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Abstract

The overall experimental and analytical effort centered around the

Middeck 0-gravity Dynamics Experiment is presented in this report. The results

of the Structural Test Article (STA) experiments are given first. An analytic and

experimental study of the changes in the modal parameters of space structural

test articles from one- to zero-gravity is presented. Deployable, erectable, and

rotary modules were assembled to form three one- and two-dimensional

structures, in which variations in bracing wire and rotary joint preload could be

introduced. The structures were modeled as if hanging from a suspension

system in one-gravity, and unconstrained, as if free floating in zero-gravity. The

analysis is compared with ground experimental measurements, made on a

spring/wire suspension system with a nominal plunge frequency of one Hertz,

and with measurements made on the Shuttle middeck. The degree of change in

linear modal paramenters as well as the change in nonlinear nature of the

response is examined. Trends in modal parameters are presented as a function of

force amplitude, joint preload, and ambient gravity.

Next the results of the Fluid Test Article (FTA) experiments are given. An

experimental study of the change in the lateral slosh behavoir of contained fluids

betwen earth and space is presented. The experimental apparatus used to

determine the slosh characteristics is described and a nonlinear analytical model

of a coupled fluid/spacecraft is outlined. The forced response characteristics of

silicone oil and distilled water in cylindrical tanks with either a flat or spherical

bottom are reported and discussed. A comparison of the measured earth and

space results identifies and highlights the effects of gravity on the linear and

nonlinear slosh behavior of these fluids.

A technical description of the hardware and software systems used in the

Middeck 0-gravity Dynamics Experiment (MODE) is presented last. MODE

consists of three major elements: the Experiment Support Module, a dynamics

test bed providing computer experiment control, analog signal conditioning,

power conditioning, an operator interface consisting of a keypad and display,

experiment electrical and thermal control, and archival data storage; the Fluid

Test Article assembly, used to investigate the dynamics of fluid-structure
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interaction in zero-gravity; and the Structural Test Article for investigating the

open-loop dynamics of structures in zero-gravity.
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Chapter 1: Introduction

In 1986 the Massachusetts Institute of Technology proposed to NASA the

Middeck 0-gravity Dynamics Experiment (MODE), a cost effective experiment

for the investigation of fluid-spacecraft interaction and structural dynamics in

zero-gravity. The objective of MODE was to gather data on the dynamic

interaction between fluid volumes stored in tanks and spacecraft dynamics, and

on the dynamics of multi-element statically indeterminate space structures. The

data derived were to be correlated with zero-gravity simulations in order to

validate analytical models, which could then be applied to a broader class of

problems.

MODE was funded by the NASA OAST In-Step program in 1988. The

MIT Space Engineering Research Center was the prime contractor with

cooperation from McDonnell Douglas Space Systems Company, who supplied

the structural test articles. All other support hardware was manufactured by

Payload Systems Inc. The NASA Langley Research Center was the technical and

programmatic monitor of the program. The experiment was flown, and on orbit

data were taken during the STS-48 mission in September of 1991. Mission

specialists Mark Brown and James Buchli were assigned to the MODE team.

With the assistance of Brown, Buchli performed the majority of the test protocols.

From the day after launch, until July 1992, the approximately three billion

measurements taken during the MODE flight and ground test program were

reduced and examined. This report constitutes the summary data report on this

experiment.

This report is divided into three subsequent chapters: one describing the

research program which centers around the the Structural Test Article (STA), the

next describing the investigation focused on the Fluid Test Article (FTA), and the

final chapter describing the hardware and flight operations.

Chapter 2 is a summary of the analytic and experimental investigation of

the changes from one- to zero-gravity in the modal parameters of the structural

test article. Both on earth and on orbit, a set of deployable,, erectable, and rotary

modules were assembled to form three one- and two-dimensional configurations

of the STA. In order to control the degree of nonlinearity, variations in bracing



wire and rotary joint preload were introduced. As a complement to the

experimental program, the structures were modeled by linear finite element

methods. The resulting analysis is compared with ground experimental
measurements, and with measurements made on the Shuttle middeck. The

degree of change in linear modal parameters as well as the change in nonlinear

nature of the STA responseis reported.

The experimental and analytical investigation of the influence of gravity
on the lateral slosh behavior of contained fluids is presented in Chapter 3. The

experimental apparatus used to determine the slosh characteristics, the FFA and

associated equipment, is described. A nonlinear analytical model of a coupled
fluid/spacecraft system is then outlined. The forced responsecharacteristics of

silicone oil and distilled water in cylindrical tanks with flat or spherical bottoms

are reported and discussed. A comparison of the measured earth and on orbit

results identifies and highlights the effectsof gravity on the linear and nonlinear
slosh behavior of these fluids.

Chapter 4 describes in more detail the hardware built for the MODE
experiment, as well as the on orbit operations. The principal hardware elements

were the Structural Test Article, the Fluid Test Article, and the Experimental

Support Module, or ESM. The ESM contained, in the space of one middeck
locker, all of the functionality of a small dynamics laboratory. Operated by the

crew over the course of three days on orbit, the ESM controlled the experiment,

and recorded the data for subsequent analysis.

!
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Chapter 2: Structural Test Article Results

2.1 Introduction

This chapter will summarize the motivation, backround and planning of

the structural dynamic segment of the MODE program. The key results of the

ground testing will be presented, as will a comprehensive review of the flight

data. The principal objectives of the structural dynamics segment of the research

program are to study suspension and gravity influences on the structural

dynamics of a modular truss system by comparing the measured response in

ground and orbital tests, and to quantify the suspension and gravity induced

perturbations using analytical models of the suspension and nonlinear effects.

This report will focus on the first of these objectives, the comparison of the

dynamics of a typical space structure as measured in ground and orbital testing.

In order to accurately predict the dynamic loads and open loop response

of a structure, accurate numerical models must be created. If the structure is to

be an element of the plant in a robust closed loop control system, an even higher

premium is placed on the accuracy of the structural model. It is becoming

apparent that it is now far easier to create a numerical structural dynamic model

with great precision, than to assure its a priori accuracy within any stated bounds.

Accuracy is degraded as a result of poor modeling due to inexact elements and

boundary conditions, mismodeling by the analyst, and non-modeling of features

such as damping and weak nonlinearities.

In the normal engineering evolution of a structural model, the inaccuracies

are reduced by iterative comparison with experimental data. The poor modeling

of stiffness inherent in a first generation or a priori model (one made from

drawings and handbook properties before any hardware exists) is often noted by

comparison with component or element testing. This information is then

incorporated into a second generation model (one which includes updated

component information based on measurements). Performing modal testing and

identification then yields frequency, mode shape and damping data which can be

used to further refine and update the model, producing what can be called a

third generation model.
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Such an orderly evolution of models is not always as straightforward for

space structures, due to the complications introduced by the ground testing

necessary as part of the prelaunch third generation model improvement. Gravity

loads the structure, causing droop and local stiffness changes; gravity alters

preload on potentially nonlinear joints; and gravity necessitates suspension,

which alters the structure's dynamics while introducing its own. One of the

remaining issues in open loop modeling is to understand the degree to which the

presence or absence of gravity influences the dynamics of space structures. It

was in part to address this issue that the MODE program was established at the

MIT Space Engineering Research Center (SERC).

The experimental approach is to test three nominally identical shipsets of

a model of a space structure, called the structural test article or STA, at two sites

on the ground. In addition, testing of one shipset has and will be carried out in

the micro-gravity of the Shuttle middeck.

The difficulty in directly comparing such on orbit structural dynamic test

results with ground test results is due primarily to the complicating effects of

gravity on the ground tests. Five classes of gravity influences can be identified:

the need for a suspension and its complication of the dynamics; the direct effect

of gravity loading on nonlinearities; the direct structural stiffening or destiffening

due to gravity loading; the gravity deformation of the structure, which leads to

dynamic perturbations about a deformed equilibrium; and the direct gravity

influence on some inertial sensors and actuators. The degree of each influence

depends on the stiffness of the test article, inherent nonlinearities, and the

geometry of the suspension [Pinson, Hanks, 1983, Rey 1992]. The specific

objective of the MODE program is to examine the first two gravity influences,

those of suspension and nonlinearity.

In order to span several typical geometries and structural forms, the

structural test article (STA) designed for MODE utilized a versatile set of

modules, allowing several configurations to be assembled. These modules

included deployable truss modules, erectable truss hardware, a rotary joint, rigid

appendages, and a flexible appendage. By assembling various modules, straight

and L-shaped trusses were formed and tested. A controlled degree of

nonlinearity was introduced into the truss modules and the rotary joint. The

preload on one deployable bay controlled the nonlinearity of the joints and

bracing wires; similarly, the preload on the rotary joint controlled the friction and
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propensity for axial rotation. The remainder of the chapter begins with a

description of the test hardware and the experimental procedures used.

The next section of the chapter summarizes the ground test results, which

were comprehensively reported in two earlier documents [Barlow, 1992 and

Crawley et al., 1992]. Ground vibration testing was performed at MIT and

McDonnell Douglas SpaceSystemsCompany (MDSSC)on two different shipsets,

under highly controlled test conditions. For each of two shipsets, three

configurations and several modes, variations were introduced by changing the

stiffness of the suspension system, the force level, the joint preload, and by

assembly/reassembly of the structure. The pertinent features and conclusions of

this ground testprogram are summarized.

The on orbit structural dynamic test results will then be comprehensively

presented. The orbital test results of three configurations arecompared with the

ground results for the sameshipset, for variations in forcing level and preload.

The ground data reported will be for the softest successfully tested suspension

system,which most closely replicates the free free orbital test conditions.

The ground and orbital test results will be compared with linear analytical

models which incorporate the presence (or absence, as appropriate) of the

suspension and gravity stiffening. The nonlinearities of the test articles are also
identified as a function of force amplitude and preload. The presence of the

measured nonlinearities will be reported, but detailed nonlinear modeling and

correlation with nonlinear experimental results await a future report.

2.2 Hardware and Test Procedure

2.2.1 Configurations

In order to examine the influence of gravity on the dynamics of space

structures, a representative Structural Test Article (STA) was designed and

fabricated. The STA was built up from erectable and deployable modules, which

could be arranged to produce several configurations, as shown in Fig. 2.1. Each

module was fashioned after a typical space structural form, and was included in

the hardware set for a specific reason.

The simplest arrangement of the modules is called the baseline

configuration. For this structure, two four-bay deployable modules (i.e.,
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modules which are capable of being deployed and restowed by utilization of

hinging joints and locking mechanisms) are connected in the center bay with
erectable hardware components (i.e., hardware that can be assembled from

individual components to form a truss section) to form a straight truss. The

objectives of the tests of this configuration were to determine the impact of

gravity and suspension influences on a straight truss composed of primarily
deployable hardware, and to examine the influence of preload in the diagonal

bracing wires of the deployable hardware on the measured ground and orbital
modal parameters.

A slightly more complicated configuration, called the alpha configuration,

is formed by replacing the erectable hardware of the center bay of the baseline

with a rotary joint modeled after the Alpha Joint of the Space Station Freedom.

Although this configuration still forms a straight truss, the additional mass and

internal dynamics of the articulating joint substantially change the behavior of

the system. The purpose of testing this configuration was to evaluate the

influence of 1-g test methods on a truss with a rotary joint which contains a

frictional interface with operating bearings.

A more complex configuration includes both deployable modules,

erectable hardware, and the rotary joint to form a planar truss called the L

configuration. Due to its shape and mass distribution, the L configuration was

the most difficult to test in a 1-g field. Tests on this configuration were

performed to provide the greatest challenge to the testing of a planar structure in

a gravity field.

2.2.2 Modules

The three configurations of the structural test article are composed of

several different modules. These modules include two deployable truss

modules, erectable truss hardware, a rotary joint, and two rigid appendages. The

modules are scaled models built by the AEC/Able Engineering Company for the

McDonnell Douglas Space Systems Company, who supplied two shipsets to MIT

(denoted STA 1 and STA 2). A third shipset, STA 3, was retained at MDSSC for

their testing. All results reported in this article will be for STA 1.

Two deployable truss modules form the bulk of each configuration. The

deployable truss resembles one of the designs proposed for the Space Station



Freedom solar array truss structure. Weighing approximately eight pounds, each

section is four bays in length with a nominal bay comprised of an eight inch

cubic section. Each Lexan longeron hinges at its midpoint (via a knee joint) and

at its attachment points with the batten frames. The batten frames remain rigid

when the truss is collapsed. The hinge arrangement allows the truss segment to

fold like an accordion for stowage. All hardware that connects the Lexan rods is

made of 6061 aluminum. Tension is maintained throughout the deployable

module by the use of pretensioned cables which run diagonally between the

batten stations. When the longerons lock in their over center deployed position,

the tension in these cables reaches 25 lb. The cables are tensioned to prevent

possible slop in the hinge and knee joints from entering the system dynamics.

The preload maintains local longeron "string" modes above 40 Hz. Typical

preload on the longerons is 28 lb. This loading is 50% of the estimated buckling

load of the longerons and represents a compromise between sufficient preload to

prevent slop at the joints and excessive preload which might destiffen a

longeron.

A single bay of one of the two deployable modules includes a mechanism

which allows for varying the preload level in the wires. The purpose of this

feature is to permit the study of preload on the joints and its influence on the

truss dynamics. Provisions for preloads of 24, 13, and 7 lb were incorporated

into the truss design and were denoted as: the high preload, or preload 1 (PL1);

the medium preload, or preload 2 (PL2); and the low preload, or preload 3 (PL3).

Preload 1 corresponds to the same preload as in the wires of the non-adjustable

bays. As the preload on this bay is reduced, it is possible for the joints to become

unloaded as the cables begin to slacken. Both cable slackening and joint motion

are expected to contribute to changes in the truss dynamic behavior. In

summary, the deployable hardware consists of one module with four bays in

which the wire pretension is fixed, and one module which contains one bay in

which the preload is adjustable and three bays in which it is fixed.

Erectable truss hardware forms the next largest portion of the structure.

Although scaled down in size, the erectable components are identical to

hardware used by the NASA Langley Research Center for their Dynamic Scaled

Model Technology structure [Gronet et al., 1989]. Erectable hardware consists of

spherical nodes with 26 holes to which standoffs may be mounted. Longeron,

diagonal, and batten members terminate in lugs which slip into these standoffs
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and aresecured by tightening a locking collar. Erectable segmentsareconnected
to the deployable hardware using standoffs incorporated into the two end batten

frames of each of the deployable module. Erectable longerons and diagonals are
connected to the standoffs on the deployable modules to form the baseline

configuration, and are incorporated together with the alpha joint in the L

configuration.

The alpha joint was intended to approximate the dynamics of the Rotary

Alpha Joint proposed for Space Station Freedom. The 2.5 lb module is

constructed around two aluminum disks which are connected at their centersby

an axle,and at a radius of 2.75in by 5.5mm diameter stainlesssteelball bearings.
The two plates are free to rotate relative to eachother on the bearings. The disk

assembly hasLexan struts terminating in erectable-style lugs and locking sleeves
to allow connection with erectablestandoffs. The disk/strut module is sized as

an eight inch cubic bay. Friction between the two plates is adjustable through the

useof a cam mechanism setby a tensioning lever; the tight position is denoted as

alpha joint tight (AT) and the loose position is alpha joint loose (AL). In the AT

setting no relative rotation occurs, while in the AL setting the two plates can

rotate relative to one another, constrained only by bearing friction. The alpha

joint was used in the alpha and L configurations.

Rigid appendages have been added to the ends of each configuration to

lower the system fundamentals below 10Hz. Theseappendages are dumbbell-

shaped and eachweighs approximately 16lb.

2.2.3 Sensors and Actuator

Several sensor types were utilized to measure the structural response to

the force input created by a single proof-mass actuator. Accelerations were

sensed by piezoresistive accelerometers, and the input force by a load cell. All

electrical signals were routed off the STA through a single umbilical. Thirty-

three pairs of 28 gauge stranded wire were loosely braided and wrapped in a fire

resistant woven shell to form an 8 ft length of bundled wire. As in space flight

hardware, cables connecting the sensor location to the umbilical attachment

points were routed along the structure and tie-wrapped in place.

Excitation was provided by a proof-mass actuator. The shaker used a 1.0

lb throw-mass and interchangeable springs to permit both ground and orbital
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testing. The mass and spring mounted to the support platform which in turn
mounted to the load cell. Total weight of the actuator is approximately 1.8

pounds. For the spring selected for ground testing, the shaker's spring-mass
resonanceoccurred at 2.3 Hz, while resonanceoccurred at 4.0 Hz with the space

spring. Due to the change in springs from ground to orbit, the actual force

differed slightly between ground and orbit for the same commanded voltage.

The forcing amplitudes will be referred to as low, medium and high, but the

actual value of measured forcing for any particular test canbe found by referring
to Table 1. The excitation acted in the vertical direction on the corner of the end

batten frame of the deployable module which contained the bay with adjustable

preload.

Eleven accelerometers were placed on the truss in such a manner as to
make observable the modes of interest for each of the structural configurations.

Three accelerometers were placed on the end batten frame which supported the

proof-mass actuator, three at the batten frame four bays away at the far end of

the same deployable module, three at the first batten frame of the second

deployable module, and two at the far end of the second deployable module.

Four strain gauges also instrumented the adjustable bay, for a total of sixteen
channels of data.

Signal conditioning, data acquisition, and data storage were provided by

an Experiment Support Module, or ESM. Sixteenchannels of sensor signals were
simultaneously sampled by 12 bit A/D's at 500 Hz and stored on a Write Once

Read Many (WORM) disk. Sensor signals are amplified and low pass filtered

using eight-pole tunable Besselfilters with acorner frequency of 250Hz.

2.2.4 Test Procedures and Data Reduction

Testing on the ground and on orbit followed the same basic procedures. A

structural configuration was assembled and suspended (on earth) or tethered (on

orbit). The umbilical and actuator were attached, and the test protocol

performed.

For the ground testing of the STA, a soft mechanical suspension system

was selected to support the structure while approximating free-free boundary

conditions. The suspension system consisted of steel wires hung from coil

springs, attached to a rigid support frame. Three spring sets were used



providing nominal system plunge frequencies of 1, 2, and 5 Hz. All data

reported in this chapter will be for the nominal one Hertz suspension. An overall

spring-wire length of 120 in was maintained, which yielded a sway frequency of

0.28 Hz. Other suspension resonances (including transverse (violin string) wire

modes, axial modes of the springs, and compound pendulum modes of the

spring/wire) were sufficiently separated from the STA resonances to not

complicate the identification of STA frequencies and damping ratios [Crawley et

al., 1992].

On the middeck, tests were performed in a shirt sleeve, room temperature

and pressure environment. Although a suspension system was not required, it

was impossible for the STA to truly free float on the Shuttle. Residual velocity

from the release by the crew, air circulation, and gravity gradient accelerations,

as well as occasional firings of the vernier reaction control system, would cause

contact of the STA with the cabin walls. To prevent such an impact, an elastic

tether system was used, which consisted of four tethers of 0.0625 in square elastic

surrounded by Nomex sheathing. The tethers were positioned to provide

restoring forces in three orthogonal directions to prevent drift. After being

attached to an STA longeron via a nomex and velcro cuff, each tether was

attached to a prepositioned velcro pad mounted on the middeck interior. Based

on video data, the frequency of the STA on this tether "suspension" was 0.025 Hz,

about a factor of forty below the lowest ground suspension frequency, and three

hundred below the STA fundamental.

The test procedure was the same for all configurations. Sine sweep testing

was performed. As each protocol was conducted, signal time histories for each

excitation frequency were stored. Post-test data reduction consisted of reducing

the time history data to a single amplitude harmonic coefficient for each data

channel at the tested excitation frequency by employing a harmonic balance

technique. Next, estimates of natural frequency and damping ratio were

determined using the circle fit method [Ewins, 1984]. Implicit in the use of this

method is the assumption that the dynamic behavior is dominated by a linear

resonance. For every forcing amplitude of each mode, channels with clean

signals were selected for use in the determining modal parameters. Parametric

data from each channel were then averaged to determine the modal values. In

this manner, channels which had saturated or experienced small signals were

removed from the parameter determination algorithm.
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2.3 Modeling

2.3.1 Evaluation Models

ADINA (Automatic Dynamic Incremental Nonlinear Analysis) [Adina,

1987] was selected as the framework within which to develop analytical models

of the structural test articles. Three ADINA models of the STA were constructed:

a high order evaluation model which represents a free floating 0-g test article; an

element level Guyan reduction of the high order model; and a 1-g model of the

STA suspended on the suspension system in a gravity field, which is based on

the Guyan reduced model.

Detailed evaluation models were made of each STA configuration. The

models used 6 dof rod elements and 12 dof beam elements with lumped mass

matrices, which were required for the subsequent 1-g modeling. In the detailed

evaluation model construction, separate beam elements were used to model

segments between every material or dimension change. For example, the

deployable longeron was modeled with seven elements, representing the batten

frame section, lug, Lexan rod, knee joint, Lexan rod, lug and batten frame section.

Tensioning cables were modeled as a single rod element, and the alpha joint bay

was modeled by 68 elements. The resulting model sizes were 2160, 2166, and

3150 dof for the baseline, alpha and L configurations respectively.

2.3.2 Development Models

Development models contained fewer dof than the evaluation models,

and were obtained by reducing internal dof from the deployable longerons and

erectable longerons and diagonals. For example, the seven element longeron was

simplified to a single element. For models which contained the alpha joint, a

small additional savings in dof was obtained by simplifying the model of the

alpha joint support struts.

Guyan reduction was used to create equivalent beam elements for the

longerons and diagonals [Guyan, 1965]. The system stiffness matrix for a given

strut assembly was calculated and was then reduced using Guyan reduction. By

equating elements of the single beam element stiffness matrix with the reduced

matrix, values were determined for the equivalent beam section properties. Since

each property enters the beam stiffness matrix in several places, an average can

be made using each of the calculated values to arrive at an equivalent section
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property estimate. Note that if only the entries on the diagonal of the Guyan
reduced stiffness matrix were used to calculate the equivalent properties, the

results would be identical to thoseobtained from a static equivalent analysis.

Because of the assumptions made in the condensation procedure, the

reduced model will never reproduce the original eigenvalues exactly. However,

as long as dof with significant mass contributions are included in the set of

retained dof, the method produces satisfactory results.

2.3.3 l-g Models

ADINA was also used to model the suspended STA configurations in a 1-

g field [Rey, 1992]. The suspension system models were based on the Guyan

equivalent development models. For ground testing, the STA was suspended by

coil springs and steel wires, which were modeled as nonlinear rod elements

which incorporated axial stiffening and allowed large deflections. Thus, the

stiffening of the suspension due to gravity loading was captured.

To determine the eigenvalues of the suspended system, a two step

solution process was required. In the first step, a nonlinear static solution was

performed. From an initial position in which the springs were unstretched, the

model was allowed to descend under the influence of gravity until an

equilibrium position was reached. Concentrated damping elements were added

to the nodes of the structure and the suspension to prevent the structure from

oscillating indefinitely. At each time step in this incremental scheme, the

stiffness matrix of the system was recalculated to capture the stiffening effects of

gravity on the structure and the suspension. ADINA could not begin the

solution algorithm unless the stiffness matrix was initially nonsingular. In the

first steps of the time integration of the equations, initial strain was added to the

axial elements to remove the singularity.

In the second of the two steps, an eigensolution was performed using the

reformed stiffness matrix of the static calculation. Concentrated nodal dampers

were removed and infinitesimal displacements were assumed. Among the

phenomena included in the model were: pendulum modes of the structure;

plunge, pitch, and roll modes; axial modes of the springs; violin string modes;

and spring/wire transverse modes. Although gravity stiffening was included on

2=
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the "flexible" elements (longerons, battens, etc.), no influence of gravity on the

potentially nonlinear behavior of the joints was captured.

2.4 Test Results

2.4.1 Test Matrix Selection

This section will briefly review the parameter matrix explored in ground

and orbital testing, then go on to summarize the principal ground test results,

before presenting the orbital test results.

As described above, combinations of the hardware modules allowed for

variation in configuration, deployable bay joint preload, and alpha joint preload.

Any number of modes could be tested at multiple force levels. Three different

shipsets were available to test on various suspension systems on the ground and

in zero-gravity on orbit. Assemble and reassemble repeatability tests could also

be conducted. Considering all of these parameters, the resulting test matrix has

seven dimensions: configurations, preloads, modes, force level, shipsets,

suspension/gravity, and assembly/reassembly. Because of the limited nature of

on-orbit test time, a specific subset of the multidimensional test matrix was

completed on orbit.

The on orbit test matrix data are represented in Tables 2.2, 2.3, and 2.4,

which contain analytically predicted and experimentally measured modal

parameters. As indicated in Table 2.2, the baseline configuration was tested in its

first torsion, bending and shearing modes, with high, medium and low bay

preload. The alpha configuration was tested in its first torsion and bending

modes, and the L in a torsion and two bending modes, as indicated in Tables 2.3

and 2.4. The alpha and L configurations were always tested with the high

deployable bay preload, and with the alpha joint in either the tight or loose

settings. In general the test articles were driven at low, medium and high force

amplitudes, which were approximately linearly spaced over one decade (Table

2.1). In some cases selected amplitudes were omitted to conserve test time. Only

one shipset (STA 1) was tested on orbit and no assembly/reassembly testing was

performed.

Prior to and following the orbital testing, the hardware was the subject of

extensive ground testing. The ground test matrix included tests on STA 1 at MIT
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for the same submatrix of configurations, modes, forcing levels, and deployable

bay and alpha joint preloads as were tested on orbit. In addition, the ground

testing filled out the overall matrix by testing two different shipsets at two

different sites: STA 1 at MIT and STA 3 at MDSSC. For both shipsets,

assembly/reassembly testing was performed, and in the MIT tests, three

different suspension systems were employed.

z

=

2.4.2 Ground Test Results

Four levels of analysis were performed on the ground test data. First the

frequency transfer functions from measured force input to acceleration output

were calculated and examined for indications of linearity or nonlinearity. Then

the linear modal parameters were extracted from the frequency transfer function

by a circle fit in the complex plane. Thirdly, these modal parameters were

examined for trends as a function of force level, suspension stiffness, reassembly,

etc. Finally, statistical information was obtained on the variance in the modal

parameter as a function of force level, reassembly etc. The results of the ground

testing are documented in Barlow, 1992.

The overall results of the ground testing were that the STA had well

separated modes which were lightly damped and exhibited weak to moderate

nonlinear behavior. The various STA configurations had three to five modes

below 30 Hz, with little modal overlap, allowing easy identification of modal

parameters. The damping ratio averaged 0.7%, and ranged from modal averages

of 0.2 to 1.6%. Except for the alpha joint loose tests, the modal transfer functions

were weakly nonlinear, in that the modal parameters shifted with force

amplitude and joint preload. The general, but not universal trend was softening

and increased damping with increased force excitation and decreased joint

preload. In this context, weakly nonlinear is used to connote the case when the

frequency transfer function is more or less symmetric about its resonance within

several half power band widths, and the shifts in modal parameters are small. In

the case of alpha joint loose, the behavior is termed moderately nonlinear, in that

the frequency domain transfer function begins to become nonsymmetric and the

resonant frequency shifts are more pronounced. Strongly nonlinear behavior

such as jumps, multiple solutions and chaos were not evident in the ground

measurements.
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Of the seven dimensions of the testmatrix discussedabove, three could be

predicted by the finite element models developed. The frequencies of the two or
three modes tested of the three configurations were predicted aswell as canbe

reasonably expected by a first generation finite element model; that is, a model

which does not incorporate any test data. The mean error between the Guyan

reduced Adina model and the experimental data was 1.4%in frequency, and the
standard deviation from the mean was 4.6%. Of course the Adina model had no

prediction of damping. The ability of the Adina model to predict shifts in

frequency due to suspension was surprisingly good. In all casesthe qualitative

prediction of the shift in modal frequency from the 1 Hz to the 2 I-Iz to the 5 Hz

suspension was good, in most casesquantitatively accurate.

Of the remaining four dimensions of the test matrix, the variations in two

(forcing level and preload) are in principle deterministic, and the remaining two

(assembly/reassembly and shipset) are inherently statistical. Variation in the

modal parameters with forcing level and preload could be modeled by an
appropriate nonlinear model, if it existed. In the absenceof such a model, the

variations with force level and preload canbe treated asbeing statistical aswell.

The statistics of variations in modal parameters asa function forcing level,
preload, reassembly and shipset were determined for the ground test results.

The standard deviations were 1.25%in frequency (normalized by the mean) and

0.45%in damping ratio _ (not normalized by the mean,but reported in units of 4)

when all variations were combined. The standard deviations were slightly lower

for the baseline configuration, which did not contain the alpha joint, and slightly

higher for the alpha and L configurations which did contain the alpha joint. Of

the four variations, the statistics of the variation in shipset are not relevant to the
comparison of ground and orbital results, since results from the same test article,

STA 1, will be compared in both environments. The statistics on variation in

force level and preload are useful background, but the variations will be
examined for deterministic trends in the discussion below.

However, the statistics on modal parameter variation with

assembly/reassembly are extremely relevant. While it is true that the data

presented below will purport to show the difference between testson the ground
and on orbit, it will also have embedded in it the differences between data taken

from several assembly/reassembly tests on the ground and one assembly on

orbit. Only if the difference in modal parameters obtained on ground and on
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orbit is greater than the standard deviation obtained in ground reassembly tests

can it be asserted that the modal parameter changes from the ground to orbit are

statistically significant, and then the difference canbeattributed to a change from

one- to zero-gravity. The relevant standard deviations for reassembling the

structure are 0.54%in frequency and 0.22%in damping ratio.

2.4.3 Orbital Test Results

Baseline Configuration. The first torsion, bending and shearing modes of

the baseline configuration were excited on orbit. Representative transfer

functions for the baseline configuration with high preload (PL1) are shown in

Figure 2.2. The three symbols indicate the transfer function for low medium and

high excitation force levels (Table 2.1). For all plots shown in this and

subsequent figures, the transfer functions for the torsion, bending and shearing

modes are from the measured force input to an accelerometer at the actuator end,

center and far end of the truss respectively. Identified modal parameters for the

baseline configuration are listed in Table 2.2.

Low forcing of the torsion mode displays a clear and nearly linear

resonance (Fig. 2.2). As the force level is increased, the resonance quickly begins

to appear nonlinear. Due to the structural nonlinearity, the mode softens and

becomes more damped with increased forcing amplitudes. For these and

subsequent nonlinear transfer functions, the linear parameters reported in Tables

2.2, 2.3 and 2.4 can be interpreted as best linear approximations of the modal

parameters. For the bending mode, distinct resonances remain for all force

levels. The apparent resonance changes only slightly as the excitation force is

increased. Damping, on the other hand, more than doubles between low and

medium forcing levels, and continues to increase for the third amplitude. The

third or shearing mode appears to possess a relatively linear resonance, with a

slight softening and increase in damping. The response of this first configuration

with a tight preload can be characterized as weakly nonlinear in bending and

shearing, and moderately nonlinear in torsion.

A comparison of the low and high amplitude excitation of torsion modes

for high bay preload for ground and orbital tests can be found in the first of the

three transfer functions of Figure 2.3. From the figure and Table 2.2, it is obvious

that the modes of the space data occui-red at lower frequencies and, where
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calculable, larger damping ratios. Upon comparison, it is evident that the

nonlinearities manifest themselvesmuch more strongly in the orbital data.

Similar comparisons canbemade for the bending and shearing mode. For

the bending mode (seeFigure 2.3), the space frequencies are again lower than

those of the ground data but by a much smaller percentage. Even though they
are similar at low force levels, the space damping levels become almost double

the levels seen in ground testing at the highest force level. The ground and
orbital modes seemto exhibit the samecharacteristicswith the exception that the

orbital data aregenerally more damped. Figure 2.3also contains acomparison of

the shearing modes of ground and orbital tests. Although the space data were

softer, only very slight changesin damping were present.

On orbit data were obtained for the one deployable bay with medium and

low preload. The results for the medium (PL2) preload are generally

intermediate to the high and low cases,and are listed in Table 2.2. Figure 2.4
contains transfer function plots of the low preload (PL3) for medium and high

forcing levels for space and ground; estimated modal frequency and damping
are listed in Table 2.2.

As can be seenin the first transfer function in Figure 2.4, the two tested

amplitudes for the first mode have resonances that are barely within the left

boundary of the test window. It is significant to note that although certain test

windows did partially or completely miss the intended modes, all windows were

based on pre-flight ground test data. Eachorbital test window was selectedby
referring to several ground testsand estimating the amount of expected shifting.

Therefore, a missed orbital test mode indicates a significant and Unexpectedshift

in frequency.

The influence of reduced bay preload can be observed by comparing the

spacetraces for medium and high excitation for low preload in Figure 2.4 with

the traces for medium and high excitation for high preload in Figure 2.2. The
magnitude curves for the torsion mode indicate a continued softening and

dampening, as well as increasing structural nonlinearity. The behavior of the

bending mode was remarkably unchanged with preload in orbit, still with

notable increase in damping but little change in frequency with increased force

amplitude. Shearing is slightly softer but no more damped at low preload, and
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again softened slightly and experienced a small increase in damping with
increased force.

Comparative plots of ground vs. orbital data can also be found in Figure

2.4for torsion, bending, and shearing modes, respectively. For the torsion mode,

the space data are softer and more damped than the ground data. With low

preload, even the ground response is moderately nonlinear, with a distinct

nonsymmetric resonance. For the bending mode, the frequency increased
slightly in space,but the damping was greater. Only small differences exist for

the shearing mode. The spacedata are softer and slightly less damped than the

ground test equivalents.

Two physical mechanisms are likely to cause the nonlinear behavior
observed in the baseline configuration: slackening of the tensioning cablesand
accumulated microfriction. Stranded cables such as those used in the bay

possess highly nonlinear stiffness as they become slack, and are noticeably
nonlinear when preloaded up to significant fractions of their yield stress,well

above the stressat which they were preloaded, even at the high preload settings.
Microfriction is an alternate explanation. With increasing amplitude, there is

increasing friction breakage, resulting in softening and increased dissipation. A
more thorough analysis of the nonlinear response awaits a detailed set of
measurementson the nonlinear behavior of the truss components.

In order to more easily visualize the influences of gravity, preload and
force level, the trends in the three modes of thebaseline configuration are shown

in Figures 2.5a, 2.5b and 2.5c. The damping ratio (in percent) is plotted versus

the change in frequency normalized by a reference frequency (in percent). The
first test of STA 1 at MIT with high preload and low excitation level was
considered the reference. The lines connect testsof constantbay preload, and the

symbols indicate testsof different force amplitudes. For the caseof the torsion
mode in Figure 2.5a, the trends are quite clear. Both on earth and in space,

increasing force amplitude softens and damps the system. The rate at which

damping increases in space is greater. Decreasing bay preload softens the

system, but does not strongly affect damping. Finally, the absenceof gravity

softensand damps the response.

The bending mode trends are displayed in Figure 2.5b. The ground data

show only a weak trend of decrease in frequency with force level, and no
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organized sensitivity to damping ratio. On the other hand, the spacedata show a

strong increase in damping with force level for all preIoads, a trend not seenon

the ground. The trends for shearing, shown in Figure 2.5c, are like those for

torsion, but more subtle. Increasing force and decreasing preload slightly soften

and dampen the mode. On orbit the mode softens, but does not show a

significant change in damping.

It is now appropriate to apply the tests of statistical significance to the

changes observed between earth and orbit. Based on extensive ground

assembly/reassembly testing, it was determined that the standard deviation due

to reassemblywas about one half percent in frequency and one quarter percent in

damping ratio. Examining Figures 2.5a,2.5b and 2.5Gand comparing the shifts

in frequency and damping ratio for equivalent test conditions, it can be
concluded that: for torsion, both the shift in frequency and damping is

significant; for bending, only the change in damping is significant; and for
shearing, the change in frequency is marginally significant.

Alpha Configuration. The additional feature of the alpha configuration

was the relatively massive articulated rotary joint which replaced the center bay

of erectable hardware. This configuration was tested in the torsion and bending

modes, with the alpha joint tight and loose. Testing of the alpha configuration

was performed with the preload in the adjustable bay of the deployable module

in the high preload setting, so that it was closest to that of the other,

nonadjustable bays.

The alpha configuration was first tested in the alpha tight setting.

Representative transfer functions may be found in Figure 2.6. For the second

mode, the low force data is unreliable due to a saturation of the accelerometer.

Estimates of natural frequencies and damping ratios for the tested modes are

contained in Table 2.3. The first plot of Figure 2.6, for the torsion mode, bears

remarkable resemblance to the torsion mode of the baseline, Figure 2.2.

Softening, dampening and increasing nonlinearity are present with increased

force amplitude. Comparison of the modal parameters in Tables 2.2 and 2.3 for

the space data of the baseline high preload and the alpha tight show only a slight

drop in frequency and the same range of damping. Obviously the presence of

the tight alpha joint in the middle of the truss, at a node of the torsion mode, has

only a slight impact on the parameters of that mode.
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By way of contrast, the bending mode hasdropped almost a factor of two

in frequency, due to the large massof the alpha joint at an antinode of bending
mode. For fixed damping and a drop in frequency by factor of two, one would

expect an increaseby factor of two in damping ratio. The data reveal more or
less the expected factor of two in damping ratio. Thus, other than the addition of

mass, the alpha joint in its tight preload hasa small effect on the dynamics of the
STA.

Ground and orbital test data are overplotted for the torsion mode in

Figure 2.7. Although similar at lower force levels, the relative appearanceof the

two curve sets changes with increased forcing amplitude; the ground data

display smooth transitions while the orbital curves exhibit more irregular

behavior. Generally, however, the spacedata are softer and more damped than
the ground data. For the bending mode, the parameters in Table 2.3 show that

the spacedata are slightly softer and more damped than the ground data. Again
theseare the same trends asseenin the baselinehigh preload case.

The alpha configuration with loose preload was tested next. For this test,

transfer function data are plotted in Figure 2.8, while parametric estimates are

given in Table 2.3. The torsion mode appears to exhibit jump phenomena for the

two upper amplitudes. For low forces, the static friction within the alpha joint is

thought to be sufficient to keep the joint locked, producing essentially linear
behavior and the familiar modal peak. However, as the forcing level is

increased, the joint may begin to slip causing the discontinuities in the plot. For

these jumps, no damping estimate can be calculated. For the force amplitudes

where jump occurred, the parameter table will contain the jump frequendes. It is

worth noting that no indications of jumping occurred for the alpha tight testsof

this configuration_ Unlike the torsion mode, the bending mode appears only

weakly nonlinear, with evidence of slight softening with increasing excitation.
The low force trace is again unreliable due to saturation.

The orbit and ground results can be compared by examining Figures 2.8

and 2.9. Upon comparison with ground results, the orbital torsion data appear
markedly different except for the low amplitude. The ground data softened and

became much more damped but saw no jump phenomena. On the other hand,

the orbital data had a clear peak for the low force level but displayed jumps for

higher amplitudes. During ground testing, gravity may have preloaded the
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alpha joint enough to prevent rotations and jumps from occurring. As a result,

damping increasedbut jumps were not in evidence.

The trend plots for the alpha configuration are shown in Figures 2.10aand

2.10b. For the torsion mode in Figure 2.10a,only the on orbit data which did not

show a jump are presented. The statistically significant softening and

dampening influence of zero-gravity on the torsion mode is quite apparent.

Likewise, statistically valid decreasein stiffness and damping are present in the

bending modes, as can be seen in Figure 2.10b.

L Configuration. Finally, the most challenging configuration, the L

configuration, was tested with the alpha joint tight and loose in a torsion and two

bending modes. The narrow test windows specified prior to flight did not

manage to catch a single mode well enough to produce modal estimates, due to

unexpectedly large frequency shifts. A low force sine sweep was performed up

to 30 Hz via a manual protocol. Coarse location of the torsion mode was

identified, and is compared with the ground results in Table 2.3. Since this mode

dropped 7%, and the other modes dropped enough to be outside the test

windows, it can be concluded that qualitatively significant softening of the two

dimensional configuration occurred in 0-g.

2.4.4 Comparison of Finite Element and Experimental Results

With the experimental results discussed above, it is possible to evaluate

the performance of the finite element models described earlier. Two

comparisons will be given: unsuspended models with orbital data, and

suspended models with ground data. For the unsuspended model results, both

evaluation (or full) and development (or Guyan) reduced model will be

compared to the orbital results. Since the Guyan reduced model formed the basis

of the suspended model, it is the only one appropriate to compare with the one-

gravity results. The models are compared to orbital data in Figures 2.5 and 2.10

by the symbols on the zero damping axis (since the model had no damping

prediction) and in Tables 2.2 through 2.4. Because the models included no

nonlinearities, there was no way to reflect the effect of a change in preload. The

predicted frequencies of the linear model are listed in the tables next to all of the

cases for which they are appropriate.
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For the baseline configuration, both the evaluation model and the

development model did a reasonable job of predicting the frequencies since all

errors were near to or less than 5% (Fig. 2.5). In some modes the evaluation or

full model was more accurate, and in others the reduced model more closely

matched the data. As the structural complexity increased, the models became

less accurate as can be seen in the trend plots for the alpha configuration in

Figure 2.10. The evaluation model of the alpha configuration had larger errors

than the development model (in an average sense) but both did a fair job of

matching frequencies. The first mode of the L configuration had frequency

errors of approximately 10%, indicating that this mode was not very well

modeled. The higher modes were missed on orbit resulting in no comparison

data.

On average, the evaluation model was only slightly better than the

development model. For the baseline and alpha configurations, where some

degree of confidence exists in the frequency data, the frequencies of the

evaluation models averaged 1.4% high with a 4.6% standard deviation; the

development models were 1.8% high with a 4.8% standard deviation. The fact

that the differences are small reinforces the validity of the development models.

The finite element model of the suspended STA did a poor job of

predicting the shift in frequency from one-gravity on a one Hertz suspension to

zero-gravity. This is in marked contrast to the success of the suspended model in

predicting the change in frequency from a one, to two, to five Hertz suspension

in the ground tests [Crawley et al., 1992]. The inference is that the changes in

modal parameters from one suspension to another in one-gravity were

dominated by linear effects, while the changes due to the shift to zero-gravity

were dominated by nonlinear influences.

It should be noted that the finite element models are first generation; that

is, models which were constructed with dimensional data from blueprints and

material properties from standard references. No attempts were made to

"adjust" the nodal locations, dimensions or material properties based on either

component tests or ground vibration tests in order to better match the

experimental frequencies.
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2.5 Conclusions

The shuttle middeck has proven to be an excellent environment in which

to perform 0-g experiments of scaled structural models. The pressurized

atmosphere of the middeck allowed experimental determination of gravity

influences in an earth-like pressure and temperature environment. Scaled models

serve as the preferred means by which to utilize the middeck as a laboratory, due

to the limited size of the facility.

Significant differences between 1-g and 0-g identified modal parameters

were measured for the MODE structural test article. Generally, data taken on

orbit showed lower resonant frequencies and higher damping ratios. Gravity

preload of the structure and the presence of a suspension resulted in higher

frequencies and lower damping ratios for ground test data.

The STA exhibited weakly, moderately and strongly nonlinear structural

behavior. Deployable joints, tensioning cables, and the alpha joint all contributed

to the overall nonlinear behavior of the truss. As a result, modes generally

softened and experienced increased damping levels as the excitation force was

increased. In both test environments, as the adjustable bay preload was

decreased, the nonlinear behavior became stronger. A dramatic difference was

seen between tests where the alpha joint was tight and loose; strongly nonlinear

behavior occurred with the alpha joint loose in the torsion mode, while the STA

displayed only moderately nonlinear behavior with the joint tight. The jump

phenomenon witnessed for the orbital test of the alpha configuration with loose

preload was not seen in ground data; no indication of this behavior could be

deduced based on ground tests.

A trend was seen in the data that indicated that the differences between

one- and zero-gravity are stronger at lower frequencies and diminish at higher

frequencies. For first or torsion modes, the change in transfer function

magnitude with increasing force was often abrupt, causing a resonant peak to be

indiscernible. In the alpha loose tests, jumps occurred on orbit for which no

indication could be found in the ground data. Although higher modes were also

different in orbital tests, these differences were largely due to smaller shifts in

frequency and changes in damping ratio. Unfortunately, it is often the first few

modes of a structure that are most important for loads, dynamics and control

analysis.
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With few exceptions, the orbital test data produced modes which were

softer than those of the applicable ground tests. Two mechanisms for this

destiffening are elimination of suspension stiffening of the boundaries and

gravity preload of the structure. To evaluate the influence of the first mechanism

on the ground test results, several variants in suspension stiffness were used in
an earlier set of experiments. It was found that the finite element model correctly

predicted the linear stiffening of the STA due to 1, 2 and 5 Hz suspensions.

However, the linear model underpredicted the destiffening due to the removal of

the suspension altogether. Therefore, it can be concluded that the absenceof

gravity loading directly on the structural elements was the cause of the

destiffening. However, the finite element model also captured the "linear"
gravity geometric stiffening, such asthat which leads to buckling. The inference

is that the softening in space must be due to gravity loading on the nonlinear
elementsof the structure.

In general, the spacedata were also more damped than the I-g suspended
data. Again, two mechanisms exist to explain the change in damping between

the ground and orbital tests. Measured damping can be due to transmission of

energy out of the structure or true dissipation. Comparing the transmission

paths present in the middeck and ground tests, one finds the same umbilical,
same atmosphere, and a much less intrusive suspension on the middeck; thus,
the transmission lossesmust be the sameor lesson orbit. This is substantiated

by the relatively similar damping measured at high preloads and low excitation

amplitudes. Therefore, the increase in damping is once again due to internal

mechanisms,probably dominated by the nonlinear elements. When testing in 0-

g, no gravity field exists to preload the joints and wires of the deployable
structure. With the gravity induced bias removed, the joints would be able to

participate more freely and increasethe effective damping of the structure. Also,

with the gravity induced preload on the alpha joint removed, the joint would be
freer to introduce damping, especially when in the alpha joint loose setting.

Thus, the potentially nonlinear elements(the joints, wires and alpha joint) are the

likely sourcesof the softening and dampening which occurson orbit.

The first generation models (those derived from drawings and handbook

data) clearly did a poor job of modeling all the structural configurations. In fact,
the differences between the models and the actual structures were typically

larger than the differences between the ground and orbital test results. Further,
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the modeling of suspension influences was only partially successful, due to the

fact that the influence of gravity on the nonlinear elements was not modeled.

Since the development models retained less information than the evaluation
models from which they were developed, the evaluation models outperformed

the development models, but only by a fraction of a percent in mean error, and

with no noticeable difference in standard deviation. The bias error in frequency
was about 1.5%, and the standard deviation was about 5%, typical of first

generation finite element model.
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Figure 2.1 STA baseline, alpha joint and L configurations.
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Table 2.1 Force amplitude used in STA excitation.

Config. Mode Type

Approx. Amplitude 1 Amplitude 2 Amplitude 3

Freq. Ground Space Ground Space Ground Space

(Hz) (lbf) (lbf) (Ibf) (lbf) (lbtO (Ibf)

Baseline

1 Torsion

2 Bending

3 Shearing

7.75 0.046 0.052 0.224 0.296 0.396 0.530

20.0 0.044 0.046 0.208 0.228 0.368 0.407

29.0 0.043 0.046 0.204 0.223 0.362 0.397

Alpha 1 Torsion

2 Bending

7.25 0.046 0.051 0.227 0.303 0.276 0.547

10.5 0.043 0.048 0.130 0.257 0.380 0.462

1 Torsion

2 Bending

3 Bending

7.75 0.047 0.048 0.263 0.292 0.471 0.526

25.5 0.039 - 0.226 0.224 0.404 -

30.5 0.030 - 0.223 0.221 0.399 -
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Table 2.2 Predicted and measured modal parameters of the baseline
configuration.

Pred. Freq. Frequency Damping Ratio (%)

(Hz) (Hz)

Suspension Full Guyan Low Medium High Low Medium High
Force Force Force Force Force Force

Torsion

High 1 Hz 8.05 7.74 7.70 7.67 0.24 0.40 0.54

Preload 0-g 7.68 8.04 7.63 7.59 7.57 0.40 0.92 2.3

Med. 1 Hz NA 7.71 7.66 7.64 0.27 0.42 0.57

Preload 0-g NA 7.61 7.57 7.53 0.34 1.2 2.7

Low 1 Hz NA 7.58 7.54 - 0.67 0.86

Preload 0-g NA 7.52 7.50 - 1.6 2.7

Bending

High 1 Hz 19.29 20.43 20.37 20.33 0.41 0.39 0.62

Preload O-g 19.26 19.31 20.27 20.27 20.29 0.47 0.98 1.18

Med. I Hz NA 20.48 20.41 20.31 0.58 0.48 0.52

Preload O-g NA 20.24 20.21 20.23 0.46 0.99 1.15

Low 1 Hz NA 20.29 20.18 20.12 0.55 0.52 0.44

Preload O-g NA 20.24 20.22 20.22 0.51 0.85 1.12

Shearing

High 1 Hz 28.68 29.42 29.33 29.28 0.25 0.27 0.28

Preload 0-g 28.27 28.68 29.22 29.18 29.14 0.22 0.24 0.28

Med. 1 Hz NA 29.34 29.26 29.22 0.26 0.27 0.29

Preload O-g NA 29.18 29.14 28.10 0.23 0.23 0.27

LOw 1 Hz NA 29.14 29.10 - 0.30 0.33

Preload 0-g NA 29.08 29.06 - 0.24 0.28
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Table 2.3 Predicted and measured nodal parameters of the alpha configuration

tested with high deployable bay preload.

Tws_n

Pred.Freq. Frequency Damping Ratio (%)

(Hz) (Hz)

Suspension Full Guyan Low Medium High Low Medium High
Force Force Force Force Force Force

Tight 1 Hz 7.66 7.52 7.44 7.41 0.39 0.71 1.I4

0-g 7.69 7.70 7.35 7.30 7.28 0.51 1.05 2.1

Loose 1 Hz NA 7.31 7.08 - 1.58 3.36 -

0-g NA 7.21 6.74 7.19 1.21 NDR NDR

Bending

Tight 1 Hz 11.57 10.85 10.68 10.69 1.24 1.16 1.54

O-g 11.78 11.58 10.62 10.59 - 2 1.8

Loose 1 Hz NA 10.79 10.72 10.68 1.31 1.91 1.52

0-g NA 10.40 10.15 - 2.7 2.44
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Table 2.4Predicted and measured modal parameters of the L configuration

tested with high deployable bay preload.

Prediction Frequency Damping Ratio

Suspension Full Guyan Low Medium High Low Medium High
Force Force Force Force Force Force

Torsion

Tight 1 Hz 7.90 7.87 7.77 7.73 0.42 0.78 0.92

O-g 8.12 8.00 7.34 - -

Loose 1 Hz NA 7.76 7.63 7.57 0.51 0.77 0.71

O-g NA -

Bending

Tight 1 Hz 25.16 25.84 25.74 25.70 0.4 0.34 0.33

0-g 25.29 25.28 - - -

Loose 1 Hz NA 25.83 25.76 25.73 0.37 0.32 0.37

O-g NA - - -

Bending

Tight 1 Hz 30.78 31.69 31.47 31.46 0.55 0.73 1.32

0-g 31.30 31.15 - -

Loose 1 Hz NA 31.77 31.58 31.59 0.45 0.84 1.27

O-g NA - -

37



2.6 References for Chapter 2

ADINA User's Manual, ADINA R&D, Watertown, MA, 1987

Barlow, Mark S., "Modeling and Ground Modal Identification of Space

Structures," S.M. Thesis, MIT Cambridge, MA., January 1992

Crawley, E.F., Barlow, M.S., van Schoor, M.C., Bicos, A.S., "Variation in the

Modal Parameters of Space Structures," Proceedings of the 33rd

AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials

Conference, Dallas, TX, April 1992.

Ewins, D.J., "Modal Testing: Theory and Practice," Research Studies Press, 1984,

pp. 158-168.

Gronet, M.J., Crawley, E.F., Dienhols, D., "Design, Analysis, and Testing of a

Hybrid-Scale Structural Dynamic Model of the Space Station."AIAA Paper

N. 89-1340, 1989

Guyan, R.J., "Reduction of Stiffness and Mass Matrices," AIAA Journal, Vol. 3,

1965, p. 380.

Kienholz, D.A., Crawley, E.F. and Harvey, I.J., "Very Low Frequency Suspension

Systems for Dynamic Testing," AIAA Paper No. 89-1194, 1989.

Pinson, L.D. and Hanks, B.R. "Large Space Structures Raise Testing Challenges,"

Astronautics and Aeronautics, Vol. 21, No. 10, 1983, p. 34.

Rey, D.A., "The Effects of Suspension Systems and Gravity on Ground Based

Tests of Controlled Space Structures," S.M. Thesis, MIT Cambridge, MA,

August 1992.

38



Chapter 3: Fluid Test Article Results

3.1 Introduction

The on orbit results of the fluid slosh dynamics segment of the MODE

program, as well as backround and key ground results, will be presented in this

chapter. The prime objectives of the MODE fluid slosh experiments were: to

provide a fundamental insight into the lateral oscillatory behavior in micro-

gravity of contained fluids typical of those found in on orbit fluid tanks; to

provide data for calibrating and verifying a well-posed model of such

phenomena; and in doing so to provide the basic scientific and practical

engineering knowledge needed to design space-based systems such as fuel

depots and other fluid storage systems. This report will focus on the

presentation of the on orbit and ground results, highlighting their differences

and comparing them where possible to linear theory.

The precise operating requirements of modern spacecraft demand a

detailed model of all of the dynamic components of the system, including the

dynamics of onboard contained fluids. This modeling requirement becomes

more important as spacecraft increasingly rely on higher efficiency liquid

propellants. Since the nonlinear fluid/spacecraft motion caused by finite

amplitude fluid slosh departs significantly from motion predicted by linear

theory, the standard approach of using linearized models of the contained fluid

dynamics for structural and control analyses is inadequate for addressing this

problem [van Schoor, 1990].

The theory of nonlinear fluid slosh, despite the contributions of many

researchers and experimenters, is still one of the areas of classical fluid dynamics

that is not well understood. Contained fluids on board spacecraft exhibit

nonlinear dynamic characteristics that were, in the past, routinely avoided by

conservative spacecraft designs. These nonlinear dynamic characteristics, if

unmodeled, can adversely affect the performance and stability of the spacecraft

and lead spacecraft designers to conservative designs, with associated mass and

cost penalties.

39



The importance of the slosh characteristics of contained fluids is reflected

by the research efforts of the engineering and science communities [Abramson,

1966, Agrawal, 1984, Dodge and Garza, 1967 and 1970, Komatsu, 1987, Kutler

and Sigillito, 1984, Martin 1986, Miles 1984a and 1984b, Salzman and Masica,

1969, Satterlee and Reynolds, 1964, Yeh, 1967]. The importance is also stressed

by the research in the former Soviet Union [Ganiev, 1977 and Limarchenko, 1981

and 1983]. Since 1985, researchers at MIT have developed a non-linear, non-

planar contained fluid/spacecraft model. This model was verified for one-

gravity conditions by comparing predicted slosh forces with those measured for

an extensive test matrix on fluids contained in cylindrical, spherical and

rectangular tanks [van Schoor et al, 1989]. However, given that gravity has a

significant influence on the modal characteristics of contained fluids, a shuttle

experiment was proposed as part of the MODE program.

The first part of this chapter describes the MODE hardware and the fluid

test articles. As a motivation for investigating nonlinear slosh, the hardware

description is followed by a summary of the major sources of non-linearity in the

slosh dynamics and their variation with apparent gravity. The chapter then

presents the ground and on orbit experimental results, and concludes with a

discussion of the trends in these results.

3.2 Hardware and Test Procedure

3.2.1 Hardware Description ....

The MODE hardware as used in the fluid slosh experiments consisted of

the Experiments Support Module (ESM), shaker and force balance assembly, and

the Fluid Test Articles (FTA's). The functional objective for the MODE hardware

was to establish on the shuttle middeck a small dynamics laboratory with which

the forced response of various systems could be determined. The core of this

laboratory is the MODE experimental support module (ESM). The ESM has a

computer, a 16-key keyboard, an alphanumeric display, a 200 MB WORM disk

for storage, 64 Digital Input and Output (DIO) lines, and 16 Analog to Digital

(A/D) channels. The ESM has excitation, data storage, signal conditioning and

experiment control functions, and can be used with various types of dynamic test

articles.
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Figure 3.1 Schematic of MODE hardware

116

Figure 3.1 is a schematic of the MODE hardware. Both the fluids and

structural experiments are controlled by the ESM. Upon power-up the astronaut

can select a pre-stored protocol, which contains the desired forcing amplitude,

duration and frequency information for each specific experiment. Given a

forcing amplitude and frequency, the ESM generates the appropriate sinusoidal

excitation signal. For fluid slosh experiments, this signal is fed via a power

amplifier to an electro-mechanical shaker to which a very sensitive force balance

is attached (Table 3.1 and Figure 3.2). This force balance can measure slosh forces

in both the planar (x) and non-planar (y) directions. The frequency response of

the fluid is determined by sinusoidal dwell testing. The experimental control

function allows for the sinusoidal excitation frequency to be smoothly increased

or decreased; i.e., changed without loss of phase continuity. In addition to the

measurement of the slosh forces, the displacement and acceleration of the tank in

the x-direction is also measured, as are the ambient accelerations. The fluid slosh

behavior was also recorded by a video camcorder.
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Table 3.1 FTA sensor and balancing sensitivities.
i

Measurement Symbol Sensitivity

Planar Slosh Force KFx 20.90 V/N

Non-planar Slosh Force KFy 21.51 V/N

Displacement K x 0.327 V/ram

Acceleration Kax 0.78 V/ms -2

\

i //

\

Figure 3.2 Line drawing of the MODE FTA force balance.
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The FTAs containing the fluids under investigation are attached to the

force balance via a quick release coupling. Since the experiment design calls for

the fluid to be aligned in the bottom of the tank, this quick release coupling

enables the astronauts, after having aligned the fluid, to attach the tank to the

force balance without disturbing the fluid alignment. Alignment of the fluid is

required at the start of a new experiment or when unanticipated re-alignment

occurs.

A unique feature of the MODE hardware is that the force balance and

accelerometer signals are automatically zeroed by the ESM. This avoids signal

saturation due to thermal drifts. The digitally controlled amplifiers (DCA) in the

signal paths also enable researchers to select optimal signal gains to ensure the

best possible signal-to-noise ratios and to avoid channel saturation. The

sensitivities of the measured signals at an amplifier gain of unity are summarized

in Table 3.1. By using the DCAs, each of these sensitivities can be amplified by as

much as 16 times.

The MODE hardware allows the investigation of both the uncoupled

behavior of a fluid, and the coupled behavior of a fluid/spacecraft system. In the

uncoupled configuration, a commanded displacement signal directly drives the

motion of the electro-mechanical shaker. In the coupled configuration, the force

excitation signal is fed to a analog simulation of a spacecraft lateral mode (Figure

3.3). The analog simulation is also fed a signal which is the measured slosh force;

i.e., the total force measured by the reaction balance minus the dry force

component. The calculated spacecraft displacement is then commanded of the

shaker. In both the uncoupled and coupled configurations, a shaker servo loop

ensures that the commanded displacement is tracked within 2% in amplitude

and 5 ° in phase. The parameters of the simulated spacecraft mode (i.e., frequency

(G¢o), damping ratio (Gq), mass (GsM) and the dry mass component (¢02GDM))

are stored in the protocols and are digitally set with the ESM's DIO lines.

43



Figure 3.3 Analog simulation of a spacecraft lateral mode.

3.2.2 Fluids and Tank Geometries

The selection of the test fluids was driven by the following criteria: for

safety reasons the fluids had to be safe; and for engineering relevance the fluids

properties had to match the properties of typical spacecraftpropellants (Table

3.2). Given these criteria, silicone oil with a 5 centistoke viscosity was selected as

the primary test fluid. This silicone oil is non-toxic and non-flammable and it

approximately matches the properties of Liquid Oxygen. However, the free

surface stability of the silicone oil was a concern. Given the proven free surface

Stability of water, triply distilled water was selected as the secondary test fluid.

The properties of the silicone oil and of water are also presented in Table 3.2.
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Table 3.2 Fluid properties.

Fluid Density Kinematic Surface

Viscosity Tension

(p) (v)

(kg/m 3) (cm2/sec 2) (dyne/cm)

Liquid H 2 70.0 0.002 1.9

Liquid 0 2 1140.0 0.002 13.2

Hydrazine 1010.0 0.010 63.2

Silicone oil 920.0 0.005 19.7

Distilled Water 998.0 0.010 72.75

The geometry of the fluid test article was selected such that the results

could be extrapolated to typical space storage tanks. A cylindrical tank with a

flat bottom and a cylindrical tank with a spherical bottom were chosen. A

variety of existing ground experimental results were available on these tank

shapes to support design and analysis.

In sizing the tanks, an important criterion was that the equilibrium free

surface of the fluid must be retained during all space shuttle maneuvers except

primary RCS firings. Eq. 3.1 gives the critical negative acceleration at which the

free surface will loose stability and re-orient.

gCritical (-3.4 + 2.6cos o_)cr
Re-orientation =

P a2 (3.1)

where a is the contact angle and a is the tank radius.

An evaluation of the ambient and operational accelerations on board the

space shuttle resulted in a requirement that the contained fluid must withstand

at least 7 mg's of negative acceleration before realignment.

A second criterion that governed the selection of the tank size was a

minimum slosh frequency of 0.5 Hz. A slosh frequency much below this would

require extremely long testing times and place severe requirements on the

sensitivity of the acceleration and forcing/sensing elements. A 3.1 cm diameter

tank satisfied both the free surface stability and minimum slosh frequency

requirements. The decision to use 3.1 cm diameter tanks was further justified by

the fact that a multitude of ground experimental results were already available
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for this diameter tank. The two cylindrical model tanks, one with a flat bottom

and one with a spherical bottom, are depicted in Figure 3.4.

I

I

Two $tl Gr ,_

1
I
t

1

I

lit ,-

Figure 3.4 MODE FTA cylindrical fiat and spherical bottom model tanks.

3.2.3 Test Procedures and Data Reduction

The fluid response data were obtained by sine dwell over a range of

frequencies, and for the different force levels. Typical frequency sweeps

contained 65 frequency points and dwell times of 6 to 40 seconds. The excitation

window ranged from 50% below the first natural slosh frequency to 2 times this

frequency. The signal sampling rate for both the ground and on orbit

experiments was 50 Hz, with the anti-aliasing filters set at 18 Hz.

pole approximation to the "linear" (lowest

displacement to planar-force transfer function.

the fluid's first slosh mode.

In post-processing the results, the time traces of force, displacement and

acceleration were read from the WORM disks and the harmonic frequency

information was extracted from these signals. This retrieval process was

repeated for each forcing frequency and amplitude test point. The linear modal

characteristics of the contained fluids were determined by fitting a two-complex

forcing amplitude) uncoupled

Eq. 3.2 is a linearized model of

Fxs = -x.mf - ql_,mf

i_1+ 2591 casfh + c°2sql = -Yr (3.2)
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where mf is the fluid mass, x is the displacement of the tank, ql is the first

fluid slosh mode degree-of-freedom, X is the fraction of the fluid mass

participating in the resonant motion, _'ql is the damping ratio of the first mode

and cos is the natural frequency of the first mode. The modal parameters X, _'ql

and cos are obtained from the fit.

The frequency domain transfer functions of displacement to planar slosh

force and displacement to non planar slosh force were also obtained for the

uncoupled tests. In the coupled tests, the transfer functions of excitation force to

tank displacement were also obtained for the different excitation amplitudes.

3.3 Modeling

3.3.1 Nonlinear Fluid Phenomena

Because the MODE scientific objective is to understand the coupled

nonlinear slosh of fluids in microgravity, an appropriate nonlinear model was

developed at MIT to compliment the experimental program [van Schoor, 1989].

A complete description of the model and its correlation with ground and flight

data is beyond the scope of this report, but a summary of the major sources of

non-linearities in contained fluids and the major differences between the one-

gravity (earth) and micro-gravity (space) dynamic behavior of fluids is outlined,

as is the model derivation. The section concludes with a summary of linearized

fluid slosh models with which the linear, low slosh amplitude, modal behavior of

contained fluids can be predicted, and which will be used for experimental

correlation.
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Figure 3.5

)

I-' %
z(t) j __

4

Fluid/spacecraft study model of a contained fluid.

Figure 3.5 is a schematic representation of a contained fluid in a fiat

bottom cylindrical tank. The springs and dash pots are a mechanical

representation of a spacecraft attitude control mode or a flexible mode. In this

model, the free surface is described by the sum of two two-dimensional

functions, fir,q), the equilibrium free surface height, and the dynamic

perturbation from this equilibrium, rld(r,q). The internal flow can be described

by a three dimensional potential function (¢). The two major contributions to the

nonlinear dynamic behavior of the contained fluid and the gravity influence on

these contributions are outlined in the next two subsections.

Time Dependent Free Surface Boundary Condition. The relationship

between the fluid flow potential function and the free surface function is one of

the major sources of non-linearities in the fluid slosh behavior for finite motion

[Abramson, 1966 and Miles, 1984b ]. Consider the action of the convection forces

at the free surface of the fluid. The potential flow (_) and the free surface motion

(71) must satisfy the kinematic boundary condition:

00 + V_ • Vrl 1z=77 0_-- = :lz= _ (3.3)
Ot Oz I

48



This equation is an analytical expression of the Dirichlet and Neumann

problems and constitutes a nonlinear relation between the fluid flow potential (0)

and the free surface motion (7/). The effects of a change in the ambient

acceleration (gravity) can be better revealed when free surface motion is

expressed in terms of the equilibrium free surface (f) and the dynamic motion of

the free surface (r/d), that is:

7/= f + r/d (3.4)

Using Eq. 3.4, Eq. 3.3 can be written as:

____r/d 00[_-V0°V(f + r/d ) :-_- (3.5)
z=77 z=rl

From this equation it is clear that the nonlinear free surface boundary

condition is a function of the equilibrium free surface. The equilibrium free

surface is strongly dependent on gravity, as can be seen by examining Figure 3.6,

an analytical prediction of the equilibrium free surface under one- and zero-

gravity conditions. One can conclude that the nonlinear effects of the free surface

boundary condition will change between one-gravity and micro-gravity

conditions.

Capillary Potential Energy. Another source of non-linearities is the

potential energy associated with the capillary forces [Limarchenko, 1981 and

1983].

= ff + Vr/dS
S

(3.6)

The potential energy of the free surface is a function of the total dynamic

free surface area, which is a complex nonlinear function of the free surface shape

(7/). Using Eq. 3.4, it can be shown that the capillary energy is also a function of

the equilibrium free surface, that is:

S

(3.7)

The shape of the equilibrium free surface is a function of the Bond

number, a non-dimensional measure of the relative importance of gravity versus

capillary forces:
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Bo = p g a2 (3.8)
(Y

where (p) is the fluid density, (g) is the mean apparent gravity level, (a = d/2) is

the tank radius and (o-) is the surface tension. On earth, gravity forces dominate

while in space the equilibrium free surface is determined largely by the surface

tension forces. Gravity tends to minimize the free surface height, and the

capillary forces (given the required contact angle) tend to minimize the free

surface area. Note that, due to gravity gradients, moderate Bond numbers can

exist in space, especially for larger tanks and spacecraft.

Figure 3.6

Silicon O|l: l-Gravlty _a."th)

Silicon Oil: O-Gravity (Space}

Predicted equilibrium fluid free surface for silicon oil on earth

and in space. (Cylindrical tank, diameter = 3.1 cm, contact angle

a = 1 °)

3.3.2 Nonlinear Fluid/Spacecraft Model

These nonlinear effects can be included in a low order nonlinear,

nonplanar model [van Schoor, 1989]. If the fluid viscous effects are restricted in a
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Stokeslayer near the wall of the tank, the fluid flow velocity u relative to the tank

reference frame can be completely described by an irrotational, three

dimensional potential field ¢:

u = V¢ (3.9)

Since the fluid is incompressible, the divergence of the velocity field must

vanish throughout the fluid volume:

V • u = 0 (3.10)

The partial

Laplace equation:

differential equation describing the flow potential is the

V2¢ = 0 (3.11)

The Neumann surface boundary problem of Eq. 3.9 can be satisfied [Luke,

1967] by requiring that the integral of Eq. 3.12 remains stationary with respect to

arbitrary variations of the function ¢ :

= fff( • v )av - fjG=,es 
_V 8F (3.12)

This integral is minimized by the exact nonlinear solution to the kinematic

problem. In the absence of a known exact solution, an approximate solution to

the kinematic problem can be found using assumed potential flow behavior and

assumed free surface motion. The assumed potential and free surface motions

are not independent and their relationship can be found by substituting the

assumed motions into Eq. 3.12 and requiring the result to be stationary with

respect to arbitrary fluid motions.

Ignoring geometric nonlinearities, it is assumed that the free surface

motion 7/is described in terms of the departure from the equilibrium free surface

shape f (Fig. 3.5) by the superposition of a finite modal set:

N

rl = f+ Y_nqn(t)
n=l (3.13)

where qn are the generalized coordinates of the free surface motion. The fluid

potential field ¢ is assumed to be of the form:

N

¢= Y_zraPm(t)
m=l (3.14)
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in which the Pm are the generalized coordinates for the flow potential.

The relationship between the two dependent sets of generalized

coordinates qn and Pm is found by requiring that the variational integral (Eq.

3.12) remains stationary for arbitrary variations of Pm. Eq. 3.12 can be expressed

in a power series of Pm using a Taylor series expansion. The terms in the Taylor

series are truncated to yield a fluid flow description valid to cubic order in the

amplitude of the motion.

Given a relationship between the two sets of assumed modal series, the

kinetic and potential energy can be expressed in terms of a single modal set.

Using the fluid free surface coordinate (qn) as the independent generalized

coordinate, the kinetic energy of the fluid system shown in Fig. 3.5 is given by

Eq. 3.15.

TF =lmF(dC2 + j12 )+

I_(0)+_ (I) - + ]_mn O_mnr tlr

1 1 N N _lrnqn +

X X (2) jr= is=-10tmnrsqrqs

Pdc[Nn_=lcln!_nxdS I+PY[n_=Ncln! _nydS (3.15)

where the a's are elements from the slosh depth matrix, which represent the

depth of fluid having a mass equal to the associated free surface modal inertia.

The fluid potential energy (the sum of the acceleration and capillary

potential energies) is:

 :,fff
V

g_dV + ai ] _/1 + Vrl. ITrl dS

s (3.16)

where _ is the displacement of the fluid in the direction of the mean acceleration

field (g). This equation can also be expressed as a power series of qn by binomial

expansion of the square root term and a Taylor expansion of the terms in the

volume integral. Again truncation can be performed to yield a model valid to

cubic order in the amplitude of the motion. The coefficients of the nonlinear
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terms depend on both the free surface mode shapes and the shape of the

equilibrium fluid free surface, and therefore on the Bond number. The relative

influence of the capillary potential energy on the fluid dynamics will thus be a
function of the Bond number.

The governing nonlinear differential equations describing the fluid and
spacecraft motion are obtained by applying Lagrange's principle to the system

Lagrangian which is obtained by adding the kinetic and potential energy of the

spacecraft's mode to that of the fluid. Note that the effects of capillary viscous

forces are not included in this model. A viscous damping term, equal to the

measured linear slosh damping ratio, is added to the governing differential

equations.

3.3.3 Linearized Models

For very small slosh amplitudes, linearized models [Abramson, 1966,

Salzman and Masica, 1969] can be used to describe the fluid slosh dynamics.

This section summarizes the linear models with which the natural frequency and

damping ratio of the fluid can be predicted. The MODE ground and on orbit

experimental results will be used to determine the accuracy of these models for

one- and micro-gravity conditions.

For an inviscid fluid in a flat bottom cylindrical tank, with its contact angle

free to move, Eq. 3.17 is an approximate equation for the first slosh frequency

(_,).

l

r°s =(_a3tanh(1"84h){6"26+l"84B°-4"76c°sc¢}) _ (3.17)

where h is the average fluid depth and c_ is the contact angle. Note that Eq. 3.17

is not valid for fluids that exhibit contact angle hysteresis and that, in general,

contact angle hysteresis tends to increase the slosh natural frequency. A more

complex model, which includes the first order effects of contact angle hysteresis,

is presented in Abramson [1966] but requires numerical solution.

The major effect of capillary viscous forces is on the amount of energy

dissipated (damping) by the fluid motion. These dissipative effects are

important since the orbital lives of most satellites are determined by the fuel

expenditure required to control the nutational stability of the spacecraft. The fuel
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expenditure is proportional to the energy dissipated by the capillary viscous
forces and other non-conservative forces.

Although some analytical scaling analysis and estimation are possible

[Miles 1984], the prediction of fluid damping relies heavily on the results of

previous experiments. At high Bond numbers (Bo > 10), the damping of the free

surface waves scaleswith gravity and viscosity in a non-dimensional parameter

similar to the Reynolds number:

V

Nvl =
(3.18)

where v is the kinematic viscosity of the fluid. When gravity approaches zero,

this parameter is not the proper scaling, for it would imply that the fluid becomes

infinitely damped under micro-gravity conditions. When Eq. 3.18 is multiplied

by the square root of the Bond number (Eq. 3.8) an alternative scaling parameter

is obtained:

(3.19)

The multiplication of Eq. 3.18 by _ is equivalent to scaling the Navier-

Stokes equations using surface tension instead of gravity forces as a reference.

Salzman and Masica [1969] experimentally obtained slosh damping ratios for

fluids in a bare-wall cylindrical tank using drop tower tests. These experiments

predict the slosh damping ratio as a function of the Bond number as shown in

Fig. 3.7.

3.4 Test Results

3.4.1 Test Matrix Selection

The potential matrix of test cases includes two tanks, with two fluids,

uncoupled and coupled for any number of fluid modes, amplitudes and fill

heights, and for the coupled tests any number of spacecraft mass, frequency and

damping ratios. The matrix of the test actually conducted on orbit is shown in

Table 3.3, with a far more extensive test matrix completed on the ground. Since

the MODE pre-cursor flight indicated that silicone oil presented a possible free

surface equilibrium stability problem, this fluid was only tested in the uncoupled
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configuration. For the coupled tests, the spacecraft model parameters were the

first slosh frequency normalized by the spacecraft frequency ratio (v = 1.04) and

the fluid mass normalized by the spacecraft's mass (_ = 0.15); they were selected

to yield the highest possible fluid/spacecraft dynamic coupling. The damping

ratio (_ of the spacecraft's mode was set to 5% of critical. Table 3.3 also

summarizes the tank fill levels and fluid masses associated with each of the

different tests in the orbital test matrix.

Table 3.3 Space test matrix

Fluid Tank Bottom Test Type Fluid Mass Fluid Depth

mf (g) h (mm)

Sil. Oil Flat Uncoupled 19.10 27.51

Sil. Oil Sph. Uncoupled 16.02 28.24

Water Flat Uncoupled 23.42 31.00

Water Sph. Uncoupled 19.51 31.00

Water Flat Coupled 23.42 31.00

Water Sph. Coupled 19.51 31.00

The forced response characteristics for all the fluids and tanks were

determined by using three logarithmically spaced forcing amplitudes. Increasing

excitation frequency sweeps were used at all the forcing amplitudes. An

additional sweep, with the excitation frequency decreasing from one test point to

the next, was also performed at the highest forcing amplitude. The excitation

displacement amplitudes for the uncoupled tests were Xex/d = 0.32%, 1.02% and

3.22%. The forcing excitation amplitudes for all the coupled tests were chosen so

that below resonance the displacement response would be comparable to the

uncoupled tests. For the ground tests, the forcing amplitudes were Fex = 1.35,

4.27 and 13.51 mN. The excitation amplitudes for all the space coupled tests

were Fex = 0.346, 1.095 and 3.46 mN.

Figures 3.8 to 3.27 present the ground and orbital results for all the cases

in the test matrix (Table 3.3). In these figures, each symbol represents the

harmonic component as measured for that forcing amplitude and frequency.

Table 3.4 presents a legend for the symbols used in these graphs. In order to

facilitate the comparison of the ground and orbital results, the ground transfer
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functions are followed by the results of the equivalent on orbit test. In the next

two sections, the ground and on orbit results are discussed separately and then

compared.

Table 3.4 Symbols used in Figures 3.8 to 3.27.

Forcing amplitude Direction of Change in Forcing Symbol

Frequency

Low Increasing +

Medium Increasing *

High Increasing x

High Decreasing o

3.4.2 Ground Test Results

Silicone Oil Uncoupled Results. The measured linear modal parameters of

the uncoupled silicone oil tests, as obtained from the complex two-pole fit (Eq.

3.1), are summarized in Table 3.5. The ground Bond number for both of the tank

geometries is 116. The predicted slosh frequencies and damping ratios presented

in Table 3.5 are obtained from Eq. 3.17 and Figure 3.7, respectively. Note that it is

assumed for both the silicone and water cases that the predicted parameters

which are nominally only valid for a flat bottom cylindrical tank can be used as

estimates of the modal characteristics of the fluids in the spherical bottom tanks.
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Table 3.5 Silicone Oil: measured and predicted linear modal parameters.

1st Slosh Damping Mass

Frequency Ratio Fraction

Tank Test Pred. Meas. Pred. Meas. Meas.

co(I-Iz) co(Hz) 4"(%) 4"(%)

Flat Earth 5.19 5.24 1.4 4.0 0.24

Flat Space 0.49 0.68 11.6 36.3 0.24

Spherical Earth 5.19 5.26 1.4 4.2 0.22

Spherical Space 0.49 0.65 11.6 39.1 0.33

For silicone oil, the measured linear modal frequencies are within 1% of

the predicted values but the measured damping ratios are roughly three times

higher than those predicted. The experimental results (Figs. 3.8, 3.10 and 3.12)

show strong amplitude dependent nonlinear slosh behavior. For the fiat bottom

tank, Figure 3.8 shows that the first slosh frequency shifts from 5.24 Hz, at the

lowest forcing amplitude (Xex/d = 0.32%), to 4.6 Hz at the highest forcing

amplitude (Xex/d = 3.2%). This is a shift of 12% in frequency. For the spherical

bottom tank, this shift from 5.26 Hz to 4.6 Hz (Fig. 12) is also 12%.

When the planar and non-planar slosh force responses of the fluid in the

fiat bottom tank are studied, it is clear that the fluid swirls at the highest forcing

amplitude. This swirl motion manifests itself in a second resonance peak, which

appears close to the linear slosh frequency (5.26 Hz). Not only does the fluid

swirl at this forcing amplitude, but the slosh also has multiple response states.

The slosh response is different for up- and down-frequency sweeps between 5.6

and 6 Hz (Figs. 3.8, 3.10 and 3.12). Depending on in which direction the forcing

frequency is changed, the fluid motion is either a planar slosh or a non-planar

swirl. This behavior is also observed for the silicone oil in the spherical bottom

tank (Fig. 3.12).

When the slosh behavior of silicone oil in the flat bottom tank (Fig. 3.8)

and in the spherical bottom tank (Fig. 3.12) is studied, one finds no observable

difference in the behavior of the fluid slosh in these tanks. From theory it is

known that the flow potential (f) decays exponentially with depth and it must be

concluded that the flow potential near the bottom of the tank is too weak to

change the slosh behavior of the fluid.
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Water Uncoupled Re_suits. The measured linear modal parameters of the

uncoupled water tests are summarized in Table 3.6. The ground Bond number

for both the tank geometries is 34. The predicted slosh frequencies and damping

ratios, also presented in Table 3.6, were obtained from the linear model (with a

correction for contact angle hysteresis [Abramson, 1966]) and Figure 3.7,

respectively. Once the linear model was corrected to include the linear effects of

contact angle hysteresis, the predicted and measured frequencies were within

2.5%. However, the measured damping ratios are roughly 60% higher than the
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Figure 3.7 Predicted slosh damping ratios as a function of the Bond number

for fluids in a cylindrical tank.

Table 3.6 Water: measured and predicted linear modal parameters.

..... i •

1st Slosh Damping Mass

Frequency Ratio Fraction

Tank Test Pred. Meas. Pred. Meas. Meas.

co(Hz) (Hz) 4,(%) 4"(%)

Flat Earth 6.26 6.30 2.6 4.0 0.26

Flat Space 3.18 3.31 6.5 4.4 0.17

Spherical Earth 6.26 6.40 2.6 4.2 0.24

Spherical Space 3.18 3.37* 6.5 6.5* 0.28

The ground results (Figs. 3.14, 3.16, 3.18 and 3.20) show strong amplitude

dependent nonlinear slosh behavior. In Fig. 3.14 the first slosh resonance shifts

from 6.3 Hz at the lowest forcing amplitude (Xex/d = 0.32%) to 4.95 Hz at the
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highest forcing amplitude (Xex/d = 3.2%), a shift of 21%. For the spherical

bottom tank, this shift from 6.5 Hz to 5.15 Hz (Fig. 18) is 22%.

Examining the planar and non-planar slosh force-response, it is clear that

the fluid swirls at the higher forcing amplitudes. When the water results (Figs.

3.14 and 3.16) are compared with the silicone oil results (Figs. 3.8 and 3.10), it is

also evident that this amplitude dependent behavior manifests itself at lower

forcing amplitudes in the water experiments. In the water experiments (Figs.

3.14, 3.16, 3.18 and 3.20) it can be seen that between 5.9 and 6.7 Hz for the

intermediate forcing amplitude, and between 5.2 and 7.2 Hz for the highest

forcing amplitude, the fluid response is a non-planar swirl. This swirl motion

manifests itself in a second resonance peak, which appears close to the linear

planar slosh frequency (6.3 Hz). Not only does the fluid swirl at this forcing

amplitude, but the slosh also has multiple response states. The slosh response is

different for up- and down-frequency sweeps between 6.3 and 7.2 Hz (Figs. 3.14,

3.16, 3.18 and 3.20). Depending on the direction in which the forcing frequency

is changed, the fluid motion is either a planar slosh or a non-planar swirl.

Similar behavior was also observed for the water in the spherical bottom tank.

As with the silicone oil, the results from the flat bottom tank (Fig. 3.14)

and in the spherical bottom tank (Fig. 3.16) show no significant difference,

reinforcing a weak dependence on tank bottom geometry for this fill ratio.

Water Coupled Results. The water coupled ground experimental results

are depicted in Figures. 3.22, 3.24 and 3.26. In Figures. 3.22 and 3.26, the lower

frequency resonance peak is the coupled spacecraft mode and the higher

frequency resonance peak is that of the first fluid slosh mode. The frequencies at

which these resonances occur decrease as the forcing amplitude is increased. The

spacecraft mode frequency decreases from 5.9 (lowest forcing amplitude, Xex/d =

0.32%) to 5.3 Hz (highest forcing amplitude, Xex/d = 3.2%), a 10% shift. The

frequency of the slosh mode changes from 7.15 to 6.35 Hz, an 11% shift. From

Figure 3.24 it is clear that the slosh is not only nonlinear but that it also exhibits

non-planar swirl similar to the non-planar motion observed in the uncoupled

tests. The frequency range over which this non-planar swirl occurs is roughly

from 5.5 to 6.7 Hz. Multiple response states can also be observed between 5.3

and 5.7 Hz (Fig. 3.22 and 3.26).
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When the uncoupled and coupled results are compared, one canconclude

that the filtering effect of the spacecraft mode tends to reduce the nonlinear
behavior of the system. Yet, even with this "filtering" it is clear from the results

(Figs. 3.22to 3.26) that a linear model would fail to accurately model the dynamic
behavior of a coupled fluid/spacecraft system.

3.4.3 Orbital Test Results

_ilicone Oil Uncoupled Results. When the results for the linear

parameters of the microgravity fluid tests in Table 3.5 are studied, it can be seen

that the measured linear modal frequencies (0.68 and 0.65 Hz) are approximately

35% higher than the frequencies predicted by the linear model. As with the

ground experiments, the measured damping ratios are roughly three times

higher than the predicted values.

Studying Figures 3.9, 3.11 and 3.13, it can be concluded that the silicone oil

slosh dynamics are essentially linear and planar in space. The high energy

dissipation in the on orbit tests reduces the slosh modal amplitudes and thus the

amplitude associated non-linear behavior. One may expect that higher forcing

amplitudes could result in nonlinear slosh behavior, but from the MODE video

observations it is indicated that higher forcing amplitudes may actually cause the

fluid to slosh "around" the top of the tank.

When the slosh behavior of the silicone oil in the flat bottom tank (Fig. 3.9)

and in the spherical bottom tank (Fig. 3.13) is studied, one finds, as with the

ground experiments, no observable difference in the behavior.

Water Uncoupled Results. The linear parameters of the on orbit water

tests are listed in Table 3.6, and the frequency responses are shown in Figures

3.15, 3.17, 3.19 and 3.21. Unfortunately, the frequency excitation window for the

spherical bottom tests (Figs. 3.19 and 3.21) was not centered around the first

planar slosh natural frequency. The on orbit experiments failed to completely

capture the linear (low amplitude) slosh characteristics, but valuable data were

still obtaived for the higher forcing amplitudes. The modal characteristics for

this case (marked with an asterisk in Table 3.6) are of lower accuracy than the

other measured parameters. Considering both the flat and spherical bottom

tanks, the agreement between the predicted and measured natural frequencies

(within 6%) and the damping ratios (within 48%) must be considered acceptable.
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Recall that the model used for the frequency prediction included the linear effects

of contact angle hysteresis.

For the flat bottom tang the natural frequency changes from 3.3Hz at the

lowest forcing amplitude, to 2.4 Hz at the highest forcing frequency, a 27% shift.

The planar slosh force results (Fig. 3.15) show the same "double" resonance

observed in the ground experiments: the first, around 2.4Hz, is interpreted asthe

shifted non-linear planar slosh frequency; and the second is associatedwith the

swirl motion that occursclose to the linear planar slosh frequency (3.3Hz). Swirl

is clearly evident when the non-planar slosh force results are studied (Fig. 3.17).

The transition into the swirl motion is smooth. Multiple response states,

dependent on the direction in which the forcing frequency is changed, are
observed between 2.6and 3.15 Hz (Figs. 3.15 and 3.17).

Despite the less than optimal spherical bottom tank frequency window,

one can conclude from Figures 3.15 and 3.19, as well as 3.17 and 3.21, that the

fluid behavior in the flat and spherical bottom tanks is qualitatively similar, but

more quantitative differences are present than in the silicone oil and water

ground results.

Water Coupled Results, The water coupled on orbit experimental results

for the flat bottom tank are depicted in Fig. 3.23, 3.25 and 3.27. The frequency

window used for the coupled tests on the spherical bottom tank (not shown)

again failed to capture the fluid resonance for the lowest forcing amplitude.

In Figures 3.23 and 3.27, the lower frequency resonance peak is the

coupled spacecraft mode and the higher frequency resonance peak is that of the

first fluid slosh mode. The frequencies at which these resonances occur decrease

as the forcing amplitude is increased. The spacecraft mode's frequency decreases

from 2.82 (lowest forcing amplitude, Xex/d = 0.32%) to 2.6 Hz (highest forcing

amplitude, Xex/d = 3.2%), a 8% shift. The frequency of the slosh mode changes

from 3.6 to 3.13 Hz, a 13% shift in frequency. At the highest forcing amplitude,

multiple response states can also be observed between 2.55 and 3.0 Hz (Figs. 3.23

and 3.27). From Figure 3.25 it is also clear that the slosh exhibits swirl similar to

the non-planar motion observed in the ground tests. The frequency range over

which this non-planar swirl occurs is roughly from 2.5 to 3.6 Hz.

Similar to ground tests, it was observed that the nonlinear behavior has

been moderated by the linear spacecraft mode.
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3.4.4 Comparison of Ground and Orbital Results

Silicone Oil Uncoupled Tests. The overwhelming difference between the

ground and on orbit results for the silicone oil tests is the sharp increase in the

modal damping ratio on orbit. While a frequency shift of 12% between the

lowest and highest forcing amplitude was observed in the ground tests (Figs. 3.8

and 3.12), almost no shift was observed in the orbital results (Figs. 3.9 and 3.13).

Multiple solutions and swirl behavior are also absent in space. The linearizing

influence is due to the high slosh damping ratio in space, which effectively limits

the amplitude of response and suppresses amplitude dependent nonlinearities.

The very high space damping ratio, as predicted by Figure 3.7, can be

explained in terms of the fluid slosh force mechanisms. In space, the dominant

restoring force (stiffness) is the weak capillary surface tension, while on earth it is

gravity. The sharp drop in restoring force results in a drop in the slosh natural

frequency from 5.24 Hz on earth to 0.68 Hz in space. However, the fluid slosh

damping mechanism (the non-conservative action of the capillary viscous forces

in the Stoke's layer) is not significantly altered by the presence or absence of

gravity. Keeping these mechanisms in mind and studying the equation of a

second order system,

m'q + dft + kq = F

F
i_+ 2_oX t + co2q =

m (20)

one can conclude that if the damping coefficient (d) remains constant as the

frequency (co) decreases, the damping ratio (_) must increase, as was observed in

the data; i.e., if the changes in the non-conservative action of the capillary viscous

forces are minor, the product of the frequency and damping ratio should be

invariant to the change from earth to orbit. The earth and space products differ

by 0nly 15% (Table 3.5), confirming that the change in restoring force does not

fundamentally alter the loss mechanism.

Water Uncoupled Tests. Both the ground and on orbit results exhibit

strong nonlinear and non-planar slosh characteristics. Some aspects of the

response are slightly more nonlinear in space, and some more nonlinear on the

ground. In space, when the forcing amplitude is changed from the lowest

amplitude to the highest, the shift in resonant frequency (Fig. 3.15) is 27%; in the

ground experiments, for the same change in forcing amplitude the shift is 22%.
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In contrast, when Figures 3.16 and 3.17 are compared it is evident that the onset

of the swirl is more gradual in space than on earth, and multiple solutions and

jumps are less evident. By comparison with the silicone oil ground results, the

qualitative nature of the nonlinearity is retained in the on orbit results.

The decrease in the first slosh frequency, between ground and space

(Table 3.6), is much smaller for water than the decrease observed in the silicone

oil experiments (Table 3.5). The explanation for this trend is the influence of

contact angle hysteresis. The first order effect of contact angle hysteresis is to

increase the slosh frequency, and since contact angle hysteresis is not a function

of the ambient acceleration, the frequency change is smaller when gravity is

removed. It can be inferred that in space the contact angle hysteresis dominates

the restoring force, keeping the frequency relatively high, the damping ratio low

and the nonlinear nature present.

Water Coupled Test_. The coupled water experimental results (Figs. 3.23,

3.25 and 3.27) clearly exhibit nonlinear and non-planar dynamics, similar to the

behavior observed in the equivalent ground tests (Figs. 3.22, 3.24 and 3.26). As in

the uncoupled tests, it can also be concluded that the onset of the swirling motion

is more gradual than was observed in ground tests and no sudden response

jumps occur. In space, swirl also occurs over a wider frequency range. The

softening frequency shift in the spacecraft and slosh modes is present in both the

space and ground data.

3.5 Conclusions

The MODE ESM, when used on the ground and shuttle middeck, has

demonstrated the ability to determine the dynamic characteristics of contained

fluids for a wide range of tanks, fluid slosh natural frequencies and gravity

conditions. The orbital results demonstrated the ability of the hardware to

resolve slosh forces to as low as 0.1 mN.

The existing linear models predicted the fluid slosh natural frequencies to

within 5 to 35%, the damping ratios within a factor of three, and of course did not

capture the nonlinear behavior, which becomes apparent for tank motions as

little as 1% of the diameter. As a result, their application to micro-gravity fluid

modeling is problematic.
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When the results of all the MODE flat bottom and spherical bottom tank

experiments are compared, no significant difference in the dynamic slosh

behavior is evident. At lower fill levels the shape of the tank bottom would have

an effect on the dynamic behavior.

Compared to the nonlinear, nonplanar and multiple response slosh

behavior observed in the silicone oil ground experiments, the slosh behavior of

this fluid is essentially linear in space. This is due to the very high damping ratio

of the first slosh mode in space. However, both the space uncoupled and

coupled water experiments exhibited nonlinear and non-planar characteristics

similar to those observed in the ground experiments. This is due to the relatively

high restoring force for water which originates from the contact angle hysteresis.

The MODE on orbit experimental results are being used to update and

validate the MIT analytical model for micro-gravity conditions. The MODE

results established a database with which researchers can validate their analytical

models. This may eventually lead to the reliable design and prediction tools

necessary to meet the high performance requirements of future spacecraft.
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4 xl@3

ll

8
Z

i

i

2

o
O

] o x

°i "Ol ..ii...liitililli*, .... *lilt tll.lli fill ltitlIti,

1.8 2 2.2 2.4 2.6 2.8 3

Frequency in Hz

0o_II" It.

,>° x _ '";II
. if"+ ++ i!

÷÷++÷ 4"

, lit

3.2 3.4 3.6

2OO

1o0

0

-10C

-200
1,8

""' iiiii '.+÷+ llll ill i m ill w W

Ill +

$ e

gl ill _ ilI

,,+ oo ,o;o+°°o ,,,,,xx°X i era=++ w

++++,++l°'iltltlt;tl lllilli,,.,+, +_._..
, :,:2 _.4 ,.+ ">:s :l 3:_ :+'.,,, 3.6

_'cqucncy in Hz

Figure 3.17 Uncoupled test in space with distilled water in a fiat bottom tank.

Non-planar slosh force and phase angle.

69



(),] r | I i i

0,08

_0,06

8
O.O4

_ 0.02'

_o

8
IS
it.

i
x"

]

or
4.5

illi ii U R ii ii II X XX X X X X XX X x XXX x

mm_v_u o

lUll _IlllR Rm_U _ l§ Iull O OOOOOOOOO oOOO_X

, +'+'+.+,+,:+. ::_I Zl iZ$I$ I$81$I$ 811111tZ 8 I$ 8tZ 8_ 8Z88 81 8$
''it "I*_ '4"_ "+÷e + ,,, ÷ _ ÷ ÷ _ _, ÷ ÷ ÷ ÷ + ,i* ÷ t" e....... _ • e÷ ÷i ÷.#,* 61

5.5 6 615 7

Frequcncy(Hz)

5O

-50

-I00

1504.5

_lililllll|¢.w_x.* i.l¢.'iill;.*_++++++++:+ ooo ooo °°eW

"l!li; 0,°i:.-,;, ..,l"
4,

@@@4" .# 4_

4' @@@4"

Frcqucncy0-Lz)

7.5

7.5

Figure 3.18 Uncoupled test on earth with distilled waterin a spherical bottom

tank. Planar slosh force and phase angle.

x10-}

v

8

_I
i

J

t i t i

tt t5 tt tt tttt ttll tt tt 6 IIItll _I t5 ttlf tt tt_ _ ! I tf ttlit I x x xl x X x oxI II!! tfti Illttlllll_ _ _tm mm IRR

2 2.2 2.4 2.6 2.8 3

Frcqucncyin Hz

5O

o

i

n.

-5O

3.2

Ill I Ill lk I!l It I lit iI Ili t

i 4.4.@@@4 .tttlitlllilllill +,,.+,,+,,.i, .,.

ii

212 214 .................. 2'.6 2:8 i 3.2

F'rcqucncyinHz

Figure 3.19 Uncoupled test in space with distilled water in a spherical bottom

tank. Planar slosh force and phase angle.

70



0.1

0.08

0.O6
o
¢/3

0.04

_, 0.02
g
z

4.5
vl

,1l

_-iNI

1-200

Z

I I i u I

x

x

x_tja_mWmU_lwxxX xxxxXXXX xX

IS llW_° °° x

ooClR_ _ °°°°°Ooe oox

:t °X

5 5.5 6 6.5 7

Frequency ('Hz)

K

0

|*_+ +_+*_+*!_+*+ s._+**.,. ,.****+_.*_+*+**:.;;t 1,
t i i

4.5 5 5.5 6 6J5

i + ****+* *t,

+t+

)( X J_ J_ l l_ i l l I _ i l J _ l l_l Jl l XX ]I(X)(x X x :J[ _

x x. xx, R
oooooooooooO °x

Frequency(Hz)

7.5

"_ 7.5

Figure 3.20 Uncoupled test on earth with distilled water in a spherical bottom

tank. Non-planar slosh force and phase angle.

i
c_

200
100

+o
z -IOO

o

_-200

2 xl0-_

1.5

I

0.5

11

A
I

R

e_ aw

llllll **ll.ll*Bill , I I I IJLjII.I..I i ., , _I I I I I I I iI II iII ll$illl Ill+ill |sa
2.2 2.4 2.6 2.8 3

Frequency in Hz

_t I _ ill I • '*' ")" + _" + _ 4" _ + ++_'÷+ ¢' '¢" + + ¢" ÷ I- + .¢.

_"_°°_°°OOoo
x °0°°0

X XX x XXxxxXX X

Oooo

3.2

_- 2

Figure 3.21

2.2 2.4 2.6 2.8 3 3.2

FrequencyinHz

Uncoupled test in space with distilled water in a spherical bottom

tank. Non-planar slosh force and phase angle.

71



0.2 i ! i i I t

0.15

"_ 0.1
O

0.05
E

4.5

[

0

_2DO( Uxz;4.5
x"

5 5.5 6 6.5 7 7.5

Frequency (Hz)

i n u i ! i

+++t"

'"'"'"'""',,:::_,,,;,: _:::::,,:::.......
R+ _i_r$ ÷÷÷$* ÷4"

4.

5'.5 : _ _'5 _ ¢.5
Fre.qucncy(Hz)

Figure 3.22 Coupled test on earth with distilled water in a fiat bottom tank.

Planar slosh force. (/_ = 0.15, _ = 0.05, v = 1.04)

0.0]2 ) T _ I | _ I ,

_0,001

0.008

0.006

_0.004

__0.062

1.8

xgeaee e

xxXl_ ° ISS

x AnRI n

Ill Ell

xo ,,o"'i ';"'": ::::
.,e_ e_e'_'e88_8_ "+** * ** ****+*I*I_
• ************************* '"+* ", •. ,,.,.÷÷+_.+++++ ++++ + ++ ++++

2 2,2 2.4 2.6 _8 '3 3'.2 3.4't 3.6

Frequency('Hz)

¢

2oo

| _oo

!t i

E_ -2(_
L$

++.

"":_":',.:::,, ;;...
,sawwilwlw

!

_'.2 2'._ i._ 2'._ '3 3'.2 3._ _._
l-'P.Au_cy (Hz)

Figure 3.23 Coupled test in space with distilled water in a fiat bottom tank.

Planar slosh force. (//= 0.15, _ = 0.05, v = 1.04)

72



,_ 0.03

"S

0.02

l
_" 0.01

4.5

_ 2oo

O00XXXX

0 0000 X

t5
o

x o
x

o 0

5 5.5 6 6,5 7 7.5

Frequency (Hz)

;'IIo

too

_ o

-I00

-200:
4.5 8

000 0

+ + o +++ ¢*1a1. m_.. v

+ x x "'''''+ + ::
Oo +÷++_x_ I ÷++_'_XXx x

°°°°° +" II; + ++,
000000 +

o RI
• 2111t It

o • x_iR_.oo, 0:_._ ,. °o .,. Js .... 5'.s _ 6'.5 "_ 7.5
Frequency(Hz)

Figure 3.24 Coupled test on earth with distilled water in a fiat bottom tank.

Non-planar slosh force. (/a = 0.15, _ = 0.05, v = 1.04)

0.0(J6

_0.005

_ 0.004

x,-

j0.003

0.111/2

0.001

1.8 2 2.2

o

I °
-2°_.s

'7

i i t i x _ x I i
x xg

xXo°oooo|U
Xo 0

_o
o2

o

0

0
x I

0
II

• x _ I

o x 11[

2.4 2.6 2.8 3

'tt;I;_:I 't'_i'''_ , ""++ ++
- 4"

÷

Frr.qucncy(Hz)

_I$ o
X I X. xO:O

:Ro , _II x o, :
i +I It it

2 2::2 2.4 :2.6 2_8

Frequency (Hz)

÷ ÷+

,¢.÷÷

'l'._!
_'._ _.4 _.6

++ ,,+++ ,: ;.++
+..,.+ + ,I,_ ; +.

|I$_ lllt +4.

lllll 1111 +,41, It"

II llll I .I-

.,. Ox°_.
$ +

I +.

$

g

'3 3'.2 3.4 3.6

Figure 3.25 Coupled test in space with distilled water in a fiat bottom tank.

Non-planar slosh force. (#=0.15, _=0.05, v=1.04)

73



E

!

8!x 104

4

RI_ e6 e 1115[ 8lee

2 lilllll i I+tiNt***, ÷**÷ *÷+*÷*+*+11555t1+ ÷÷

.5 5 5.5 ; _ * *+

FrequencyO/z)

0

-50

-I00

-150

nNUmnn_R_l

1( "R(iRI

_l]SS:_ o°°em_el•_ 2 NU U 6U216

_xx x liX _ 811E8_1_1 $

IIIIii I

+++4-+++++++++++++
t

+ 7.5

i l ! i l l
4.

4".1. 4"
I J_[lll lllllll j I$11 * +

:1+++ m_"" '*****, .
"•+'" '+I_+" "I + **, ++

illlll III g I

÷ _ Ill; +÷ +

+*÷ R+J_RRIRR RN lla

+ * +++ II illRRlil_lllile Ill
+

+ +t+ ; 6'.s + 7'.+
Frmuencv (Hz)

Figure 3.26 Coupled test on earth with distilled water in a fiat bottom tank.

Tank displacement. (11=0.15, 5=0.05, v=1.04)

0.04

0.03

0.02

i5o.m

1,8

0 l

Rx w
R •

• I

• UNI lU _|lwlmull _ _mje_e I u5 _| R_R 8•| IN

: ':*"'" "'*'"*'2:::*'_I _ +++ ++++ ++'+-+ +++f_++ ++p+ + +÷÷i + j +_ _*&,+&+6 _++

2 Z2 2.4 2.6 2,8 3 3.2 3,4

Frequency ('Hz)

I
4

3.6

C

-5O

-100

-150

"20_].8 _+ 212 --2'.4 216 218 3 312 314

. , + , . ,

III I a ll'll * e ' ll'll O Pl III I ° I i [_111 ij _ NNR_

++.. * mmmllill it 1

3.6

Frequency(Hz)

Figure 3.27 Coupled test in space with distilled water in a flat bottom tank.

Tank displacement. (_=0.15, 5=0.05, v=-1.04)

74



3.6 References for Chapter 3

Abramson, H.N., ed, "The Dynamic Behavior of Liquids in Moving Containers,"

NASA SP-106, 1966.

Agrawal, B.N., "An Overview on INTELSAT Activities on Liquid Slosh," Proc. 1st

INTELSAT/ESA Symposium on the Dynamic Behavior of Liquids on

Spacecraft Attitude Control, Washington, D.C., April 25-26, 1984, pp. 99-

120.

Crawley, E.F., Barlow, M.B., van Schoor, M.C. and Bicos, A., "Zero-gravity

Measurement of the Modal Parameters of Space Structures," IAF-92-0314,

To be presented at the 43rd IAF Conference, Washington, September 1992.

Dodge, F.T. and Garza, L.R., "Experimental and Theoretical Studies of Liquid

Sloshing at Simulated Low Gravity," Trans. ASME, J. Applied Mechanics,

34, Sept. 1967, pp. 555-561.

Dodge, F.T, and Garza, L.R., "Simulated Low-gravity Sloshing in Spherical

Elipsoidal and Cylindrical Tanks," J. of Spacecraft, 7:3, 1970, pp. 204-206.

Ganiev, R.F., "Nonlinear Resonance Oscillations of Bodies with a Liquid," Soviet

Applied Mechanics (translated from Prikladnaya Mekhanika Vol. 13, No.

10, 1977, pp. 23-29).

Komatsu, K., "Non-linear Sloshing Analysis of Liquid in Tanks with Arbitrary

Geometries," Int. Journal of Non-linear Mechanics, Vol. 22, No. 3, pp. 193-

207, 1987.

Kuttler, J.R., and Sigillito, V.G., "Sloshing of Liquids in Cylindrical Tanks," AIAA

Journal, Vol. 22, Feb. 1984, pp. 309-311..

Limarchenko, O. S., "Effect of Capillarity on the Dynamics of a Container-Liquid

System," Soviet Applied Mechanics (translated from Prikladnaya

Mekhanika vol 17, no 6, pp. 124-128), 1981.

Limarchenko, O. S., "Application of a Variational Method to the Solution of

Nonlinear Problems of the Dynamics of ComBined Motions of a Tank with

Fluid," Soviet Applied Mechanics (translated from Prikladnaya

Mekhanika vol 19, no 11, pp. 100-104), 1983.

75



Luke, J. C., "A Variational Principle for a Fluid with a Free Surface," J.Fluid

Mechanics, Vol. 27:2pp. 395-397,1967.

Martin, R.E., "Effects of Transient Propellant Dynamics on Deployment of Large

Liquid Stagesin Zero-gravity with Application to Shuttle/Centaur," IAF-
86-119,1986.

Miles, John W., "Internally Resonant Surface Waves in a Circular Cylinder,"

J.Fluid Mech., Vol. 149pp. 1-14,1984a.

Miles, JohnW., "Resonantly ForcedSurfaceWaves in a Circular Cylinder," J.Fluid

Mech., Vol. 149pp. 15-31,1984b.

Reynolds, W.C. and Satterlee,H.M., "Liquid Propellant Behavior at Low and 0-
G," in Abramson, 1966.

Salzman,J.A. and Masica, W.J.,"An Experimental Investigation of the Frequency

and Viscous Damping of Liquids during Weightlessness", NASA TND-
5058,1969.

Satterlee,H.M. and Reynolds, W.C., "The Dynamics of the Free Liquid Surface in

Cylindrical Containers Under Strong Capillary and Weak Gravity

Conditions," Stanford University TR-LG-2, 1964.

van Schoor, M.C., Crawley, E.F. and Hansman, R.J., "The Coupled Nonlinear

Dynamics of Spacecraft with Fluids in Tanks of Arbitrary Geometry,"

M.I.T., SSLReport #4-89,April 1989.

van Schoor, M.C., Peterson, L.D. and Crawley, E.F., "The Coupled Nonlinear

Dynamic Characteristics of Contained Fluids in Zero Gravity," presented

at the 31th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics,

and Materials Conference,Longbeach,California, April 1990.

Yeh, G.C.K., "Free and Forced Oscillations of a Liquid in an Axi-Symmetric Tank

at Low-Gravity Environments," Journal of Applied Mechanics, Vol. 34,

No. 1,pp. 23-28,March 1967.

76



Chapter 4: Flight Systems and Mission Activities

4.1 Introduction

The Middeck 0-gravity Dynamics Experiment (MODE) was an

investigation into fluid and structural dynamics in microgravity. The objective of

MODE was twofold: to study the gravity-dependent nonlinear sloshing behavior

of contained fluids typical of spacecraft fuels, and to investigate the dynamics of

space structures. These two separate experiments were combined into a single

mission to take advantage of the commonality in the required support

electronics. A single Experiment Support Module containing all the power,

signal conditioning and data storage capabilities supported both sets of

experiments.

A technical description of the hardware and software systems used in

MODE is presented in this chapter. MODE consists of three major elements: 1)

the Experiment Support Module, a dynamics test bed providing computer

experiment control, analog signal conditioning, power conditioning, an operator

interface consisting of a keypad and display, experiment electrical and thermal

control, and archival data storage; 2) the Fluid Test Article Assembly, used to

specifically investigate the dynamics of fluid-structure interaction in zero-

gravity; 3) the Structural Test Article for specifically investigating the open-loop

dynamics of structures in zero-gravity. The modular nature of the Experiment

Support Module subsystems, particularly the experiment control computer,

make it readily adaptable as a test facility for other on orbit experiments. This

chapter describes the hardware and software elements, their development and

certification, and their operation on orbit.

MODE was developed and certified as a standard shuttle middeck

experiment. It was stowed in three and a half lockers on the middeck: one for

the Experiment Support Module; a second containing the Fluid Test Article

assembly and the fluid containers; a third housing the parts of the Structural Test

Article; and half of another locker for ancillary equipment such as the NASA

supplied video camera.
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MODE required active interaction with the Shuttle crew. Crew activities

included: experiment power up; test article assembly, disassembly and
reconfiguration; the initiation and monitoring of automated test protocols; and

the entering and initiation of manual protocols. Most MODE on orbit operations

made useof automated test protocols stored in the Experiment Support Module.

Modification of experiment operation was possible through the use of manual
protocols, allowing near real-time adaptation to on orbit conditions.

4.2 Flight Systems

4.2.1 Development

MODE began as two distinct experiments at the MIT Space Engineering

Research Center. At the beginning of the MODE flight program, a ground-based

fluid test article apparatus already existed. One of the primary tasks during

development was the transformation of this prototype to flight systems that

could withstand the rigors of shuttle launch, landing, and space-based

operations. The structural test article was designed from scratch, with the

primary flight system development task being the reduction of electronics filling

several racks in the laboratory to the volume and power levels of a single

middeck locker. Several major constraints affected these transformations:

budget and schedule, the use of commercial parts, and Shuttle safety.

Budget and Schedule. In order to meet IN-STEP objectives, MODE flight

systems were developed on an aggressive 'success oriented' schedule which put

launch approximately two years after the Preliminary Design Review. Funding

for the experiment was limited. The MODE flight systems were developed for

$2.1 million, with approximately half being spent for hardware and software

design, manufacture, test, integration, crew training, and mission operations.

The remaining funds were spent on experiment design, science development,

ground testing, and data reduction.

Use of Commercial Parts. MODE was designed, built and tested to Class

D-modified standards. No requirements for 'pedigree' of materials or

components were imposed. This allowed significant use of off-the-shelf

industrial and commercial grade hardware. MIL-STD-883 parts were used only

where cost or lead-time permitted, and if higher reliability was desired.
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Documentation and hardware controls were substantially reduced from the

levels normally associatedwith spaceflight hardware. A seriesof environmental

and certification testswere imposed upon the hardware and software asa screen

to detect flaws in workmanship or design.

Shuttle Safe .ty. While the relatively less-stringent requirements of Class D

allowed the team to accommodate the short schedule and fight budget, MODE

hardware nevertheless had to meet all safety and interface requirements imposed

by the Space Shuttle Program. The requirement for a high degree of crew

interaction demanded thorough evaluation of Orbiter capabilities, standard and

non-standard services, and early involvement with the NASA Astronaut Office

Science Advisory Board. Supporting this effort were structural and thermal

analyses, a careful selection of materials, and a significant amount of interaction

with the Program Integration Office at the NASA Johnson Space Center.
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Table 4.1 Summary of MODE properties

Stowage Volume

Middeck Locker #1

Middeck Locker #2

Middeck Locker #3

Middeck Locker #4

Weight

Exp Support Module

Fluid Test Article Assy

Structural Test Article

Power Required

Fluid Dyn Testing

Structural Dyn Testing

Activation Process

Crew Time

Assembly

Testing

Disassembly

3 & 1/2 Lockers

Experiment Support Module

Fluid Test Article Assembly

Structural Test Article

Ancillary Equipment (Half)

26.8 kg [59.0 lbs]

3.7 kg [8.2 lbs]

13.5 kg [29.9 lbs]

110 watts

104 watts

Assemble Test Article

Connect Power Cable

Apply Power to Support Module

Insert Optical Disk
Initiate Automatic Protocol

Approx 15 minutes to Assemble and Activate

16 hours

Approx 30 minutes to Disassemble and Stow

z

=

=

2

4.2.2 Functional Elements

Although the phenomena under study in the fluids and structures

experiments of MODE were quite distinct, the testing methods were similar

enough that large portions of the hardware could be used for both experiments.

Both required sinusoidal excitation of the test articles, sensor signal conditioning

with on orbit (pre-programmed) control of individual channel gains, data

acquisition and storage, interaction with the crew via keypad and display, active

cooling of electronics, and computer control of experiment protocols and

sequencing.
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MODE Flight Systems development was therefore separated into three

major hardware elements:

• Experiment Support Module, a dynamics test bed providing computer

experiment control, analog signal conditioning, power conditioning, an

operator interface, experiment power and thermal control, and archival

data storage.

• Fluid Test Article Assembly, a fluid container with associated excitation

and measurement systems.

• Structural Test Artj.cle, a truss-like jointed structure with both deployable

and erectable components.

Figure 4.1 shows in block diagram form the similarities in support

electronics for the Fluid and Structural Test Article experiments. The Experiment

Support Module provides power and control to, and obtains sensor readings

from the test articles through the umbilical which connects to the front of the

module. Table 4.1 summarizes the properties of the MODE flight systems.
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Figure 4.1 MODE block diagram

4.2.3 Fluid Test Assembly

The Fluid Test Article Assembly shown in Figure 4.2 consists of: a fluid

test article, a voice-coil actuator, a reaction force balance, an accelerometer, a

proximity probe, and a clock display, all mounted on a lockable universal ball

joint. The entire unit physically attaches to the front of the Experiment Support

Module via a quick-release attachment device; it is electrically connected by an

umbilical that provides the power, control, and data interfaces. The universal

ball joint allows the test article to be aligned with the residual acceleration vector

in the orbiter middeck. This feature stems from concerns that the cumulative

effects of residual gravity and aerodynamic drag could reorient the fluid in an

undesirable way during testing, thus preventing meaningful slosh

measurements.
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Figure 4.2 Fluid Test Article assembly 

The voice-coil actuator excites the test article and force balance 

sinusoidally along a single axis; the force balance measures the inertial forces 

due to the mass of the structure and tank, in addition to the fluid slosh forces. 

The tank and force balance masses can be subtracted from the measurements 

electronically. During coupled fluid/structures testing, a Spacecraft Simulation 

Circuit which modifies the actuator response to behave like a single-axis, second

order dynamic system was used. In this way it was possible to study the coupled 

response of a fluid container attached to a spacecraft. Mass, damping, and 

frequency ratios of the fluid and spacecraft could be selected through the 

protocol file or the Experiment Support Module keypad. 

Four fluid test articles were flown on ST5-48: two cylindrical tanks with 

flat bottoms, one filled with silicone oil and the other with distilled water; and 

two cylindrical tanks with spherical bottoms, again one filled with silicone oil 

and the other with distilled water. Each tank is approximately 7.9 cm (3.1") in 

height and 3.8 em (l.5") in diameter, and is made from polycarbonate. The tanks 
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are sized such that the expected acceleration environment of the middeck would 

not realign the fluid during testing. Section 4.3 contains a detailed explanation of 

the rationale for tank sizing, fluid choice and fill ratios. Containment of the fluid 

is provided by two o-ring seals at the top of the tanks. 

4.2.4 Structural Test Article 

Elements of the Structural Test Article include: two deployable truss 

modules, a set of erectable truss components, an articulating/rotary joint 

module, two rigid appendages with end masses, a flexible appendage, a proof

mass actuator, associated sensors and cabling, and a tether system (described in 

more detail in Chapter 2). The modular nature of the elements allows different 

configurations to be studied; two of the flight configurations are shown in 

Figures 4.3 and 4.4. The basic element used in the trusses is a cylindrical rod of 

polycarbonate with aluminum end sections; the connecting nodes and the joints 

are made from al urn in urn. 

Figure 4.3 Structural Test Article in the alpha configuration 
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Figure 4.4 Structural Test Article in the L configuration 

The test article is excited using a proof-mass actuator, with integral force 

transducer, attached to a node of one of the deployable truss modules. Sensors 

distributed along the truss provide eleven acceleration and four strain 

measurements. A lightweight tether system is used to allow the truss assembly 

to "free-float" in the center of the middeck while not translating due to air 

currents. The assembly is electrically connected to the Experiment Support 

Module by an umbilical that provides the power, control, and data interfaces. 

4.2.5 Experiment Support Module 

The Experiment Support Module is essentially a compact dynamics 

laboratory. It requires only +28 VDC nominal orbiter power, and operates in all 

normal crew compartment pressures and temperatures. 

The Experiment Support Module provides: 

• DC-to-DC conversion of orbiter +28 volt power 

• 20 channels of sensor powering and preamplification 
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• 16 channels of digitally controlled amplification and filtering (signal

conditioning)

• 12-bit analog-to-digital conversion

• Storage of digital data (400 M'bytes per disk)

• Automatic performance of experiment protocols stored in software (100

protocols flown)

• Power amplification of actuation signals

• Safety power switching and inhibits

• Active cooling of electronics

• Control, data, and power interface with test articles via umbilical

• Operator interface through keypad and display for alphanumeric display

of experiment status, error messages, and input data.

Major elements of the Experiment Support Module are the SensorNet Tm

Experiment Computer housed in a 9-slot card cage, the Signal Conditioning

System housed in a 14-slot card cage, an optical disk drive, and a power supply.

Other elements include a cooling fan and items such as air baffles, circuit

breakers, thermostats, air flow sensors, and associated cabling. All of these

elements are contained within or secured to the rigid aluminum support frame

which completely fills one standard middeck locker. The support frame is

designed to provide: structural support for, and containment of the internal

components; the containment of EMI emissions by minimizing the number of

joints and penetrations; and air distribution via internal air channels.

Honeycomb waveguides are used in the air intake and exhaust to reduce EMI

emissions, while a dust screen on the air intake provides protection from

airborne debris.

Figure 4.5 shows the Experiment Support Module ready for installation,

while Figure 4.6 shows its internal configuration.
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Figure 4.5 Experiment Support Module 
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Figure 4.6 Experiment Support Module (with top cover removed) 

Experiment Computer. MODE utilized Payload Systems' SensorNet™ 

Experiment Computer, housed in a rugged 9-slot card cage with removeable card 

modules (see Figure 4.7). The system used four processor cards and three iSBX 

function cards which fully implemented the MODE experiment control, data 

acquisition, and data storage tasks. 
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Figure 4.7 SensorNet™ Experiment Computer 

The four functional modules of the Experiment Computer are: the 

Experiment Control Module, for experiment sequencing and digital input and 

output; the Analog Input Module, for analog-to-digital conversions; the Mass 

Storage Module, for data transfer and command of the optical disk drive; and the 

Central Exchange, for inter-processor communications management. 

Each computer module contains a dedicated processor card and, except 

for the Central Exchange, an iSBX daughter-board performing module-specific 

functions. The processor cards conform to STO bus standards. This architecture 

allows much greater real-time computing capability than a single board solution, 

due to the distribution of high-rate tasks to the dedicated processors. All 

electronics used in the SensorNet™ Experiment Computer are available off the 

shelf. 

The Experiment Control Module controls experiment sequencing by 

generating commands that instruct the other modules to perform a specific task. 
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Built-in parallel input/output ports allow operator interaction and real-time data
and status information display during operation.

The Analog Input Module handles the analog-to-digitial conversion task.

The sampling rate is software-selectable to a maximum of 1000 Hz. The
converter section has 12-bit resolution, and is configured for an input range of

+15 volts.

The Mass Storage Module handles the data storage task. The module

communicates with the data storage unit over a SCSI bus and can store

configuration status such as gain settings, filter settings, time tags, spacecraft

simulator settings, signal generator frequency command, experiment status,

software version numbers, etc. The throughput rate is greater than 40 kbytes per

second.

The Central Exchange handles all inter-processor communication tasks. It

uses the V53 processor (80186 instruction set) operating at 16 MHz, and has up to

1 Mbyte of dedicated RAM. As with all of the modules, software is stored

onboard with EPROMs. The Central Exchange provides a real-time clock for use

in time-stamping data.

The common base for each computer module is a software entity called

the Virtual Module. The Virtual Module provides: power-up diagnostics and

initialization; interrupt-driven, buffered inter-module communications via a

packet transfer manager; management of a module's shared memory; command

management; event handling via custom, user-developed event handlers; error

management and reporting; and local input/output management. The Virtual

Module is implemented in the SensorNet TM Distributed Real-Time Operating

System embedded in the Central Exchange.

The Experiment Control Module software is unique among the computer

modules because it is used to generate the commands that instruct the other

modules to work in concert for a given task. A user development interface is

available which allows the user to easily develop experiment-specific codes. The

interface utilizes a library of object-oriented software modules.

The Analog Input Module software is responsible for the accurate

sampling of the analog-to-digital converters. Sampling is performed by an

interrupt service routine of which three command-setectable versions are

available for use.
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The Mass Storage Module software controls the creating, opening,

reading, writing, and closing of files to the data storage unit.

Data Storage Subsystem. Data are stored on a commercially available

Write-Once-Read-Many (WORM) optical disk drive. It uses disk cartridges

capable of storing 200 Mbytes per side (400 Mbytes total per disk), which are

replaceable on orbit. The drive communicates with the SensorNeff M Experiment

Computer Mass Storage Module over a SCSI bus.

Archival data storage on a WORM optical disk was used to guarantee data

integrity because: once data are written they cannot be erased; files into which

data are written, or from which data are read, are opened one at a time; disk

status and the location of the next free sector on the disk can be determined; and

a list of the files that are on the disk can be obtained.

Signal Conditioning System. The Signal Conditioning System is housed in

a rugged card cage identical in construction to the Experiment Computer, except

for the larger number of card slots (14). Signal conditioning available consists of

Sensor Powering and Preamplification (SPP) cards followed by Signal

Conditioning Cards (SCC) which contain digitally controlled gain stages, anti-

alias filters, and sample-and-hold amplifiers. Each pair of STD-sized SPP and

SCC cards provides four channels of conditioning. MODE flew five SPP cards

and four SCC cards.

Each preamplification channel has an instrumentation amplifier front end

with gains selectable from 2 to 5000 volts/volt; in addition to hardware gain and

offset trim adjustments, they provide for auto-zero of input offsets under

software control. The twenty preamplification channels are multiplexed to

sixteen outputs, switchable on orbit (via software or hardware) to allow two

instrumentation configurations.

The four SCC cards allow sixteen channels of data to be recorded per

configuration. Each channel has software-selectable gains of 1, 2, 4, 8, and 16,

followed by 8th-order lowpass (anti-alias) Bessel filters. Filter rolloff is

controlled by a clock source, whose frequency is switchable under hardware or

software control between two values. This permits each instrumentation

configuration (e.g., Fluid Test Article or Structural Test Article) to have a unique

rolloff frequency, corresponding to the software-selectable sampling frequency

used for each experiment. Finally, the SCC cards provide a sample-and-hold
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function under computer control to allow simultaneous sampling of all sixteen
channels.

Signal Generation/Actuator Drive. Actuator drive signals are generated

by a digital frequency synthesizer, which has a range of DC to 3 MHz. The

computer can control the output frequency in 10 mHz steps (configureable to 1

mHz minimum). The output phase is continuous between frequency steps,

which permitted the very smooth, very low frequency actuation required for

MODE.

The power amplifier operates in bridge mode, with a +_20 volt output

maximum (no load), and 1.7 amp maximum drive capability with two

individually fused output lines. The amplifier is current limited, and the output

level is software-selectable. Circuitry is provided which can modify drive signals

to simulate a single degree-of-freedom, second-order dynamic system. Mass,

damping, and spring constants are software-selectable. A displacement servo

circuit is also provided to compensate for actuator response at low frequencies.

A triaxial accelerometer package is located within the Experiment Support

Module, along with a set of dedicated preamplification circuits. This package

has a +50 g maximum range, and resolution is set with a load resistor on each

axis. The standard configuration is a 50 _tg to 0.1 g dynamic range.

Circuit Development. Circuit designs for the Signal Conditioning

Circuitry were verified first by breadboard and prototype tests at MIT, followed

by flight printed circuit fabrication by Payload Systems. The printed circuit

boards were tested upon arrival, then populated with components (as received

from the manufacturers) to MIL standards. Each assembled card was tested for

functionality, then each flight set was tested together in order to verify proper

system operation. The cards were then conformally coated, installed in the flight

card modules, and the flight cabling installed. The remaining tests were

performed as part of the certification and acceptance tests described below.

Power S.u.pply. A custom power supply was designed to convert Orbiter

+28 VDC to +5, +12, and +15 VDC needed to power the MODE elements. It uses

commercially available DC to DC converters that meet MIL standards for input

transient, inrush current, shock and vibration, and radiated and conducted

emissions and susceptibility.
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The power supply and distribution system provides several safety

features: short circuit output protection in the power supply; current limiting to

prevent excessive excitation of the test article actuators; and independent
inhibits to detect and prevent operation in the event of excessive internal air

and/or power supply temperature, or fan failure.

4.2.6 Certification

In compliance with the certification requirements placed on flight

experiments by NASA, the MODE hardware successfully passed the following:

• Electromagnetic compatibility testing (conducted and radiated EMI -

Shuttle middeck specifications)

• Leak testing (fluid test articles)

• Materials flammability testing (polycarbonate)

• Materials offgas testing

• Materials usage review- flammability

• Materials usage review- toxicity

• Random vibration testing (Experiment Support Module): 7.1 gRMS, 2

mins, 3 axes

• Random vibration testing (test articles): 6.5 gRMS, 2 mins, 3 axes

• Thermal cycle testing (Experiment Support Module only): 0°C to +50°C, 6

cycles.

4.3 Mission Activities

4.3.1 Fluid Dynamics Testing

In order to begin on orbit operations, the Experiment Support Module was

connected to Orbiter +28 V power, and to the appropriate test article through the

umbilical port on the front panel.

The fluid test articles were filled four days before launch and delivered to

the Kennedy Space Center for stowage. Once on orbit, the Fluid Test Article

Assembly was removed from its locker by a crew member and attached to the
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front of the Experiment Support Module using the attachment device. Prior to

the start of testing, the astronaut determined the Shuttle orientation (i.e., residual
acceleration direction) and aligned the assembly at a predetermined angle using

the universal ball joint. The astronaut then removed a testarticle from its storage

locker and oriented the fluid inside to the bottom of the tank by moving the tank

in a conical motion with his hand. After having accomplished fluid alignment,
the fluid test article was attached to the reaction force balance. The astronaut

then applied power to the Experiment Support Module and inserted an optical
disk into the disk drive.

The astronaut began testing by initiating an automatic protocol stored on

the optical disk. The Experiment Computer then excited the testarticle through a

sequenceof frequency and amplitude setswhile collecting and storing data from
the test article instrumentation. Periodic monitoring of the fluid surface by the

astronaut was needed to detect fluid surface disruption. If the fluid equilibrium

free-surface broke during a test run, the astronaut interrupted the experiment,
removed the fluid tank, reoriented the fluid to the bottom of the tank, remounted
the tank on the force balance,and resumed the test.

After completion of the protocol, the astronaut initiated the next protocol

which excited the test article through a different sequence of frequency and

amplitude sets. Fluid dynamics testing was conducted in this manner for a total

of eight hours on STS-48. Figure 4.8 shows astronaut Jim Buchli during MODE
Fluid Test Article operations while Table 4.2summarizes the testing.
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Figure 4.8 MODE Fluid Test Article operations on STS-48 
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Table 4.2 MODE fluid dynamics testing

Test Duration Frequency Range

(mins) (Hz)

Amplitude Range

Silicone Oil

Flat Btm Uncoupled

Sph Btm Uncoupled

110 .35-1.35

110 .35-.75

Lo/Mid/Hi

Lo/Mid/Hi

Distilled Water

Flat Btm Uncoupled 110 1.80-3.60

Coupled 110 1.80-3.60

Sph Btm Uncoupled 110 2.00-3.20

Coupled 110 2.10-3.30

Lo/Mid/Hi

Lo/Mid/Hi

Lo/Mid/Hi

Lo/Mid/Hi

4.3.2 Structural Dynamics Testing

Structural dynamics testing began with the removal of the elements of the

Structural Test Article from their stowage locker, and their assembly into the

baseline configuration by'the crew. The test article was then lightly tethered to

several velcro locations on the Shuttle middeck, with only the umbilical cable

providing a connection to the Experiment Support Module. Test operations

started in the same manner as for fluid dynamics testing: by initiating an

automated protocol stored on an optical disk.

After completion of the protocol, the astronaut initiated the next protocol

which excited the test article through a different sequence of frequency and

amplitude sets. When testing was completed on the baseline configuration, the

modules were partially disassembled, and reassembled to form the alpha

configuration. The appropriate protocols were then run. This pattern continued

until all four configurations were tested. Ten hours of structural dynamics

testing were conducted on STS-48. Figure 4.9 shows astronaut Mark Brown at

the completion of MODE Structural Test Article operations; Table 4.3

summarizes the testing.
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Table 4.3 MODE structural dynamics testing

Test Duration

(rains)

Straight

Preload I 60

Preload 2 60

Preload 3 34

Frequency Range

(Hz)

7.5-29.7

7.5-29.7

7.5-29.7
!

Amplitude Range

Lo/Mid/Hi

Lo/Mid/Hi

Lo/Mid/Hi

Mid/Hi

Straight With

Alpha Joint

Tight Joint

Loose Joint

51

51

7.2-I0.8

6.7-10.6

Lo/Mid/Hi

Lo/Mid/Hi

L Shape With

Alpha Joint

Preload 1

Preload 2

44

44

_L

Lo/Mid/Hi

Lo/Mid/Hi

L Shape With Alpha

Joint & Flexible

Appendage

12 .40-1.00 Lo
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Figure 4.9 MODE Structural Test Article operations on STS-48 
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4.4 Summary

The MODE hardware was designed, built and tested in two and one half

years, and was certified to shuttle standards for a Class D modified payload. The

flight systems successfully completed eighteen hours of on orbit operation

during STS-48 (Discovery) in September, 1991. Initial activation of the MODE

hardware occurred on September 13, with subsequent operational periods on

September 15 and 16. During on orbit operations, MODE recorded over 600

Mbytes of data on the nonlinear behavior of fluids and truss structures in the

microgravity environment of the shuttle middeck. On orbit operation of the

MODE hardware and software was flawless.
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