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Abstract

Response surface methodology, an alternative method to traditional tuning
of a fuzzy controller, is described. An example based on a simulated inverted
pendulum “plant” shows that with (only) 15 trial runs, the controller can be
callibrated using a quadratic form to approximate the response surface.

Introduction

Fuzzy Controller

Fuzzy controllers have received considerable attention in practice and in
the literature because fuzzy rules can be framed by domain experts for narrowly
defined systems. For example, Sugeno and Yasukawa said, “It supports the idea
of a fuzzy model that human being can grasp input-output relations of a system
qualitatively.”! Although the general structure of such rules can be accomplished
rather directly because of their linguistic flavor, tuning or calibration of the
fuzzy variables can be very challenging. The purpose of this research is to
explore an alternative method of calibration based on representing the
performance of the system relative to the parameters of the controller by a
sequence of quadratic functions.

We consider traditional fuzzy controllers in which the knowledge is
encoded as rules comprised of combinations of subrules. The subrule i for rule
k is of the form, “If kx; is kXj and ky; is kY; then kz; is (should be) kZ;,” where
lowercase letters x and y signify the names of two antecedent objects; X and Y
are values of fuzzy linguistic variables describing their objects; z and Z are a
consequent object and its fuzzy variable’s value. The k th rule contains subrules i r
= 1,...,1., which are fused into rule k by the fuzzy operator minimum or
maximum, depending on the multivalued logic employed in the system. The term -
set for the fuzzy values X, Y, and Z commonly includes LARGE NEGATIVE,
NEGATIVE, SMALL NEGATIVE, ZERO, SMALL POSITIVE, POSITIVE, AND LARGE
POSITIVE. A typical subrule is, “If the error angle is SMALL NEGATIVE and the
angular velocity is SMALL NEGATIVE, then the force of the push should be SMALL
POSITIVE.”

In operation the fuzzy controller is supplied the actual data values for the
antecedent variables x and y, x and y. As is usual in practice, these actual values




are assumed to be crisp numerical singletons, in this research. Also the
operational controller defuzzifies rule k’s detached consequent value kZ into a
crisp numerical singleton which is employed to control the “plant,” the system
which is being controlled. The current study uses a system that contains only one
rule, with eleven subrules.

Controller Tuning

Tuning a controller involves tweaking the several parameters which define
the rules with the intention of optimizing or improving key system performance.
Among the controllable parameters are the number of linguistic terms and
linguistic hedges and conjunctives considered, the granularity of discretization,
the method of defuzzifying, and the shape of the fuzzy variables. Many
alternatives are available regarding shape: the width of the support and core;
triangular vs. trapezoidal vs. sigmoidal shape; regularity vs irregularity among
linguistic terms; and so on. The choices of these parameters are dependent on
one another and on other system features. For example, systems based on
possibilistic logics (such as Mamdani’s popular system) can function well with
triangular shaped fuzzy terms with slight gaps between the cores of adjacent
terms (in subrules).2 But a system based on Lukasiewicz’ multivalued logic
requires fuzzy terms with broad cores, and there must be no gaps between the
cores of adjacent terms.3

Tuning can occur prior to employing the controller and adaptive learning
can occur while the controller is in operation. Adaptive learning (re-tuning) is
needed when the plant experiences extensive changes during use. In recent
literature artificial neural networks have been suggested as tuners by several
scientists, both for initial learning (see for example Kosko4, Keller & Tahani5)
and adaptively (see for example Hayashi et al6 and Berenji7). We consider an
alternative tuning method based on Box and Wilson’s8 response surface
methodology as explicated by Myers9.

Contrdller Performance

The performance of the controlled system may depend on multiple factors.
Common performance variables for mobile systems are fuel economy,
smoothness of ride, and speed of recovery. Performance factors of the
controller itself include speed, robustness, memory needs, physical dimensions,
and cost. We are concemed in this study with performance factors which result
from tuning decisions. We attempt to optimize system performance in relation to
these criteria, or at least to satisfy the more important ones. The methodology
employed assumes that the controllable factors and the performance variable are
measured by continuous numeric values.
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Quadratic Response Surfaces

In theory neural k k
network systems consider [0 = Bo+ Y, Bixi+ Y, Buxi+Y Y, Bixixj (1)
all computable functions i=1 i=1 i,ji <j
compatible with their
architecture. In contrast, response surface methodology considers only quadratic
functions. Although in using response surface methodology we reduce the
quantity of alternative functions considered, we hope to take advantage of the
well-studied nature of quadratic functions (based on quadratic “forms”) to
improve the quality of the analysis. The rationale for using quadratic functions
as approximations for unspecified functions is the Taylor series expansion of the
function 1} about the point x; =x2 =x3 =... =xx = 0. The assumed quadratic
function is expressed algebraically in equation (1).10

The estimated quadratic function is
expressed matrically in equation (2). band x are [y = by+x'b+x'Bx (2)
vectors with typical elements b; and x;; B is a
symmetric matrix with typical elements b;j/2. Each b in (2) is an estimate of the
corresponding B in (1). The right side of equations (1) and (2) are called
quadratic forms.

Experimental Design

Experimental design is a time honored methodology cultivated by
theoretical and applied statisticians.* One of the achievements of experimental
design methods is economy of sample size for multiple factor phenomena. This
economy is of great interest to the tuning of fuzzy controllers, if it can be
achieved without sacrificing prediction precision.

Perhaps the most naive design of a multifactor system is called “one-at-a-
time”: each factor’s value is changed one at a time (holding the levels of all other
factors constant). In contrast, “full factorial” experimental designs interweave
the changes of all factors; if there are k factors and each factor is to be sampled
at n levels, then a full factorial experiment requires a sample size of nk. Full
factorial designs are great improvements over the one-at-a-time method in
reducing sample size. Even so, in practice nt can rapidly escalate into a large
quantity; the number of factors and levels are usually severely limited.

“Partial factorial” designs trim the sample size of full factorials by
upwards of 50% by eliminating carefully selected sample points. But inevitably

*“Control” treatments and randomization of “subjects” to treatments are among the key
tenets of experimental design. Many of the desiderata of experimental design are shaded by the
stochastic nature of the modelled system. In the present paper we downplay randomness and
concentrate on the economical detection of dominant patterns.




partial factorial designs are unable to estimate all terms of the quadratic form;
coefficients in pairs of terms are not
distinguishable, but are “confounded.” !

To model a quadratic function :
every factor must be sampled by at :
least n=3 levels in a full factorial H
design. But “central composite”
designs (ccd) are based on an : ~o
augmented 2k (not 3k) full factorial /
design. Geometrically the 2k full [~ e .
factorial design samples all of the e :
vertices of a k-dimensional rectangular e
solid. In addition to sampling points at
the vertices, in the ccd the center point
and “axial” points are sampled, thus
augmenting the full factorial design. 1
Axial points are found along the 3 dimensional central composite design
orthogonal lines which intersect at the
centroid of the rectangular solid. With the ccd we consider, one axial point is
selected outside of each face of the rectangular solid. That is, two axial points are
selected along each axial line. One point is sampled where all the axial lines
coincide in the center of the solid.

In a 3« full factorial design each factor is tested at three levels and in all
combinations. In the ccd each factor is tested at five levels but not all factors are
combined. In a 34 full factorial with k=3, the sample size is 33 =27. In the ccd
the total number of sample points is 2k + 2k +1. With k=3, the sample size is only
15. And the relative advantage of the ccd improves as k increases.
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Inverted Pendulum Exampie

Control of an inverted pendulum has become a common testbed among
fuzzy researchers. A cart on a straight track is pushed according to the
controller’s instructions with varying degrees of force. A sensor detects the
angle ¢ in radians that the pole makes with the vertical plumb line. The angular
velocity of the pole angle is computed approximately based on the change in ¢.
Another sensor determines the cart’s position ¢ relative to its starting position.
A pushing force f is applied to the cart. ¢, ¢ and f can take on positive and
negative values.

The fuzzy controller was constructed with eleven sub-rules containting ¢
and ¢ as antecedent variables and with f as the consequent variable. Five terms
were defined for each variable: NEGATIVE, SMALL NEGATIVE, ZERO, SMALL
POSITIVE, AND POSITIVE. All fuzzy (linguistic) variables were represented as
symmetrical trapezoids. The scale of the all trapezoids on each universe of
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discourse were uniform relative to one another; but, the scales on different
universes were independent.

Tuning of this controller was done by calibrating the scale of the axes of
the three universes: @, ¢, and f. The criterion variable was the absolute value
of the cart position I¢! at the end of an experimental trial of 5 seconds. If the
pole fell during the trial, the ending cart position was a very large number. The
farther the cart moved away from its starting position, the less likely that it was
in an equilibrium state. Ending cart positions near 0 were considered ideal.

The steps below are referred to as “response surface methodology.” RSM
is a branch of experimental design which searches for the optimal values of the
explanatory variables: values of each factor which together produce the best
(maximum or minimum) value of the criterion variable.

Step 1 Select the initial set of sample points

The triads (@, ¢, f) for each of the 15 sample points in this study were set
according to the central composite design. Each point corresponds to specifying
the scale* values of the 3 variables: pole angle in radians, pole angular velocity in
radians per second, and pushing force in newtons. As a practical matter the
factor levels were standardized so that the vertices values were expressed as +1
and -1; the centroid value is (0, 0 ,0). The standardized values of the axial points
were selected to produce an orthogonal design matrix, *alpha=1.21541. The
initial range for the variables were as follows. Pole angle: 0...0.15625. Angular
velocity: 0...2. Pushing force: 0...8. The smaller the scale for ¢ and ¢, the
more sensitive is the input sensing of the controller; and the larger the scale for
f, the stronger the output of the controller.

Step 2 Perform the experiment

We ran the controller with the simulated** cart-pole “plant” 15 different
times. Every experiment was run with a starting angle @ = 0.01, and all other
transient variables set to 0. We recorded the absolute value of the final cart
position for each experiment. Time was incremented every 0.02 seconds, cart
mass was 1.0 Kg, pole mass was 0.1 Kg, pole length was 0.5 m, and acceleration
due to gravity was 9.8 m/s2.

*Each (continuous) variable’s axis was discretized at 17 equally spaced values, nominally -
8,-7,...,-1,0,1, ..., 8. The “scale” value is the distance between adjacent discretization

points.

**The simulation was based on equations provided by Hamid Berenji. The differential
equations can be found in Berenji’s article cited in the references. The simulation assumed a
frictionless plant.
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Step 3 Fit a quadratic form to the experimental results

We used the least squares criterion to fit a regression surface. In the case
of k=3, there are 10 regression coefficients to be estimated. The form of the fit
regression function is expressed matrically in equation (2).

Step 4 Find the “stationary point” of the quadratic form

The stationary point is xp = -B-1b/2. The stationary point may be inside or

outside of the convex envelope enclosing the experimental region. The stationary
point may correspond to a maximum, a minimum, or to a saddle point.

In the example reported on here, the stationary point was typically a saddle
point. A typical value of x¢ is (-0.129, -0.503, -0.0822) and was near the

centroid.
Step 5 Reduce the response surface to canonical form

“Canonical analysis” is used to reduce the response surface to canonical
form by determining the eigenstructure of the matrix B. If all of the eigenvalues
(characteristic roots) are positive, the stationary point indicates a minimum,; if all
are negative, the stationary point indicates a maximum; otherwise, a saddle point
has been found. A typical case produced eigenvalues 9.71706, -4.90507, and
-6.70762. This suggests a saddle point.

The stationary point and the response surface can be interpretted in terms
of its canonical form. If, for example, we are seeking a minimum and the
stationary point indicates a minimum and the stationary point is inside the
experimental region, interpretation of the results are relatively straightforward.
If, on the other hand, we are seeking a minimum and the stationary point does not
indicate a minimum or the stationary point is outside the experimental region,
interpretation of the results is more complex.

The signs and magnitudes of the eigenvalues of matrix B provide
considerable information about the region of the surface in the vicinity of the
stationary point. This information is oriented not to the original reference axes,
but to the axes described by the eigenvectors. Each eigenvalue has a
corresponding eigenvector. If an eigenvalue is negative, then movement in either
direction along the corresponding defined axis, produces a decrease in the value
of the response variable. An opposite, analogous interpretation applies for a
positive eigenvalue. If the magnitude of the eigenvalue is large relative to other
eigenvalues, then movement away from the stationary point along the
corresponding axis has greater sensitivity than movement along other axes. If
one of the eigenvalues is very close to 0, then the stationary point may resemble
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more of a near-stationary ridge. This may afford the decision maker
considerable latitude in controller tuning.

Although the experiment is supposed to be designed so that the stationary
point is inside the experimental region or at least close by, the system may not
behave as expected. Evaluation of the eigenstructure may provide import clues
regarding the location of additional experimentation.

Step 6 Use ridge analysis to further interpret the response surface

Often analysis of the canonical form suggests that additional
experimentation is needed because, for example, the stationary point appears to
be a saddle point.* If additional experimentation is indicated, a “ridge analysis”
may suggest the direction in which to move in order to select future sampling
points. Myers suggests references by Hoerl1! and Draperi2.

To perform a ridge analysis is to perform a constrained optimization;
optimize the quadratic function restricting the solutions to being on
(hyper)spheres of varying radii. The spheres are centered at the stationary point.
To minimize the response, then for each different radius, plot the values of y
against R. Also plot the values of the x which correspond to each radius. For
example, to minimize when the stationary point suggests a saddle point, move in
the direction of decreasing response along a “ridge” defined by the series of
radii.

The ridge analysis can be modeled using the method of Lagrangian
multipliers. The constraint can be expressed x’x - R2 = 0. The function

F=y- u(x'x - R2) can be optimized. In practice, the plotting of the solutions of
this optimization is a parametric plot. y is a function of x, as is R; in addition R is
constrained by (is a function of) pu, R(n). Each value of p determines a radius R,
and the optimal value of y is determined by that radius. This can be done by
selecting values of U first, then determining the values of x; = bj/2j1 which follows
from requiring the partial derivatives in the Lagrangian method to equal 0. The
range of possible values of p is determined by whether you wish to maximize or
minimize. For maximization, the values of p must be larger than the largest
eigenvalue; for minimization, the values of y must be smaller than the smallest
eigenvalue. With the eigenvalues 9.71706, -4.90507, and -6.70762, L must be
less than -6.70762. The plots below show that the predicted value of the

*A saddle point may be an indication of multiple extrema; such a phenomenon is not
consistent with models of the quadratic form.
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response surface, y, reduces relatively steady as the radii, R, increase.*
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In relation to R, the plots of the variables angle, velocity, and push show
that push, velocity, and push increase slightly. By telescoping in to get more
accuracy, the value of the pole angle is found to be between 0.08 and 0.13
radians; angular velocity is between 1 and 1.28 radians per second; and push
force is between 5.55 and 7.8 newtons. These ranges provide a narrower range
within which to calibrate the three scales.
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Standardized angle, velocity, push Angle, velocity, push variables

The controller experiments were performed again with the variables
limited to these narrower limits. The results of the repeat experiment suggest the
controller is able to balance the cart-pole system; the final position of the cart in

*In fact the plot shows y becoming negative, which is impossible for the true response
value, since only absolute values are considered. But this anomaly is a result of the approximate
nature of the fit of the quadratic form, and is not critical.
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half of the trials was less than 0.8 m from its starting position and always between
0.29 and 1.42 m. Below we show plots of each key variable relative to the radii
R.
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By applying a similar analysis to alternative criteria, a fuller assessment of
the controller performance can be had. Using plots similar to those for cart
position, the alternative criteria’s optima can be viewed in relation to the analysis
demonstrated here.
)
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