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A supervised procedure for obtaining weight values for 
back-propagation neural networks is described. The 
method according to the invention performs a sequence 
of partial optimizations in order to determine values for 
the network connection weights. The partial optimiza- 
tion depends on a constrained representation of hidden 
weights derived from a singular value decomposition of 
the input space as well as an Iterative Least Squares 
optimization solution for the output weights. 
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than or equal to zero, thereby to provide an optimal 
view of the input data; 

(c) requiring that each weight W2; be adjusted in a 
direction colinear with a particular singular vector 

5 where said singular vector is selected periodically in 
such a way as to effect the greatest reduction in the 
deviations between network outputs and the desired 
training outputs and 

(d) Employing a direct solution 

technique described subsequent]y to any so- 
called “output weights” which in the instance of a 3- 
layer feed-forward network would be the weight matrix 
w3. 

ACCELERATED TRAINING APPARATUS FOR 
BACK PROPAGATION NETWORKS 

ORIGIN OF THE INVENTION 
The invention described herein was made by an em- 

ployee of the United States Government and may be 
manufactured and used by or for the Government ofthe 
United States Of America for governmental puW’ses 10 by, but not limited to, the Iterative Lease Qwes (ILS) 
without the payment of any royalties thereon or there- 
for. 

BACKGROUND OF THE INVENTION 

an extremely useful neural network algorithm. The a 
BPN “learns” a very general Class Of mappings which matrix x which will be called fie input matrix. ne 
are usually represented as functions from Rn to Rm- entries in x will be denoted X i j  where i= 1, , . . ,p and 
Theoretically a 3-layer BPN can karn almost any map, j =  1,. . . ,nl with p being the number of examples which 
but in practice the application of the BPN has been 20 comprise the training set. A set of orthogonal (perpen- 
limited due to the enormous amount of Computer time dicular) axes (called optimal axes) is extracted from the 
required for the training process. data matrix X which provides the optimal view of the 

data. The optimal axes provide a view which is “opti- 
mal” in the sense that the standard deviations of the SUMMARY OF THE INVENTION 

The principal object of the present invention is to 25 projections of input vectors along these axes BS a set 
provide a training procedure for a feed forward, back have maximal standard deviation; i.e., the optimal axes 
propagation neural network which greatly accelerates “spread out” the data to the largest possible degree. 
the training process. There is a well known mathematical procedure for 

Although the invention is, in principle, applicable to computing the orthogonal unit vectors which define the 
any neural network which implements supervised learn- 30 direction of these axes in space. The unit vectors will be 
ing through error minimization or a so-called general- the right singular vectors of the data matrix X. 
ked delta rule, the neural network architecture for The equation describing the Singular Value Decom- 
which the invention is best suited consists of a three- position of the matrix x is. 
layer feed forward network having nl inputs, n2 hidden 

all learning will be supervised; Le., correct outputs are 
known for all inputs in the training set. 

Brief Description of the Method: 
The training method according to the invention is 

applied to a feed-forward neural network having at least 
two layers of nodes, with a first layer having nl nodes 
and a second layer having n2 nodes, each node of said 
second layer having a weight W2i, where i= 1, . . . ,n2. 
The method comprises the steps of: 

(a) applying to the network a plurality p of input 
vectors for which the respective outputs are known, the 
input vectors forming an input matrix 

The back propagation neural network, or “BPN’, is 15 Explanation of the Method: 
k t  the inputs for the training set be represented 

units and n3 outputs. The invention contemplates that 35 X= UDV (4) 

where U=Uij, i=l ,  . . . ,p, j=1, . . . ,nl is the matrix 
whose columns are generally known as the left singular 
vectors of X, D is a square diagonal matrix of size 

40 nlXnl whose diagonal elements are generally known as 
the singular values of X, V=V;j is the matrix whose 
columns are generally known Bs the right singular vet- 
tors of X, and the superscript t indicates the transpose of 
the matrix V. Moreover, the columns of the matrices U 

45 and V satisfy an orthogonality condition expressed by 
the equations: 

( 5 )  e (Ik,iUh = 1 if i = j and 0 otherwise, and 

n l  (6) Z 
k= 1 

k= 1 
50 

x=x.. ‘J 

where i= l ,  . . . ,p and j=1, .  . . ,nl 

tors from the input matrix X such that the standard 
deviations of the projections of the input vectors along 

mized, the singular vectors each being represented as a 
column of the orthogonal matrix 

V k i V b  = 1 S i  = jmd Ootherwise. 
@) determining a set of nl  orthogonal singular vec- 

Associated with the i‘h singu1ar vector (i‘h Of 

than or equal to zero. The significance of each of the 
optimal axes is directly related to the magnitude of the 
corresponding singular value. Axes defined by singular 
vectors corresponding to larger singular values tend to 

(3 60 “spread” the projections of the data in direct proportion 
to the magnitude Of the 

Depending on the problem, a number r of optimal 
axes will be used. According to a preferred embodiment 
of the invention the number r may be d e t e d e d  adap- 

(3) 65 tively from the data, but it can easily be selected and 
supplied manually by an operator. Also in the operator- 
supplied category is the number of hidden nodes 
which are to be used. With each hidden node, in a t h e -  

these vectors, a set, are substantially maxi- 55 v) a value, a real number hi which neater 

v= v. ’ JJ 

where i, j=1, . . . ,nl, where the condition of orthogo- 
nality is expressed by 

otherwise, 

value. 

Vl,iVlj+ V2,iV2j+. . .+ V,,1,iVn1j=1 if i=j and 0 

and there being associated with each singular vector an 
associated singular value which is a real number greater 
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layer feed-forward neural network, there is an associ- 
ated weight vector w2i, where i is the subscript of the 
hidden node, i= 1, . . . ,n2. In virtually all conventional 
networks the vector w2; can evolve in an arbitrary 
manner during the training process. The present inven- 
tion allows each weight w2; to be adjusted only in a 
direction parallel to one of the optimal axes defined by 
the right singular vectors of X. Imposition of such a 
constraint dramatically decreases the number of optimi- 
zation variables associated with the connections be- 
tween the two layers. The conventional method re- 
quires optimization in a weight space of dimension 
nlXn2 whereas the present invention reduces this num- 
ber to n2, the number of hidden nodes. Accompanying 
this reduction in the dimensionality of the optimization 
is a corresponding reduction in the number of opera- 
tions required for each training cycle. 

Periodically it may be necessary to pick different 
singular vectors along which the hidden weights are to 
be adjusted. The singular vectors themselves only de- 
pend upon the input matrix X, therefore these vectors 
need be extracted only once. The process of selecting 
the optimal singular vectors to use at each hidden node 
requires a number of operations less than or equal to one 
conventional forward propagation cycle. Simulations 
have shown excellent results even when the initial 
choice of singular vectors is never disturbed. A key 
discovery is that the weight vectors for many problems 
may be determined very quickly with great accuracy by 
only allowing the input weights to change along 1- 
dimensional subspaces defined by the right singular 
vectors of the input matrix. 

According to the present invention, therefore, instead 
of having to solve for all components of the hidden 
weight vectors, in the fast learning architecture of pres- 
ent invention, only the coefficients of the singular vec- 
tors (one such coefficient per node as opposed to hun- 
dreds or thousands per node in the conventional case) 
must be determined. The determination of these coeffi- 
cients can occur in any one of several ways. The present 
preferred embodiment uses a gradient descent with a 
back-tracking line search. 

In a feed-forward network with more than three 
layers it would be appropriate to treat nodes in all but 
the output layer as above; Le., by imposing a con- 
strained weight representation. Additional layers, how- 
ever, would introduce additional processing overhead 
because the optimal view axes would have to be ex- 
tracted after each change in the weights of previous 
layers. The method according to the invention works 
especially well for 3-layer networks because there are 
no weights preceding the input weights; therefore, once 
computed, the set of optimal view axes never change 
and, as will be detailed, it is easy to solve for output 
weights directly using the ILS technique. 

Iterative Least Squares (ILS) 
Our objective is to find the best output weight matrix 

W3 for a given hidden weight matrix Wz. From the 
input matrix X and the hidden weight matrix we can 
obtain a matrix Z of hidden neuron outputs described by 

4 

is any one-to-one differentiable function generally 
known as the transfer function of the network, such 
functions being exemplified by the so-called sigmoidal 

u(x )=  I/(l+exp(-x)) (9) 

and i= 1, . . . ,p and Z;is the i'hrow of the Z matrix. We 

5 function defined by 

10 then must minimize the sub-function E, defined by 

15 where a i i s  the desired output corresponding to the ifi 
input in the training set and the square of the vector 
quantity indicates the square of its magnitude. 

Let Q be the matrix of actual outputs whose i'h row 
Qi is given by the equation 

Qi=wdW3Zi) (11) 

Note that the j r h  element of Qi, q;j, depends on W3 in 
a limited way, Le., qjjonly depends on the jrhrow of W3. 

25 To reiterate, the j'hcolumn of Q is a function only of the 
j rh  row of W3, therefore we can solve for the rows of 
W3 separately with no fear that solving for row j will 
disturb the optimality of any of the other rows. Let Ti 
be the irh row of W3. Then the vector Ti should mini- 

20 

30 mize the expression 

(12) 

where aidenotes the irh column of the output matrix a. 
There are many available techniques for solving this 

equation for Tisince the number of active optimization 
variables n2 is relatively small. One possible approach 
would be to use the well known Pinrose pseudo-inverse 
Z+ of the matrix Z defined by 

E, i=  (U .ZTj )  - n 92 

35 

(13) z+=yD-'uI 
40 

where Z=UDVris the singular value decomposition of 
Z and any terms involving reciprocals of zero singular 

45 values are dropped. This technique yields 

(14) 

where e n - '  is the inverse of the one-to-one mapping 
un defined by 

T F Z +  up- '(nj 

50 

(15)  Y=un- l (x l . .  . . .X.)= Yl, . . . ,Y" 

and 

55 yi=u-qXi) 

The solution given by the equation for Ti does not pro- 
vide a true minimization of the function Eo,ibecaw the 
quantity which is really being minimized is the differ- 

60 ence between ZTjand uF;I(nt) rather than the distance 
between up(ZTi) and 111 the least squares sense. The 
preceding fails to account for the fact that the function 
up may distort the sensitivity of a post-u error to a 

65 trylng for a close match of relatively insensitive coordi- 
nates which would force a mismatch in a more sensitive 
variable. The sensitivity problem might be overcome by 
including derivatives of up into the Z matrix. Specs- 

(') Zi= e n d  W.Xii) 

where un is the transfer function applied coordinate- pre:u error* thus the above equation for Ti might be 
wise i.e. 

u, , (<xl ,  . . . .xn>)= <u(%i), . . . d x d >  where 
@%) (8) 
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cally, a new matrix Z could be formed by multiplying 
Z on the left by up’ where a,’ is the Jacobian matrix of 
the mapping up This approach has two important dis- 
advantages: First, there is no longer a single Z matrix to 
be used to obtain all n3 rows of the W3 matrix. This 
requires a singular value decomposition for n3 different 
Z matrices. Perhaps an even more serious problem is to 
find reasonable values for up’. In order to know up’@), 
it is necessary to know X, but X is ZTj and Ti is the 
weight vector for which a solution is sought. The tradi- 
tional solution to this dilemma is to iterate. 

Incremental Least Squares: 
When linearization techniques are to be employed it 

is desirable, perhaps essential, to have a shrinking inter- 
val over which linearization is to occur. This require- 
ment of a shrinking interval or increment over which to 
linearize the output transfer functions naturally gives 
rise to the concept of Incremental Least Squares (ILS). 
Suppose we are seeking a least squares soiution to the 
equation 

a*= Y (17) 

i.e., (G(X)-y)2 is to be minimized, where X and Y are 
vectors. Let G’@) be the Jacobian matrix of G where 
the partial derivatives are evaluated at the point X. If an 
initial point X, is given, then we can linearize G about 
the point X, as follows 

W‘o+ 80) z a&) + G(XoPo (18) 

The increment 6, could be sought which moves G as 
close as possible to the desired value Y by assuming the 
linearization above and finding a least squares regres- 
sion solution for 6, Such a solution would be 

s o = G + ( X , X Y - G o )  (19) 

We could then construct a sequence X, Xi, . . . by 

Xn=Xn- I+Sn-  1 (7.0) 

where 

A desirable property of such a sequence is that the 
increments 6, are found which produce the minimum 
disturbance while moving toward the solution. We 
could apply this method directly to minimize the func- 

As observed previously, 

m*=U;(mz (23) 

If the diagonal Jacobian matrix up‘ is replaced by a 
diagonal matrix with entries bounding those of up‘ from 
above, then the resulting pseudo-inverse matrix pro- 
vides a conservative update; Le., the update tends to 65 
undershoot rather than overshoot the desired minimum. 
Specifically, from the above equation for (TI@), it fol- 
lows that the diagonal elements of up’ are never greater 

5 
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25 
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6 
than t when the customary sigmoidal non-linearty is 
used as the transfer function for the network. If a differ- 
ent transfer function is employed, then the constant f 
would be replaced by an upper bound for the derivative 
of u. Combining the preceding we obtain the following 
sequence Xo, XI, . , . which approaches the optimal 
output weight vector Ti. 

Xn=Xn- 1 + a n -  1 (24) 

where 

6,- 1 =4Z+(ni--CrP(zxn- 1)) (25) 

This is termed a one-step method because the major 
overhead is the computation of the matrix Z+ which 
must be done only once. Though the method ignores 
information which could be obtained from the transfer 
function derivatives, sensitivity information is included 
in the form of the errors which are passed back into the 
increment 6,. The update described by the above equa- 
tion for 6,-1 is the Hessian update with the transfer 
function first derivatives replaced by f (the upper 
bound) and transfer function second derivatives re- 
placed by 0. The sweeping nature of the preceding 
simplifications makes further theoretical treatment of 
the sequence described by the equation for 6,-1 ex- 
tremely complex. The method succeeds because most of 
the important Hessian information is carried in the Z 
matrix rather than in the diagonal Jacobian matrix of 
transfer function first derivatives and the tensor of sec- 
ond transfer function derivatives, most of whose ele- 
ments are zero. 

The training procedure according to the present in- 
vention can therefore be summarized as follows: 
(1) Extract singular values and singular vectors from 

(2) Based on the magnitudes of the singular values, 
the input matrix X. 

40 make a judgement of how many singular vectors 
must be retained. 

(3) Decide how many hidden nodes to use. Note that 
the results of steps (1) and (2) will in general contrib- 
ute to this determination, which may be essentially an 

(4) Set random values for the coefficients of the singular 
vectors which represent the input weights and the 
full matrix of outvut weights. 

45 educated guess. 

tions E;,;, but it would be necessary to compute the 5o ( 5 )  Perform a numekcal oG-tion to find the set of 
matrix GI+(&) not only at each iteration step, but also, coefficients of the singular vectors which yields the 
BS observed previously, for each output node. If we best set of input weights for the current (initially 
further simplify the expression for G’+ then only one random) output weights. 
pseudo-inverse calculation will be required. Let the (6) Using the input weights derived from the coeffici- 
function G be defined by ents of singular vectors obtained in step ( 5 )  use the 

ILS procedure to solve for the output weights. 
(22) (7) When no further decrease in network error can be 

obtained by applying steps ( 5 )  and (6), for each of the 
n2 hidden nodes, evaluate the learning potential pidof 
each of the r singular vectors. The learning potential 
pjj  of a singular vector is defined to be the absolute 
magnitude of the rate of change of the network error 
function with respect to changing weight WZjparallel 
to the j r h  singular vector, i= 1, . . . ,n2, j = 1, . . . ,r. 

(8) Choose a new singular vector for each of the n2 
hidden nodes according to which of the r singular 
Vectors possesses the greatest learning potentid for 
the particular hidden node, and initialize a new set of 

55 

Go=CrdZy) 
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coefficients for the new singular vectors to be all 
0.0’s. 

(9) Repeats steps (51, . . until the process stabilizes. 
(10) Convert the coefficients and singular vectors 

which describe the input weights into the form of 5 nying drawings. 
weights which are compatible with conventional 
network architectures. Said conversion is accom- 
plished according to: 

value dccomposition need not be recomputed if outputs 
or network architecture are modified. 

The preferred embodiments of the present invention 
will now be described with reference to the accompa- 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a representational diagram of a single artific- 

ial neuron or “node” whose outDut is a function of the 
(26) 10 input. 

FIG. 2 is a representational diagram of a back propa- 
gation neural network having three layers: an input 

where Cj,k are the singular vector CC)effiCients obtained layer, a hidden layer and an output layer. 
in step (5) ,  v j ,k  is the matrix v Of right Singular vectors FIGS. 30 and 36 are perspective views of a hoop, 
of the input matrix X,Ak is the kth singular value of X 15 viewed nearly edge on (FIG. h) and viewed from the 
and k is allowed to range over all indices from 1 to r for side (FIG. 36), which illustrate an optimal view, iae., the 
which the singular vector selection processes of steps effect of viewing an object from an optimal perspective. 

by the ILS procedure rather than numerical optimiza- 20 
tion as is the conventional method, the output weights 

rectly compatible with conventional network architec- 
tures. EMBODIMENTS 

invention is not exactly equivalent to conventional back The Preferred embodiments of the Present invention 
propagation, the weights which are produced at the end will now be described with reference to FIGS. 1-4 of 
of the procedure are entirely compatible with ordinary the drawings. 
back propagation networks. Simulations have shown Feed forward, back propagation neural networks are 
that, even in cases for which the subject invention fails 30 well known in the art. Such networks comprise a plural- 
to produce acceptable weights, these weights can be ity of artificial “neurons’’ or “nodes” connected in a 
used as an excellent starting point for a conventional highly parallel manner. The key to the functioning of 
training method. starting a conventional method with such a “BPbJ” is the set of weights associated with each 
weights found by the accelerated method can reduce node, which vary to determine the level of association 
the number of cycles required for final convergence by 35 between nodes. It is these weights that represent the 
a factor of 10 in many cases, and can even cause the information stored in the system. 
conventional method to converge on problems for is shown in FIG. 1. ne 
which convergence of the conventional methods was one output. never observed when the conventional method was are multiplied by the 

40 weights and summed to yield total neuron input I. For forced to work from a random start. 

vention is preferably employed under the following 
conditions: 
(1) The neural network is a 3-layer feed-forward net- 

(7) and (8) determined that singu1ar vector 
mal learning potential for node i’ 

had maxi- 
computed 

FIGS. and 4b &ow a reprentation of 
network weight vector being allowed to evolve in an 
unconstrained manner FIG.  4n) and being ‘Onstrained 

DESCRIPTION OF THE PREFERRED 
produced by the accelerated training method are di- to evolve along a preferred optimal a x i s  only (FIG. 46). 

Although the training procedure according to the 25 

A typical artificial 

The input signals to the 
may have multiple inputs, but 

The training procedure according to the present in- the itb neuron shown in FIG. 1, the input I and 
output are given by: 

Ij=Ncuron input=ujW$j (29) 

layer and one output layer. Oi=Neuron Output= 1/(1 t e - 4  (30) 

work; i.e., a network with one input layer, one hidden 45 

(2) The sizes of the layers are such that a significant 
BmOUnt Of COmpUtatiOn OCCUrS in the COMeCtiOnS where j identifies the source of the signal to the 
between the input layer and hidden layer. 
Cost Comparisons: 
The cost estimate C, for application of the standard 

a data set of p examples may be calculated as follows: 

weight Wij. The neuron output may be a so-called “sig- 
50 moid” function of the input: 

gradient descent training method for C cycles through 1/(1 +e-?. 

The sigmoid is, in some respects, representative of 
52 real neurons, which approach limits for very small and C,=CpnZ(nl +n3) -- 

very large inputs. Each neuron may have an associated 
6*threshol#3 e which is subtracted from the total input I 
so that x=Ii-e. It is customary in the art to treat these 
thresholds as weights leading from an input fixed at 

(”) 60 unity to the threshold neuron. This treatment of thresh- 
where 4 is the fraction of cycles which require an evalu- olds allows the method according to the subject inven- 
ation of the learning potential described in (7) and (8), tion to be directly applicable to neural networks with or 
and S is the cost of performing the singular value de- without thresholds. 
composition of the input matrix X .  Note that the cost of There are several known neural net learning algo- 
the singular value decomposition is not multiplied by 65 rithms, such as back propagation and counter propaga- 
the number of cycles because it is only necessary to tion, which are used to train networks. The program- 
perform the singular value decomposition once at the mer “trains” the net by supplying the input and corre- 
outset of the training process. Moreover, the singular sponding output data to the network. The network 

The comparable Cost Cn for the training method ac- 
cording to the present invention is given by: 

C,=S+ qnZn3+5nZ(nl +n3)), 
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learns by automatically adjusting the weights that con- 
nect the neurons. The weights and the threshold values 
of neurons determine the propagation of data through 
the net and its response to the input. 

FIG. 2 shows a back propagation network compris- 
ing an input layer having four nodes (nl=4), a hidden 
layer having six nodes (n2=6) and an output layer hav- 
ing two nodes (n3=2). From the number of connections 
in this simple network, it will be appreciated that train- 
ing the net to the correct responses is normally a com- 
putationally expensive process. The purpose of the pres- 
ent invention is to reduce this computation time and 
expense. 

Theoretical Basis of the Invention: 
The invention operates by performing a sequence of 

partial optimizations in weight space which are of two 
types. Each type of partial optimization may be viewed 
as a partitioning of the network weights into two or 
more classes, performing optimization on one class at a 
time, and proceeding from class to class according to an 
iteration strategy. The simpler partial optimization con- 
siders the connections between the hidden and output 
layers separately from those from the input to the hid- 
den layer. The output connections can be found by the 
ILS procedure because these connections have known 
outputs and inputs which are also known if the hidden 
weights are assumed, i.e., excluded from the partial 
optimization. 

The other kind of partial optimization involves de- 
composing the input weight space in a manner which 
provides the optimal view of the input data. This de- 
composition also determines a partial optimization strat- 
egy during which the hidden weights are constrained to 
change along one-dimensional subspaces as shown in 
FIG. 4b. This constraint limits the active optimization 
variables during each step to a single coefficient for 
each hidden node. 

The optimal axes for the hidden weight space decom- 
position are the right singular vectors of the input ma- 
trix X. To illustrate this conceot of ootimality FIGS. 3a 

10 
optimal view, displays the hoop as a circle, thus provid- 
ing much more information about this device. 

With the present invention, the axes defined by the 
singular vectors corresponding to the larger singular 

5 values tend to “spread” the projections of the data so 
that the true nature of the data becomes apparent. The 
singular vectors extracted from the inputs are thus used 
to quickly find the optimal projections or views of the 
data. 

FIG. 4u shows standard weight vectors which can 
evolve in an arbitrary direction. According to the in- 
vention, the hidden weight vectors are constrained to 
evolve through linear subspaces (FIG. 4b) which 
greatly reduces the amount of computation since, in- 

Is stead of having to solve for all components of the hid- 
den weight vectors, only the coefficients of the singular 
vectors (one such coefficient per node as opposed to 
hundreds or thousands per node in the conventional 
case) must be determined. 

Software Implementation: A software implementa- 
tion of the present invention is set forth in the attached 
Appendix. 

Software Description: The program is written in the 
C computer language and is intended to be ported to 

25 IBM compatible personal computers with TURBO C, 
Berkeley UNIX work-stations as well as most computer 
systems with C language compilers. 

10 

2o 

To Compile: 
TURBO C: 
Edit the file “flub.h”, and if necessary, change the 

At the system command prompt type the instruction 

This instruction will cause the creation of the three 
files “flub.obj”, “sing-val.obj” and “flub.exe”. T o  run 
the program type “flub” at the system command 
prompt. 

30 

definition of “TBC” to read “#define TBC 1” 

“tCC -mh flUb.c Sing-Val.C” 
35 

Berkeley UNIX Work-stations: 
40 Edit thk file “flub.h” and if necessary change the 

imbedded in a space of three Or more dimensions. If the At the line prompt type the instruction 6sCc 

rows of the input matrix X were to contain random 
samples from the hoop, then the first two right singular ms command will create the three files ‘6flUb.o”, 
vectors of X (the two corresponding to the largest sin- 45 “sing-val.o” and   flu^^. T~ run the program type 
gular values) would be oriented in the plane Of the prompt. 
hoop. If the row vectors of x were then projected dong 
the axes defined by the first two singular vectors of X, requires a file containing the input- 
and the projections were plotted in two-dimensiond pairs (i/o pairs) which will & used to train the 

ASCII text in the form required by the Network Execu- thus most visible in the two-dimensional plane. 
tion and Training Simulator (NETS), a product of the Advantages Over The Standard Method: 

and 3b show two views Of two:dimensi‘onal hoop definition of “ T B p  to read “#define TBC 

-g flub.c sing-val.c -lm -o flub” 

-fluv9 at the 
Running the Program: 
me program 

space, then the result would be the hoop laid flat and 5o network. fde should decimal in 

major advantage Of the training procedure National Aeronautics and Space Administration cording to the present invention is reduced training (NASA), and from COSMIC, 382 mt Broad cost. Note that the training given above suggest 55 Street, Athens, Ga. 30602. The name ofthis file that the accelerated training method will never be more 
costly than the conventional method provided that have the 

scribe.net” may be used to facilitate execution of the 
program. If present, this fde should contain three lines 
with the following information. 
L1: seed for pseudo random number generation (if 

blank Program Will use system clock for this purpose) 
L2: M ~ ~ b e r s  of (a) inputs, (b) outputs, (c) hidden 

nodes, and (d) singular vectors to use. The program will 
prompt for (c) and (d) if not present in the file. Items (a) 

L3: The name of the “.iop’’ file written without the 
“.iop” extension, e.g. to use the file “pattern.iop” this 
line should read “pattern”. 

s,.iop,,. A second optional file, 

(<(nl-l)/nl. 

clearly lessor values of the parameter 5 or greater 60 
values of the parameter nl indicate circumstances in 
which the method according to subject invention 
should be considered. 

Illustration of the Invention: 
The nature and operation of the present invention is 65 and (b) are mandatory. 

illustrated in FIGS. 3 and 4. FIGS. 3a and 3b show two 
views of a circular hoop in space. FIG. 3a presents the 
hoop nearly edge-on whereas FIG. 3b, which is the 
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The program will prompt for this input if not present NETS Compatibility: 
in the file. As noted, the i/o files for this program are compatible 

At start-up the user is given the option of loading 110 with those for NETS. If the weights generated by this 
from a binary work-file. This will generally be much program are to be used by NETS, then the following quicker than loading the training set from an ASCII file. 5 
The work-file is automatically created when the ASCII 
file is processed so that you need only read the ASCII (l) The number Of node in layer input layer) 

must be equal to n l  (item (a) in line 2 of “describe.- file once, thereafter use the work-file. 
The user communicates with the program through a net”). 

simple command line interface. Each command is given 10 (2) The number of nodes in layer 1 (NETS output 
by typing a letter followed by a carnage return. All but layer) must be equal to n3 (item (b) of line 2 in “de- 
two of the commands are self-explanatory. These two scribe.net”). 
commands for training and ‘d’ for choosing the “de- (3) The number of nodes in layer 2 (a hidden layer for 
scent mode”. NETS) must be equal to n2 (item (c) on line 2 of 

must be followed. 

Training: 15 “describe.net”). 
When YOU select the ‘t’ option You are executing the ‘(4) The network implemented by NETS must be fully 

steps of the Accelerated Training Method. This action 

( 5 )  The network implemented by NETS must have 3 requires two inputs from the user, counts of “major” 
and “minor” cycles. Major cycles are defined to be 
those in which the learning potential is evaluated, and 20 layers* 
thus are much more costly than minor cycles. The num- The name of the weight file created by this program 
ber of minor cycles will be interpreted as the number of automatically has the “.pwt” extension, and as such, is 
partial optimization steps between major cycles. The compatible with the ‘P’ (portable) format for NETS 
ILS solution for the output weights is done once in weight files. The weights determined by this program 
every major cycle. The number f which governs the 25 are generated for a network with no thresholds (biases) 
relative cost of the Accelerated method in comparison but are stored in a fashion which renders them compati- 
to the conventional method is simply the ratio of major ble with networks with or without thresholds. Even for 
cycles to minor cycles. networks with no biases, NETS requires bias values to 
4 =(major cycle count)/(minor cycle count) be included in weight fdes. The program includes bias 

Descent Selection: 
This software implementation of the Accelerated There has thus been shown and described a novel 

Training Method offers two numerical methods for training method for feed-forward, back propagation 
determination of optimal coefficients for the Singular neural networks which fulfills all the objects and advan- 
vectors which determine the hidden weights. The gra- tages sought therefor. Many changes, modifications, 
dient method uses straight gradient descent with back- 35 variations and other uses and applications of the subject 
tracking line search. The direct method uses a lineanzed invention will, however, become apparent to those 
Hessian method in which the sigmoids are replaced by skilled in the art after considering this specification and 
locally linear mappings. The direct method is more the accompanying drawings which disclose the pre- 
costly, but will require fewer minor cycles to produce ferred embodiments thereof. All such changes, modifi- 
optimal coefficients. The cost of the direct method 40 cations, variations and other uses and applications 
increases rapidly with n2, the number of hidden nodes, which do not depart from the spirit and scope of the 
and thus the gradient method is usually preferable for invention are deemed to be covered by the invention, 
large networks. which is to be limited only by the claims which follow. 

30 values in its weight files as 0.0’s. 

d u - ~ . Q * v  + w; 
if (d > 0 . 0 )  
return (0.5*h* (w-4.O*v+3.0*u) /d) ; 
else . 
if (u w )  
return 0.0; 
else 

. zeturn 2.Q*h; 
I /* end best-r * /  

void update ( r )  
float r ; 
( 
int i; 

if ( ! stop-f lag) 
f o r  (i - 0; i < size-hidden; i++) 
hidden~weight~coefficient~il--(r*delta~c[il); 
) / *  end update */ 

void restore (r) 
float I; 
( 
int i: 
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if (!stop-flag) 
for (i - 0; i < size-hidden; i++) 
hidden-weight-cOefficient[i]+-(r*delta-c[i]); 
) / *  end restore */ 

void compute-output-weights ( )  

int i, j, k, n, rnk; 
float s, to, tl; 
static float * y  - NULL, *z, *temp-l, *temp-2; 

if (y -- NULL) 
I 
y - (float*)mem-alloc (numgairs*sizeof (float) ) ; 
z - (float*)mem-alloc (numgairs*sizeof (float) ) ; 
temp-1 - (float*)mem-alloc (size-hidden*sizeof (float)) ; 
temp-2 - (float*)mem-alloc(size-hidden*sizeof(float)); 
) / *  end if */ 
for (i - 0; i < size-hidden; i++) 
for (j - 0; j <- i; j++) 
( 
vip[il[jl = 0.0; 
for (n - 0; n < numgairs; n++) 
vip[i] [ jl+-(hidden-output[nl Iil*hidden-output[n] [j]); 
viprj1 ri1 - ViP[iI [ j l ;  
) / *  end €or j */ 
sing-val (size-hidden, size-hidden, vip, value, evip) ; 
for (rnk - 0; (rnk<size-hidden) L L  (value [rnk]>machine-zero) ; rnk++) ; 
for (k - 0; k < size-output; k++) 
( 
for ( ; ; I  
( 
to - 0.0; 
prop-vector (size-hidden, numgairs, weight-1 [k] , hidden-output, y) ; 
for (n - 0; n < numgairs; n++) 
I 
y[n] - 4 .O* (outpt [nl [kl-sigmoid(y [n]) ) ; 
to+-square (y [nl 1 ; 
) / *  end for n */ 
to/-16.0; 
prop-transpose (size-hidden, numgairs, y, hidden-output, temp-1); 
prop-transpose (size-hidden, size-hidden, temp-1, vip, temp-2); 
for (i - 0; i < rnk; i++) 
temp_2[i]/-value[i]; 
prop-vector(rnk, size-hidden; temp-2, evip, temp-1); 
for (i - 0; i < size-hidden; i++) 
weight-l[kl [il +- temp-l[il; 
tl - 0.0; 
prop-vector (size-hidden, numgairs, ueight_l[k],hidden-o~tp~t, y ) ;  
for (n - 0 ;  n < numgairs; n++) 

s - sigmoid(y[nl)-~utpt[nl [kl; 
tl+-squarets) ; 
) / *  end for n */ 
if (tl< (numgairs*.0000001) ) 
break; 
if (ti > (t0*0.98)) 
I .  
€or (i - 0; i < size-hidden; i++) 
weight-l[k] [i] -0 temp-l[il; 
break; 
) / *  end if */ 
I d / *  end for ;; */ 
] /* end for k */ 
) / *  end compute-output-weights */ 

void direct-hidden0 
t 
int i, j0, jl, n;: 
float d, t; 
static float *temp-NULL; 

I '  
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if (temp -- NULL) 
temp - (float*)mern-alloc(size-hidden*sizeof(float)); 
for (j0 - 0; j0 < size-hidden; jO++) 
for (jl - 0; jl <- jQ; jl++) 
I I 
vip[jO][jl] - 0.0; 
for (n - 0; n < numgairs; n++) 
I 
t - d~sigmoid(hidden~activation[nl[jO],hidden~output[n][j0])* 
d-sigmoid(hidden-activation In1 [jll, hidden-output [nl [ jl] ) *inpt [n] [ jO] *inpt In1 [ j l l ;  
for (i - 0; i < size-output; i++) 
[ 
.d - d-sigmoid(output-activation[nl [i], net-out(n] [i]); 
vip j01 t jll+- (t*weight-l lil [ j01 *weight-l [il jll *square (d) ) ; 
) / *  end €or i */ 

. J’ /*  end for n */ 
. ) / *  end for jl */ 
gradient (1 ; 
sing-Val (size-hidden, size-hidden, vip, value, evip); 

. for (i - 0; (icsize-hidden) C C  (value[i]>machine_zero); i++) ; 
prop-transpose (size-hidden, size-hidden, delta-c, vip, temp); 
for (j0 - 0; j0 < i; jO++) 
temp[jO]/-value[jOl; 
prop vector (it size-hidden, temp, evip, delta-c): 
) /*-end direct-hidden */  

ViP[ jll I j0l - ViP[jOI [jll; 

void learn (c) 
int c; 

int i, n; 
float eo, el, e2, rl ;  

propagate 0 ;  ‘ 
for (i - 0; (i<c)C&!stop-flagCC(alpha>machine-zero); i++) 
I 
e0 - rms0; 
(‘descent-method) ( )  ; 
update (alpha) ; 
propagate 0 ; 
el - rms 0 ;  
update (alpha) ; 
propagate 0 ; 
e2 - rms 0 ;  
restore (2.O*alpha) ; 
while (!stop-flagrc (el<eO) && (e2<el) ) 
( 
el - c2; 
alpha*-2.0; 
update (2 .O*alpha) ; 
propagate 0 ; 
e2 - rms0; 

. restore (2.0*alpha); 
) / *  end while * /  
while (!stop-flagcr (el > eo) CC  (alpha > machine-zero)) 
( 

‘e2 9 el:  
alpha*-0.5; 
update (alpha) ; 

. propagate 0 ; 
e l  - rms0; 
restore (alpha) ; 
1 / *  end while.*/ 
r1 - best-r (alpha, eo, el, e2); 
update (rl); 
propagate 0 ; 
alpha - rl; 
1 /* end foz i */ 
if (i<c) 
printf (” I d  passes\ntl, i) ; 
compute-output-weightso; 
add-sv ( ) ; 
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for (n - 0; n < numgairs; n++) 
for (i - 0; i < size-hidden; i++) 
old-hidden-activation In] til - hidden-activation [nl [i] ; 

. set-key (rank); 
alpha - 1.0; 
) / *  end learn */ 

void cycle (major, minor) . 
int major, minox; 

int i; 
. float local-time; 

- f  
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local-time - clock ( 1  /CLK-TCK; 
for (i - 0; (icmajor)&&!stop-flag; i++) 
( 
learn (minor) ; 

printf ( @ e  rms error - %f\n maximum error - %f\nn, 
rms () , max-error 0 1 ; 
} / *  end for i */ 
local-time - clock()/CLK-TCK-local-time; 
tot al-t ime+-local-t he; 
total-cycles+-i; 
1 / *  end cycle * /  

void save-weights ( 1  
( 
int i, j; 
float t ; 
FILE *weight-file; 
coefficient-type *p; 

printf (le save weights to file C%s> le, filename); 
if (strlen(gets (strl) ) ) 
strcpy (filename, strl) ; 
while ((weight-file-fopen(strcat(filename, *.putn), nwn))--~~~) 
1 
printf ("file %S didn't open f o r  output\n file name> *, filename); 
gets(fi1ename); 
} / *  end while */ 
filename [ strlen (filename) -4 I - \ 0 8  : 
for (i - 0; i < size-hidden; i++) 
for (j - 0 ;  j c size-input; j++) 
( 
t - 0 . 0 :  
for (p - weight-matrix(i]; p !- NULL; p - p->next) 
t+-(p-~coeff*singular~vector~j1~p-~svdnum]/singular~value[p->svdnum]); 
fprintf (weight file, * %f\n", t); 
1- /* end for j :/ 
for (i - 0 :  i c size-output; i++) 
for (j - 0; j c size-hidden; j++) 
fprintf (weight-file, * %f\n", weight-l[i] [ j]); 
€or (i - 0; i C size-input+size-hidden; i++) 
fprintf (weight-file, %f\n", 0.0); 
fclose (weight-file); 
] / *  end save-weights */ 

void teach ( )  
f 
int major-1, minor-5; 

printf (* press 'q8 .to quit\n*); 
. for (;;I 

I 
stop-flag - false; 
printf (* enter counts for major and minor cycles <Sd %d> *, major, minor); 
sscanf (gets (strl) , "%d%d",&major, &minor) ; 
if (strl IO ] - - r q r  1 
break; 
cycle (ma jor, minor) ; 
) /*  end for ;; */ 
) / *  end teach +/ 

. propagate ( )  ; 
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I 

printf (" %Id cycles in %8.2f seconds\n", total-cycles, total-time) ; 
) /*  end display-time-and-cycles */ 

void break-handle ( 1  
( 
signal ( S I G I N T ,  break-handle) ; 
stop-flag - true; 
) / *  end break-handle * I  

void change-descentfunction 0 
( 
if (descent-method -9 gradient) 
I 
printf (" Now using direct approximation\n"); 
descent-method - direct-hidden; 
) / *  end if */ 
else 
( 
printf (" Now using gradient method\nn) ; 
descent-method - gradient; 
1 / *  end else */ 
) / *  end change-descent-method */ 

void menu ( )  
I 
.printf (" c display total cycles and training time\nn); 
printf (" d change descent method\ntl) ; 
printf (" s Save weights\n") ; 
printf (" t Train network\ntl) ; 
printf (I1 h print this menu\n") ; 
printf ('I q quit program\nw); 
) /* end menu */  

1 

signal ( S I G I N T ,  break-handle); 
descent-method = gradient; 
allocate-net ( 1  ; 
printf ( I t  press 'h, for help\nn); 
.for (strl(O]-'\O';;) 
( 
printf (" command> "); 

. if (gets(str1) iOl--'q') 
break: 
switch (strl [ O ]  ) 
{ 
case ('t') : 
I 
teach 0; 
break; 
) /*  end 't' */ 
case ('c' ) : 
.( 

. . display-time-and-cycles () ; 
.break; 

. case ('d') : 

-main 0 

) l *  end 'c* */ 

( 
change-descent-function ( ) ;  
break: 
) / *  end *d* */ 
(save-weights ( 1  ; 
break; 
) / *  end r s p  */ 
case ('h') : 

menu (1; 
break; 

. case ('s'): 

. {  
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) / *  end *h* */ 
default : 
break; 
1 / *  end switch * /  
) / *  end for ;; */ 
fclose (description-f ile) ; 
) / *  end main */ 
/ *  File; f1ub.h-- a header file for the */ 
/ *  Fast Learning Utility for Backpropagation. * I  
/ *  by D r .  Robert 0. Shelton */ 
/* A product of the Software Technology Branch, NASA/JSC */ 
/* History: 
/ *  formulated by the author during the months of July and August 1990. 
The bulk of this code was written in the interval September 1-8 1990 */ 
/ *  Testing and further refinements were carried out from September 8 to */ 
/*  September 18 1990 */ 
/* Learning-potential-based vector switching added September 19-24 */ 
/* Direct solution for hidden weight coefficients added * /  
/*  September 25 - October 1 1990 */  
/*  Testing and minor revisions October 2 - October 19 1990 */ 

. 
The concepts leading to the development of this program were * I  

#include <stdio.h> 
. #include <string.h> 
#include <math.h> 
tinclude <signal.h> 
#include <time.h> 
#define TBC 0 
#if TBC 
#include <alloc.h> 
#define r-b 15 
#define GIGANTIC huge 
#else 
tinclude <malloc.h> 
#define I-b 15 
#define GIGANTIC 
lendif 
tifndef CLK-TCK 
#define CLK-TCK 1000000.0 
#endif 
idef ine true * \03.* 
#define false #\O* 
ldef ine infinity 1000000.0 
#define machine-zero 0.00001 
#define check-break 0 (printf (" \bn) ) 
#define clip(l,h,x) ( (  (x)<(l) I ?  (1) : ((x)>(h))? (h) : (x)) 
#define min(a,b) (((a)<(bl)? (a): (b)) . 
#define square (x) ( (x) (x )  1 
#define sigmoid (x) (1 .O/ (l.O+exp (- (x) ) ) ) 
ldef ine. d-sigmoid (x, y 1 ( ( y )  (1.0- (y) ) ) 
#define frand(x,y) ((XI+( ( y ) - ( x ) ) * (  (rand()&( (ll<<r-b)-l))/\ 
(float) (ll<<r-b))) 

typedef char string 12561: 

typedef struct c-t 

int svdnum; 
float coeff; 
struct c-t *next; 
) / *  end struct */ 
coefficient-type; 

EXTERN int numgairs, size-input, size-hidden-0, size-output, 
rand-seed-0, rank-0, *key, stop-flag; 
EXTERN long total-cycles-01; 
EXTERN float alpha, total-time-0.0; 
EXTERN float rand-lik-0, rand-lim-1; 
EXTERN float **err-vector, *hidden-weight-coef ficient, *delta-c, **hidden-err, 
GIGANTIC**inpt, GIGANTIC**outpt, **net-out, **hidden-output, 
**hidden-activation, **old-hidden-activation, **output-activation; 
EXTERN float GIGAUTIC*fo-base, *singular-value, **singular-vector, 
**vip, *value, **evip, **weight-l, **delta-w-l; 
EXTERN FILE *description-file; 

. I  
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EXTERN string filename, strl; 
EXTERN coefficient-type **weight-matrix; 
EXTERN void (*descent-method) 0 : 

FILE *in file0 ; 
FILE *ouF-fileo ; 
char *mem-alloc ( 1  ; 
char GIGANTIC*long-mem-alloc 
float dot(); 
float learninggotential0; 
float diagonal-gradient-norm 
float maxLerror 0 ; 
float rms ( 1  ; 
float best-r 0 ; 
int get-svd 0 ; 
void bubble (1  ; 
void compute-svd ( 1  ; 
void sing-val() ; 
void print-learning-statso; 
void set-ke y ( ) ; 
void add-sv (1  ; 
void get-iop ( )  : 
void savegvd () ; 
void prop-vector ( 1  ; 
void prop-transpose(); 

’ void allocate-hidden(); 
void allocate-net 0 ; 
void propagate ( 1  ; 
void gradient () : 
void update 0 ; 
void restore () ; 
void compute-output-weightso: 

void learn ( )  ; 
void cycle ( )  ; 
void save-weights ( 1  ; 
void teach ( 1  ; 
void display-time-and-cycles(); 
void break-handle ( )  ; 
void change-descent-function(); 
void menu () ; 

. void direct-hidden ( )  ; 

24 

/*  File: sing-va1.c-- Auxiliary numerical support routines fo r  FLUB */  
/ *  by Dr. Robert 0. Shelton * /  
/ *  A product of the Software Technology Branch, NASA/JSC */  

#include <stdio.h> 
#include <math.h> 

extern char *mem-allocO: 

static float at,bt,ct; 
#define PYTHAG (a, b) ( (at-fabs (a) > (bt-fabs (b) ) ? \ 
(Ct-bt/at,at*sqrt (l.O+ct*ct)) : (bt ? (ct-at/bt,bt*sqrt(l.O+ct*ct)) : 0 . 0 ) )  

static float maxazgl,maxarg2: 
#define W ( a , b )  (maxargl-(a) ,maxarg2-(b) , (maxargl) > (maxarg2) ? \  

#define SIGN(a,b) ((b) >- 0.0 ? fabs(a) : -fabs(a)) 
(maxargl) : (maxarg2) ) 

void bubble (m, n, a, w, v) 
int m, n; 
float **a, *w, **v; 
{ .  
int i ,  j, k: 
float t; 

for (i - 1; i .c n; i++) 
for (j - (n-1); j >- i: j--1 
if (fabs(w[jl) < fabs(w[j+ll)) 
{ 
t - w[jl: 
W I j l  - w [  j + l l ;  
w[j+ll - t; 
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for (k - 1; k <- n; k++) 
I 
t - vtkl [jl; 
vlkl [ I 1  - vikl [j+ll; 
v[kl [j+l] - t; 
1 /* end for k * /  
for (k - 1; k <- m; k++) 
f 
t - a[kl t j l ;  
a[kl [jl - a[kl [j+ll; 
a[kl[j+ll - t: 
) / *  end for k */ 
) / *  end if */ 
) / *  end bubble */ 

26 

void compute-svd (m, n, a, w, v) 
float **a,%, **v; 
int m,n; 
l 

int flag,i,its, j, jj,k,l,nm; 
float c,f,h,s,x, y,z;  
float anonn-O.O,g-O.O,scale-0.0; 
float *rvl; 

/*  
printf ("computing svd\n") ; 
* /  

/ *  correct pointers */ 
a--; 

rvl-(float*)mem-alloc(n*sizeof(float)); 

v--; 
w--; 
for (i - 1; i <- m; i++) 
a [ i] --; 
for (i - 1; i <- n; i++) 
v[i]--; 
rvl--; 

for (i-l;i<-n;i++l ( 
l-i+l; 
rvl [ i] Iscalefg; 
g-s-scale-0.0; 
if (i <- m) ( 

for (k-i;k<-m;k++) scale +- fabs(a[kl [ill; 
if (scale) ( 

for (k-i;k<-m;k++) { 
atkl [il /- scale; 
s +- a[kl [il+atkl [il; 

1 
f-a[i] ti] ; 
g - -SIGN(sqrt(s),f); 
h-f *g-s ; 
a[i] [i]-f-g; 
if (i !- n) ( 

for (j-1; j<-n; j++) { 
for (s-O.O,k-i;k<-m;k++) s +- a[kl[ 
f-s/h; 
for (k-i;k<-m;k++) a[kl[j] +- f*a[k 

1 
1 
for (k-i;kcm;k++) a[kl til *- scale; 

? 
I 
w [ il-scale*g; 
g-s-scale-0.0; 
if (i <- m & &  i !- n) ( 

for (k-l;k<-n;k++) scale +- fabs(a[il [k]); 
if (scale) ( 

for (k-l;k<=n;k++) ( 
a[il[kl /- scale; 
s +- aiil [kl*a[il [kl; 

1 
f-aiil I l l ;  
g - -SIGN(sqrt(s).,f); 
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h-f *g-s; 
a[i] [ll-f-g; 
for (k-l;k<-n;k++) rvltkl-a[il tkl/h; 
if (i !- m) ( 

for (j-1; j<m; j++) ( 

I 

for (s-O.O,k-l;k<-n;k++) s +- a[jl [ 
for (k-l:k<-n;k++) at j1  [k] +- 5.1~1 

1 
for (k-l;k<-n;k++) ati] [kl *- scale; 

1 
1 
anorm-W(anorm, (fahs(w(i])+fabs(rvl(il))); 

1 
for (i-n; i>-1: i--) { 

if (i < n) ( 
if (9) I 

for (j-1; j<-n: j++) 

for (j-1; j<-n; j++) { 

I 

v[j] [il-(a[i] [jl/a[il [ll)/s; 

for (s-O.O,k-l;k<-n;k++) I +- aril [kl*vikl I 
for (k-l;k<-n;k++) vtkl [ j l  +- s*v[kl [il: 

1 
for (j-1; j< -n;j++) v[i] [jl-v[Jl til-0.0; 

I 
v[i] [i]-l.O; 
g-rvl [ i] ; 
I-i; 

1 
for (i-n;i>-l:i--) I 

1-i+l; 

if (i c n) 
g-w [il ; 

if (9) ( 
for (j-1: jc-n; j++) a[il [ jl-0.0; 

g-1 . o / g ;  
if (i !- n) ( 

for (j-1; j<-n; j++) ( 
for (s-O.O,k-l;k<-m;k++) s +- a[kl [iI*a[kl [ 
f-(s/a[il [il)*g; 
for (k-i;k<-m;k++) a[k] [ j] +- f*a[kl [il; 

1 
1 
for (j-i; j<-m; j++) a[ j] ( i ]  *- g; 

for (j-i; j<m; j++) a[ j 1  [il-0.0; 
1 else { 

1 
++a[il [il; 

1 
for (k-n;k>-l;k--) ( 

for (its=l;its<-30;its++) ( 
, flag-1; 

for (1-k;l>-1;l--) ( 
nm-1-1; 
if (fabs(rvltll)+anorm -- anorm) ( 

flag-0; 
break; 

. I  

if (flag) 1 

if (f abs (w [nml 1 +anom -- anom) break; 
c-0.0; 
s-1.0; 
for (i-1; i<-k; i++) { 

- 1  

f-s*tvl [i] ; 
if (fabs(f)+anorm !- anorm) ( 

h-PYTBhG(f,g); 
. w [il-h; 
h-1 . O/h; 
c-g*h; 
~ - ( - f * h ) ;  

g-w[il; 
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printf (” sing-Val: no 

5,228,113 

1 
1 

rvl++; 
free (rvl); 
/ *  

1 
z-w [k] ; 
if (1 -- k) ( 

if ( 2  < 0.0) ( 

1 
break: 

1 
if (its -- 30) 
comvergence after 30 itcrations!\n”); 
x-w [ll ; 
nm- k- 1 ; 
y-w [nml ; 
g-rvl [nml ; 
h-rvl [ kl ; 
f-( (y-~)*(y+~)+(g-h)*($+h))/(2.O*h*y); 
g-PYTHAG(f,l.O); 
f-( (x-Z) * (x+Z)+h* ((y/ (f+SIGN(g,f) ) ) - h )  
c-s-1 .o; 
for (j-1; j<-nm; j++) ( 

i- j+l; 
g-rvl[il; 
y-w [il ; 
h-s*g; 
9-c*g; 
z-PYTHAG (f, h) ; 
rvl[ j]-z; 
c-f/z; 
s-h/z; 
f-x*c+g*s; 
g-g*c-x*s; 
h-yfs; 
y-y*c; 
for (j j-1; j jen: j j++) ( 

w[k] - -2; 

fo r  (j-1; j<-n; j++) v[ j] [k]-(-v[ jl [kl) ; 

/x: 

x-vfjjl [jl; 
z-v[jjl [il; 

v[ j j] [i]-z*c-x*s; 
v[ j j] [ j]-x*c+z*s; 

1 
z-PYTHAG(f,h); 
u[ jl-2: 
if (2)  ( 

2-1 .o/z: 
c-ffz; 
s-h*z; 

1 
f-(c*g)+(s*y) ; . 
x- (c*y) - (s*g) : 
for (j j-1; j j<q:  j j++) I 

y-aljjl tjl; 
z-aIjjl [il; 
a[ j j] [ j]-y*c+z*s: 
a[ j j] [i]-z*c-y*s; 

’ 

1 . .  
1 
rvl [ 11 -0 .0 ;  
rvl[kl-f; ‘ 

w [ k) -x; 
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p r i n t f  (" s o r t i n g  s i n g u l a r  values\n") ; 
*/  
bubble  (m, n, a, w, v ) ;  
f o r  (i - 1; i <- m; i++) 
a [ i ] + + ;  
f o r  (i - 1; i <- n; i++) 
v [ i ]++;  
w++ ; 
) / *  end compute-svd * /  

vo id  s ing-val  (m, n, a, sigma, v)  
i n t  m, n; 
f l o a t  **a, *sigma, **vi 
( 
i n t  i, j; 

i f  (n > m) 
( 
f o r  (i - 0; i < m; i + + l  
f o r  ( j  - 0; j < n: j++) 

32 

( 
v [ j l  [ i l  - a [ i l  t j l ;  
a [ i l  [ j l  - 0.0;  
) / *  end f o r  j */ 
compute-svd (n, m, v, sigma, a); 
.) /* end  i f  */  
else 
compute-svd(m, n, a, sigma, v ) ;  
) I* end  s ing-val  * I  

What is claimed is: 
1. Apparatus for training a feed forward neural net- 

work having at least two layers of nodes, with a first, 
input layer having nl nodes and a second, hidden layer 
having n2 nodes, each node i of said hidden layer hav- 
ing a weight vector W2i9 where i= 1, . . . ,n2, said aPPa- 35 
ratus comprising: 

(a) means for applying to the input layer successive 
Ones of a Plurality P of input vectors, for each of 
which the respective, desired output of the net- 
work is known, said input vectors forming an input 
matrix 

X = X .  ' 

. . . ,n3, said apparatus further comprising means for 
determining the output weight vectors including: 

(d) means for independently optimizing the output 
weight vectors, there being n3 independent optimi- 
zations, each of which determines the output 
weight vector incident on each output node ac- 
cording to the Incremental Least Squares (ILS) 
procedure. 

3. Apparatus of claim 2, further comprising means for 
producing outputs at each of said first layer nodes 
which are a sigmoid function of the respective inputs. 

4. Apparatus of claim 2, further comprising means for 
producing outputs at each of said second layer nodes 
which are a sigmoid function of the respective inputs. 1 8  

where i= 1, . . . , p and j= 1, . . . , nl; 
(b) means for determining a set of r orthogonal singu- 

lar vectors from said input matrix X such that the 
standard deviations of the projections of said input 
vectors along these singular vectors, as a set, are 
substantially maximized, said singular vectors each 
being denoted by a unit vector Vi, . . . , V n l r  where 

5. Apparatus of claim 1, further comprising means for 
producing outputs at each of said first layer nodes 
which are a sigmoid function of the respective inputs. 

6. Apparatus of claim 1, further comprising means for 
producing outputs at each of said second layer nodes 
which are a sigmoid function of the respective inputs. 

7. Apparatus for training a neural network composed 
of nodes having differentiable one-to-one nonlinear 

45 

50 

VI'+ ~ 2 2 +  . . . + Vn12=1, transfer functions such that, a plurality p of input vec- 
tors may be identified for each of which the respective, 

and having an associated singular value which is a 55 desired Output vector Of the network is known, said 
real number greater than or equal to zero, thereby input vectors being represented as an 
to provide an optimal view of the input data, and 

hidden layer node to minimize the error of the 

matrix 

x=x.. (c) means for changing the weight vector W2i0f each 18 

actual network Output with respect to the 60 where i= 1, . . . ,p, j= 1, . . . ,n, being the dimensional- output, while requiring during the training process 
that each hidden layer weight vector only be al- 
lowed to change in a direction parallel to one of the 

ity of the input vectors, and said output vectors being 
represented as an output matrix 

singular vectors of X. 
2. Apparatus of claim 1, wherein said neural network 65 y= y' 4J ' 

has at least three layers of nodes, with a third output 
layer having n3 nodes, each node of said third output 
layer having an output weight vector W3i9 where i= 1, 

where i= 1, . . . ,p, j = 1, . . . ,m, m being the dimensional- 
ity of the output vectors; all nodes in the network to 
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which input vectors are presented being identified as ’ to each output node Oj, where i = 1, . . ,p, j=  1, - 
(c) means for performing the Iterative Least Squares 

solution for the weight vector v; identified with 
each output node ai, where i= 1, . . . ,m; 

(d) means for performing a numerical optimization of 
the scalar multipliers Ci which determine the 
weights identified with each hidden node €1, where 
i=l ,  . . . ,t-(n+m), said optimization being per- 
formed in such a manner as to adjust the totality of 
all said multipliers Ci so as to reduce deviation be- 
tween the output values generated by propagating 
all inputs through the network to the final output 
nodes denoted oj, j=1, . . . ,m and the desired 
output values Ykj, k=l ,  . . . ,p,.j=l, . . . ,m; 

(e) means for evaluating the selection of the index j(i) 
associated with the direction vector dij(i) at each 
hidden node E;, where i= 1, . . . ,t-(n+m), so that 
said index may be replaced by a choice consistent 
with the conditions set forth in step @) as effected 
by evolution of the network through the training 
process; 

(0 means for reconstructing the entire Set of direction 
vectors dij  associated with hidden node E;  

(g) means for perfo-g a repetition of steps (a), . . . 
,(f) in such a manner as to effectively minimize 
deviations between the actual output vectors of the 
network and the desired output vectors, said devia- 
tions being dependent upon a specific hplementa- 
tion, but by the root mean squares 
measure of error. 

8. Apparatus defined in claim 7 as applied to a layered 

Some number K of separate classes, said node classes 
Of 35 defining layers of said network, there being connections 

only between nodes in distinct layers; and wherein the 
of between any two layers L; and 

Lj are completely 

input nodes denoted as . ,m; 

11, . . . .I” 
5 

where n is the dimensionality of the input vectors; all 
nodes in the network from which output vectors are to 
be extracted being identified as output nodes denoted as 

0 1 , .  . . . o m  10 

where m is the dimensionality of the output vectors; and 
the remaining nodes in the network being identified as 
hidden nodes denoted as 

€1, . . . .er-(n+m) 
15 

where t is the total number of nodes comprising the 
neural network; said apparatus comprising: 

(a) means for associating with each hidden node E; a 20 
weight vector u; representing the strength of all 
synaptic connections leading to said hidden node 
Lit where i= l*  * . * J-(n+m), and associating with 
every output node ai, a weight vector virepresent- 
ing the strengths of all synaptic connections lead- 25 
ing to said output node o;, where i= 1, . . . ,m; each 
hidden node E; having identified therewith a set of 
optimal direction vectors denoted as d;j where 
i = 1, . . . ,t -(n + m), j = 1, . . . .Ti, ribeing the dimen- 
sionality of the weight vector Ui associated with 30 
said hidden node €;and moreover being the number 
of nodes from which said hidden node E; receives 

of said direction vectors di+ the concept of OPti- 
mality Of said 
an orthogonal direction along which the standard 
deviation of the projections of the inputs are essen- 
tially maximized, and said vectors dij, being ob- 
tained as singular vectors of the input space for the 

. 
as as being equal to the dimensionality neural network, the nodes of which are divided into 

d;j defined in 

by a 

hidden node €6 40 H ( ~ J ) =  H&iA 
(b) means for imposing a constraint on each weight 

where l < = i < j < = K , a = l , . .  . ,nj$=l,. . . ,n;andni, 
njme the respective numbers of nodes comprising layer 
i and layer j. 

9. ADDaratUS defined in claim 7 as comprising a feed- 

vector u; which requires said weight vector to-be 
aligned with a particular direction vector d;j(,), and 
sized by a variable scalar multiplier Ci, =id con- 
straint being expressed by the equation 45 

forward neural network, said feed-foGard network 
being characterized by the capability to propagate an 
input through the network in Only the forward direc- 
tiOn So that inpub to each node are dependent on only 

direction vector did,) along which changes in the 50 those nodes seen to precede said node in the order of 
Propagation of data through the network, the graphical 

deviations between the actual output vectors of the realization Of said feed-forward network being a di- 
network at the output nodes ok where rected graph with directed edges or arcs in place of the 

represented by =id output matrix y, said deviation 55 direction of said arcs being that of forward propagation 
of data through said data flow connections of the neural being measured by processes exemplified by but 
network, and further, with said directed graph being not limited to the root means square measure of 
free of loops or cycles of any kind. error, said root means square error being defined 

10. Apparatus defined in claim 7 comprising a 3-layer by the equation 
60 feed-forward neural network, every hidden node E i  of 

said 3-layer feed-forward network receiving inputs ex- 
clusively from input nodes Ij, where i=l ,  . . . 
,t-(n+m), j = l , . .  . ,n, said input nodes having values 
obtained directly from said input matrix X, the input 

65 space for said hidden node ejbcing completely spanned, 
generated and defined by the vectors commonly refer- 
enced as the row vector of said input matrix X, thereby 
rendering said input space, as well as all singular vectors 

ui= Cdi&), 

where i=l ,  . . . ,t-(n+m) and the index j(i) is se- 
lected by processes which operate by choosing a 

weight vector ui tend to most quickly decrease the 

k=1, , . . ,m, and the desired output vectors Bs data flow COMectiOnS Of the network, and with the 

where aij is the result of the propagation of input 
vector i applied to all input nodes simultaneously 
and the result propagated throughout the network 
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and singular values thereof, invariant and constant with 
respect to all evolution arising from training; 

wherein the weights on all connections between the 
input nodes and hidden nodes are identified as the 
matrix 5 

U=". . 1J 

where i= l ,  , . . ,t-(n+m), j=1, . . . ,n; 

nodes are identified as the matrix 
the weights on all connections leading to output IO 

w = w . .  IJ 

where i= 1, . . . ,m, j =  1, . . . ,r, the value r being 15 
sufficient to support such connections as are re- 

36 
quired for the implementation, in particular, if di- 
rect connections from input to output are to be 
realized, r=t-m; and the inputs to all output 
nodes are identified as the matrix 
z=z. ' 

where i=l ,  . . . ,p, j=1, . . . ,r; said apparatus fur- 
ther comprising: 

(h) means for obtaining for each hidden node 4; the 
optimal set of directions d;jby extracting the singu- 
lar vectors from the input space of the node, said 
singular vectors being substantially equivalent to 
the singular vectors of the input matrix X and 

(i) means for using the Iterative Least Squares (ILS) 
method to obtain an optimal set of output weights. 

CJ 

* * * * *  
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