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ABSTRACT

In this note we formulate image segmentation as a clustering problem. Feature vectors, extracted
from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy
generalization of Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-
Means (FCM) model with the learning rate and updating strategies of the LVQ Is used for this task.
This network, which segments Images in an unsupervised manner, is thus related to the FCM
optimization problem. Numerical examples on photographic and magnetic resonance images are
given to Illustrate this approach to image segmentation.

1. INTRODUCTION

Image segmentation divides an image into regions with uniform and homogeneous attributes such
as gray tone or texture II]. Roughly speaking, conventional segmentation algorithms can be
divided into two classes: region-based schemes, wherein areas of Images with homogeneous
properties are found, which in turn gives region boundaries |2-4]; and edge-based schemes, where
local discontinuities are detected first, and then connected to form longer, hopefully complete,
boundaries |5]. Image segmentation should result in regions that cover semantically distinct
visual entities and is a crucial step for subsequent recognition or interpretation tasks.

Several image segmentation methods based on Markov Random Fields (MRFs) have been
proposed. The basic idea is to model spatial interaction of the image features by a MRF which is a
probability distribution defined over a discrete random field. Hongo et ol. [6] proposed a "multiple
level multiple resolution MRF" to detect the edges which was an extension of the work of Geman
and Geman \7\. This model incorporates a priori knowledge about global structures in images, but
can be implemented In a local (and parallel) mode. Three algorithms (simulated annealing,
iterative conditional modes, and maximization of posterior marginals) are compared in [8); all use
MRF models to include prior contextual information. Most of these approaches use an energy
function to guide Image segmentation and numerical schemes for minimization of the energy
functional. However, the search procedure for a global minimum (optimal solution) is usually time
consuming. Moreover, edge-based segmentation schemes usually need a linking procedure to
connect broken edges in order to make image subregions that have closed boundaries. Recently,
several attempts to apply computational neural network architectures to Image segmentation
have been made. For example, edge detection has been formulated in the context of an energy-
minimizing model by eliminating weak boundaries and small segments [9]; and also as a fuzzy
feed-forward computational neural network problem [10]. A neural network system capable of
detecting potential edges in various orientations that uses simulated and mean field annealing is
discussed in [11].

In this note we propose using a new family of clustering algorithms called Fuzzy Learning vector
Quantization (FLVQ) for Image segmentation. FLVQ is a partial Integration of Fuzzy c-Means (FCM)
and Kohonen clustering networks (LVQs). The block diagram of the process Is shown in Fig. 1.
Unlabeled feature vectors (one for each pixel) are first extracted from an image. Then FLVQ clusters
these feature vectors to get cluster centers. Each cluster center is regarded as a prototype (or vector
quantizer) of some subregion of the image. Finally, each pixel feature vector is compared to the
cluster centers, and is assigned a constant value corresponding to the closest cluster center. Note
that the number of constant values Is the same as the number of clusters.
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Figure 1. FLVQ Image Segmentation: Overall Architecture.

The remainder of this paper is organized as follows. In the next section, we briefly review the FCM,
LVQ and FLVQ algorithms. In Section 3, experimental segmentation results on photographic and
Magnetic Resonance images are reported. Section 4 contains a discussion, conclusions, and some
ideas for future research.

2. KOHONEN CLUSTERING NETWORKS

Many classical clustering algorithms can be found in the texts of Duda and Hart (12). Hartigan [ 13],
and Jain and Dubes [14]. In [15] Llppman suggested that Kohonen's learning vector quantization
(LVQ) [16] Is closely related to the sequential Hard c-Means (HCM) algorithm. Fuzzy c-Means (FCM)
is a well known generalization of HCM (17,18]. Since HCM/FCM are optimization procedures,
whereas LVQ is not, integration of FCM and LVQ is one way to address several problems of LVQs
while simultaneously attacking the general problem of how the two families are related.
Huntsberger and AJJimarangsee [19] first considered this approach, and their Idea was extended in
[20] to the FLVQ algorithms described below.

Let c be an Integer, 1< c<n, and let X = {xlt x2 xn) denote a set of n feature vectors in ftp. X is
numerical object data, the j-th object has vector Xj as it's numerical representation, and xjk is the
k-th characteristic (or feature) associated with object j. Given X. we say that c fuzzy subsets {uj: X -»
[0,1]} are a constrained fuzzy c-partltion of X in case the en values {ujk = Uj(xk). l<k<n, l<i<c}
satisfy three conditions:

0 < ujfc < 1 for all i,k ; (la)
. = 1 for all k; (Ib)

<nVL (Ic)

Here u^ is interpreted as the membership of xk in the 1-th partitioning subset (cluster) of X. If all
of the ulk's are in {1,0}, U = [ujjj is a conventional (crisp, hard) c-partition of X. The most well
known objective function for clustering in X is the classical within groups sum of squared errors
function, defined as :

Ixk-vj l l 2 . W

where v = (vj, v2 vc) is a vector of (unknown) cluster centers (weights, prototypes, or vector

quantizers), Vj € 9tp for 1 S 1 < c, and U is a hard or conventional c-partltion of X. Optimal
partitions U* of X are taken from pairs (U*, v*) that are "local minimlzers" of Jj. Dunn [18] first
generalized (2) for m=2, and subsequently, Bezdek [17] generalized (2) to the Infinite family written
as:

Jm(U,v; X) = Z-LfcUfl.111 I I xk-v, I I . 2 . (3)
m , f c - , A

where me [1, «>) is a weighting exponent on each fuzzy membership, U Is a fuzzy c-partition of X, v =
. v2 ..... vc) are cluster centers in <RP, A= any positive definite (p x p) matrix, and I lxk"

vi' IA =
Tj) A (*k-Vj) is the distance (in the A norm) from xk to Vj. Conditions that are necessary for
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extrema of Jj and Jm follow : Hard c-Means (HCM1 Theorem F171 (U.vl may minimize H. u^ I
V i l l A)2onlyif:

=
Uik

(llxk - Vjl lA )
2 = minj{(llxk - V j l l A

0; otherwise (4a'

In the context of image segmentation, equation (4a) will be used to assign each (pixel) vector x^ to
its closest prototype vj; this is the essence of our segmentation scheme. Note that the HCM produces
a partition U that contains hard clusters. The well known generalization of HCM is contained in
the following: Fuzzv c-Means fFCMl Theorem H71 Assume 1 1 x^- vj I I A

2 > 0. V J.k at each iteration

of (5): fU.v) may minimize IZ u^f I I xk- vj I I A)2 for m> 1 only if :

-VjllJ^-V (5a)

" (5b)

Conditions (5) -» (4) and Jm -» Jj as m -» 1 from above. The FCM (HCM) algorithms are iterative
procedures for approximately minimizing Jm (Jj) by Picard iteration through (5) or (4),
respectively. C-Means algorithms are non-sequential algorithms: updates on the weights {VA j) are
performed after each pass through X. Thus, iterate sequence {vj ^} is independent of the sequence of
the data labels. The parameter (m) essentially controls the "amount of fuzziness" in U. As m -> ~,

1/c; when m->+l, u -» 1 or 0.

Kohonen clustering networks (LVQs) are unsupervised schemes which find the "best" set of
prototypes (for hard clusters) in an iterative, sequential manner. The structure of LVQ consists of
two layers: an input (fanout) layer, and an output (competitive) layer as shown in Fig. 2. The edges
that connect the p input nodes to the c output nodes do not have "weights" attached to them, as, for
example, in a feed forward network architecture. Instead, each output node has a prototype (vector
quantizer) attached to it, and it is this set of network weight vectors that are adjusted during
learning. A formal description of LVQ is given below. There are other versions of LVQ; this one is
usually regarded as the "standard" form.

The LVQ Clustering Algorithm [16]

LVQ1. Given unlabeled data set X = (r r Xg. ...xn) c 9lp. Fixe, T, and e > 0.

LVQ2. Initialize V Q = ( YJ Q ..... YC Q) e «Rcp , and learning rate OQ e ( 1 ,0) .
LVQ3. Fort= 1.2 ..... T;

Fork= 1.2 ..... n:

b. Update the winner : vj t = vi t- 1* txt^xk" vi t- 1^
Nextk
d. Apply the 1-NP (nearest prototype) rule to the data :

,l<i<cand l<k<n. (8)
otherwise
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e. Compute El = Dv -V I = £[v -v II = I flu ., -u ., ,1.
^ "It t-lUi rti|| rjt r.t-ljlj (t^irti! rkjt rk.t-l\

f. If Ej < E stop; Else adjust learning rate o^;
Nextt

Input Input layer
Data
Point

Output layer

c-l.t

c,t

Network
Weight
Vector

Figure 2. The structure of a Kohonen clustering network.

The numbers ULVQ = U
LVO

 a* (8) are a ex*1 matrix that almost always (constraint (Ic) may not be

satisfied) define a hard c-partition of X using the 1-NP classifier assignment rule at (4). Our
inclusion of computation of the hard 1-NP c-partition of X at the end of each pass through the data
(step LVQS.d) is not part of the LVQ algorithm - that is, the LVQ iterate sequence does not depend on
cycling through U's. Ordinarily this computation is done once, non-iteratively, outside and after
termination of LVQ. Note that LVQ uses the Euclidean distance in step LVQS.a. This choice
corresponds roughly to the update rule shown In (7), since V^Jfx - vf t) = -2/(x - v) = -2(x - v). The

origin of this rule assumes that each x e 9?p is distributed according to a probability density
function /(x). LVQ's objective is to find a set of Vj's to minimize the expected value of the square
of the discretization error :

(9)

In this expression v. is the winning prototype for each x , and will of course vary as x ranges over

9tp. A sample function of this optimization problem is e = |x - vT. An optimal set of Vj's can be
approximated by applying local gradient descent to a finite set of samples drawn from f. The
extant theory for this scheme is contained in [21], which states that LVQ converges in the sense
that the prototypes Vt = (Vj t, v2 t vc t) generated by the LVQ iterate sequence converge, i.e..

{V,}- > V, provided two conditions are met by the sequence (af) of learning rates used in (7) :
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I a = oo : and I or2 < oo . (10)
:=0 * t=o *

One choice for the learning rates that satisfies these conditions is the harmonic sequence
af = 111 for t >1; aQ e (0,1). Kohonen has shown that (under some assumptions) steepest descent
optimization of the average expected error function (9) is possible, and leads to update rule (7). The
update scheme at (7) has the simple geometric Interpretation shown in Figure 3.

Figure 3. Updating the winning LVQ Prototype.

The winning prototype at iteration t. Vj t.j. is simply rotated towards the current data point by
moving along the vector (x^- v. ^ j) which connects It to x^. The amount of shift depends on the
value of a "learning rate" parameter o^, which varies from 0 to 1. As seen in Figure 3, there is no
update If Oj=0, and when o^=l, v. ^ becomes x^ (v. j. is just a convex combination of x^ and Vj ̂ . j).
This process continues until termination via LVQS.f, when the terminal prototypes yield a "best"
hard c-partltion of X via (8).

Comments on LVQ : (1) Kohonen in [21] mentions that LVQ converges to a unique limit If and only
if conditions (10) are satisfied. However, nothing was said about what sort or type of points the
final weight vectors produced by LVQ are. Since LVQ does not model a well defined property of
clusters (in fact, LVQ does not maintain a partition of the data at all), the fact that {V^}—^^—>V

does not Insure that the limit vector V is a good set of prototypes In the sense of representation of
clusters or clustering tendencies. (2) The termination strategy at LVQS.e is based on small
successive changes in the cluster centers. This method of algorithmic control offers the best set of
centroids for compact representation (quantization) of the data in each cluster. However, LVQ
seldom terminates in less than. say. 20,000 Iterates unless c^-^0 : this forces it to stop because
successive iterates are necessarily close. (3) LVQ often runs to its Iterate limit, and sometimes
passes the optimal (clustering) solution in terms of minimal apparent label error rate. This Is
called the "over-training" phenomenon in the neural network literature.

Huntsberger and Ajjimarangsee [19] combined the 1-NP rule at (4) with Self-Organizing Feature
Maps (SOFMs) to develop clustering algorithms. Algorithm 1 in [19] is the SOFM algorithm with
an additional layer of neurons that does not participate in weight updating. After the self-
organizing network terminates, the additional layer, for each input, finds the weight vector
(prototype) closest to it and assigns the input data point to that class. A second algorithm In their
paper used the necessary conditions for FCM to assign a membership value in [0.1] to each data
point for each of the c classes. Specifically, Huntsberger and Ajjimarangsee suggested
fuzzificatlon of SOFM by replacing the learning rates (o^, J usually found in rules such as (7) with
fuzzy membership values {u^ t) computed with the FCM formula [17]:
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where DfkA = jxfc-v{ I . Numerical results reported in Huntsberger and AJjimarangsee suggest
that in many cases their algorithms and standard LVQ produce very similar answers. Their
scheme was a partial integration of LVQ with FCM that showed some interesting results. However,
it fell short of realizing a model for fuzzy LVQ clustering; and no properties regarding terminal
points or convergence were established. Moreover, since the objective of LVQ is to find cluster
centers (prototypes) in ?RP, the need for and use of the topological ordering idea of (images of) the
weight vectors in display space is not well justified. Consequently, the approach taken in [19]
seems to mix two objectives, feature mapping and clustering, and the overall methodology is
difficult to interpret in either sense.

Integration of FCM with LVQ can be more fully realized by defining the learning rate for Kohonen
updating as:

-2m,

where (12a)

t=l,2,...T. (12b)

m, replaces the (fixed) parameter m in (11). This results in three families of Fuzzy LVQ or FLVQ
algorithms, the cases arising by different treatments of parameter m-. In particular, for

t e {1.2 ..... T}, we have three cases depending on choice of the initial (m ) and final (mf ) values of
m:

1. mQ > m => |mf } I m : Descending FLVQ (13a)

2. m 0 <m =>|mt}tm : Ascending FLVQ (13b)

3. m
0
 = m

 f =>Tn t = m Q = m : FLVQ = FCM (13c)
Cases 1 and 3 are discussed at length in (20). Equation (13c) asserts that when nig = m*- , FLVQ
reverts to FCM; this results from defining the learning rates via (12a), and using them in the
update rule for the prototypes shown in FLVQS.b below. We provide a formal description of FLVQ :

Fuzzy LVQ (FLVQ) [20]

FLVQ1. Given unlabeled data set X = {x^ x^ ..... x^. Fix c, T, f [A and e > 0.

FLVQ2. Initialize VQ = ( vi Q ..... vc 0* € ^ ' choose m
0-

 m / -L

FLVQ3. Fort = 1.2 ..... T. '
a. Compute all (en) learning rates (a.^ ^} with (12).
b. Update all (c) weight vectors {vj ^ with

c. Compute ̂  = [v, - vf_J = |Jv( ( - vu_

d. If E^^ estop; Else
Nextt.

Observe that FLVQ is not a direct fuzzy generalization of LVQ because It does not revert to LVQ in
case all of the u.. .'s are either 0 or 1 (the crisp case). Instead, If mQ = m-- = 1 , FCM reverts to HCM,
and the HCM prototype update formula, which is driven by finding unique winners, as in LVQ, Is a
different formula than (7). Nonetheless, FLVQ is perhaps the closest possible link between LVQ and
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c-Means type algorithms. For fixed c, (v, f) and m*, the learning rates alL. f = (u., ,)mt at (12a)
i«L L lXV,L 1KV1

satisfy the following :

where K is a positive constant. Apparently the contribution of xk to the next update of the node
weights Is Inversely proportional to their distances from it. The "winner" is the VA t_ j closest to
xk. and It will be moved further along the line connecting vt t. j to xk than any of the other weight
vectors. Since £u. = 1 => X a^ £ 1 . this amounts to distributing partial updates across all c nodes

for each Xjt
eX- Thls is ta sharP contrast to LVQ. where only the winner is updated for each data

point.

Figure 4. Updating Feature Space Prototypes in FLVQ Clustering Nets.

Figure 4 illustrates the update geometry of FLVQ; note that every node is (potentially) updated at
every iteration, and the sum of the learning rates is always less than or equal to 1, an added
constraint on the overall movement of the c prototypes at each t. In descending FLVQ (13a), for
large values of m^ (near HTQ), all c nodes are updated with lower individual learning rates, and as
mj-> mf , more and more of the update is given to the "winner" node. In other words, the lateral
distribution of learning rates is a function of t, which in the descending case "sharpens" at the
winner node (for each xt) as m. -> m,.K t /
Comments on FLVQ : (1) In contradistinction to Huntsberger and Ajjimarangsee's approach, there
Is no need to choose an update neighborhood . Neighborhood control is automatic, and depends
entirely on the relative geometry of the data and their prototypes. (2) Reduction of the learning
coefficient with distance (either topological or in SRP) from the winner node is not required.
Instead, reduction Is done automatically and adaptively by the learning rules. (3)The greater the
mismatch to the winner ( I.e.. the higher the quantization error), the smaller the Impact to the
weight vectors associated with other nodes (recall (14)). (4)The learning process attempts to
minimize a well-defined objective function (stepwlse). This procedure depends on generation of a
fuzzy c-partition of the data, so it is an iterative clustering model - indeed, stepwise. it is exactly
fuzzy c-means [20]. (5) Our termination strategy is based on small successive changes In the cluster
centers. This method of algorithmic control offers the best set of centroids for compact
representation (quantization) of the data in each cluster.
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3. EXPERIMENTAL RESULTS

depends on the of
of mtenstty and

Image

from the top'left com fte starUn«

Table 1. Protocols for the Computational Experiments

Fig. 5(a) An Intensity image Fig. 5(b) Segmentation result using 1x1

d^uon *
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equivalent to histogram thresholding. Comparison of Figure 5(c) with 5(b) reveals that the roof
and the walls of the house are better segmented by the 3x3 window. On the other hand. Figure 5(d)
contains more compact segmented regions; even the textured tree is segmented as compact
homogeneous regions. This shows that too small a window may result In too many details, while
too large a window may smooth out much relevant Information. Probably a reasonably good
compormlse Is a neighborhood of size 3x3.

Fig. 5(c) Segmentation result using 3x3 Fig. 5(d) Segmentation result using 5x5

If q images are correlated In the sense that they are perfectly registered because they are taken In
different bands, pixel vectors of size q can be erected at each spatial site by simply aggregating the
Intensity across bands. This amounts to a multichannel version of the 1x1 window. Magnetic
Resonance Imagery, e.g. typically generates 3 bands, namely. Tl relaxation (spin lattice), T2
relaxation (transverse), and p (proton density). At pixel site (l.j). MRI data can thus result In 3
dimensional pixel vectors, say *„ = (Tlj,, T2j., pj. This »„ can then be used a feature vector for
segmentation of the MR image. Figures 6(a) and 6(b) show two bands (p and T2) of one physical slice
of an human head. Fig. 6(c) depicts the segmentation obtained using FLVQ with the parameters
shown in the last row of Table 1. It Is well-known that comparison of image segmentation
algorithms is not an easy task [81. However, one of the most important criteria for performance
evaluation is whether the algorithm can outline the desired or important components in the
image. For Instance, In Fig. 6(c), our segmentation delineates the white and gray matter tissue
regions quite well.

Flg.6(a)pMRdata Fig. 6(b)T2MRdata Fig. 6(c) FLVQ Segmentation
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4. CONCLUDING REMARKS

In this paper a family of Fuzzy generalization of LVQ (FLVQ) algorithms based on the integration
of Fuzzy c-Means and Kohonen clustering networks have been used for Image segmentation. FLVQ
Is non-sequential, unsupervlsed, and uses fuzzy membership values from FCM as learning rates.
This yields automatic control of both the learning rate distribution and update neighborhood.
Light Intensity and MR images have been segmented using various feature extraction strategies;
our results seem encouraging, but much remains to be done.

REFERENCES

[1] R M. Haralick and L. G. Shapiro. "Survey: image segmentation techniques." Computer
Vision, Graphics, and Image Processing, vol.29, pp. 100-132. 1985.

[2] B. Bhanu and B. A. Parvin, "Segmentation of natural scenes." Pattern Recognition, vol.20,
pp.487-496. 1987.

(31 J. R. Beveridge. J. Griffith. R R. Kohler, A. R Hanson, and E. M. Riseman, "Segmentation
Image using localized histogram and region merging," International Journal of Computer
Vision, vol.2, pp.311-347. 1989.

(4] T. Pavlidls and Y.-T. Liow, "Integrating region growing and edge detection." IEEE Trans.
Pattern Analysis and Machine Intelligence, vol.12, pp.225-233. 1990.

[5) W. A. Perkins. "Area segmentation of image using edges points," IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.2, pp.8-15, 1980.

(6] S. Hongo, M. Kawato, T. Inui, and S. Mlyake, "Contour extraction of Image on parallel
computer-local, parallel and stochastic algorithm which learns energy parameters."
Proceedings oj the International Joint Conference on Neural Networks, vol.1, pp. 161-168.
1990.

(7) S. Geman and D. Geman, Stochastic relaxation, "Gibbs distribution and the Bayeslan
restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.6, pp.
721-741. 1984.

[8] R C. Dubes. A. K. Jain, S. G. Nadabar and C. C. Chen, "MRF model-based algorithms for Image
segmentation,"Proceedtnps of the International Conference on Pattern Recognition, pp. 808-
814. 1990.

|9] J. Shah. "Parameter estimation, multiscale representation and algorithms for energy-
minimizing segmentation." Proceedings of the International Conference on Pattern
Recognition, pp. 815-819.1990.

[101 D. Kerr and J. C. Bezdek, "Edge Detection Using Neural Netwoks," SPIE, 1992.
[Ill C. Cortes and J. A. Hertz, "A network system for image segmentation," Proceedings of the

International Joint Conference on Neural Networks, vol. 1, pp. 121-125. 1989.
[121 R Duda and P. Hart, Pattern Classification and Scene Analysis, Wiley. New York. 1973.
[131 J. Hartigan. Clustering Algorithms, Wiley, New York. 1975.
[141 A. Jain and R Dubes. Algorithms that Cluster Data, Prentice Hall. Englewood Cliffs, 1988.
[151 R- Lippman, "An introduction to neural computing," JEEE ASSP Magazine, April, pp. 4-22,

1987.
[16J T. Kohonen, Self-Organization and Associative Memory, 3rd edition. Springer-Verlag.

Berlin. 1989.
[17J J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New

York. 1981.
[181 J- Dunn. "A fuzzy relative of the ISODATA process and its use In detecting compact, well-

separated clusters," J. Cybernetics, vol. 3, pp. 32-57, 1974.
[191 T. Huntsberger and P. Ajjlmarangsee, "Parallel self-organizing feature maps for

unsupervised pattern recognition," IntiJo. General Systems, vol. 16. pp. 357-372. 1989.
[201 J- Bezdek, E. C-K. Tsao and N. Pal, "Fuzzy Kohonen Clustering Networks," Proceeding of the

IEEE International Conference on Fuzzy Systems, pp. 1035 -1043. San Diego 1992.
[21J T. Kohonen, Self-organizing maps : optimization approach. Artificial neural networks.

elsevier Sc. Pub., (Eds. T. Kohonen, K Makisara, O. Simula and J. Kangas). 981-990, 1991.

107




