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A )

NONLINEAR ANALYSIS OF COMPOSITE
AEROSPACE STRUCTURES IN SONIC FATIGUE

By
Chuh Mei*

This report summarizes the semiannual research progress, accomplishments and future plans

performed under the NASA Langley Research Center Grant No. NAG-1-1358, entitled, "Non-

linear Analysis of Composite Aerospace Structures in Sonic Fatigue," for the period December

16, 1992 to June 15, 1993. The primary research effort of this project is the development

of analytical methods for the prediction of nonlinear random response of composite aerospace

structures subjected to combined acoustic and thermal loads. The progress, accomplishments

and future plates on four sonic fatigue research topics are described. The sonic fatigue design

and passive control of random response of shape memory alloy hybrid composites presented in

section 4, which is suited especially for HSCT, is a new initiative.

1. ACOUSTICS-STRUCTURE INTERACTIONS
USING BOUNDARY/FINITE ELEMENT METHODS

Over the past ten years, there has been increasing attempts to apply the boundary element

method (BEM) to acoustic problems. BEM has some advantages and disadvantages of its use

for certain types of problems. Some disadvantages include: low degree of freedom elements, no

nonlinear analysis, and full populated matrices. Some advantages are: simple element models,

low computation time, and excellent model of infinite domains.

Knowing the advantages and disadvantages of the finite element method (FEM), the research

is focuses on coupling FEM and BEM for structural-acoustic interaction problems. Thus, we

wanted to take advantage of the good aspects of each method. It is decided to first study the

interaction between the sound pressure inside a three-dimensional duct and a vibrating plate.

The duct was considered to have all rigid walls and the governing equations of BEM and FEM

were coupled to analyze the problem. The acoustics in the duct using BEM is governed by

[A]p = jpu(B]v (1)

where p is the acoustic pressure and v is the acoustic velocity. The constants p and u are the

fluid density and forcing frequency, respectively. The governing equation of a harmonic motion

of a structure for the FEM analysis is given as

[H]q = [*]T([K] + J"[C] - w2[M])[$]$ = [$]T(/e + fp) (2)
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where [A'], [C], [Af], [H] and [$] are the system stiffness, damping, mass, modal response, and

modal matrices, respectively. The variables, q and fp, are the modal displacement vector and

the modal force vector related to the acoustic pressure inside the duct, fe is the external force

vector. Equations (1) and (2) can be coupled and expressed as

0
-[*[S\ [H]

to solve for the pressure and modal displacements anywhere on the plate or in the duct. The

matrix [5] is a diagonal matrix that represents the area of each element. Figure 1 shows the

coupled duct and plate system. A modal summation expression for the transmission loss at

the end of the duct was calculated by Bokil [1] using a classic analytical continuum solution.

Experimental results are also shown, which were obtained by Guy and Bhattacharya [2]. The

coupled BEM/FEM results are compared for various element types in Figure 2. The coupled

BEM/FEM approach gives very good approximations.

While learning to couple BEM/FEM, research has also continued in the field of analyzing

various 3-D duct systems using the boundary element method. BEM results were compared

with exact solutions for some regular type ducts and the comparisons were very good. To show

the versatility of BEM, BEM is applied to two types of irregular duct systems, shown in Figures

3 and 4. The duct system in Figure 3 was analyzed using finite elements by Munjal [3], and

3 element cases using the BEM were compared. In Figure 4, a four-inlet/four-outlet duct was

created and two BEM element cases were run to calculated the transmission loss at the end of

the duct. The duct results were presented by Carl Pates III at the 1993 National Conference

on Noise Control Engineering, Williamsburg, Virginia on May 2-5. The title of the paper is

"Boundary Element Analysis of the Acoustic Field in Three-Dimensional Regular and Irregular

Ducts." We expect to present a paper on the coupling of BEM/FEM at the upcoming 1994

AIAA/ASME/ASCE/AHS/ASC 35th Structures, Structural Dynamics and Materials Conference.

We also expect to send a paper to the Journal of Acoustical Society of America in the same

area of research.

Future research work will include applying composite materials in the plate, and advancing

to nonlinear structural analysis of the plate. Carl S. Pates III is expected to complete his Ph.D.

degree in May 1994.



2. RESPONSE OF THERMALLY BUCKLED
COMPOSITE PANELS EXCITED BY RANDOM NOISE

This investigation can be broken into two parts. There is analytical as well as experimental

progress to be discussed.

2.1 Analytical Investigation

The analytical work has centered on the nonlinear vibrations of beams and more recently

plates. Initially, work has been centered on solving the nonlinear governing equation for a

beam buckled by an end displacement. A relationship was determined to relate the axial and

transverse displacements along with the forces produced in the beam. This was done using a

Galerkin single mode solution. Results of this investigation were then compared with those by

Yamaki [4] and experimental data performed at ODU. Results from the three were found to

be in good agreement and thus work on the nonlinear vibration problem was conducted. This

was done by employing the harmonic balance method to the nonlinear equations of motion and

results were found to be in good agreement with those of Tseng and Dugundji [5]. These results

were also used to compare with a finite element analysis conducted by Peter O'Donoghue [6].

Work has also been initiated to analyze the response of a composite panel that has been

thermally buckled. The work being conducted analyzes the previously mentioned plate acted

on by a harmonic base excitation. This work will hopefully be completed this summer and

be extended to include random excitations. It is also attempted in this analysis to include the

possibility of snap-through motions. Experimental work which will be discussed later will also

be used to compare with analytic predictions. In addition, an attempt will be made to extend the

work of Peter O'Donoghue to include beams acted on by random noise and to define regions

of snap-through for such a dynamic condition.

2.2 Experimental Work

Experimental work conducted over the past year has concentrated primarily on preparations

for experiments to be conducted this summer by Ray Istenes at Wright Laboratories in Dayton,

Ohio. A study was first conducted to determine adequate plate sizes to be tested in the summer.

This analysis was conducted using computer codes developed by Chuck Gray [7]. This study was

concerned primarily with ensuring that buckling temperatures, frequency ranges, and buckled

mode shapes could be measured and fall within required limitations of the 12,000-lb shaker at

WL, in order that meaningful data is taken. Work was then conducted for clamping fixture

designs. Two fixtures were designed and manufactured for each of two plate sizes to be tested

this summer. The test specimens are of dimensions 6x 12 in. and 7x9 in. with two laminations



[0/±45/90]s and [0/90/0/90] s. Insulating materials were also considered to insulate the clamping

fixture from the composite panel and the lamp which will be used for heating the panels. The

reason for this study is that the composite panels have a lower coefficient of thermal expansion

than the support steel fixture. Consequently, if insulation is not present the panels may not

buckle when a constant temperature distribution is present on the panel surface.

Time was also spent to investigate options available for instrumenting the composite panels.

It was determined that strain gages would be the best choice since they will not have the effect

of mass loading the structure and can be used to get both bending and axial information. A laser

vibrometer may also be used to obtain information on points of particular interest on the panels.

Testing of the panels will make up the bulk of the progress experimentally over the next

several months. During this summer some of the objectives to be accomplished are:

(1) Measure surface temperature distribution of composite panels as well as the temperature

gradient through the panel thickness;

(2) Measure linear natural frequencies of composite panels;

(3) Measure buckled mode shape and compare with analytic predictions of Chuck Gray [7];

(4) Conduct dynamic vibrations tests with harmonic and random inputs;

(5) Measure the cofficients of thermal expansion of the composite material that will be used in

the above investigation (this will be used to fulfill my research skill requirement);

(6) Conduct experimental investigation to determine the regions of snap-through for an aluminum

beam under harmonic excitation (to be presented with results obtained by Peter O'Donoghue

[6] at the 35th Structures, Structural Dynamics and Materials Conference).

3. NUMERICAL SIMULATION OF NONLINEAR RESPONSE OF COMPOSITE
PLATES UNDER COMBINED ACOUSTIC AND THERMAL LOADS

This problem does a time domain study of the response of the composite panel subject to

simultaneous thermal and acoustic loads. The characteristics of the problem, in particular, the

high decibel sound pressure level, the thermal gradient across thickness which induces buckling,

along with the geometrical nonlinearities in the behavior of a thin flat panel, call for analysis

under large deformation assumptions. Accordingly von Karman strain-displacement relations are

used. Other complexities accommodated in the finite element formulated include:

(1) transverse shear strains;

(2) initial imperfection in flatness of the panel;

(3) initial stress distribution;



5

(4) arbitrarily laminated composite panel with a completely anisotropic property;

(5) improvement in modeling of pressure distribution from one that is normal to one that

is inclined at an arbitrary angle

(6) general temperature distribution AT(x,y,z).

The laminate is still restricted to small strains and linear elasticity characteristics. Based on

this problem definition, the equation of motion had been derived and is expressed in the matrix

form as

or

[m]{w} + ([k] + [k0] + [kNO] -

+ [kl] + [k!0] + [^2]){^}

= {?(<)}+ {M +{PAT} (5)

where [m], [fc], {p} and {u;} denote the element mass, linear stiffness matrices, load and displace-

ment vectors, respectively; and [kl] and [fc2] denote the first and second order nonlinear stiffness

matrices, respectively. The subscripts 6 and m denote the bending and membrane components,

respectively. The subscripts o, NO, TV AT, Nm and Nb denote the corresponding stiffness matrix

due to initial imperfection w0(x, y), initial stress resultant {N0}, thermal stress resultant {WAT),

inplane stress resultant component {Nm}(= ^{e^}) and bending stress resultant component

{Nb}(= [£]{«}), respectively.

The element implemented in this study is the nine-node, Cl continuous, quadrilateral

isoparametric element [8]. This element has total 45 degrees of freedom, 5 degrees of freedom

per node.

After assembling the individual finite elements for the entire panel and applying the kinematic

boundary conditions, the system equations of motion become

([K] + [K0] + [KNo] - [KN*T]

[Kl] + [K10] + [K2]){W]

{P0} + {PAT} (6)



Certain significant modifications have been made to the problem formulation. The original

finite element model (equation 6) was in the system's global nodal degrees of freedom, repre-

senting physical values of displacements and rotations. It has, since then, been derived in terms

of modal coordinates.

As a first-step, this involves coming up with a modal transformation matrix which is a matrix

of eigenvectors obtained upon solving a linear free vibration eigenvalue problem for the given

panel configuration, i.e.,

u2
T(M}{<j>r} = (K]{<t>T} (7)

gives

{*r> = [*]{«} (8)

r=l

The eigenvectors {^r} are the mode shapes corresponding to the different natural frequencies

of vibration ur of the panel.

A linear combination of these mode shapes (equation 8) defines the vector of unknown nodal

displacements and rotations. The time-dependent terms, qT, that form the linear combination of

the mode shapes are now the new unknown in the system of equations. These are the generalized

modal coordinates.

However, since the response of a structure when excited is largely in the neighborhood of the

lowest few natural frequencies, it does suffice to use a truncated transformation matrix with just

the first few (say n) mode shape vectors or eigenvectors, and the corresponding number of modal

coordinates. In doing so, we gain a huge advantage by reducing the size of the finite element

model from hundreds of degrees of freedom (in the physical coordinates {W}) to just a handful

(n, about ten), in the modal coordinates {<?}. This, in fact, was the single most important purpose

of switching the solution procedure from a system of coupled nonlinear equations in physical

degrees of freedom to one that is still coupled and nonlinear, but of a drastically reduced size

in modal degrees of freedom.

The formulation of the problem in terms of modal coordinates, necessitates transformation

of the individual matrices in the system of equations, namely, the mass matrix, the linear

and nonlinear stiffness matrices and the thermal and initial stress stiffness matrices, to their

equivalent 'modal' matrices. So is the case with the various load vectors which form their modal
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counterparts. For example the nonlinear stiffness matrices [Kl] and [K2] can be expressed in

terms of the modal coordinates as

(9)
r=l

and

(10)
r=l s=l

where the nonlinear modal stiffness matrices [A'l]^ and [K2]^TS' are evaluated with the

corresponding element components from modes {(j>r} and {<j>s} as

elements

and

fall
elements

The system equations of motion, equation (6), are thus transformed to the forced Duffing

equations in truncated modal coordinates as

[M] {<?} + ((!<] + (Kq\ + [Kn]){q] = {F} (13)

where the modal mass [M] and linear modal stiffness [/?] are diagonal as

[M] = [$]T[M][$] (14)

and

[K] = [*]T([K] + [Ko] + (KNo\ - [K-N&r\m (15)

The nonlinear modal stiffness matrices [Kq] and [Kqq] are linearly and quadratically in {q} as

(16)
\ / i

.r=l

and
/ n n \

rr* I « ^ « « f \ I

(17)
r=l s=l

and the modal force vector is

{F} = (*}T({P(t)} + {P0} + {PAT}) (18)
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For isotropic or symmetrically laminated composite ([B] '— 0) panels, the bending, {<t>T}\,,

and membrane, {^r}TO, mode shapes are uncoupled. In this case, the system modal equations

of motion have the form

[M]{q}+([K]+[Kn\){q} = {F} (19)

The expressions for [M] , [R] and [Kqq] modal matrices in Eq. (19) are derived in reference [9].

Equation (13) or (19) now results in a system of nonlinear ordinary differential equations in

the unknown modal coordinates vector. These equations are then broken down to a numerical

integration scheme following the single-step algorithm of Zienkiewicz et al. [10], coupled with

the Wilson-0 method [11]. Therefore, in their final form the equations of motion are a system of

nonlinear algebraic equations at any given time-step, to be solved iteratively using the Newton-

Raphson technique.

Thus, at the present stage, the program has been updated to accommodate these modifications
in the formulation. Meanwhile, the Monte Carlo simulation technique for generating a spatially

uniform random Gaussian pressure load has been completed. The first set of solutions for a flat

panel (no initial imperfection) under the above described pressure distribution with no thermal

loads, is being worked on presently. The next step will be to arrive at a solution for the combined
thermal-acoustic loading problem. Jayashree Moorthy is expected to complete her Ph.D. degree

in August 1994.

4. SONIC FATIGUE DESIGN AND PASSIVE CONTROL OF RANDOM
RESPONSE OF SHAPE MEMORY ALLOY HYBRID COMPOSITES

Shape memory alloys (SMA) in the low temperature martensitic condition, when plastically

deformed and the external stress removed, will regain its original (memory) shape when heated.

Strains of typically six to eight percent can be completely recovered by heating the nickel-titanium

alloys (Nitinol) above its phase transformation temperature (the austenite finish temperature Ay).

This characteristic transformation temperature can be altered by changing the composition of the

alloy. In addition, the Young's modulus increases three to four times and the yielding strength

increases approximately ten times when Nitinol is heated causing the material transformation

from the martensitic phase to the austenite phase [12, 13]. Therefore, SMA will be ideal for

sonic fatigue application for HSCT such that the SMA fibers are embedded in the conventional

composite panels (such as graphite-epoxy laminates). The aerodynamic heating will be the heat

source and heat the skin panels above the transformation temperature Af. The overall stiffness

of the SMA hybrid composite panel will be increased due to: (1) the increase of the Young's

modulus of the SMA fibers and (2) the internal tensile inplane forces induced in the panel
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from the recovery of initial strains of the SMA fibers. The root-mean-square (RMS) maximum

deflection and RMS maximum strain will be thus greatly reduced. This has been demonstrated

from the preliminary results of an investigation of passive control of random response of SMA

fiber-reinforced composite plates [14] using the classical analytical continuum method.

4.1 Mathematical Formulation

A limited amount of investigations on structural response subjected to intense acoustic

and thermal loads exists in the literature. Seide and Adami [15] were the first who studied

large deflection random response of a thermally buckled simply supported beam. The well-

known classic Woinowsky-Krieger large amplitude beam vibration equation is used. The

Galerkin's method and time domain numerical simulation are then applied to obtain random

response. Most recently, the Galerkin/numerical simulation approach was applied to simply

supported metal and orthotropic composite rectangular plates by Vaicaitis [16, 17]. The classic

von Karman large deflection plate equations including temperature and orthotropic property

effects are employed. Lee [18] further extended to nonuniform temperature distributions.

He studied isotropic rectangular plates with either simply supported or clamped edges. The

Galerkin/equivalent linearization method was used. The classic continuum approaches thus have

been limited to simple beam [15], and isotropic or orthotropic rectangular plates [16-18].

For over three decades, the finite element methods have been the predominant approach for

structural mechanics of complex structural geometry. However, there are only few studies where

nonlinear random response of structures subjected to combined acoustic and thermal loads are

involved. Locke and Mei [19, 20] extended the finite element method the first time to structures

under combined thermal and acoustic loads. The thermal load considered is a steady-state

temperature distribution AT(x,?/). The linear vibration mode shapes of the thermally buckled

structure are used to reduce the order of the system equations of motion to a set of nonlinear modal

equations of a much smaller order. The equivalent linearization technique is then employed to

iteratively obtain the RMS responses. Excellent agreement between the finite element and the

Galerkin/numerical simulation [15] results is obtained. Chen and Mei [21] recently refined

further the finite element formulation for nonlinear random response of structures by considering

that the acoustic pressure and thermal load are applied simultaneously. It is found that there

are significant differences between the random response of acoustic and thermal loads applied

sequentially [15, 19, 20] and simultaneously [21] at high temperatures.

Shape memory alloys have been applied as actuators for active control of buckling of beams

[22] and shape control of beams [23]. It is also being studied in using in active vibration

control of beams [24, 25] and large space structures [26]. Active vibration control of flexible
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linkage mechanisms using SMA fiber-reinforced composites has been investigated by Venkatesh

et al. [27]. Acoustic transmission and radiation control by use of the SMA hybrid composite

was presented by Rogers and Fuller [28, 29]. In all those investigations [22-29] the SMA fibers

are heated by applying an electrical current with control devices. However, the heat source for

the present sonic fatigue design of SMA hybrid composite panels is from the aerodynamic heat,

therefore, no control device is needed. In the previous studies of the application of SMA [12,

13, 28, 29], the thermal effects of the composite materials were neglected, thus a SMA hybrid

composite panel will have only the recovery tensile forces included. Following their formulation

there will be no thermal buckling and postbuckling possible for SMA composite panels. This

is not reasonable in reality. In this study, the thermal effects of the composite matrix (such as

graphite-epoxy) are considered and the finite element formulation for acoustic fatigue design of

SMA fiber-reinforced hybrid composite laminated plates is developed.

4.2 Properties of a SMA Hybrid Composite Lamina

The one-dimensional stress-strain relation of SMA fiber can be described as [12, 13]

—. 17* *• \ ~* f*)f\\°s = Es c + aT (20)

where the Young's modulus E* and the recovery stress a* are both temperature dependent.

The superscript (*) indicates that the corresponding property is temperature dependent. The

nonlinear recovery stress <r* is related to the initial recovery strain er from a semi-empirical

expression [30]

a* = 5.34 x 106e^ - 4.89 x 105e? + 1.68 x 104er (21)

The one-dimensional stress-strain relation of graphit-epoxy matrix with temperature effects

can be written as

(22)

Using an engineering approach, the stress-strain relation of a thin lamina having graphite-

epoxy matrix and SMA fibers can be derived as

= [Q*]

<?22 0

0 Q66

(23)
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swhere [Q]m is the reduced stiffness matrix of a conventional graphite-epoxy lamina, vm and v

are the volume fractions of graphite-epoxy matrix and SMA fibers and vm + vs — 1. The reduced

stiffness matrix of the SMA hybrid composite lamina [Q*] is evaluated from E{, E%, v\^ and

G*u as [13]

El = Elmvm + E*svs

E2 = E2mE*J(E2mva + E*,vm)

and

Gi2 — G\2mG*s/(G \2m.Vs + G*aVm] (24)

For a general k-th layer with an orientation angle 0, the stress-strain relation is thus

f °x } { < * } { * * } ( ( °x } \
M* = { ° y \ = W*U *y + KM ~ [Q]m\ ay \Vm AT (25)

( TXy ) k ( fXy ) ( T*y ) k \ ( axy ) ] k

The resultant force and moment vectors of SMA fiber-reinforced hybrid composite plate are

defined as

fh/2

{N,M}= \ {<r}k(l,z)dz
J-h/2-ft/2

or
' N\ _ \A* B*
M j ~ [ B* D*

where the inplane strain and curvature vectors are defined from the von Karman strain-

displacement relations as

:{K]

"fxy

( u^ }

"'» f +^i W>*' \ ~ Z \ W™ ) (2?)

U,y +V,X ) ( 2W,X W,y ) ( 2w,xy
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4.3 Finite Element Equations of Motion

Application of the principle of virtual work, the governing equations of motion can be

derived for a SMA fiber-reinforced hybrid composite panel subjected to a combined thermal

and acoustic loads as

(28)

or

where [M] and [K*\ are the mass and linear stiffness matrices; [/<"*] and [KN&T] are the
geometric stiffness matrices due to the recovery stress a* and thermal inplane force vector

{-^AT}, respectively; [Nl*] and [7V2*] are the first and second order nonlinear stiffness matrices

which depend linearly and quadratically upon displacement {W}, respectively; {P(t}} is the

random acoustic excitation load vector, {PAT} is the thermal load vector, and {P*} is the SMA

recovery force vector. The solution procedures developed in references 19 and 21 are to be

employed to determine:

(1) the critical buckling temperature, TCT;

(2) the thermal postbuckling behavior when the temperature is higher than Tcr;

(3) the RMS maximum deflection and strain at intense acoustic load and elevated temper-

ature;

(4) the fatigue life; and

(5) parameter study on random response and fatigue life with the initial recovery strain of

SMA, cr, varying from 2% to 4% and the volume fraction of SMA fibers, va, varying

from 10% to 20%.
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