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Abstract

The Context Model provides a formal framework for the representation, interpretation, and
analysis of vague and uncertain data. The clear semantics of the underlying concepts makes it
feasible to compare well-known approaches to the modeling of imperfect knowledge like given in
Bayes Theory, Shafer’s Evidence Theory, the Transferable Belief Model, and Possibility Theory.

In this paper we present the basic ideas of the Context Model and show its applicability as an
alternative foundation of Possibility Theory and the epistemic view of fuzzy sets.

1 Introduction

One origin of imperfect data is due to situations, where the incompleteness of the available information
does not support state-dependent specifications of objects by their characterizing tuples of elementary or
set-valued attributes.

The most important kinds of imperfect knowledge to be investigated are vagueness and uncertainty. Within
the Context Model [Gebhardt, Kruse 1992a, Gebhardt 1992, Kruse et. al. 1992] vagueness is referred to
the specification of so—called vague characteristics, which formalize imprecise, possibly contradicting and
partial incorrect observations of attribute values with respect to a finite number of conflicting consideration
contexts. :

The integration of conflicting contexts is related to the phenomenon of competition, whereas imprecision
shows that a specialization of the context-dependent non-elementary characteristics attached to a vague
characteristic is unjustified without having further information about the corresponding vaguely specified
object. Hence, vagueness is the combination of two types of partial ignorance, which are the existence of
confiicting contexts (to be called competition) and imprecision.

Uncertainty, on the other hand, is connected with the valuation of vague characteristics: When we have
defined a vague characteristic to specify a vague observation of an inaccessible characteristic of an object’s
attribute in a given state, a decision maker should be enabled to quantify his or her degree of belief in
this vague observation — either by objective measurement or by subjective valuation. Since we restrict
ourselves to numerical, non-logical approaches to partial ignorance, the theory of measurement seems to be
the adequate formal environment for the representation of uncertainty aspects.

The mentioned approach to vagueness and uncertainty modelling leads canonically to the concept of a
valuated vague characteristic which is introduced in seticon 2 and serves as one of the foundations of the
Context Model.
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Since we intend to focus our attention to information compression aspects, we show in which way valuated
vague characteristics, and the important notions of correctness-, contradiction-, and sufficiency-preservation
turn out to be helpful for establishing richer underlying semantics of Possibility Theory and the epistemic
view of fuzzy sets. For this reason section 3 deals with an appropriate definition of possibility functions,
while section 4 clarifies how to operate on possibility functions with the requirement of coming to most
specific correct results, when correctness assumptions on the composed possibility functions are fulfilled. As
an example we refer to some foundations of Fuzzy Control. Finally section 5 shows an interpretation of fuzzy
sets and a justification of Zadeh’s extension principle by the Context Model.

2 The Context Model: Basic Concepts

In this section we outline basic concepts of the Context Model as far as they are important for the other
sections. The following definitions have already been motivated by the general idea of a valuated vague
characteristic mentioned in the introduction.

Definition 2.1 Let D be a nonempty universe of discourse (frame of discernment, domain of a deta type)
and C a nonemply finite set of contexts.

Te(D) o {719 :C — 2P} is defined to be the set of all vague characteristics of D w.r.t. C.

Ignoring the contezts, I'(D) 2190 - {A| A C D} designates the set of all (imprecise) characteristics of D.

Let vy,v € Tc(D) and A € T(D).

(a) v empty, iff Y(C) = {7(c) | c € C} = {8};
(b) v elementary, iff (V ¢ € C) (Jy(c)| = 1);

(c) 7 precise, iff (¥ ¢ € C) (17(c)] < 1);
(d) v contradictory, iff (3 ¢ € C) (y(c) = 0);

(k) v specialization of v (v generalization of v, ¥ more specific than v, v correct w.r.l. v), iff (V c €

C) (v(e) € v(o));

Definition 2.2 Let (C,2€, Pc) be a finite measure space that is referred to a given contezt set C. Each
vague characteristic v € T¢c(D) is called valuated w.r.t. (C,2€, Pc).

Remark Obviously there are formal analogies, but even semantical differences to the concept of a random
set recommended by Matheron [Matheron 1975] and Nguyen [Nguyen 1978]. Considering the original idea
of a random set, if v € I'c(D), then for all ¢ € C, y(c) should be interpreted as an indivisible set-valued
datum attached to an outcome ¢ of an underlying random experiment which is formalized by a probability
space (C, 2€, P¢).

Following a reasonable interpretation of Nguyen’s approach, v(c) specifies the set of single-valued data which

are possible in a context ¢, where Pc({c}) quantifies the (objective or subjective) probability that c is the
“true” context.

On the other hand, using v as a valuated vague characteristic, Pc({c}) reflects the degree of reliability that
the context ¢ delivers a correct specification of an original characteristic Orig, C D (i.e.: Orig, C ¥(c)),
where Orig, is an (inaccessible) state-dependent characterization of an object of interest.

Whenever Pc({c}) stands for a reliability degree, then P¢ in general will neither be defined as a probability
measure nor be normalized to a probability measure. Furthermore the interpretation of a valuated vague
characteristic does not require that one of the available contexts is the “true” one which has to be selected.
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3 Possibility Functions

The main application of (valuated) vague characteristics ¥ € I'c(D) refers to the specification of a vague
observation of an (inaccessible) characteristic Orig, C D, the so-called original of ¥ which — generally
speaking — characterizes an object in its acutal state. As an example consider a control system with a
single input variable and a single output variable taking thier values on the domains X and Y, respectively.
The state of this control system may be defined by the actual input value zg € X and the control function
g : X — Y that relates the possible input values z € X to their corresponding output valuesy € Y.

The behaviour of the system can be specified by the inference mechanism that transfers zo to the actual
output value yo = g(zo), which is

infer : T(X)xT(X xY)—-T(Y),
infer(Xo, R) ) {vi(z,y) E RN Xy xY}.

In the special case Xo = {z9} and R=g¢ C X x Y we in fact obtain

infer(Xo, R) = infer({zo}, 9) = {9(z0)}

In the situation (well-known from fuzzy control) when g and sometimes even zo are not available, but only
vaguely observed, the context model suggests the specification of vague characteristics 11 € I'c,(X) and v; €
Fc,(X x Y') based on appropriate context measure spaces M; = (CI,ZC‘,PCI) and M, = (Cy, 2%, Pc,).

The adequate choice of context measure spaces is an application-dependent problem, but for our example
it seems to be convincing that the contexts have to be defined by their maximum measurement tolerance,
namely the maximum distance between the measured input value and the original input value that should
have been taken.

In practical applications incomplete information and the complexity of required operations will often advise
us to avoid the detailed consideration of the underlying context measure spaces, but to use an information

compressed specification of valuated vague characteristics, as done — from the context model’s point of view
— in Possibility Theory [Dubois, Prade 1988] and Fuzzy Set Theory [Klir, Folger 1988].

Viewing a valuated vague characteristic ¥ € I'c(D) in a pure formal sense as a genralized random set, one
promising way of coming to an information compressed representation of ¥ is the choice of the coniour
function of v, which we prefer — for semantical reasons — to be denoted as the possibility function of v.

Definition 3.1 Let v € T'c(D) be valuated w.r.t. M = (C,2°, P¢).. Then,
malr): D —RE, b)) ¥ Pefee Cld e (o))

is called the possibility function of v, where (RE ) {reR|r>0}).
POSS(D) 2 {r]7:D— R} A|r(D)| € IN} is defined 1o be the set of all possibility functions w.r.t. D.

For m € POSS(D), Repr(w) ) {(a, 7,) | @ € R} )} with the a-cuts 7, ) {d € D | n(d) > a} denotes the
identifying set representation of .

Let ¥ € T'c(D) be the vague characterization of an elementary original Orig, € I'(D). Obviously, for all
d € D, mam[7])(d) quantifies the measure of all contexts ¢ € C, for which a specialization of ¥(c) into the
elementary characteristic {d} is feasible. In other words: ma4{y](d) is the measure of all context that do not
contradict {d} to be the original of ¥ and therefore expresses the possibility that Orig, = {d} is valid. That
is one reason why we call 7 rq[y] a possibility function.

But there is even more behind wa[y] than only measuring possibility degrees. Whenever each context
valuation Pc({c}) is expected to be the presupposed reliability degree with which c delivers a correct imprecise
characterization y(c) w.r.t. Orig, (which means that Orig, C ¥(c)), then, for all a > 0, the a-cut 7a[7]o
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is the most specific characteristic that is for sure correct w.r.t. Orig,, if the a-correctness of v w.r.t. Orig,
is given (which means that the measure of all contexts ¢ € C that are correct w.r.t. Orig, equals a or is
greater than o).

Definition 3.2 Let ¥ € I'c(D) be valuated w.r.t. (C,2, Pc) and A,B C D two characteristics. Further-
more let a > 0.

(a) B is correct w.r.t. A, iff AC B.
(b) v is a-correct w.r.l. A, iff Pc({c€ C | A C v(c)}) > a.

The choice of an appropriate correctness level a* depends on the semantical environment in which ¥ € T'c(D)
is used. If C is a set of outcomes of an underlying random experiment, then Pc({c}) quantifies the probability
of the outcome e.

In this case exactly one of the contexts contained in C is selected to be the “true” context, and Pc should
be seen as a probability measure (i.e. Pc(C) =1).

In a more general sense C is a set of contexts that represent distinguishable consideration points of view
(e.g. experts, sensors). Then it is of course not always reasonable to talk about the existence of a single true
context, but rather to interpret Pc({c}) as the degree of success with which the context ¢ € C has delivered
correct imprecise charaterizations ¥;(c) w.r.t. a number of checkable representative vague observations v; €
T¢(D) of original characteristics Orig,, C D,i=1,...,n.

If we define
o B max{a | Orig,; C 7m[¥ila}, i=1,...,n, and
Qmnin 4 min{a® |i € {1,...,n}},
omax 2 max{e® |i€{l,...,n}},

then " € [ayin, @max] seems to be an acceptable choice for the postulation of the correctness degree of
future vague characterizations ¥ € I'c(D) w.r.t. their (inaccessible) original Origy C D.

4 Operating on Possibility Functions

In the previous section we introduced the concepts of a possibility function and the correctness of (vague)
characteristics 4 € ['¢c(D) with respect to their underlying original characteristics Orig, C D.

Now we change over to the important question how to operate on possibility functions. For this reason
let us again come back to our control system example. We assumed to have the vague characterization
71 € T'e,(X) of the actual input value zo € X and the vague characterization y2 € I'c, (X x Y') of the control
function ¢ C X x Y, referred to the context measure spaces M, = (C;,2°", P¢,) and My = (C», 22, Pc,),
respectively.

Following the notion of the context model, the starting point in fuzzy control is to neglect 4, and 42, and to
restrict the attention to the induced possibility functions w4, [71] and maq,[2]). Postulating a;-correctness
of 71 wr.t. {zo} and ag-correctness of v w.r.t. g, we intend to calculate the most specific set Yo C Y of
output values which is correct w.r.t. {g(zo)}.

In the final decision making process one of the elements contained in Yy has to be selected as the adequate
output value of the system. Note that — as we handle imprecision as well as conflicting contexts — in the
normal case we have no chance to obtain a single output value from the inference mechanism. The choice of
an element of Yy as the actual output value corresponds to the defuzzification step in applied Fuzzy Control.

For the calculation of Y we consider the more general environment, where ¥; € ['¢,(D;) are valuated w.r.t.
M; = (Ci,2%,Pc,), i = 1,...,n. Each 7; is interpreted as a valuated a;-correct specification of a vague




observation of an inaccessible non-empty characteristic A; C D;. Furthermore let f : X I'(D; = (D) be a

function of imprecise characteristics. Suppose to have the task to determine the most specnﬁc characteristic in
I'(D) which is correct w.r.t. f(Ay,...,A,). This charateristic is called sufficient for f w.r.t. (v1,..., ) and
(ai,.-.,an). We now formalize the notion of sufficiency and show how to evaluate sufficient characteristics.

Definition 4.1 Let v; € ¢, (D;), i = 1,2,...,n be valuated w.r.t. (C;,2%,Pc,). Consider correciness-
levels ; > 0, i=1,2,...,n, a function f: >n<I‘(D.-) — (D), and a characteristic F € T(D).
i=1

(a) F is correct for f w.rt. (y1,...,9) and (a3 ...,ap), iff

(¥ (41,40 € XI‘(D,))
((vie{1,. n})(-y. is a; — correct w.rt. A;) => F correct w.rt f(A;,...,An));

(8) F is sufficient for f w.r.l. (1,...,7) and (a1, ...,ay), iff F fulfils (a) and

C
(V F* #£ F) (F* is not correct for f w.rt.(1,..., ) and (ay,...,a,)).

It turns out that under weak conditions there is an efficient computation of sufficient characteristics by ap-
plication of the induced possibility functions 7a4,[7], without explicitly referring to the underlying valuated
vague characteristics and the context measure spaces M;.

Before coming to that result we state the following four (technical) definitions.
Definition 4.2 Let Dy, D,,... Dy, D be untverses of discourse and f :é‘(1 I'(D;) — T(D) a function.
(a) f is called correctness-preserving, iff
f(Al,...,An) - f(Bl,...,Bn) forall A;, B; with A;, C B;CD;,i=1,2,....n
(b) f s called contradiction-preserving, iff

(VA1 ..., A)Gi € {1, ..., n})(4; = 0) == f(A1,...,An) = 0)

Definition 4.3 Let D;,...,Dn, D be universes of discourse and f : )rl(I‘(D,-) — TI(D) a contradiction-
i=1

preserving mapping. f is sufficiency-preserving, iff
f(Al UB],...,AnUBn)=
U{FIB Cy,...,Ca)(F= f(Cy,...,Ca) AV j€e{l,...,n})(C; = 4; VC; = Bj))}
forall A;,B; €T(D;),i=1,2,...,n

Definition 4.4 Let # € POSS(D). = is correct (sufficient) for f w.rt. (y1,...,7), iff
(Y a > 0) (7o correct(sufficient) for f w.rt. (11,...,7n) and (ay,...,an)).

Definition 4.5 Let m; € POSS(D;), i ,n, and f : XI‘(D) — T(D). The possibility function
flr,...,mn): D — R+ which 1s determined by its 1dentzfymg set represenialion
Repr(f[m,...,w,,]) = {(a,f[m,...,w,,]o |a € RY} with

flm, .- 7alo Y D and (Va>0) (flr,. - 7)o = f((71)ay ..., (7n)a))
is called the image of (my,...,7,) under f .

300




Theorem 4.6 Let M; = (C;, 2Ci, Pc,), ICi| > 2, be conlezt measure spaces.
Additionally let f : >"<I‘(D,-) — I'(D) be a correciness— and contradiction—~preserving mapping.
i=1

f is sufficiency-preserving, iff
(Y (remm) € 2(11*0,.(0,-)) (Flra[): - an[1n]] sufficient for f w.rt. (11, ..., 7))

The result is especially related to possibility functions, where ¢ = ay = @2 = ... = a,, but an analogous
theorem holds in the case when the levels o; are chosen arbitrarily.

Since the function infer is sufficiency-preserving, applying the theorem to our example, the characteris-

tic Yo o infer(7am, [11]a, M, [72)a) is sufficient w.r.t. {g(zo)}, if a-correctness of v; w.r.t. {zo} and a-
correctness of 4, w.r.t. g is given. Hence the output value of the control system has to be selected from
Yo.

5 Fuzzy Sets

Within the Context Model the interpretation of fuzzy sets [Dubois, Prade 1989, Dubois, Prade 1991] and
the most important operations on fuzzy sets are based on the concept of valuated vague characteristics in
the following way:

Let F(D) o {plp:D—=[0,1]JA|u(D)| € N},D # 0, be the set of all fuzzy sets with finite codomain.
Then u € F(D) is considered to be the information compression 7 [7] of an underlying vague characteristic
7 valuated w.r.t. an appropriate context measure space M = (C, 2, Pc), where Pc is a probability measure.
Since the aim of fuzzy sets is the modelling of vague concepts like “young” and “tall”, we now abstract from
the existence of a vaguely observed original characteristic Orig, € I'(D) by interpreting v as the specification
of a vague property [Kruse, Meyer 1987, Kruse et. al. 1991a]. Nevertheless F (D) equals - at least at the
formal level — a set of possibility functions, and therefore all results obtained in section 5 are applicable to
fuzzy sets without affecting their special interpretation.

As examples we will investigate the union and intersection of fuzzy sets and Zadeh’s extension principle
[Zadeh 1975] by application of the following theorem.

Theorem 5.1 Let y; € T¢ (D;), i =1,...,n be non-empty and valuated w.r.t. M; = (C;, 2, P¢,).
Furthermore let f : >n(I‘(D,-) — (D) be a mapping.
i=1

f sufficiency-preserving =

(v d € D) (f [rats Il s Taa, [rall (@) =
sup { min{man, [1)(d), - Tan, [ra)(dn)} | (@, dn) € XDiAd € f({dr)--.. {dn}) })

Union and Intersection of Fuzzy Sets

Let py, p2 € F(D) be fuzzy sets and v, € I'¢, (D), 72 € T'¢,(D) their underlying vague characteristics;
7i is assumed to be valuated w.r.t. M; = (C;,2%, P¢,), where Pc (C:) = 1,i = 1,2. Furthermore suppose
that yuy = 7w, [11] and py = muq,[v2]). Consider the contradiction—preserving union of characteristics, defined
by

fo :T(D) x T(D) = (D),

fo(A B) DI { AUB |, ifA#£0AB#0

0, otherwise

Since fy is sufficiency-preserving, we know by application of Theorem 4.6 that fy[ui, p2) is sufficient for
fu w.rt. (11,72). Applying Theorem 5.1 it is easy to calculate fy[u1, p2)(d) = max {u1(d), p2(d)}, d € D.
In an analogous way we obtain fn{p1, #2)(d) = min{u;(d), u2(d)}, d € D, with respect to the intersection
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fn of characteristics; (min, max ) appears as the well-known pair of t-norm and t-conorm often applied to
define intersection and union of fuzzy sets [Klir, Folger 1988]. Using alternative assumptions regarding the
underlying context measure spaces, additional t-norms and t-conorms are motivated by the Context Model.

Extension Principle

Zadeh’s extension principle [Zadeh 1975] arises as a special case of Theorem 5.1. This principle is defined as -
follows:

Let n € IN and (y1,...,4,) € [F(R)]". Furthermore let f : R® — R.

The fuzzy set f*[u,. .-, 4n] € F(IR), defined by -
L)@ 2 osup {min {u1(1), ..., 2a®)} | (t1y- .-, ta) € R* A f(t1,...,ta) =1}, t € R is called the

image of (p1,.- ., H#n) under f, where sup 2.

If we interprete p,...,u, as possibility functions of valuated vague characteristics, then there exist v; €

[c,(IR) and context measure spaces M; = (C;, 2, Pc,) fulfilling Pc,(Ci) = 1 and p; = 7 (%), i =
1,2,...,n. We define the sufficiency~preserving mapping g : [(R)" — T'(R), g(4, ..., An) e f(Ap x ---
A,) and obtain by application of Theorems 4.6 and 5.1 that f*[u;, ..., pua] = flps, ..., un) ice. f7luy, ... pn)
is sufficient for ¢ w.r.t. (71,...,7n). We infer that within the Context Model the extension principle is
nothing else than the description of how to get sufficiency—preserving mappings of a restricted class of
sufficient possibility functions.

X

6 Concluding Remarks

In this paper we have outlined the application of the Context Model for a new interpretation of Possibility
Theory and fuzzy sets. Based on context measure spaces, valuated vague characteristics, induced possibility
functions, and the very important concepts of correciness and sufficiency we demonstrated how to operate
on possibilistic data and how to get a new justification of the extension principle.

A short example of fuzzy control was taken to show the practical use of the mentioned ideas. The in-
depth look at the whole theory will be distributed on different papers. A comprehensive presentation of
the basic semantical aspects of the Context Model, and its relationships to random sets [Nguyen 1978],
Dempster-Shafer-Theory [Shafer 1976, Shafer, Pearl 1990], the Transferable Belief Model [Smets, Kennes
1991], and Bayes-Theory [Pear] 1988] is already given in [Gebhardt, Kruse 1992a), whereas {Gebhardt 1992]
and [Gebhardt, Kruse 1992b] contain the more detailed approach to a modified view of Possibility Theory.
Concerning the semantical foundation of the heuristic methods of Fuzzy Control it turns out that under
weak restrictions the well-known if-then-rules should be interpreted by their induced Godel relations and
composed by intersection. Except from the composition mechanism for the rules (which from the Context
Model’s point of view is rather conjunctive than disjunctive, and therefore coincides with similar composition
techniques known from the field of knowledge based systems), the resulting fuzzy controller partly behaves
like Mamdani’s controller, but — as a consequence of the strict formal and semantical environment — it
does not suffer from the inconsistencies of max-min-inference and the problem of justifving the combination .
of different mathematical formalisms as they are used for fuzzification, fuzzy-inference, and defuzzification
(e.g. center of gravity method).
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