Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.
SEMICONDUCTOR COOLING APPARATUS

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

STATEMENT OF COPENDENCY

This application is a Division of application Ser. No. 657,238 which was filed Feb. 19, 1991, which is a Continuation-in-Part of application Ser. No. 501,893 which was filed Mar. 30, 1990, both cases now abandoned.

TECHNICAL FIELD

This invention is concerned with providing an improved heat transfer device. The invention is particularly directed to an apparatus which will transfer heat more efficiently.

Previous devices for transferring heat relied on high thermal conductivity materials. Some of these devices use class II A diamond which conducts heat approximately five times the rate of copper at room temperature. However, such high thermal conductivity materials, such as class II A diamond, are suitable only for short distance heat transport because of the expense of the high quality diamond. Only a short distance transport, on the order of 5 mm, is practical with such materials.

Heat transfer devices of copper, aluminum, silver, and beryllium oxide have been proposed. While these materials can be used to transport heat over larger distances, their poor thermal conductivity requires high temperature gradients to transport the same power per unit area as diamond.

Heat pipes can be very effective transporters of heat with low temperature gradients. However, they rely on some active working fluid and usually have a rather limited temperature range of operation. Heat pipes are not readily constructed in arbitrarily small or complex shapes.

It is, therefore, an object of the present invention to provide a heat transfer device which conducts heat substantially better than conventional devices, yet is lightweight and strong.

Another object of the invention is to provide a heat conducting apparatus which can be used instead of more complex heat pipes and thus, be mechanically supportive, lightweight, and have no active working fluid to be concerned about. However, the apparatus will efficiently transfer heat from one place to another.

BACKGROUND ART

U.S. Pat. No. 2,542,637 to De Poy is concerned with a method of rectifying a neutral salt heat-treating bath. A solid graphite or carbon rod is immersed in the bath to reduce metal oxides and scavenge for metals in solution. The rod may be periodically removed, cleansed, and replaced.

U.S. Pat. No. 4,424,145 to Sara relates to a pitch derived carbon fiber which has been boronated and intercalated with calcium. U.S. Pat. No. 4,435,375 to Tamura is directed to a graphite filament which has been formed by heating a purified graphite material in a plasma and then intercalated with an alkali metal.

DISCLOSURE OF THE INVENTION

Gas derived graphite fibers joined with a suitable binder are used to make a high thermal conductivity composite material device. The fiber is generated by the decomposition of an organic gas.

The fibers may or may not be intercalated. The intercalate can be a halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber.

The fibers are then bundled and joined with a suitable binder resulting in a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, advantages, and novel features of the invention will be more fully apparent from the following detailed description when read in connection with the accompanying drawings in which:

FIG. 1 is an elevation view showing a heat transfer device constructed in accordance with the present invention;

FIG. 2 is a section view taken along the line 2—2 in FIG. 1;

FIG. 3 is an enlarged cross-section view of one of the fibers shown in FIG. 2;

FIG. 4 is a vertical cross-section view showing an alternate embodiment of the invention;

FIG. 5 is a plan view of still another alternate embodiment of the invention; and

FIG. 6 is a vertical cross-section view taken along the line 6—6 in FIG. 5.

BEST MODE FOR CARRYING OUT THE INVENTION

Referring now to the drawing, there is shown in FIG. 1 a heat transfer device 10 constructed in accordance with the present invention. This apparatus is used to conduct heat from heat source 12 to a heat sink 14. The source 12 and the sink 14 are constructed of highly conductive materials while the heat transfer device 10 is a graphite fiber composite composed of either intercalated or heat treated fibers.
As best shown in FIG. 2 the heat transfer device 10 is made up of highly oriented graphite fibers 16 which may in addition have been intercalated. As shown in FIG. 3, each fiber is a coaxial layered graphite structure which is intercalated with either electron acceptor or donor intercalate species. These fibers 16 are constructed into composite material in a form suitable for the specific heat transfer application.

Most carbon fibers are produced from one of three types of sources. Fibers formed by the thermal decomposition of polyacrylonitrile are known as PAN fibers. Pitch based fibers are formed by the thermal decomposition of pitch from coal or oil.

The third type is gas derived. These fibers are formed by the decomposition of an organic gas, such as methane, benzene, natural gas, etc. to form carbon fibers. Gas derived fibers possess a different structural configuration lending themselves to much higher thermal conductivities than pitch based fibers or PAN fibers.

The graphite fibers 16 are fabricated by the high temperature decomposition of an organic gas, such as natural gas, benzene, etc. to produce concentric layers 18 of graphite along the fiber axis. The organic gas used to generate the fiber and the conditions under which it is grown can be any number of techniques which produce highly oriented fibers.

These organic gas derived fibers 16 are then heated to 3000°F to further graphitize and orient them. As a result of this heating, the thermal conductivity of the fibers is increased to about three times that of copper. The high temperature heat treatment and duration can be varied.

The fibers 16 may also be intercalated with a suitable electron donor or acceptor material to further increase the electrical conductivity if enhancement of electrical transport is desired. Intercalation is achieved by the insertion of ions or molecules between the planes or layers 18 of graphite. This is accomplished by surrounding the fibers 16 by vapor of the intercalant at a suitable elevated temperature. The intercalant can be a halogen or halide salt, alkaline metal or any other species which contributes to the thermal conductivity improvement of the graphite fiber.

The pristine or intercalated graphite fibers 16 are then bundled and joined with a suitable binder 20 to produce a high thermal conductivity composite material device 10. While the binder 20 is preferably epoxy or other polymer, it is contemplated that an electrodeposited metal or low-temperature alloy could be used.

ALTERNATE EMBODIMENTS OF THE INVENTION

The geometry of the high thermal conductivity composite can be varied as needed to fit specific applications. Referring now to FIG. 4 there is shown an intercalated graphite fiber composite thermal transfer device 22 that is used to cool apparatus which uses a semiconductor component a highly thermally conductive material, a heat sink of a highly thermally conductive material, graphite fibers in thermal contact with both said heat source and said heat sink for passively conducting heat therebetween, said graphite fibers having thin metal films on the surfaces thereof to enable the same to be bonded to said heat sink, and a thin film of electrical insulation interposed between said semiconductor component and said heat sink.

We claim:

1. A semiconductor cooling apparatus comprising a heat source comprising a semiconductor component of a highly thermally conductive material, a heat sink of a highly thermally conductive material, graphite fibers in thermal contact with both said heat source and said heat sink for passively conducting heat therebetween, said graphite fibers having thin metal films on the surfaces thereof to enable the same to be bonded to said heat sink, and a thin film of electrical insulation interposed between said semiconductor component and said heat sink.

2. Apparatus as claimed in claim 1 including highly oriented pyrolytic graphite machines to a predetermined configuration.

3. Apparatus as claimed in claim 1 including a graphite fiber composite.

4. Apparatus as claimed in claim 3 including treated fibers.

5. Apparatus as claimed in claim 4 including intercalated fibers.

6. Apparatus as claimed in claim 5 wherein the intercalated fibers are highly oriented.

7. Apparatus as claimed in claim 1 including bundled graphite fibers joined with a binder.

8. Apparatus as claimed in claim 7 wherein the binder is a polymer.

9. Apparatus as claimed in claim 7 wherein the binder is a metal.

10. Apparatus as claimed in claim 1 wherein the graphite fibers are arranged in a radial array extending outward from the semiconductor to a surface of heat sink thereby spreading the semiconductor waste heat.

* * * *