FEDERAL PROGRAM GOAL AND OBJECTIVES

- Extend U.S. leadership in high performance computing and computer communications

- Disseminate the technologies to speed innovation and to serve national goals

- Spur gains in industrial competitiveness by making high performance computing integral to design and production
PRESIDENTIAL COMMITMENT

1991 CALTECH COMMENCEMENT SPEECH

"...we must invest now in a brighter future. That's why our administration fully supports high-performance computing, and math and science education."

HIGH PERFORMANCE COMPUTING ACT OF 1991 (P.L. 102-194)

"The development of high performance computing and communications technology offers the potential to transform radically the way in which all Americans will work, learn and communicate in the future. It holds the promise of changing society as much as the other great inventions of the 20th century, including the telephone, air travel and radio and TV."

FEDERAL HPCC PROGRAM RESPONSIBILITIES*

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>HIGH PERFORMANCE COMPUTING SYSTEMS</th>
<th>ADVANCED SOFTWARE TECHNOLOGY AND ALGORITHMS</th>
<th>NATIONAL RESEARCH AND EDUCATION NETWORK</th>
<th>BASIC RESEARCH AND HUMAN RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARPA</td>
<td>Technology development and coordination for terascale systems</td>
<td>Technology development for parallel algorithms and software tools</td>
<td>Technology development and coordination for gigabit networks</td>
<td>University programs</td>
</tr>
<tr>
<td>DOE</td>
<td>Technology development and systems evaluation</td>
<td>Energy applications research centers</td>
<td>Gigabit applications research</td>
<td>Basic research and education programs</td>
</tr>
<tr>
<td>NASA</td>
<td>Aeronautics and space application testbeds</td>
<td>Computational research in:</td>
<td>Access to gigabit research facilities and databases</td>
<td>Research institutes and university block grants</td>
</tr>
<tr>
<td>NSF</td>
<td>Basic architecture research and Prototyping experimental systems</td>
<td>Research in:</td>
<td>Facilities coordination and deployment</td>
<td></td>
</tr>
<tr>
<td>DOC/NIST</td>
<td>Research in systems instrumentation and performance measurement</td>
<td>Research in:</td>
<td>Coordinate performance assessment and standards</td>
<td>Programs in:</td>
</tr>
<tr>
<td>DOC/NOAA</td>
<td></td>
<td>Software tools, databases and Grand Challenges</td>
<td>Programs in protocols and security</td>
<td>Basic research</td>
</tr>
<tr>
<td>EPA</td>
<td>Research in environmental computations, databases, and application testbeds</td>
<td>Environmental mission</td>
<td>Technology transfer to States</td>
<td>Education/training/outreach</td>
</tr>
<tr>
<td>NIH/NLM</td>
<td>Medical application testbeds for medical computation research</td>
<td>Development of intelligent gateways</td>
<td>Access for medical centers</td>
<td>Basic Research</td>
</tr>
</tbody>
</table>

* Department of Education participation expected in FY 1993
FEDERAL HPCC PROGRAM FUNDING FY 92-93

(Dollars in millions)

<table>
<thead>
<tr>
<th>AGENCY</th>
<th>FY 1992</th>
<th>FY 1993</th>
</tr>
</thead>
<tbody>
<tr>
<td>DARPA</td>
<td>232.2</td>
<td>275.0</td>
</tr>
<tr>
<td>NSF</td>
<td>200.9</td>
<td>261.9</td>
</tr>
<tr>
<td>DOE</td>
<td>92.3</td>
<td>109.1</td>
</tr>
<tr>
<td>NASA</td>
<td>71.2</td>
<td>89.1</td>
</tr>
<tr>
<td>HHS/NIH</td>
<td>41.3</td>
<td>44.9</td>
</tr>
<tr>
<td>DOC/NOAA</td>
<td>9.8</td>
<td>10.8</td>
</tr>
<tr>
<td>EPA</td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>DOC/NIST</td>
<td>2.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Total</td>
<td>654.8</td>
<td>802.9</td>
</tr>
</tbody>
</table>

APPROACH

- ESTABLISH HIGH PERFORMANCE COMPUTING TESTBEDS
- CONSTITUTE APPLICATION SOFTWARE TEAMS COMPOSED OF DISCIPLINE AND COMPUTATIONAL SCIENTISTS TO UTILIZE AND EVALUATE TESTBEDS
- PROMOTE COLLABORATION, EXCHANGE OF IDEAS AND SHARING OF SOFTWARE AMONG HPCC SOFTWARE DEVELOPERS
- PROMOTE TECHNOLOGY TRANSFER
ACQUIRE AND UTILIZE THE INTEL TOUCHSTONE DELTA SUPERCOMPUTER

- DELTA IS WORLD’S FASTEST INSTALLED SUPERCOMPUTER
 - PEAK SPEED OF 32 GFLOPS USING THE 528 NUMERIC PROCESSORS
 - 13 GFLOPS SPEED OBTAINED ON A LINPAC BENCHMARK CODE OF ORDER 25,000 BY 25,000
- LOCATED AT CALTECH: ACCEPTANCE TESTING COMPLETED
- PEAK SPEED EXPECTED TO BE 32 GIGAFLOPS,
- INTEL TOUCHSTONE DELTA IS ONE OF SERIES OF DARPA DEVELOPED MASSIVELY PARALLEL COMPUTERS
- PARTNERS INCLUDE OVER 14 GOVERNMENT, INDUSTRY AND ACADEMIA ORGANIZATIONS
DEVELOP A MECHANISM TO ALLOW AEROSPACE INDUSTRY TO INFLUENCE THE REQUIREMENTS, STANDARDS, AND DIRECTION OF NASA'S COMPUTATIONAL AEROSCIENCES (CAS) PROJECT

PROVIDE A MECHANISM TO ALLOW INDUSTRY TO INTELLECTUALLY PARTICIPATE IN THE DEVELOPMENT OF SELECTED "GENERIC" CAS APPLICATIONS SOFTWARE AND SYSTEMS SOFTWARE BASE

FACILITATE THE TRANSFER OF CAS TECHNOLOGY TO AEROSPACE USERS

PROVIDE INDUSTRY ACCESS TO HIGH PERFORMANCE COMPUTING RESOURCES

PROVIDE A MECHANISM TO ALLOW INDUSTRY TO COMMERCIALIZE APPROPRIATE PRODUCTS
PRIVATE SECTOR PARTICIPANTS

□ INDUSTRY

BOEING, GENERAL ELECTRIC, GRUMMAN, MCDONNELL DOUGLAS, NORTHROP, LOCKHEED, UNITED TECHNOLOGIES, TRW, ROCKWELL, GENERAL MOTORS, GENERAL DYNAMICS, MOTOROLA

□ ACADEMIA

SYRACUSE, MISSISSIPPI STATE, USRA, UNIVERSITY OF CALIFORNIA-DAVIS

RATIONALE

□ GENERIC, PRE-COMPETITIVE TECHNOLOGY

— RISK AND COST

— ULTIMATE COMMERCIAL PRODUCTS ARE DIVERSE AND UNDETERMINED

□ INFLUENCE STANDARDS THROUGH DIVERSITY OF APPLICATIONS

□ INTELLECTUAL PROPERTY RIGHTS CAN BE VESTED IN CONSORTIUM MEMBERS FOR COMMERCIALIZATION

□ PROVIDES MECHANISM FOR COMBINING DIVERSE INTELLECTUAL POINTS-OF-VIEW

□ TECHNOLOGY TRANSFER IS THROUGH DIRECT PARTICIPATION