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ABSTRACT

Jiang, Yi-Tsann. Ph.D., Purdue University, May 1993. Development of an Un-

structured Solution Adaptive Method for the Quasi-Three-Dimensional Euler and

Navier-Stokes Equations. Major Professor: Dr. William J. Usab, Jr.

A general solution adaptive scheme based on a remeshing technique is devel-

oped for solving the two-dimensional and quasi-three-dimensional Euler and Favre-

averaged Navier-Stokes equations. The numerical scheme is formulated on an un-

structured triangular mesh utilizing an edge-based pointer system which defines the

edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta

scheme is used to march the solution in time. The convergence rate is enhanced

through the use of local time stepping and implicit residual averaging. As the

solution evolves, the mesh is regenerated adaptively using flow field information.

Mesh adaptation parameters are evaluated such that an estimated local numer-

ical error is equally distributed over the whole domain. For inviscid flows, the

present approach generates a complete unstructured triangular mesh using the ad-

vancing front method. For turbulent flows, the approach combines a local highly

stretched structured triangular mesh in the boundary layer region with an un-

structured mesh in the remaining regions to efficiently resolve the important flow

features. One-equation and two-equation turbulence models are incorporated into

the present unstructured approach. Results are presented for a wide range of flow

problems including two-dimensional multi-element airfoils, two-dimensional cas-

cades, and quasi-three-dimensional cascades. This approach is shown to gain flow

resolution in the refined regions while achieving a great reduction in the computa-

tional effort and storage requirements since solution points are not wasted in regions

where they are not required.
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1. INTRODUCTION

The flow in axialand radial compressors and turbines is complex both in terms

of the geometry of advanced designs and in terms of the flow structures that are en-

countered. New designs incorporating radically shaped blades, splitter plates, and

even multi-dement blade configurations lead to even more complex flow problems.

Early analysis of these flow problems was done mainly by experimental methods.

Modern experimental facilities utilizing advanced measurement techniques can pro-

vide detailed flow information for these flow problems. However, it is costly to

perform experimental studies in the design process. On the other hand computer

technology has seen a rapid development and the cost has decreased dramatically

over the last two decades. This has led to significant developments in the area of

computational fluid dynamics (CFD). A variety of solution procedures have been

proposed for the solution of the Euler and Navier-Stokes equations. Many of these

methods are restricted to relatively simple geometries and are difficult to employ in

turbomachinery applications. It is therefore of prime interest to establish a general

solution scheme for turbomachinery applications.

The present research develops a general solution adaptive method for geomet-

rically complex domains and complex flow structures. This approach provides a

flexible framework for turbomachinery applications. It is important that this ap-

proach is accurate, efficient, and easily applicable to a wide range of designs. A

general solution adaptive method involves a combination of mesh generation tech-

niques, solution algorithms, and solution adaptive techniques. In the following

section recent developments in these key areas are reviewed.



1.1 Background

In the area of CFD a majority of the flow solvers have been developed for body-

fitted structured meshes. Efiicient algorithms can be achieved using the body-

fitted mesh line information. Many fast and efficient solution procedures have

been proposed to the solution of flow for Euler [2, 14, 33, 37, 38, 65] and Navier-

Stokes [19, 23, 53, 92] equations on structured meshes. However, applying these

schemes to turbomachinery applications is difficult due to the problem of generating

a structured mesh within a complex domain. The problem lies in the generation of

a global body-fitted mesh which maps to a logical rectangle in computational space

while satisfying a complex set of conflicting constraints in physical space.

Two approaches have been proposed to alleviate this difficulty. One is to keep

the structured solver and simplify the mesh generation problem. Proposed tech-

niques include the use of Cartesian meshes [11, 12], overlaid or composite meshes [5],

and patched meshes [68, 72]. The use of a Cartesian mesh simplifies the problem

of mesh generation by abandoning the requirement that mesh boundaries conform

to body surfaces. This however increases the complexity of boundary condition

formulations in the flow solver. It can also lead to clustering of mesh in uniform

flow regions. In the overlapping approach several subdomaln grids are overlaid

together reducing the problem to a simpler mesh generation problem within each

subdomain. The necessary interpolation between overlaid meshes requires a special

data structure and increases the computing time. It is also difficult to automate

such a procedure. In a patched approach the flow field is subdivided into a se-

ries of simpler subdomains with mesh generation performed on each block. This

simplifies the mesh generation problem for particular geometries, but it does not

eliminate the problem and is difficult to automate. The final mesh depends on the

user's experience and skill. The work of planning block subdivisions becomes a

major obstacle in the development of computational design tools. Although these

techniques have been successfully used in many applications, for the complex flow
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structures encountered in advanced turbomachinery they are difficult to generalize

and add to the complexity of the flow solver.

A second approach is to totally abandon the structured mesh and to formulate

the problem using an unstructured triangular mesh. Since any distribution of points

can be meshed with a triangular mesh, this approach eliminates any conflict be-

tween constraints imposed to implement boundary conditions and those required to

resolve the complex flow structures. Two approaches axe most commonly used for

generation of unstructured meshes: Delannay triangulation methods [31, 58, 87, 88]

and advancing front methods [48, 64, 67]. Delannay triangulation begins with a few

super-large triangles covering the domain of interest. Mesh points are then added,

one by one, with a retriangulation of the mesh. Retriangulation is performed using

the criterion that any point can not fall inside of a circle determined from any

other three points of the existing mesh. This particular method results in an "op-

timal" triangulation. However, the work to perform the mesh generation requires

O(N a) operations [87] because the sorting process for the triangulation is usually

performed over all points. In addition, this method does not provide control over

the mesh point distribution.

In the advancing front method, the mesh point locations are determined as part

of the mesh generation process. Starting from an initial front defined by boundary

segments, new points are added and triangulated into the front. This process is

repeated until the complete domain is triangulated. Mesh parameters, such as

mesh size, aspect ratio and stretched direction, can be specified over the domain

in this approach. Triangles are generated using the criterion that a new triangle

should not cross any given face of the front. This method provides a great deal

of control over the resulting mesh distribution. For turbulent flow calculations a

highly stretched mesh is used to achieve computing efficiency. Recently, Hassan

et al. [30] noted that the advancing front method can only produce a maximum

allowable mesh stretching of about 10 in order to preserve mesh quality.



Initialalgorithm work for solving flow problems on unstructured meshes was

done in the finiteelement community. In the finiteelement approach, numerical

schemes are formulated on an element basis,with the element formulation generally

requiring no information from other elements. Angrand et al. [3]and Morgan et

sd. [51]have demonstrated the use of unstructured flnite-elementflow solversfor

two-dimensional flow problems. These schemes use a finitedifferencescheme in the

temporal discretizationand a finiteelement formulationin the spatialdiscretization.

A second approach to solving these equations, finite-volumemethods, isbased

on a discreteapproximation of the integralform of the governing equations. Jame-

son and Mavriplis [36]have demonstrated the extension of Jameson's multi-grid

Runge-Kutta scheme [33]on regular trianglesover a airfoil.Both flnite-element

and finite-volumeapproaches have been successfullydemonstrated for the solution

of the Euler equations using unstructured trianglesin two dimensions [58,64, 8, 90]

and tetrahedras in three dimensions [35,49, 66, 78]. Extension of unstructured

schemes to the Navier-Stokes equations has recentlybeen done fortwo-dimensional

turbulent flow problems [7,56, 59]. Finite-volume methods solve the physical con-

servationlaws directly.For turbomachinery applicationsthe accurate predictionof

the mass flow iscriticalto obtaining an accurate solution.Therefore,a finite-volume

formulation ismore appropriate. Although the unstructured approach provides a

simple and flexibleframework for solving complex flow problems, it is computa-

tionallyinefficientbecause of the need for the mesh connectivity information and

they are very di_cult to vectorize.Itisalsovery dimcult to implement solutionac-

celerationmethods because these techniques often assume a structured connection

between mesh points.

Viscous flow problems are di_cult to solve on an unstructured mesh due to

the turbulence models by which closure of Favre or Reynolds averaged Navier-

Stokesequations isachieved. For structuredmesh solvers,algebraicor zeroequation

models are the simpliestand easiestmodels to implement. Algebraic models do not

have numerical stabilityproblems and work well for a wide range of engineering
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applications. Unfortunately, algebraic models require length scale information to

compute turbulence quantities. The lack of body-fitted mesh line information on

unstructured meshes makes it difficult to implement algebraic turbulence models.

An overlaid mesh technique has been proposed to overcome this difficulty [56, 71].

In this approach local structured meshes are overlaid with a global unstructured

mesh. The algebraic turbulence model is then solved on the structured mesh. The

necessary interpolation between overlaid meshes requires a special data structure

and increases the computing time. Moreover the use of local structured meshes

restricts the flexibility of the method. In order to remove the structured mesh

dependence, more complicated turbulence models which solve one or more transport

equations for turbulence quantities can be used. Recently, Barth [7] has successfully

demonstrated the Bladwin-Barth one-equation turbulence model [6] on a wide range

of turbulent flow problems using the unstructured mesh approach. Among two-

equation models, Chien's low Reynolds k - e turbulence model [17] has been widely

used in engineering applications [42].

Without a priori knowledge of the flow structure, neither the structured ap-

proach nor the unstructured approach can accurately and efficiently resolve the

flow. While in principle a global fine mesh can be used to accurately resolve any

flow structure, such an approach is impractical and computationally expensive.

This has led to the development of solution adaptive methods. Solution adaptive

methods can be divided into three general approaches: mesh refinement or enrich-

ment, mesh movement, and mesh regeneration. Each type has advantages and

disadvantages associated with it.

In the mesh refinement approach mesh points are added or removed from the

solution domain either by subdivision or absorption of mesh elements. Dannenhof-

fer [21] has demonstrated this approach for a series of airfoil problems using quadri-

lateral unstructured meshes. Starting with an initial structured mesh, irregularly-

shaped embedded mesh regions are generated by subdividing the cells in high gradi-

ent flow regions. This approach has been very successful in resolving complex flow



structures. Although it is not necessary to have a good initial mesh, the use of a

structured initial mesh constrains the problem. If skewed cells appear in the initial

mesh, such properties will remain in the refined mesh. L6hner [47] on the other

hand used mesh refinement on unstructured triangular meshes. This approach lo-

cally enrichs the mesh by subdividing triangular mesh elements. After refinement,

any badly-formed cells are removed to improved the resulting mesh. The mesh

refinement approach is very efficient, but it has the disadvantage of the significant

bookkeeping involved in keeping track of modifications to the mesh. In addition,

in both of the above formulations the adapted mesh has discontinuous variations

in cell length scale since subdivisions are integer divisions of the original mesh.

In the solution adaptation method based on mesh movement, the mesh point

connectivity is fixed and the points are moved as the solution evolves. This has

the advantage that any existing solver can be applied with minimal modification.

To move mesh points in the structured mesh Gnoffo [29] uses an equivalent spring

analogy, in which the mesh edges are replaced by springs with a stiffness based on

the local gradient of some flow property. L6hner [50] and Batina [9] extended this

approach to unstructured meshes. The disadvantage of this technique is that the

final mesh depends on the initial mesh connectivity.

In the mesh regeneration method, the mesh is regenerated periodically as the

solution evolves. This may be expensive due to work required to generate the mesh

but has many advantages. For structured meshes, mesh points are redistributed

using structured mesh generation techniques as the solution evolves [22, 82]. In

practice, the number of mesh points may be fixed so it has the same advantages

as the mesh movement technique. This technique provides smooth distribution of

mesh lines, but it is difficult to use on complex geometries. In the unstructured

approach, Peraire et 02. [67] introduced a remeshing process in which an unstruc-

tured mesh is regenerated using mesh parameters determined from the most recent

solution. This approach provides smooth variation in mesh length scale and al-

lows dense points to be placed in high gradient flow regions. Mavriplis [57] and
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Holmes [31] demonstrated the use of Delaunay triangulation with mesh point inser-

tion. Since Delaunay triangulation needs to search a retriangnlation region when

a new point is inserted into domain, for efficiency it requires special data structure

to perform local retriangnlation.

The preceding review shows that mesh generation for complex domains can

be easily obtained through the use of unstructured meshes. An accurate predic-

tion of complex flow problems can be effectively achieved using solution adaptive

methods. Even for problems which can be solved using structured meshes (e.g.,

patched or overlaid meshes), there is often a significant reduction in the human

effort required using unstructured meshes. An additional advantage of the unstruc-

tured approach is that it provides a convenient framework for implementing solution

adaptive methods. This leads to a great reduction in the computational effort and

storage requirements since solution points are not wasted in regions where they are

not required.

1.2 Present Approach

The solution adaptive approach used in the present work is based on mesh regen-

eration, where the mesh is periodically regenerated as the solution evolves. While

this is a more computationally intensive approach, it also has many advantages.

There is very little bookkeeping required since the mesh structure is not being

modified. Regeneration of the mesh results in a smoothly varying distribution of

mesh points, which in turn should give better numerical solutions. Remeshing al-

lows the opportunity to align the mesh with flow structures which, in turn, makes

it possible to use different mesh scalings tangent and normal to a given flow struc-

ture. A shock wave is a good example of such a flow structure, since to accurately

capture a shock wave the mesh scale normal to the shock wave must be small. The

ability to align the mesh will also be very important in the extension of the present

approach to viscous flow where the mesh may also be aligned with viscous shear



layers and in the incorporation of flux splitting for improved resolution of shock

waves.

For turbulent flow calculationsthe levelof complexity of the models determines

computing expense, so the turbulence models used are the one-equation and two-

equation models. Incorporating such models in an unstructured approach isstill

a very new topic and only a few approaches have been proposed [7,59]. In those

proposed approaches, turbulence models are solved using an implicitscheme which

usually requiresan inversionof a large matrix system of equations. In the present

study, the one-equation and two-equation turbulence models are discretizedusing

the same explicitscheme employed on the mean flow equations.

In summary, the key elements in the present approach are the unstructured

flow solver,the mesh generation scheme, and the adaptive remesh algorithm with

associated refinement criteria.Jameson's four-stageRunge-Kutta cell-vertexfinite-

volume time-marching scheme [37] is used to solve the quasi-three-dimensional

Favre averaged Navier-Stokes equations and turbulence transport equations. The

convergence rate isenhanced through the use of local time stepping. The quasi-

three-dimensional equations are chosen here because they provide a betterapprox-

imation to the three-dimensional flow while retaininga two-dimensional form. In

addition, quasi-three-dimensional equations can be simplifiedinto standard two-

dimensional equations. This provides a more universaland convenient model for

general flow problems. The mesh generation method with which unstructured trian-

gular meshes are generated isthe advancing frontscheme firstformulated by Peraire

et al.[67]. This particularapproach has the advantage of being computationally

efficientand also provides a convenient way of adapting the mesh distributionto

the flow solution.For viscous flows in the present work localstructured triangular
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meshes are generated around bodies to relieve the stretching limit on the unstruc-

tured mesh generator.

The quasi-three-dimensional flow model, the governing equations, and the Baldwin-

Barth [6] one-equation and Chien's [17] two-equation turbulence models are intro-

duced in Chapter 2. The unstructured flow solver using a multistage Runge-Kutta

finite-volume time-marching scheme is described in Chapter 3. The stability crite-

ria, local time-stepping, and implicit residual averaging are developed. A modified

version of artificial dissipation for highly stretched meshes and boundary conditions

for two-dimensional airfoil and quasi-three-dimensional cascade flow problems are

also discussed. The mesh generation procedure for both inviscid and viscous flow

problems is presented in Chapter 4. The solution remeshing scheme and mesh

adaptation criteria are described in detail in Chapter 5. In Chapter 6 the numeri-

cal results of inviscid flow problems are presented.

Unstructured solution adaptive results for the two-dimensional Euler equations

are presented for a model multi-element airfoil, a Sanz's supercritical compres-

sor blade, and a Sanz's turbine blade. Computed solutions are compared to the

analytic solutions. Quasi-three-dimensional Euler solutions are illustrated for the

NACA Rotor 67 transonic fan operating at peak efficiency and the Allison tandem

blade cascade. In Chapter 7 unstructured solution adaptive results for turbulent

flow problems are presented. Two-dimensional turbulent flow solutions for a sub-

sonic flat plate, a RAE2822 airfoil, a NLR two-element airfoil, and a VKI turbine

blade configurations are presented. Numerical results are compared to the available

experimental data. A quasi-three-dimensionai Favre averaged solution is presented

for the Allison tandem blade cascade.
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2. GOVERNING EQUATIONS

This chapter reviews the quasi-three-dimensional flow approximation for turbo-

machinery applications. The governing equations are derived from the conserva-

tion of mass, momentum, and energy for viscous flows on a blade-to-blade stream

surface. The mean flow equations and turbulence models for turbulent flow cal-

culations are also presented. With the use of the equation of state, the constant

Prandtl number approximation, and viscosity models, the complete set of govern-

ing equations is obtained. Initial and physical boundary conditions for the flows of

interest are also described.

2.1 Quasi-Three-Dimensional Flow Model

In general, the flows in axial, radial, and mixed-flow turbomachinery designs

are highly three-dimensional. In order to solve these three-dimensional flows in a

relative simple manner, Wu [91] proposed the following simplification which allows

these types of flows to be analyzed two dimensionally, but with more information

provided. In this model, the three-dimensional flow field is described by the combi-

nation of two separate two-dimensional flow fields as sketched in Figure 2.1. These

two separate flow fields are composed of surfaces located in the blade-to-blade di-

rection (S1 surfaces) and surfaces lying in the hub-to-tip direction (S2 surfaces).

In practice the flow is further assumed to follow an axisymmetric streamsurface

as shown in Figure 2.2. The solution to the coupled two-dimensional flow fields

requires iteration between the solution of the throughflow problem on a mean $2

streamsurface and several quasi-three-dimensional solutions on axisymmetric $1

streamsurfaces, since the solution for either surface requires the knowledge of the
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shape of the other surface. In the present research, only the flows within the quasi-

three-dimensional S1 surfaces are investigated. The radial location and thickness

of a streamsurface is assumed to be known as a function of streamwise distance

along the surface. This information is obtained from an axisymmetric through-flow

analysis (see [41] ).

2.2 Quasi-Three-Dimensional Navier-Stokes Equations

The quasi-three-dimensional viscous compressible flow along the $1 strearnsur-

face is expressed in terms of an axisymmetric coordinate system (ra, 0) (see Fig. 2.2)

which rotates with the blade row and is given by

dm 2 = dz 2 + dr 2 (2.1)

and

0=0'-fit (2.2)

where 0' is fixed in space and fl is the angular velocity of the blade row. In this

coordinate system, with radius r and streamsurface thickness h taken as known

functions of m, the Navier-Stokes equations may be expressed in the following

form [18]:

o(,.h6) o(,.hr) o(h_) (o(,-h_) o(h#)
T + O-'-----_-+ 00 _m + O_ ) = ra R (2.3)

where

f p _ pv_ pw,

pv., pv2 + p , pv.. w,
__ _ :

pv,,. pv...ve,- (pvow, + p),-

pE ) V._(pE +p) W,(pE + p) + rflp

0 (0 _

ol 2 K2

R = ' g = I o22r = 0

\& _o,
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Figure 2.1 $1 and $2 streamsurfaces for Wu's quasi-three-dimensional flow model

(Wu[91I).

ls. _ , /s,.i f; i/

,.j.,..,-/

Figure 2.2 Quasi-three-dimensional coordinate system (m, 0) and streamsurface

(Katsanis [41] and Wang [86]).
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where

We=V,-rfl

1 dr 1 dh

K2= (pV,2+ p-_22)(-;T-m_)+ (p- _)(_T_ )

In these equations p, p, E, V,_, and I_ are density, pressure, energy, m- and 0- ab-

solute velocity components, respectively, and We is the relative tangential velocity.

The pressure p is defined by the equation of state for a perfect gas

1 2
P = (7 - 1)p[S - _(V,_ + Ve2)] (2.4)

where 7 is the ratio of specific heats. The viscous terms in the energy equation are

defined as follows:

R4 = (_O,_T + V,_azl + Veal2)

84 = (a---_00T + V,,a12 + V0a22)
r

(2.5)

The coefficient of thermal conductivity, _, may be expressed as:

The shear stress terms are given by:

all = 2#O.,V,_ + A V "V

dh
_ = 2_v_(¼_--_)+_ _7.¢

1 dr 1_ = _(o_y, - v,(-;T_) + o,y_)

In the above expressions, A and p are the two coefficients of viscosity which based

on Stokes' hypothesis, A = -2/_/3, T is the static temperature, Cp is the specific

heat at constant pressure, and p, is the Prandtl number. The dilitation is given by

1 dr 1 dh. !i)oVe]_7.f_- -2 _[o_,v_ + v. (-;-j-_+ _ T_ ) + (2.6)
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The molecular viscosity is obtained using Sutherland's viscosity law [76]:

C,T]

P=T+C2

where the constants p,, 6'1 and (72 for air at moderate temperature are:

p, = 0.72, C, = 1.458x10-6kg/(m - s - K'/2), C2 = 110.4K

The governing equations may be nondimensionalized with respect to chosen ref-

erence quantities. In this work a reference length, L, and reference flow properties,

p_, V_, T_, and /_¢¢, are used to define the nondimensional parameters. The

normalized variables will be expressed here as bar variables, which are

t rn r h

{-LIVe' Vn=-_, _=-_, h=-_

p ?., V.,, ?,=Vo ,.h=ra
_=--' = v_ v_

P 'i'= T e I_

The nondimensional equations resulting from substituting the above nondimen-

sional variables into Eq.(2.3) are similar to their original dimensional form except

a constant, ReL, appears in the viscous terms. Dropping the bar notation, we may

rewrite the governing equations as:

__ (o(rh,q) o(hg)O(rhU) c3(rhff) i)(hG) ReTf + ) = rhK (2.7)
cgt + Om + O0 _ -_

where the reference Reynolds number, ReL, is defined as:

poo V_ L
[teL --

Poo

and the coefficient of thermal conductivity, x_, is given as:

P

t:, = pr(7_ 1)M_

Also note that the source term, K2, now becomes

1 1 dh
K2 = (pVe2 + p- ReZ'a22)(1 ,d-['r ) + (p- neL aa3)(-_-_m)

r am
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For quasi-three-dimensional inviscid flow problems the governing equations are

obtained by dropping the viscous terms in the Navier-Stokes equations. These

equations reduce to the standard two-dimensional Navier-Stokes equations in con-

servation form by setting r and h equal to constants. In the present work, the

two-dimensional flow problems are solved using these equations with r - h - 1.

2.3 Favre-Averaged Navier-Stokes Equations

The full Navier-Stokes equations provide the "exact" transport equations for

compressible turbulent flows. With specification of appropriate initial and bound-

ary conditions the equations may be solved directly. Unfortunately, turbulent flows

always contain fluctuations at a wide range of frequencies and in three-dimensional

applications it requires O(Re_/4) grid points [45] to resolve all the flow scales. Even

with modern supercomputers direct numerical simulation of the full Navier-Stokes

equations is still restricted to low Reynolds flows and to very simple boundary

conditions. In most engineering applications, the mean flow properties are of pri-

mary interest. As a result, a modified form of the Navier-Stokes equations derived

through averaging techniques is adopted for engineering calculations.

In the present work, the Favre-averaged technique is used to obtain the mean

flow equations. The Favre averaging is a hybrid averaged method which uses den-

sity weighted averaging on all fluid properties except pressure and density. For

compressible flows this averaging results in a simpler form of the mean flow equa-

tions than the Reynolds averaging. Performing the Favre averaging the quasi-three-

dimensional Navier-Stokes equations (see appendix B) are

O(,h(6)) + a(,h(f)) + O(h(G)) ReZ,_a(,.h(R)) O(h(#))am oo • am + O0 ) = ,h(g) (2.8)

where

IO)=

(p)

(p)V.,

Ip)w,

(p)E

, (P)=
(p)_ + (p)

_((p)g + (p))
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(p)wo

(p)v_wo
(_') = ((p)_W'oe + (p))r

_((p)E + (p))+ _n(p)

I o I
_ II IIg_(_ - (pv-a))+ v,(,,,_- (pv-v_ )) + ,,,_ - <pV'H")

I o I(g)= ,,,%- (pv_v;')
(_--_22-(pv;a)),•

- " " _-(pV_'H")v.(_- (pV;,V_)) + V,(_- (pW')) + . a,

(g) = (

0

0

The equation of state for perfect gas is

[ _ _ _)]
The Favre-averaged equations are similar in form to the full Navier-Stokes equa-

tions except for the presence of unknown stress terms in the mean momentum and

energy equations. Among these new terms, (pV'°), (pV'='Ve"), and (pVe 'a) are the

so-called Reynolds stresses and (pV'='H") and (pVe"H") are the turbulence heat flux.

These terms must be modeled to provide closure.

/
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2.4 Turbulence Models

The Favre-averaged equations contain correlations of turbulence quantities. In

order to solve for the mean flow properties these terms must be modeled. Vari-

ous approaches for modeling the correlated terms have been reviewed in the lit-

erature [44, 85]. Although the Reynolds stress model provides general one-point

correlation approach for turbulence quantities, it increases the level of complexity

of equations and still additional unknowns need to be modeled. In the present work

an eddy viscosity model is adopted. Using an eddy viscosity model the averaged

equations are identical in form to the full Navier-Stokes equations, with the viscos-

ity and thermal conductivity replaced with the corresponding effective values, pe

and (f_/p, ),, respectively.

2.4.1 Eddy Viscosity Hypothesis

In the eddy viscosity hypothesis turbulence quantities are related to mean flow

properties through the use of the Boussinesq assumption, which assumes that the

Reynolds stress tensor is linearly proportional to the mean strain rate tensor. In

Cartesian coordinates this gives

<-pv,"v;')= + / - - (2.9)

In the above expression, _ is the turbulent viscosity, 6ij is the Kronecker delta

function, and k is the mean turbulent kinetic energy. Analogous to the Boussinesq

assumption, a linear relationship between the turbulent heat flux and the enthalpy

gradient is also adopted:

(pV_"H") = _' O'ff = C_,_, 0_' (2.10)
p,, Ozi p,, Oxi

where p,, is the turbulent Prandtl number, which is assumed to be 0.91 in the

present work. Thus, the mean flow equations for turbulent flow can be expressed

in a form similar to the original equations of motion by replacing the viscosity

and thermal conductivity with the corresponding effective value defined as the sum
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of laminar and turbulent parts. The effective viscosity and conductivity may be

written as:

(_/p,.),, = (_lp,.)g,,,,,_,_ + (,u/P,.),u,,.b_,,,_ (2.11)

The remaining turbulence closure problem is then to model the turbulent viscosity,

pt, and/or the mean turbulent kinetic energy, it.

Eddy viscosity models employing the mixing length theory [81], which is anal-

ogous to the molecular kinetic theory, give the turbulent viscosity, _t, as

f_t = C(p)_l (2.12)

where _"and I represent the velocity and length scales of the turbulence. Depending

on the type and the number of equations employed to evaluate these turbulence

scales, the modeling equations are classified as algebraic, one-, and two-equation

models. Although algebraic models are difficult to implement using unstructured

meshes, the Cebeci-Smith [16] aJgebraic model is described here for complete-

ness. In the present work, the Baldwin-Barth [6] one-equation and Chien [17]

low Reynolds number two-equation models are employed.

2.4.2 Algebraic Turbulence Models

In algebraic turbulence models the turbulent velocity and length scales are mod-

eled algebraically. The Cebeci-Smith [16] model is one common example. In the

Cebeci-Smith [16] model, the velocity and length scales of turbulence are deter-

mined using a two-layer model. In the inner layer where y < y_, the required scales

and turbulent viscosity are obtained as:

_ = (p)12lfil (2.13)

1 =/CylZ)

2 a )2 0 )2
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where _ = 0.41 is the yon Karman constant and Z) is the van Driest damping

function which is used to account for near-wall viscous effects on turbulence.

D -- 1 - exp (-y+/A+), A + = 26

The product of 1]_] gives the velocity scale of turbulence. The wall distance unit,

V+, is defined as:

y+= /_y,,.al_/rw,al/p,,.ll (2.14)
Vw_ll

where Ay,,_i is the minimum physical distance from an interior node to the wall,

T..a, p,-, and v. u are the wall shear stress, density and kinetic viscosity at the

corresponding wall location, respectively.

In the outer layer, y > Vc, the turbulence quantities are given as:

=/o°°(1 - (2.15)

where C_ = 0.0168,/_1 is the displacement thickness, and U, is the edge velocity.

The condition which defines yc is the continuity of the turbulent viscosity. In

practice, the turbulent viscosity is determined as the minimum of the inner and

outer turbulent viscosities. That is

mm(pt,p,) (2.16)

Algebraic models do not require any transport equation for turbulence prop-

erties aiid therefore are the simpliest and easiest models to use. However, it has

been noted [69] that algebraic models do not account for any transport and history

effects of turbulence and hence are not aziequate for complex separated flow prob-

lems. Incorporating zero-equation models into a unstructured approach requires

a locally structured mesh to provide the length scale information (e.g., 5t in the

Cebeci-Smith model).
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2.4.3 One-Equation Models

Early one equation models, including those of Bradshaw et al. [13], Rubesin [73],

and Mitcheltree et al. [62], were based on the transport equation of the turbulent

kinetic energy, k, from which the velocity scale is evaluated. The turbulent length

scale is then determined using an empirical description. Although the transport

equation of the turbulent kinetic energy provides transport and history effects of

turbulence, a length scale specified algebraically is not adequate for general flow

problems. In the past these models have been more difficult to code and often only

marginally better than algebraic models [69]. Further, the need of algebraic length

scales limits the applicability of these models to unstructured meshes.

Recently, Baldwin and Barth [6] proposed a one-equation model which involves a

transport equation for a turbulence field variable. Except in the near wall region this

variable is proportional to the turbulent viscosity so algebraic length scales are not

required for the evaluation of the turbulent viscosity. This model has been shown to

be a significant improvement over algebraic models. Although this model accounts

for near-wall viscous effects on turbulence it does not require a very fine mesh

spacing for resolving the viscous layer. Baldwin and Barth noted that their model

only requires a wall mesh spacing of y+ < 3.5, which relieves the numerical stiffness

problem. In addition, since this model does not require an algebraic specification

of the turbulent length scales it is applicable to unstructured meshes. A complete

derivation and discussion of this model can be found in Reference [6]. The resulting

model is summarized below.

The turbulent viscosity is modeled as:

(2.17)

In Reference [6] the transport equation for the turbulence variable, _RT, is given

as-

D(_/_:r) = (C,:,_2-C,,)_ + _' + _ (_/_r) o',,Dt - -- V _," V(_/_T) (2.18)
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where _ is the production of the turbulent kinetic energy.

The corresponding nondimensional quasi-three-dimensional form is obtained as

°_'(h(ss)) ,-h(K_,)}

(2.19)

where

(as)- 8m ' r 80

( K B > = (C,_ .F2 - C,, ) _VF_u-u_T'P

The following functions are employed to account for near-wall viscous effects on

turbulence.

m

O"e

_D1

_92

_'2(y+)

= (c,:-c,,)v/-_/_c _

= 1 - exp(-y+/A +)

= 1 - exp(-y +/A+: )

c., c.,)( 1
- C.2+(1-_'2 k-_+_'D:)[_

+ _(_ +

= _-_¥exp(-y+/A+),

I

= -_-_2exp(-y+/A+),

where the modeling constants are given as:

y+ = .f g,,,mAy.,m
V(p)-_ --//wall

E=0.41, C(, =1.2, C, 2=2.0

(3_,=0.09, A +=26, A +=10
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2.4.4 Two-Equation Models

In most one-equation models the length scale of turbulence is described alge-

braically. It has been recognized that the use of an algebraic length scale is not

adequate for general flow problems [44, 85]. In order to eliminate an algebraic de-

scription for the turbulence length scale, an additional transport equation for the

length scale of turbulence has been proposed. A variety of two-equation models can

be found in review articles [44, 85]. The most popular model among them is the k-e

model. Both high Reynolds number and low Reynolds number forms of this model

have been used successfully in engineering applications. The high Reynolds number

k - _ model is not valid in near-wall regions, so instead of integrating the mean

flow and k - c equations up to the wall, wall functions are employed to estimate

near-wall flow properties. A detailed numerical implementation of this approach

can be found in References [46, 59]. This approach removes the need of extremely

fine meshes near the wall and has been applied to a large class of flows. It is only

appropriate to use wall functions on flows where the logarithmic law of the wall

region exists.

In complex flow problems the near-wall distribution of mean flow and turbulence

properties might be different from the logarithmic law. To accurately predict the

near-wall viscous effects on turbulence, it is necessary to integrate the mean flow

and turbulence equations to the wall. Chien [17] modified the standard k - _ model

by accounting for the near-wMl viscous effects and proposed a low Reynolds number

k - e turbulence model which is valid up to the wall. Although this model requires

a mesh wall spacing (y+ < 1), it is coarser than the spacing (y+ < 0.2) that the

Jones-Lannder [39] low Reynolds number k - e model requires. Chien's model has

been widely used in engineering applications. This model is outlined below.

The nondimensional turbulent viscosity is expressed by

_t = ReL C_,._"_,<p)= (2.20)
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wherek is the turbulent kinetic energy and g is the isotropic dissipation rate of the

turbulent kinetic energy.

I? It, -,,,,_", (pv,jv,,,)[c= i(?"_ ; / _.=
(,o) (p)

The averaged transport equations for k and g quantities in quasi-3D compressible

flows are described by

a(_h(O,,)) a(_h(:,,)), a(h(_,,)) = R_z' (a(_h(R,,)) a(h(#,,)) _h(g,.)_
_ _ _ _ \ _ + _ + )

where

(2.21)

<Ok,)= (P)k ' (:_')= ' _ -_ (p)_d

(_,) = (_ - ,,,o..
(_- _,.,o,, (# + ,,.);_ )

(g") = _(._,c:,- R_L._,C_<p)a+ a
In Reference [17], Chien proposed the following constants and functions for this

model:

ak = 1.0, o'_ = 1.3

C, = 0.09, C, = 1.35, ¢2 = 1.8

2 exp(-P_/36)
Y', = 1 - exp(-O.Oll5v+), _'t = 1, _'2- 1-_

£k = 2_k £. = 2_ exp(_0.5y+)

R,= " _ ' = V(p)._,_.---:
The extra terms, _¢k and E',, are used to account for near-wall viscous effects on

turbulence. Because near-wall effects needs to be resolved, this model requires a

wall spacing y+ < 1.
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2.5 Initial and Boundary Conditions

The meanflowand turbulent transport equations presented in the preceding sec-

tions represent an initial-boundary value problem. In order to solve these equations

it is necessary to impose initial and boundary conditions. Numerical implementa-

tion of these conditions will be given in the next chapter. Since only steady state

solutions are of interest in the present work, initial conditions are not relevant to

the solutions.

2.5.1 Physical Boundary Conditions

In the present work solutions for 2-D airfoils, 2-D and quasi-3D cascades are

presented. For these cases the boundaries are either inflow/outflow or solid wall

type. On solid walls the physical boundary conditions are the same for all problems.

For inviscid flows the solid wall boundary condition is flow tangency condition.

.% .%

(v - V..u). = 0 (2.22)

For viscous flows the physical boundary condition is the no-slip condition with

either specified wall temperature or heat flux. That is,

V - V,,_II

= _ or O'-n = [_n ]'_u (2.23)

At inflow/outflow boundaries the physical boundary conditions are dependent

on the type of problem solved. For the 2-D airfoil problem, the inflow/outflow

boundary is the far field boundary at infinity. The corresponding physical bound-

ary condition is the asymptotic state of a uniform freestream condition for either

inviscid or viscous flow. For the 2-D or quasi-3D cascade case, the physical bound-

ary conditions at the inlet are specified total pressure, total temperature and whirl

speed rV0. The physical boundary condition for the outflow boundary is specified

static pressure.
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2.5.2 Turbulence Transport Equations

When a turbulence model based on differential equations of turbulence quanti-

ties is used, it requires additional boundary conditions for each equation. The phys-

ical boundary conditions are determined by the type of turbulence model used. For

the Baldwin-Barth one-equation model, the physical boundary conditions are [6]:

• Solid Walls: Specify RT -" 0

• Inflow (9-_ < 0): Specify R"_ = (R"_)oo < 1

• Outflow (9. _ > 0): Extrapolate R'-_ from interior values

For Chien's low Reynolds number k - e model, the physical boundary conditions

required for 1¢and g are [43]:

• Solid Walls: Specify k = 0, and _"= 0

• Inflow (9-_ < 0): Specify k = koo, and _"= coo

• Outflow (9. _ > 0): Extrapolate k and g from interior values

It is important to realize that the total dissipation rate is not negligible at walls,

even thought the isotropic dissipation goes to zero. The extra terms in the Chien

k - e equations can be used to account for a nonzero dissipation rate near the wall.
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3. UNSTRUCTURED FLOW SOLVER

This chapter presents the spatial and temporal discretizations of the govern-

ing equations. The Jameson's four-stage Runge-Kutta cell-vertex finite-volume

time-marching scheme is used to solve the governing equations. The stability re-

quirements for this scheme are reviewed along with some convergence acceleration

techniques. Finally the boundary conditions are formulated for two-dimensional

airfoil and quasi-three-dimensional cascade cases. Initial conditions used in the

quasi-three-dimensional cascade cases are also discussed.

3.1 Finite-Volume Spatial Discretization

For turbulent flow calculations the turbulence transport equations and mean

flow equations may be solved in either a coupled or a decoupled manner. Although

the coupling approach gives a single system of equations which simultaneously

governs the mean flow and the turbulence properties, it is noted in Reference [42]

that there is no advantage to numerically coupling these equations in terms of

either convergence rate or accuracy. On the other hand, the decoupled approach

allows the two set of equations to be treated separately using different numerical

schemes. In axtdition, different turbulence models can be easily incorporated into

the mean flow solver without major program modification. Since the objective

here is to develop a flexible and robust solution scheme for complex flow problems,

the decoupled approach is employed. With the decoupled approach the mean flow

equations are marched in time using turbulence quantities frozen from last time

step. The turbulence transport equations are then integrated in time using frozen

mean flow properties.
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Figure 3.1 Control volume for the cell-vertex scheme.

Both the unsteady quasi-three-dimensional mean flow equations and turbulence

transport equations are solved on an unstructured triangular mesh using Jameson's

four-stage Runge-Kutta finite-volume time-marching scheme [58]. In the present

work, the cell-vertex finite-volume spatial discretization for triangular meshes [36,

55] is used. The truncation error of this formulation has been shown to be second

order for smooth grids and first order for general irregular meshes [70].

3.1.1 Mean Flow Equations

The quasi-three-dimensional mean flow equations can be expressed in an integral

form for control volume _ with a boundary surface cgV as follows:

0

In the cell-vertex finite-volume formulation flow properties are stored at the mesh

points (triangle vertices) with the control volume for each point i being the union of

all triangles with a common vertex at point i as shown in Figure 3.1. The volume

integral is then approximated using the mean value theorem, and the boundary
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integral is approximated using trapezoidal integration over the bounding surface.

This process results in the follow system of semi-discrete equations for each point i

d(E) + R((E)) = 0 (3.2)
dt

whereR((I)i)) is the residual

R((O,))- </_) (3.3)

and
N, N_

v, = _(,-h_),.AO,, = - _(,-hO),.A.-,,,
i--1 i=l

Q((E>)= E [(rh<f))k_0_-(h(#))_mk]
k=l

N,

- ReZ' E [(rh(J_))kAOk- (h(,_))kArn,] (3.4)
k--1

In the above expressions the subscript k refers to the k th segment of line bounding

the control volume, Ni denotes the total number of vertices of the control volume,

Vi is the area of the control volume, A0k and Arnk are the increments along segment

k, and the components of flux vectors, (Fk), (Gk), (/_k) and (Sk), axe taken as the

average of the nodal values for each end of the segment. An entire flux balance

throughout the flow field can be computed in one simple pass over all edges using

an edge-based data structure. The velocity gradient in (R_) and (5'h) are computed

using Gauss's theorem [61]:

Iv V CdV = lay ¢_dS (3.5)

where _ is the unit outward normal vector to dS. Using the same control volume

V, the above equation can be expressed as:

N, N_

0¢ 1 E(rh¢)kA0k ' 10_ 1 __,(h¢)_Amk (3.6)
O---m = V--:"k=l r O0 = --)2-_" k fl

Replacing ¢ with _ and _ gives the velocity gradient at each node. This completes

the discretization for the mean flow equations.



29

3.1.2 Turbulence Transport Equations

Differential transport equations are integrated in time using the same explicit

finite volume Runge-Kutta time integration scheme as the mean flow equations.

This is accomplished by first taking a volume integral of the transport equations.

Where possible the divergence theorem is then used to transform volume integrals

into corresponding boundary integrals. The resulting integral equations are then

discretized in space using the same cell-vertex finite-volume approximation as used

for the mean flow equations.

3.1.2.1 Baldwin-Barth One-Equation Model

The finite-volume discretization of the Baldwin-Barth one-equation model, Eq. (2.19),

involves two gradient operators, _7(_RT) and _Tvt, which results in a complicated

discretization. In order to simplify the discretization for the one-equation model,

the last two terms on the right-hand side of the equation are reformulated using

vector identities. This yields

.... _-_, xz(_)
Ge / (Yc

(3.7)

Substituting Eq. (3.7) into Eq. (2.19) and integrating over volume l; gives the

following integral form:

+
fie Ge i

(3.s)

Using the mean value theorem for the volume integrals and trapezoidal integration

for the boundary integrals yields

dt
+ R(_RT)i = 0 (3.9)

where the residual, R(vRT)i is expressed as:
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and

I( -- NiRen )?i _rcI i k=l

1 y_-_t,((R,)rhAO-(SB)hA=),
O'e k=l

(3.10)

In the above expression the production term, 7), is simplified using an approxima-

tion suggested in Reference [26]. In Cartesian coordinates, it is described as

_ Ou Or. 2

7_ -- fits 2 - v,(b--_y + _zz) (3.11)

In the quasi-three-dimensional coordinate system (m, 0), S is given as

OVo IOV= [1 dr_
S = 0"_ + V0 (3.12)

The values of (RB) and (Ss) are computed by replacing _ with ('ffRT) in Eq. (3.6).

For the Baldwin-Barth one-equation turbulence model, wall units or wall dis-

tance is used to account for near-wall viscous effects on turbulence. In addition

to employing mean flow quantities, the wall distance, Ay,,_u, or wall units, y+, on

which damping functions depend have to be evaluated in order to compute the

turbulence quantities.

The definition of the wall units is given by

_1+= AY"_n_/r'ai/P"_ (3.13)
b'wadl

where ay,,_l is the minimum distance from a vertex point to the wall. Other

properties are evaluated at the nearest wall location. Based upon the procedure

suggested by Barth [7], the evaluation of y+ is implemented as follow:

Step 1. Compute the minimum distance from each vertex point to boundary edges.

Step 2. Store information concerning the corresponding boundary edge and weight

factor for interpolation of the physical quantities on the boundary edge.
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The local wall shear stress, density and viscosity can be interpolated using informa-

tion stored in step 2. From this information and the minimum distance obtained

in step 1, y+ can be evaluated at each point.

3.1.2.2 Chien Low Reynolds Number k - e Model:

In a similar manner, the finite-volume discretization of Chien's k - e equations,

Eqs. (2.21), gives

dt + R((Uk,))i =0 (3.14)

where R((Uk,))i is the residual of the k- e equations

R((0k,)), = Q((Uk,)), ReZl(f,k,), (3.15)
Vi

and

N.

= Z
k=l

Ni

k--1

(3.16)

The definitions of (0k,),, (fk,)k, ((_k,)t, (/_k,)h, (ffk,)_, and (/(k,)i can be obtained

in Eqs. (2.21). The wall distance, Ay,,.a, and wall units, y+, which are used to

account for the near-wall viscous effect on turbulence are evaluated using the same

procedures described for the Baldwin-Barth one-equation model.

3.2 Artificial Dissipation

The finite-volume spatial discretization used here is equivalent to a central dig

ference scheme. As with other central difference schemes applied to inviscid flow

problems, additional artificial dissipation is required to damp out the high fre-

quency error modes. In viscous flow computations, artificial dissipation is required

in convective dominated regions of the flow field. Even though the viscous terms

provide physical dissipation in the viscous flow regions, a small mesh length scale is

required in all directions to provide enough resolution for the shear stress terms. In
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practical applications fine mesh spacing is only employed in the direction across to

the boundary layer, so the artificial dissipation is still necessary in the streamwise

direction for viscous flows.

In inviscid flow calculations, the adaptive artificial dissipation introduced by

Jameson and Mavriplis [36, 58] is used to suppress odd-even point decoupling.

This model is composed of a blend harmonic(Laplacian) and biharmonic operators

which provide a weak but sufficient dissipative term throughout the smooth regions

of the flow and a stronger dissipation to suppress oscillations in the regions near

shock waves.

For the control volume shown in Figure 3.1 the conservative form of the dissi-

pation operator is given

D(<O,>)=

by

)_ji ----

j=l

N,

S(<oj>-
j----1

+ ,x,)/2, =
N,

e 'E_='((pj) - (P')) ' = max(0, d'- e_)
Ef=',(<pj>+ <p,>)' 'J

2
ej

(3.1"/)

In the above dissipation formula, ,_./i, the average spectral radius of the Euler Jaco-

bian matrix at the cell face is estimated using the value of V/At', 12_is the volume

of the control volume, At" is the time step limit for a Courant number of unity, and

d and d' are constants. ,_ji is chosen to provide a proper scaling in these equations.

2 and 4 provide the desired2 is proportional to a Laplacian of the pressure, ej ejej

switch between the harmonic and biharmonic operators.

In viscous flow computations, high aspect ratio meshes are usually used to re-

solve shear layers. Because the mesh length scales in the normal and tangential

directions to the body are so different, the nearly isotropic scaling, ,_ji, used in

inviscid flow calculations may produce excessive dissipation in the tangential di-

rection and therefore reduce accuracy of the viscous calculations. To alleviate this
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problem, an anisotropic scaling has been introduced to provide different scales for

different mesh coordinate directions on high aspect ratio cells.

3.2.1 Eigenvalue Scaling

For structured mesh calculations, the eigenvalue scaling approach [15] gives

{A_, for _- direction
Aj, - (3.18)

A_, for y/- direction

where A_ and A_ are the maximum eigenvalues for the Euler Jacobian matrices in

each mesh coordinate direction:

= (Iv l+ a)A , = (1¼1+ a)6 (3.19)

Since there is no apparent mesh coordinate direction for unstructured meshes, a

scaling is performed on each edge of a control volume in order to extend this ap-

proach to the present unstructured scheme. Consider a local coordinate system

(n, s) on which s is tangential to the edge (ji), and n is normal to the edge. Then

the directional eigenvalue along edge (ji) direction can be estimated as:

A.-- (1¢,1+  )An (3.20)

In the above expression, V, is the s-component velocity, An is the length scale in

the tangential direction to edge (ji), and a is the sound speed. Using information

at points i and j we can estimated all the required parameters in Eq. (3.20) except

for An. Further information is required to estimate An.

In the edge-based data structure, an additional triangle on either side of the

edge can be constructed, the distance between centroids of these triangles is used

to estimate the normal length scale An. Replacing the Aid with the directional

eigenvalue A, gives the anisotropic scaling for large aspect ratio unstructured mesh

cells.

Although the anisotropic scaling gives appropriate dissipation on large aspect

ratio meshes, various investigators have found that such a scaling may not produce
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enough dissipation when mesh becomes highly stretched. This leads to slow con-

vergence. To overcome this problem, a new scaling based on the combination of

isotropic and anisotropic scaling was introduced by Martinelli [52]. On a structured

On the present unstructured mesh, it is modified as

- (3.22)

In the above expression, _ is a constant. 1. is the eigenvalue in the direction normal

to the edge and is given as

,X, = (IV, I + a)A, (3.23)

where V. is the n-component velocity and As is computed as the distance between

points i and j.

3.2.2 Local Velocity Scaling

For viscous computations, the physical dissipation in near wall regions produces

enough dissipation in the direction normal to a surface, because a fine mesh spacing

is used in this direction. This allows the artificial dissipation term in the normal

direction to be reduced. In the present approach, a local velocity scaling is incor-

porated into the directional eigenvalue scaling. That is

,Xj/= [q2sin20+cos20] ,_o 1 + _-

where q is the local total velocity and 0 is the angle between edge (ij) and a vector

tangential to the nearest wall location.

Adding the modified artificial dissipation to Eqs. (3.3), (3.9), and (3.14) results

in the final form of the finite-volume spatial discretization:

n(((r,)) = _[Q((0,))- D((U,>)I- K((Ui)) (3.25)
vi

mesh, the scaling becomes
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The dissipation term adds a third-order error in smooth regions of the flow, and a

first-order error near shock waves, so a second-order accurate finite-volume scheme

is preserved except in regions close to shock waves.

The implementation of the dissipative terms requires two loops over all the edges

in the domain. In the first loop a harmonic (Laplacian) operator is computed at each

node. In the second loop the blended adaptive artificial dissipation is obtained by

simultaneously collecting the Laplacian terms needed for the biharmonic operator

and the terms for the harmonic operator.

3.3 Runge-Kutta Time-Integration Scheme

The semi-discrete equations are integrated in time using the following q-stage

Runge- Kut t a scheme:

(Q(0) = (0)n

(0)(1) = /Q(°)-_,AtR((0)(°))

: (3.26)

= (0)(0)- _,__AtR((0{0-2))

(Q(,) = (Q(0) _ o, AtR((Q(0-_))=/Q _+_

where the superscriptsin parentheses representthe particularstage of the scheme.

(U)" denotes the value of (U) at time step n, crl,...,c_qare the coefficientsof the

particularmulti-stagescheme, and R({U)) isthe residualof the spatialdiscretiza-

tion as given in Eq. (3.25). Runge-Kutta schemes were originallydeveloped for

high temporal accuracy. However, for steady-stateproblems, time accuracy isnot

as important as efficiencyof the scheme. This has led to the use of hybrid mul-

tistageschemes which allow the convective and dissipativeterms to be evaluated

separately.

For the resultspresented here a standard four-stageRunge-Kutta scheme with

coefficientsal - 1/4, a2 = I/3, a3 -" I/2 and a4 --I isused. The viscousoperator

((/_),(S)) and the artificialdissipationoperator D((0i)) are evaluated in the first
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stage step and frozen for subsequent stages. In this way the CPU time required for

the evaluation of the dissipative term is reduced by a factor of four.

3.3.1 Stability Criteria

The time step for all explicit time marching schemes is restricted by some sta-

bility limit usually expressed in terms of the CFL number. For the Euler equations

the maximum allowable time step is described as:

At = CFL. Ate (3.27)

where Ate is the convective time step. For the Navier-Stokes equations the time

step limits [54] due to both convective and diffusive effects must be considered,

which may be expressed as:

CFL Atc. At,
At = Ate + At,,

(3.28)

where CFL is the Courant number and At_ is the diffusive time step.

The Courant number for the multi-stage scheme is obtained by performing the

yon Neumann stability analysis for the one-dimensional model problem:

ut + u_ + pAz3u_x_x = 0 (3.29)

The stability region for the hybrid multi-stage scheme depends on the discrete spa-

tial operator, the coefficients, ai, the number of stages, q, the manner of evaluations

of the artificial dissipation, and the smoothing coefficient, p. Although for a m-stage

scheme a maximum allowable stability limit, CFL _< m- 1, can be obtained through

optimizing the coefficients, ai, such a scheme is not necessarily optimal in terms

of computational effort or accuracy. The present four-stage Runge-Kutta scheme,

using the centered difference operator with the dissipation computed in the first

stage and frozen for subsequent stages, has been shown to be stable with a Courant

number CFL < 2.6 for the one-dimensional model problem with p = 1/32. Note

that this analysis only provides a reference value of the maximum Courant number
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for the present scheme. In practical applications values less than the maximum

Courant number might be needed to assure stability.

The values of Ate and At_ are obtained by performing the von Neumann sta-

bilityanalysison the finitedifferenceequations. Since itisnot possible to perform

a stabilityanalysisdirectlyon the present unstructured scheme, the stabilitylimit

for the multi-stage scheme willbe inferredfrom the corresponding structured for-

mulation. The time steps Ate and At_ for a general two dimensional structured

mesh [43] are given as:

where

Vi Vi

Ate = Ace + Ac_' At_ = A_¢ + A,_ (3.30)

.xo,= (Iv_l+ _)A,7, .x_.,= (IvJ + _)A_

_,= _v, (p>(p,). 3--_A_zx_

a., = R_v, L(py(p,).a'?_+ aCa_

Although the edge-based approach provides local mesh coordinate information for

evaluating the above equations, it is expensive to compute all the information for

each edge. In order to reduce the work of evaluating the time steps in the present

unstructured scheme, the above equations axe simplified using time steps in the

and r/directions.

At_ = min{At:,, Ate.}, At, = min{At,,,, At,,.} (3.31)

After neglecting the cross terms in A_, the time steps in the _ and r/ directions

might be described as:

A_ A,I
= -- At_ =Ato, IV_l+,,' IV,,I+ a

Lxt,,.= ReLAP(P)(P")"
47_
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For the cell-vertex unstructured scheme, it is not necessary to compute the time

steps in both tangential and normal directions for every edge, because the tangential

direction of an edge can be approximated by a normal direction of another edge

when looping over all the edges of a control volume. In the present work, the

time step on the direction normal to a edge is used. Therefore, the time steps

corresponding to unit Courant number on each edge may be rewritten as:

At,, ReL(P)(P')'Ar_}k (3.32)
At°. = At.. = {

In the above expression subscript k denotes the k th edge surrounding the control

volume, At,, is the normal distance from interior point i to the edge, Ar, is the

distance between two end points of the edge, velocity 1_ and speed of sound a are

taken as averaged values along edge k, ff is the unit vector normal to the edge, and

(]I_. _] + a), is the maximum wave propagation speed along the direction normal

to the edge.

In order to advance the solution in time with the maximum allowable speed,

the maximum CFL number is always applied in the estimation of time steps.

3.3.2 Local Time-Stepping

If only the steady state solution is of interest, convergence to the steady state

solution may be accelerated by sacrificing the time accuracy and marching the equa-

tions at each node in time by the maximum permissible time step, as determined by

a local stability analysis. Based on the above edge-based approach the permissible

time step at node i may be taken as the minimum of the allowable time steps from

all surrounding edges to that node.

/xtc, = min{Atch} , ,_t., = min{At.h}
kENi kENi

At_ • At,,,

Ati = CFI.m_ AL, + At.,
(3.33)
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3.3.3 Implicit ResidualAveraging

Another simple method of increasing the allowable time step is implicit residual

averaging. The concept of implicit residual averaging is to increase the stability

limit of the basic time-integration scheme by implicitly smoothing the residuals.

The implementation is performed by implicitly solving the equation:

_-= _+_72_ • (3.34)

where if_s are the smoothed residuals, and e is a smoothing coefficient. The stability

limit of the smoothed scheme can be estimated using the following inequality [34]:

1 f CFL _ ) (3.35)

where CFL" isthe Courant number of the unsmoothed scheme.

For the unstructured formulation, a Jacobi iterationmethod has been sug-

gested [58]for solving the implicitresidual smoothed equation. Due to the fact

that the computational work involved in solving Eq. (3.34)should not outweight

the gain in convergence rate,two iterationswere employed. With the same Lapla-

clan operator as in the artificialdissipativeterm, the Jacobi iterationscheme gives

i_/+ , = R/-i-e EI,N_I/_ (3.36)
1 +Nie

It is important to note that the Jacobi iteration method converges slowly unless

the matrix is strongly diagonally dominant. This implies that a small value of e is

required and this restricts the increase of the stability limit. In the present work,

it has been found that using two Jacobi iterations with e = 0.5 saves about 20 %

in CPU time.

In order to improve the performance of the residual averaging method, an alter-

nate iterative method using an approximate factorization is employed to enhance

the convergence in solving Eq. (3.34). In matrix form, Eq. (3.34) gives

[M,#]/_. = R, (3.37)
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[Mij] can be factorized using the corresponding diagonal lumped mass matrix [63],

that is

[M,j I = [Do] + ([M/j] - [D,j] ) (3.38)

where
N

j=l

Substituting Eq. (3.38) into Eq. (3.37) gives

[Do] 6[_ = Ri -[M61 [_'_

/_+1 =/_ + 6/_ (3.39)

The above equation can be simplified as:

R_ + eN,[_ + e _N, [_ (3.40)
,_/+1 __

l+2N_e

This method requires about the same computing work as the Jacobi iteration

method. The advantage in this iteration scheme is that the value of _ can be

increased up to 1.0 with a resulting 40 % savings in CPU time. This method is

used in the present work.

3.4 Initial Conditions

As mentioned previously, the mean flow equations and turbulence transport

equations represent an initial-boundary-value problem. Appropriate initial and

boundary conditions are needed to solve these equations. For steady state solutions,

initial conditions are used only as a starting point for time-marching and only affect

the convergence rate to the steady state solution. However, the imposed conditions

should not be so inconsistent that the time-marching scheme diverges.

3.4.1 Mean Flow Equations

For external flows initial conditions are not critical to the iteration, and uni-

form freestream conditions are generally imposed. For turbomachinery applications,
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there is usually high loading and high turning of the flow. It is not generally pos-

sible to start a solution with constant initial conditions. In the present work the

quasi-one-dimensional solution introduced by Chima [18] is imposed to provide a

smooth variation of initial flow conditions.

For quasi-one-dimensional flows with area change the continuity and energy

equations which state the conservation of mass and rothalpy are

_a = prhAOW cos a = constant (3.41)

1 _2n2
I = CpT' - rflVo = CpT" - _r _ = constant (3.42)

where ()' and O" values denote absolute and relative total conditions, respectively,

A8 is the blade spacing, and I is the rothalpy. For flow outside the blade row the

free vortex flow assumption gives

r_ = constant (3.43)

From Eq. (3.41) the relative total velocity can be described as

W2 m )2+wl

From the isentropic relations we have

So_

T W 2
---'1

T" 2CpT"

w2 )_
p = p"(1 2CpT"

Using these relations Eq. (3.44) may be rewritten as

W2_ _2(1 W 2 .
2 vT';)'- - w,' = o

where

rh

frhA8

(3.44)

(3.45)

(3.46)
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Within the blade row the free vortex assumption is replaced with the assumption

that the flow angle a varies linearly through the blade row. The relative total

velocity can be described as

w - ¢(1

where

W 2 __

2CpT,;) ",---'T= 0 (3.47)

rh

frhAO cos

After the inflow conditions and the relative flow angle at the trailing edge are

specified, the solution of the quasi-one-dimensional flow can be obtained from up-

stream to downstream. For each point upstream of the blade the relative total

velocity is obtained using a Newton iteration method to solve Eq. (3.44). Other

flow properties axe then obtained thru Eq. (3.43), constant rothalpy, and the isen-

tropic relations. Within the blade row Eq. (3.47) is solved for W. Once the flow

condition are computed at trailing edge, Eq. (3.46) is used again for the downstream

region.

The quasi-one-dimensional solution is not necessarily consistent with the flow

tangency or the no-slip condition. To avoid an abrupt change of flux at a near wall

cell, the flow tangency or no-slip condition is enforced at the blade surface and a

smoothing operator is then used to smooth the flow quantities near blade edges.

3.4.2 Turbulence Transport Equations

For the Baldwin-Barth one-equation model, the turbulence field variable is ini-

tialized using specified freestream turbulent viscosity:

RT = RToo < 1

For the Chien low Reynolds number k - e model, the initial distribution of 1¢and

are based on specified freestream turbulent viscosity and turbulence intensity. The

turbulence intensity is defined as

Too- _/] _:OO (3.48)
voo
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In the present work, the values of T_o and ZTtoo are specified as

Too <-0.1%, JTtoo< 1 (3.49)

Substituting Eq. (3.49) into Eq. (3.48) yields the freestream turbulent kinetic en-

ergy. Then, the freestream dissipation rate can be obtained as

3.5 Boundary Conditions

For a cell-vertex scheme flow properties are required at boundary nodes. In

the two-dimensional or quasi-three-dimensional mean-flow equations four bound-

axy conditions are required along each boundary of the domain. In addition to the

physical boundary conditions mentioned in the previous chapter, additional nu-

merical boundary conditions might be needed to close the set of equations. When

differential turbulence transport equations are used for the closure of the Favre-

averaged Navier-Stokes equations, additional boundary conditions are required on

each differential transport equation. The boundary conditions depend on the type

of turbulence models used.

3.5.1 Inflow/Outflow Boundary Conditions

At inflow and outflow boundaries, a nonreflecting or radiation boundary condi-

tion based on a characteristic analysis is implemented to allow the numerical errors

to propagate out of the domain. The idea of a characteristic formulation is try to

correctly capture the physics of the flow in terms of a wave propagation problem by

considering the characteristic waves in incoming and outgoing directions separately.

For the incoming waves, the characteristic variables are held at prescribed values,

while for outgoing waves the variables are extrapolated from the interior.

The characteristic formulation is derived in a local coordinate system tangential

and normal to the boundary. Assuming the normal variation to be much larger than

the tangential variation of state variables U, the Euler equations may be expressed
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as

where

(3.50)

9--

A = Diag{_l, A2, A3, A4}

p - p/a 2

q8

(q. + pl#a)lv 

(-q. + pl#a)lv 

A2

A3

A4

#,,

#,_+a

#,,-a

(3.51)

where W_ is the characteristic variable, Ai is the associated wave speed, n is the

local unit inward normal vector to the boundary, and q,, and qo are the normal and

tangential velocities, respectively. Barred values are evaluated using values frozen

from the last Runge-Kutta stage step.

Along each characteristic line defined by the corresponding wave speed, Eq. (3.50)

reduces to a set of ordinary differential equations. That is,

dWi = O, along dn
d-'T -_- = A, (3.52)

Employing Eq. (3.52) along the boundaries of the computational domain gives

characteristic formulations for solving for the flow properties at boundary nodes.

The discrete form of F_,q. (3.52) involves the characteristic variables propagating

from outside the domain as well as from the interior. The characteristic variable

IV/ must be specified if the corresponding wave speed Ai originates from outside

the domain. Otherwise, it is extrapolated from the interior. Based on the local

velocity normal to the boundary (see Figure 3.2), there are four possible boundary

formulations summarized as follows:

For subsonic inflow (0 < _,, < a ), there are three incoming waves corresponding

to A1, A2 and Az, and one outgoing wave corresponding to A4. Therefore, the char-

acteristic variables, W1, W2, and W3 are prescribed and W4 is extrapolated from

the interior. This leads to the following system of equations.
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Figure 3.2 Characteristics at far field boundaries.

- _/a2 = pp. - _./a 2

qob = q_'p,

q._ + _,,/,_a = q.,,. + m../_a

-q._ + _l_a = -q.., + p.,Ipa (3.53)

where the subscripts b, pr, and ex represent the boundary, prescribed, and extrap-

olated values, respectively. Solving Eq. (3.53) for the boundary values gives

qsb -" qspr

1 [p,=+ PD,+ pa(q.p,

Pb -" Ppr + (J_ --_r)/a 2

q., -" %p, + (Pp_ - pb)/f_ (3.54)

For supersonic inflow (0 < a < q,_), all four waves (Ai) come inward, so all four

characteristic variables (Wi) are prescribed. This is equivalent to prescribing all
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four flow properties.

q°b = qJpr

Pb = Ppr

Pb ---- PP_

q_b --- qnpr (3.55)

For subsonic outflow (-a < #,, < 0), there is only incoming wave corresponding

to As, and thus the corresponding characteristic variable W3 is prescribed. Using

the same procedure as for the subsonic inflow case the boundary values are obtained

as

q'b -- qsP'

1 [p,,= -I- ppr -!- _a(q,,p,=

Pb = P°,+ (Pb--P.=)/a2

q,,b "- q,_, -t- (Pb - Pef)IPd (3.56)

For supersonic outflow (4,, < -d), all four waves hl propagate from the interior,

therefore all four characteristic variables Wi are extrapolated from the interior.

This is equivalent to extrapolating all flow properties from the interior.

q0b = q°o.

Pb = pex

Pb = P_x

qnb - q_. (3.57)

When the prescribed and the extrapolated values are given, these relations, Eqs. (3.54)

to (3.57), determine the primitive variables p, q,, q°, and p at the boundary. Energy

is obtained from the equation of state.

For the two-dimensional airfoil case the far field boundary is, in practice, placed

at a finite distance from the airfoil. In order to accurately approximate the asymp-

totic state of a uniform freestream condition the far field boundary must be placed
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at a distance of O(100) airfoil chord lengths from the airfoil. For subsonic flows the

distance from the outer boundary of the domain to the airfoil can be reduced by re-

placing the uniform freestream far field condition with the vortex far field boundary

condition. Based on the work of Usab [83] the vortex far field boundary condition is

defined by the combination of freestream and a compressible point vortex centered

at the airfoil quarter chord. Use of the point vortex correction allows a reduction

in the distance to the far field boundary by a factor of 10 [21].

For turbomachinery applications the total pressure, total temperature and whirl

rV0 are specified at the inlet with exit pressure imposed at the outlet. In order

to expficitly prescribe these quantities, an alternate boundary formulation based

on Riemann invariants is used at the inlet boundary. At the outlet boundary a

characteristic formulation is used.

The Pdemann invariant formulation is based on the work of Chima [18]. In

this formulation, an upstream-running Riemann invariant is extrapolated from the

domain interior:

0.R-=

where

1 dr 1 dh ]1 (vo (3.58)
V,,, - a

2a

R- -" Vm
7-1

is the upstream-running Riemann invariant.

For subsonic flow at the inlet the Riemann invariant is extrapolated using

backward-differencing in Eq. (3.58). Based on R-, the isentropic relation, the

specified total temperature and whirl rV0, the velocity V,,, at the boundary is given

by:

('y - 1)R- + x/(')' + 1)(4CpT'- 2Vo2) - 2(7 - 1)(R-) 2

V,,, = (-/+ I) (3.59)

Density and pressure are computed using the isentropic relations and the specified

inlet conditions. The nondimensional specified total pressure and total temperature

yield the total density:
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From R-, Vm, and rVs, the total velocity and speed of sound at inlet boundary are

found:

 -l(v _n-)
ab - 2 (3.60)

Then, the isentropic relations and equation of state give:

..7-2.

t_ = Pll+

1

eb - N + _ (E2
7- 1 "2"" '_ + v'_) (3"61/

For supersonic inflow all four quantities are specified.

At the outlet, the characteristic formulation with prescribed exit pressure are

used for subsonic flow, while all four variables are extrapolated from the interior

on supersonic flow.

3.5.2 Solid Wall Boundary Conditions

The cell-vertex scheme flux balance is evaluated using flow properties at node

points. This requires boundary values to be updated at each time step. For inviscid

flow calculations, the flow tangency condition is enforced at wall. Along solid wall

boundaries the imposition of the no flux condition in flux balance calculations

does not guarantee that the flow tangency condition will be satisfied. To enforce

the flow tangency condition the solid wall boundary conditions are implemented

in a predictor-corrector manner using a characteristic analysis. With qn = 0 in

Eq. (3.51) the characteristic formulation shows one outgoing wave requiring one

prescribed condition.

The state variables are first predicted based on the Runge-Kutta scheme:

/._p = U" q- A/_ (3.62)
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Substituting the condition q,, = 0 and the other variables from the predicted state

into Eel. (3.51) results in a characteristic formulation of the solid wall boundary

conditions. The boundary values are then corrected using the following formulation.

qn¢ "- 0

q._ -'q.p

pc = pp + q.,pa

p_ = pp+q.,p/a (3.63)

where the subscripts p and c represent the predicted and corrected values, respec-

tively. Again energy is computed using the equation of state.

For viscous flow calculations, the no slip condition with either adiabatic or

isothermal wall condition is specified at the wall. For the cell-vertex scheme an

additional numerical boundary condition is required to update all boundary flow

properties. In practice a zero normal pressure gradient is imposed at the wall. The

boundary conditions imposed at the wall are

T = T.,ah

(Op). u =o

OT
or (_--'--_,_!1 = 0

Density is computed using the isentropic relations and equation of state.

3.5.3 Periodic Boundary Conditions

(3.64)

For a single-blade-passage a spatial periodic boundary condition is imposed on

the upper and lower boundaries between which an equal pitch spacing is maintained

from inlet to exit. In the present approach the points are placed on boundaries

and no imaginary cells are placed outside periodic boundaries. Along the periodic

boundaries the flux balance is performed in the same way as at the interior points.

The net change at a boundary point is simply the sum of the partial sums from the

corresponding points on the upper and lower boundaries (see Figure 3.3).
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Figure 3.3 Flux balance implementation for periodic boundary points.

3.5.4 Special Boundary Conditions

For turbomachinery applications special boundary conditions are required. Blades

designed on an analytical basis provide good test cases for the validation of numer-

ical methods. Many of these cases have an open profile at the blade trailing edge.

Changing the blade shape to close the trailing edge often results in a very different

solution. In order to obtain an accurate numerical solution, the nonclosed trailing

edge needs to be correctly modeled. One example of a nonclosed profile is the "vis-

cous" blade profile obtained by adding the boundary layer displacement thickness

to a physical blade. The inviscid solution computed using this "viscous" profile is

equivalent to an inviscid solution about the true blade with surface injection used

to account for the boundary layer displacement effects. Based on this analogy the

nonclosed trailing edge is modeled as a free jet which accounts for the boundary

layer displacement inviscidly.

In the present work, the nonclosed trailing edge is modeled as a uniform free

jet at the blade trailing edge. The uniform flow properties are evaluated using the

averaged values of the upper and lower blade surface properties at the trailing edge

(see Figure 3.4):
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pj = (pL+ p_)/2

uj = (uL+uv)/2

vj = (¢" + vu)/2

ej "- (e L -t- eU)/2 (3._)

where the subscript j denotes the jet flow and the superscripts L and U represent

the lower and the upper end points, respectively. Pressure is obtained from the

isentropic relations and equation of state.

Figure 3.4 Uniform jet assumption at the nonclosed trailing edge.

For turbomachinery applications the exit pressure is set or measured in an av-

eraged (mass- or area-averaged)sense. For a uniform outlet flow this is numerically

equivalent to specifying a constant pressure at the exit. However, there are situa-

tions in which the exit flow is not uniform. For example, a turbine blade operating

at a high speed it is likely to have oblique shock or expansion waves which propagate

to the exit boundary. If the axial exit velocity is subsonic, one boundary condition

is still required. Because the exit flow is not uniform, it is physically inappropriate

to specify a uniform exit pressure at the exit. Therefore, nonuniform exit boundary

conditions axe required.

In order to account for the nonuniformity the exit pressure is imposed in a

predictor/corrector fashion. In the predictor step the state variables are extrap-

olated from the interior and a mass- or area-averaged exit pressure is evaluated

using the extrapolated value. The exit pressure is then corrected by subtracting
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the differencebetweenthe specifiedand the predictedaveragedexit pressurefrom

the extrapolated value:

Ap = P, zit-P_,,_,

pc - Pp+AP (3.66)

where the subscripts c and ez denote the predicted and corrected state, respectively,

p,.v, is a predicted averaged value, and exit represents the specified exit value.

A variation of this boundary condition is that the exit pressure is only known at

one boundary point. Since there is no averaged exit pressure available, the nonuni-

form exit pressure is imposed using a slight modification of the above procedure. In

Eq. (3.66), the averaged pressure difference is replaced with the pressure difference

computed at one boundary node.

3.5.5 Boundary Conditions for the Turbulence Transport Equations

For the Baldwin-Barth one-equation model, the boundary conditions stated in

Reference [6] are used.

• Solid Walls: Specify/i_T = 0

• Inflow (V. _ < 0): Specify R'_ = (R'-_)oo < 1

• Outflow (V. _ > 0): Extrapolate R"_ from interior values

For Chien's low Reynolds number k - _ model, the boundary conditions listed in

Reference [43] are used.

• Solid Walls: Specify _¢= 0, and _"= 0

• Inflow (17. _ < 0): Specify 1¢= k_, and _"= _oo

• Outflow (V. _ > 0): Extrapolate t¢ and _"from interior values





53

4. MESH GENERATION

In the present work an adaptive remeshing procedure is applied to the resolution

of complex flow problems. With a solution adaptive method based on remeshing,

the mesh is recomputed periodically as the solution evolves. Therefore, the speed

at which a mesh can be generated is critical to the overall performance. For this

reason both the initial and adapted triangular meshes are generated using the

advancing front method developed by Peraire et al. [67]. This particular scheme also

allows a significant amount of control over local mesh properties with specification

of the local length scale, aspect ratio and orientation of triangles. As shown in

Reference [67] these mesh parameters provide a means of directionally adapting

the mesh. The present unstructured mesh generation scheme follows the work

described in References [67] and [48].

4.1 Advancing Front Method

The advancing front mesh generation scheme begins with the specification of

the domain boundaries and a background mesh on which nodal values of mesh

parameters $, a and s are prescribed. Referring to Figure 4.1, these mesh pa-

rameters define the characteristics of the elements to be generated: $ defines the

node spacing; s defines the stretching or aspect ratio; and ct defines the direction

of stretching. These three mesh parameters are assumed to have piecewise linear

spatial distribution over triangular elements of the background mesh. When a new

triangle is formed, the mesh parameters are first evaluated through interpolation

from the background mesh. Initially, the background mesh is constructed using a
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Figure 4.1 Definition of mesh parameters.

very coarse hand triangulation of the domain (e.g. see Figure 4.2). If the domain

is being remesbed the last mesh is used.

The first step of the mesh generation process involves generation of mesh points

on the boundary of the domain. This step is done in a predictor/corrector fashion

with a spline-fitting technique providing the boundary surface location. The two-

step process is described below with the example problem shown in Figure 4.3.

Assume background mesh information along the boundary of interest is known

(see Figure 4.3). The spline function is given in terms of an arc length tangent

to the boundary ranging from 0 to rnua. The coordinates (z, y) and the mesh

parameters axe expressed as function of r. Marching around the boundary, a new

list of boundary points with spacing based on the local value of 6 is generated

iteratively. The iteration process is described as follows.

Ft n

r_+ l -- ri + 6i+i/_

Starting with initial guess _+1/2 = 6_, r°+l is computed. The local value of _+_
._n+l

is interpolated from background mesh. Then new value of "i+1/_ is computed as a
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Figure 4.2 Boundary information and background mesh for NACA0012 airfoil.
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Figure 4.3 Boundary node generation using predictor-corrector process.

r
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Then, if a local minimum 5 exists within node i and i + 1, the location r and the

value 5 replaces the values at point i + 1.

The above procedure produces a smooth mesh spacing distribution if the value of

5 is in ascending order corresponding to the marching direction. In order to obtain

a smooth variation for a general distribution of 5, the boundary points and mesh

parameter distribution are first predicted marching backward around the domain

boundary using the above iterative scheme. Then, the boundary points distribution

is corrected marching forward around the domain boundary placing points on the

boundary using the mesh parameters obtained at the predictor step. There is no

need for iteration in the corrector step, because the predictor step provides a good

prediction of the boundary mesh space distribution 5.

These boundary points define the initial front list, a set of straight line segments

which connect consecutive boundary points as shown in Figure 4.4. Step by step

new triangles are then added alone the front and then absorbed into the front.

Starting with the shortest segment of the front, a new node is added within the

domain at a point determined by the local values of the mesh parameters and

specified mesh quality constraints (see [67]).

{ max(ati, 0.75att,) if at/< atf_
at = (4.1)

min (ati, 1.3atf_) if at/_ at_

where at represents the mesh parameters, 5, s, and a, and the subscripts i and fr

denote local value and value of the active front, respectively.

Based upon the local values of the stretching parameter, the Cartesian coordi-

nates (x, y) are transformed into elliptic coordinates (ze, ye), in which the triangles

mean of 6/and 5/'+1

5 +1 = 0.5(5/'+1+ 5,)+1/2

The above iteration is continued until convergence. In order to generate a smooth

distribution the following restriction is imposed:

5_'+_ = min(1.155,, 5_'+_ )
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, ,o//

Figure 4.4 Initial front set up.
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satisfying the stretching conditions will look "equilateral _. This transformation is

described as

/xe):El/so]ic-osinolcx Ye 0 1 -sina cosa y j

(4.2)

where s and a are the local values of mesh stretching and mesh orientation. In

elliptic space, a list of candidate nodes for the triangulation is created searching

the front nodes which lie inside of a circle formed by the new point and a specified

radius. The radius used in the present work is set equal to 1.66. The candidate

points are then sorted in ascending order according to their distance from the new

point. The new point is placed at the first place in the list if the distance from the

new point to the end points of the active front are less than 1.6L Otherwise, it is

placed at the end of the list.

A new triangle is formed using the active front face and the first node from

the candidate list which satisfies a criterion that any face of the new triangle can

not cross any existing front segment. The front list is then modified to include the
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faces of the new trianglein the front,while removing the triangleface adjoining

the previous front. After the new triangleiscreated the ellipticcoordinates axe

transformed back to the Cartesian coordinates.This process isrepeated untilthere

axe no segments in the front list,at which time the domain has been completely

filledwith triangulaxelements (e.g.,see Figure 4.5).

To improve the quality of the flow solutionscomputed on the new mesh the

followingthree additionaloperations axe performed in the present implementation.

First each node within the domain which is a vertex for lessthan 5 trianglesis

removed and the mesh isretriangulatedin the region of the removed node. Second,

diagonal swapping isperformed to remove any obtuse triangle.Ifthe angle between

any two sides of a triangle is greater than some specified angle ao,, the diagonal

of two adjacent triangles are to be swapped. In the present work as,, = 170 deg is

used. Last, the mesh is smoothed to remove any nonuniformities in the mesh using

a Laplacian type operator:

n

n j----1

where _,_+1 is the new location of the point Xi, n is the number of the neighboring

points and _ is the smoothing coe_cient. In the present work two smoothing passes

with _ - 1 axe used.

4.2 Structured Triangular Mesh Algorithm

The advancing front technique provides a flexible way to generate unstructured

triangular meshes for complex geometries. However, Hassan et al. [30] have recently

noted that the advancing front technique can only produce a maximum allowable

mesh stretching of about 10 in order to preserve mesh quality. In a preliminary

study of the directional mesh generation for viscous flow problems it has been

found that the unstructured mesh generation scheme used here can not produce

a good quality mesh when mesh stretching is greater than 20. For turbulent flow

calculations highly stretched meshes, where aspect ratios axe on the order of 100
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Figure 4.5 Intermediate and final mesh of NACA0012.
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to 1-,000, are usually employed to resolve the shear layers. It is obvious that a

stretching of O(10) is not sufficient.

In the present approach a structured triangular mesh is generated around bodies

to achieve high aspect ratio meshes within the boundary layer. Depending on the

shape of the trailing edge two types of meshes are used in the present work. A

C-type mesh is used if a blade has a wedged or cusped trailing edge and an O-type

mesh is employed when the blade has a rounded trailing edge.

4.2.1 O-Mesh Approach

For blades with rounded trailing edges, once the blade boundary nodes have

been determined the normal vector at every boundary node is defined. Radial

running mesh lines are generated using these normal vectors. A fixed number of

mesh points are then placed along each mesh line based on an algebraic stretching

algorithm. That is

AS_ = Si - S_-1 = _,,+ r_ -1, i = 1, N (4.4)

where 5'/indicates the normal distance from point i to the solid surface with the

initial value So = 0, and ro and N denote the algebraic stretching factor and total

number of points in the normal direction, respectively. The minimum normal mesh

scale,/_+, is defined as

= Ay.. (4.5)

In the above expression Ay,,_u is the physical wall distance corresponding to y+ - 1

and y+p, represents the allowable y+ value at the first layer off the wall.

The value of N is specified such that the aspect ratio of all cells in the outer

layer are in the range of 10 to 20. The total thickness of the structured mesh at

each station can be computed as:

N Ir o

ro -- 1

The above mesh is usually referred as an O-type mesh.

(4.6)
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4.2.2 C-Mesh Approach

At a wedged or cusped trailing edge the normal vectors on both upper and lower

surfac_ are different. It is appropriate to use the corresponding normal vector to

construct mesh lines on the upper and lower surfaces. This leads to a C-type mesh.

The mesh point location is determined using the same procedure as for the O-mesh.

In order to reduce the aspect ratio off the trailing edge, this mesh is extended in the

near-body wake region. First a mesh line is constructed along the bisector vector

of the trailing edge in the downstream direction. Then a number of grid points are

placed on this line using the algebraic stretching distribution

i 1
ASz, = AX0 min{AX,,_, r= -

r-_ 1 }' i -- 1, M (4.7)

where AX0 is the streamwise mesh size at the trailing edge, and AX_ and M

are user-specified constants which are in the range of 4-8 and 15-20, respectively.

The value of AX=_,x is specified to limit the growth of the streamwise mesh size at

wake regions.

After grid points are placed on the bisector line, mesh lines are generated on the

upper and lower sides of the bisector line at each node. The following distribution

is employed to smooth the angle between the bisector vector and the upper or lower

mesh line:

i

_? -- _E "+"(0BLI- OTUE) "_ (4.8)

i

0iL = 0LE + (0Bet--0TLE) _ (4.9)

In these expressions, the superscripts U and L represent the upper and lower sur-

faces, respectively, the subscripts TE and BI denote the trailing edge and the bi-

sector line, respectively, the subscript i denotes the i - th mesh line, M is the total

number of mesh lines, and 0 is the orientation of mesh lines.

Mesh points are then placed on these mesh lines using a distribution defined as:

r_ - I

AS,, = min{AY_u, Y0,-z---7}, j -- 1, N (4.10)
ry -- I
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_-i i I, M (4.11)Yo, =6v+rz , = "

where Y_ is used to reduce the mesh aspect ratios on the wake regions. The stretch-

ing factors, rffi and ry, are in the range of 1.1-1.35. Notice that the combination of

Ecl. (4.10) and Eq. (4.11) might produce a different number of mesh points on the

adjacent mesh lines. The use of quadrilateral meshes can only connect part of the

mesh points. Additional triangles are therefore placed to connect the remaining

mesh points.

After the quadrilateral meshes are constructed a structured triangular mesh

is generated by diagonally dividing each quadrilateral mesh cell into two triangles

(e.g., see Figure 4.6 and Figure 4.7). The initial front list is then updated to include

the faces of the outer layer of structured triangles in the front, while removing

the previous fronts which connect consecutive body boundary points. With the

new front list, the advancing front method is used to mesh the remaining domain.

Because the algebraic stretching algorithms, Eqs. (4.4), (4.10) and (4.11), relieve

the stretching ratio on the outer layer of the structured quadrilateral meshes, the

advancing front method can be employed without difficulty.
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Figure 4.6 O-type structured triangular mesh.

Figure 4.7 C-type structured triangular mesh.
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5. SOLUTION ADAPTATION ALGORITHM

This chapter presents a solution adaptive algorithm for both inviscid and tur-

bulent flow problems. Key elements in this algorithm are the definition of mesh

adaptation parameters, the convergence criteria for the flow solver and the con-

vergence criteria for the overall adaptation loop. The mesh adaptation parameters

are defined in terms of geometric and flow field information. For turbulent flow

problems additional length scale information is used to define the local structured

meshes.

5.1 Adaptive Remeshing Algorithm

In the present work, the flow solver and the advancing front mesh generator are

coupled together using a solution adaptation scheme which periodically remeshes

the solution domain to resolve the flow structure as the solution evolves. The

basic remeshing algorithm is shown schematically in Figure 5.1. The initialization

step generates an extremely coarse "hand-triangulation" of the solution domain

to be used as the initial background mesh. Mesh adaptation parameters are then

computed at nodes on this background mesh. Since no flow field information is

available at this point, the mesh adaptation parameters are set to constants or are

computed based on geometric information. With this information, a coarse initial

mesh is generated and the flow solver is called.

The solution is marched in time on the initial mesh until a prescribed steady-

state convergence criteria is met. Based on this initial solution, the solution adap-

tation parameters are computed using flow field and geometric information on the

initial mesh. The mesh is then regenerated and a new solution is computed. The
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Figure 5.1 Flow chart of adaptive remeshing algorithm.
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current solution isthen compared to the solutionon the previous mesh to check

for overMl convergence of the adaptation cycle. The adaptation cycle (outer loop

in Figure 5.1) is repeated until the differencebetween the current and previous

solutionsdrops below a prescribed convergence criterion.

5.2 Mesh Adaptation Parameters

In the advancing front method, the mesh adaptation parameters required for

generation of a new mesh axe the mesh length scale,6, the stretchingparameter,

s, and the stretchingdirectiondenoted by a. These mesh adaptation parameters

are computed using one or more chosen refinement parameters determined by the

currentsolutionand the geometry of the problem. The mesh length scaleparameter,

6,isdefinedin terms of two refinement parameters, one based on surfacegeometry

information and the second based on flow fieldinformation. Combined, these two

refinement parameters define the variationof 8 throughout the solution domain.

The mesh stretching parameter, a, and the stretching direction,a, are defined

in terms of additional flow fieldinformation such that the mesh orientationand

stretchingalignwith detected flow features.

5.2.1 Geometric Refinement Parameter

Along solid boundaries of the solution domain a refinement parameter based

on the local surface curvature is used. This parameter has been found to be very

important in transonic fan and compressor applications, where an accurate repre-

sentation of the blade geometry is critical to accurately setting up the flow structure

within the solution domain. This in turn improves the overall convergence of the

solution adaptive method. The geometric length scale parameter,/_o, is defined in

terms of the local radius of curvature of the surface, R/, as

2_P_

= (N.- I)" (5.1)

where Armisthe number of pointsequallyspaced on the arc,and (6o)iisthe distance

of the arc length between any two neighboring pointson the circumference ofa circle
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with radius/t4. For the solutions presented in the following sections, AT, is chosen

in the range of 10 to 40 depending on the resolution desired.

5.2.2 Flow Field Refinement Parameter

The goal of a solution adaptive scheme is to achieve an optimal mesh on which

the numerical error is uniformly distributed. Because the flow solution is not known

in advance, a quantitative estimate of numerical errors must be developed. These

errors can be estimated in many different ways. A review of various approaches is

given by Morgan and Pera_re [63]. Morgan and Peraire note that solution refine-

ment parameters based on either first- or second-derivatives work well and are very

economical. In the present work two sets of solution refinement parameters have

been investigated.

5.2.2.1 Second-Derivative Refinement Parameters

In Reference [63] Morgan and Peraire introduce refinement parameters based

on a local interpolation error analysis for a piecewise linear discrete approximation.

In one dimension, the interpolation error is estimated by

S la  iax I

where _ is the mesh spacing and _b is some flow variable. An optimal mesh is

determined by the requirement that the distribution of local numerical errors is

uniform. This gives

IO-_x21= constant (5.2)

For two-dimensional problems, the discretization errors are represented by the

tensor of second derivatives which is given by

[ 02 /Ox 2 02 /OxOy ]O2 /OxOy 02 /Oy 2

This is a real symmetric tensor. For a real symmetric tensor, it can be shown that

the eigenvalues are all real and the corresponding eigenvectors are orthogonal [4].
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The coordinates parallel to the eigenvectors are referred to as the principal axes.

Morgan and Peralre invoke the orthogonality of the principal axes and introduce

refinement parameters based on the second derivatives computed along the local

principal directions, Xt and X2. This is equivalent to computing the eigenvalues of

the local second derivative tensor.

02¢ 02¢
l.X,l > ].X2] (5.3)

To achieve an optimal two-dimensional mesh, the requirement of uniform dis-

tribution of local numerical errors is applied to all directions. This leads to

a_l_,l = _ffl_21-- a_-_ - constant (5.4)

s = ,2/*, = V'l_,l/l_21

The mesh orientation is simply defined as the angle between the principal axes and

the Cartesian coordinates. That is

Or=2 tan-I _ OZOy _ OX 2 a_' ) )

The advantage of this approach is that the discretization error is evaluated on

a theoretical basis and all three mesh parameters are uniquely defined. However,

the second derivatives tend to produce large errors when there is a perturbation

in the solution domain. For example, for transonic flow problems, a standard flow

solver smears shock waves over several points and also produces Gibbs phenomena

near shock wave locations. Computing second derivatives based on this solution

gives the largest value of AI on either side of the shock wave and a small value at

the center of the shock wave. When a new mesh is generated, small mesh cells are

(5.5)

.,#

where 61 and /i2 are the mesh spacings in the local principal directions Xx and

)_2, respectively, /fmin is an user-specified minimum mesh spacing, and A=.. is the

maximum value of ]Al] over the whole domain. The aspect ratio of mesh cells is

determined as the ratio of the two mesh spacings:
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constructedon either side of the shock wave and bigger mesh cells me constructed

at the center of the shock wave. Thus, the new mesh fails to accurately resolve the

shock wave. This problem can be alleviated by using either a high resolution flow

solver or a refinement parameter based on lower-order derivatives. In the present

work, the latter is used.

5.2.2.2 First-Derivative Refinement Parameters

For the present adaptive solution method, a refinement parameter based on the

gradient of a certain flow property is developed. The refinement parameter, the

absolute value of the gradient of a specified flow property, ¢, is computed at every

node.

/ a¢) 2 0¢'2 (5.7)
9, =1 V( +(NJ

A quantitative local numerical error is estimated by

The v_a'iation of $ within the solution domain is defined such that the above quantity

is constant over the whole domain:

6l V ¢'l = $g_ = $mhg_ = constant (5.s)

where _,,_ is a user-specified minimum mesh spacing, and gm_ is the maximum

value of IV ¢1 over the whole domain. The mesh orientation is computed based on

the gradient direction.

fo,/o, 
a = tan-' k_-_y _xx/ (5.9)

_¢ only is used to define two mesh parameters. Although second-order derivative

terms can be used to estimate the mesh stretching parameter, s, this leads to the

original problem addressed in the previous section. For complicated flow structures

the combined effect of the mesh stretching parameter and stretching direction can

produce very distorted meshes. To eliminate the potential for such highly distorted

meshes, only the mesh length scale, 6, is used. The stretching parameter, s, is set
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to one and the stretching direction a is taken as the direction perpendicular to the

generating segment. Specifying s and a in this fashion results in grids composed of

roughly equilateral triangles with varying length scales.

The computed gi is smoothed to remove numerical noise and spread the high

gradient regions. Even with this smoothing, it is necessary to limit the allowable

range of gi. A cutoff level for g_ is determined as follows. First a referenced value of

the gradient of _ is defined by the difference between the maximum and minimum

values of ¢ divided by the minimum length scale of the previous mesh. That is

&_ - era= (5.10)
gr_ "- _z_i_

where _i_ is the minimum length scale of the previous mesh. The cutoff value for

g is then set at

! g,_/Cl, if g,_/g=i= > C2 (5.11)
gcu=

t grd, otherwise

where C1 and (72 are constant, typically in the range of 10-30 and 50-100, respec-

tively. Finally, the limited value of the gradient at each point is given by

gm=g_tgi (5.12)
_i = g==,go, t + (g,=,= - g_t)gi

This function has a maximum value of g_t and limits g in a smooth fashion. The

mesh length scale is now determined by

6, = min($_,_, g_t 6mi_) (5.13)
gi

The minimum and maximum values of/_ must be specified for each mesh. The

maximum length scale, _m_, defines the size of the largest triangles in the domain.

Within the solution domain, the minimum length scale, /Stain, is sequentially de-

creased from/_m= on the initial mesh down to a value which leads to a solution

satisfying the adaptive convergence criteria. The goal is to refine subsequent meshes

as quickly as possible, without introducing wasted points as the solution evolves.

Currently, this sequence is set in terms of the ratio of 5mi_ of the last mesh divided

by/_=i_ of the new mesh.
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5.2.2.4 Refinement Parameters for Local Structured Mesh

The mesh spacing, 5, computed from Eq. (5.4) or Eq. (5.13) depends on a single

mesh scale 6,,,;,. For inviscid flow calculations, the single length scale criterion is

sufficient for resolving all flow features. Viscous flows generally involve two or more

different length scales. For example, for turbulent transonic airfoil calculations the

length scale required inside the boundary layer is usually on the order of O(Re_l),

while outside the boundary layer the length scale is on the order of the chord.

Although one may argue that since the thickness of shock waves is on the order of

a molecular free path, it should be reasonable to use a viscous length scale in the

region of the shock wave. However, such a length scale increases the computing

expense and is not required in practice.

For the turbulent flow calculations presented here, the mesh scales for inviscid

and viscous regions are considered separately. In the inviscid flow region the mesh

spacing is computed using Eq. (5.13). In the boundary layer the mesh scale in the

normal direction to the wall is based on the wall distance or wall units, y+, while the

mesh spacing in the tangential direction to the wall is estimated using the inviscid

mesh scale. These two mesh scales usually results in a highly stretched mesh. In

Without a proper choice of the flow feature indicator, neither the second-order

nor the first-order error estimator can accurately and efficiently resolve the flow.

The location of flow structures is not known in advance. An indicator related

directly to an earlier solution must be developed. The performance of various

indicators for inviscid transonic flows has been investigated by Dannenhoffer [21].

With the inclusion of viscous flow features in his results, the performance of different

indicators for viscous flows is summarized in Table 5.1. Although a combination of

different indicators have been proposed for the resolution of viscous transonic flow

features [401, in the present work, an indicator based on the local flow speed has

been found to be sufficient.
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Table 5.1 Expected performance of different indicators for viscous transonic flow

problems.

Feature Shock Expansion

Indicator Wave Wave

p O O

vp • •

v2p • ®

P 0 0

vp • •

v_p • ®

P' 0 0

v_ • 0

v 2_ • 0

q 0 0

Vq • •

Note: •

®

0

Feature Type

Stagnation Slip Viscous Shear

Zone Line Layer

® 0 0

® ® ®

® • ®

• 0 0

• 0 0

• • 0

0 0 •

0 • •

0 • •

0 0 ®

• • ®
=:, Flow feature is well detected.

=_ Flow feature is somewhat detected.

=¢, Flow feature is not detected.
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order to achieve such high aspect ratio mesh cells, a structured triangular mesh

is employed in the present work. For the structured triangular mesh algorithm,

Eq. (4.4), the streamwise and the normal mesh scales are specified along the wall.

Then, a number of layers of structured mesh are generated from the wall boundary

to the interior. The use of a structured mesh simplifies the multiple length scale

problem in that the streamwise mesh scale specified on the wall surface is sufficient

to define the streamwise mesh scale in the boundary layer.

For the initial mesh the wall distance is estimated using the local skin friction

for a turbulent fiat plate flow [76].

r,,=u = 0.0296 Re'_ l/s (5.14)
(p)U_

The wall distance corresponding to y+ = 1 at the end of the plate is then obtained

Ay,,_ - 5.81 ReL 9/l° (5.15)

Specifying the wall units y+_ gives the wall distance of the first structured mesh line

off" the wall:

A +---- y.aU Ypr (5.16)

where the value of 6_+ is specified in the range of 2.5-3.5 for the Baldwin-Barth

one-equation model. The streamwise mesh scale is taken directly from the initial

mesh scale distribution on the background mesh. From these two mesh scales, the

structured mesh is then constructed.

As the flow solution evolves, the local wall distance is recomputed at each bound-

ary node using Eq. (2.14) and the minimum value of the local wall distance is used

to estimated the new 6y+. The local streamwise mesh scale is then estimated from

the inviscid flow information.

gives

In the inviscid flow region the Bernoulli equation

Op Oq

+ = 0 (5.17)

where q is the flow speed, s is in the streamwise direction, and p is the static

pressure. After extrapolating the inviscid flow speed from the boundary layer edge
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to the wall, the streamwise gradient of the flow speed at the wall is obtained as

aqa°= = I I (5.1s)

where s is now replaced with the arc length scale along the wall. Employing

Eq. (5.12) to smooth the distribution of laq/as I gives the streamwise mesh spacing

along the wall.

6,, = min(6m_, g_--A_t6mm) (5.19)

In the present work two additional mesh scales are used to define the surface

mesh scale:

$_, = min{gc, 6.,, (6,+ A_), (by+ r N-' A.)} (5.20)

where A_ is the mesh aspect ratio along the wall and A. is the mesh aspect ratio

along the outer edge of local structured meshes. The value of A_, is in the range of

300--3,000 and Ae is in the range of 10-20. From the mesh scales 6_÷ and g,_, the

local structured mesh is regenerated.

5.3 Convergence Criteria

To complete the description of the present adaptive remeshing scheme the con-

vergence criteria for the solver and adaptive remeshing cycle must be defined. Con-

vergence for the flow solver is based on three properties of the solution: the average

of the absolute value of the local change in pV,,, divided by the local time step,

which is a measure of the convergence of the solution to steady-state; and two

global norms defined by the difference between the highest and lowest values of the

normal force coefficient, CI., and the tangential force coefficient, C1,, over the last

50 iterations divided by reference quantities, K1 and/(2, respectively. That is

ACt,, = [(Ct.),_ - (CI..),_]/K, (5.21)

and

 cf, = - (5.22)
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with the reference quantities K1 and K_ defined as

K1 = max(l, (Cf.)_), and K2 = max(l, (Ct,)m_) (5.23)

The first quantity, 6(pV,_)/St is inversely proportional to the local time step. As

the mesh is refined 6t decreases which makes this norm more restrictive as the

mesh is adapted. The reference quantities /(1 and K2 axe used to normalize the

global norms. Since the flow properties are normalized with freestream values in

the present calculations, it is appropriate to normalize the integral quantities with

a value of 1 if the integral quantities axe much less than 1. The use of windowing of

integral quantities to define convergence of the force coefficients was developed by

Dannenhoffer [21] for an unstructured quadrilateral based adaptive mesh scheme.

When any one of these three coefficients drops below the user defined constant, el,

the solution on the current mesh is converged.

Convergence for the adaptive solution cycle is based on the change in force

coefficients from one mesh solution to the next. When the relative change in CI. is

less than e2 and the relative change in CI, is less than e3 the adaptive mesh cycle

is converged. The relative change is defined as

Act = I(Cl),-,.,- (q')-,l/max (1,max(ICC.f)L..,I,I(Cj),..,,I)) (5.24)

The values of eI, e2, and ea are user specified constants. Specifying smaller values

of e2 and q will increase the number of mesh adaptation cycles. This in turn leads

to a smaller mesh scale and improves the accuracy of the solution. Therefore, by

choosing these constants a user can specify the accuracy of computed solution. Note

the value of el should be at least one-order less than the values of e2 and Ca. In the

present work, ez is set to 0.0001 for both inviscid and turbulent flow problems. For

inviscid flow problems, both e2 and e3 are set to 0.002. For turbulent flow problems,

these values axe raised to 0.005 to reduce the number of mesh adaptations.
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6. INVISCID FLOW RESULTS

The present adaptive solutionscheme has been formulated to solve both two-

dimensional planar flowsand quasi-three-dimensionalaxial-,radial-and mixed-type

flows. In the development of thisapproach a range of inviscidproblems has been

solved. To validate the present approach the testcases presented here include a

two-dimensional multi-element airfoil,the Sanz supercriticalcompressor and sub-

criticalturbine cascades,and the Denton supersonic staggered wedge cascade. Each

of these testcases istwo dimensional and has a known analyticsolution.These test

cases cover a wide range of Mach numbers and each has differentflow structures

which must be resolved foran accurate solution.To demonstrate the adaptive solu-

tion scheme in practicalturbomachinery applications,the quasi-three-dimensional

analysis has been used to analyze the NASA Rotor 67 low-aspect-ratiotransonic

fan and the Allisontandem blade cascade.

6.1 Multi-Element AirfoilCase

The first case is a model three-element airfoil operating in a high lift configura-

tion. This case illustrates the ease with which flow problems in arbitrary multiply-

connected regions can be solved. Reference [80] provides the airfoil geometry and

an analytic incompressible potential flow solution for an angle of attack of 20 ° . In

order to make a direct comparison with the analytic solution, this test case should

be run with a very low freestream Mach number. Since the stability criteria for the

present explicit scheme is inversely proportional to the speed of sound, which will

be very large, low Mach number flows require very small time steps. Further, very

low Mach number flows imply very small convection speeds. Both these conditions
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result in a very slow convergence rate to the steady state solution and in turn large

computation time. As a compromise between the computation time and the com-

pressibility effects, this test case was run with freestream Mach number of 0.125.

The flow conditions and airfoil characteristics are summarized in Table 6.1. The

far field and near field meshes are shown in Figures 6.1 and 6.2, respectively. The

far field boundary is set at a radius of 5 chords from the airfoil. At this boundary

the vortex far field boundary condition [83] is used.

The initial mesh is refined near the airfoil through the specification of the length

scale parameter along the surface (N, -- 40). In the far field the mesh is uniform

with a length scale of 6-_.-- 0.5 chord. Within the solution domain the minimum

length scale _mi, is sequentially decreased, from 5m_ on the initial mesh, down to

a value which leads to a solution satisfying the adaptive convergence criteria. The

refinement sequence is set in terms of the ratio of 5m of the last mesh divided by

_mia of the new mesh. For the airfoil case presented here this ratio equals 32 for

the first adaptation, 4 for the second and the third adaptations and 2 for the last

refinement. The sequence of solution adapted meshes are shown in Figures 6.2 to

6.6. Mesh statistics and force coefficient information for each mesh are summarized

in Table 6.2.

Mach number contours for the final solution are shown in Figure 6.7. Note

that the maximum surface Mach number on the leading edge slat is about 0.6,

which is well out of the range of what can be considered incompressible. Figure 6.8

compares the converged surface pressure coefficient distribution over each element

Table 6.1 Flow conditions and airfoil characteristics for the three-element airfoil.

M_o ot _,a_t 6_p C l,x,_-t

0.125 20.0 ° 45.0 ° 15.0 ° 5.136

Note: Incompressible analytic solution

is available in Reference [80].
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with the incompressible analytic solution. Although the flow structure of this test

case involves high gradients in flow properties, they are only concentrated in small

regions where the surface curvature is high. Therefore, plots of intermediate mesh

solutions are almost exactly the same. Most of the error in the initial solution is

concentrated in the region of the suction peak on the slat.

To illustrate the importance of compressibility in this case, a compressibility

correction to the analytic solution using the Karman-Tsien rule is considered in

The compressible presure coefficient using the Karman-Tsien rule isFigure 6.9.

given as:

Cp = Cp,0 (6.1)

¢1 - M= + [M_/ (1 + ¢1- M_ )] Cp,o/2

where Cp.o is the incompressible pressure coefficient, M_o is the freestream Mach

number, and Cp is the corrected pressure coefficient. Since the high Mach number

flows are concentrated in the suction surface of the slat portion and the leading

edge suction surface of the airfoil, the corrected surface pressure coefficients are

lower than the incompressible values in these regions. Otherwise, the corrected

surface pressure coefficients are essentially the same as the incompressible values.

Figure 6.9 shows a slight difference between the computed pressure coefficient and

the corrected pressure coefficient in the high Mach number flow regions. This is

due to the extremely high flow gradients in these regions. These regions can be

accurately resolved with further mesh adaptation.

Figures 6.10, 6.11, and 6.12 show the surface total pressure errors for the initial,

3 _ adapted, and final meshes, respectively. The total pressure error is defined as

the difference between local total pressure and the upstre_Tx value. That is,

PTo .... --1 PT,
PTo

Since this flow is isentropic the total pressure error should be zero. These plots

clearly show a reduction in error as the mesh is refined in the slat region. There is

a 40 % reduction in the peak total pressure error in the final mesh solution relative

to the 3rd adapted mesh solution. The final mesh length scale in the slat leading
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edge region is about-60 % of the 34 adapted mesh length scale in the same region.

This indicates that the present scheme is first-order.

The computed lift coefficient is 3 % less than the Karman-Tsien corrected lift

coefficientwhich is about 5.279. Itis believed that part of thiserror isdue to the

locationof the farfieldboundary. Based on the resultsof Usab [83]and Dannenhof-

fer [21],the liftcoefficientincreasesabout 1.5 to 2.0 % as the far fieldboundary is

moved from 5 chord to 50 chord. Itshould alsobe noted that for low Mach number

flows,the total pressure error has a significanteffecton the pressure distribution.

Even though the totalpressure error in the finalmesh isvery small,ifallthe total

pressure error isassumed to reduce the surface staticpressure thiswould lead to a

5 % error in the predicted liftcoefficient.Although a directrelationbetween the

liftcoefficientand totalpressure error isnot known, itisreasonable to expect a I

to 2 % reduction in the liftcoefficientdue to thistotalpressure error.

Finally,the convergence historiesfor the liftcoefficientand average residual,

[_(pu)/_t], are shown in Figures 6.13 and 6.14, respectively. Note the reduction in

the convergence rate of the flow solver on the latter meshes. This is due to the

decreasing mesh length scale in the fine mesh region where the explicit time step is

very small.

Table 6.2 Three-element airfoil: Moo = 0.125, a = 20 °, and (_'v/)incomp _- 5.136.

MESH 0 3 4

nodes 2,034 4,643 8,506

elements 3,769 8,927 16,567

Ci 4.9892 5.1061 5.1165

Cd 0.0570 0.0201 0.0145

6_/ chord 0.5 0.5 0.5

Total CPU:

1 2

2,092 2,911

3,888 5,517

4.9847 5.0630

0.0444 0.0286

0.5 0.5

32 128

1,307 sec in Cray-YMP.

512 1,024
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Figure 6.1 Multi-element airfoil initial mesh: far field view.

!

>

Figure 6.2 Multi-element airfoil initial mesh: 2,034 nodes and 3,769 elements.
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/

Figure 6.3 Multi-element airfoil 1"_ adapted mesh: 2,092 nodes and 3,888
elements.

Figure 6.4 Multi-element airfoil 2 _d adapted mesh: 2,911 nodes and 5,517
elements.
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Figure 6.5 Multi-element airfoil 3 '_ adapted mesh: 4,643 nodes and 8,927
elements.

Figure 6.6 Multi-element airfoil 4t_ (final) adapted mesh: 8,506 nodes and 16,567
elements.
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\

Figure 6.7 Multi-element airfoil Mach number contours on the final mesh:

crnin - 0.0, cmax - 0.60, and inc - 0.02.
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Figure 6.8 Multi-element airfoil surface pressure coefficient for the final mesh:

solid line - numerical solution and symbol - analytic solution.
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Figure 6.9 Multi-element airfoil surface pressure coefficient for the final mesh:

solid line - numerical solution and symbol - compressibility correction using the

Karman-Tsien rule.
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Figure 6.10 Multi-element airfoil surface total pressure error: initial mesh.
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Figure 6.11 Multi-element airfoil surface total pressure error: 3rd adapted mesh.
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Figure 6.12 Multi-element airfoil surface total pressure error: final mesh.
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Figure 6.13 Multi-element airfoil: Ci verses iteration.
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Figure 6.14 Multi-element airfoil: average I,S(pu)/,Stl verses iteration.
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6.2 Sanz Supercritical Compressor Cascade

This case is a shock free supercritical compressor cascade designed by Sanz [75]

using the hodograph method. This case is described in the AGARD report [25]

as test case A/CA-1. The hodograph method used to design this cascade results

in a blade section with a nonclosed trailing edge. As noted in Reference [25], any

attempt to close the blade trailing edge changes the blade section, resulting in

a different solution. The flow conditions and blade characteristics are listed in

Table 6.3. M,,.it is the specified isentropic exit Mach number which sets the ratio

of the exit static pressure to the inlet total pressure. This ratio is given as

= 1 + M,_,at
(6.2)

The ratio is 0.8177 for the current value of M,_it. The inflow and outflow boundaries

for the mesh are placed one half an axial chord from the blade leading and trailing

edges, respectively. At the inflow boundary total pressure, total temperature, and

absolute flow angle are specified. At the outflow boundary the exit pressure is set.

Flow tangency is enforced on the blade surface and periodicity is imposed at the

upper and lower boundaries of the domain. At the open trailing edge a uniform jet

flow condition is specified.

The sequence of solution adapted meshes is shown in Figures 6.15 to 6.16.

Because the flow structure for this test case does not involve high gradients it only

Table 6.3 Flow conditions and blade characteristics for the Sanz supercritical

Min

0.711

Note:

compressor cascade.

0.544 30.81 ° -0.35 °

Pitch/chord

1.034

• Hodograph solution is available

in Reference [25].

• Nonclosed trailing edge present

in the physical profile.
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Table 6.4 Sanz supercritical compressor cascade: M_ - 0.711 and/_;, = 30.81".

MESH

nodes

elements

cI.

6,,_./pitch

Total CPU:

820 947

1,469 1,717

0.9044 0.9039

-0.2817 -0.2825

0.095 0.095

1 4

34 sec in Cray-YMP.

takes one remesh cycle to converge. The mesh and loading coefficient information

are given in Table 6.4. Mach number contours for the final solution are shown

in Figure 6.17. A comparison of the converged Mach number distribution over the

blade with the hodograph solution is shown in Figure 6.18. The agreement between

the numerical and analytic solutions is excellent except in a small region near the

sonic point on the suction surface. Note that the supercritical blade geometry is an

isolated shock free design and that very small variations in the geometry will lead

to the formation of shock waves. Since the blade coordinates given in Reference [25]

have gaps in the sonic regions of the blade, the blade geometry in these regions is

defined through interpolation. The difference between the computed solution and

the analytic solution is the result of the difference between the interpolated and

the unknown correct blade geometry in these regions. Convergence histories for the

normal force coefficient and average residual are shown in Figures 6.19 and 6.20,

respectively.
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Figure 6.15 Sanz supercritical compressor cascade initial mesh: 820 nodes and

1,469 elements.

Figure 6.16 Sanz supercritical compressor cascade 1st (final) adapted mesh: 947

nodes and 1,717 elements.
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Figure 6.17 Sanz supercritical compressor cascade Mach number contours on the
final mesh: cmin = 0.0, cmax = 1.30, and inc = 0.05.
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Figure 6.18 Sanz supercritical compressor cascade surface Mach number for the
final mesh: solid line - numerical solution and symbol - analytic solution.
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480.

Figure 6.19 Sanz supercritical compressor cascade: CI,. verses iteration.
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Figure 6.20 Sanz supercritical compressor cascade: average I (m,)/Stl verses
iteration.





92

6.3 Sanz SubcriticalTurbine Cascade

This subcriticalturbine cascade, AGARD testcase A/CA-3 [25],was also de-

signed using a hodograph method. The blade sectionhas a nonclosed trailingedge.

The flow conditions and blade characteristicsare tabulated in Table 6.5. The up-

stream and downstream mesh boundaries are placed one half an axial chord from

the blade edges. The numerical boundary conditions are the same as those used in

the supercriticalcompressor cascade case. The ratioof the exit staticpressure to

the inlettotalpressure is0.6788 for the present value of Me.it.

Figures 6.21 to 6.24 present the sequence of solutionadapted meshes. Since the

gradients are higher in this case due to the rapid accelerationof the flow through

the turbine blade passage, ittakes three mesh adaptation cyclesto converge. Mesh

properties and force coefficientsfor thiscase are summarized in Table 6.6. Mach

number contours for the finalsolutionaxe shown in Figure 6.25. Figures 6.26 and

6.27 compare the computed surfaceMach number distributionwith the hodograph

solutionfor the initialand finalmeshes, respectively.These plots clearlyshow the

improvement in the numerical solutionas the mesh isrefined.

For inviscidflows,the totalpressure errorisalso a good indicatorof numerical

error in the solution scheme. Since thisflow is isentropicthe total pressure error

should be zero. The plots of surface total pressure error shown in Figures 6.28

Table 6.5 Flow conditions and blade characteristicsfor the Sanz subcritical

turbine cascade.

Min

0.343

Note:

Me.i, 3_ 3.,,i* Pitch/chord

0.765 36.0° -57.35" 0.566

• Hodograph solutionisavailable

in Reference [25].

• Nonclosed trailingedge present

in the physicalprofile.
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and 6.29 demonstrate the improved accuracy of numerical solution as the mesh is

refined. The maximum surface total pressure error is decreased from 4 % on the

initial mesh down to 2 % on the final mesh. Convergence histories for the normal

force coefficient and average residual are given in Figures 6.30 and 6.31, respectively.
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Table 6.6 Sanz subcritical turbine cascade: Mm = 0.343 and/_,. = 36.0 °.

MESH 0 1 2 3

nodes 722 1,018 1,620 2,336

dements 1,244 1,799 2,962 4,367

CI. 1.9172 1.9239 1.9260 1.9279

(7/, 1.7264 1.7218 1.7212 1.7216

di._./pitch 0.075 0.075 0.075 0.075

&,,*_/_m_ I 2 4 8

Total CPU: 181 sec in Cray-YMP.

Figure 6.21 Sanz subcritical turbine cascade initial mesh: 722 nodes and 1,244

elements.
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Figure 6.22 Sanz subcritical turbine cascade 1't adapted mesh: 1,018 nodes and

1,799 elements.

Figure 6.23 Sanz subcritical turbine cascade 2 nd adapted mesh: 1,620 nodes and
2,962 elements.
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Figure 6.24 Sanz subcritical turbine cascade 3 rd (final) adapted mesh: 2,336

nodes and 4,367 elements.

Figure 6.25 Sanz subcriticai turbine cascade Mach number contours on the final

mesh: cmin = 0.0, cmax = 0.80, and inc = 0.05.
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Figure 6.26 Sanz subcritical turbine cascade surface Mach number for the initial

mesh: solid line - numerical solution and symbol - analytic solution.
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Figure 6.27 Sanz subcritical turbine cascade surface Mach number for the final

mesh: solid llne - numerical solution and symbol - analytic solution.
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Figure 6.28 Sanz subcritical turbine cascade surface total pressure error: initial
mesh.
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Figure 6.29 Sanz subcritical turbine cascade surface total pressure error: final
mesh.
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Figure 6.30 Sanz subcritical turbine cascade: CI. verses iteration.
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Figure 6.31 Sanz subcritical turbine cascade: average [i_(pu)/i_t I verses iteration.
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6.4 Denton Supersonic Staggered Wedge Cascade

The Denton wedge cascade, AGARD test case A/CA-2 [25],is a compressor

cascade operating in a fullysupersonic flow. This staggered wedge cascade has

been carefullydesigned so that the reflectedoblique shock wave isexactly cancelled

resultingin an uniform flow between the two parallelsurfaces. In order to close

the cascade profile,another wedge isintroduced on the pressure side resultingin

an expansion off the downstream corner. Figure 6.38 presents the exact solution

derived from shock/expansion theory. This testcaseillustratesthe capabilityofthe

present solution adaptive scheme in capturing complicated shock wave structures.

The flow conditions and blade characteristicsaxe listedin Table 6.7.

The initialmesh isshown in Figure 6.32. The upstream and downstream mesh

boundaries are located one half an axial chord from the blade leading and trailing

edges, respectively. At the inflow boundary total pressure, total temperature, and

absolute flow angle are specified as boundary conditions. At the outflow boundary

the nonuniform static pressure boundary condition is imposed (see section 3.5.4).

Figures 6.32 to 6.35 present the mesh sequence during the solution adaptation

process. The mesh characteristics are summarized in Table 6.8. Comparing the

initial mesh Mach number contours shown in Figure 6.36 with the final mesh Mach

number contours in Figure 6.37 shows an improved shock wave resolution for the

Table 6.7 Flow conditions and blade characteristics for the Denton supersonic

staggered wedge cascade.

Mi_ M,_it /_L, _,_it Pitch/chord

1.6 1.401 60.0 ° 60.0 ° 0.47985

Note: • Analytical solution is available

in Reference [25].

• Nonuniform pressure present

at the exit.



101

Table 6.8 Denton supersonic staggered wedge cascade: Mia = 1.60, jS_. = 60.0 °,

(Ct,),._.t = 0.03774, and (Cl.),x,_:t = -0.0654.

MESH

nodes

elements

Ca.

6=_/pitch

0

1,231

2,196

0.0411

-0.0722

0.08

1,982

3,562

0.0375

-0.0647

0.08

3.1

3,625

6,762

0.0384

-0.0667

0.08

12.5

Total CPU: 880 sec in Cray-YMP.

3

7,526

14,440

0.0382

-0.0664

0.08

25

adapted solution. Mach number contours for the final and theoretical solutions are

shown in Figures 6.37 and 6.38, respectively. Even though the shock wave structure

is complex, the remeshing procedure accurately resolves the flow. The computed

surface Mach number distributions on the initial and final meshes are compared

with the theoretical solution in Figures 6.39 and 6.40, respectively. These plots

show a great improvement in the accuracy of numerical results. Since the present

scheme is not a monotonic scheme, overshoots are shown in the shock wave regions.

Comparing the computed loading coefficients CI, . and C1, to the analytical values

in Table 6.8 shows a reduction in the error as the mesh is refined with the exception

of the 1st adapted mesh solution. This indicates that it is difficult to determine the

improvement of solution based on the loading coefficients only. Since the loading

coefficients are integral quantities, numerical errors may cancel after integrating

over the blade surface.

Convergence histories axe given in Figures 6.41 and 6.42. It is noted that the

CPU time this case requires is five times longer than that of the Sanz subcritical

turbine cascade case. This is due to the increasing number of mesh points and

decreasing mesh length scale as the mesh is adapted to the solution.
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Figure 6.32 Denton supersonic staggered wedge cascade initial mesh: 1,231 nodes
and 2,196 elements.
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Figure 6.33 Denton supersonic staggered wedge cascade I st adapted mesh: 1,982

nodes and 3,562 elements.
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Figure 6.34 Denton supersonic staggered wedge cascade 2 ad adapted mesh: 3,625
nodes and 6,762 elements.
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Figure 6.35 Denton supersonic staggered wedge cascade 3 _d (final) adapted mesh:

7,562 nodes and 14,440 elements.
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Figure 6.36 Denton supersonic staggered wedge cascade Mach number contours

on the initial mesh: cmin = 1.17, cmax = 1.62, and inc = 0.03.
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Figure 6.37 Denton supersonic staggered wedge cascade Mach number contours

on the final mesh: cmin = 1.17, cmax = 1.62, and inc = 0.03.
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Figure 6.38 Denton supersonic staggered wedge cascade Mach number contours:

analytic solution (Denton et al. [25]).
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Figure 6.39 Denton supersonic staggered wedge cascade surface Mach number for

the initial mesh: solid line - numerical solution and symbol - analytic solution.

1.70

1.50

MACH

1.30

I
.... 1- ..... .- ..... +--A|
.... _ v wv vw l.,,v wvvvw..,_

|

1 ;
1 1

+

; i 1i , ,

L L

i

L h

I.I0 I ! ! i !
0.0 2.0 4.0 6.0

x/c

Figure 6.40 Denton supersonic staggered wedge cascade surface Mach number for

the final mesh: solid line- numerical solution and symbol - analytic solution.
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Figure 6.41 Denton supersonic staggered wedge cascade: CI_ verses iteration.
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Figure 6.42 Denton supersonic staggered wedge cascade: average I_(p,_)/_tlverses
iteration.
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6.5 NASA Rotor 67 Transonic Fan

NASA rotor 67 is a low-aspect-ratio transonic axial-flow fan rotor. Laser anemome-

ter surveys of the flowfield were made for operating conditions near peak efficiency

and near stall by Strazisar et al. [79]. The fan tip relative Mach number is 1.38. The

experiments were conducted in a rotor-only configuration making them good test

cases for the three-dimensional flow solver. Only the near peak efficiency test con-

dition will be considered here. Since the flow in this machine is three-dimensional,

axisymmetric through-flow information is required as input to the present quasi-

three-dimensional analysis. The streamsurface location and thickness data used in

the present calculations were obtained from Reference [60]. It is important to note

that the accuracy of the present results depends on the accuracy of the streamsur-

face data, which is difficult to validate. This test case is important in illustrating

how the adaptive solution procedure resolves realistic flow structures.

The adaptive mesh solution is computed for the 30 %-span streamsurface (mea-

sured from the shroud). In this case the inlet boundary for the mesh is placed

three quarters an axial chord from the blade leading edge, and the exit boundary

is located half an axial chord from the blade trailing edge. At the inflow boundary

total pressure, total temperature, and absolute flow angle are specified as boundary

conditions. At the outflow boundary the exit pressure is imposed. Since there is

high turning involved in this flow, it is not possible to start a solution with constant

initial conditions. Therefore, the quasi-one-dimensional solution is used to provide

a smooth variation of initial flow conditions (see section 3.4). The inflow and out-

flow condition as determined from the through-flow analysis are summarized in

Table 6.9.

This span station is particularly interesting because the upstream relative Mach

number is 1.20. With a blunt leading edge, a bow shock wave stands away from the

blade leading edge. To accurately predict this flow the leading edge must be well

resolved. Referring to Figures 6.50 and 6.52 it is clear that a refinement parameter
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Table 6.9 NASA Rotor 67 far field flow conditions.

Case P,.(psi) Tt. (R)

30 % span 14.7 518.7 °

14.7 518.7 °50 % span

70 % span 14.7 518.7 °

rv, p., JPtt.

0 1.21

0 1.25

0 I.I6

based on surface curvature does a good job in resolving the leading edge region.

Even on the initial mesh the bow shock wave is located in the proper location.

Without this refinement the adaptive procedure improperly locates the bow shock

wave. This changes the flow conditions within the blade passage, resulting in a very

poor initial solution. It then takes many mesh adaptation cycles to converge to the

correct solution. The present adaptation criteria leads to a converged solution after

three remeshes (see Figures 6.43 to 6.46). Mesh properties and force coefficients

are summarized in Table 6.10.

The relative Mach number contours for the final mesh are shown in Figure 6.47.

The bow shock reflection on the blade suction surface is not well resolved, because

the shock strength is much weaker than the normal shock. Figure 6.48 presents

contours of the experimentally measured relative Mach number for the 30 %-span

station. Even though a very large amount of experimental data was taken, the

experimental data used in making these contour plots are still very sparse. This fact

makes it very difficult to evaluate the overall accuracy of the computed solution.

The compute results show a good agreement with the experimental data in the

upstream of the blade leading edge. Note the experimental data shows a passage

shock wave located further upstream than the shock wave location computed here.

Boundary layer blockage plays an important role in determining the location of the

passage shock wave. Since this is an inviscid solution the shock wave is located

downstream of the correct experimental location.

Figures 6.51 and 6.52 show a blowup of the leading edge region of the blade.

There are about 20 mesh points along the half circle of the leading edge. The bow
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shock wave is well resolved. Plots of the surface pressure coefficient are shown in

Figures 6.53 and 6.54 for the initial and final meshes, respectively. Convergence

histories are shown in Figures 6.55 and 6.56. The normal force coefficient (force in

the 0-direction) converges rapidly to a constant value. The adaptation cycle has

been stopped at the 3 ra adapted mesh, since further refinement will lead to a large

number of mesh points which in turn increases the computation time. The relative

change in the force coefficient between last two meshes is within 1%.

Table 6.10 NASA Rotor 67 operating at peak efficiency: 30 % span station.

MESH 0 1 2 3

nodes 1,327 2,031 5,138 7,245

elements 2,375 3,700 9,877 14,074

Cf, 1.2149 1.1919 1.1950 1.2073

Cj, -1.6292 -1.5763 -1.5931 -1.6270

_,,.,/pitch 0.067 0.067 0.067 0.067

_,_--/_m_ 1 4 16 32

Total CPU: 553 sec in Cray-YMP.
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Figure 6.43 NASA Rotor 67 30 % span from shroud initial mesh: 1,327 nodes

and 2,375 elements.
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Figure 6.44 NASA Rotor 67 30 % span from shroud 1°t adapted mesh: 2,031

nodes and 3,700 elements.
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Figure 6.45 NASA Rotor 67 30 % span from shroud 2 nd adapted mesh: 5,138

nodes and 9,877 elements.
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Figure 6.46 NASA Rotor 67 30 % span from shroud 3rd (final) adapted mesh:

7,245 nodes and 14,074 elements.
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Figure 6.47 NASA Rotor 67 30 % span from shroud relative Mach number

contours on the final mesh: cmin - 0.0, cmax - 1.70, and inc = 0.05.
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Figure 6.48 NASA Rotor 67 30 % span from shroud relative Mach number

contours: experimental data (Strazisar, et al. [79]).
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Figure 6.49 NASA Rotor 67 30 % span from shroud: leading edge blowup of the
initial mesh.

Figure 6.50 NASA Rotor 67 30 % span from shroud relative Math number

contours (cmin = 0.0, cmax = 1.70, and inc = 0.05): initial mesh leading edge
region.
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Figure 6.51 NASA Rotor 67 30 % span from shroud: leading edge blowup of the
finM mesh.

Figure 6.52 NASA Rotor 67 30 % span from shroud relative Math number

contours (cmin = 0.0, cmax = 1.70, and inc = 0.05): final mesh leading edge

region.
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Figure 6.53 NASA Rotor 67 30 % span from shroud surface pressure coemcient:
initial mesh.
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Figure 6.54 NASA Rotor 67 30 % span from shroud surface pressure coefficient:

finalmesh.
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123

6.6 Allison Tandem Blade Cascade

The Allison tandem blade cascade is an axial-flow compressor stator configura-

tion. This is a preliminary design and there are no experimental data available for

this case. This case demonstrates the ease with which arbitrary multiply-connected

regions can be solved. Quasi-three-dimensional through-flow information is used in

the present quasi-three-dimensional analysis. The streamsurface location and thick-

ness data used in the present calculation are obtained from Reference [60].

The adaptive mesh solution is computed for the 70 %-span streamsurface. The

far field and near field meshes are shown in Figures 6.57 and 6.58, respectively. In

this case the far fie/d boundary for the mesh is placed one axial chord from the

blade edges. Numerical boundary conditions are the same as those used for the

NASA Rotor 67 case. Uniform initial flow conditions are used. The inflow and

outflow conditions determined from the through-flow analysis axe summarized in

Table 6.11.

Table 6.11 Allison tandem blade cascade far field flow conditions.

Case Pti.(psi) Tt,, (R)

30 % span 74.5 872.7 °

50 % span 74.5 872.7 °

70 % span 74.5 872.7 °

r vo p,,,MP,,.

0 0.791

0 0.793

0 0.796

The remesh sequence is shown in Figures 6.57 to 6.60. These plots illustrate that

flow problems of arbitrary multiply-connected regions are no more difficult to solve

than flow over a single blade. Mesh statistics and loading coefficient information

for this case are given in Table 6.12. This case takes two adaptation cycles to

converge. Mach number contours for the final solution axe shown in Figure 6.61.

The inviscid solution shows shock waves in both leading edge regions. This is

due to the rapid acceleration of the flow around a small finite radius leading edge.

Viscous effects will slow the acceleration and may even result in a laminar leading
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edge separation bubble. These shock waves will not be present in a viscous flow

calculation. Figures 6.62 to 6.65 show a blowup of the leading edge region and the

gap region between the tandem blades. These plots show a smooth variation of

mesh length scale in the gap region. This kind of mesh resolution is very difficult, if

not impossible, to achieve using a structured mesh flow solver. Figures 6.66 and 6.67

show velocity vectors for the leading edge and the gap regions, respectively. Due

to the high flow incidence relative to the second blade there is a rapid acceleration

of the flow through the gap region.

The plots of the surface pressure coefficient are shown in Figures 6.68 and 6.69

for the initial and final meshes, respectively. The spikes in the leading edge regions

are caused by the rapid acceleration of the flow. Convergence histories are shown

in Figures 6.70 and 6.71. The complete procedure converged in 3,000 iterations.

Table 6.12 Allison tandem blade cascade: 70 % span station.

MESH 0 1 2

nodes 2,415 4,3611,822

elements 3,292 4,445 8,279

CI, 0.8141 0.7802 0.7885

Ct, -0.3674 -0.3689 -0.3699

6m_/pitch 0.096 0.096 0.096

1 4 16

Total CPU: 478 sec in Cray-YMP.
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Figure 6.57 Allison tandem blade cascade 70 % span from shroud initial mesh:
far field view.
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Figure 6.58 Allison tandem blade cascade 70 % span from shroud initial mesh:

1,822 nodes and 3,292 elements.

Figure 6.59 Allison tandem blade cascade 70 % span from shroud 1't adapted

mesh: 2,415 nodes and 4,445 elements.
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Figure 6.60 Allison tandem bladecascade70% spanfrom shroud 2nd(final)
adaptedmesh:4,361nodesand 8,279elements.

Figure 6.61 Allison tandem bladecascade70 % span from shroud Mach number

contours on the final mesh: cmin = 0.0, cmax = 1.60, and inc = 0.05.
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Figure 6.62 Allison tandem blade cascade 70 % span from shroud: leading edge

blowup of the final mesh.

Figure 6.63 Allison tandem blade cascade 70 % span from shroud Mach number

contours (cmin =0.0, cmax= 1.60, and inc = 0.05): final mesh leading edge region.
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Figure 6.64 Allison tandem blade cascade 70 % span from shroud: tandem blade

gap blowup of the final mesh.

/

Figure 6.65 Allison tandem blade cascade 70 % span from shroud Mach number

contours (cmin = 0.0, cmax = 1.60, and inc = 0.05): final mesh tandem blade gap

region.
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Figure 6.66 Allison tandem blade cascade 70 % span from shroud velocity vector:
final mesh leading edge region.

Figure 6.67 Allison tandem blade cascade 70 % span from shroud velocity vector:
final mesh tandem blade gap region.
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Figure 6.68 Allison tandem blade cascade 70 % span from shroud surface

pressure coefficient: initial mesh.
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Figure 6.69 Allison tandem blade cascade 70 % span from shroud surface

pressure coefficient: final mesh.



132

0.60

Figure 6.70 Allison tandem blade cascade 70 % span from shroud: C/. verses
iteration.

Figure 6.71

1600.

ITERATION

2400. 3200.

Allison tandem blade cascade 70 % span from shroud: average

16(pV_ ) / cStIverses iteration.
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7. TURBULENT FLOW RESULTS

In this chapter the solution adaptive scheme is applied to turbulent flow prob-

lems. The following turbulent flow problems are considered: a subsonic flat plate;

a RAE2822 airfoil; a NLR two-element airfoil; the VKI LS82-1 turbine cascade,

and the Allison tandem blade cascade. Since experimental data for the first four

cases is available, these test cases allow a validation of the present solution adaptive

scheme. Numerical results for the Allison tandem blade cascade are presented to

demonstrate the advantage of an adaptive unstructured turbulent flow solver for

new advanced turbomachinery blade designs. The objective here is to illustrate

the capability of the present solution adaptive scheme in resolving complex flow

structures. Thus, the convergence criteria are set at a higher level to reduce the

computing work.

7.1 Subsonic Flat Plate

The subsonic flat plate flow case is a standard test case for the validation of

turbulent flow calculations. Because all the turbulence models were calibrated us-

ing the flat plate solution, an accurate prediction of this flow problem indicates a

correct implementation of the turbulence model equations. The purpose of this test

case here is to validate the numerical implementation of the present turbulent flow

solver, therefore, adaptive remeshing is not performed. The triangular mesh used

to compute the subsonic flat plate turbulent boundary layer solution is generated

from a 72x80 structured quadrilateral mesh. The mesh, shown in Figure 7.1, is

algebraically packed near the leading edge and solid surface with minimum incre-

ments of Azmi_ = 0.0003 and Aymi,_ = 0.000003. The maximum aspect ratio in
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this mesh is about 40,000. The inlet boundary is placed at one half of the plate

length from the leading edge and the exit boundary is located at the end of fiat

plate. Numerical boundary conditions for the inlet and exit boundaries are the

same as those used in the inviscid cascade cases. The freestream static pressure is

prescribed along the exit plane. A no-slip condition with adiabatic wall and zero

normal pressure gradient are imposed along the solid surface. Flow tangency is en-

forced along the symmetric boundary which lies along the lower boundary upstream

of the plate. The computed results are compared to the experimental data given in

the 1968 AFOSR-IFP-Stanford Conference [89] for the Bladwin-Barth one-equation

and the Chien k - _ turbulence models. The flow conditions for this case are given

in Table 7.1.

In structured mesh approaches, it has been found that the accuracy of the

viscous solutions is very sensitive to the effect of artificial dissipation. In order to

determine a proper scaling of the artificial dissipation for the present unstructured

flow solver, three different scaling of the artificial dissipation terms are investigated.

The first scaling is the standard modified eigenvalue scaling, Eq. (3.22). The second

scaling combines a local velocity scaling with the modified eigenvalue scaling (see

Eq. (3.24)). Note that a local velocity scaling based on q4 was also investigated in

the present work. However, this scaling does not produce a stable solution. In the

last scaling, the artificial dissipation is switched off if the local velocity is less than

a specified cut-off flow speed, U_t. This scaling is a modified velocity scaling which

is described as

/

Table 7.1 Flow conditions for the subsonic flat plate.

Moo a poo (psi) Too (0 K) Per. L,,d (m)

0.25 0.00 14.7 293.0 2.2x107 10

Note: Experimental data are available in Reference [89].
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where

Q = min {1,max {0, (q2 _ U_t)/(U_ _ U_t)}}

In the present calculation U_t is taken as 50 % of freestrearn velocity. This scaling

does not guarantee a stable solution. In the present work, the scaling, Eq. (7.1), is

only used for the assessment of the accuracy of the turbulent flat plate flow solution.

In order to achieve a stable solution, this scaling is used after the flat plate solution

is obtained with the local velocity scaling, Eq. (3.24).

Figures 7.2 and 7.3 present the log-law velocity profile predicted by the Baldwin-

Barth one-equation and the Chien low Reynolds number k - e turbulence models

at Rez = 1.13x107. These plots clearly show that the eigenvalue scaling does

not produce a satisfactory log-law velocity profile. With local velocity scaling the

results axe great improved. Specifying zero artificial dissipation in the viscous layer

further improves the predicted results for both turbulence models. Figures 7.4 and

7.5 show the nondimensional velocity profile predictions for each model at x=4.987

m. The nondimensional velocity is defined as u/Uoo, the ratio of local velocity to

the freestream velocity. Results are compared to experimental data. Results for

the velocity scaling and the switch-off approach agree quite well with experimental

data. Figures 7.6 and 7.7 present the coefficient of friction prediction along the

plate for both turbulence models. Again the local velocity scaling results are better

than the modified eigenvalue scaling. Without adding artificial dissipation in the

viscous layer the friction coefficient distribution is accurately predicted.

In the present turbulent fiat plate flow case specifying zero artificial dissipa-

tion in the viscous layer produces an accurate prediction. However, for general flow

problems such an approach can lead to numerical stability problems. In the remain-

ing cases the local velocity scaling artificial dissipation is used. Both Baldwin-Barth

one-equation and Chien low Reynolds number k - e turbulence models have been

successfully demonstrated on the turbulent flat plate flow. It has been recognized

that Chien's low Reynolds number k-e model requires a finer wall spacing (V + m 1 )

than the Baldwin-Barth one-equation model (y+ m, 3.5). In addition, for the low
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Reynolds number k - e model it is very difficult to obtain a stable solution without

a proper initialization of the turbulence quantities. In structured mesh schemes

k and e are usually initialized using an algebraic turbulence model solution [26].

However, such an initialization is not practical in an unstructured mesh scheme.

Since the Bladwin-Barth one-equation is more robust and requires less mesh reso-

lution in the near-wall regions, only the Baldwin-Barth one-equation model is used

in the remaining turbulent flow problems.
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Figure 7.1 Triangular mesh for flat plate flow case: 5,760 nodes and 11,218

elements (10:1 magnification in y-direction).
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Figure 7.2 Flat plate log-law velocity profile at Re= = 1.13x10 ¢ obtained with

Baldwin-Barth one-equation turbulence model for different artificial dissipations:

D - eigenvalue scaling, ® - local velocity scaling, A - zero artificial dissipaton in

the boundary layer and solid line - standard log-law profile

u + = 5.85 log_o y+ + 5.56.



139

_°

u+

_t. ........... t,. ........... t..-.

-1.0 1.0 3.0 5.0

¥+

Figure 7.3 Flat plate log-law velocity profile at Re, = 1.13x107 obtained with

Chien's low Reynolds number _¢- e turbulence model for different artificial

dissipations: Q - eigenvalue scaling, ® - local velocity scaling, A - zero artificial

dissipaton in the boundary layer and solid line - standard log-law profile

u + = 5.85 loglo y+ + 5.56.
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Figure 7.4 Flat plate nondimensional velocity profile at x=4.987 m obtained with

Baldwin-Barth one-equation turbulence model for different artificial dissipations:

solid line - eigenvalue scaling, dashed line - local velocity scaling, short dashed line

- zero artificial dissipaton in the boundary layer and symbol - experimental data.
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Figure 7.5 Flat plate nondimensional velocity profile at x=4.987 m obtained with

Chien's low Reynolds number t; - e turbulence model for different artificial

dissipations: solid line - eigenvalue scaling, dashed line - local velocity scaling,

short dashed line - zero artificial dissipaton in the boundary layer and symbol -

experimental data.
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Figure 7.6 Flat plate surface friction coefficient obtained with Baldwin-Barth

one-equation turbulence model for different artificial dissipations: solid line -

eigenvalue scaling, dashed line - local velocity scaling, short dashed line - zero

artificial dissipaton in the boundary layer and symbol - experimental data.
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Figure 7.7 Flat plate surfa£e friction coefficient obtained with Chien's low

Reynolds number _ - e turbulence model for different artificial dissipations: solid

line - eigenvalue scaling, dashed line - local velocity scaling, short dashed line -

zero artificial dissipaton in the boundary layer and symbol - experimental data.
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7.2 RAE2822 Airfoil

The first test case presented for the solution adaptive scheme is the 1987 VTA

Workshop test case B1. This case is a RAE2822 airfoil operating at Moo - 0.725,

a = 2.92 °, and ReL = 6.5x10 _. This flow involves a strong shock wave at 55 %

chord on the upper surface. The lift coefficient in this case depends strongly on

the predicted shock wave location. This makes a good resolution of the shock wave

very important. Experimental data is given by Cook, McDonald, and Firmin [20].

Note that a transition trip was used near the leading edge suction surface in the

experiment. The flow conditions used for the present calculation are listed in Ta-

ble 7.2. For this test case, each participant of the 1987 VTA Workshop used a

different corrected angle of attack in his numerical calculations to obtain a better

agreement with experimental data. The range of corrected angles varied from 2.3 to

2.92 in the workshop [32]. Since the Baldwin-Barth turbulence model is used in the

present work, the corrected angle of attack, acomp = 2.31 °, suggested by Barth [7]

is used. The far field and near field meshes are presented in Figures 7.8 and 7.9,

respectively. The far field boundary is set at a radius of 5 chords from the airfoil.

At this boundary the vortex far field boundary condition [83] is applied. A no-slip

adiabatic wall condition and a zero normal pressure gradient are imposed at wall.

The initial local structured mesh is constructed through the specification of a

normal wall mesh scale (5_+ = Ay V+r = 8.6x10 -6 chord) and a streamwise wall

mesh scale (Nm = 25 and /_,, = A_, /_+ = 0.0215 chord). In the far field the un-

structured mesh is uniform with a length scale of 6m_ = 0.5 chord. The refinement

ratio equals 39 for the first adaptation and 2 for every additional refinement. The

reason of using a large ratio in the first adaptation is to decrease the minimum

length scale to the streamwise wall mesh scale so that the number of adaptation

cycles can be reduced. Figures 7.9 to 7.13 present the resulting solution adapted

meshes. Mesh statistics and force coefficient information for each mesh are listed

in Table 7.3. Note this case takes about 2.5 hours of Cray-YMP CPU time.
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Comparing the initial mesh solution with the final mesh solution as shown in

Figures 7.14 and 7.15 shows improved shock wave resolution for the adapted solu-

tion. Figures 7.16 to 7.21 show detailed mesh and flow structures in the shock wave

and trailing edge regions. The present adaptive remeshing scheme does a good

job in resolving the shock wave, the viscous wake and the boundary layer growth

resulting from the strong shock wave. Figures 7.22 and 7.23 show the compar-

isons of surface pressure coefficient with the experimental data for the initial and

final meshes, respectively. These plots show a slight difference in the leading edge

suction surface pressure distribution between the computed and the experimental

results. This may be due to the fact that the transition trip was not simulated in

the numerical solution. Further, the present solution does not accurately predict

the shock wave location. This leads to the 3 % difference between the computed

and measure lift coefficient (see Table 7.3). Comparing the initial mesh surface

friction coefficient shown in Figure 7.24 with the final mesh surface friction coeffi-

cient in Figure 7.25 shows a change of upper and lower surface friction coefficient

as the mesh is refined. The change of upper surface friction coefficient is due to the

resolution of the shock wave. A possible explanation to the change of lower surface

friction coefficient is that the turbulence effect was not fully developed in the initial

mesh solution yet.

Since the flow conditions and turbulence model used here are the same as those

used by Barth [7], the present solution shown in Figure 7.23 is compared to Barth's

solution shown in Figure 7.27. The present solution does not predict the same the

shock wave location as Barth. In order to study the viscous effect on the shock

Table 7.2 Flow conditions for the RAE2822 airfoil.

MOO

0.725

Note:

a_. TOO(" K) ReL (m)

2.92 ° 2.31 ° 293 6.5xi0 e 0.61

Experimental data is available in Reference [_



146

wave location, the inviscid solution for the same flow conditions, Moo = 0.725 and

a - 2.31, is also computed. The inviscid surface pressure coefficient is presented

as dashed line in Figure 7.26. The inviscid shock wave location is downstream of

the experimental location as expected. Note that the artificial dissipation plays an

important role in the accuracy of viscous flow solution as shown in the fiat plate

case. Since the difference between the shock wave locations of the experiment and

viscous solution is 4 % of chord upstream, This shift may be due to too much level

of artificial dissipation in the viscous flow region. However, comparing the present

viscous results with the results of the 1987 Viscous Transonic Airfoil Workshop [32]

as shown in Figures 7.23, 7.25, 7.28, and 7.29, the present results are well in the

range of the workshop results. This indicates that this is very difficult test case to

accurately predict.

Figures 7.30 to 7.33 show comparisons of nondimensional velocity profiles at

two stations on the airfoil upper surface. Since it is difficult to interpolate data

within unstructured mesh regions, only the nondimensional velocity profiles within

the local viscous mesh are shown. The nondimensional velocity is defined as q/Ue,

the ratio of the local velocity to the edge velocity. Because it is difficult to define

an edge velocity on the unstructured mesh, the edge velocity is estimated using the

procedure described in Reference [20], where the velocity ratio U¢/Uoo is given as:

Ue Me (li + 0.2M_ _1/2= Moo ' __] (7.2)

with the edge Mach number Me defined as:

( l+0.2M_ ),/2M_ = v_ (1 + 0.7M_(C_)e) _/' - 1 (7.3)

where Moo is the freestream Mach number and (Cp)_ is the edge pressure coefficient.

With the assumption of constant static pressure through the boundary layer, (Cp)e

can be replaced with the surface pressure coefficient. The velocity ratio U,/Uoo is

then evaluated using the above expressions. The plots show little difference between

the initial and final mesh solutions. This is due to the fact that the normal wall
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mesh scale is nearly constant during adaptation. Therefore, the resolution of viscous

region is nearly constant during remeshing.

Convergence histories for the pressure portion of the lift and drag coefficients

are shown in Figures 7.34 and 7.35. Figures 7.36 and 7.37 present the convergence

histories for the average residuals, [6(pu)///t[ and [,SR4/St[, respectively. The turbu-

lence quantities take about 1,500 iterations to develop and the complete procedure

converged in 8,000 iterations. These plots also show that all adapted mesh solutions

do not satisfy the convergence criteria based on the average residual I (pu)/ tl.
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Table 7.3 RAE2822 airfoil:Moo - 0.725,a - 2.31°, Re_ - 6.5xi0e,

C_=.= = 0.743,and C_=.,,- 0.0127.

MESH 2

C_

4

nodes 6,568 7,168 8,401 10,420 14,348

elements 12,934 14,133 16,597 20,626 28,462

Clp 0.7350 0.7209 0.7195 0.7179 0.7177

0.0068 0.0061 0.0059 0.0057 0.0056

C_u
0.0040

6,,_/chord

0.00034

0.5

0.0037

0.00032

0.5

39

0.0035

0.00030

0.5

78

0.0035

0.00030

0.5

156

0.0034

0.00030

0.5

312

4.02

A_

Ay,,_u(xl06) 4.28 3.32 3.69 3.92

yp+ 2 2.5 2.5 2.5 2.5

2,500 2,500 2,500 2,500 2,500

1,289 874Cray-YMP CPU (see) 1,9323,012 1,793
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Figure 7.8 RAE2822 airfoil initial mesh: far field view.
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Figure 7.9 RAE2822 airfoil initial mesh: 6,568 nodes and 12,934 elements.
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Figure 7.10 RAE2822airfoil 1"t adapted mesh: 7,168 nodes and 14,133 elements.
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Figure 7.11 RAE2822 airfoil 2nd adapted mesh: 8,401 nodes and 16,597 elements.
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Figure 7.12 RAE2822 airfoil 3_d adapted mesh: 10,420 nodes and 20,626 elements.
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Figure 7.13 RAE2822 airfoil 4 th (final) adapted mesh: 14,348 nodes and 28,462
elements.
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Figure 7.14 RAE2822airfoil Mach number contourson the initial mesh:
cmin = 0.0, cmax = 1.20, and inc = 0.05.
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Figure 7.15 RAE2822 airfoil Mach number contours on the final mesh:

cmin = 0.0, cmax = 1.20, and inc = 0.05.
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Figure 7.16 RAE2822 airfoil: shock region blowup of the final mesh.

\

Figure 7.17 RAE2822 airfoil: trailing edge blowup of the final mesh.
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Figure 7.18 RAE2822 airfoil Mach number contours (cmin = 0.0, cmax = 1.20,

and inc = 0.05): final mesh shock region.

Figure 7.19 RAE2822 airfoil Mach number contours (cmin = 0.0, cmax = 1.20,

and inc = 0.05): final mesh trailing edge region.



159

Figure 7.20 RAE2822 airfoilvelocityvector:finalmesh shock region.

--_-_

Figure 7.21 RAE2822 airfoil velocity vector: final mesh trailing edge region.
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Figure 7.23 RAE2822 airfoil surface pressure coefficient for the final mesh: solid

line - numerical solution and symbol - experimental data.
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Figure 7.24 RAE2822 airfoil surface friction coefficient for the initial mesh: solid

line - numerical solution at lower surface, dashed line - numerical solution at

upper surface and symbol - experimental data at upper surfa_:e.
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Figure 7.25 RAE2822 airfoil surface friction coefficient for the final mesh: solid
line - numerical solution at lower surface, dashed line - numerical solution at

upper surface and symbol - experimental data at upper surface.
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Figure 7.26 RAE2822 airfoil surface pressure coefficient for the final mesh: solid

line - numerical turbulent solution, dashed line - numerical inviscid solution, and

symbol - experimental data.
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Figure 7.27 RAE2822 airfoil surface pressure coefficient: Barth's numerical

results [7].
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Figure 7.28 RAE2822 airfoil surface pressure coefficient: the 1987 viscous
transonic airfoil workshop compendium of results [32].
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Figure 7.29 RAE2822 airfoil surface friction coefficient: the 1987 viscous

transonic airfoil workshop compendium of results [32].
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Figure 7.30 RAE2822 airfoil nondimensional velocity profile at x=0.319 for the

initial mesh: solid line - computed results and symbol - experimental data.
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Figure 7.31 RAE2822 airfoil nondimensional velocity profile at x--0.319 for the

final mesh: solid line - computed results and symbol - experimental data.
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Figure 7.32 RAE2822 airfoil nondimensional velocity profile at x=0.95 for the

initial mesh: solid line - computed results and symbol - experimental data.
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Figure 7.33 RAE2822 airfoil nondimensional velocity profile at x=0.95 for the

final mesh: solid line - computed results and symbol - experimental data.
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Figure 7.34 RAE2822 airfoil: C_p verses iteration.
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Figure 7.35 RAE2822 airfoil: Cd, verses iteration.
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Figure 7.37 RAE2822 airfoil: average IgRt/6tl verses iteration.
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7.3 NLR Two-Element Airfoil

The NLR two-element airfoil case illustrates the ease with which viscous flow

problems on arbitrary multiply-connected regions can be solved. This two-element

airfoil is composed of a NLR7301 main airfoil with a trailing edge flap. Experiments

have been done for various angles of attack with a single flap deflection angle of 20 °

by van den Berg [84]. For the case presented the flow conditions are summarized

in Table 7.4. This flow has a rapid expansion around the leading edge. There is

a small laminar separation bubble on the upper surface starting from 2.6 to 4 %

chord according to flow visualizations [84]. For such a small separation bubble, it

is very important to have correct level of turbulent viscosity to resolve it.

The far field and near field meshes are shown in Figures 7.38 and 7.39, respec-

tively. The far field boundary is placed at a radius of 5 chords from the airfoil.

The vortex far field boundary condition [83] is specified at this boundary. Along

wall surfaces, no-slip condition with adiabatic wall and zero normal pressure gra-

dient boundary conditions are applied. The initial C-type local structured mesh is

generated around the airfoil through the specification of a normal wall mesh scale,

6_+ = 2x10 -s chord, with a streamwise wall mesh scale (N0 = 40 and/_ = 0.015

chord). In the far field the unstructured mesh is uniform with a mesh scale of

= 0.5 chord. The sequence of adapted meshes are shown in Figures 7.39 to

7.41. Mesh properties and force coefficients are listed in Table 7.5. Comparing

the final mesh Mach number contours with the initial mesh solution as shown in

Figures 7.42 and 7.43 shows improved resolution of the boundary layer edges. The

mesh and flow at the leading edge and in the airfoil-flap gap region are shown in

Table 7.4

MOO

0.185

Note:

Flow conditions for the NLR two-element airfoil.

a 6_,p Flap gap % c Too (o K) ReL L_ (m)

6.0 ° 20.0 ° 2.6 293 2.51x10 _ 0.57

Experimental data is available in Reference [84].
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Figures 7.44 to 7.47. Although these plots show an accurate prediction of stag-

nation point location, the leading edge separation bubble is not resolved. This is

also confirmed by the positive value of the friction coefficient distribution along the

surface as shown in Figure 7.53. Since the refinement parameter based on surface

curvature does a good job in resolving the leading edge region, plots of the initial

and final mesh surface pressure distribution are almost exactly the same (see Fig-

ures 7.50 and 7.51). The surface friction coefficient distribution does improved as

the mesh is refined as shown in Figures 7.52 and 7.53. Similar improvements are

shown in the velocity plots (see Figures 7.54 to 7.57). This improvement is due to

a better resolution of near-wall viscous regions since a smaller wall distance Ayw_u

is obtained as the solution develops (see Table 7.5).

Figures 7.58 and 7.59 present the convergence histories for the pressure portion

of the lift and drag coefficients. Convergence histories for the average residual

of 16(pu)/6t[ and 15/_/5tl are given in Figures 7.60 and 7.61, respectively. This

case takes about 5.7 hours of Cray-YMP CPU time. Although the difference in

the force coefficient between last two meshes does not fall within the convergence

criteria (.002), the adaptation cycle has been stopped due to the huge computation

time required for continued adaptations. Further refinement of the mesh will not

improve the solution since the wall distance has converged to a constant value on

the last two adaptations (see Table 7.5). The computed total lifting coefficient is

about 1.25 % larger than the measured value.
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Table 7.5 NLR two-element airfoil: M_ = 0.185, a = 6.0 °, 6a_

/?,eL = 2.51x10 °, Cl..u = 2.416, and C_..., = 0.0229.

MESH 2

nodes 13,666

elements 26,931

Cl_ 2.4415

Cd_ 0.0341

CI, 0.00491

C_, 0.00094

_m_/chord 0.5

_m_/_ 78

Ay,,.a(xl0 °) 4.81

yp+ 2.5

A_, 750

Cray-YMP CPU (sec)

0 1

9,510 11,579

18,708 22,793

2.3983 2.4345

0.0470 0.0411

0.00358 0.00415

0.00073 0.00084

0.5 0.5

1 39

10.0 5.56

2 2.5

750 750

9,770 3,362 7,411

--20*,
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Figure 7.38 NLR two-element airfoil initial mesh: far field view.
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Figure 7.39 NLR two-element airfoil initial mesh: 9,510 nodes and 18,708
elements.
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Figure 7.40 NLR two-element airfoil 1't adapted mesh: 11,579 nodes and 22,793
elements.
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/

Figure 7.41 NLR two-element airfoil 2 _a (final) adapted mesh: 13,666 nodes and

26,931 elements.
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Figure 7.42 NLR two-element airfoil Math number contours on the initial mesh:

cmin -- 0.0, cmax - 0.50, and inc -- 0.02.
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Figure 7.43 NLR two-element airfoil Mach number contours on the final mesh:

cmin = 0.0, cmax - 0.50, and inc = 0.02.
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Figure 7.44 NLR two-element airfoil: leading edge blowup of the final mesh.

Figure 7.45 NLR two-element airfoil: airfoil-flap gap blowup of the final mesh.
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Figure 7.47 NLR two-element airfoil velocity vector: final mesh airfoil-flap region.
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Figure 7.48 NLR two-element airfoil Mach number contours (cmin = 0.0,

cmax = 1.20, and inc = 0.05): final mesh leading edge region.

Figure 7.49

J
RAE2822 airfoil Mach number contours (cmin = 0.0, cmax = 1.20,

and inc = 0.05): final mesh airfoil-flap region.
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Figure 7.50 NLR two-element airfoil surface pressure coefficient for the initial

mesh: solid line - numerical solution and symbol - experimental data.
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Figure 7.51 NLR two-element airfoil surface pressure coefficient for the final

mesh: solid line - numerical solution and symbol - experimental data.
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Figure 7.52 NLR two-element airfoil surface friction coefficient for the initial

mesh: solid line - numerical solution at lower surface, dashed line - numerical

solution at upper surface and symbol - experimental data at upper surface.
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Figure 7.53 NLR two-element airfoil surface friction coefficient for the final mesh:

solid line - numerical solution at lower surface, dashed line - numerical solution at

upper surface and symbol - experimental data at upper surface.
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Figure 7.54 NLR two-element airfoil nondimensional velocity profile at x=0.88 for

the initial mesh: solid line - computed results and symbol - experimental data.
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Figure 7.55 NLR two-element airfoil nondimensional velocity profile at x=0.88 for

the final mesh: solid line - computed results and symbol - experimental data.
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Figure 7.56 NLR two-element airfoil nondimensional velocity profile at x=l.ll for

the initial mesh: solid line - computed results and symbol - experimental data.
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Figure 7.57 NLR two-element airfoil nondimensional velocity profile at x=l.11 for

the final mesh: solid line - computed results and symbol - experimental data.
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Figure 7.58 NLR two-element airfoil: C_, verses iteration.
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Figure 7.59 NLR two-element airfoil: Cd,, verses iteration.
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Figure 7.61 NLR two-element airfoil: average 1,5Rt/6tl verses iteration.
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7.4 VKI LS82-1 Turbine Cascade

This turbine cascade case is referred to as case 1 in the 1982 VKI Work-

shop [77]. Experimental results for the surface isentropic Mach number distribution

and Schlieren photographs for different exit pressures are given by Sieverding, and

Van Hove et al. [77]. The isentropic Mach number is defined as

Mi.= 2 1• - :._ 1 (7.4)
(p/p,,.) ,

The blade characteristics and the flow conditions for the results presented are sum-

marized in Table 7.6. The exit pressure is measured in an area averaged fashion

and is given in terms of the isentropic exit Mach number. The ratio of the area av-

eraged exit static pressure to the inlet total pressure is 0.3012 for the present value

of (M_.)e_i,. This flow condition is of particular interest because there is a strong

oblique shock wave propagating to downstream boundary as shown in Schlieren

photograph (Figure 7.68a). The total exit velocity is supersonic with a subsonic

axial component. Therefore, one boundary condition is still needed at the exit

boundary. In addition, the flow in this case is choked, making the boundary layer

resolution very important. Note that experimental results are measured using a

finite number of blades with tailboard placed on the upper boundary as shown in

the Schlieren photograph. The use of tailboards results in reflected shock waves

which propagate to the blade row. These reflected shock waves are not presented

in an infinite cascade problem.

Table 7.6

Min

0.085

Note:

Flow conditions for the VKI LS82-1 turbine cascade.

(Mis)exit _m _,xit Too (o K) ReL Pitch/chord

1.43 0.0 ° -78.0 ° 278.0 2.51x10 e 0.78

• Experimental data is available in Reference [77].

• Nonuniform pressure present at the exit.



m

187

The initial mesh is given in Figure 7.62. The upstream and downstream mesh

boundaries are placed one half an axial chord from the blade leading and trailing

edges, respectively. At the upstream boundary total pressure, total temperature,

and absolute flow angle are specified as boundary conditions. At the downstream

boundary the area averaged exit static pressure is imposed as described in Chapter

3. No-slip condition, adiabatic wall, and zero normal pressure gradient are enforced

on the blade and periodicity is imposed at the upper and lower boundaries. Spec-

ifying a normal wall mesh scale (5_+ - 6x10 -s chord) and a streamwise wall mesh

scale (Nj -" 8 and 6w = 0.018 chord) produces the initia/O-type local structured

mesh around the blade. In the far field the unstructured mesh is uniform with a

length scale of/_m_ = 0.0385 (pitch).

The sequence of solution adapted meshes are shown in Figures 7.62 to 7.65.

The characteristics of each mesh are tabulated in Table 7.7. Figures 7.66 and 7.67

present the initial and final mesh solutions, respectively. The latter plot shows a

good resolution of the oblique shock wave and viscous wake. Since the Schlieren

photograph is based on the reflection of light passing through the flow, the density

contours of the computed results are compared to the Schlieren photograph. Com-

paring the final mesh density contours shown in Figure 7.68b with the Schlieren

photograph in Figure 7.68a shows an accurate prediction of the strong oblique shock

wave location and orientation, as well as the weak passage shock wave. Detailed

mesh and Mach contours at the blade trailing edge are presented in Figures 7.69

and 7.70. These plots demonstrate how the solution adaptive scheme resolves com-

plex flow structures. Comparing the initial mesh surface Mach number distribution

shown in Figure 7.71 with the final mesh solution in Figure 7.72 shows an improved

solution as the mesh is refined. Figure 7.72 shows a slight difference between the

numerical solution and experimental data on the uncovered portion of the blade

suction surface. This is due to the interference of the reflected shock waves from

the tailboard with the suction surface of blade 6 in the experimental data (see

Figure 7.68a).
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Although the solution converges after three mesh adaptations, further refine-

ment is forced to improve the resolution of the weak shock wave. The 4 th adapted

mesh is fine enough to resolve the vortex shedding at the blade trailing edge as

shown in Figure 7.77. Since vortices are shed from the blunt trailing edge, this flow

is unsteady. In order to obtain a realistic unsteady solution, the solution should be

marched time accurately. This is too costly to be practical. In the present work

a _pseudo _ time averaged quantity is used to estimate the difference in loading

coemcients between steady state and unsteady solutions. The term _pseudo _ is

used to distinguish it from the actual time average. Due to the use of local time

stepping and implicit residual smoothing, the present calculation does not produce

a time-accurate solution. The mesh in the unsteady wake flow region as shown in

Figure 7.75 is quite uniform, therefore, the solution in this region may be nearly

time-accurate. A _pseudo _ time averaged loading coe_cient can be estimated from

the convergence histories of the solution on the 4 th adapted mesh. It is believed

that the trailing edge shedding has a small effect on the loading coemcient. Since

the loading coei_icient is a major concern in practical applications it might be rea-

sonable to accept the steady state solution. This is confirmed by the convergence

histories for the axial and normal force coei_icients shown in Figures 7.81 and 7.82,

respectively. The fluctuating part of the loading coefficient is less than 1% of the

steady state or _pseudo _ time averaged value. Comparing the 4 th adapted mesh

solutions as shown in Figures 7.79 and 7.78 with the steady state solution in Fig-

ures 7.72 and 7.78 also shows little difference in the two solutions. The total CPU

time for three mesh adaptations is about 2.2 hours of Cray-YMP CPU time.
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Table 7.7 VKI LS82-1 turbine cascade: (M_-)e_it --" 1.43, _. = 0.0% and

Ren --- 2.0x105.

MESH 0 1 2 3 4

nodes 4,610 5,212 7,783 11,588 13,291

elements 8,780 9,918 14,943 22,487 25,932

CI% 20.3200 20.3499 20.4902 20.6563

Clip 91.2638 91.2557 91.3174 91.3652

Ct,," 0.0688 0.0706 0.0693 0.0672

CI," -0.15789 -0.16353 -0.15597 -0.14954

8m_/pitch 0.0385 0.0385 0.0385 0.0385 0.0385

8m, x/8,,_ I 3.1 6.2 12.5 25

Ay,,,_(xl0 s) 3.0 2.55 2.43 2.33 2.34

Y+r 2 2.5 2.5 2.5 2.5

A,, 300 300 300 300 300

Cray-YMP CPU (sec) 2,432 1,255 1,277 2,838 3,194
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Figure 7.62 VKI LS82-1 turbine cascade initial mesh: 4,610 nodes and 8,780
elements.
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Figure 7.63 VKI LS82-1 turbine cascade 1"t adapted mesh: 5,212 nodes and 9,918
elements.
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Figure 7.64 VKI LS82-1 turbine cascade 2 _ adapted mesh: 7,783 nodes and

14,943 elements.
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Figure 7.65 VKI LS82-1 turbine cascade 3'a adapted mesh: 11,588 nodes and

22,487 elements.
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Figure 7.66 VKI LS82-1turbine cascadeMach number contours on the initial

mesh: cmin = 0.0, cmax = 1.8, and inc = 0.05.
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Figure 7.67 VKI LS82-1 turbine cascade Mach number contours on the 3 '_t

adapted mesh: cmin = 0.0, cmax = 1.8, and inc = 0.05.
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(b)

Figure 7.68 VKI LS82-1 turbine cascade: (a) Schlieren photographs (Sieverding

[77]). (b) Density contours on the 3 '_ adapted mesh, cmin = 0.17, cmax = 0.99,
and inc = 0.02.
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Figure 7.69 VKI LS82-1 turbine cascade: trailing edge blowup of the 3 '_t adapted

mesh.
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Figure 7.70 VKI LS82-i turbine cascade Mach number contours (cmin = 0.0,

cmax = 1.80, and inc = 0.05): 3 _a adapted mesh trailing edge region.
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Figure 7.71 VKI LS82-1 turbine cascade surface isentropic Mach number for the
initial mesh: solid line - numerical solution and symbol - experimental data.
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Figure 7.72 VKI LS82-1 turbine cascade surface isentropic Mach number for the

3 rd adapted mesh: solid line - numerical solution and symbol - experimental data.
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Figure 7.73 VKI LS82-1 turbine cascade surface friction coefficient for the initial

mesh.
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Figure 7.74 VKI LS82-1 turbine cascade surface friction coefficient for the 3 'a

adapted mesh.
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Figure 7.75 VKI LS82-1 turbine cascade 4th adapted mesh: 13,291 nodes and
25,932 elements.
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Figure 7.76 VKI LS82-1 turbine cascade velocity vector: 3'_ adapted mesh

trailing edge region.
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Figure 7.77 VKI LS82-1 turbine cascade velocity vector: 4 th adapted mesh

trailing edge region.
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Figure 7.78 VKI LS82-1 turbine cascade Mach number contours on the 4 th

adapted mesh: cmin = 0.0, cmax = 1.80, and inc = 0.05.
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Figure 7.79 VKI LS82-1 turbine cascade surface isentropic Mach number for the

4 th adapted mesh: solid line - numerical solution and symbol - experimental data.
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Figure 7.80 VKI LS82-1 turbine cascade surface friction coefficient for the 4 th

adapted mesh.
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90.80
O. 2500. 5000. 7500.

ITERATION

I0000.

Figure 7.81 VKI LS82-1 turbine cascade: C/t, verses iteration.

19.80
O. 2500. I0000.

Figure 7.82 VKI LS82-1 turbine cascade: CI% verses iteration.
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Figure 7.83 VKI LS82-1 turbine cascade: average I_(pu)/6tl verses iteration.
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Figure 7.84 VKI LS82-1 turbine cascade: average J6Rt/6tl verses iteration.
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7.5 Allison Tandem Blade Cascade

This test case demonstrates the present solution adaptive scheme for a complex

blade design. There is no experimental data available. Since the flow is three-

dimensional, through-flow information is required as input to the present quasi-

three-dimensional analysis. The streamsurface location and thickness data used

in the present calculations were obtained from Reference [60]. The adapted mesh

solutions presented here are for 70 % span station measured from the shroud. This is

the same case for which the inviscid solution of section 6.6 was discussed. The inflow

and outflow conditions are determined from the through-flow analysis. The exit

static pressure is adjusted until a correct incident is obtained. The flow conditions

for the 70 % span station are summarized in Table 6.12.

The initial mesh is given in Figure 7.85. The upstream and downstream mesh

boundaries are located one axial chord from the blade edges. At the upstream

boundary total pressure, total temperature, and absolute flow angle are imposed.

At the downstream boundary the exit static pressure is specified. At blade surfaces

a no-slip condition with adiabatic wall and zero normal pressure gradient is imposed.

The initial O-type local structured mesh is constructed using a normal wall mesh

scale gv+ = 9.48x10 -s chord and a streamwise wall mesh scale (N0 = 20 and

6_, = 0.055 chord). In the far field the unstructured mesh is uniform with a length

scale of g,,_ = 0.046 chord.

The initial mesh solution is massively separated on the suction surface start-

ing from 80 % of chord of the first blade to all the way downstream as shown in

Figure 7.87. Similar separated flow solutions have been obtained by another inves-

tigator [24]. Comparing the turbulent flow results shown in Figure 7.87 with the

Table 7.8 Allison tandem blade cascade far field flow conditions.

Pt_. (psi) Tt,. (R) r vs P._t/Pt,. _,., tL r.

74.5 872.7 ° 0 0.721 0.0 ° 5.3 x l0 s
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inviscid flow results in Figure 6.61 shows the importance of modeling the viscous

effects.

It is meaningless to perform a further mesh adaptation on this kind of flow

structure. The mesh adaptation is performed one time to illustrate how the solution

adaptive scheme resolves such separated flow structures. Figure ?.94 shows mesh

refinment on the separated and wake flow regions. The present mesh refinement

parameters do a good job in resolving viscous flow structures. The mesh statistics

and force coefficient information is summarized in Table 7.9. This case demonstrates

that the unstructured flow solver can easily produce solutions for flow problems

which are difficult to predict using structured mesh approach.
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Table 7.9 Allison tandem blade cascade 70 % span station:

_.,,, = 0.0 °, and ReL = 5.3x10 s.

MESH 0 1

nodes 5,417 9,367

elements 10,481 18,186

Cf% 0.7479 0.7629

C1, p 0.3917 0.3634

CI." 0.0114 0.0075

CI," -0.0142 -0.0203

6._/chord 0.046 0.046

_._I_.,_. 1 4

Ay,,_u(xl0 e) 3.1 7.3

Yp+r 2.0 1.0

A_ 600 600

M,.it = 0.71,
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Figure 7.86 Allison tandem blade cascade 70 % span from shroud initial mesh:

5,417 nodes and 10,481 elements.
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\

Figure 7.88 Allison tandem blade cascade 70 % span from shroud: leading edge

blowup of the initial mesh.

/

Figure 7.89 Allison tandem blade cascade 70 % span from shroud Mach number

contours (cmin = 0.0, cmax = 1.45, inc = 0.05): initial mesh leading edge region.
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Figure 7.90 Allison tandem blade cascade 70 % span from shroud: tandem blade

gap blowup of the initial mesh.

Figure 7.91 Allison tandem blade cascade 70 % span from shroud Mach number

contours (cmin = 0.0, cmax = 1.45, inc = 0.05): initial mesh tandem blade gap

region.
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Figure 7.92 Allison tandem blade cascade 70 % span from shroud velocity vector:

initial mesh leading edge region.
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Figure 7.93 Allison tandem blade cascade 70 % span from shroud velocity vector:

initial mesh tandem blade gap region.
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8. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

A general solution adaptive unstructured remesh scheme has been implemented

and verified for a wide range of both inviscid and viscous two-dimensional and

quasi-three-dimensional turbomachinery flows. The solution adaptive scheme used

here incorporates an explicit finite-volume Runge-Kutta time-marching flow solver

and an advancing front mesh generation scheme. The mesh is adapted by periodic

remeshing as the solution evolves. In the present approach, an edge-based local

coordinate system has been introduced for the formulation of the stability criteria

and eigenvalue scaling of the artificial dissipation. A general stability analysis of an

unstructured scheme is not possible due to the unstructured mesh connectivity. By

employing the edge-based coordinate system, an analogy to the structured formu-

lations is obtained. To enhance the convergence rate to steady state, an improved

iterative method for solving the implicit residual averaging operator is formulated

which allows larger local time steps to be used than those obtained from standard

Jacobi iterative method.

In the solution adaptive scheme, new mesh refinement parameters have been

derived based on a combination of the local surface curvature and the gradient of

flow speed. The coupling of geometric and flow field information results in an ac-

curate and efficient adaptation criterion for problems with complex flow structures

and complex geometries. The present work uses a local structured triangular mesh

within viscous flow regions. The solution adaptive remesh scheme is general and is

not restricted to this local structured mesh.
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The major contributions of the present research are summarized below.

• A solution adaptive unstructured remesh algorithm has been developed for

turbomachinery applications.

• New mesh refinement parameters have been formulated for an accurate and

efficient resolution of complex flow problems.

• Improvements to the basic cell-vertex finite-volume Runge-Kutta scheme have

been made in the following areas:

- Introduction of an edge-based local coordinate system for the formula-

tion of the stability criteria and eigenvalue scaling artificial dissipation.

- Development of an improved iterative method for the implicit residual

averaging equation.

• Demonstration of the excellent performance of the solution adaptive unstruc-

tured remesh scheme.

8.1 Summary of Results

The solution adaptive remesh scheme has been demonstrated with the solu-

tion of various two-dimensional and quasi-three-dimensional inviscid and turbulent

flows. Each of these cases has different flow features which need to be resolved for

an accurate solution. In the cases presented, the adaptive remesh scheme was used

to automatically resolve the flow features in the region of shock waves, expansion

waves, stagnation regions, viscous layers and viscous wakes. These cases illustrates

the automatic detection of the location, the size and the orientation of the impor-

tant flow features through the use of the solution adaptive remesh algorithm. The

minimum mesh scale of the sequence of solution adapted meshes is user-specified

and can be defined in an efficient fashion to enhance the convergence of mesh adap-

tation cycles. This leads to a great advantage over the mesh refinement approach

where mesh cells are subdivided in a constant ratio of 2.
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Flow problems of arbitrary multiply-connected regions are no more difficult

to solve than flow over an isolated body as shown by multi-element airfoil and

tandem blade cascade cases. Small finite radius leading and trailing edge regions

are also resolved as shown in the NASA Rotor 67 30%-span station case (Figure

6.51). These cases clearly illustrate the great flexibility of the solution adaptive

unstructured remesh scheme for geometrically complex flow problems.

Even when complex flow structures develop within the solution domain, the

solution adaptive remesh algorithm accurately resolves them as shown in the Den-

ton supersonic wedge cascade and the VKI turbine cascade cases. These complex

flow structures are very difficult to be accurately resolved using structured mesh

approaches. Comparing the final solutions with the corresponding analytical or

experimental data has shown that the important flow structures are accurately

resolved without any prior knowledge. There is also a great saving in the computa-

tional effort and storage requirements since mesh points are not wasted in regions

where they are not required. Furthermore, any level of the accuracy of solutions

can be achieved as the mesh continues to be refined.

The effect of artificial dissipation on the solution of turbulent flows has also

been studied. While the adaptive artificial dissipation works well in the solution

of inviscid flows, it causes unacceptable errors in the solution of turbulent flows as

shown in the fiat plate case. Shutting off artificial dissipation within boundary layer

regions produces an accurate prediction of the turbulent flow, but it is impossible

to turn of[ the artificial dissipation completely for general flow problems. With

proper scaling of the artificial dissipation, it has been shown that these errors can

be greatly reduced.

In a preliminary study of directional mesh adaptations, it has been found that

the advancing front method produces highly distorted meshes when mesh cell as-

pect ratios are greater than 20. The aspect ratio limitation in the advancing front

method limits its use in viscous flow regions since high aspect ratio meshes are re-

quired for efficient viscous flow calculations. In the present work, a local structured
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mesh is used in viscous regions. Adopting a local structured mesh in viscous flow

regions yields several advantages over a simple unstructured mesh approach. First,

high aspect ratio mesh cells are easily achieved. This in turn yields an efficient

mesh point distribution for the solution of turbulent flow problems. Second, vis-

cous mesh scale is easily controlled, which reduces the possible stability problem

caused by insufficient resolution of the near-wall region for turbulent flows.

For turbomachinery cascade calculations, repeated mesh refinement resolves

vortex shedding at blunt trailing edges as shown in the VKI turbine cascade case.

Since vortex shedding is an unsteady phenomena, a time-accurate solution scheme

is required to obtain the correct solution. However, the present scheme can be

marched time-accurately, this requires an enormous computational effort. Since

the fluctuation in force coefficients is less than 1% of the steady state or pseudo

time averaged force coefficients, the steady state solutions computed for this case

are considered a good engineering approximation to the real flow.

The present solution adaptive scheme has been shown to accurately predict

complex turbulent flows, although the explicit time-marching scheme requires a

great amount of computational time for solving turbulent flow problems due to

the requirement of fine meshes in the near-wall regions. Nevertheless, the results

demonstrate the capability of the present scheme in analyzing the complex turboma-

chinery problems which can not be solved using classic structured mesh approaches

(e.g., plate splitter, tandem blade, etc.).

8.2 Future Work

This thesis has successfully demonstrated a flexible solution adaptive remesh

scheme for the accurate solution of complex flows. Further research in the following

areas is suggested to enhance the efficiency of the present approach:

1. Multi-grid acceleration:

Multi-grid acceleration should be incorporated into the present solver. Multi-

grid methods have been demonstrated for unstructured triangular mesh Euler
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and Navier-Stokes solutions by Mavriplis I54]. While multi-grid has been

found to be more computationally intensive for triangular mesh formulations

due to the the complexity of interpolation and projection operations, there is

still a significant reduction in the overall computational work.

2. Alternate flow solvers:

For viscous flow calculations the computation time becomes extremely large

due to the stability criteria of the present Runge-Kutta scheme. This may be

overcome through the adoption of an implicit formulation. There has been

some promising work in this area by Batina [10], Barth [7], and others, but

much work remains to be done.

3. Directional adaptation:

Since many flow structures, such as viscous layers and shock waves, involve

multiple length scales where the change in flow properties along one direc-

tion is much larger than the change in other directions, it is inefficient to

use equilateral triangles over the domain. A directional adaptation method,

which allows high aspect ratio triangles to be aligned with the flow features,

will further reduce the computation expense and storage requirements en-

countered in these regions. The present mesh generation scheme is capable of

generating directionally adapted mesh with cell aspect ratios as high as 20.

With further development of the refinement parameters this could be incor-

porated in inviscid flow regions. The high aspect ratio meshes required for

efficient viscous flow calculations require a new unstructured mesh generation

scheme.
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Appendix A: Derivation of the Quasi-Three-Dimensional Navier-Stokes Equations

The vector form of the three-dimensional Navier-Stokes equations may be ex-

pressed as follows.

0p
0-t + V" pl? = 0 (A.1)

Dl_ _TP 1

-_-+ - V'e (A.2)
P P

and

OpE
+ V.p_'H = _7.(x_ _TT+_" V) (A.3)

The above equations represent the physical conservation law of mass, momentum

and energy for a fluid flow without body force and external heat transfer. For

analysis of general flow problem it is useful to consider flow on the generalized

curvilinear coordinate system because they can be transformed to any coordinate

system.

Let (zl,x2,x3) be a set of generalized curvilineax coordinates and (el,e2,e3)

be the set of corresponding unit vectors. The expressions for the vector operators

appearing in the Navier-Stokes equations axe described below.

The gradient of a scalar _b is described by

V _= h-_Oz---_el + h-_az--_2e2+ h_Ox---_e, (A.4)

The gradient of a vector ,4 is given by

_7 A= [Aij] (A.5)

where Aij is the ij th element of a tensor matrix ,_ and is described as

10A_ Ak Oh_ Aj cghj (A.6)
Aij : @ "_zj + 6ijh_l h"_j "_z_ hihj Oxi

where 66 is the Kronecker delta function.

?

j 1 i = j
6o / 0 i#j
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Applying Eq.(A.5), the directional derivative of a vector/_ can be obtained as

eaf #B1 . OB2 OBa A: (Oh2B2 OhlB1(_"v)_ = _ [(A'_T,,+ A'_;T,,+a_i',_)- h2 a_, 0,2 )
Aa .OhlB_ Oh3Bs.1 e2 f OB_ . OB2 OBs

As.Oh_lh 0h2B2 a_.Oh2B2 OhIB1 ]T,( _ o_ )+T, ( _ 8,2 )

es [ 0B1 . 0B2 A 0133. AI(Oh, B1

A2.0a3O_ ah2B2)]

The divergence of a vector A i_ given by

•A = h,h,h"--'--_ (h2h3A,) + (hah,A2) + (h,h2Aa)

The divergence of the stress tensor _ is expressed as

{1 ]" h,[#,_ (h2h:,,)+ _g_,(h,h:,2)+ (h,h:,_)
1 Oh1

+Cq' hl h2 0x _ + _'3 hlha h' _2, hlh2 Oh'

1 Oh2 1 0h2 1 Oh3 1 Oh1
+e_a"h L + _22-20x3 h]h_ OXl 0"33h:_h3 8,2 0"11h_h: Ox_

+_ n,n,n_ o,, (h'h:'2_)+
1 0h3 1 Oh3 1 Oh, 1 Oh_

+°'s3h_h3 Oxs + °'2a h2h3 0x2 o'x_ h_h30x3 o'22 h2h3 _ J

(A.7)

(A.S)

(A.9)

The stresstensor can be described as

,:(s+:)"+ v
where _ denotes the velocitygradient tensor matrix.

(A.10)
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The metric coefficients hi, h2, and h3 are defined as

(A.II)

In order to obtain the Navier-Stokes equations for the quaai-3D blade to blade

flow, we assume the coordinate system (m, 0) is on the streamsurfaze and the third

component n is perpendicular to the plane (m, 0). With this third coordinate, we

can define a three-dimensional curvilinear coordinate system using (m, 0, n). In this

coordinate system we have V. e,_ = 0 or V,_ = O, so the velocity may be described

as

V = (V=, V0,0) (A.12)

Op
o-i + _ (p_) = o

_i + 7_ (,.hpv,,,) + (hpv,) =o

o

follows.

Continuity equation:

If we let the streamtube height h be defined in the direction of n and measured in

the units of the variable n, then the metric coefficients may be obtained as

h, = [Oe I = 1, h2= Iae o_ (A.13)am _ l = r, h3 = lon l = h

Substituting the vector operators, metric coefficients, and velocity into the vector

form of the Navier-Stokes equations gives the quasi-3D Navier-Stokes equations as
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m- momentum equation:

av_ 10p
0-7- + (¢" v)v_, + _--_

--.@

=;

(A.15)

O- momentum equation:

---4

OVe 10p 1

OVe 1 r OV., _ OVo Or Ve

-_- + ; [v.,-_- + v,--_. + v.,( om
z Op

rp 00

1{1 [_ _ ] ldr}

OVe _ OVo Ve OVe 10p V., Vo dr

--_-+v,,,_--_+ - + =

(A.16)

energy equation:

OpE
O--_-+ V" (p_'H) = V" (_. V T + $. _')

o--7-+ _ (_h_YmH)+ (hp_H)

1{o[ I] o[(o = ,.-._ _ ,.h ,,,-g-_+ v.,_,, + vw_, + -_ !, ,,,-g-g

_--_(rhpE)+ £(rhpV.,H) + _--_(hpVeH)

o[ )I= _ rh _,-_ + v.._,,, + v_,,,_ + _ h _.-_

+ v,,,,,,, + v_2,)] }

+ v,.o-,_+ vw,O]

(A.17)
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Equations (A.15) and (A.16) can be cast in the conservation form using the conti-

nuity equation(A. 14).

Performing a linear combination of Eq.(A.15).rhp + Eq.(A.14)-V,,,, the m-

momentum equation is obtained as

O (rhpV,,,) + £[rh(pV_ + p)] + O (hpVoV,,,)

- (_h_,H)+ (h_,_)+ _h (pg_+ p- _=r;-_-_ + (P- _Jg5-'_

(A.18)

Similarly, a linear combination of r. (Eq.(A.16).rhp + Eq.(A.14).V0) results in

the conservation form of the 0- momentum equation.

0 0

0 0
_ (_h_,_)+ _(ho_)
Om U¢7

- }• 0 (rhpVo)+ (rhpVoV.,)+ O-_[h(pV_ +p)]+hpV,.Vo£Ot

(A.19)

Therefore, the quasi-3D Navier-Stokes equation may be expressed as

__O(rhU) + __O(rhF) + O(hG) _ 0(rh/_) + _O(h'_) + rhK
Ot Om 00 Om 00

(A.20)

where

.._

P

p_

pVsr

pE

I
pv_ pvo

. p= pv2+v . 0= py_vo
py..yor (py2 + p)r

V,,,(pE + p) , Vo(pE + p)

f 0 _ ( 0

o'12r 0"2:2 r

R4 , k $4 /

01Ks

0

0
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where

1 dr 1 dh

I¢2 = (pvg + p- ___)(-;_-_) + (v - __ )(_ _-_)

1_ = (_,O.,T + V_an + Voa12)

S4 = (_-_"&T + V,,a12 + Voa22)
r

Employing Eq.(A.10) the stress terms are

an = 2/_@.,V,.+ A V .17'

I dh

_ = 2uv_(_Tm) + __7.9

1 dr. 1

(A.21)

(A.22)

We may also write the equations in the relative frame which the coordinate system

rotates with blade rows. Let f/be the rotating speed of blade rows, 0 be the relative

angle with respect to the blade rows, and We denote the relative tangential velocity,

then we have

and

0 = O- f_t, Wo=Vo-rf_

0 0 O O0 0 0
: _ + o-__ = 05- _

Substituting the above relation into equation (A.20), we have

(A.23)

pWe

pym wo

(pYoWo+ p)r

Wo(pE + p) + rftp

O(rh6) O(rh_) O(hG) O(rh/_) O(h_)
O----i-- + am + a--_ = o-----m--+ o-'---_ + rhK (A.24)
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Appendix B: Quasi-Three-Dimensional Favre-Averaged Navier-Stokes Equations

In compressible flows, the density-weighted average suggested by Favre [27, 28] is

helpful to simplify the formulation of the mean flow equations. Favre averaging is a

hybrid average method which uses density-weighted averaging on all fluid properties

except for pressure and density on which an ensemble (or time) averaging is used.

An ensemble-averaged quantity, represented by angular brackets <>, is defined as

1 N

<f) - _ __ f, (B.I)
/ffil

and a density-weighted averaged quantity, represented by a tilde, is defined as

= (_-_)----_) (B.2)i

where f is some indenpendent variable. Follow the Reynolds averaging procedure,

the quantity is decomposed into the averaged and fluctuating parts.

f = (f) + f', and (f')= O (B.3)

and

f = J:+ f", and (pf") = 0 but f,-5# 0 (B.4)

Employing Favre averaging the vectorform of the mean flow equations in the gen-

eralizedcurvilinearcoordinate system are [74]

0"-_+ _7" (P) = 0 (B.5)

DV V(P) I (_ (:'_')) (B.6)D--7+ <:--V= V" -

The mean flowequations are ina similarform ofthe fullNavier-Stokes equations

Eqs.(A.l)- (A.3) except forthe appearance of the unknown terms in the mean mo-

mentum and energy equations. Applying the same procedures given in Appendix A,
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the Favre-averaged N-S equations in the generalized curvilinear coordinate system

can be converted to the desired quasi-3D relative coordinate system.

In the particular (m, O, n) coordinate system, the mean-flow velocity V and the

fluctuating velocity _, are given by

V = V,_e_-+-_ee

_' = _ - v = VJ'e. + Vo"e,+ VJe. (B.8)

In the above expressions, 0 now represents the relative angle with respect to the

bla_ie rows. Using the coordinate transformation procedure given in the Appendix

A, the mean-flow equations Eqs.(B.5)-(B.7) are converted to

Mean-flow continuity equation:

0 0 0
(rh<p)V,,) + (h(p)Wo) = 0 (B.9)

Mean flow ra- momentum equation:

-_ (rh(p}V,.)+ _ -_

o _<,<,>))+ o: _ _ (a(#,: -<pv"v,")))

+rh [((p>_Z + (p)_@::+ (pV0,,:)) 1 dr7T_
t.

+ (_) -_3n + (pV:")) Idh] (B.10)
h dmJ

Mean-flow 8- momentum equation:

i) (rh(p)_/'or) + O (rh(p)Vm_z'er) + O [h((p)_zo+(p)) r]o-_ _

0 0 (h (_22- (PVo":))r) (B.11)= _ (ra (_,: - (pv_v;'>)r) +

Mean-flow energy equation:

--{ (°' )]o rh _,_-_+<pvgH">+fz_(_,,- <pv-'_>)+ _,(_,_- <pv"v,"))am

+_ h o-7+ <eV;'H">+ f/_(_.- (pVgV;'))+ % (_,,- (pV,"')

(B.12)
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These mean-flow equations may be rewritten in a condensed vector form as

o(,.h@)) o(,-I,(#)) o(h<_))
+ +

Ot Om O0
(o(_h<_>)+ o(__#o))o,7, ) = ,h(R) (B.13)

where

(6) =

(p)

(p)_,
, (f)=

(p>_.,

(p)v,.+ (p)

(p)v.vo_

_(<p)_+ (p))

<0)=

<p>_o

(p>v.w,

(<,)v,wo+ (p))_

•,(<p)_+ (p))+ re(p)

(_)= _,, - (pv'_)

(_,:- (pv'vo"))_

* - <pvill')9.(_,, - (pv-_))+ _(_,,- (,v_v,")) + _._

(#) =

0

_,_- (pvivo,,)

_',,,(_,2 (pV'_'V_')) + _(_=2 (pVo":)) + , _-# - (pVo"H")

(R) = I

0

[<p>g_,+ <p>- (_. - (pv,'_))]
\ h din/

0
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