
ENCODING SPATIAL IMAGES - A FUZZY SET THEORY APPROACH

Leszek M. Sztandera*, Electrical Engineering Department
University of Toledo, Toledo, OH 43606, USA

Isztand@uoft02.utoledo.edu

ABSTRACT

As the use of fuzzy set theory continues to grow, there, is an increased
need for methodologies and formalisms to manipulate obtained fuzzy subsets.
Concepts involving relative position of fuzzy patterns are acknowledged as
being of high importance in many areas.

In this paper, we present an approach based on the concept of dominance
in fuzzy set theory for modelling relative positions among fuzzy subsets of a
plane. In particular, we define the following spatial relations: to the left
Cright>, in front of, behind, above, below, near, far from, and touching.

This concept has been implemented to define spatial relationships among
fuzzy subsets of the image plane. Spatial relationships based on fuzzy set
theory, coupled with a fuzzy segmentation should therefore yield realistic
results in scene understanding.

INTRODUCTION

One of the main difficulties in computer vision is the difference between
how a human sees a scene and how a computer sees it. A human may see a large
red building between two trees, but the computer "sees" only a two-dimensional
array of pixel values.

To design a user interface for computer vision that can be used without
extensive special training we have to translate from the computer's view to
the human's. We must segment the image, properly label the objects in it, and
then describe, the objects both in terms of their absolute properties and in
terms of their properties relative to each other.

This paper proposes to examine ways of defining and deriving the relative
spatial properties of the objects in an arbitrary scene.

A Need of Fuzzy Set Theory in Computer Vision

In computer vision, the standard approach to image analysis and

* Part of this work was done when the author was with Department of Electrical
ft Computer Engineering, University of Missouri- Columbia, Columbia, MO 65211.
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recognition is to segment the image into regions and to compute various
properties of and relationships among these regions. However, the regions are
not always "crisply" defined. It is sometimes more appropriate to regard them
as fuzzy subsets of the image.

In the last several years, there has been increased attention given to
the use of fuzzy set theory in image segmentation (1, 2, 3, 41.

When the objects in a scene are represented by crisp sets, the
all-or-nothing definitions of the subsets actually add to the problem of
generating such relational descriptions. It is our belief that definitions of
spatial relationships based on fuzzy set theory, coupled with a fuzzy
segmentation will yield realistic results.

For the purpose of this work we assume that we deal with an image of
objects, that is, the scene has already been segmented and the objects have
been labelled. The segmentation may be either crisp or fuzzy.

Using the above considerations the problem may be looked at in three
different ways:
1. Given a scene, describe (linguistically) the spatial relations between the
objects in the scene,
ii. Given a scene and a spatial description of an object, find that object in
the scene,
ill. Given the spatial relations between the objects , construct a scene,
locating the objects so as to satisfy those spatial relations (this is the
"layout" problem).

This work concentrates on the first two problems, although the resulting
definitions of spatial relations will be useful for the "layout" problem.

SPATIAL RELATIONS AMONG FUZZY SUBSETS

Spatial relationships between regions in an image play important role
in scene understanding. Humans are able to quickly ascertain the relationship
between two objects, for example "B is to the right of A", or "B is in front
of A", but this has turned out to be a somewhat illusive task for automation
15, 6, 73.

When the objects in a scene are represented by crisp sets, the
all-or-nothing definitions of the subsets actually add to the problem of
generating such relational descriptions. It is our belief that definitions of
spatial relationships based on fuzzy set theory, coupled with fuzzy
segmentation will yield realistic results.

The Idea of Projections

This work proposes an initial approach at defining spatial relationships
among fuzzy subsets of the image plane.

90



The idea is to project the fuzzy subsets onto two orthogonal coordinate
axes and to utilize fuzzy dominance relations to capture the approximate
relationships.

Let A be a fuzzy subset of an image. Then A £ U x V, where U is the first
spatial coordinate axis and V is the second one. In our case, both U and V are
subsets of the reals (assumed to be the interval [0, 13 for convenience). Then
p (x, y) is a fuzzy relation in U x V. The projection of A onto U, denoted A

is that fuzzy subset of U given by
MAuCx> » sup < ^A(x,y) >

for each x € U.
A similar equation defines the projection of A onto V, that is
^AyCy> • sup < ̂(x,y) >

for each y € V.
For a fuzzy subset G. of U, the a-level set C is defined by

Ca • < x e U | u (x) > a >

for a € tO, 11.
When a • 0,
called the support of C.
When a • 0, the inequality is usually considered to be strict and the C° is

Definitions of Spatial Relations for Fuzzy Objects

Once the two fuzzy subsets A and B are projected onto U and V axes,
methods must be defined to access their relative position.

In this paragraph we introduce definitions for spatial relations.

Definition 1 : Ve say that subset A is to the right of subset B if the

projection of A onto the U axis dominates the projection of B, while the
projections onto the V axis are (ideally) identical. In other words fj (cO

should stay near zero for all a (especially for small a>.
Similar definitions are suggested for all other spatial relations t!3, 141.

The definitions are for antisymmetric and transitive relations, that is TO
THE LEFT (RIGHT) OF, IN FRONT OF (BEHIND), ABOVE (BELOW), INSIDE (OUTSIDE).
They are strict partial order relations (i.e. reflexive, antisymmetric and
transitive) and every one has a semantic inverse.

Separation Measure

Let A , B , A , B be the projections of A and B onto U and V,
U U V V

respectively. Since these projections are fuzzy numbers, their or level sets
are intervals, i.e.,
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.01 ..Oil .Olr- ,A • [A , A J, etc.u u u
For the projections of A and B onto the U axis, the ct-separation of A and B is
defined by

Sa - < Aa - Ba >2 / < W* + W"
U U U Au Bu

where

*" - < Bul + C> ' 2>

Wa - C Aar- AaS / 2, and
Au U U

Wa - CBar- BaS / 2.
Bu U U

Now, S is the ratio of the square of difference between the midpoints of the

o-level sets and the square of the sum of the half-widths of these intervals.
Similar equations are used for the projection of A and B onto the V axis.

Definition 2 : We say that A and B are cr-separated if S > 1.

Definition 3 : We say that A and B are c«-Just separated if S • 1.

Definition 4 : We say that A and B are ct-overlapping if S° < 1.

Theorem 1 : i) A and B are orseparated if and only if A r < Ba .

oir Oil
ii) A and B are a-Just separated if and only if A • B .

iii> A and B are or over lapping if and only if A r > B .

The proof of the theorem can be found in [9].
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The value of these definitions and theorems is two-fold. First, they
incorporate the fuzziness in the- description of image regions, i.e., they use
fuzzy subsets of the plane. Second, they deal with the ambiguity of defining
spatial relationships in the plane. By this we mean that it is possible that
parts of the two sets can overlap (small a) and yet be well separated Cor
large o.

The values of S can get arbitrarily large as the widths of the level set

intervals get small In order to create a fuzzy membership function, we will
map the interval (0, oo> into [0, 1] by an "S-shaped function" CIS] as follows.
For a given a, suppose Aa • [0. 023 and B • [0.8, 1]. (Recall that we have

scaled the domain of the image into the unit square). Then S° • 16. This

amount of separation (or more) will be considered complete, i.e., p(S) * 1 if

Sa > 16. Also we will require that p(0) • 0, jj(l) • OS and p»(16) • 0. Such

a function is defined in our case by:

0.5 S2 0 < S < 1

-0.0022 S2 + 0.0711 S + 0.4311 1 < S < 16

1 S > 16

The Model for Spatial Relationships

The model for given spatial relationships can now be defined from the
fuzzy subsets /j and p of CO, 11. For example, to model the relationship "A

IS TO THE RIGHT OF B", we would like the projection of A onto the U axis to
dominate that of B; wheares the projections should (ideally) be identical on
the V axis. That is, p (a) should stay near zero for all a (especially for

small a). Similar observations can be made for "ABOVE", and "BELOW".
Instead of dealing with two fuzzy subsets, p and p can be combined into

a single set from which the relationship can be determined. Fuzzy set theory
offers an infinite number of aggregation operators, which, given two pieces of
evidence (values in to, 13) can produce essentially any composite value
between 0 and 1, depending on the type of connective and the parameters
chosen. Union operators produce values greater than or equal to the maximum of
the two numbers; intersection operators give a result less than or equal to
the minimum; and generalized means fill the gap between the minimum and
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maximum till.
"TO THE RIGHT OP" should therefore be a combination of PU and the

complement of pi since its large values signify that the level sets of A are

"above or below" those of B.
For the experiments described in the next paragraph, we chose a

generalized mean

M> - tv S + a - w> <i -M

as the aggregation connective 1161. In this way, higher weight can be
associated with the horizontal component with decreased compensation as the
level sets diverge vertically. Note, that if P -> co, then we have (111:

lim
p->00

Either the two fuzzy sets y and (1-/J ) or the single aggregated set

, tJ > can be used to define the relation "A IS TO RIGHT OP B". If a single

value for the degree to which the two sets satisfy the relation is desired, we
can construct a fuzzy measure from the sets - such as the integral of the
fuzzy number, or the output of an ordered weighted average (OVA) (121. An
alternate approach is to use the curves directly to define a linguistic
assessment of the relation. Here, it is necessary to define fuzzy sets
representing terms used in the relation, such as "to the right of", "somewhat
to thtf right or1, "barely to the right of", "very to the right of", etc. These
sets could be defined by the designer of the system, or perhaps, by utilizing
a group of humans to give relative comparisons of a set of examples. The
actual curve is then matched, to the closest term available to give the
linguistic assessment. This process is known as linguistic approximation [131.

Results of Sample Systems

All the definitions and theorems listed above were tested using simulated
data on a computer workstation. Fuzzy subsets with two-sided drum like shaped
membership functions on projections were used. The experiments were as
follows. Let us consider an image containing two fuzzy subsets A and B whose
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membership functions are identical gaussians, but with different mean
locations. The set B will be fixed with mean (05, 0.5X Table 1 shows the
fuzzy set generated from eight choices of locations for the mean of A

Cassume that the V coordinate for the mean is 05>. As can be seen, as the set
A moves to the right* the .fuzzy set p increases for all a. Recall that the

value M Co) • 0.5 represents the Just separated condition. The seven orvalues

are 0.011, 0.135, 0258, 0.606, 0.796, 0.882, 0.923. They were chosen in order
to get, the following ranges from the mean of gaussian functions: - Q.4a, -
QSo, - 0.6745<7, - a, - 1.645<7, - 2at - 3a, where a Is a standard deviation.

Mean of
Projections

of A

0.525

0.550

O.575

O.600

0.625

O.650

0.675

0.700

ai

.001

.014

.070

.222

.503

.532

.567

.604

°2

.002

.031

.158

.500

.536

.580

.628

.680

a3

.003

.046

.234

.514

.558

.609

.665

.724

*4

.008

.125

.508

.564

.631

.706

.783

.857

«5

.017

.275

.543

.622

.712

.806

.893

.962

*6

.031

.500

.579

.680

.788

.891

.968

1.00

"7

.049

.516

.623

.731

.851

.950

.998

1.00

Table 1. Membership functions generated from the projection of A onto U axis.

Since the projections onto V for these sets are the same as the
projections onto U, the fuzzy sets from Table 1 can be used to simulate other
placings of A relative to B, e.g., to the northeast or southeast. Table 2
shows four cases for the placement of the center of set A along with the
aggregated fuzzy set generated from both projections. Generalized mean with V
« 0.73 and P » 2 was used. The first case represents a set A which is east of
B. Here, the combined values are larger than those for the U projections only.
In fact, even the smallest a <0.01D gives rise to a membership larger than
03 (the Just separated crossover point). In case 2, the set A has moved to
the north east of B. The movement north effectively decreases the membership,
in the fuzzy set "A is to the right of B". Cases 3 and 4 depict the situation
where A is directly above B. As the centers move further apart, the membership
drops dramatically.

95



(.6. .5)

"u

*V V

(.6. .6)

1 - "v

(.5. .6)

y

«V My>

( .5. .7)

"u

•(V MV>

a
i

.222
l.OO

0.54

.222

.778

0.43

0.00
.778

0.39

O.OO
.396

0.20

a

.500
1.00

0.66

.500

.500

0.50

0.00
.500

0.25

O.OO
.320

0.16

a

.514
l.OO

0.67

.514

.486

0.51

0.00
.486

O.24

0.00
.276

0.14

a
4

.564
1.00

0.70

.564

.436

0.53

0.00
.436

0.22

0.00
.143

0.07

a

.622
1.00

0.73

.622

.378

0.57

0.00
.378

O.19

O.OO
.038

O.02

a
a

.680
1.00

0.77

.680

.320

0.61

0.00
.320

O.16

O.OO
0.00

O.OO

a

.731
l.OO

0.81

.731

.269

0.65

0.00
.269

0.13

0.00
O.OO

O.OO

Table 2. Combined membership function for the relation "A is to the right of

B" <W • 0.75, P » 2).

If we change either the weight W or the exponent P, we can alter the
shape of the resultant fuzzy set. For more details see 191.
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Summary and Conclusions
A new approach, based on the concept of dominance in fuzzy set theory,

for modelling spatial relationships among fuzzy subsets of an image has been
proposed. Simulation results were presented to corroborate the theory and
demonstrate the power of the approach for image description.
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