; for this, it is necessary to
make ¢ sensitive to this orientation, that is to say to the sign of the transformation Jacobian J, and
consider functions depeading not caly on /,, but on J:

eme(l,1,,7) (4)
with
JmdtF;l,mJ (s)

Characterization of the function of the invarisnts

The next step is to ensure the well-posedness of the minimization of these functionals: in order to do
50, we impose new properties relative to the derivatives of ¢ for the so-called rigid body modes which
preserve the shape and the orientation of the cell. We impose a normalization (o vanishes for any rigid
body transformation), an equilibrium condition (the measure is stationary for any rigid body
transformation), and most importantly a convexity condition (the measure is convex around any rigid
body transformation). These conditions, and in particular the convexity, are the proper mathematical
properties that ensures the well-posedness of the minimization of o as well as the efficient convergence of
numerical algorithms towards a unique minimum. They also restrict the possible choice for the function
of the invariants [4]; among the functions satisfying the geometrical axioms and these properties, several
polynomials can be exhibited, in particular:

cr-C(!-I,-2)+C(I—2l,-1)+C(J—l) (e)
where the constants must verify:
3C,>4(C,+C,)>0 ™)

Furthermore, it is interesting to point out two classes of polynomials that lead to geometrical
interpretations.

¢ In two dimensions, one considers the function

o= C (L =I,-2)+K(J-1) withk K>C>0 (8)
This can be re-written as:
e =C(L=2J)+(K=-C)(J-1) (9)

The first term ( /, — 2 J ) can be interpreted when one considers the matrix F and its invariants; we
have:

Te 7,
F-[ ]?11":+’:+!:+,:;J"(yn'zny( (10)
Ye Vo
and therefore:
I, =2/ = (z(—y,,)é-(: +y() (11)
This term repraenu a least square formulanon of the Cauchy-Riemann relations that ensures the
conformity of the mesh:

Tg— Yy =0 ye+32,=0 (12)
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and that cap also be written:

x,=x,Xk _ (13)
Furthermore this functionr, can be used to comstruct a "quasi-conformal™ grid: up to this point, the
quantity ¢ was measuring the deformation of a cell with respeci 0 & square reference cell. This can
however be generalized and it is possible to consider a rectangular reference cell; this allows the
prescription of a ratio "b /e " for each cell; generalized Cauchy-Riemann equations then writes:

bz ~ay,=0;phby +a2,=0 (14)
where # is a conformity parameter that needs to be introduced in order to bave existence of the quasi-
conformal solution and that is computed by:

L(e/0) (23 +37)d€dn
b= . (15)
L (b/a) (2¢ + 3¢ ) d€dn

This method allows the construction of grids with arbitrary refinements on the sides such as the one
presented on Fig.1 which Arina also obtained [8] by directly solving the equations (14, 15).

J— ,,\ — nlu‘ !
—

Fig.1: Quasi-Conform Mesh with Arbitrary Refinements on the Boundaries.

The second term in (8), ( J =~ 1 )2. is interpreted as a least square formulation of a cogstraint J = 1;
indeed this penalty term is used as a volume control term that prevents the cell volume V {rom gettiog
wo far from a reference value V,,, (J = V / Vp, ), in particular this term avoids the cell to overlap.

In two dimensions but on a surface in R3, the functional are still valid, and in particular, the term
I, = 2 J represents a least square formulation of generalized Cauchy-Riemann relations on surfaces 8]

X¢=Xx,Xn (18)
where n is the unit vector normal to the surface and defining its orientation.

o In three dimensions, one considers the case where: .
C,=C,=C and Cy=3C +K (17}
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This leads to the function o,,:

0, =C(l,+1,-86J)+K(J-1) (18)
that is precisely a least-square formulation of 8 property that characterites a rigid body transformation:
indeed, a direct orthogonal matrix satisfies:

FPeCofF and det Fm 4+ 1 (19)
and therefore the least-square formulation holds since: '

CIF'-Cof Fl* + K (det F=1)l = C ([, + [, -8 J)+ K (J-1)  (20)
Similarly to the comments previously made, we may notice that the first term in (18) is a least-square
formulation of non-linear relations:

X, =x, Xx + circular permutatioas of £, 1, ¢ (21)
that may be considered as generalized Cauchy-Riemann relations in three dimensions. Investigations are
under way 1o look into this idea more carefully.

Mesh adaptation functional
The functionals previously described bave in common the volume control term:

Gy =(J=1) (22)
It was first interesting to use this term to control the volume in selected areas and thus adapt the measb
with respect to a given criterion. This is done by minimization of the functionals where the volume
control term ¢, has been replaced by an adaptation term @, such as:

Coa = (w I —1) (23)
In this expression, the weight w can be computed from a posteriori error estimates 1] or, if this kind of
data is not available, as a function of a physical quantity gradient describing the solutios; in that case, a
new computation of the solution on this adapted mesh will improve the accuracy oo high gradients aad
thus the quality of the solutioa.

Furthermore, it appears natural to take the direction of the gradient into account and to introduce
poo-isotropic refinements. Let’s copsider for simplicity an initial 2-dimensional mesh, approximately
orthogonal, where a current cell can be described by its side vectors & and b; the non-isotropic refinement
consists in measuring the deformation of the current cell in the adapted mesh with respect wo a reference
cell with sides: | .

u-'a,u“'b (24)
where # is the angle between a and the gradient vector (Fig.2.). For instagce if # vanishes, the refinement
is accomplished in the a-direction, as expected.

rw=w( |V ])

a) Current Cell in the lnitial Mesh b) Reference Cell for the Adapted Mesh
Fig. 2: Non-Isotropic Adaptation.
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3. NUMERICAL EXAMPLES

The solution algorithm and several results that this method has produced have been presented by the
authors in previous publications. These results showed in particular its robustness {ability to untangle
ramdom initializations [4]), its ability to regularize a mesh in the neighborhood of singularities (4] or w
adapt & mesh with respect to a criterion defined by several physical variables (S, 6]. Here we present two
examples that illustrate the bebavior of the method for the adaptation of 2- and 3-dimensional grids.

The first example presented shows the ability of the method to adapt » grid sround s pbysical
phenomenon. A bow shock develops in the solution of the Euler equations [or a supersonic flow past a
cylinder. A first solution can be computed on an initial mesh (Fig. 3a), sad a weight w obtained as 2
function of the gradient of the pressure; the minimization of the constructed adaptivity functional leads
t a mesh that efectively refines in the bow shock area (Fig. 3b). The solution of the equations on this
gew mesh leads to 3 much more accurate solution than the one obtained oo the initial grid [8].

IS i .
T T 1 1
[ITITELATITIES IR sass 140t R | 1 Jan

Fig.3: Adaptation around a Bow Shock

A second realistic example is proposed: it regards the three-dimensional adaptation to 3 bow-shotk
developing in froot of & re-entry vehicle in a flow at Mach 5 (9. The Fig. 4c shows the soluticc
computed on an initial 31x20x28 point mesh (Fig. 4a), the mesh is adapted with respect to this soluticn
(Fig. 4b). The quality of the solution computed oa this adapted mesh has been very much improved
(Fig. 4d): in particular both the bow-shock and the cockpit-attached shock are more precisely descnbed.

These examples, and more geperally the gratifying results that this method bave produced, bave
shown its robustness, its efficiency and its ability to improve the solution of complicated flow problems:
we think that these features are due W a sound mathematical basis which is necessary o achieve progress
in the development of grid generation techniques. :
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