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ABSTRACT

This paper analyses the internal operation of fuzzy logic controllers as referenced to the human
cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on
the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic
controllers. This analysis helps to create a ground to explore the potential of enhancing the
functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class
of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FL.C), whereby
some new concepts are advanced to qualify fuzzy controliers as " cognitive devices" rather than
"expert system devices". The operation of the CT-FLC, as a fuzzy pattern processing controller,
1s explored, simulated and evaluated.

1. INTRODUCTION

Methodologically, fuzzy logic controllers implement digital control method which simulates the
human thinking in handling the imprecision inherent in the control of physical systems. They can
be classified as control expert systems capable of interpreting fuzzy statements of human
knowledge such as "Temperature is high" or " Increase flow slightly", etc. Fuzzy controllers
employ the approximate reasoning procedure called the compositional rule of inference (CRI),
introduced by Zadeh [8], which represents the core of the deduction mechanism of the controller.
Following the CRI scheme, the control actions are deduced by the composition of the fuzzy sets
which are generated from the measured values of process variables ( the input to the controller),
and the matrices of fuzzy rules (knowledge on the input-output relationship) using the relational
algebra operations of Max and Min . Fuzzy logic controllers propagate numerical data of the
process variables into fuzzy linguistic terms ( this phase is called fuzzification), deduce the the
control actions as fuzzy sets using the CRI, and translate fuzzy actions into crisp data ( this phase
is called defuzzification) to be applied to the controlled process to keep it within the desired limits
. Hence, the overall operation of the controller can be looked upon as a numerical to numerical
mapping mechanism whereby compositional relations of fuzzy sets and fuzzy rules arehandled
by the the compositional rule of inference while the controller is provided with two convertors:
numerical to linguistic (fuzzifier) and linguistic to numerical (defuzzifier) to facilitate its
communication with real world processes.

* This work is supported by Mentalogic Systems Inc. and the National Science and Engineering Research
Council of Canada (NSERC).
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In this paper the operation of fuzzy logic controllers is analysed within a cognitive framework
based on two concepts. The first uses the Rasmussen model of the cognitive task analysis of
control and decision making in a supervisory control environment [1, 4]. The second uses the
concept of a fuzzy pattern and the measure of its clearness degree to describe the tasks of the
fuzzy controller. These two concepts have been used in developing a new class of fuzzy logic
controllers called the CT-FLC, or the Clearness Transformation Fuzzy logic Controller [ S). The
CT-FLC is characterized as fuzzy patterns assessment and processing device. The paper
discuses theoretical issues of the CT-FLC, and presents some simulation results on its
performance.

2. THE FRAMEWORK OF THE COGNITIVE TASKS ANALYSIS OF FUZZY
LOGIC CONTROLLERS

Fuzzy controllers can be looked upon as cognitive devices which comply in their operation
with the cognitive tasks achieved by skilled operators involved in decision making in a
supervisory control environment. As such, we will follow the step-layered model of the
control and decision making of Rassmussen [4] and Cacciabue [1] to establish and describe the
tasks performed by fuzzy logic controllers. Following the step-ladder diagram, the operator
behaviour in a supervisory control environment is described in terms of the cognitive tasks to
be performed at three ladders: skill-based, rule-based and knowledge-based, depending on the
complexity of the task to be handled by operators. Within this framework fuzzy logic
controllers cover the skill-based and most of the rule-based decision-making functions of
skilled operators. The knowledge based behaviour, where decisions are elaborated as a
compromise between purposive policies such as safety and production policies, etc. , falls
beyond the task of the fuzzy controller as a parameter driven system of control.

The cognitive tasks achieved by the operator in handling the rule-based functions are:
- observation, detection and perception of process situations and status.

- assessment and evaluation of the current process situation.

- actions plannin.

- actions execution.

Following the Rasmussen task analysis ladder diagram, it is obvious that the first and the last
tasks correspond to the fuzzification and defuzzification tasks of the fuzzy controller,
respectively, while the second and third tasks are related to the approximate reasoning
procedure employed by the controller.

Further, we will intensively use the concept of fuzzy patterns to elaborate the definition of the
tasks of the fuzzy controller. The rationale behind using of fuzzy pattern instead of its synonym
fuzzy set is that patterns are the basic cognitive entities manipulated by humans in the decision
making practice. The fuzzification task of the fuzzy controller corresponds to the perception
phase of the human cognition whereby the observed numerical values of the process variables
(such as, for example, the value of the temperature = 30° ¢) is mapped into fuzzy patterns such
as NORMAL, SLIGHTLY HIGH, etc. The next task of the controller is to generate action(s)
to react to the observed situation to recover the process to its normal/ desired operation. This
phase is performed by the operator by activating an associative referencing to his/her long term
memory to consult and select the proper action(s). This task is conveniently called " the
associative pattern matching " activity, whereby the pattern(s) generated by the fuzzification
phase are used to activitate patterns of the control action(s). The translation of these patterns to
numerical values to be applied to the system will be the task of the the defuzzification. Hence,
the three tasks : fuzzification, pattern matching and defuzzification are the major tasks performed
by the fuzzy controller. These are the same tasks performed by operators in their usual practice
in the supervisory control environment. They are consistent with Rasmussen cognitive task
analysis also.
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However, the approximate reasoning task of the fuzzy logic controller has a different meaning
from the cognitive approximation achieved by skilled operators in the implementation of their
decision making policy. The CRI scheme currently applied in fuzzy controllers can be given the
following interpretation. The overall output of the controller is quantified as averaging of all the
possible control actions deduced by firing all the fuzzy rules. The deductions are performed by
Max and Min quantifiers to produce the action of each rule. The final action is generated by the
defuzzifier as averaging all the actions to the process. Obviously, the human approximate
reasoning is not limited, if at all applied, to this context. It is not necessary for the operator will
be using all of his knowledge (fuzzy rules) to deal with each process situation. Rather, operators
might activitate the knowledge which is most relevant to the current context of a process
situation. One of the schemes which has been developed recently and making use of this fact is
called the clearness transformation mechanism for approximate reasoning [6, 7]. By this
mechanism it is supposed that the human performs an assessment of the clearness degree of the
perceived fuzzy patterns and activitates the relevant rules on how to react, rather than calling all
the rules (knowledge) about the process. He/she then qualifies and quantifies actions to be taken
based on his/her assessment of the the detected patterns. The clearer the detected pattern of the
process state are the more confident and relevant actions will be taken by the operator to recover
the process to its normal operation. The approximation taking place here has the following
context: to which extent the detected patterns are clear enough for the operator to initiate certain
actions and how this clearness will affect the extent to which these actions will be performed.
This interpretation has been formalized as the clearness transformation mechanism for
approximate reasoning applied in the design of a new class of fuzzy controllers called the
Clearness Transformation Fuzzy Logic Controller (CT-FLC). The outlines of the cognitive tasks
implemented by this controller is presented in Figure(1).

The following features characterize the cognitive approximation performed by the controller:

1. The decision maker uses his/her long term memory to deduce the pattern of the required action
(through the pattern matching activity) while applying an approximate reasoning mechanism
to assess the clearness degree of the deduced fuzzy pattern of the control action.

2. The clearer the patterns of the process situations are the clearer the action patterns are and the
more confident actions will be applied to the process. By this mechanism the "Strength" and
"Weakness" measures of the detected patterns of process situations are mapped to affect the
extent to which the fuzzy patterns of control actions will be applied to the controlled system.

The table below describes the cognitive tasks of the operators and the counterpart
mechanisms employed by the CT-FLC.

~
~/

THE OPERATOR COGNITIVE TASK THE RELEVANT TASK OF THE CT-FLC

Detect and assess patterns of process varnables Fuzzify the measured values of process variables|

and the current process context into fuzzy patterns and determine the clearness
of each pattern

Select most relevant set of actions to recover the | Pattern matching the fuzzy patterns with the rules

process to its normal operationJ to deduce the patterns of the control actions

Pniotirize actions and assess the extent to which | Approximate reasoning using the clearness
each action must be performed to achieve the goal | Transformation mechanism of inference

Quantify the control action values and apply Defuzzification of the control action
to the process patterns into crisp control actions

]
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Figure 1. The Cognitive Model of CT-FLC Fuzzy Controller
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3. THEORETICAL BASES OF THE CT-FLC

We bear in mind that the CT-FLC is a system which operates and makes its decision at the level of
fuzzy pattern processing. Hence, two fundamental theoretical concepts have been used in the
development of the CT-FLC: the concept of a fuzzy pattern and the formulation of the clearness
transformation mechanism for approximate reasoning.

A fuzzy pattern (FP) is defined by a triple < S, D, A>, where:

S - is the syntactical description of a fuzzy pattern;
D - is the domain to which a fuzzy pattern is attached; and
A- is the clearness assessment of a fuzzy pattern.

We proceed with formal definition of each of these components.

S - component characterizes the syntactical description of the fuzzy pattern. We have utilized the
logic of fuzzy predicates to describe the fuzzy patterns of the real world situations. In this context,
the notion of a fuzzy predicate as an atomic formula of this logic is considered as an elementary
fuzzy pattern. Other complex fuzzy patterns can be described as well-formed formulas (WFF) of
this logic using the logical operators AND, OR, etc. The syntax of a fuzzy predicate (elementary
fuzzy pattern), denoted as Py, P, etc., is as follows:
PA : Ix is A

where, Lx- is a linguistic variables of Zadeh [8] and A- is its attribute value defined as fuzzy
subsets of the universe of discourse X . As an examples of elementary fuzzy patterns is:

PA : THESTATE OFTEMPERATURE is HIGH
Lx A

D-component. The domain of a fuzzy pattern PA , denoted as DA X, is composed of three

attributes < LLx, X, ox >, where:

Lx- is the domain variable;
X - is the space of all the instant models and objects (X1, X2, ...) that can be substituted as

values for Lx;
oX - is the set of substitutions of the form {xj/L.x} which define the allowed substitutions x; for Lx
from X.

As example of the domain of PA :
DAX = [ Lx = THE STATE OF TEMPERATURE ;
X =10,5]
ox= {20;30;35;45;50} ]
Figure (2) illustrates the definition of the domain of the fuzzy predicate Pa.
The next component is the assessment of the clearness measure of a fuzzy pattern by
employing the clearness measures built in the closed interval [0,1] divided into a finite number of

truth values { ak }. The "clearness" of a fuzzy pattern, is assessed when the variable (e.g. Lx) of a
fuzzy predicate (such as Pp) is substituted by instantial models (such as Xj of the variable Lx)
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from the domain DA X . Two measures, T and I" are developed to estimate the cleamess of fuzzy

patterns. The local clearness T(PA) and the global clearness I'(PA) of the fuzzy patterns. Figure
2 illustrates the concept of these two measures for the assessment of fuzzy patterns.

The local clearness measure is used to assess the clearness of a pattern at given domain variable
values and formulated as:

T: PA-->[0,1] | for Lxj=xj

The global clearness measure, denoted as I, is used to assess the "global” clearness of a fuzzy
pattern and formulated as:

I'(PA) = {T1(PA), T2(PA), ..., Tp(PA)} Hfor all the substitutions {xi/Lxi} .

In the CT-FLC system all the three components <S, D, A > are represented in three knowledge
blocks of the controller. The fourth knowledge block is used to represent the fuzzy rules (the
control protocol). The control protocol of the fuzzy controllers is composed of a finite set of fuzzy
rules of the form:

IF < Fuzzy Pattern of Process Situation > THEN < Fuzzy pattern of Control Actions >

Both the patterns of the "Process Situations" and the patterns of the "Control Actions" are specified
as complex fuzzy patterns. A general form of a situation-Action rule of the control protocol is as
follows:

IF P4j and P42 ... and PAy, THEN Ppj

where: PA; PBj- are elementary fuzzy patterns of the rules.

The next basic theoretical concept used in the development of CT-FLC is the approximate
reasoning mechanism of the Clearness Transformation Mechanism of Inference(CTMI). Fuzzy
patterns can be classified as "dynamic" or "static" to denote the patterns detected in real dynamic
operation ( the output of the human perception) and the patterns represented in the controller
knowledge base (the patterns established in the human long-term memory), respectively. The static
and dynamic patterns have the same syntactical description but may differ in their clearness
evaluation in terms of the "strength” and "weakness", as it is defined in the following:

If G'is a dynamic pattern of G , then we say that the pattern G' is "clearer” or "stronger" than G if
I'(G") > T(G) , and G' is "less clear" or "weaker" than G if I'(G') < I'(G) , for the same instant
models of its domain, where I' is the clearness measure of a fuzzy pattern. The CTMI has been

developed and established theoretically and in experimental studies on the analysis of
approximate reasoning of the Transformation Mechanism. It is a Modus Ponens based rule of

inference which uses the T and I measures to generate an estimation of the local clearness
degree of fuzzy patterns of the control actions [ 6,7]. Some two mechanisms are involved in
the CTMI: the Pattern Matching and the Transformation Mechanism.
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4. THE CONCEPTUAL DESIGN AND OPARATIONAL PHASES OF THE CT-FLC

The CT-FLC is designed following the cognitive model of fuzzy control described above. It has a
modular architecture consisting of four operational modules: The Fuzzifier, The Controller pattern
matching mechanism, The Approximate Reasoning Mechanism and the Defuzzifier. The flow of data
and control between these four modules is coordinated by the Control and Inference module. The
controller operates in four phases labeled in Figure 3 as: the Fuzzification Phase, the Rule Selection
and Inference Phase, the Approximate Reasoning Phase and the Defuzzication Phase.

The abbreviation on the block diagram of the controller are:

P'A1, ... , P'An - fuzzy patterns of the process input variables (X1, ...., Xn),
T(P'A1), --- » T(P'An)- the local clearness of fuzzy patterns Pay, ... , Pan.

P'gj - the deduced fuzzy patterns of the control action for the output variables (Y})
Tapprox- the local cleamness ofthe fuzzy patterns of the control actions P'g;.

5. APPLICATION EXAMPLE

This is a simulation example to illustrate the performance of the CTFLC. The system in this
example is a closed loop single-input single-output system consisting of two parts, a linear element
and a nonlinear element. The linear element is a second order system with a transfer function

G(S) =  cceememmememmeeees
: S24+028+0.1

and the nonlinear element is a dead-zone equal to 0.3 with a slope of 1.0 as shown in figure (4).
Two variables are selected to represent the process. These are the error in the output response and
the change of this error. The control rules used in the fuzzy controller are shown in figure (5). The
fuzzy patterns implemented in the controller knowledge-base are: positive high, positive-normal
big, positive-normal small, positive low and similar patierns for the negative estimation of the error
patterns. The global clearnesses of these patterns, as well as those of he patterns of the control
actions were embodied in the Fuzzifier and Defuzzifier knowledge-bases of the controller (figure
6).

The digital simulation response for a unit step input before and after the fuzzy controller in the loop
is illustrated in Figure 7. It is evident that the controlled system has a smooth response with no
steady state error. The elimination of the steady-state error despite the presence of the dead-zone
nonlinearity in this system is a remarkable achievement of this controller. It illustrates the capacity
of the TTFC and reflects the effectiveness of the design approach of this generation of controliers.

6. EVALUATION

1. A new class of fuzzy controllers : The Clearness Transformation Fuzzy Logic Controller is
developed. This controller is designed based on a cognitive model of control. It is capable of
performing the tasks of approximate reasoning at the level of fuzzy patterns. It incorporates
knowledge for fuzzy pattern clearness assessment and utilizes approximate reasoning
mechanism based on the Cleamess Transformation Mechanism of Inference .

2. The fuzzy controller has been simulated and analysed through applications with difficult control

problems. The results were extremely satisfactory in terms of performance and robustness
when compared with the existing designs of fuzzy logic controllers.
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Figure 5. Coutrol Rules

‘The abreviations used are:

E = Error

CE = Change in Error

CA = Control Action

NH = Negative Iligh

NNB = Negative Normal Big

NNBR = Negative Normal Big Right (right side of the curve)
NNS = Negative Normal Small

NNSR = Negative Normal Small Right (right side of the curve)
NL = Negative Low

I’ = Positive High

PNB = Positive Nonmal Big

PNBL = Positive Normal Big Left (left side of the curve)
PNS = Positive Normal Small

PNSL = Positive Normal Small Left (left side of the curve)
PL = Positive Small
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Figure 6. Clearness set

1.6 r ———

1.4}
1.2}
8 N After Compensation
g
&
]
£ 08F - Before Compensation
E]
&
] 0.8
o
0.4
0.2¢
ov... ... .. e ' . [ '
0 5 10 15 20 20
s|ccC
REFERENCES Figure 7. UnitL Response for Closed Loop
e i .

1. P.C. Cacciabue, G. Mancini and G. Guida , A Knowledge Based Approach to Modelling the
Mental processes of Operators. Proc. IEAEA/CEC/OECD/NEA Int. Conf. on Man-Machine
Interface, Tokyo, Japan, , pp.71-78, 1988.

2. E.H. Mamdani, Application of Fuzzy Logic to Approximate Reasoning Using Linguistic
Synthesis, IEEE Trans. Computers, C - 26, no.12, pp. 1182-1191, (1977).

3. M. Mizumoto, " Fuzzy Control Under Various Approximate Reasoning Methods", Second
IFSA Congress, pp. 143-146, (1987).

4. J.Rasmussen, Information processing and Human-Machine Interaction. An Approach to
Cognitive Engineering. North- Holland, (1986).

5. M. Sugeno, The Industrial Applications of Fuzzy Controllers, Elsevier Science Publishers
B.V., (1985).
6. L. Sulatn and T. Janabi , * The Truth Transformation Fuzzy Logic Controller: Outline of the
design of a new generation of fuzzy logic controllers”, Proc. of AI-91- Frontiers in
Innovative Computing for the Nuclear Industry”, Jakson, Wyoming, pp. 156-164, 1991.

7. L.Sultan and T. Janabi, " The Organization and Architectural Design of Knowledge-Based
Fuzzy Controllers". Submitted to IEEE Trans. on_System, Man and Cybernetics, 1991.

o0

. L.A. Zadeh, "Outline of a New Approach to the Analysis of Complex Systems and Decision
Processes," IEEE Trans Systems, Man and Cyber.,vol. SMC-3, pp.28-44,1973.

349






