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NAFIPS ‘92, an international conference on fuzzy set theory and applications, is sponsored
by NAFIPS, in cooperation with:

National Aeronautics and Space Administration (NASA)

Instituto Tecnologico de Morelia

Indian Society for Fuzzy Mathematics and Iinformation Processing(ISFUMIP)
Instituto Tecnologico de Estudios Superiores de Monterrey (ITESM)
International Fuzzy Systems Association (IFSA)

Japan Society for Fuzzy Theory and Systems

Microelectronics and Computer Technology Corporation (MCC)
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Fuzzy set theory has led to a large number of diverse applications. Recently, interesting
applications have been developed which involve the integration of fuzzy systems with
adaptive processes such as neural networks and genetic algorithms. NAFIPS 92 will be
directed toward the advancement, commercialization, and engineering development of these
technologies.

The conference will consist of both plenary sessions and contributory sessions. The plenary
sessions will be addressed by leading experts. Topics to be discussed at this conference
include the following:

Biomedical and Biochemical issues
Business and Decision Making
Commercial Products and Tools
Computer Systems and Information Processing
Control Systems

Decision Analysis

Foundations and Mathematical Issues
Genetic Algorithms

Hardware

Image Processing and Vision

Neural Networks

Optimization

Path Planning

Pattern Recognition

Robotics
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[ TUTORIALS ]

Tutorials by leading experts will be provided on December 14, 1992.

8:00 - 9:40 introduction to Fuzzy Sets and Approximate Reasoning
RONALD R. YAGER, lona College, New Rochelle, NY, USA
9:50 - 11:30 Fuzzy Intelligent Information Systems
M. ZEMANKOVA, NATIONAL Science Foundation, Washington, DC, USA
£ 11:30 - 12:30 Lunch
‘-x) 12:30 - 2:10 Fuzzy Logic in Expert System and Its Applications for IE/OR/MS
1.B. TURKSEN, University of Toronto, Toronto, ON, CANADA
* 2:20 4:00 Fuzzy Control and Its Applications
M. SUGENO, Tokyo Institute of Technology, Yokohama, JAPAN
4:10 - 5:50 Fuzzy Hardware Design and its Applications
K. HIROTA, Hosei University, Tokyo, JAPAN
[ CONFERENCE ]
Juesday, December 15, 1992
8:00 Welcoming Remarks
8:15-9:00 Plenary Speech
PRoFESSOR LOTFI ZADEH, University of California at Berkeley
9:00 - 12:00 Parallel Sessions

An Analysis of Possible Applications of Fuzzy Set Theory to the Credibllity Theory
KRZYSZTOF OSTASZEWSKI, University of Louisville, Louisville, KY
WALDEMAR KARWOWSKI, University of Louisville, Louisville, KY

Estimations of Expectedness and Potential Surprise in Possibility Theory
HENRI PRADE, Universite Paul Sabatier, Toulouse Cedex, FRANCE
RONALD R. YAGER, lona College, New Rochelle, NY

Comparison of Specificity and Information for Fuzzy Domains
ARTHUR RAMER, University of New South Wales, Kensington, AUSTRALIA

The Axiomatic Definition of a Linguistic Scale Fuzziness Degree, its Major Properties and
Applications

ALEXANDER P. RYJOV, Soviet Association of Fuzzy Systems, Moscow, RUSSIA

How to Select Combination Operators for Fuzzy Expert Systems Using CRI
I.B. TURKSEN, University of Toronto, Toronto, Ontario, CANADA
Y. TIAN, University of Toronto, Toronto, Ontario, CANADA

Approximate Reasoning Using Terminological Modéls

JOHN YEN, Texas A&M University, College Station, TX
NITIN VAIDYA, Texas A&M University, College Station, TX
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Quantitative Analysis of Properties and Spatlal Relatlons of Fuzzy Image Regions
RAGHU KRISHNAPURAM, University of Missouri, Columbia, MO
JAMES M. KELLER, University of Missouri, Columbia, MO
YIBING MA, University of Missouri, Columbia, MO

A Fuzzy Clustering Algorithm to Detect Planar and Quadric Shapes
RAGHU KRISHNAPURAM, University of Missouri, Columbia, MO 2
HICHEM FRIGUI, University of Missouri, Columbia, MO -
OLFA NASRAOULI, University of Missouri, Columbia, MO |

A Fuzzy Measure Approach to Motion Frame Analysis for Scene Detection
ALBERT B. LEIGH, McDonnell Douglas Space Systems, Houston, TX
SANKAR K. PAL, Indian Statistical Institute, Caicutta, INDIA

Automatic Rule Generation for High-Level Vision
FRANK CHUNG-HOON RHEE, University of Missouri, Columbia, MO
RAGHU KRISHNAPURAM, University of Missouri, Columbia, MO |

Encoding Spatial Images - A Fuzzy Set's Theory Approach
LESZEK M. SZTANDERA, University of Toledo, Toledo, OH

Image Segmentation Using LVQ Ciustering Networks
ERIC CHEN-KUO TSAO, The University of West Florida, Pensacola, FL
JAMES C. BEZDEK, The University of West Florida, Pensacola, FL
NIKHIL R. PAL, The University of West Florida, Pensacola, FL

12:00 - 1:00 Lunch

1:00 - 3:30 Parallel Sessions

A Neuro-Fuzzy Architecture for Real-Time Applications
P. A. RAMAMOORTHY, University of Cincinnati, Cincinnati, OH
SONG HUANG, University of Cincinnati, Cincinnati, OH

A Composite Self Tuning Strategy for Fuzzy Control of Dynamic Systems
C-Y SHIEH, University of Missouri, Columbia, MO
SATISH S. NAIR, University of Missouri, Columbia, MO

A Self-Learning Rule Base for Command Following In Dynamical Systems
WEI K. TSAI, University of California at lrvine, Irvine, CA
HON-MUN LEE, University of California at Irvine, irvine, CA
ALEXANDER PARLOS, Texas A&M University, College Station, TX “

Adaptive Defuzzification for Fuzzy Systems Modeling
RONALD R. YAGER, lona College, New Rochelle, NY -
DIMITAR P. FILEV, lona College, New Rochelle, NY

Design Issues of a Reinforcement-Based Self-Learning Fuzzy Controller for Petrochemical
Process Control

JOHN YEN, Texas A&M University, College Station, TX

HAOJIN WANG, Texas A&M University, College Station, TX

WALTER C. DAUGHERITY, Texas A&M University, College Station, TX




Learning Characteristics of a Space Time Neural Network as a Tether Skiprope Observer
ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX
JAMES A. VILLARREAL, NASA/Johnson Space Center, Houston, TX
JANI YASHVANT, Togai Infralogic Inc., Houston, TX
CHARLES COPELAND, Loral Space Systems, Houston, TX

Clustering of Tethered Satelilte System Simulation Data by an Adaptive Neuro-Fuzzy
Algorithm

SUNANDA MITRA, Texas Tech University, Lubbock, TX

SURYA PEMMARAJU, Texas Tech University, Lubbock, TX

Character Recognition Using a Neural Network Model with Fuzzy Representation
NASSRIN TAVAKOLY, University of North Carolina at Charlotte, Charlotte, NC
DAVID SENIW, University of North Carolina at Charlotte,
Charlotte, NC

Designing a Fuzzy Scheduler for Hard Real-Time Systems
JOHN YEN, Texas A&M University, College Station, TX
JONATHAN LEE, Texas A&M University, College Station, TX
NATHAN PFLUGER, Texas A&M University, College Station, TX
SWAMI NATARAJAN, Texas-A&M University, College Station, TX

WARP: Weight Assoclative Rule Processor A Dedicated VLSI Fuzzy Logic Megacell
ANDREA PAGNI, SGS-Thompson Microelectronics, Agrate Brianza (M) ITALY
R. POLUZzZI, SGS-Thompson Microelectronics, Agrate Brianza (Ml) ITALY
G. G. RizzOTT0, SGS-Thompson Microelectronics, Agrate Brianza (MI) ITALY

Wednesday, December 16,1992
8:00 - 8:45 Plenary Speech
Piero Bonissone, "Fuzzy Logic Control: From Development to
Deployment (with an Application to Alrcraft Engine Control)"

8:45 - 10:45 Parallel Sessions

Evaluation of Fuzzy Inference Systems Using Fuzzy Least Squares
JOSEPH M. BARONE, Loki Software, Inc., Liberty Corner, NJ

A Model for Amalgamation In Group Decision Making
VINCENZO CUTELLO, Consorzio per la Ricerca sulla Microelettronica del Mezzogiorno, Catania, ITALY
JAVIER MONTERO, Complutense University, Madrid, Spain

Fuzzy Forecasting and Decision Making In Short Dynamlc Time Serles
EFIN JA. KARPOVSKY, Odessa Institute of National Economy, Odessa, UKRAINE

Decision Analysis With Approximate Probabllities
THOMAS WHALEN, Georgia State University, Atlanta, GA




Distributed Traftic Signal Control Using Fuzzy Logic
STEPHEN CHIU, Rockwell Intemational Science Center,
Thousand Oaks, CA

Iintelligent Virtual Reality In the Setting of Fuzzy Sets
JOHN T. DOCKERY, George Mason University, Fairfax, VA
DAVID LITTMAN, George Mason University, Fairfax, VA

Comparison of Crisp and Fuzzy Character Networks In Handwritten Word Recognition
PAUL GADER, University of Missouri, Columbia, MO
MAGDI MOHAMED, University of Missouri, Columbia, MO
JUNG-HSIEN CHIANG, University of Missouri, Columbia, MO

Fuzzy Neural Network Methodology Applied to Medical Diagnosis
MARIAN B. GORZALCZANY, Technical University of Kielce, Kielce, POLAND
MARY DEUTSCH-MCLEISH, University of Guelph, Guelph, Ontario, CANADA

11:00 - 12:00 Parallel Sesslons

An Experimental Methodology for a Fuzzy Set Preference Model

1.B. TURKSEN, University of Toronto, Toronto, ON, CANADA
IAN A. WILLSON, University of Toronto, Toronto, ON, CANADA

A Fuzzy Set Preference Model for Market Share Analysis
I.B. TURKSEN, University of Toronto, Toronto, ON, CANADA
IAN A. WILLSON, University of Toronto, Toronto, ON, CANADA

Information Compression in the Context Mode!
JORG GEBHARDT, Technical University of Braunschweig, Braunschweig, GERMANY
RUDOLF KRUSE, Technical University of Braunschweig, Braunschweig, GERMANY
DETLEF NAUCK, Technical University of Braunschweig, Braunschweig, GERMANY

Fuzzy Knowledge Base Construction Through Belief Networks Based on Lukaslewicz Logic
FELIPE LARA-ROSANO, Universidad Nacional Autonoma de Mexico, Mexico DF, MEXICO

12:00 - 1:00 Lunch
1:00 - 3:30 Parallel Sessions

intelligent Fuzzy Controller for Event-Driven Real Time Systems
JANOS GRANTNER, University of Minnesota, Minneapolis, MN
MAREK PATYRA, University of Minnesota, Minneapolis, MN
MARIAN S. STACHOWICZ, University of Minnesota, Minneapolis, MN

Fuzzy Coordinator In Control Problems
A. RUEDA, University of Manitoba, Winnipeg, Manitoba, CANADA
W. PEDRYCZ, University of Manitoba, Winnipeg, Manitoba, CANADA




Tuning a Fuzzy Controller Using Quadratic Response Surfaces
BRIAN SCHOTT, Georgia State University, Atlanta, GA
THOMAS WHALEN, Georgia State University, Atlanta, GA

The Cognitive Bases for the Design of a New Class of Fuzzy Logic Controllers: The Clearness
Transformation Fuzzy Loglic Controlier

LABIB SULTAN, York University, Toronto, Ontario, CANADA

TALIB JANABI, Mentalogic Systems Inc., Markham,

Ontario, CANADA

A Fuzzy Control Design Case: The Fuzzy PLL
H.N. TEODORESCU, Polytechnic Institute of lasi, ROMANIA
I. BOGDAN, Polytechnic Institute of lasi, ROMANIA

Adding Dynamic Rules to Self-Organizing Fuzzy Systems
CATALIN V. BUHUS!I, Romanian Academy, Calea Copou, lasi, ROMANIA

Fuzzy Learning Under and About an Unfamliliar Fuzzy Teacher
BELUR V. DASARATHY, Dynetics, Huntsville, AL

Some Problems with the Design of Self-Learning Management Systems
ZINY FLIKOP, NYNEX Science and Technology, Inc.,
White Plains, NY
A Neural Fuzzy Controller Learning by Fuzzy Error Propagation

DETLEF NAUCK, Technical University of Braunschweig, Braunschweig, GERMANY
RUDOLF KRUSE, Technical University of Braunschweig, Braunschweig, GERMANY

Ihursday December 17, 1992
8:00 - 10:00 Paralliel Sessions

Determining Rules for Closing Customer Service Centers: A Public Utility Company's Fuzzy
Decision
ANDRE DEKORVIN, University of Houston - Downtown, Houston, TX
MARGARET F. SHIPLEY, University of Houston - Downtown,
Houston, TX
ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX

Fuzzy Simulation in Concurrent Engineering
A. KRASLAWSKI, Lappeenranta University of Technology, Lappeenranta, FINLAND
L. NYSTROM, Lappeenranta University of Technology, Lappeenranta, FINLAND

Inverse Problems: Fuzzy Representation of Uncertainty Generates a Regularization
V. KREINOVICH, University of Texas at El Paso, El Paso, TX
CHING-CHUANG CHANG, University of Texas at El Paso, El Paso, TX
L. REZNIK, Victoria University of Technology, MMC Melboume,
VIC 3000, AUSTRALIA
G. N. SOLOPCHENKO, St. Petersburg Technical University, St. Petersburg, RUSSIA
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Quantification of Human Responses
RALPH C. STEINLAGE, University of Dayton, Dayton, OH
T. E. GANTNER, University of Dayton, Dayton, OH
P. Y. W. LIM, Boise Cascade R&D, Portland, OR

Non-Scalar Uncertainty
SALVADOR GUTIERREZ-MARTINEZ, Instituto Tecnologico de Morelia, Morelia, MEXICO

Comparison Between the Performance of Two Classes of Fuzzy Controllers
TALIB H. JANABI, Mentalogic Systems Inc., Markham, Ontario, CANADA
L.H. SULTAN, York University, Toronto, Ontario, CANADA

Possibilistic Measurement and Set Statistics
CLIFF JOSLYN, SUNY-Binghamton, Portland, ME

The Fuslon of Information via Fuzzy Integration
JIM KELLER, University of Missouri, Columbia, MO
HOSSEIN TAHANI, University of Missouri, Columbia, MO

10:15 - 11:45 Parallel Sesslons

g

On the Evailuation of Fuzzy Quantified Queries in a Database Manhagement System
PATRICK BOSC, IRISA/ENSSAT, Lannion, Cedex, FRANCE
OLIVIER PIVERT, IRISA/JENSSAT, Lannion, Cedex, FRANCE

A Fuzzy Case Based Reasoning Tool for Model Based Approach to Rocket Engine Health
Monitoring

SRINIVAS KROVVIDY, University of Cincinnati, Cincinnati, OH

ADAM NOLAN, University of Cincinnati, Cincinnati, OH

YONG LIN HU, University of Cincinnati, Cincinnati, OH

WILLIAM G. WEE, University of Cincinnati, Cincinnati, OH

A High Performance, Ad-Hoc Fuzzy Query Processing System for Relational Databases
W.H. MANSFIELD, Belicore, Cambridge, MA, USA
ROBERT M. FLEISCHMAN, BBN, Cambridge, MA, USA

Genetic Algorithms in Adaptive Fuzzy Control
C. LUCAS KARR, U. S. Department of Interior Bureau of Mines, Tuscaloosa, AL

A Genetic Algorithms Approach for Altering the Membership Functions in Fuzzy Logic
Controllers

HANA SHEHADEH, LinCom Corporation, Houston, TX

ROBERT N. LEA, NASA/Johnson Space Center, Houston, TX

Fuzzy Multiple Linear Regression - A Computational Approach
C.H. JUANG, Clemson University, Clemson, SC
X.H. HUANG, Clemson University, Clemson, SC
J.W. FLEMING, Clemson University, Clemson, SC
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12:00 - 1:00 Lunch
1:00 - 4:30 Parallel Sessions

Incorporation of Varying Types of Temporal Data in a Neural Network
M. E. COHEN, California State University, Fresno, CA
D.L. HUDSON, California State University, Fresno, CA

Fuzzy Operators and Cyclic Behaviour in Formal Neural Networks
E. LABOS, Semmelweis University Medical School, Budapest, HUNGARY
A. V. HOLDEN, The University of Leeds, Leeds, UK
J. LACZKO, Ludwig Maximilien University, Munchen, GERMANY
A. S. LABOS, Semmeliweis University Medical School, Budapest, HUNGARY

Neural Networks: A Simulation Technique Under Uncertainty Conditions
LUISA MCALLISTER, Moravian College, Bethlehem, PA

incomplete Fuzzy Data Processing Using Artificlal Neural Network
MAREK J. PATYRA, University of Minnesota, Duluth, MN

Stochastic Architecture for Hopfield Neural Nets
SANDY PAVEL, Polytechnical Institute of lasi, lasi, ROMANIA

Hierarchical Model of Matching
W. PEDRYCZ, University of Manitoba, Winnipeg, Manitoba, CANADA
EUGENE ROVENTA, York University, Toronto, Ontario, CANADA

A Conjugate Gradients/Trust Regions Algorithm for Training Multilayer Perceptrons for
Nonlinear Mapping

RAGHAVENDRA K. MADYASTHA, Rice University, Houston, TX

BEHNAAM AAZHANG, Rice University, Houston, TX

TROY F. HENSON, IBM Corporation, Houston, TX

WENDY L. HUXHOLD, I1BM Corporation, Houston, TX

On Probabillity-Possibility Transformations
GEORGE KLIR, State University of New York, Binghamton, NY
BEHZAD PARVIZ, California State University, Los Angeles, CA

Inference In Fuzzy Rule with Conflicting Evidence
LASZLO T. KOCZY, Technical University of Budapest, Budapest, HUNGARY

Gausslan Membership Functions are Most Adequate In Representing Uncertainty in
Measurements
V. KREINOVICH, University of Texas at El Paso, El Paso, TX
C. QUINTANA, University of Michigan at Ann Arbor, Ann Arbor, MI
L. REZNIK, Victoria University of Technology, MMC Melbourne,
VIC 3000, AUSTRALIA

Applying the Metric Truth Approach to Fuzzified Automated Reasoning
VESA A. NISKANEN, University of Helsinki, Helsinki, FINLAND

Life Insurance Risk Assessment Using a Fuzzy Loglc Expert System
L. A. CARRENO, Togai Infralogic, Houston, TX
R. A. STEEL, Togai InfraLogic, Houston, TX
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ABSTRACT

In this work we review basic concepts of the actuarial credibility theory from the point of view
of introducing applications of fuzzy set-theoretic method. We show how the concept of actuarial
credibility can be modeled through the fuzzy set membership functions, and how fuzzy set
methods, especially fuzzy pattern recognition, can provide an alternative tool for estimating
credibility.

INTRODUCTION

Credibility theory is one of the most fundamental tools of actuarial science applied to casualty
and property insurance. Casualty and property insurance are characterized by high frequency of
claims (even for the same individual or group), and significantly more variable patterns of both
claim frequency and severity. On the other hand, the time until payment, or until a failure of a
status, are of less importance, as claims arise so frequently.

THE CONCEPT OF ACTUARIAL CREDIBILITY

The simplest description of credibility can be as the measure that an actuary believes should be
attached to a given body of data about risks considered for insurance for rate-making purposes. To
say that data is "fully credible” means that the data is sufficient for setting the premium rates based
on it, while the data concerning loss experience is "too small to be credible” if we believe that the
future experience may well be very different, and that we have more confidence in the knowledge
prior to data collection.

For example, data concerning personal automobile liability insurance loss experience in the
state of Kentucky is "fully credible” if it is adequate for rate levels in the state without reference to
any previous data, or other states or countries experience. The standard mathematical models of
credibility produces a number Z between 0 and 1 which is a measure of credibility assigned to the
data, while 1 - Z is treated as a measure of credibility assigned to the alternative (e.g., previous
data, or other states' experience, in the case of personal automobile liability insurance in
Kentucky). We then have

C=7ZR +(1-2)H

*The first author was partially supported by a University of Louisville research grant




where R is the mean loss calculated from the current observation, it is the prior mean, and C is the
compromise estimate used for setting the net premium.

DETERMINATION OF CREDIBILITY

Mathematical models of actuarial credibility assume generally that losses are generated
randomly by the distribution of a variable of the form

Y=X;+X+...+XN

where N is the random claim frequency, while each X;, a random variable as well, corresponds to
the individual claim severity. If N is assumed to have the Poisson distribution, the variables X are
independent identically distributed, and we adopt the approach of interval estimation, the credibility
Z can be estimated as

N
Z= |—
Ng

where N is the observed number of losses, and

el
iy

Here, k is the fluctuation limit away from the mean of total claims, y is the prescribed confidence
interval boundary for the standard normal distribution, and 6/m is the coefficient of variation of the
individual claim severity distribution. An alternative method (Herzog, 1992) is to evaluate the

posterior total claim size distribution using the classical Bayesian approach. The third standard
method is the Bithlman's (1967) credibility estimate

n
n+K

where n is the number of exposure units in the experience and K is the ratio of the expected value
of process variance to the variance of hypothetical means.

DETERMINATION OF CREDIBILITY WITH FUZZY PATTERN RECOGNITION

Ostaszewski (1992) gives an extensive discussion of applicability of fuzzy set theoretic
methods in actuarial science. He points out that pattern recognition methods can be applied directly
to classification of risks, thus creating an alternative rate-making approach. If




is the data set representing the historical loss experience, and

Y=0mn...Yyp)

represents data concerning the recent experience (vector coordinates represent risk characteristics
and loss features), one can use a clustering algorithm (see Ostaszewski, 1992, for an example of
such direct application and further references) to assign y to fuzzy clusters in data. If p is the
maximum membership degree of y in a cluster, the number Z = 1 - . could be used as the
credibility measure of the experience provided by y, while p gives the membership degree for the
historical experience indicated by the cluster.

Using our previous automobile rate-making example, consider an insurer with historical
experience in the states of Ohio, Pennsylvania and California, extending her business to Kentucky.
The insurer can cluster new data from Kentucky into patterns from other states, and arrive at a
credibility reading of her loss experience in Kentucky versus the historical net premiums from
Ohio, Pennsylvania and California (or subsets of this three-element set, if clustering so indicates).

Assume, hypothetically, that the mean claims and the standard deviations of claims for Ohio,
Pennsylvania, and California are:

Ohio: M, =100, 0, =25

Pennsylvania: H; = 125, 6, =30;

California: M3 = 175, 0, =50.

Let Kentucky experience be K4 = 200, 64 = 40. Agsuming equal probability for each of the three
historical states, and using Biihlman's (1967) actuarial credibility formula we get:

Expected value of process variance _

K= Variance of hypothetical mean




1(25)2 . L(so)2 N l(so)z

-— ya

—‘”100-400]2 (125 400]2 (175 400]2]

310 370 3 )M 3))
= 1.38
n____ 3 _
and Z=n+K 3+1.38 0.6849

We have, therefore:

C=ZR+(1-Z)H=

0.6849.200 + (1 - 0.6849)% = 179.

On the other hand, if we consider just the means and standard deviations as features, and treat the
data from the four states as four feature vectors:

100 | [125 ] [1751, 1200 |

r
2(-1==_ 25 J’L2=l_ 30 J’Kii LSO_! _|. 40_]

Then we can use clustering methods to analyze them. We will use the classical Bezdek's (1981)
clustering algorithm specified by a matrix

parameter m = 2, initial partition

and the stopping parameter ¢ = (.3.

The first step cluster centers are

This results in a new partition



ﬁ(l) r0.8956 0.9870 0.251 01|

=10.1044 00130 0.7479 1;

| Using the standard matrix norm we get

O M
iU -U II=1.068 >0.3.

The second step cluster centers are

a_[115 828],‘,(1) |r1903931I

Y1 L 28.511 2 L45 57J
The second step partition is:
]

@ T09697 09811 0.0695 0.0169]
U =100303 00189 09305 0.9831,

@ M
and IU -U II=0.28 <0.3, resulting in stopping.

At this point, we see that a cluster of Pennsylvania and Ohio rates differs significantly from the
cluster of California and Kentucky rates. Due to such difference, one can use the membership of
0.9831 for Kentucky in its cluster as a new credibility rating Z, resulting in

C =0.9831(200) + 0. 0169[ )~ 199.

Alternatively, one can propose to give the membership 0.9831 the meaning of credibility of the
mean of Kentucky and California cluster, thus producing a new mean:

(200 + 175) 9(100 + 125)

C =0.9831 + 0.016
L2 ) L\ 2 )

= 186.

We believe this procedure, being a natural extension of the meaning of cluster membership and
a modification of classical credibility, to be a potentially significant new development in our
understanding of actuarial credibility.

CONCLUSIONS

Our paper provides a relatively simple idea for extending the fuzzy clustering methods to
credibility theory models. Further empirical investigations are needed in order to determine which
clustering algorithms are most appropriate for the purpose of credibility measurement.




REFERENCES

Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, New York,
Plenum Press, 1981.

Biihlman, H., Experience rating and credibility, The ASTIN Bulletin, 4, 199-207, 1967.

Herzog, T. N, An Introduction to Bayesian Credibility Theory and Related Topics, Casualty
Actuarial Society, in Part 4 Study Notes, 1992.

Hossack, 1. B., Pollard, J. H. and Zehnwirth, B., Introductory Statistics with Applications in
General Insurance, Cambridge University Press, 1983.

Ostaszewski, K., An Investigation into Possible Applications of Fuzzy Set Methods in Actuarial
Science, Society of Actuaries, 1992, (to appear).




NO3-295%k865

/6] FO0Z—
ESTIMATIONS OF EXPECTEDNESS AND POTENTIAL SURPRISE
IN POSSIBILITY THEORY F-7
Henri Prade Ronald R. Yager
LR.I.T.-C.N.R.S. Machine Intelligence Institute
Université Paul Sabatier lona College :
118 route de Narbonne New Rochelle, N.Y. 10801, US.A,
31062 Toulouse Cedex, France

Abstract : This note investigates how various ideas of "expectedness” can be captured in the framework of
possibility theory. Particularly, we are interested in trying to introduce estimates of the kind of lack of surprise
expressed by people when saying "I would not be surprised that..." before an event takes place, or by saying "I knew
it" after its realization. In possibility theory, a possibility distribution is supposed to model the relative levels of
possibility of mutually exclusive alternatives in a set, or equivalently, the alternatives are assumed to be rank-ordered
according to their level of possibility to take place. Four basic set-functions associated with a possibility
distribution, including standard possibility and necessity measures, are discussed from the point of view of what they
estimate when applied to potential events. Extensions of these estimates based on the notions of Q-projection or
OWA operators are proposed when only significant parts of the possibility distribution are retained in the evaluation.
The case of partially-known possibility distributions is also considered. Some potential applications are outlined.

1 - Introduction

In case of incomplete knowledge, people facing a query like "is A (going to be) true 7", may answer it with a great
variety of ways such that "I don't know", "it is not impossible”, "it is quite possible”, "I would not be surprised that
A is true”, "I am quite certain that A is true”, etc., according to the actual state of knowledge and the query.
Possibility theory (Zadeh, 1978) offers a framework for modelling uncenain or vague information by means of a
possibility distribution. Such a distribution assesses the level of possibility of each possible value of a considered
(single-valued) variable x, i.e. the elements of the domain of the variable x are rank-ordered according to their relative
possibility on the scale [0,1]. Then a possibility measure ] is associated with the distribution, and [1(A) estimates
the consistency of the available knowledge with the statement "A is true” (short for "x is in A is true"). A dual
measure of necessity N estimates the certainty of A as the impossibility of "non A", namely N(A) = Impos(A) =
1-TI(A). Then N(non A), the certainty that A is false, can be interpreted as a degree of surprise S(A) = N(non A) =
Impos(A) that A is true. This corresponds exactly to the view developed by the English economist Shackle (1961)
who worked out a non-probabilistic model of expectation, before the introduction of possibility theory. However this
notion of surprise where [1(A) = 1 — S(A) does not seem to correspond exactly to the intended meaning of a sentence
such that "I would not be surprised that A is true”, which rather expresses that "A true” is more than just possible
{even with a high degree), and is not far to be somewhat certain; what is stated is a very strong kind of possibility.

In this note we investigate what estimates can be defined from a possibility distribution-based knowledge
representation, in order to evaluate, in various ways, how much an event, such that "x is in A", is expected to be
true. The next section introduces four basic set functions defined from a possibility distribution, which are then
extended using the notions of OWA operators, or of Q-projection, and also in the case of partially-defined possibility
distributions.

2 - The Four Basic Set Functions in Possibility Theory

Let U be the domain of a single-valued variable x. In this note, U is supposed to be finite for simplicity. A
possibility distribution m, on U is a function from U to [0,1] which constrains the possible values of x according to

the available information ; my(u) = O means that x = u is definitely impossible while ny(u) = 1 means that
absolutely nothing prevents that x = u. A possibility distribution ny is said to be normalized iff 3 ug € U,
nx(ug) = 1, i.e. at least one value of x in U is completely possible, which is natural if U is an exhaustive domain




for x. my can be viewed as a simple way of encoding a preference relation among the possible values of the variable
x; the smaller 7 (u), the more unexpected x = u (or the less feasible x = u). It is assumed in the following that my is
normalized.

Given a possibility distribution n, and an event A, four basic estimates can be imagined which are in agreement
with the ordinal nature of my; namely

- the possibility measure (Zadeh, 1978) .
Tx(A) = max;e A my(v) ; m

— the guaranteed possibility (Dubois and Prade, 1992)

Ax(A) = minye A Tx(u) ; @
and the similar evaluations for "non A", denoted A, whose complements to 1 are taken in order to define meaningful
quantities for A (n, should be normalized), namely

— the necessity measure _
Ny(A) = mingg p (1 -1y (u)) = 1-TI(A); 3

— the unguaranteed necessity _
Vi (A) = maxyg A (1 -my(u)) =1-As(A). @

I14(A) estimates to what extent there exists a value u in A which is possible for x, i.e. the consistency of the

proposition "x is in A" with what is not unexpected according to the available information.
Ax(A) estimates to what extent all the values in A are actually possible for x according to what is known; any value

in A is at least possible for x at the degree Ax(A); so A,(A) expresses a guaranteed possibility since it is a
minimum level over A, _

N, (A) estimates to what extent all the values in A are impossible for x, or equivalendy to what extent the value of x
is necessarily in A; any value in A is at most possible for x at the degree 1 — Ny(A).

V4 (A) estimates to what extent there exists a value u in A which is impossible for x. It is a measure of unguaranteed

necessity in favor of A since we check the impossibility for x of only one value in A, and not the impossibility
of all.

Clearly
Ay (A) < TIx(A) )
Nx(A) € Vy(A). ©

Provided that my is normalized, and that 3 u € U, my(u) = 0 (at the technical level, it is always possible to add an
extra-element to U, if necessary, in order to satisfy this requirement), we have the stronger inequality (Dubois and

Prade, 1992)
max(N4(A).A4(A)) S min(TT,(A),V,(A). @)

Thus A, corresponds to a very strong possibility and V, 10 a very weak necessity. Noticeably, Ny and A, are
completely unrelated, as well as [1, and V,. When estimating the tendency of A to contain the true value of x, we

have indeed two complementary points of view, the extent to which values in A are effectively possible, and the
extent to which values out of A are impossible. These two complementary evaluations may contribute to estimate
our lack of surprise to have A true.

The four measures enjoy the following characteristic properties (the subscript x is omitted in the following)

TT(A U B) = max(T1(A).JI(B)) ; ®
A(A U B) = min(A(A),A(B)) ; 9)
N(A n B) = min(N(A) N(B)) ; 10
V(A n B) = max(V(A),V(B)). 11)

Thus [T and N are monotonically increasing with respect to set inclusion, while A and V are decreasing.




The interval [A(A),]T(A)] characterizes the amplitude of the variation of the levels of possibility among the values in
A, the interval [N(A),V(A)] = 1 - [A(A),[T(A)] the amplitude of the variations in A. We can then symbolically write
[N(A),V(A)] = [N,V](A) and [A(A),]1(A)] = [A,]T)(A) ; then we have

N.VI(A) = 1 - [ATINA) 12

and (8)-(9)-(10)-(11) become
[A.TT)(A L B) = mM([A.TT)(A),[A.TT)(B)) (13)
[N.VI(A N B) = mM(N,V}(A),IN,V](B)) (14)

with mM([a,b],{c,d]) = [min(a,c), max(b,d)], and then 1 — mM([a,b}.[c,d]) = mM(1 - [a,b], 1 - [c,d]). Note that
mM([a,b],[c,d]) = convex_hull(fa,b] L [c.d]).

We now discuss what measures of expectedness and surprise are, and we introduce generalizations of the set functions
I1, A, N, V based on the notions of OWA operators, or of Q-projection, in order to build intermediary estimates
which may be used as estimates of how much an event A is expected to be true.

3 - Measures of Expectedness and Surprise

In this section we shall introduce some formal mechanism for capturing the concepts of "expectedness” and
"surprise” associated with a set, based upon the assumption of some possibility distribution.

Assume we are concerned about John's height. Then a possibility distribution would be induced by the knowledge
that John is "tall”. In this situation if it was found that John's height is six-feet seven inches one would not be
surprised and would even have expected an answer like that. We shall in the following suggest some formal methods
for capturing a measure of these concepts.

Assume we have a variable x which induces a possibility distribution 1y, on U. Let A be a crisp subset of U. We

shall let Exp(A) measure the degree of expectedness of A based upon n. We shall define this measure as the truth of
the proposition
"most of the elements not in A are not possible".

We can more formally express this partial inclusion of A into the fuzzy set of values of U which are rather
impossible, as
Exp(A) = most,,e A [1 —n(u)]

where 'most,' refers 1o the proportion of elements in A whose degree of possibility should be low. In this section

and in the next one, we shall propose two slightly different ways of precisely defining this formal expression, either
using OWA operators or Q-projections. Let us first consider a special extreme case of 'most’: "all”. In this case

Exp(A) = minye A [1 - n(u)}.

Thus this extreme definition becomes what we previously called the necessity measure. Thus the extreme of
expectedness is necessity.

In order to evaluate expectedness in the general case, we can use the concept of OWA operators introduced by Yager

(1988), i.e.
Exp(A) = OWA ¢ A [1 - w(u)).

Let A= {uy, ..., u). Leta; = 1 - n(y;). Let {©1, ..., @) be a set of weights such that

) Vi wje [0,1];
) Yjoij=1;

then OWA(ay, ..., a;) = 3 wj - bj, where bj is the ith largest of the aj. Two extreme cases of weights are worth
noting. Taken ®; = 1 (and then all others are zero), we get :




OWA(aj, ..., 3p) = by = min; a; = min,¢ 7 (1 - 7(u)],
i.e. the necessity measure of A. When @ =1 (and then all others are zero), we get
OWA(ay, ..., 3p) = by = max; aj = maxye A [1 - n(u)],

which is what we previously called the unguaranteed necessity. When w; = 1/k for i = 1k with k <1, we compute
the average of the k largest levels of impossibility a; = 1 - n(u;). Following Yager (1988)'s discussion, we can
express "most” by an appropriate selection of weights.

We need now introduce a formal definition for "surprise of A" given a possibility distribution. We denote Sur(A) as
the measure of surprise and define it as the truth of the proposition

"most of the elements in A are not possible”.

We can more formally express this as
Sur(A) = most,e A [1 - m(u)].

As we can see we have Sur(A) = Exp(A), which expresses that A is surprising if non-A is expected. However we do
not have Sur(A) = 1 - Exp(A) in the same time (i.e. "A is surprising” is different from "A is unexpected” in our
model). Clearly these two understandings of Sur(A) would be equivalent in a probabilistic model. Again considering
the special case where "most” is replaced by "all" we get

Sur(A) = minj A {1 - n(u)].
This special case can be further simplified so that
Sur(A) = 1 — max;¢ A m(v) = 1-TI(A)
which corresponds to Shackle (1961)'s definition.

Considering the more general case of surprise (with "most” in place of "all"), we can use OWA operators 10
implement the formal expression by appropriate selection of the weights. At the extreme when wg = 1, with A =

{ur+1, ..., ug), we get Sur(A) = miny; (1 — n(u)) = 1 - [1(A), while when @, =1
Sur(A) = maxy (1 - 7(v)) = 1 - minye A 7(u) = 1 - A(A).
We can further observe that if one considers the negation of "most” as "at_least_a_few", then
Sur(A) = 1 - at_least_a_few¢ A [(u)]

where at_least_a_few corresponds to an ordered weighted average OWA' related to the one defining Sur(A) =
OWA ¢ A [1 - n(u)] in the following way. Sur(A) = OWA(1 - t(up, 1), ..., 1 - m(ug)) = 3; @; - b’; where bj is the
ith largest of the 1 — 7(u;j). Then Sur(A) = X 0; - X 0i(1 - b) =1 - OWA’ (r(up4q), ... T(ug)) =
1 - % w; - ¢; where ¢; is the ith smallest of the (u;).

Remark : Extension to belief structures
We shall here briefly suggest the extension of the preceeding ideas to the case in which our basic knowledge is a
belief structure of the type introduced by Shafer (1976). Assume we have a belief structure consisting of the focal
elements By, ..., B with weights m(B;) (and X; m(B;) = 1). We can define the degree of amazement associated with
the subset A as

Amaze(A) = X Sur(A | B;) - m(B;)
where

Sur(A | Bj) = moste A (1 - uBi(u)]

10




and MB; is the characteristic function of B;. We can define the degree of anticipation associated with A as

Anticipate(A) = Z; Exp(A | B;) - m(B;)
where
Exp(A I B;) = most,¢ A [1 - uBi(u)].

4 - Generalizations Based on Q-Projection

As established in the preceeding sections, we have shown that [1, A (resp. : N, V) are closely related to the concepts
of surprise and expectedness. These concepts actually being related to the extremes of these measures. Crucial to the
determination of the measures of surprise and expectedness are evaluations based upon quantifiers such as "most"
lying being the extremes "for all” and "there exists” (corresponding to min and max operations). In the previous
section we have suggested the use of OWA operators to implement these soft quantifiers. In this section we shall
suggest an alternative approach to the kinds of evaluations necessary. This approach is based upon the notion of Q-
projection (Yager, 1985). We only consider the case of non-fuzzy quantifiers where Q is a quantifier of the type "at
least r/k" for simplicity. We define each Q-projection in terms of a median operator, which has some notation
advantage for expressing Q-projection. In the following we shall first define the concept of Q-possibility of A. In the
ordinary measure of possibility we have Q = "at least one” (thus A is possible if just one element in A is possible),
while for Q-possibility measure of the type discussed here, we have Q = "at least r/k", where k is the cardinality of
the set A. In this more general setting we are saying that A is Q-possible if at least r/k of the elements in A are
possible. We further note that if we define "most" by the appropriate selection of some value r as explained below,
we have
Sur(A) = 1 - Q-possibility(A).

Let A = {uy, ..., ug) be the finite subset of U on which we want to estimate to what extent a given number (or a

given proportion) of values of A are possible. This number or proportion can be translated into a k-tuple of the form
Q=(,...,1,0, ..., 0) where k = |Al, and where the number of '1' in the tuple representing Q is r. Then the Q-
possibility of A, denoted by Q(A), is defined by

Q(A) = median({n(uy), ..., ®(u)} U QU (1)) (15)

where Q denotes the complement of Q. Indeed, Q(A) is obtained as the median of a set of 2k + 1 elements made of k
—r + 1 elements equal to '1', of the k values ®(uy), ..., ©(ug), and of r values equal to 0. Thus, Q(A) is equal to the

(k + 1)th value when the 2k + 1 elements are ranked in decreasing order, i.e. the rth value in the set {n(uy), ...,
n(uy)}, once these degrees are decreasingly ordered. Clearly Q = (1, 0, ..., 0) (with (k — 1) '0") gives back Q(A) =
TI(A), while Q =(1, 1, ..., 1) (with k '1") yields Q(A) = A(A). Clearly, in any case

Q(A) € [AIT)(A). (16)

It can be shown (see Prade (1990) for instance) that the Q-possibility of A is nothing but the possibility measure
that the number of possible elements (according to =) is at least r, computed from the possibility distribution
representing the more or less possible values of the cardinality of the fuzzy subset of A made of the elements which
are rather possible.,

By duality, quantities of the form 1 — Q'(A) can be introduced. We have

1-Q(A) =1-median({n(u'}), ..., 7)) v QU (1))
= median({1 - n(u'y), ..., 1 - n(u')} U Q L (0)) an

where A = {u'[, u'y, ..., Uy}, k' = |Al, and Q' is ak'-tuple of '1' and '0". When Q' = (1, 0, ..., 0), we recover N(A) =
1 -Q'(A), and when Q"= (1, 1, ..., 1), we get V(A) = 1 - Q'(A). When "most” of the values in A are highly
possible, or when only few values outside A are possible (i.e. equivalently, "most” of the values in A are

impossible), which can be estimated using respectively Q(A) (with r "close” to k), and 1 - Q'(A) where Q' models
"few" (the number of ‘1’ in Q' is small), we may consider that this is the kind of situation where we would expect

1"




that A is true. Unfortunately, Q does not enjoy a decomposability property with respect to the union of subsets in
the general case, as [ and A do.

We may conclude that A should be true either by checking, on a completely known possibility distribution, that (at
least) most values outside A are impossible for instance, or from the computation of approximations of [A,[T)(A)
and [N,V](A) on the basis of a partially-known possibility distribution, as explained below.

5 - Estimations Based on Partially-Known Possibility Distributions

By a partially known possibility distribution, we mean that for each element u of U, the degree of possibility my(u)
is only known to belong to an interval [y (u), n*x(u)]. The upper bound n“‘x is normalized on U since my is
supposed to be normalized, while ™y is not necessarily normalized.

Then, the following bounds can be computed

ITH(A) = maxye A 7¥x(u) 2 TI(A) 2 maxye A T (W) = [T7(A) (18)
N+(A) = mingg o (1 - ¥y (u)) S N(A) S mingg A (1 - T x(w)) = N~(A) (19)
A*(A) = minge A Ty (0) 2 A(A) 2 minge A Ty (0) = AT(A) (20)
V4(A) = maxyg o (1 -ty (1)) < V(A) S maxyg o (1~ () = V(A). 1)

In other words we have inner and outer approximations of [A,IT] and [N,V], namely

VA, [AYTT)(A) < [ATTI(A) < (A TT*(A) 22
VA, N~ V*)(A) ¢ IN,VI(A) < [N*,V-)(A) (23)

However [A+,]T~)(A) may be empty if it happens that A+(A) > [T-(A), as well as [N—,V+](A) if N=(A) >
V+(A). A particular case which is worth considering is when 3V g U,V ue V, 7y (u) = n+y(u) = my(u) and V u
€ U-V, () =0, n+y(u) = 1, i.e. my is perfectly known on a part of U and completely unknown elsewhere.
Then the lower bound of N(A)

N-(A) = minge Z~v (1 - (W) = N(A U V) 2 N(A) (24)

(while N*(A) = 0 as soon as V X A) is a good candidate for estimating a beginning of certainty in favor of A.
Indeed, N—(A) = N(A U V) corresponds to the certainty in favor of a set less specific than A, but which contains A.
Note that N(A) = N(A N V) = min(N(A v V), N(V)) where N(V) is totally unknown, since T, is only supposed to
be known on V. Then N=(A) = N(A u V) is a good approximation of the certainty of A with respect to the available
information. Moreover if, together with N—(A) > 0, A*(A) = minge A~V Tx W) = A(A N V) < TI7(A) =
maxye A~V = II(A N V) STI(A) is large enough, we would not be surprised that A tums to be true.

6 - Potential Applications

Although this note is basically oriented towards the formalization of the concepts of expectedness and surprise in the
framework of possibility theory, let us briefly outline some potential applications.

A first use we may think of is the representation of decision rules of the kind "if A is expected then do..." whichis a
soft and more realistic version of the rule "if A is certain then do...".

Another use might be in information systems where we want to rank the items according to what extent they can be

expected to satisfy the request. This might be of interest particularly if the set of items which more or less certainly
satisfy the request is empty and the set of items which satisfy it only possibly is too large.
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Clearly, it is not only important to be able to represent incomplete, uncertain, vague states of knowledge, but also
to understand what a model offers for modelling expectation. This may be important in knowledge-based systems for
instance for representing the state of knowledge of the user and deciding what explanation has to be provided 1o
him/her (usually what is expected has not to be explained and what is surprising has to be explained).

Another issue that our future work in this area will focus on is possibility distribution generation based upon
surprise and expectedness qualification. Consider a proposition like "I expect (at degree a) that John will be late”.
This proposition can be seen to induce a possibility distributions 7, over John's arrival time. In particular we see
that this requires the solution of an equation of the type a = Exp[A / ). In a similar fashion propositions like "I
would be surprised (at the degree a) if John is early” or "I would not be surprised (at the degree B) if John is late" can
be seen to induce possibility distributions. The ability to generate possibility distributions from propositions of the
above type would provide an interesting tool in knowledge representation.

7 - Concluding Remarks

In this note we have investigated all the estimates which can be attached to a non-fuzzy event A, when the available
knowledge is modelled by a possibility distribution (even if this distribution is partially specified). The role of four
basic measures has been emphasized, two of them define an interval related to the estimation of the idea of
possibility, while the two others define another interval related to the idea of necessity or certainty. The characteristic
properties of these intervals have been laid bare. Other quantities, which generalize the previous ones in various
ways, have been introduced. The appropriateness of these different degrees for estimating how much an event can be
expected to be true, how much its occurrence is not surprising, has been discussed. All these measures could be
extended to fuzzy events A.
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1 Overview

Given a universe of discourse X—a domain of possible outcomes—an ex-
periment may consist of selecting one of its elements, subject to operation
of chance, or of observing the elements, subject to imprecision.

A priori uncertainty about the actual result of the experiment may be
quantified, representing either the likelihood of the choice of z € X or the
degree to which any such z € X would be suitable as a description of the
outcome. The former case corresponds to probability distrib’ution, while the
latter gives a possibility assignment on X.

Study of such assignments and thier properties comes under the purview
of possibility theory [1]. It, like probability theory, assigns values in between
0 and 1 to express likelihoods of outcomes. Here, however, similarity ends.
Possibility theory uses mazimum and minimum functions to combine uncer-
tainty, where probability theory uses plus and times operations. This leads
to a very dissimilar theory in its analytical framework, even though they
share several semantic concepts.

One of them consists of expressing quantitatively the uncertainty asso-
ciated with a given distribution [2, 3]. Its value corresponds to the gain
of information that would result from conducting an experiment and ascer-
taining its actual result. This gain becomes simutaneously a decrease in
uncertainty about the outcome of an experiment.

The other concept we consider in depth is one of specificity. Although
it has been introduced previously in a few different forms, a closer analysis
shows that they share main epistemic features. We follow here the presen-
tation of Ramer and Yager {10].
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Fuzzy set (X,p) can be considered as a form of a likelihood function,
with the elements of X where p reaches its maximum playing privileged role.
When selecting z : p(zp) = max p(z) is important to ask how definite has
been such decision, and whether another element would offer a close choice.

In this interpretation, specificity becomes an attribute of the complete
set of possibilities, the attribute assuming either numeric or linguistic values.
Here we develop a comprehensive model of such specificity, expressed as a
numerical function of a possibility assignment.

\ \ 2 Introduction
N\

“IThis paper demonstrates how an integrated theory can be built on the foun-
dation of possibility theory. Information and uncertainty were cosidered in
‘fuzzy’ literature since 1982. Our departing point is the model proposed by
Klir [4, 5] for the discrete case. It was elaborated axiomatically by Ramer
[9], who also introduced the continuous model [7].

Specificity as a numerical function was considered mostly within Dempster-
Shafer evidence theory. An explicit definition was given first by Yager [11],
who has also introduced it in the context of possibility theory [12]. Ax-
iomatic approach and the continuous model have been developed very re-
cently by Ramer and Yager [10]. They also establish a close analytical
correspondence between specificity and information.

In literature to date, specificity and uncertainty are defined only for
the discrete finite domains, with a sole exception of [10]. Our presentation
removes these limitations. We define specificity measures for arbitrary mea-
surable domaingge When discrete, they can be finite or infinite or, in general
have BEX)< oo or u(X) = oco. prespecified pattern. By abuse of the
language we refer to this model as a continuous one.

We adopt the convention of avoiding, whenever possible, subscripts and

y/ indices. We do not specify explicitly basis of logarithms, as its change would

simply amount to a multiplying all expressions by the same constant. Fol-
lowing tradition, binary logarithms—Ilog,—are assumed for the discrete dis-
tributions, and natural—In— for the continuous cases. We use (p) for the
decreasing rearrangement of the sequence (p;). For finite sequences, rear-
rangements are permutations of their elements. For infinite sequences and
functions we construct rearrangements using cuts. To define f, given f on
X, we want all their a~cuts to be of the same measure. We put

P(y) = p({z : f(=) 2 ¥}),
- f(2) = P7(2).
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Now for the discrete rearrangements we associate with the sequence (p) =
(P1,.--,Pn,---) astep function f: z — py;, where [z] denotes the greatest
integer no less than z. Then the descending rearrangement f corresponds

to (p).

3 Information and uncertainty

We use the model of possibility theory introduced by Zadeh [13]. We view
mapping p as assigning a degree of assurance or certainty that an element of
X is the outcome of an experiment. A priori we know only the distribution
p; to determine z € X means to remove uncertainty about the result, thus
entailing a gain of information. We would be particularly interested in quan-
tifying that gain of information, which would also express the uncertainty
inherent in the complete distribution p.

Following established principles of information theory [3], we stipulate
that such information function satisfies certain standard properties. For p;
on X and p; on Y we define a noninterracting, joint distribution p; ® p2
on X XY as

P ® p2 : (z,y) — min(p1(z), p2(y)).

If p was already defined on a product domain X x Y, we construct its
projections (marginal distributions) using mazimum operation

p’:z— maxp(z,y), P”:y+— maxp(z,y).

There is often a need to consider a given assignment p as defined on on a
larger domain, without, however, making any essential change to the possi-
bility values it represents. We do so by defining p¥ for Y D X, as agreeing
with p on the elements of X, and 0 otherwise. Lastly, the elements of the
domain of discourse could be permuted; if s : X — X is one-to-one, we
define

s(p) : z — p(s(z)).

We now postulate [5]

additivity I(p1 ® p2) = I(p1)+ I(p2)

subadditivity I(p) < I(p")+ I(p")
symmetry I(s(p)) = I(p)
ezpansibility I(p¥)= I(p)

It turns out that these properties essentially characterize the admissible
information functions [6, 9]. Subject to the normalization of parameters, for
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the discrete case of X = {z;,...,2,}

U(p) = Y_ (i — Bi1)logi

which can be also written using finite differences notation

U(p) = Zﬁ,Vlog’l

We observe that the distribution which carries the highest uncertainty
value consists of assigning possibility 1 to all the events in X. It states that,
a priori, every event is fully possible. This distribution, carrying no prior
information, can be considered the most uninformed one.

We shall now extend previous definitions to arbitrary measurable do-
mains [7]. To avoid technical complications, we consider only a typical case
of the unit interval.

As a first step, the discrete formula U(z) = 3~ p;V logi suggests forming
lo f(z)dlnz,= [} L(;f-ld:c as a candidate expression for the value of informa-
tion. Unfortunately, f(z) is equal to 1 at 0, and the integral above diverges.
A solution can be found through a technique (used also in probability) of in-
formation distance between a given distribution and the most ‘uninformed’
one—where U-uncertainty attains its maximum. Our final formula becomes

I(f):/ol l‘Tf(’”—)dz.

This integral is well defined and avoids the annoying singularity at 0. It can
be used for a very wide class of functions, including all polynomials.

4 Principles of specificity

The discussion will be conducted in terms of a discrete countable distribution
(p:), with finite distributions viewed as the initial segments. Our objective
is to capture formally the informal intuition about specificity. The main
premise is the principle of juzrtaposition:

Sp(p) expresses the preference for a certain maximal po over any
and all the remaining p;.

Now let us consider how, having selected po = max(p), its informal speci-
ficity is estimated. We look first for the next largest p; and estimate how its
presence diminishes the specificity. The process is then iterated in the order
of decreasing values of p;, every next value lowering the estimated speci-
ficity. We can picture it as a sequential process, its input the decreasing
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rearrangement ($;). We may also surmise that, for a given i, the drop in
specificity caused by p; will not depend on the earlier inputs p;,...,p;_1.
This assumption of independent influence is consistent with the juztaposition
interpretation of specificity.

Let us consider the effect of a uniform modification of (p). For a scal-
ing ap = (apy,...,apy,...),0 < a < 1, we may assume that the rela-
tive specificities remain unchanged, while with a shift of values p -~ § =
(pr = B,...,pn — B,...) no change should occur.

Last item considered will be the effect of offering yet another choice,
identical in value to several choices already provided. The common percep-
tion of specificity is that the change due to such n-th choice will be ever less
as n increases—a diminishing return. For its relative effect, we can postulate
taking away the same proportion of the specificity still available. After all,
we consider yet another identical choice; only we consider it at stage n and
not sooner.

We can extract an analytical representation from the rules elaborated
above. The result is a linear formula

Sp(p) = p1 — ) wib;
i>2
with 3 ;sow; = 1. ;(From here we can conclude that lim;,o w; = 0, and
1> wy > w3 > ---, in agreement with the ‘diminishing returns’.

We shall consider the linear form of Sp(p) as general specificity function.
It is general enough to fit most applications and, if w; are supplied, it offers
a comparison scale among the distributions.

Coefficients w; can be established precisely if we assume the rule of con-
stant influence of equal choices. After more calculations

Sp(p) = pr — D_(W'! — )i
i>2
for some w, 0 < w < 1, producing a definite form of specificity. Choosing
w = 1 (in spirit of binary logarithms) gives Sp(p) = p1 — 2 5?1-1- In the
above formulas the role of p, is manifestly different from that of j;,¢ > 2. A
more symmetric expression can be obtained defining W; = 1 ~wy —... —w;,
resulting in a general expression

Sp(p) = Y Wi(hi — Pit1)
i>1

and the definite one

Sp(p) = > w1 (Bi — picr)-

i>1
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5 Specificity as information

Design of a specificity function can be also approached from the perspective
of Dempster-Shafer theory. It is a very general framework for capturing
numerically notions of evidence in support of assertions about the domain
of discourse. The model we use applies to a finite domain of discourse X,
where evidence m; is assigned to the selected subsets A; C X. We require
that > m; = 1 and that the empty set is not included. For such structures
several measures of nonspecificity have been proposed, among which

N(m) = Zm;log | A

is usually preferred, being both additivity and subadditive
This model can be applied to fuzzy sets and possibility distributions. It
results in a familiar

U(p) = > _(Bi — Pit1)logi.
We are interested in a specificity function, and an appropriate expression
would be a complement of U(p) wrt the most nonspecific distribution 1(") =

a,...,1)
I(p) = U(1™) — U(p) = logn ~ } (fi — Pi+1) logi.

For the continuous model we propose a two-part structure, depending
on the measure of the domain of discourse.

If u(X) is finite we rearrange it to form f(z) on [0,u(X)]. Then we
propose as the basic measure

M(X) _ -z
I(f):/o }—gudx.

For X of infinite measure we propose using
® k
SHN =k [ f@eda
0
or, in general o
e = [ Faw(e)dz
for W(z)—a monotonically decreasing function satisfying

w(0) =1, Jim W(z) = 0.

It can be derived from the general discrete form by a process similar to that
which led to I(f).
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Abstract.Model of human estimate of real objects as measuring
procedure in fuzzy linguistic scales (FLS) is being considered
in the report. The definition of FLS fuzziness degree and its
\ major properties is given in the report. Definitions of infor-
‘mation loses and noise while user works with data base (or
‘knowledge base), containing linguistic description of objects
are being introduced and described, and proven, that this va-

lue gives linear connection with degree of fuzziness. T” W A

Key words: estimate of real object, fuzzy 1linguistic scales,
‘degree of fuzziness, quality of information search.

SN————

INTRODUCTIONS

Model of human estimate of real objects as measuring pro-
cedure in fuzzy linguistic scales (FLS) /1/ is being conside-
red in the report. While describing objects some human being
can’t use any measuring devices, he makes it in terms of some
sensible properties, and he has some doubts while giving some
value to a property.

If there are a lot of property’s values the trouble of
choice is that there are some of them, which are "just equal-
ly" suitable for the object description. And if there are lit-
tle of values the trouble is that all of them are "just egqu-
ally"” unsuitable to describe some object.

General study object of this works is a set of scale’s
value of a linguistic scale /1/. Example of scale’s value for
linguistic scale "Height” is given an Fig.1l.

A M(u)

small medium high

> U
Fig.1
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Such structures can be also interpreted as a set of dif-
ferent alternatives in problem solving and decision-making
/2,3,4/ or a descriptions of classes in fuzzy classification
and clustering /5,6/ or a representation of term-sets of lin-
guistic values /7/ and etc. However, first interpretation (in
the same way /B8/) is the most preferable for application in
information systems.

1. FLS FUZZINESS DEGREE: DEFINITION, EXAMPLE AND PROPERTY

The definition of FLS fuzziness degree is given in the
paper under some matter-of-fact restrictions on membership
function form. and the set of such functions, which create
the FLS.

Let s assume, that membership functions for FLS l (where

t - number of scale values) are defined on some segment U e r1
and meets following requirements:

l) normal /9/: Vi (1=j=t) 3 U *9
where U = {ueU: M (un) = 11}, U} are segment;

2) increasing from the left U1 and decreasing from the
right U

The requirements are quite natural for membership functi-
ons of notions gathered in some FLS s scale values set. Actu-
ally, the first means that there’ s at least one object for
each scale value, which is typical or ideal for the notion;
and the second may be interpreted as reguirement of gradual
changing of the notion limits.

Characteristic functions we ll be mentioned in the artic-
le. Let s assume, that

3) those functions can have not more than two break
points of second sort.

‘Let”s assume that L is the set of functions satisfying
requirements 1)- 3). The set L is a subset of a set of functi-
ons integral able on some measurable set of functions L2, and

therefore, a measure can be introduced on L. For example

d(f,g) = Jlf(u) - g(u)ldu, £ L, g € L.

U
Let°s introduce some restrictions on a set of functions
from L, which are creating a set value of FLS lt' And let’s

assume that a set of such functions suit following require-
ments:

4) completeness: Y ue U 3Jj (155%t): Mj(u) = 0
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5) orthogonally: VY u € U uj
J=
These restrictions are quite natural too. Assuming that
4) isn“t true then a set U™z {u € U: Vi (15j5t) Hj(u) = 0} may

be harmlessly deleted from , therefore a set U\U” may be con-
sidered instead of universum. That means that there’s no scale
values associated with any point from U’ set, and scale has
improper definition.

Restriction 5) was described in /2/. Scales ©built under
5) are not only useful for theoretical analysis, but they must
be the most spread in use, because the restrictions mean that:

- used notions (scale values) are quite differ from each
other;

- they do not describe the same objects.

Let’s call a set of FLS with scale values under 4) and 5)
G(L) - scales.

We can introduce a measure on G(L) too.

(u) = 1

Lemma 1. Let s assume that
(H1(u), by (u), ..., gt(u)} - a set of scale values 1l,;

(M1(u), Mo(u), .. ut(u)} - a set of scale values 1l.;

d(f,g)- a measure in L .

A t A
Then P(1,.1,) :.21d(ui’“i) - is a measure
1:

G(L).

To formulate axioms we should define a scale, which is
based on some FLS and is "unfuzzy"”, meaning that the scale’s
value is a set of characteristic functions, produced with mem-
bership functions of FLS.

Thus, assuming that lte G(L), is a FLS defined on U and

consisting of membership functions &l(uz, e s ut(u). Let”s
construct some "unfuzzy"” set value 1;. 1y - is a set of chara-
cteristic functions hl(u), e ,,ht(u), where

1, if max H.(u) = M, (u)
hs(u) = { 1255t 9 *

0, otherwise

A

Call 1t - the nearest "unfuzzy" scale, based on FLS
lte G(L).

Let s assume that fuzziness degree of FLS, whose scale
values are defined upon universum U, is the wvalue of
functional E(lt), defined on the membership function scale

values set and satisfying following axioms:




Al. 05E(1, )51 Y 1.€ G(I). _
A2. S(lt)zo < VY oueU 3i (15iSt): M, (w)=1, K (u)=0 vV o§*i.
A3. E(lt):l &V oueU Fi, i, (15i,,i,5t):
M. (u) = M,
1

i 1‘_(u)z max Hj(u).

2 1<3=t

Ad4. Let’s assume that FLS lt and 1~ are defined on uni-
t .
versumes U and U~ correspondingly; t and t can be equal and
not equal and not equal to each other.

E(1,) = E(1'.), if p(1 ,1 )y = p(l'.,i'.),
t t t’>7t . &
where P( , ) - some metric in G(L).

Axiom Al defines domain of values for functional E(lt),

or fuzziness measuring borders. .
Axioms A2 and A3 describes the scales where E(lt) assumes

minimal and maximal values, or maximal "unfuzzy” and maximal
"fuzzy"' scales correspondent.

Axiom A4 defines the fuzziness degree comparison rule
for each pare scales. It may be expressed in such a way: the
nearer given FLS to its nearest unfuzzy scale, the 1less it°s
fuzziness degree.

Let s give an answer for question of existence a functio-
nal satisfying those axioms.

Theorem 1. Assume that lt € G(L). Then functional

1
E(1,)= ——-Jf(u'*(u) - B (u))du,
|ul i
U

1 12
here P _(u) = max Hj(u), By () = max P.(u),-
iy 1=5=t 12 1sj=¢
521
1

f satisfies following reguirement:
Fi: £(0) = 1, £(1) = 0O;
F2: £ decreases,
is fuzziness degree 1t’ j.e. satisfies Al - A4.

It°s easy to prove, that the only linear function satis-
fying Fl1, F2 is a function f(x) = 1 - x.

A subset of polynomials of degree 2, satisfying Fl, F2,
can be described. Those are expressions of the following type:

fa(x) = ax2 - (1 + a)yx + 1.
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Subset of functions of other types (logarithmic, trigono-
metric etc.) satisfying conditions Fl1, F2 may be defined in a
similar way. Let s use those functions in formula for g(lt),

and get some functionals, satisfying Al - A4, i.e. it is a
fuzziness degree.

FLS fuzziness degree properties for linear f are ©being
described in the report. In this case

1
£(1,)= —J(l = () = B (u)))du, (%)
jul i, ip
here B _(u) = max K.(u), MK ,(u) = max M. (u),
i 1255t i 1555t
1 2 *
J*iq

This fuzziness degree measurement functional was introdu-
ced at the first time in /10/ for the task of optimal gquality
properties values set choice in human-machine systems.

Let ‘s define the following subset of function set L:

E- a set of functions from L, which are part-linear and
linear on

U={uesU: VY5 (1=3=1t) 0« Hj(u) < 1};

A

L - a set of functions from L, which are part-linear on U

(including U).

- d
Theorem 2. Let lt € G(L). Then §(lt) = —— , where
" 210l
d =10l = l{ueU: VY5 (1 =35=1+¢t)} uj(u) # 1}
A d
Theorem 3. Let 1, € G(L). Then E(lt) = C —, where
{Ul

C <1, C = Const.

The fuzziness degree of a fuzzy set induced by E(lt) is

defined as fuzziness degree of a trivial FLS, determined with
a fuzzy set M(u):

1
gy = —fu - 12(u) - 1l)du
lul

It°s easy proved, that §(M) satisfies all the axioms for
the set s fuzziness degree /11/. It may show that the introdu-
ced in the report more general notion E(lt) had been correctly

defined.

It°s easy shown, that the functional may be considered as
an average human doubts degree while describing some real ob-
ject (situations) /4,12/.
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2. APPLICATION FLS FUZZINESS DEGREE TC INFORMATION SEARCH

The results were published at the first time in /11/.

Definitions of information loses and noise while wuser
works with data base, containing linguistic description of
objects are being introduced and described in the report. Whi-
le interacting with the system user formulates his query and
gets an answer according to the search request. And if he knew
real (not linguistic) values of object characteristics, he,
rossibly, would defeat some of displayed objects (noise) and
he would add some others from data base (loses). Information
noise and losses appear because of fuzziness of scale ele-
ments.

Because of volume restrictions and taking into account
the illustrative character of the chapter we stop at the main
results. In the next work we are going to describe the prob-
lems of formalization of fuzzy database information retrieval
qQquality rations in complete. '

Theorem 4. Assume that lt € G(Z), E(lt) - degree of fuz-
ziness of lt; Hx(U)’ HK(U) - average information loses and

noise, appearing during information search with search attri-
bute value set X, equal to 1t -scale values set; U - universum

l .

t’
base and which having a real characteristic value equal to u,
- is a constant. Furthermore, assume that all of property va-

lues are equally preferable for user, meaning that reguest
probabilities for all the property values are equal. Then

N(u) - number of objects, whose definitions are in a data-

2N
Hx(U) = Hx(U) = g_ §(lt), N = Const.
t
Theorem 5. Assume that lt € G(L), N(u) = N = Const and

request probabilities for all the property values are equal.
Then

c
I (U) = H _(U) = :E(M),
where ¢ - a constant, which depends on N only.

Thus,d% - fuzziness degree decrease leads to the same
decrease of average information loses and noise if the number
of property values is constant. Simultaneous fuzziness degree
decrease of properties wvalues number lead to even more
substantial decrease of information loses and noise.

The following method of property values set choosing for
fuzzy databases, can be evaluated from the given results:

1. To generate all possible sets of property values.

2. To represent each of with FLS scale values set.

3. To evaluate the degree of fuzziness for each of the
property values sets according to (%).
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4. Chose the set of property value set, which has the
minimal ratio of fuzziness degree and number of elements. Your
choice will provide the minimal information loses and noise of
information retrieval using the property.

CONCLUSIONS

Some method to calk the fuzziness degree of the
combination of fuzzy sets (defined upon the same universum)
has been given in the article. The axioms for such measure of
uncertainty have been formulated, its interpretation has been
given. The theorem of existence has been proven and some
properties of fuzziness degree have been described.

The problems of using of the results in information
applications (fuzzy retrieval systems) have been discussed. It
is described that the fuzziness degree has linear dependence
with the indicator of retrieval quality. Taking into account
the result the methodic of choosing the optimal wvalues has
been suggested. Using the method some user may describe
objects to achieve better results of finding information in
fuzzy data bases. Under these circumstances a person - a
source of information - would suffer minimal difficulties
(uncertainties) to describe real objects.

The results may be used also in some tasks to construct
knowledge bases, decision-making tasks under fuzzy conditions
and pattern recognition.
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Abstract: A method to select combination operators for fuzzy expert systems using
Compositional Rule of Inference(CRI) is proposed from the consideration of basic requirement
for fuzzy reasoning. First, fuzzy inference processes based on CRI are classified into three
categories in terms of their inference results, i.e., the Expansion Type Inference, the Reduction
Type Inference, and Other Type Inferences. Further, implication operators under Sup-T
composition are classified as the Expansion Type Operator, the Reduction Type Operator, and
the Other Type Operators. Finally combination of rules or their consequences is investigated for
inference processes based on CRI. It is suggested that for inference processes using Sup-T
composition in the context of CRI, the combination operator be "min" if the implication operator
a — b =F(a, b) is an Expansion Type and is an inversely proportional function of a, i.e., if a, 2
a, , then F(a,, b) < F(a,,b), and the combination operator be "max" if the implication operator
F(a, b) is a Reduction Type and is a proportional function of a, i.e., if a, 2 a,, then F(a,,b) 2
F(a,,b).

Keywords: Compositional Rule of Inference, Inference Processes, Expansion, Reduction,
Implication, Composition, Combination.

1. INTRODUCTION

Suppose there are Q fuzzy rules in the rule base of a fuzzy expert system as follows:

IF X is A, THEN Y is B,
IF X is A, THEN Y is B,

IF X is A, THEN Y is B, (1.1)
IF X is A, THEN Y is B

where A, and B, ® = 1, 2, ... Q, are fuzzy sets defined in the universe of discourses V and W,
respectively.
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For a given system observation, in order to obtain a meaningful inference result based on Zadeh’s
Compositional Rule of Inference(CRI)[25], there are two basic approaches. The first one is called
FIRST INFER - THEN AGGREGATE approach, "FITA" for short. In this first approach, for
a given system observation A’, we first perform inference using CRI on each of the rules in the
rule base, and then combine all these intermediate results as follows:

Q
B = ¥ B, (1.2)
=1

where B, is the inference result based on rule o, i.e., B,’= A’eR,, where R, = A, = B, is the
fuzzy implication relation for rule w and o represents composition within the context of CRI, for
example, Sup-min composition, and U is a combination operator, i.e., ¥ € {S, T}, in particular,

We {v, A}.

The second one is called FIRST AGGREGATE - THEN INFER approach, "FATI" for short.
In this second approach, we first aggregate all the rules by forming an overall fuzzy relation R
which is the combination of all the fuzzy implication relations as follows:

Q
R =4 R, (1.3)
w=1

where R, = A, = B, is the fuzzy implication relation for rule @, ¥ is a combination operator
as specified above.

Then an inference is performed for a given observation A’ as follows:
B” =A’eR (1.4)
where o represents composition within the context of CRIL

Therefore, it is clear that an inference process based on CRI includes several stages. More
specifically, it includes implication, composition, and combination for FITA, and implication,
combination, and composition for FATI. In the context of CRI, the comparison and selection
of implication and composition operators have been widely studied for one rule case. For
example, in [2], [10], and [22], applicability of implication operators is studied under Sup-min
composition based on experiments for certain given problems. In [5], it is shown that implication
is determined by composition operator, and that Godel implication is a good implication under
Sup-min composition in CRI[6]. In [9] and [23], implication operators are classified into three
categories, i.e., S-implication, R-implication, and neither, and their properties are investigated
based on some criteria which a Modus Ponens generation function[ 14] should satisfy. In [15, 16,
17], Interval-Valued Fuzzy Sets are used to represent fuzzy implications and reasoning results.
Based on the bounds analysis of fuzzy reasoning, a linkage between CRI and AAR[21] is
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established[17].

Inference with multiple rules are investigated by some researchers(l, 2, 3, 10]. In [1],
combination operators are suggested for different implications from the consideration of
interpretation of ELSE in "IF THEN ELSE" rule. In [3], combination is studied in the domain
of fuzzy relational equations. In [2] and [10], both "max" and "min" operators are used in the
combination for all implication operators in their experiments.

In this paper, issues of combination of rules or their consequences in fuzzy expert systems using
CRI are investigated. A method is proposed for the selection of combination operators from the
consideration of the basic requirement for fuzzy reasoning, i.e., if we have a system observation
which is the same as the left hand side of a rule in the rule base, then the reasoning result should
be the same as the right hand side of the rule. As a result of our analysis, we suggest that for an
inference process using Sup-T composition in the context of CRI, "min" be used for combination
if the implication a — b = F(a, b) is an Expansion Type and is an inversely proportional function
of a, i.e., if a, 2 a, , then F(a,, b) < F(a,,b), and "max" be used for combination if the implication
F(a, b) is a Reduction Type and is a proportional function of a, i.e., if a, 2 a,, then F(a,,b) 2
F(a,,b).

This paper is organized as follows. In Section 2, Compositional Rule of Inference is reviewed,
and inference processes are classified into three categories, i.e., Expansion Type Inference,
Reduction Type Inference, and Other Types. Further, implication operators under Sup-T
composition are classified as Expansion Type, Reduction Type, and Other Types. Finally, in
Section 3, two general classes of implication operators are identified to be appropriate for "max"

and "min" combinations. Conclusions are stated in the last section. We use either Lla - 8(a,b), or

a — b, or F(a,b), or R(—3), or just r to represent the implication operator in CRI for the
convenience of discussion where it is applicable.

2. CLASSIFICATION OF INFERENCE PROCESSES

In this section fuzzy inference based on CRI is reviewed. Inference processes based on CRI
change the membership function grades of the right hand sides of the corresponding rules either
by reducing or by increasing the membership grades. Here we consider reasoning with one rule
using CRIL

CRI is also called Generalized Modus Ponens (GMP). With a single rule and a system
observation, an inference result can be deduced as follows:

Rule: IF X is A THEN Y is (should be) B
Observation: Xis A’
Consequence: Y is (should be) A’ - (A = B)

where A, A’ c V and B ¢ W are fuzzy sets defined in the universe of discourses V and W,
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respectively, (A — B) denotes the implication relation, R(—), which is a fuzzy set of Cartesian
product universe V*W, and - denotes the composition between A’ and (A — B).

The most notable is Zadeh’s Sup-min composition in CRI[25], which has the form(in the
membership domain) as follows:

Ue(yp= V Hatx) A Raostx, yp, i=1,2.Lj=1,2.1 2.1)
i

where B’ is the inference result which is a fuzzy set defined in the universe of discourse W,
Me(y;) is the membership value of jth element of B’, Ma(x;) is the membership value of the ith

element of A’, and Ma - s(x;, y;) is the membership value of the ijth element of the implication
relation R(—).

2.1  Expansion vs. Reduction Inferences

In this subsection, we present our classification of the inference processes based on their inferred
results. More specifically, we classify the inference processes into three categories, i.e.,
Expansion Type Inference, Reduction Type Inference, and Other Types. Following this point of
view, we propose the selection of a proper combination operator such as "max" and "min" as will
be discussed in detail later.

Definition 1. For a given rule: A — B, and a system observation: A’, where A, A’c V and B
c W are fuzzy sets defined in the universe of discourses V and W, respectively, suppose the
deduced consequence through an inference process is denoted as B’, if for any A’, we always
have:

B c B, (2.2)

then the inference process is called the "Expansion Type Inference". Suppose, on the other hand,
the deduced consequence is denoted as B*, if for any A’, we always have:

B* c B, " (2.3)

then the inference process is called the "Reduction Type Inference”. Further, if the deduced
consequence is at some times B < B’, and at some times B* C B, then the inference process is
called the "Other Type Inferences".

After Zadeh’s Sup-min composition in CRI was proposed, Sup-T composition has been studied
by many researchers[e.g., 6, 12, 15]. In [2, 10], the behaviours of many implication operators are
studied using Sup-min composition in the context of CRI for certain specific problems. In this
paper, it is assumed that Sup-T is used for composition in CRI in order to cover the general
cases, and that all fuzzy sets are normalized.
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Without proof here, we have the following theorem for the classification of inference processes.

Theorem 1. For Sup-T composition in the context of CRI, if the implication a — b = F(a, b) 2
b for all ae [0, 1], then the inference process is "Expansion Type Inference". If the implication
a — b =F(a, b) < b for all ae[0, 1], then the inference is "Reduction Type Inference". If the
implication a — b = F(a, b) 2 b for some a€[0, 1], but F(a, b) < b for some other ae [0, 1], then
the inference is "Other Type Inference".

According to Theorem 1, for a given implication operator, we can determine whether an
inference process is an Expansion or a Reduction Type Inference under Sup-T composition. Thus,
if we use Sup-T composition, those implication operators can be classified into three categories:
the Expansion Type implication, Reduction Type implication, and Other Types. If Sup-T
composition is used, then it is easy to show some implication operators proposed in the literature
are Expansion Type implications, e.g., min(l, 1-a+b); some are Reduction Type ones, e.g.,
min(a,b); and some are Other Type implications, e.g., max(1-a, min(a,b)).

3. PROPER COMBINATION OPERATOR

Unless we have an exact match between a system observation and the antecedent of a rule, we
need more than one rule to deduce a meaningful result by combining the intermediate results
based on each of the rules. In this section, we first discuss the basic requirement for an inference
process. We then propose a method to select combination operators for both Expansion and
Reduction inference processes from the consideration of the basic requirement for fuzzy
reasoning.

3.1 Basic Requirement for Fuzzy Reasoning

The basic requirement for fuzzy reasoning with one rule is that: given a rule A — B, if the system
observation is A’ = A, then the deduced result should be B. Some researchers have studied this
property[e.g., 4, 5, 6, 13, 14]. For example, in [5], for a given composition m, an implication
operator I is derived such that A -, (A — B) = B. It is shown [5] that for Sup-T composition,
denoted as °g,, and R-implication where the same t-norm operator as in the Sup-T is used,
denoted as —y, we have A <5, (A —; B) = B. For example, in CRI, if Sup-min composition is
used, Godel implications have this property[6]. In [14], for a given implication function I, a
modus ponens function m is derived, such that A - (A — B) = B.

As mentioned previously, we need more than one rule to perform inference unless we have an
exact match between the system observation and the left hand side of a rule. Suppose there are
Q rules in the rule base. For each of the rules, we have a reasoning result which we need to
combine to obtain an overall inference result. We propose that a fuzzy inference process, with
multiple rules, should satisfy the basic requirement for fuzzy reasoning stated as follows.

Criterion 1. The basic requirement for fuzzy reasoning, with multiple rules, is that given Q




rules: IF X is A, THEN Y is B, 0 = 1,2, ... £, if observation is A" = A, then reasoning result
B’ =B,.

This criterion is important to the reliability of an expert system. More specifically, this criterion
requires that when given a system observation which is one of the left hand sides of the rules,
a fuzzy expert system will return the same conclusion as in the rule.

With the presentation of multiple rules, we have to deal with the combination problem as
mentioned previously. In [1], combination operators are suggested for different implications from
the consideration of interpretation of ELSE in "IF THEN ELSE" rule. In [3], the problem is
studied in the domain of fuzzy relational equations. In [2] and [10], both "max" and "min"
operators are used in the combination for all implication operators in their experiments. In what
follows, from the consideration of the requirement for fuzzy reasoning processes stated above,
we propose a method for the selection of combination operators for both the Expansion Type
Inference and the Reduction Type Inference processes.

3.2 Combination: min vs. max

For a given system observation, we can perform inference by CRI with two approaches as
indicated in Section 1, i.e., "FITA" and "FATI" approaches. The question is "what must be the
proper combination operator for (1.2) and (1.3)?", i.e., "must & be max or min"? As discussed
in Section 2, if Sup-T composition is used, then the category of an inference process can be
determined by the implication operator, i.e., if a = b = F(a,b) 2 b, then the process is an
Expansion Type Inference, and if a — b = F(a,b) < b, then the inference process is a Reduction
Type Inference. Therefore, in this sense, (1.2) and (1.3) are consistent in terms of reasoning
results.

3.2.1 Expansion Inference Process

In an Expansion Inference process, with Definition 1 in Section 2.1, for any system observation

A’, we always have:
B c B’

For an expansion inference process based on CRI, we have Necessary condition 1 as follows.

Necessary condition 1. Suppose there are Q2 rules in the rule base of a fuzzy expert system. For
a system observation and an inference process using Sup-T composition in the context of CRI,
if implication a — b = F(a, b) 2 b for all ae[0,1], and is an inversely proportional function of a,
i.e, if a, 2 a, , then F(a,, b) < F(a,b), then "min" is needed for the combination.

The proof of Necessary condition 1 is based on the following idea: for a very low level of
similarity(matching)[e.g., 26] between the observation and the left hand side of a rule and in the
limit including the case of no match at all, i.e., no overlap, the membership function grade of the
inferred result based on that rule has a value equal to(approaching) 1.0 in the limit at each
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support point, i.c., this rule creates "unknown". Hence the use of this rule is useless and in this
case it does not infer any useful information. Thus, considering the "Criterion 1" and getting a
meaningful result for any system observation, we must use "min" for the combination, which will
eliminate this useless information.

3.2.2 Reduction Inference Process

In a Reduction Type Inference process, with Definition 1 in Section 2.1, for any observation A’,
we always have:
B* ¢ B.

For a reduction inference process based on CRI, we have Necessary condition 2 as follows.

Necessary condition 2. Suppose there are €2 rules in the rule base of a fuzzy expert system. For
a system observation and an inference process using Sup-T composition in the context of CRI,
if implication a — b = F(a, b) < b for ac [0,1], and is a proportional function of a, i.e., if a, 2 a,,
then F(a;,b) 2 F(a,,b), then "max" is needed for the combination.

The proof of Necessary condition 2 is based on the following idea: for a very low level of
similarity(matching) between the observation and the left hand side of a rule and in the limit
including the case of no match at all, i.e., no overlap, the membership function grade of the
inferred result has a value equal to O in the limit at each support point. That is, the use of this
rule generates "meaningless”. Considering the "Criterion 1" of the fuzzy inference and getting
a meaningful result for any system observation, we must use "max" for the combination.

Necessary conditions 1 and 2 establish the choice of a combination operator for both Expansion
and Reduction inference processes. In other words, after we select the implication and
composition operator in CRI, then we could determine the combination operator in accordance
with Necessary conditions 1 and 2.

4. CONCLUSIONS

In this paper, we analyzed fuzzy inference method of CRI in terms of inference results. Inference
processes are classified into three categories, i.e., the Expansion Type Inference, Reduction Type
Inference, and other types, which can be determined based on the implication operator under Sup-
T composition in CRI. Based on the basic requirement of fuzzy reasoning stated as Criterion 1,
we suggest that for an inference process using Sup-T composition in the context of CRI, "min"
be used for the combination if the implication F(a, b) is an Expansion Type and is an inversely
proportional function of a, and "max" be used for combination if the implication is a Reduction
Type and is a proportional function of a. Therefore, we have general conclusions for both
Expansion and Reduction inference processes based on the reasoning results no matter which
inference process is used. This proposed principle is also consistent with the existing results in
the literaturefe.g., 1, 2, 3, 10]. Our method can be used as a guidance to select operators in the
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design of fuzzy expert systems and fuzzy controllers. More specifically, for an inference process
using Sup-T composition, we first identify the class of an implication operator as discussed in
Section 2; then select the combination operator according to Necessary condition 1 or 2. For

example, in [2] and [10], the pair of operators: LLm and [lg,,., is not necessary since they are
Reduction Type but are not directly proportional(not non-decreasing) functions of a; the pairs of

operators: gy, and Mgyge, Mgz and Hgze, Mgso and Prsos, and Hgs, and Pgss, are not necessary since

they are Expansion Type but are not inversely proportional(not non-increasing) functions of a;
because [lgs, Mgas Has, Mges Hrzzes Hrzr, and Mg, are the Expansion Type, therefore "min" must be
used for the combination for each of these processes. In other words, [gse, Flgses Mlgse, Hager Mpaze,
Mgz, and Mgao. are "appropriate” candidates. And because klgg., Mrys., and Llgs;. are the Reduction
Type, "max" must be used for the combination for each of these processes. In order words, Mg,

Mgas, and Mgy, are "appropriate” candidates. Since Necessary conditions 1 and 2 establish the

selection of combination operators for the Expansion and the Reduction Type inferences, we
suggest that appropriate combination operators be selected in the design of fuzzy expert systems.

It should be noted that in order to satisfy Criterion 1, the membership functions of the linguistic
terms of a rule in the rule base of an expert system must satisfy some constraints or
conditions[19].

In this paper we always make reference to CRI in one or another to remind the readers that there
are other approximate reasoning methods such as, for example, Approximate Analogical
Reasoning method[21]. Issues of combination for these other methods should also be investigated
in a similar manner in the future.
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ABSTRACT

/Tcr; Subsumption Systems (TSS) form a knowledge representation scheme in Al that can express the defining characteristics of concepts
through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept
subsumes another. However, TSS have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this
research is to address issues in combining approximate reasoning with term subsumption systems. To do this we have extended an existing

! Al architecture (CLASP), that is built on the top of a term subsumption system (LOOM), in the following ways. First, the assertional

. component of LOOM has been extended for asserting and  representing uncertain propositions. Second, we have extended the pattem

' matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds

¢ of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those

i values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using

knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the
maintainability of expert systems could be improved.

—

1. INTRODUCTION

Knowledge exists in a variety of forms [1]. While most existing expert systems employ one or two knowledge
representation schemes, expressing diverse knowledge in such a limited number of representation formalisms
is difficult and time-consuming. Furthermore, it may not be possible to express completely all the knowledge
required in an expert system. So, there is a need to integrate different knowledge representation schemes and
to deal with the issue of incompleteness in a knowledge base. The objective of this research is to address these
issues by combining two knowledge representation schemes, approximate reasoning and terminological reasoning,

Approximate reasoning concerns uncertain knowledge and data in expert systems. Uncertainty in expert systems
may arise because of incompleteness in data, unreliability of data, impreciseness of data, or even uncertain
knowledge. For example, judgmental knowledge used in medical expert systems is uncertain in nature. Hence,
expert systems need to handle uncertainty in such a way that the conclusions are understandable and
interpretable by the user [10]. In approximate reasoning, fuzzy logic makes it possible to deal with different types
of uncertainty within a single framework as it subsumes predicate logic. It is suitable for inferring from imprecise
knowledge as all uncertainty is allowed to be expressed as a matter of degree [22]). In addition fuzzy logic
provides suitable operators for the combination of uncertainty, including a generalized modus ponens following
from Zadeh [22] for making inferences based on rules.

Term Subsumption Systems (TSS), on the other hand, dea! with terminological (i.e. definitional) knowledge. The
representation scheme of term subsumption systems can express the defining characteristics of concepts through
a formal language that has a well-defined semantics. The semantics of constructs that are often used to define
concepts or roles are shown in Figure 1. Term subsumption systems provide a natural organization for
terminological knowledge [3] through a structured taxonomy of conceptual entities with associated descriptions,
which satisfy certain restrictions as well as have specific relationships to each other and where specific concepts
can indirectly inherit characteristics from more general concepts. A guiding principle is that concepts are formal
representational objects and that the epistemological relationships between formal objects must be kept distinct
from the things represented by these formal objects [2]. For example the concept Rich-Person must be kept
separate from an instance of Rich-Person. An example of terminological knowledge is shown in figure 2. In
addition, the reasoning mechanism in these languages can deduce whether one concept subsumes another [12].
An automatic classifier places a concept in its proper location in a taxonomy so as to enforce network semantics
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and consistency checking of logical subsumption relations between concepts [13]. Term subsumption systems
originate from the ideas presented in the KL-ONE knowledge representation system, which was itself derived
from semantic network formalisms [7]. Because of the formal semantics employed, term subsumption systems
can be viewed as a generalization of frames and semantic networks [6}, [17].

In this work we have extended two terminological architectures for approximate reasoning; LOOM and CLASP,
which is built on top of LOOM. This paper has partly originated from Yen and Bonissone, who have both
addressed the issue of extending TSS for uncertainty management and outlined a generic architecture in [19),
and has been derived from Vaidya in {16].

Expression e Interpretation [e]

:primitive C; a unique primitive concept

:primitive R, a unique primitive relation

(:and C, C2 ) Az. [Cl] A [Cg]

(:and R, Rz ) Azy. [R1] A [Ra])

(:at-least 1 R) Az. 3. [R](x,y)

(sexactly 1 R) Az. 3y. [R](%y) A Vys. ([R](xy) A [R)(x,2)) = y =2
(:all R C) Az- ¥y [R)(x,y) —[CI(y)

(:domain C) Azy. [C)(x)

(:range C) Amy- [CI(Y)

Figure 1. Semantics of Some Terminological Expressions

(defconcept RICH-PERSON :is :p)

(defconcept MILLIONAIRE :is (:and :p RICH-PERSON))

(defconcept BILLIONAIRE :is (:and :p MILLIONAIRE))

(defconcept CAR :is :p)

(defconcept NEW-CAR :is (:and :p CAR ))

(defrelation HAS-CAR :is (:and :p (:-domain PERSON) (:range CAR)))

Figure 2. An Example of Terminological Knowledge

2. ISSUES IN APPROXIMATE REASONING WITH TERMINOLOGICAL MODELS

In this section we outline four issues that need to be addressed in integrating approximate reasoning with
terminological systems. This paper will focus on the first three issues. The fourth issue has been addressed in

[18].

(1) Extending the assertional component of a TSS for stating uncertain propositions: One form of uncertainty in
TSS concerns the uncertainty about the "instance of” relation. For example if there is a concept Rich-Person, a
person may be a Rich-Person only to a certain extent. This issue concerns representing and asserting uncertain
propositions and requires extension of the assertional component of TSS (often referred as the ABox).

(2) Maintaining consistency of truth values associated with propositions: Another issue needs to be dealt with. This
is related to the inheritance of concepts. The truth value of an instance in a concept may be inconsistent with
the truth value of the same instance in another concept which subsumes the first concept or is subsumed by the
first concept. For example, the degree of membership in the concept Millionaire can not be lower than the
degree of membership in the concept Billionaire as a Millionaire subsumes a Billionaire. As such, a truth




maintenance mechanism is required to maintain consistency of truth values of the propositions.

(3) Extending the semantic pattern matcher for partial matching: Another form of uncertainty could occur in the
judgmental knowledge for reasoning with assertional components of term subsumption systems. For example,
an owner of a new car may or may not be a rich person. From experts or from statistical data we may obtain
a number to represent the likelihood that a person who owns a new car is also a rich person. This second issue
concerns integration of such uncertainty with the uncertainty represented in the assertional component of the
term subsumption language. For this purpose the Semantic Pattern Matcher of CLASP needs to be modified
for performing partial matching of conditions.

(4) Extending the semantics of terminological component of TSS for making plausible inferences: This issue
concerns the representation of and reasoning with uncertainty in the terminological knowledge of term
subsumption systems.

3. INTEGRATING APPROXIMATE REASONING WITH TERMINOLOGICAL MODELS

* The architecture for integrating approximate reasoning with term subsumption systems is an extension of the
architecture of CLASP. For incorporating approximate reasoning the architecture has extended LOOM to
include a representation scheme for uncertain propositions, a fuzzy assertional language for asserting and
retracting such propositions, a fuzzy truth maintenance system and an assertion processor. Moreover, the
architecture has extended CLASP and provides for representation of uncertain rules, a fuzzy rule language, a
modification to the semantic pattern matcher of CLASP for partial matches and an approximate reasoner which
reasons with the uncertainty expressed in instances and rules. The architecture is represented in Figure 3.

Fuezy
Rulen

ne o~ a&":-)

Figure 3. Architecture for Approximate Reasoning Using Terminological Models

3.1 Extended Assertional Component

3.1.1 A Fuzzy Assertional Language

The extended assertional language includes a truth value which expresses the degree of certainty of the
membership of an instance in the corresponding concept or role. Please refer to Figure S for examples of the

assertional language. It may be noted that the f-tellm statement causes assertion of propositions, whereas the
f-forgetm statement causes retraction of propositions.
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3.12 Internal Representation

The internal representation has been extended to include a representation for uncertainty in instances and also
includes a justification structure for uncertainty. This representation scheme is the basis for truth maintenance
and reasoning in the system. An example of internal representation of an instance is given in Figure 4.

(Instance(John)

(fuzzy-db-type: ((Rich-Person 0.5))
(fuzzy-role:  ((Has-Car Mercedes) 0.7))

(justification-for-uncertainty:

( (RoleOrConcept: Rich-Person
Certainty-Measure: 0.5
Origin: Rule < New-Car-Owners-Are-Rich>)
(RoleOrConcept: (Has-Car Mercedes)
Certainty-Measure: 0.7
Origin: "USER")

)

Figure 4. Example of Internal Representation of an Instance.

32 Fuzzy Truth Maintenance System(FTMS)

The Fuzzy Truth Maintenance System (FTMS) performs consistency checking for truth values on all assertions,
retractions and inferences.

3.2.1 Consistency Checking for Truth values of Propositions

An fuzzy proposition in a fuzzy TSS needs to be checked for consistency because the truth value of a fuzzy
proposition may be constrained by the truth values of other fuzzy propositions. The truth value representing the
degree of membership of an instance in a concept needs to be compared with the truth values for the same
instance in other concepts below or above C in the concept subsumption hierarchy. Such a comparison is based
on the following two general principles:

(1) The truth value of an instance in a concept C cannot be greater than the truth value of the same
instance in any of C’s parent concepts.

(2) The truth value of an instance in a concept C cannot be less than the truth value of the same
instance in any of C’s children concepts.

In summary, if ¢ > G then PYEIEITOES where ">" denotes the subsumption relation between concepts.

To illustrate the above, assume concept o8 subsumes concept ¢, which subsumes concept ¢, Now if an instance
has a degree of membership d, in Cp d, in ¢, and d, in C, then the condition d, > d, > d, must be
satisfied. Any assertion or retraction that result in truth values that violate this condition is inconsistent. An
example of inconsistency is shown in Figure §.

There are a number of sources that may cause inconsistency in truth values of data. Because inconsistencies due
to different sources need to be handled differently we list possible sources of inconsistency below:
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(1) Inconsistency due to deduction based on the terminological model.
(2) Inconsistency due to an assertion or retraction by the user.

(3) Inconsistency due to an inference made by fuzzy rules.

Refer to terminological knowledge in Figure 2 and fuzzy-rule in Figure 7.
Consider the following sequence of assertions:

(f-tellm ((Has-Car John Mercedes) 0.7))
(f-tellm ((New-Car Mercedes) 0.5))
(f-tellm ((Millionaire John) 0.6))

The the first two assertions would cause the fuzzy-rule to fire and result in
the inference

{(Rich-Person John) 0.5)
However, the last assertion would cause an inconsistency as the truth value of
John being a Billionaire (0.6) exceeds the previously inferred truth value of

his being a Rich-Person (0.5) though Rich-Person subsumes Billionaire.

Figure 5. Example of Inconsistency

To deal with inconsistency, we have developed a fuzzy truth maintenance system (FTMS) that processes these
different kinds of inconsistencies. This FTMS records the justification of propositions in a list of justification
structures associated with each instance. A justification structure specifies (i) a fuzzy proposition and (ii) whether
the proposition was asserted by the user, deduced by the terminological model, or inferred by a rule. For
example, the justification structure in Figure 5 indicates that the justification that John may be a house-owner
with a truth value of 0.5 is that a rule "Rich-People-Are-House-Owners" made such an inference. Whenever a
new fuzzy proposition is added to by the system, the FTMS incorporates the truth value of the current
proposition with the truth values for the same proposition in the justification list. If there is an inconsistency, then
the user is notified, else the modification is completed. If the proposition is a binary predicate, the consistency
checking uses the role subsumption lattice. An algorithm for truth maintenance of propositions is outlined in
Figure 6.

3.2.2 Assertion Processor

The assertion processor translates user asserted statements and fuzzy rule inferences into internal assertional
changes and propagates these changes to the deductive reasoner and the approximate reasoner. Asserted
propositions have the highest precedence followed by propositions deduced by the deductive reasoner.
Propositions inferred by the approximate reasoner have the lowest precedence. The deductive reasoner overrides
the plausible inference of the approximate reasoner when a deduction is made, and when the deduced
proposition is retracted the plausible conclusion is reactivated.

3.3 Extending the Semantic Pattern Matcher for Partial Matching

We have modified CONCRETE, the pattern matcher of CLASP, for plausible rule based inferences.
CONCRETE is a semantic pattern matcher which uses a combination of Forgy’s Rete pattern matcher and
LOOM'’s deductive pattern matcher [20],[\21]. We first outline the fuzzy rule language. Then we describe the
deductive pattern matcher of LOOM and semantic pattern matcher (CONCRETE) of CLASP and our extension
to semantic pattern matcher for partial match. Finally, we describe the approximate reasoner for plausible
inferences.




Module Update-Fuzzy-DB(P,T)

Let the fuzzy proposition, P be [ @, "], where @ is the argument of proposition and Pi is the truth
value of the proposition and T is the “type" of the fuzzy proposition, i.e., one of asserted by user,
retracted by user, inferred by fuzzy rule or deduced by terminological model.

If a fuzzy proposition P is asserted by the user then perform Consistency-Checker for the asserted truth
value Pi.

If T is either inferred by a fuzzy rule , or is deduced by the terminological model (e.g., inheritance
links), or is retraced by the user, then

(a) (1) if a justification structure of the proposition exists then compute the new truth value P; of
the proposition else

(2) Create a justification structure if it does not exist and assign the value of Mi to Ms.

(b) (1) Create a fuzzy proposition P, as [@, H).
(2) Perform Consistency-Checker( P) for the resultant truth value.

If Consistency-Checker( P,) returns true then

(a) Update the justification structure as follows: If T is retraction by user remove the fuzzy
proposition P from it else add the fuzzy proposition {P,T} to the it.

(b) Update the proposition in the fuzzy database to P;.

() Return True.

Module Consistency-Checker(P)

4.

Let the fuzzy proposition, P be [ & ,¥j], where @ is the argument of proposition and ¥; is the truth
value of the proposition.

Find all parent fuzzy propositions with the same argument @ in the fuzzy database.

Let ConsistencyCheck be the logical conjunction of the values returned by Parent-Check(P, P,) for each
parent fuzzy proposition P, => [a ,Hi].

Return ConsistencyCheck.

Module Parent-Check(P, P,)

1.

If £, subsumes P and B, < ¥ notify the user of inconsistency. Let ReturnValue be False.

If P subsumes P, and ¥s < M, notify the user of inconsistency. Let ReturnValue be False.

If neither of the above, then let ReturnValue be assigned the value returned by
Update-Fuzzy-DB( P ,deduced_by terminological_model)

Return the ReturnValue.

Figure 6. Algorithm for Truth Maintenance




3.3.1 Fuzzy Rule Language

Uncertainty in a rule may be expressed in the consequent side of the rule which is assertional in nature. Example
of a fuzzy rule is given in Figure 7.

(def-fuzzy-rule New-Car-Owners-Are-Rich
:if CAND (NEW-CAR ?y)
(HAS-CAR x %) )
:then ((RICH-PERSON ?x) 0.6) )

Figure 7. Example of a Fuzzy Rule

Note that the actual truth value to be recorded for an inferred proposition as a result of the firing of the rule
may, however, be different from the truth value of the rule as a consequence of approximate reasoning and truth
maintenance.

33.2 Semantic Pattern Matching in LOOM and CLASP

Terminological knowledge can be viewed as a perspicuous encoding of bidirectional definitional rules. In
classification based systems, an instance is matched to a pattern, by the realizer, by first abstracting it and then
by classifying the abstraction [11}. A concept P is associated with a pattern P(x); thus matching an individual to
a pattern corresponds to recognizing an instantiation relationship between the individual and the corresponding
concept.

The deductive pattern matcher in LOOM is an extension to the realizer [11]. The classifier in LOOM’s pattern
matcher can ask questions about the individual being classified during classification, using backward chaining,
and a sufficiently detailed abstraction is built up incrementally. In addition the pattern matcher can also perform
a forward inference. Thus it has mixed both forward deduction and backward deduction.

The semantic pattern matcher in CLASP combines Forgy’s Rete Pattern Matcher with the deductive matcher
of LOOM. The rule compiler builds a concept classification Rete (CONCRETE) net as rules are loaded into
the rule base. The LOOM matcher computes assertional changes that can be deduced from the terminological
knowledge and it informs the CONCRETE net about relevant changes. To avoid long chains of CONCRETE
nodes and early unnecessary joins a data dependency analysis is performed on the patterns [20],{21].

333 Semantics-based Fuzzy Pattern Matching

To deal with uncertainty, a fuzzy pattern matcher needs to handle tokens that express uncertainty. For this it
needs to record the degree of match, which is the extent to which an uncertain token matches a condition of a
rule, in appropriate nodes in the CONCRETE net. The pattern matcher also needs to combine the partial
matches as tokens are propagated down the CONCRETE net. The fuzzy pattern matcher also needs to
generate instantiations of fuzzy rules. In addition, as concept nodes of type TRUE do not have their own
memory, the pattern matcher needs to query LOOM about partial class memberships.

The pattern matcher of CLASP, CONCRETE, has been modified in three ways.
(1) The pattern matcher has been extended to query LOOM for partial class memberships.

(2) The instantiation structure of the CONCRETE has been extended to represent the degree of partial
matching.

(3) The updating mechanism for a node has been modified to calculate or update the matching degree
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of instantiations stored in the node’s memory.
3.3.4 Approximate Reasoner

The approximate reasoner makes plausible inferences based on terminological knowledge, fuzzy propositions and
uncertain rules. It also interacts with the FTMS to maintain consistency of the propositions database and to infer
truth values to be used in the recording of inferred propositions. The use of justification structures in FTMS also
helps in the combination of truth values associated with the same inference in different rules. In addition the
approximate reasoner informs the deductive reasoner about only those additions or deletions to the propositions
database whose certainty degree is one. Moreover, the deductive reasoner informs the approximate reasoner
about all additions or deletions to the propositions database.

3.3.4.1 Uncertainty Calculi

The approximate reasoning model can support different kinds of approximate reasoning. The user may specify
the model he wishes to chose. At present two models are supported. Both are based on triangular norms in fuzzy
logic [4].

Uncertainty is propagated using T-norm operators in fuzzy logic. T-norms are binary functions that satisfy
conjunction while T-conorms are binary functions that satisfy disjunction. Both are 2-place [0,1] X [0,1] to [0,1]
functions that are monotonic, commutative and associative and their corresponding boundary conditions satisfy
the truth tables of the logical AND and OR operators. A function T(a,b) aggregates the degree of certainty of
two clauses in the same premise. A function S(a,b) aggregates the degree of certainty of the same conclusions
derived from two rules. The associativity property may be used for representation of conjunction of a large
number of clauses.

The user may select one of the two following types of T-norm operators:

(a) T1(a,b) = ab and S1(ab) = a + b- adb
(b) T2(a,b) = min(a,b) and S2(a,b) = max(a,b)

33.42 Inference Mechanism
The reasoner performs plausible inference in a data driven, forward-chaining manner. Fuzzy rules only specify
plausible inferences which in turn update instances. As a result of firing of these fuzzy rules, the truth-value of
an instance in a concept or in a role may be added or updated.
A fuzzy rule, after firing once, can be instantiated again if

(1) When one of the conditions in its pattern is no longer satisfied, or

(2) An assertion or inference by another rule updates the truth-value of an existing proposition.
4. RELATED WORK
Lokendra Shastri has developed a framework, based on the principle of maximum entropy, for dealing with
representation of and reasoning with semantic networks [14],[15]. His framework treats statements as evidential
assertions, assigning a number to each to represent the evidential import. Given statistical data it can answer
questions like “given the state of knowledge of an agent, which choice is most probably correct”. While his
framework can handle exceptions, multiple inheritance and ambiguities, it has two limitations. First, his approach
is based on the availability of statistical data which may not be available. Second, there is no classifier to maintain

the consistency of the terminology because the concepts and roles are not of the definitional type.

Heinsohn and Owsnicki have proposed a model of probabilistic reasoning in hybrid term subsumption systems
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[9]). Uncertain knowledge is represented as probabilistic implications and probabilistic inheritance is used as a
reasoning mechanism. They consider universal knowledge to be related to the extensions of concepts, i.e., the
set of real world objects. This empirical or belief knowledge is stored in a Probabilistic Box (PBox). They have
extended a term subsumption language by defining the syntax and semantics of probabilistic implication, which
quantifies the relative degree of intersection of two extensions. While the range of applicability of hybrid term
subsumption systems may be enlarged with this model, it is limited in the kind of uncertain knowledge it can
represent. Most rules in expert systems involve complex conditions which may not be completely expressible as
concept definitions. Therefore, probabilistic implications need to be extended before these could be used for
building expert systems.

Bonnisone et al. have developed a T-norm based reasoning architecture, RUM, for frame based systems [S]. The
premise is that treatment of uncertainty must address representation, inference and control layers in expert
systems. The representation uses a certainty frame with set of associated slots. However, the limitation of RUM
is that it cannot use terminological knowledge, unlike term subsumption systems.

S. SUMMARY

An architecture has been implemented and described for approximate reasoning with terminological systems.
The assertional component has been extended for representing and reasoning with uncertain propositions. Using
terminological knowledge, fuzzy-rules, T-norm based uncertainty calculi and a fuzzy truth maintenance system,
plausible inference can be made. The fuzzy truth maintenance system ensures the consistency of truth values of
propositions and the assertion processor translates and propagates internal changes.

This architecture presents some benefits for developing expert systems. First, expert systems can be built which
can refer to terminological knowledge and also reason under uncertainty. Second, it allows for representation
and reasoning using uncertainty in the assertional component as well as uncertainty in judgmental knowledge.
These two features improve the reasoning capability of expert system. Third, terminological knowledge is applied
to both deductive and approximate reasoning, i.e., it is reusable. And fourth, the maintainability and explanation
capabilities of expert systems could be improved because meanings of terms are explicitly represented and are
separated from heuristic knowledge that is used for plausible inferences.
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ABSTRACT

Properties of objects and spatial relations between objects play an important role in rule-
based approaches for high-level vision. The partial presence or absence of such properties and
relationships can supply both positive and negative evidence for region labeling hypotheses.
Similarly, fuzzy labeling of a region can generate new hypotheses pertaining to the properties of
the region, its relation to the neighboring regions, and finally, the labels of the neighboring
regions. In this paper, we present a unified methodology to characterize properties and spatial
relationships of object regions in a digital image. The proposed methods can be used to arrive at
more meaningful decisions about the contents of the scene.

1. Introduction

The determination of properties of image regions and spatial relationships among regions
is critical for higher level vision processes involved in tasks such as autonomous navigation,
medical image analysis, or more generally, scene interpretation. In a rule-based system to
interpret outdoor scenes, typical rules may be

IF a REGION is THIN AND SOMEWHAT NARROW
THEN itis a ROAD
IF a REGION is RATHER BLUE AND HOMOGENEOUS AND
IF THE REGION is ABOVE a TREE REGION
THEN it is SKY

Although humans may have an intuitive understanding of words such as "thin" and "narrow",
such concepts defy precise definitions, and they are best modeled by fuzzy sets. Similarly,
humans are able to quickly ascertain the spatial relationship between two objects, for example "B
is above A", but this has turned out to be a rather elusive task for automation. When the objects in
a scene are represented by crisp sets, the all-or-nothing definition of the subsets actually adds to
the problem of generating such relational descriptions. It is our belief that definitions of
properties and spatial relationships based on fuzzy set theory, coupled with a fuzzy segmentation
will yield realistic results.

Rosenfeld[1-3] defined many terms used in the analysis of spatial properties of objects
represented by fuzzy sets. Pal has defined similar geometric attributes (such as index of area
coverage) and have developed low- and intermediate-level algorithms based on such attributes
[4]. Dubois and Jaulent[5] generalized Rosenfeld's definitions using both fuzzy set and evidence
theories.
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Approximate spatial relation analysis has also attracted the attention of many researchers
in the past several years. In many situations, precise description of relations among objects may
be too complex and computationally too expensive. Approximate spatial relation analysis
provides a natural way to solve real world problems with a reasonable cost. Freeman[6] was
among the first to recognize that the nature of spatial relations among objects requires that they be
described in an approximate(fuzzy) framework. Retz{7] has examined the intrinsic, deictic, and
extrinsic use of spatial prepositions and has designed a system called CITYTOUR that answers
natural language questions about spatial relations between objects in a scene and about the
movement of objects. More recently, Dutta[8] has applied fuzzy inference and used a
generalization of Warshall's algorithm to reason about object spatial positions and motion.
However, modeling spatial relations among image objects is not addressed in any of these papers.
Keller and Sztandera[9] addressed the problem of defining some spatial relationships between
fuzzy subsets of an image by using dominance relations of projections of the regions onto
coordinate axes.

In this paper, we propose direct methods to analyze properties of fuzzy image regions and
spatial relations between fuzzy image regions quantitatively. The methods use membership
functions generated by a fuzzy segmentation algorithm such as the fuzzy C-means algorithm [10].
The partition generated by the segmentation process is assumed to define C fuzzy subsets, one
representing each object or region in the image. We express the membership function of each
object in terms of its a-cut level sets and perform all computations on the level sets to obtain
spatial properties of objects. We determine the relative positions of the level sets based on certain
measurements on the elements of the level sets, and then we map the aggregated angle
measurements into the interval [0,1] using suitable membership functions to define spatial

relations between regions as fuzzy sets over the domain of a-levels.

In section 2, we describe methods to generate fuzzy subsets that describe the objects
(regions) in the image. In section 3, we review the existing methods to compute geometric
properties and attributes of fuzzy image regions, and suggest how these methods can be easily
extended to nongeometric properties and attributes. In section 4, we describe our method to
compute membership functions for spatial relations between fuzzy regions. The relations include
LEFT OF, RIGHT OF, ABOVE, BELOW, BEHIND, IN FRONT OF, NEAR, FAR, INSIDE,
OUTSIDE, and SURROUND. In section 5, we show some typical experimental results of
attribute and spatial relation analysis involving fuzzy image regions. Section 6 contains the
summary and conclusions.

2. Generation of Fuzzy Subsets to Describe Objects in the Image

Prewitt [11] was the first to suggest that the results of segmentation be fuzzy subsets of the
image. In a fuzzy representation of an image, each object is represented by a fuzzy region F,

where F is defined over a referential set £2. Here, (2 is the domain over which the image function
is defined. In this paper, we are mainly concerned with the discrete case, and hence £2 may be
considered as a two-dimensional array. The membership function ur for the object is defined by:
Ur:£2—-1[0,1]. Each point x = (x,y) in 2 is assigned a membership grade up(x). It is further
convenient to represent this region in terms of a-cut level sets F® as: F&= {x | up(x) 2 a}, where
a €[0,1]. In a real image, the number of membership values present is finite, and can be made
quite small by quantizing the values. Hence, they can be enumerated as 1=a1>02> ... >Qy. In

what follows, o471 will be assumed to be 0. The level sets are nested, i.e., FEQF&j for @; < q;.
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In addition, for each a-cut level set F&i, we can associate a basic probability assignment m(F &i),
where m(Fi) satisfies: X m(F&i) =1 [5].

One popular method for assigning multi-class membership values to pixels, for either
segmentation or other types of processing, is the fuzzy C-means(FCM) algorithm{10]. The
normalization of the memberships across classes in that approach sometimes leads to counter-
intuitive memberships. The partition generated by FCM may also be sensitive to noisy features
and outliers. Also, the number of classes must be specified for the algorithm to run. The
possibilistic C Means algorithm and the unsupervised clustering algorithms proposed by the
authors overcome many of these problems [12-13].

3. Properties and Attributes of Fuzzy Regions

There are many ways to describe properties and attributes of an object. Properties and
attributes of fuzzy image regions may be both geometric and non-geometric. In practical
applications, some of the geometric properties that are frequently encountered are area, height,
extrinsic diameter, intrinsic diameter, roundness, elongatedness, etc. [3]. Examples of non-
geometric properties are brightness, color and texture. We now briefly summarize some geometric
properties and their definitions from the existing literature [3].

The area of a fuzzy region F is defined as the scalar cardinality of F, i.e.,

a(F)= Y up(x) o
XEQ
The height h of a fuzzy region F along the direction « is defined as
hy(F) = Zm‘a’xx JIT2URY) 2

u

where v is the direction perpendicular to ». Rosenfield[2] defined the extrinsic diameter of a fuzzy
region F as

E(F) = max hy(F) 3)

where hy, is defined as above. The geometric property "elongatedness” may be defined in terms of
the ratio of the minor extrinsic diameter and the major extrinsic diameter, i.e.,

max hy(F)
HEL(F) = 1- =gy )

Conversely, the geometric property "roundness” may be defined as the complement of
"elongatedness".

The geometric properties of objects can also be defined with respect to a-cut level sets [5].

Assume we have nested a-cut level sets {F& ¢ F®2 ¢ ... c F@n}, with a basic probability
assignment m defined by
m(FO%) = o; _ 0y, &)

where a1 =1, and ¢¢+1=0. Then, for any x € F&%i - F®i-1, yp(x) = ¢;. The expected value of a
property P(F), may be measured as:

n
n
B(F)= D m(Fa) PO = 3 (0t e 1) POFOW) ©6)

i=1 i=1




P(F) is the expected value of P(F). Since F@i is a crisp set, traditional techniques can be used to
compute P(F&i). For example, one may simple average the value of the property in the crisp
region denoted by F%i to obtain P(F&i). Dubois and Jaulent proved [5] that a(F) is the expected

area a (F) and the height of F along the y-axis is equal to the expected height along the y-axis of
F. For the expected extrinsic diameter, the following inequality is true,

e (F) 2 E(F). )
4. Spatial Relations between Fuzzy Regions

The primitive spatial relations between two objects are[6]: 1) LEFT OF, 2) RIGHT OF, 3)
ABOVE, 4) BELOW, 5) BEHIND, 6) IN FRONT OF, 7) NEAR, 8) FAR, 9) INSIDE, 10)
OUTSIDE, and 11) SURROUND. In he following, we present detailed definitions and methods
for computation of memberships for some of the relations.

We define the relations as fuzzy sets over the universe of discourse of the a-cut values
{ai, . ..,0n). The general approach we use is as follows. Let A and B be two fuzzy sets defined

on £. At each a-cut value ¢;, we compute the membership value for "A% RELATION B&:"
based on certain measurements ¥ on the relative positions of the pairs of elements (a,b), ac A%i
and b € B&i. These measurements are aggregated for all pairs elements to give an aggregated

measurement ¥. The membership value for "A% RELATION B&:" denoted by ta reL_g (¢) is

then computed by evaluating a membership function urgp at . We are currently investigating
methods to compute the overall membership for "A RELATION B", once the memberships for

"A®i RELATION B%i" is computed for all a;. This may be achieved via a fuzzy aggregation
operator, or from a method suggested by Dubois and Jaulent [5]. Ternary relations (such as "A IS
BETWEEN B and C") can also be handled in a similar fashion.

In the following, we discuss the membership functions pggr for some of the relations
listed above in more detail. In Section 5, we show examples of membership computations for a
variety of relations in different situations.

4.1 LEFT OF

Human perception of spatial positions between two objects is closely related to angular
information. For example, one would search a sector area subtending an angle of approximately

180° left of oneself to find an object that supposedly lies to one's left. Here, the distance between
the person and the object is relatively unimportant. Based on this observation, we define most of
the spatial relations in terms of angular measurements.

Suppose we have two points A and B. Denote AB as the line connecting A and B. Let 6 be

the angle between AB and the horizontal line, as shown in Figure 1. The membership function for
"A is to the LEFT of B" may be defined as a function of 8 as
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Figure 1: (a) Point relationship for "LEFT OF", (b) the membership function for "LEFT OF".

A large value for a tends to give an optimistic result, and a small value would give a pessimistic
result. Other symmetric functions may also be used to define yj grr. The definition in (8) assumes
that A and B are points. If they are two fuzzy regions, the angles described above are computed
and averaged for all pairs of elements (a,b), ae A and b € B &i, The membership grade for "A &i

LEFT OF B@i" is obtained by mapping the averaged angle 6, through the membership function
defined in (8).

4.2 RIGHT OF, ABOVE, BELOW, BEHIND, IN FRONT OF

These relations may be calculated similar to the relation "LEFT OF", using aggregated
values of angles made by lines joining pairs of points along with a corresponding trapezoidal
membership function. Due to the symmetry in our definitions, the membership grade for "A is to
the LEFT OF B" is the same as that for "B is to the RIGHT of A". The symmetric property also
applies to the relation pairs "ABOVE" - "BELOW", and "BEHIND" - "IN FRONT OF". It is to be
noted that some of the terms mentioned above actually contain three dimensional information. As
images are usually represented in a 2D space, some of these terms may not have any meaning.

4.3 INSIDE, OUTSIDE

For two level sets A% and B&i, the membership function for the spatial relation "A&i is
INSIDE B@i" may defined as,
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A% N Bl
MINSIDE(O;)= 77 )
IB&i|

where IA%NBQi| and IB%il are the cardinalities of the level sets A% and B%i respectively. In a
digital image, cardinality of a set is the number of pixels that belong to the corresponding level
set. The membership function for "A is OUTSIDE B" can be defined as the complement of that
for "A is INSIDE B".

4.4 SURROUND

If we assume that all the level sets of an object are connected regions, at each a-cut level
set, we can find two lines /] and /; for each point in B, as shown in Figure 2. Let 8 denote the
angle between the two lines as shown. The membership grade for "A% SURROUNDS B&i" may

be calculated by first computing the average 6; of the angles 6 for every element of B%i, and then
applying the following mapping at 6 = 6;.

1 6> (2-a)n
HsuRROUND(6)= | Z=%s 7S 6<2-a)m (10)
0 f<r

Figure 2: Definition of the angle 6 to compute the relation "SURROUND"

4.6 Spatial Relations among Objects (BETWEEN)
Consider three points A, B and C as shown in Figure 3. The membership value for "C is

BETWEEN A and B" may be defined using a trapezoidal shape as shown in Figure 3.

1 16— < an/2
n2-ln-
HBETWEEN = T_a)”—”/zq an2 <16-n < 22 11

0 |6-n| = 72
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The membership value for "C% is BETWEEN A®i and B&i" may be computed by evaluating the
membership function in (11) at 8 = 6;, where 6; is the average of all the angles between lines (a,c)

and (c,b), where ae A%i and b € B&i and ce C&i. Other spatial relations among objects may be
defined in a similar way.

0.8
0.6
6 04

C 0.2

0 8

n2 n n+an/2 3w/2

Figure 3: (a)Definition of the angle 6 to compute the relation "BETWEEN", (b) the membership
function for "BETWEEN".

5. Examples of Spatial Relation Analysis

Extensive simulations were conducted before we applied the proposed methods to real
images. In the simulations, we chose objects with various membership function distributions, such
as Gaussian shapes, triangular shapes, and exponential shapes. Relative positions and sizes of
objects were also altered to observe the influence on the resulting membership functions for
spatial relations. We first present two typical examples from our simulation experiments. We then
present examples involving real images.

T
==

e
e,
—= =
— —
—_—
]
.
—_—

Figure 4: Synthetic membership functions for (a) two image regions, (b) three image regions.




Figure 4(a) shows the fuzzy membership functions of two objects in an image and Figure
4(b) shows the fuzzy membership functions of three objects. The z-axis represents the
membership grades for the objects. In Figure 4(a), the large object lies below the small object. In
Figure 4(b), the small object lies in between the two large ones. It is to be noted that the
membership functions for the large objects are not symmetric about the peak value. The
membership grades of two spatial relations in the two images are shown in Figure 5. From Figure

5(a), we notice that at small a-cut levels, object A(large one) lies somewhat to the right of B.
However, it is definitely below B. Therefore we have a reasonably high membership grade of
about 0.85 for small a-cut levels for the relation "A is BELOW B". As the a-cut level increases,
object A shrinks more and more to a position perfectly below object B. This results in a gradual
increase of the membership grades to one. Similarly, in Figure 5(b), we initially have a low
membership grade for A is BETWEEN B and C and as the a-cut level rises, object A's position is
more BETWEEN B and C. Therefore the membership grades related to the spatial relation also
increases accordingly.

08 08 /
06 " 06 a

#:04 #04

+ g; +03

x 0. 0.2
04 *: 0.1 04 2' 0.1

0 0.0 0:0.0
02 02
(1] @ 0 «

0 02 04 06 08 1 0 02 0.4 0.6 0.8 1

Figure 5: (a) Membership grades for "A is BELOW B" for the objects in Figure 4(a), (b)
membership grades for "A is BETWEEN B and C " for the objects in Figure 4(b).

We next present some typical examples of our experimental results with real images.

Figure 6 shows a 256x256 image of a natural scene as well as its segmentation by the Gustafson-
Kessel algorithm [12]. (The closest crisp partition is shown.) A texture feature (homogeneity) and
three color features (red, green, and blue) were used to perform the segmentation. The segmented
image shows three main objects: sky, road, and trees. Figures 7(a) and 7(b) show the membership
grades for the "correct" spatial relation "The sky is ABOVE the trees" and the "false" spatial
relation "The sky is to the LEFT of the trees". In the image, a considerable portion of the sky is
actually lower than the tree region. However, our method still generated high membership grades
for the true hypothesis. This shows that our method of aggregating relations is very effective in
capturing the intuitively correct overall spatial relation between regions. The membership grades
for "The sky is to the LEFT of the trees" is low, as expected. Figure 7(¢) shows the plot of the
membership function for the ternary relation "The Trees are BETWEEN the SKY and the
ROAD?", for the segmentation shown in Figure 6(b). As expected, our method generated high
membership grades for this correct hypothesis.
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Figure 6: (a) Original 256x256 image of a natural scene, (b) the closest crisp partition of a

segmentation.
1 n B 1 H
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Figure 7: The membership grades for (a) the "correct" spatial relation "The sky is ABOVE the
trees" and (b) the "false" spatial relation "The sky is to the LEFT of the trees", and (c) the relation
The Trees are BETWEEN the SKY and the ROAD".
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6. Conclusions

In this paper, introduce a new approach to analyze spatial relations between objects and

among objects. In this approach, objects in the image are viewed as fuzzy regions, and spatial
relations between fuzzy regions are viewed as membership functions (possibility distributions)

defined over the set of a-cut sets of the fuzzy regions. This a-cut approach is similar to the
approach introduced by Dubois and Jaulent ; and hence is consistent with the existing definition
for the geometric properties of spatial regions. Since the properties and spatial relations are
defined over the set of a-cut sets, efficient algorithms to compute these relations can be devised,
and these algorithms save considerable computation time. The methodology expressed in the
paper can be widely used in such areas as image understanding, rule-based reasoning, and motion
analysis.
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Raghu Krishnapuram, Hichem Frigui and Olfa Nasraoui
Department of Electrical and Computer Engineering
University of Missouri
Columbia, MO 65211, USA

ABSTRACT

In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and
quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and
overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the
clustering is performed in the original image space, and since no features need to be computed, this approach is
particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.

1. Introduction

Boundary detection and surface approximation are important components of intermediate-level vision.
They are the first step in solving problems such as object recognition and orientation estimation. Recently, it has
been shown that these problems can be viewed as clustering problems with appropriate distance measures and
prototypes [1-4]. Dave's Fuzzy C Shells (FCS) algorithm [1] and the Fuzzy Adaptive C-Shells (FACS) algorithm
{4] have proven to be successful in detecting clusters that can be described by circular arcs, or more generally by
elliptical shapes. Unfortunately, these algorithms are computationally rather intensive since they involve the solution
of coupled nonlinear equations for the shell (prototype) parameters. These algorithms also assume that the number of
clusters are known. To overcome these drawbacks we recently proposed a computationally simpler Fuzzy C
Spherical Shells (FCSS) algorithm (3] for clustering hyperspherical shells and suggested an efficient algorithm to
determine the number of clusters when this is not known. We also proposed the Fuzzy C Quadric Shells (FCQS)
algorithm [2] which can detect more general quadric shapes. One problem with the FCQS algorithm is that it uses
the algebraic distance, which is highly nonlinear. This results in unsatisfactory performance when the data is not
very "clean” [4]. Finally, none of the algorithms can handle situations in which the clusters include lines/planes and
there is much noise. To summarize, the existing algorithms to detect quadric shell clusters have one or more of the
following drawbacks: i) they are computationally expensive, ii) the distance measure used in the objective function
can yield distorted estimates of prototype parameters if the data is not well behaved, iii) they assume that the number
of clusters C is known, iv) their formulations do not allow the degenerate case of lines/planes, and v) they are not
very robust in the presence of noise. In this paper, we address these drawbacks in more detail and propose a new
algorithm to overcome these drawbacks.

2. The Fuzzy C Quadrics Algorithm

Let X = xip X - ) be a point in the n-dimensional feature space. We may define the algebraic (or
residual) distance from x; to a prototype f; that resembles a second-degree curve as :

&L 2 A 2 e . . .

Qij = dqQ (xj,ﬂ,-) = (Ptlle +Pi2Xp + ...+ Dinkjy ¥ Pitn+1)%j1%2 + Pi(n+ 2153 + - . .
+PisXj(n-1%jn ¥ Pi(s+1Y%1+ Pi(s+2)%2 + - . . +Pi(s+n)Kjn + Pi(s+n+l))2
T T

=P;94;Pi=P; Mjpi. 1)

The prototypes f; are represented by the parameter vectors p; = [pi1, pi2, - . ., p,~,]T with r = s+n+1 =ﬂ"2l12 +n+l

= gm)zs@ components, which define the equation of the curve. The Mj in (1) are given by
T .. T 2 2 2
Mj =qj qj, with qj = [x.fl.l, sz, ey Xjn, leJsz, .. .,xj(,,_l)xj,,,le, ij, ey xj,,, ]] (2)
We may now minimize the following objective function which is similar to the objective function used in Fuzzy C-
Means algorithm (FCM) [6] except for the distance measure.




cC N C N
T
T = X, j§1(uij)m dé'f =z j§l(ﬂij)mpi Mipi, 3)
where B = ( f.....B¢c ), C is the number of clusters, N is the total number of feature vectors and U = [ y;; ] is the
CxN fuzzy C-partition matrix satisfying the following conditions.

u; € [0.1] forall:andj, Z p; =1 foralljand 0 < Z py; <N foralli. @)
j=
Note, JQ(B,U) is homogeneous wuh respect to p;. Therefore, we need to constrain the problem in order to avoid the
trivial solution. Some of the possibilities are:

() pi1 =1, (i) pir=1, (ii) lip;12 = 1, and

2 2 2
p; P; p;
@iv) Ilp,-zl+p?2+ .. .+p‘-2n+ —i"zLQ+ -&;24 .. .+§il2 =1 5)

In [4] Dave et al have also proposed a Fuzzy C Quadrics (FCQ) algorithm using constraint (i). This constraint is
more restrictive than constraint (iv) used in the FCQS algorithm proposed in [3]. Moreover, the resulting distance
measure is not invariant to translations and rotations of the prototypes. Constraints (ii) and (iii) are also not suitable

for the same reason. In other words, these constraints make the distance d(22u a function of not just the relative

location of point x;to curve B;, but also the actual location and orientation of the curve f; in feature space, which is

undesirable. However, constraint (iv) makes the distance invariant to translations and rotations [5]. Other constraints
are also possible, and one of them will be discussed in Section 4. With constraint (iv) the minimization of (3)
reduces to an eigenvector problem, and its implementation is straightforward. Minimization with respect to the
memberships ;; is similar to the FCM case [6]. It is easy to show that the memberships are updated according to

ifl.=®
ey
k=1 \4Qy;
H;= 9 0 iel ifl =0 (6)
5;1]_1 if =@

where I; = {i | 12i<C, dé‘.j = 0}. The original FCQS algorithm is summarized below.

THE FUZZY C QUADRIC SHELLS (FCQS) ALGORITHM:

Fix the number of clusters C; fix m,1 <m < eo;

Set iteration counter I = 1;

Initialize the fuzzy C-partition U(0) using the FCSS algorithm;

Repeat
Compute p;( ) for each cluster §; by minimizing (3) subject to (5);
Update U) using (6);
Increment ! ;

Until (HUED . vy )< e);

The FCQS algorithm has the following drawbacks: i) Since the algebraic distance given by (1) is highly
nonlinear, the membership assignments are not very meaningful, ii) the constraint in (5) strictly speaking does not
allow us to fit linear (or planar) clusters. We now address these drawbacks in more detail and propose modifications
of the algorithm to overcome these drawbacks.

3. The Modified Fuzzy C Quadric Shells Algorithm

. 2 .
To overcome the problem due to the nongeometric nature of dQ i one may use the geometric

(perpendicular) distance (denoted by d';z,y ) between the point x 'j and the shell ﬂi given by

60




dlz,,.j = min llr; - z;;12 such that
@ TA:zij +2jj Tvi+b)=0, M

where z;; is a point lying on the quadric curve describing cluster B: . Using a Lagrange multiplier A, Equation (7) can
be solved for zj; as

zij = 5 (- A G+ 20, ®)

Substituting (8) in (7) yields a quartic (fourth-degree) equation in A in the 2-D case, which has at most four real roots
A, 1sk<4. They can be easily computed using the standard solution from mathematical tables. For each real root 4,

so computed, we calculate the corresponding (z;j)x using (8). Then, we may compute df,ij = mlén Ie - (z,-j)kllz.

One can formulate the FCQS algorithm using d?,‘-j as the underlying distance measure [15]. Minimizing the

resulting objective function with respect to U yields an equation identical to (6) where %u is replaced by df, i

However, minimizing the objective function with respect to the parameters p; results in coupled nonlinear equations
with no closed-form solution. To overcome this problem, we may assume that we can obtain approximately the same
solution by minimizing (3) subject to (5), which will be true if all the feature points lie reasonably close to the
hyperquadric shells. This assumption leads to the Modified FCQS (MFCQS) algorithm. Our experimental results
show that in the 2-D case the modified FCQS algorithm gives much better results and converges much faster than
the original version. In fact, our extensive simulations indicate that the performance of this algorithm is excellent, as
long as the data points are all reasonably close to the curves (i. €., as long as the data is not highly scattered), which
will be true in most computer vision applications. This may be attributed to the fact that the membership assignment
based on the perpendicular distance is more reasonable.

The MFCQS algorithm can also be used to find linear clusters, even though the constraint in (5) forces all
prototypes to be of second degree. This is because the algorithm usually fits either two coincident lines (for a single
line), or an extremely elongated ellipse (for two parallel lines) or a hyperbola (for two crossing lines). It is quite
simple to recognize these situations from the parameters of the prototypes, and when these situations occur, we can
simply split such prototypes to a pair of lines after the algorithm converges.

It is to be noted that d 12,‘] has a closed-form solution only in the 2-D case. In higher dimensions, solving for

d12>ij is not trivial. For example, in the three dimensional case, this results in a sixth degree equation, which needs to

be solved iteratively. This makes the algorithm slow. We now propose an alternative formulation of the algorithm to
overcome this problem.

4. The Fuzzy C Plano-Quadric Shells Algorithm

When the exact (geometric) distance has no closed-form solution, one of the methods suggested in the
literature is to use what is known as the "approximate distance” which is the first-order approximation of the exact
distance. It is easy to show [7] that the approximate distance of a point from a curve is given by

dz..=d 2 P = Qij = Qij R 9
Aij = AA" 0B IVdéijlz piTDD;Tp; ®

where Vdéij is the gradient of the distance functional

2 2 2
pilq =i, piz- - .. Dirdlxys Xys oL X XX, X1 nX1> %25 -+ » Xp» T (10)
evaluated at x - In (9) the matrix D;j is simply the Jacobian of ¢ evaluated at x -
One can easily reformulate the quadric shell clustering algorithm with dzAij as the underlying distance
measure. The objective function to be minimized in this case becomes
T
c N p; Mip;

C N
J ABBD) =i>=31j§l(u,~j)'"di,-j =Z Iy

. . an
i=1 j=1" 7" pi'DD;Tp;
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Unfortunately, the minimization of the resulting objective function with respect to p; in general leads to coupled
nonlinear equations which can only be solved iteratively. To avoid this problem, we choose the constraints

N
p,-T[_Zl(u,-j)ijDjT]p,- = ‘El(u,j)'", or piYGp; =N;, i=1,..,C, (12)
J = J=
where
N N
G; = _Zl(p,-j)m D;D;Tand N; = -21(”"1')'"' (13)
j= j=

The above constraint has been applied in the hard case by Taubin (8] with good results when there is only one curve
to be fitted. Our contribution is to extend it to the fuzzy case and to fit C curves simultaneously. Using (12) and
Lagrange multipliers, we may now minimize

N

C
§1 z wy)m dzAlj B ,;lli (p’irGipi'Ni)

c X P,TM,'P;' ¢ 2
=z j§1 P T L [Z(M,)'"P: D;Tp; - (u,,)"’] (14)

When most of the data points are close 1o the prototypes, the membershlps Hij will be quite hard (i. e., they will be
close to 0 or 1). This assumption is also quite good if we use possibilistic memberships [9] to be discussed in Section
5. This means that when the constraint in (12) is satisfied, we may say lhatp,-Tl}Dj Tp; = 1. In fact, it is easy to

show that the condition p,'TDij Tp; = 1 is exactly true for the case of lines/planes and certain quadrics such as
circles and cylinders. Hence, we will obtain approximately the same solution if we minimize

= N
T
E 2 oorotmes - Eal et - Zur]
If we assume that the prototypes are mdependem of each other then this is equivalent to independenty minimizing

z(lly)mp,MP, - i [,,, 2 ()" D;D;" pi Z(u,, ]

=p; FiPi -4 (P,' Gip; -N) (15)

where
N

Fi= T G M. (16)
The solution of (16) is given by the generalized eigenvector problem

Fip; =4 Gip;, (17)
which can be converted to the standard eigenvector problem if the matrix G; is not rank-deficient. Unfortunately this
is not the case. In fact, the last row of D; is always [0, . . . ,0]. Equation (17) can still be solved using other

techniques that use the modified Cholesky decomposition [8], and the solution is computationally quite inexpensive
when the feature space is 2-D or 3-D. Another advantage of this constraint is that it can also fit lines and planes in
addition to quadrics. Minimization of (11) with respect to the memberships p;; leads to

f 1

- ifl.=®
C 2 1
) Ay J
J k=1 dAk]
Hi;= 0 igl ifl=® (18)
\iezll,#':i: lfll_a&d)
J

In the 2-D case, ciu in the above equation may also be substituted by d l%ij . We notice that in practice this gives

more rapid convergence. The resulting clustering algorithm, which we call the Fuzzy C Plano-Quadric Shells
algorithm, is summarized below.
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THE FUZZY C PLANO-QUADRIC SHELLS (FCPQS) ALGORITHM:
Fix the number of clusters C; fix m,1 <m < oo;
Set iteration counter [ = 1;
Initialize the fuzzy C-partition U(0);
Repeat
Compute the matrices F; and G; using (13) and (16)
Compute p; () for each cluster B; solving (17)
- Update U() using (18);
Increment [ ;
Until (1UED - vBDi<e);

5. Robust Shell Clustering

The algorithms discussed above will be sensitive to outlier points even when the objective function based
on the approximate distance is minimized. To overcome this problem, we have converted the algorithm to a
possibilistic algorithm [9]. This is very easily achieved by updating the memberships according to

uij = (23)

-1
4 d
i ym-1
1+ (—‘L)
n;
instead of (18). In (23), one attractive choice for 7); in practice is the average fuzzy intra-cluster distance given by

N
Q5 d;
— =l .

= (24)

N
()"
il

1=

Our experimental results show that the resulting algorithm, which we call the Possibilistic C Plano-Quadric Shells
(PCPQS) algorithm, is quite robust in the presence of poorly defined boundaries (i. e., when the edge points are
somewhat scattered around the ideal boundary curve in the 2-D case and when the range values are not very accurate
in the 3-D case). It is also very immune to impulse noise and outliers, as can be seen in the examples presented in
Section 7. A possibilistic version of the Modified FCQS algorithm (denoted by MPCQS) was also implemented.

6. Determination of Number of Clusters

The number of clusters C is not known a priori in some pattern recognition applications and most
computer vision applications. When the number of clusters is unknown, one method to determine this number is to
perform clustering for a range of C values, and pick the C value for which a suitable validity measure is minimized
(or maximized) [10,12]. However this method is rather tedious, especially when the number of clusters is large.
Also, in our experiments, we found that the C value obtained this way may not be optimum. This is because when C
is large, the clustering algorithm sometimes converges to a local minimum of the objective function, and this may

. result in a bad value for the validity of the clustering, even though the value of C is correct. Moreover, when C is
greater than the optimum number, the algorithm may split a single shell cluster into more than one cluster, and yet
achieve a good value for the overall validity. To overcome these problems, we propose an alternative Unsupervised

g C Shell Clustering algorithm which is computationally more efficient, since it does not perform the clustering for an
entire range of C values.

Our proposed method progressively clusters the data starting with an overspecified number Cpqy of
clusters. Initially, the FCPQS algorithm is run with C=Cj,4x. After the algorithm converges, spurious clusters (with
low validity) are eliminated; compatible clusters are merged; and points assigned to clusters with good validity are
temporarily removed from the data set to reduce computations. The FCPQS algorithm is invoked again with the
remaining feature points. The above procedure is repeated until no more elimination, merging, or removing occurs,
or until C=1. This algorithm is summarized below.
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THE UNSUPERVISED POSSIBILISTIC C PLANO-QUADRIC SHELLS (UPCPQS) ALGORITHM:
SetC=Cmax;fixm,1l <m<oo;
CRemoved := 0; MergeFlag := EliminmateFlag := RemoveFlag := TRUE;
While C> 1 and (MergeFlag = TRUE or EliminmateFlag = TRUE or
RemoveFlag = TRUE) do
MergeFlag .= EliminmateFlag ;= RemoveFlag := FALSE;
Perform the PCPQS algorithm with the number of clusters = C;
Eliminate spurious clusters using validity, decrement C accordingly,
and set EliminmateFlag = TRUE if any elimination has occurred;
Merge compatible prototypes among the C prototypes , update C,
and set MergeFlag = TRUE if merging has occurred;
Remove good clusters using validity, update C, and set RemoveFlag = TRUE if
any good clusters are removed;
Save the remaining clusters’ prototypes ;
End While
Replace all the removed feature points back into the data set.
Append the list of remaining clusters' prototypes from the last iteration in the while loop
to the list of removed clusters' prototypes;
Do
Perform the PCPQS algorithm with the new C;
Merge compatible prototypes in the prototype list and update C;
Eliminate tiny clusters and decrement C accordingly;
Until No more merging or elimination takes place;

One way to determine if two clusters are compatible (i. ., whether they can be merged), is to estimate the best fit for
all the points having a membership greater than an a-cut in the two clusters. If the validity for the resulting cluster is
good, then the two clusters are considered mergeable. The above algorithm also requires a validity measure to
discriminate between good and bad clusters. Several cluster validity criteria have been presented in the literature.
For example, performance measures based on the memberships in the partition matrix U have been proposed by
some researchers [6,10]. Unfortunately, these are not very effective for shell clusters, since they do not reflect the
actual geometric structure of the data set. One possible validity measure we may define is the shell thickness
measure, which is simply the sum of the squared errors of the fit for the ith cluster given by

N

However, it is difficult to estimate a "good"” value for this validity measure in noisy conditions. Validity measures
may also be defined using hypervolume and density [11,12]). To do this, the distance vector from a feature point to a
shell prototype is first defined as 6;; = (x; - z;), where z; is the closest point on the curve (or surface) to the feature
point x; in the approximate distance sense. The fuzzy spherical shell covariance matrix is defined by

N

m T
!'=21 (#ij) Bij 8"]

X = N 20
El(#,.j )y
Using (15) the fuzzy shell hypervolume and the shell density may be defined as
Vi= ey, and D=L, @
where §; is the sum of close members of‘shell Bi given by
Si= Zp; suchthat 8/Z'8; <1. 22)

However, the above measures are not very reliable because their values can vary widely for good clusters, depending
on the sizes of the clusters and noise. They can also be "good” for spurious clusters. Therefore, we have developed a
new validity measure for shell clusters based on the idea of curve (surface) density, which is a measure of the
number of feature points per unit length (surface area) of the shell cluster. We have also developed methods to
estimate the effective curve length (surface area) of the shell clusters when the curves (surfaces) are partial. A more
detailed discussion of this validity measure will be the subject of a future paper.
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7. Experimental Results

Although the algorithms presented in the previous sections are applicable to feature spaces of any
dimension, in this paper we present only results of two-dimensional data sets. In all the examples shown in this
paper, the UPCPQS algorithm was applied with the fuzzifier m = 2 and Cp,qx = 25. To obtain a good initialization

of the fuzzy C-partition I{0), we run the Gustafson-Kessel algorithm with m = 1.5 for a few iterations (which gives
an excellent linear approximation of the data) followed by the Fuzzy C Spherical Shells algorithm [2]. This was
observed to give excellent results. The data sets consists of object edges obtained by applying an edge operator to
real images. Uniformly distributed noise with an interval of 30 was added to the images to make them noisy. The
edge images were then thinned [14] to reduce the number of pixels to be processed. The resulting input images
typically had about 2000 points. The PCPQS algorithm still sometimes fits second-degree curves for linear clusters,
especially when the data is scattered. Therefore, the algorithm was modified to identify such situations and split such
clusters into lines after convergence, as explained in Section 3. In practice, there seems to be very little difference
between the PCPQS and MPCQS algorithms in the 2-D case.

Figure 1(a) shows the original noisy image of a box with holes. The edge-detected and thinned image is
shown in Figure 1(b). As can be seen, there are many noise points, and the pixel boundaries are not always well-
defined. Figure 1(c) shows the result of the UPCPQS algorithm. The final prototypes are shown superimposed on the
edge image. The prototypes are virtually unaffected by noise and poor boundaries. Figure 1(d) shows the “cleaned”
edge map. This is obtained by plotting the boundaries generated by the prototypes only in locations where there is at
least one pixel with a high membership value in a 3x3 neighborhood. Figures 2 and 3 show similar results for
images with collections of objects of various sizes and shapes.

8. Summary

In this paper, we propose a new approach to boundary and surface approximation in computer vision.
Current techniques to describe boundaries and surfaces in terms of parametrized or algebraic forms have the
following disadvantages: i) Many techniques apply in cases when the boundaries/surfaces belonging to different
objects have already been segmented, ii) they look for local structures and use edge following or region growing and
hence would be sensitive to local aberrations and deviations in shapes , iii) they are computationally intensive and
the memory requirement are high, iv) they require features (such as curvature and surface normals) to be calculated
and hence are sensitive to noise and the computed features are inaccurate at boundaries of surfaces, v) most of the
feature-based techniques assume dense data and hence are not suitable if the data is sparse or if there are gaps in the
data, and vi) some methods are not invariant to rigid transformations. The approach we propose overcomes these
drawbacks. If the clustering is performed in the feature space, it can have the disadvantages of high dimensionality,
and loss of pixel adjacency information. However, since the proposed methods apply clustering techniques directly
to image data, they do not suffer from these disadvantages. Another disadvantage of clustering methods is that the
number of clusters has to be known in advance. The proposed approach overcomes this problem by using new
cluster validity measures and compatible cluster merging.

Linear and Quadric shapes are not sufficiently general for all computer vision applications. We propose to
extend our algorithm to more general shells such as those represented by algebraic curves, or superquadrics.
Currently there are no algorithms that simultaneously fit an unknown number of general curves (or surfaces) to noisy
and/or scattered data. This includes boundaries and surfaces that are locally very noisy, and boundaries and surfaces
that are sparsely sampled. Methods based on feature computation and region growing do not work in these cases.
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ABSTRACT

This paper addresses a solution to the problem of scene estimation of motion video data in
the fuzzy set theoretic framework. Using fuzzy image feature extractors, a new algorithm
is developed to compute the change of information in each of two successive frames to
classify scenes. This classification process of raw input visual data can be used to establish
structure for correlation. The algorithm attempts to fulfill the need for non-linear, frame-
accurate access to video data for applications such as video editing and visual document
archival/retrieval systems in multimedia environments.

1. INTRODUCTION

With rapid advancements in multimedia technology, it is increasingly common to have
time-varied data like video as computer data types. Existing database systems do not have
the capability to search within such information. It is a difficult problem to determine one
scene from another because there are no precise markers that identify where they begin
and end. And, divisions of scenes can be subjective especially if transitions are subtle.
One way to estimate scene transitions is to mathematically approximate the change of
information between each of two successive frames by computing the distance between
their discriminatory properties. A fuzzy theoretic approach in image processing and
pattern recognition provides convenient methods for such ambiguous or uncertainty
measure. :

1.1 Fuzzy Image Concepts

In classical image processing, given a digital image, which has a M by N dimension with L
gray levels, each picture element or pixel is represented as a spatial brightness function or
gray information. Using fuzzy notion, an image can be considered as an array of fuzzy
singletons, each having a value of membership denoting its degree of brightness relative to
some brightness level, /, where [ =0, 1, 2, ....., L-1 . The fuzzy notation can be written as
follows:
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X={HlpXm)Hm /[ Xemm =12, ... M;n =1 2, ..., N}
oo X=JU Mo / Xm>» m=1,2,...,Min=12,..,N
where Uy(Xmqm) OF U / Xmms (0 < Bpn < 1) denotes the grade of possessing some
property K (€.g., brightness, edginess, smoothness) by the (m,n)th pixel intensity Xpp.

In other words, a fuzzy subset of an image X is mapping t from X into [0,1] (Figure 1.1).
For any point p € X, u(p) is called the degree of membership of p in pt [11].

0 5 fix,y) sL-1

Domain X 4
M
1 ”» L
o p(x) 1

Figure 1.1: Fuzzy representation of an image X

2. IMAGE PROPERTIES

There are many spatial and geometric properties or features that can be measured or
extracted from an image. They are used for pattern classifications and scene analysis.
There is no trivial solution to selecting optimal features that would provide useful input
values to the classifier. The effectiveness of these feature extractors also depends upon
scenes. For this paper, six operators for ambiguity and fuzzy geometric measures are
selected.

2.1 Ambiguity Measures

Two measures of ambiguities used are second-order local entropy and edginess. They
produce a measure of structural information that exists in a given image. The entropy of
an image can be defined as a measure of the information (ambiguities) gain in a given
image. The edginess measures the coarseness of texture based on the average amount of
ambiguity present in a given image.

2.1.1 Second-order Local Entropy
The calculation of the second-order local entropy contains a window that operates on two

adjacent pixels. This window is then used to compute the co-occurrence matrix for
incorporating the dependency of the spatial distribution of gray levels. In this case, the
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horizontal co-occurrence matrix is used. Then, the probability of the co-occurrence
matrix is calculated with

C..
L= —=+— ,where0<p; <1 [12].
pu 2 Cij —pIJ [ ]
ij

WX) = % 2. p;log(py)

The information gain is computed with a logarithmic function. As described in [8], this
could be an exponential function. The co-occurrence matrix computation could also be
modified with a combination of horizontal and vertical directions for a more accurate
measure of the spatial distributions.

2.1.2 Edginess

This image property is a measure of edge information to detect edge intensities in an input
image. Note that this is different from the gradient descent edge detectors. It calculates
the edge ambiguity using a localized window to find the boundary between the current
pixel and neighboring pixels [12].

In the equation
8X) = I - IXP,
I(X) stands for the ambiguity measure, or the index of fuzziness, and B is a positive

constant. The spatial dependent membership function, p_, must be computed first.
0.5

p’x(xlm)= 1
1+N—1i2j|xm- X,

where N1 represents the dimensions of the window of i by j, i.e. N| = i*j. These are
neighboring pixels of the point (m, n). As shown in Figure 2.1, the linear index of
fuzziness, I(X), can be defined as follows:

2
1) = = 3 min(py(x), 1 - Py(x)).
i

I=1 crisp

1=0 | fuzzy
wx)=0.5

Figure 2.1: The linear index of fuzziness




Other measures of fuzziness, such as the quadratic index of fuzziness [6], fuzzy entropy
[2], and index of non-fuzziness (crispness) [12], could also be used for the edginess
measure.

2.2 Fuzzy Geometric Measures

Geometric measures define surfaces, shapes, solids, and boundaries of objects. Rosenfeld
[13] and Rosenfeld and Haber [15] incorporated the fuzzy theoretic approach to the
classical geometric measures and generalized some of the standard geometric properties of
the relationships among regions to fuzzy sets [10]. Of these many measures, the primitive
measures, such as area and perimeter, orientation measures, and shape measures are
applied here.

The remaining methods that were applied, namely fuzzy geometrical properties, were
extensions of the traditional geometrical measure concepts to operate in the fuzzy set
framework. These measures examine various geometrical properties and relations such as
area, perimeter, length, height, breadth, width, compactness, and elongatedness. There
are many other topological concepts such as connectedness, major and minor axis, and
adjacency, which could have been utilized in this study. These fuzzy measures are the
basis for measuring spatial, gray, and region ambiguities.

2.2.1 Area
The area is an integral taken over the fuzzy image subset, i.e. f u(x). For a digital image,

it is computed by summing the spatial brightness values of all image pixels. This spatial
brightness value function is treated as the fuzzy membership function [11, 14].

area(u(x)) =X pu(x)
2.2.2 Perimeter
The perimeter of an image is defined as the circumferential distance around the boundary.

Using a faster method of computation, it can be computed as the sum of the product of
the co-occurrence matrix and the difference of two adjacent pixels [11].

perimeter(W(X)) = ¥ clij] In@-nG)l

where i=1, 2, ....,,L and j=1,2, ...., L.

2.2.3 Length

The length of an image is calculated by finding the longest extent in the column direction
[11, 14].
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length(h) = w(): l»lmn)

n
2.2.4 Height

The height of an image is another way of measuring its extent by summing the maximum
membership values of each row [11, 14].

height(u) = 28X o

n
2.2.5 Breadth

The breadth of an image measures the longest extent in the row direction [11, 14].

breadth(y) = "}?"(Z umn]

m
2.2.6 Width

The width is calculated as the sum of maximum membership values of each column [11,
14].

width(w) = ZT8X py,

m
2.3 Orientations

The horizontal and vertical orientation of an image can be measured as follows [11]:

length(u) ) .
height(i) < 1, then vertically oriented.

breadth(p
re'a W) < 1, then horizontally oriented.
width(u)

2.4 Shape Measures

Shape measures can be computed using geometrical properties of a given image. These
measures can also be defined independently of size measurements [16]. It basically
represents the profile and physical structure of an image or image subsets. Two fuzzy
measures are used: compactness and index of area coverage.
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2.4.1 Compactness

The compactness measures the property of circularity [11].

_ ___area(u)
Comp() = perimeter())2

2.4.2 Index of Area Coverage

The index of area coverage (IOAC) is the fraction of the maximum area (that can be
covered by the length and breadth of the image) actually covered by the image [11].

area(p)
length(u) * breadth(u)

IOAC() =

3. SCENE ESTIMATION

As discussed in [12], the criterion of a good feature is that it should be invariant within
class variation while emphasizing differences that are important in discriminating between
patterns of different types. It is difficult to determine an optimal feature space comprising
a set of image properties which would produce significant factors influential to
classification decision. The approach taken for determining important features is to select
image properties, namely ambiguity, size, orientation, and shape measures. Then, it
translates all images to this pre-determined feature space.

Figure 3.1: Fuzzy Image Feature Vector

Figure 3.1 depicts the sampled feature space having three features

f1 f
i1=|f2 i2=|f2
f3 f3
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and how the distance, {d1l, between two successive frames can be calculated with vector

operation, [i1 - 17l. Because the goal is to analyze motion, this calculation of change of
image constituents from frame to frame in a given time series gives the sampled mean and
the sampled variance of all image features. By giving smaller weights to features having
larger variance, the important features with small variance have more influence in the
decision making process. It is discussed as a useful clustering technique to maximize the
inter-set distance or minimize intra-set distance using a diagonal transformation such that
features having larger variance are less reliable {12].

3.1 Distance Computation

Before the applied mathematical terms are discussed, the following nomenclatures need to
be described.

M Total number of frames or images

m Last frame number where m = M-1

N Total number of features or properties
i

k

Index to represent current image at f wherei=0, 1,...m
Index to represent the next image at ¢+ where k = 1,2,...m-1

The sampled mean for the jth feature element is given by,

- 10
fi=M Zfij where j = 1,2,....,n.
i=0
Mnemonically, the index of feature element j, where j = 1, 2,....,n, can be represented in
the following enumerated terms: edginess, entropy, compactness, ioac, l/h, and b/w,

respectively (€.8. famopy). To standardize all sampled mean values to be 0.5, the following

conversion is performed. This gives equal salience to all features for distance computation
[3].

lons

f10M = 0.5 2,

f.l

Consequently, this standardization makes all f-J to be set to 0.5. And, the sampled
variance for the jth feature element is computed as

2 _ 1 N rAY i =
ol = =D 20 (f; - f;)* wherej = 1,2,....,n.

The magnitude of the normalized distance between two successive frames i and k is [18],
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4. EXPERIMENTS

Based on the above formulas, a schematic diagram (Figure 4.1) can be drawn to describe -
the process of feature selection and frame selection.

INPUT
Video Frames )

COMPUTE SELECT
MEAN and VARIANCE P IMPORTANT FEATURES

for individual feature Salient varisace, barger
vecior of all frames value less importast

Figure 4.1: Schematic diagram of feature selection process

The distance between two frames in the aforementioned three feature space is computed
to check the similarities. If this distance is larger than a predetermined threshold value,
then the current video frame is considered to be significantly different from the previous
frame, and therefore needs to be registered or stored as one of the abstract keys (Figure
4.2).

Figure 4.2: Schematic diagram of the frame selection process
4.2 Input Data

Movie film projectors display 24 frames per second whereas NTSC standard television
and video devices display 30 frames per second to achieve continuous and fluid full-
motion images. The change of inter-frame information is gradual at such high frame rates.
For storage conservation and computational efficiency, the simplest way to reduce or
abstract video data is to sample it at lower frame rate.




In this paper, a time-suppressed frame rate of one per 5 seconds was assumed. A set of
digitized video of previous space shuttle missions obtained from NASA/JSC was used
(Figure 4.3). After a pre-processing step, each frame is stored in the CompuServ's
Graphic Interchange File (GIF) format for portability.

;lf

f"“"”/ _ ”—

Figure 4.3: Experimental input data

With the fuzzy measures, the resulting distances between each two successive frames are
shown in Figures 4.4 through 4.6. The abscissa represents the total number of frame
distances in the sampled time series while the ordinate is the computed distance value

between two successive images, i.e. ITj - Tjﬂl. For example, the abscissa index 0

represents [i( - 11/, 1 represents |1 - 17l, and so on. Each scene consists of six frames,
therefore, there is a change of scene at every sixth index on the abscissa. The scene
separation is denoted with vertical grid lines. Three sets of detection were experimented
as follows:

(1) Entropy, Compactness, L/H (Figure 4.4)

(2) Edginess, IOAC, B/W (Figure 4.5), and

(3) All of the above (Figure 4.6).

77




Frame Pairs

Figure 4.5: Detect 2 - Edginess, IOAC, B/W

Detect3
Di
20 B S PR P T T T T
1 L
15 4 - - - - - - o I . T I -
1] + )
L} L] 1]
104 -- -+« - - - R S Y 'y .- - -
1 . L} -~
L} . L]
L} . L}
54 -« - = - - - - g - -\- - - - - - e Y
1 )
L} L}
0 — +— +
[} 6 12 18
Frame Pairs

Figure 4.6: Detect 3 - All six features
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It is to note that combining all features does not necessarily produce better results just
because there are more features. It is not the quantity that is critical, but the
discriminatory quality of features.

5. SUMMARY

The technique discussed here needs further improvements. It must have a classifier to
correctly cluster the frames to the appropriate scenes. Both statistical and fuzzy approach
pattern classifiers are being explored. Video frames that are to be classified are of
temporal and dynamic data types, so non-linear classification methods need to be
implemented. Scene classification is quite subjective in nature; therefore, the interactive
tool developed here can be further extended to provide human interaction in setting
problem-dependent criteria for this machine recognition task. Furthermore, the scenes
that are detected may not necessarily be different from one another, but rather compose a
video segment or document. A hierarchical abstraction scheme that allows for a higher
level of abstraction will better suit the visual data management environment.

Finally, in the merging worlds of computers and media, new technologies mix traditional
media such as video and publications with computer media as interactive, informational
and entertainment software. This trend is rapidly growing at an unprecedented rate. Once
digital video becomes a repository of common data on computers, the data needs to be
accessed and manipulated just as documents are retrieved and managed by a DBMS. It
might be useful to investigate new video inter-referencing strategies in correlating various
context from the same event to derive knowledge points. Thus, this automatic abstraction
of video index keys for non-linear, frame-accurate access would make information
acrchival and retrieval applications more robust and efficient.
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ABSTRACT

Many high-level vision systems use rule-based approaches to solve problems such as autonomous
navigation and image understanding. The rules are usually elaborated by experts. However, this procedure may be
rather tedious. In this paper, we propose a method to generate such rules automatically from training data. The
proposed method is also capable of filtering out irrelevant features and criteria from the rules.

1. Introduction

High-level computer vision involves complex tasks such as image understanding and scene interpretation.
In domains where the models of the objects in the image can be precisely defined, (such as the blocks world, or even
the world of generalized cylinders) existing techniques for description and interpretation perform quite well. However,
when this is not the case (such as the case of outdoor scenes or extra-terrestrial environments), traditional techniques
do not work well. For this reason, we believe that the greatest contribution of fuzzy set theory to computer vision
will be in the area of high-level vision. Unfortunately, very little work has been done in this highly promising area.
Fuzzy set theoretic approaches to high-level vision have the following advantages over traditional techniques: i) they
can easily deal with imprecise and vague properties, descriptions, and rules, ii) they degrade more gracefully when the
input information is incomplete, iii) a given task can be achieved with a more compact set of rules, iv) the
inferencing and the uncertainty (belief) maintenance can both be done in one consistent framework, v) they are
sufficiently flexible to accommodate several types of rules other that just IF-THEN rules. Some examples of the
types of rules that can be represented in a fuzzy framework are [1] possibility rules ("The more X is A, the more
possible that B is the range for Y™), certainty rules ("The more X is A, the more certain Y lies in B"), gradual rules
("The more X is A, the more Y is B"), unless rules [2] ("if X is A, then Y is B unless Z is C").

The determination of properties and attributes of image regions and spatial relationships among regions is
critical for higher level vision processes involved in tasks such as autonomous navigation, medical image analysis
and scene interpretation. Many high-level systems have been designed using a rule-based approach [3,4]. In these
systems, common-sense knowledge about the world is represented in terms of rules, and the rules are then used in an
inference mechanism to arrive at a meaningful interpretation of the contents of the image. In a rule-based system to
interpret outdoor scenes, typical rules may be

IF a REGION is RATHER THIN AND SOMEWHAT STRAIGHT
THEN it is a ROAD

IF a REGION is RATHER GREEN AND HIGHLY TEXTURED AND
IF the REGION is BELOW a SKY REGION
THEN it is TREES

Attributes such as "THIN" and "NARROW", and properties such as "BRIGHT" and "TEXTURED" defy precise
definitions, and they are best modeled by fuzzy sets. Similarly, spatial relationships such as "LEFT OF ", "ABOVE"
and "BELOW" are difficult to model using the all-or-nothing traditional techniques [5]. We may interpret the
attributes, properties and relationships as "criteria”. Therefore, we believe that a fuzzy approach to high-level vision
will yield more realistic results.

In most rule-based systems, the rules are uvsually enumerated by experts, although they may also be
generated by a learning process. Several techniques have been suggested in the literature to generate rules for control
problems [6-9], some of which use neural net methods to model the control system [7-12]. These systems convert a
given set of inputs to an output by fuzzifying the inputs, performing fuzzy logic, and then finally defuzzifying the
result of the inference to generate a crisp output [13]. Some of the methods also "tune” the membership functions
that define the levels (such as "LOW", "MEDIUM" and "HIGH") of the input variables [10]. While these methods
have been shown to be very effective in solving control problems, they cannot be directly used in high-level vision
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applications. For example, in control systems, the fuzzy rules have consequents which are usually a desired level of a
control signal whereas in high-level vision, the consequent clauses are usually fuzzy labels. Also, it is desirable that
membership functions for levels of fuzzy attributes such as "THIN", and "NARROW?", and properties such as
“BRIGHT" be related to how humans perceive such attributes or properties. Hence they have very little to do with
the decision making or reasoning process in which they are employed. In many reasoning systems for high-level
vision, confidence (or importance) factors are associated with every rule since the confidence in the labeling may
depend on the confidence of the rule itself. In this paper, we propose a new method to generate rules for high-level
vision applications automatically. The rules so obtained may be combined with the rules given by the experts to
complete the rule base.

In Section 2, we describe several fuzzy aggregation operators which can be used in hierarchical (multi-layer)
aggregation networks for multi-criteria decision making. In Section 3, we describe how these aggregation networks
can be used to filter out irrelevant attributes, properties, and relationships and at the same time generate a compact
set of fuzzy rules (with associated confidence factors) that describes the decision making process. In Section 4 we
present some experimental results on automatic rule generation. Finally Section 5 contains the summary and
conclusions.

2. Fuzzy Aggregation Operators

Fuzzy set theory provides a host of very attractive aggregation connectives for integrating membership
values representing uncertain and subjective information [14]. These connectives can be categorized into the
following three classes based on their aggregation behavior: i) union connectives, ii) intersection connectives, and
iii) compensative connectives. Union connectives produce a high output whenever any one of the input values
representing different features or criteria is high. Intersection connectives produce a high output only when all of the
inputs have high values. Compensative connectives are used when one might be willing to sacrifice a little on one
factor, provided the loss is compensated by gain in another factor. Compensative connectives can be further classified
into mean operators and hybrid operators. Mean operators are monotonic operators that satisfy the condition:
min(a,b) < mean(a.b) < max(a,b). The generalized mean operator [15] as given below is one of such operator.

n 1/p n
8p (XLsees Xp3 W] eees W) = ZWix‘-” , where ZW,- =1 1)
i=1

i=1

The w;'s can be thought of as the relative importance factors for the different criteria. The generalized mean has
several attractive properties. For example, the mean value always increases with an increase in p {15]. Thus, by
varying the value of p between —o and 40, we can obtain all values between min and max. Therefore, in the extreme
cases, this operator can be used as union or intersection. The *model devised by Zimmermann and Zysno [16] is an
example of hybrid operators, and it is defined by

n -y n 4 n

y=[nx,~5i] [1—H(1—x,-)5iJ , where Y §;=nand 0< y<1, )
i=1 i=1 i=1

In general, hybrid operators are defined as the weighted arithmetic or geometric mean of a pair of fuzzy union and

intersection operators as follows.

A®yB=(1-D(AnB)+y(AUB) 3)
A®yB=(An B)(1- (A U B)Y @)

The parameter yin (3) and (4) controls the degree of compensation. The *model in (2) is a hybrid operator of the
type in (4). The compensative connectives are very powerful and flexible in that by choosing correct parameters, one
can not only control the nature (e.g. conjunctive, disjunctive, and compensative), but also the attitude (e.g.
pessimistic and optimistic) of the aggregation.

Onre can formulate the problem of multicriteria decision making as follows. The support for a decision may
depend on supports for (or degrees of satisfaction of) several different criteria, and the degree of satisfaction of each
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criterion may in turn depend on degrees of satisfaction of other sub-criteria, and so on. Thus, the decision process can
be viewed as a hierarchical network, where each node in the network "aggregates” the degree of satisfaction of a
particular criterion from the observed support. The inputs to each node are the degrees of satisfaction of each of the
sub-criteria, and the output is the aggregated degree of satisfaction of the criterion. Thus, the decision making
problem reduces to i) selecting robust and useful criteria for the problem on hand, ii) finding ways to generate
memberships (degrees of satisfaction of criteria) based on values of features (criteria) selected, and iii) determining the
structure of the network and the nature of the connectives at each node of the network. This includes discarding
irrelevant criteria to make the network simple and robust.

In our previous research, we have investigated the properties of several union and intersection operators, the
generalized mean, and the ¥model [14,17]. We have shown that optimization procedures based on gradient descent
and random search can be used to determine the proper type of aggregation connective and parameters at each node,
given only an approximate structure of the network and given a set of training data that represent the inputs at the
bottom-most level and the desired outputs at the top-most level [14,17]. In this paper, we extend this idea to the
detection of irrelevant attributes and automatic rule generation.

3. Redundancy Analysis and Rule Generation

In the approach we propose, we first fuzzily partition the range of values that each criterion (property or an
attribute or a relation) can take into several linguistic intervals such as LOW, MEDIUM and HIGH. The set of
properties or an attribute or a relation which are used are the ones that may appear in the antecedent clause of a rule.
As explained in Section 1, the membership function for each level needs to be determined according to how humans
perceive such attributes, properties or relations. The membership values for an observed attribute, property or
relationship value in each of the levels is calculated using such membership functions. (Methods to generate degrees
of satisfaction of relationships such as "LEFT OF" may be found in [18]). The memberships are then aggregated in a
fuzzy aggregation network of the type shown in Figure 1. The top nodes of the network represent the labels that may
appear in the consequents of the rules. A suitable structure for the network, and suitable fuzzy aggregation operators
for each node are chosen. The network is then trained with typical attribute, property or relationship data with the
corresponding desired output values for the various labels to learn the aggregation connectives and connections that
would best describe in input-output relationships. The learning may be implemented using a gradient descent
approach similar to the backpropagation algorithm [14,17]. It is to be noted that there is a constraint on the weights.

Feature 1 Feature N

Figure 1 : Network for generating fuzzy rules.

Our experiments indicate that the choice of the network is not very critical. Also any compensative
aggregation operator seems to yield good results. In all the results shown in this paper, we used the generalized mean
operator as the aggregation operator. As indicated in Section 2, the generalized mean can closely approximate a union
(intersection) operator for a large positive (negative) value of p. We start the training with the generalized mean
aggregation function with p=1. If the training data is better described by a union (intersection) operator, then the
value of p will keep increasing (decreasing) as the training proceeds, until the training is terminated when the error
becomes acceptable. Also, the weights w; in (1) may be interpreted as the relative importance factors for the different
criteria. Initially we start the training with all the weights associated with a node being equal. As the training
proceeds the weights automatically adjust so that the overall error decreases. Some of the weights eventually become
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very small. Thus, the training procedure has the ability to detect certain types of redundancies in the network. In
general, there are three types of redundancies (irrelevant criteria) that are encountered in decision making [17]. These
correspond to uninformative, unreliable, and superfluous criteria.

Uninformative Criteria: These are criteria whose degrees of satisfaction are always approximately the same, regardless
of the situation. Therefore, these criteria do not provide any information about the situation, thus contributing little
to the decision-making process. For example, low texture content is a criterion that is always satisfied for both clear
skies and roads, and hence it would be a uninformative criterion if one needs to distinguish between these two labels.
Uninformative criteria do not contribute to the robustness of the decision making process, and therefore it is desirable
that they be eliminated.

Unreliable Criteria: These correspond to criteria whose degrees of satisfaction do not affect the final decision. In other
words, the final decision is the same for a wide range of degrees of satisfaction. For example, color would be an
unreliable criterion for distinguishing a rose from a hibiscus because they both come in similar colors. Unreliable
criteria do not contribute to the robustness of the decision making process, and therefore it is desirable that they be
eliminated.

Superfluous Criteria; These are criteria which are strictly speaking not required to make the decision. The decisions
made without considering such criteria may be as accurate or as reliable. For example, one may want to differentiate
planar surfaces from spherical surfaces using Gaussian and mean curvatures, but the criteria are superfluous because
either one of them is sufficient to distinguish between planar and spherical surfaces. However, redundancies of this
type are not entirely without utility, since such redundancies make the decision making process more robust. If one
criterion fails for some reason, we may still be able to arrive at the correct decision using the other. Hence such
redundancies may be desirable to increase the robusiness of the decision-making process.

Redundancy Detection and Estimation of Confidence Factors: A connection is considered redundant if the weight
associated with it gradually approaches to zero (or a small threshold value) as the learning proceeds. A node
(associated with a criterion) is considered redundant if all the connections from the output of this node to other nodes
become redundant. Our simulations show that both in the case of uninformative criteria and unreliable criteria, the
weights corresponding to all the output connections go to zero. Therefore such nodes (criteria) are eliminated from
the structure. The examples in Section 4 illustrate this idea.

Rule Generation: The networks that finally result from this training process can be said to represent rules that may
be used to make the decisions. If the final value of the parameter p at a given node is greater than one, the nature of
the connective is disjunctive. If the value is less than one, it is conjunctive. Once the nature of the connective at
each node is determined, we can easily construct the fuzzy rules that describe the input-output relations. In Section 4
we present some examples of this approach.

4. Experimental Resuits

In this section, we present some typical experimental results involving both synthetic and real data to show
the effectiveness of the proposed automatic rule generation method. The method is shown to generate decision rules
that best describe the decision criteria for the classes in each experiment. Figure 1 shows the general 3 layer
aggregation network used to generate the rules. The input layer consists of nN number of input nodes where N is
the number of fuzzy features or criteria (such as properties and relationships) and » is the number of linguistic levels
used to partition each feature. For the hidden layer, there are nV hidden nodes where each node is connected to all but
one (i.e., it is connected to n-1) input nodes representing levels within each feature. The top layer fully connects the
hidden layer. In the experimental results shown here, we used 5 fuzzy linguistic levels to represent each feature,
therefore, each hidden node has 4 connections. Other types of network structures were also tried, however the one
described above produced the best results. The target values in the training data were chosen to be 1.0 for the class
from which the training data was extracted, and 0.0 for the remaining classes. The feature values were always
normalized so that they fall in the range [0,1]. Figure 2 depicts the trapezoidal fuzzy sets used to model the intuitive
notions of the five linguistic levels LOW (L), SOMEWHAT LOW (SL), MEDIUM (M), SOMEWHAT
HIGH (SH), and HIGH (H).
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Figure 2 : Graphical representations of various fuzzy sets.

Membership range
o
i

o
o
o

4.1 The ellipse problem

Figure 3 shows the scatter plot of the "ellipse data" after mapping each sample feature into the interval
{0,1). There are 50 samples in each class. The membership values in each linguistic level for each sample ‘is
computed using the membership functions shown in Figure 2, and these with the corresponding desired targets are
used as training data in the training algorithm described in Section 3. Figure 4 shows the reduced network after
training. All connections with weights below a value of 0.01 were considered as redundant. Table 1 shows the final
weights (which determine the confidence factors of the rules and criteria) and the p parameter values (which
determine the conjunctive or disjunctive nature of the connective) for the specified nodes in Figure 4. Using the
properties for the p values obtained, the following rules are generated, as discussed in Section 3.

Class 1 = (Feature 1 SL v Feature 1 M v Feature 1 SH) A
(Feature 2 SL v Feature 2 M v Feature 2 SH). (5)

In other words, the rule may be summarized as

R1 : IF Feature 1 is SL or M or SH and Feature 2 is SL or M or SH
THEN the class is Class 1.

Similarly,

Class 2 = (Feature 1 L v Feature 1 H) v (Feature 2 L v Feature 2 H) ©)

and
Ry : IF Feature 1 is L or H or Feature 2 is L or H

THEN the class is Class 2.

These rules make sense since the expansion (5) fuzzily covers the 9 inner cells and the expansion of (6) fuzzily
covers the outer 16 cells of the plot shown in Figure 3.

O Class 1
X Class 2

Feature 1
Figure 3 : Scatter plot for ellipse data.
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L SL M SH H L SL M SH H
Feature 1 Feature 2
Figure 4: Reduced network for the ellipse data.

4.2 The natural scene problem

Figure 5(a) shows a 256x256 image of a natural scene and Figure 5(b) shows the scatter plot of the training
samples extracted from three different regions (vegetation, sky, and road) in the image. The two features used were
the intensity and the position (row number) of the pixels. We used 40 samples from each class. Figure 5(c) shows
the reduced network after training. Table 1 shows the final weights and p parameter values for the specified nodes in
Figure 5(c). The following rules may be generated from the reduced network.

1.0 1
H 1
0.8 - Bi.0
= SH06 ’ oxPid 1 © Vegetation
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=M ! o
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©
Figure 5 : (a) Natural scene image, (b) Scatter plot of training samples for the classes vegetation, sky, and road,
(c) : Reduced network for the natural scene problem.

O O O
M SH H

86




Table 1: Values of weights and parameter p for the ellipse and natural scene problems.

ellipse problem natural scene problem
weights D weights p

node 1 0.55 -0.45 0.99 2.28
0.45

node 2 0.54 6.03 0.99 -0.30
0.46 .

node 3 0.19 6.15 0.23 -0.21
0.52 0.77
0.28

node 4 0.52 6.02 0.20 2.26
048 0.80

node 5 0.06 6.18 0.40 5.44
0.54 0.41
0.40 0.19

node 6 0.56 5.87 0.58 3.50
0.43 0.42

Class Vegetation = (Intensity L v Intensity SL v Intensity M). )

RyEG : IF Intensity is L or SL or M
THEN the class is Vegetation.

Class Sky = (Intensity SH v Intensity H) 8)

Rsky : IF Intensity is SH or H
THEN the class is Sky.

Class Road = (Intensity SH v Intensity H)A(Position L v Position SL) )

RRroAD : IF Intensity is SH or H and Position is L or SL
THEN the class is Road.

In the rule for vegetation, the position feature becomes redundant (i. e., all position weights connected to vegetation
drop towards zero). The is reasonable, since the intensity feature clearly separates vegetation from the other classes
and the position feature is "unreliable” according to the definition in Section 3. Also, in the rule for sky, the
intensity of the sky is more or less uniform and so the intensity feature can clearly distinguish the sky from the
other classes. The position feature is again "unreliable”. In the rule for road, both position and intensity features play
a role. This makes sense since when considering the road, the position feature clearly separates it from the sky and
the intensity feature can separate it from the vegetation.

5. Summary and Conclusions

In this paper, we introduced a new method for automatically generating rules for high level vision. The
range of each feature is fuzzily partitioned into several linguistic intervals such as LOW, MEDIUM and HIGH. The
membership function for each level is determined, and the mem