
Determination of Design and Operation Parameters

for Upper Atmospheric Research Instrumentation

to Yield Optimum Resolution with Deconvolution

NASA Grant NAG 1-804

FINAL REPORT

APPENDIX 7

Dr. George E. Ioup, Principal Investigator
Dr. Juliette W. Ioup, Principal Investigator

Department of Physics
University of New Orleans

New Orleans, LA 70148

University of New Orleans
Lakefront New Orleans Louisiana 70148 • (504) 286-6341

DEPARTMENT OF PHYSICS

Don Tomlin and Stan Carroll

We are enclosing everything for the Engineering Notebook except

the Theory and Concept Definitions Section. We hope to express

mail that to you on Monday. The only new section we are sending

is the Introduction. Everything else is either an addition to

sections in the document that was mailed to you on 24 Dec 1991 or

changed pages for that document. We have put the date of 31 Jan

1992 on this version. Each addition or insert is marked with a

yellow stick-on. Please go through carefully and insert or

substitute the pages at the appropriate place in the document.

If there is any doubt about any of the insertions or

substitutions, please call us. We hope they are obvious enough.

The insertions or additions are for the following parts of the
document:

Title Page

Table of Contents

Introduction

Program Description

Test Plan

Appendix 1

Appendix 2 Table of Contents

Appendix 2C

Appendix 2D

Appendix 2E

Appendix 2F beginning

Appendix 2F end

31 Jan i992

A Member of the Loulslana State University System

UNIVERSITY OF NEW ORLEANS

TRANSFORM DOHATN SKIPROPE OBSERVER

ENGINEERING NOTEBOOK

STEVE _. RODRTGUE, ABOLFAZL H. AHINI,

GEORGE E. IouP, AND OULTETTE W. IOUP

DEPARTMENT OF PHYSICS
UNIVERSITY OF NEW ORLEANS

NEW ORLEANS, LA 70148

31 _AN 1992

Transform Domain Sklprope Observer

University of New Orleans 31 Jan 1992

Engineering Notebook

Table of Contents

Introduction

Theory and Concept Definitions

Algorithm Outline

Flow Chart

Program Description

Main Program

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine WORK

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine HANN

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine MEAN

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine FOUR1

Definition of Variables/Flags

Input/Output

Code Discussion

1

Subroutine LSCF

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine FBAND

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine READINDATA

Definition of Variables/Flags

Input/Output

Code Discussion

Subroutine ODTF

Definition of Variables/Flags

Input/Output

Code Discussion

Quick Reference

Required External Files

Operator Inputs

Warnings/Abort Situations

Program Development History

Test Plan

Appendices

i. Program Code

2. Test Code and Results

2

Introduction

Because of the interesting science which can be performed

using a satellite attached by a very long tether to a mother

vehicle in orbit, such as the Space Shuttle, NASA will deploy

TSS-I (Tethered Satellite System) in 1992. A very long tether

(20 km in this case) has the possibility of undergoing

oscillations of several different types, or modes, and higher

harmonics of these modes. The purpose of this document is to

describe a method for detecting the amplitude, frequency, and

phase (and predicting future motion in the steady state) of these

modes, in particular, the skiprope mode, using tethered satellite

dynamics measurements. Specifically the rotation rate data about

two orthogonal axes, calculated from output from satellite

gyroscopes, are used. The data of interest are the satellite

pitch and roll rate measurements.

Aside from understanding tether dynamics, one reason it is

important to diagnose and predict the skiprope motion of the

tether is related to satellite retrieval. The retrieval

mechanism has a limited acceptance angle and the tether skiprope

motion can cause angular excursions of the satellite beyond this

angle. Several methods are available to damp the skiprope, but

for these to be successful, it is necessary that the skiprope

amplitude, frequency, and phase be known accurately enough and

that future values of the parameters be predicted for the time of

application of the corrective procedure.

NASA has determined to use two methods to diagnose skiprope

I

properties and predict future values. One of these, a Fourier

transform domain approach, is the subject of this notebook. The

other is a time-domain, state-space method being developed by

Martin-marietta. It is described elsewhere. Much of the

development and testing of the Fourier algorithm and code has

been done by the authors at the University of New Orleans. It is

very important, however, to give full credit to the other

contributors to the development effort. First and foremost is

Mr. Stan Carroll of NASA Marshall Space Flight Center, whose help

with this project was essential. Mr. Don Tomlin, Mr. Keith

Mowery, Mr. Zack Galaboff, and others from MSFC have also

contributed. From the University of Southern Mississippi we have

received help from Dr. Grayson Rayborn and Dr. Sam Howard.

The method which is described in this notebook can be

modified to diagnose tether skiprope motion when the tethered

satellite is spinning. This modification has been accomplished,

but it is not discussed in this document. An addendum will be

issued to describe it. There is also a version of the current

code which contains a subroutine which gives the time history of

the skiprope in the data observation window. That modification

is also not described in this notebook.

Included in this document are a section on Theory and"

Concept Definitions, in which some of the background theory and

definitions for the method are discussed with references given

for further reading. An algorithm outline follows, listing all

the general steps of the program and including an overview flow

2

chart. For the main program and every subroutine, there are

definitions of variables/flags, descriptions of the input and

output, and discussions of the code. The principal subroutine is

WORK, within which the Fourier transform and related calculations

are performed. Other subroutines which are either called by WORK

or the main program are HANN, which applies the HANN window;

MEAN, for mean removal; FOUR1, for the calculation of the fast

Fourier transform; LSCF, which performs a least squares curve

fit; FBAND, which defines the search band in the transform domain

to find the maximum of the transform magnitude; and READINDATA

and ODTF for input/output. Also included in the section on

program description is a quick reference which gives required

external files, operator inputs, and a listing of warnings/abort

situations. Following the program description is a section which

gives program development history. This section is written both

to show the trials which led to the selected algorithms and to

inform the reader about other methods which did not perform as

well as those adopted. Finally, in the main body of this

document is a complete description of the test plan which was

executed at the University of New Orleans.

There are two Appendices. The first lists the program code

which accomplishes skiprope observation for slowly varying

skiprope parameters and prediction of future parameter values for

steady state tether motion. Appendix 2, which contains the test

code and results, forms the bulk of this document. It is so long

that it has its own table of contents. It is broken up into six

parts, Appendices 2.A through 2.F. Appendix 2.A contains the

programs for generating model signals. In Appendix 2.B are the

results of the ECR verification table. Appendix 2.C lists the

programs for ECR testing, while Appendix 2.D lists the programs

for systematic testing. Appendix 2.E gives the results of

simulation tests, and Appendix 2.F gives the systematic test

results at Station 2 and Station i.

Frequency Domain Skiprope Observer

Algorithm Outline

I) Access the data buffers produced by the preprocessor

containing the pitch and roll gyro data.

2) Select a time window of data to be analyzed.

For each of the axes perform the following:

3) Apply Hann window to the data.

4) Calculate the mean.

5) Remove the mean from the original data.

6) Apply Hann window to the mean-removed data to reduce

sidelobes in the Fourier transform.

7) Use the FFT to calculate the real and imaginary parts of the

Fourier transform of the Hann-windowed data.

8) Calculate the amplitude spectrum of the transform.

1

Frequency Domain Skiprope Observer

Algorithm Outline - continued

9) Search the predefined frequency band to find the maximum in

the amplitude spectrum.

i0) Fit a quadratic to the seven points centered around and

including this maximum.

ii) Use this quadratic to define more accurately the largest

value in the amplitude spectrum and its corresponding frequency.

12) Calculate the satellite motion amplitude from this maximum

amplitude value by a simple conversion. The frequency is the

frequency of that motion.

13) Use quadratic interpolation to find the real and imaginary

values of the Fourier transform at the above calculated

frequency.

14) Use real and imaginary parts to define the phase of the

satellite motion based on the model cos (2 _ f t + _).

15) Calculate the time index for the first maximum of the gyro

signal _ within the data window.

Algorithm Outline - continued

CALCULATIONS UPONRETURNFROMWORKSUBROUTINE

16) Average the x and y frequencies - call FAVG.

17) Find the reciprocal of FAVG (average period), call TAVG.

18) Calculate constant WK = TETHER LENGTH * TAVG / (360 * PI)

19) Calculate polarity:

a) Compare time indices of maximum.

b) For x time greater than y time. If time difference is

less than 1/2 period, polarity is positive, else polarity is

negative.

c) For y time greater than x time. If time difference is

less than 1/2 period, polarity is negative, else polarity is

positive.

20) For both x and y axes, calculate omega values:

W (X or Y) = AMP (Y or X) * COS(2.0 * PI * FAVG * DT * (I - i)

+ PHASE(X or Y))

21) For both x and y axes, calculate motion amplitude values

U (or V) = - POLARITY * WK * W (X or Y)

22) Calculate time values TIME = TO + (START INDEX + I - 2) * DT

YAW MANEUVER CALCULATIONS

24) Time of maximum x value: TXMAX = DT * (INDEX OF MAX - i)

25) Time of maximum y value: TYMAX = TXMAX + 0.25 * TAVG *

TSHIFT + TO

(Note: TXMAX is a relative time, TYMAX is a mission elapsed

time.)

26) Time for orbiter maneuver (burn time) : TT = TYMAX + TAVG *

(INTEGER)

(Burn times are integral numbers of periods from TYMAX.)

3

FREaUENCY DOMAIN SKIPROPE OBSERVER - UNOMSC.FOR

NASA MARSHALL AND THE UNIVERSITY OF NEW ORLEANS

START

ALIZE INPUTS

OPEN FILES

INPUT TELEMETRY DATA

STATUS

N

l CALCULATE I_ INPUT SAMPLE_ME

/INPUT DATA BASq

1 PARAMETERS/

CALCULATE POINTS IIN BUFFER

SET TO LAST

READING

.!

:IENT

;UFFER SIZI

Y

STOP

LENI

Y

LENGTH

/FREOUENCY S!

CALCULATE

X COMPONENTS

Y COMPONENTS

)OD RE:

Y[
CALCULATE

POLARITY

AMPLZTUDE

X

Y

ETC.

HANEUVER"

Y

I CALCULATE5 BURN TZHES

BURN TZHES

STOP

PROGRAM DESCRIPTION

Main Program

Definition of Variables/Flags

Parameters

NDIM - dimension of arrays X, Y, and TLG (set to 3000)

NFT - number of points in the Fourier transform (set to

8192)

NPNT - number of points used in the least squares curve

fitting polynomial (set to 7)

Constants

PI - value of pi (set to 3.1415926)

DFR - conversion factor from radians to degrees (set to

57.2957795)

RFD - conversion factor from degrees to radians (set to

0.017453292)

Character Variables

REPLY - character variable of length 1 (replies by the

operator to prompts, either y, Y, n, or N)

POLARITY - character variable of length 8 (either pos-

itive or negative)

Variables read in from external file PARAM.DAT

PF SRCH BAND - percentage used in calculating the freq-

uency search band)

R ARM - distance from orbiter C.M. to the center line

of the deployer boom

ODF TIME - logical flag to control printing of the time

data to output file F TXYUV.DAT (initially

set to .FALSE., i.e., don't print)

ODF FFT - logical flag to control printing of frequency

domain data (FFT's) to the output files

F FFTX.DAT and F FFTY.DAT (initially set to

.TRUE., i.e., print)

DENSITY - tether density in kg/km (set to 8.35 kg/km)

TOTALL - total tether length (set to 22.0 kilometers)

MSAT - satellite mass in kg (set to 510.0 kg)

MORB - orbiter mass in kg (set to i00,000.0 kg)

ALTKM - orbit altitude in km (set to 325.0 km)

Variables read from telemetry preprocessor (or external

file IDFTXY.DAT)

TO - time tag for first point in buffer

TF - time tag for last point in buffer

1

X(NDIM) - x axis gyro data array (deg/sec)
Y(NDIM) - y axis gyro data array (deg/sec)
TLG(NDIM) - tether length array (kilometers)
JMODE - integer variable, signifying the amcsmode for

the last time point 'TF'
amcsmode = 0 indicates no valid data
amcsmode = 1 indicates passive case
amcsmode = 2 indicates yaw hold
amcsmode = 3 indicates spin case

LF - number of time points stored in each array
M FLAG - logical flag to denote if the amcsmode

changed from 1 or 2 to a 0 or 3 between the
times of TO and TF

Other Variables
AMCSMODE- integer variable set to the value of JMODE
LB - starting time index (requested of operator) '
LE - last time index (requested of operator)
LEB - total number of data points processed (LEB = LE -

LB + i)

DT - average sample time = (TF - T0)/(LF - i)

DF - frequency sampling = 1.0/(NFT*DT)

FLOW - low frequency of the frequency search band

FHIGH - high frequency of the frequency search band

LEAST - estimate of the number of data points to use

for a minimum of 3 cycles of skiprope

LEAST = INT(6.0/(FLOW + FHIGH))

TLNGTH - tether length used in calculations, first

estimated from 0.5*(TLG(1) + TLG(LF)), and

finalized as 0.5*(TLG(LB) + TLG(LE))

TSHIFT - time shift from first point in buffer, i.e.,

TO, and the first time point used in the run

TSHIFT = DT*(LB - i)

TMIDPT - time point of the middle of the data window

TMIDPT = TO + DT*((LB + LE -2)/2)

S FLAG - logical flag to control yaw maneuver calcula-

tions (only set to .TRUE. by direct operator

reply of 'y' or 'Y' after prompt)

PSIGN - numerical sign of the polarity (calculated)

PSIGN = 1.0 indicates positive polarity

PSIGN = -i.0 indicates negative polarity

PSIGN = 0.0 indicates inability to predict the

skiprope frequency

FREQX - calculated value of the skiprope frequency from

the x axis gyro data

AMPX - calculated value of the x gyro rate at FREQX

PHASEX - phase of FREQX relative to LB

IWXMAX - time index of the maximum x gyro rate value

AVGX - mean value of Hann-windowed x axis gyro rate data

G FLAGX - logical flag indicating whether the x axis

values are good, i.e., G FLAGX is set to

.TRUE. if FREQX is within the specified fre-

2

w

quency search band

FREQY - calculated value of the skiprope frequency from

the y axis gyro data

AMPY - calculated value of the y gyro rate at FREQY

PHASEY - phase of FREQY relative to LB

IWYMAX - time index of the maximum y gyro rate value

AVGY - mean value of Hann-windowed y axis gyro rate data

G FLAGY - logical flag indicating whether the y axis

values are good, i.e., G FLAGY is set to

.TRUE. if FREQY is within the specified fre-

quency search band

FAVG - average skiprope frequency = 0.5*(FREQX + FREQY)

TAVG - period of the average frequency = 1.0/FAVG

WK - conversion factor from gyro rate values to ampli-

tudes WK = 1000.0*TLNGTH*TAVG/(360*PI)

UMAX - maximum in plane skiprope amplitude

UMAX = WK*AMPY _

VMAX - maximum out of plane skiprope amplitude

VMAX = WK*AMPX

TEST - time required to move from the x axis to the y

axis (in sec)

If IWYMAX .GT. IWXMAX, TEST = DT*(IWYMAX-IWXMAX)

If IWXMAX .GT. IWYMAX, TEST = DT*(IWXMAX-IWYMAX)

TWX - time domain skiprope signal for the x axis (with-

out proper amplitude scaling)

TWX = COS(2.0 * PI * FAVG * DT * (I-l) + PHASEX)

TWY - time domain skiprope signal for the y axis (with-

out proper amplitude scaling)

TWY = COS(2.0 * PI * FAVG * DT * (I-l) + PHASEY)

WX - time domain skiprope signal for the x axis (with

proper amplitude scaling) WX = TWX * AMPX

WY - time domain skiprope signal for the y axis (with

proper amplitude scaling) WY = TWY * AMPY

U - in plane skiprope amplitude (in meters)
U = -PSIGN * WK * AMPY * TWX

V - out of plane skiprope amplitude (in meters)

V = -PSIGN * WK * AMPX * TWY

T - time tag = TO + (LB + I - 2) * DT

RNROT - number of rotations the orbiter should execute

RNROT = (AMINI (UMAX,VMAX)) / (2.0 * R_ARM)

TXMAX - time of maximum x axis gyro rate (should corre-

spond to when the tether is over the orbiter

nose) = DT * (IWXMAX - i)

TYMAX - time of maximum y axis gyro rate (should corre-

spond to when the tether is over an orbiter

wing) = TXMAX + 0.25 * TAVG + TSHIFT + TO

TT - predicted times to execute the yaw maneuver

TT = TYMAX + (K-I) * TAVG (K is an integer that

runs from i to 5)

OYAWANG - orbiter yaw axis angle in degrees

BTDEL - burn time delay = PSIGN * OYAWANG/(360.0*FAVG)

3

Common Variables
LB, LE, DT, DF, FLOW, FHIGH, DENSITY, TOTALL, MSAT,
MORB, ALTKM

Input/Output Files

All input and output files are opened and closed in the
main program.

Input Files (External)
PARAM.DAT (read in the main program)
The external input file PARAM.DAT consists of two lines
having the following format: '
PF SRCH_BAND,R_ARM, ODF_TIME, ODF FFT
DENSITY, TOTALL, MSAT, MORB, ALTKM--

IDFTXY.DAT (read in the subroutine READINDATA)
The external input file IDFTXY.DAT simulates the pre-
processed telemetry data stream. It consists of a
maximum of 3000 lines with the following format:
TIME, X(I), Y(I), TLG(I), MODE

Output Files
F FFTX.DAT (written in the subroutine WORK)
The FFT of the x axis gyro rate data is written to file
F FFTX.DAT.
F--FFTY.DAT (written in the subroutine WORK)
The FFT of the y axis gyro rate data is written to file
F FFTY.DAT.
Both F FFTX.DAT and F FFTY.DAT have the following
format:
FREQUENCY,MODULUS,REAL PART, IMAGINARY PART
Writing to both F FFTX.DAT and F_FFTY.DAT is controlled
by the logical flag ODF_FFT.

F TXYUV.DAT (written in the main program)
T_me domain data is written to file F TXYUV.DAT. The
logical flag ODF TIME controls writing to F_TXYUV.DAT.
The format for F TXYUV.DAT is:
T, WX, WY, U, V Tdefined above in variable list).

F YAWMAN.DAT(written in the main program)
If yaw maneuver calculations are done, the results are
written to the file F YAWMAN.DAT, which has the format:
TMIDPT, TF
(K-I), POLARITY, 360.0 * FAVG, RNROT, TT
where K runs from i to 5 (other variables defined as
above in the variable list).

4

F RECORD.DAT (written in subroutine ODTF)
See the subroutine ODTF for a description of this file.

Subroutine Calls (in order of calling)

READINDATA (TO,TF,X,Y,TLG,JMODE,LF,M_FLAG)

FBAND (FLOW,FHIGH,TLNGTH,PF SRCHBAND)
Subroutine FBAND is called twice, the first time to

return values of FLOW and FHIGH to use in estimating

the number of data points necessary for 3 cycles of the

skiprope, and the second to actually calculate FLOW and

FHIGH for the frequency search band.

WORK (ii, X, AMPX, PHASEX, FREQX, IWXMAX, G_FLAGX, AVGX,

ODF_FFT) !

WORK (12, Y, AMPY, PHASEY, FREQY, IWYMAX, G_FLAGY, AVGY,

ODF_FFT)

ODTF (TO, TMIDPT, TF, DT, LE, LB, LEB, TLNGTH, AMPX,

FREQX, PHASEX, AMPY, FREQY, PHASEY, FAVG, TAVG,

WK, PSIGN, UMAX, VMAX, FLOW, FHIGH, AVGX, AVGY)

Code Discussion

The parameters NDIM, NFT, and NPNT are set to the

values 3000, 8192, and 7, respectively, the constants

PI, DFR, and RFD are set to 3.1415926, 57.2957795, and

0.017453292, respectively, and the arrays X, Y, and TLG

are dimensioned to NDIM. AMCSMODE is declared as an

integer, REPLY and POLARITY as character variables,

G_FLAGX, G_FLAGY, S FLAG, M_FLAG, ODF TIME, and ODF FFT

as logical variables, and PF_SRCH_BAND, R_ARM, DENSITY,

TOTALL, MSAR, MORB, and ALTKM as reals. The variables

LB, LE, DT, DF, FLOW, FHIGH, DENSITY, TOTALL, MSAT,

MORB, and ALTKM are declared common.

The external file PARAM.DAT is opened as logical

unit i0. The values of PF_SRCH_BAND, R_ARM, ODF_TIME,

ODF_FFT, DENSITY, TOTALL, MSAT, MORB, and ALTKM are

read and PARAM.DAT is closed. All output files are

opened, with F FFTX. DAT as unit ii, F FFTY.DAT as unit

12, F TXYUV.DAT as unit 13, F YAWMAN.DAT as unit 17,
and F RECORD.DAT as unit 18.

The subroutine READINDATA is called to read in the

preprocessed telemetry data. (At present, this data is

simulated in the file IDFTXY.DAT.) READINDATA returns

the values of TO, TF, JMODE, LF, M_FLAG, and the arrays

X, Y, and TLG. The variable AMCSMODE is set to the

value of JMODE. If M FLAG is .FALSE., the operator is

warned that the AMCSMODE changed during the data stream

and the number of data points may be reduced. If the

5

value of AMCSMODEis either a 0 (indicating an invalid
data set) or a 3 (spin case), the operator is alerted
and the program aborts.

The yaw maneuver flag S FLAG is set to .FALSE. The
operator is asked whether yaw maneuver calculations are
required or not, and is advised that the calculations
will not be performed unless requested. Only if the
operator replies with 'y' or 'Y' will S FLAG be set to
.TRUE. and yaw maneuver calculations executed.

The average sample time DT = (TF - T0)/(LF - I)
and a preliminary tether length TLNGTH = 0.5 * (TLG(1)+

TLG(LF)) are calculated. The subroutine FBAND is

called (passing this TLNGTH and PF_SRCH_BAND) to return

values of FLOW and FHIGH used in estimating the number

of data points necessary to comprise 3 skiprope cycles,

LEAST = INT(6.0/(FLOW + FHIGH)). LEAST is printed to

the screen, and the operator is prompted to enter LB,

the starting time index, and LE, the last time index.

If LE - LB + 1 is an even number, set LE = LE - I so

that the total number of time points LEB = LE - LB + 1

is odd. (An odd number is necessary for proper use of

the HANN window subroutine called by the WORK subrou-

tine.) The tether length TLNGTH is recalculated as

TLNGTH = 0.5 * (TLG(LB) + TLG(LE)). This value is

printed to the screen for the operator's approval.

Subroutine FBAND is called again with the new value of

TLNGTH and returns the values of FLOW and FHIGH used as

the end points of the frequency search band. These

values of FLOW and FHIGH are printed to the screen for

the operator's approval. (The operator may change the

values of TLNGTH, FLOW, and FHIGH if disapproved.) The

values of LB, LE, LEB, and TLNGTH are printed to the

screen. DF = 1.0/(NFT*DT) (the frequency sample rate),

TSHIFT = DT * (LB - i) (the time shift from TO, the

first point in the data buffer, to the time of LB, the

start index), and TMIDPT = TO + DT * ((LB + LE - 2)/2)

(the time of the midpoint of the data window) are now
calculated.

The WORK subroutine is called twice, once passing

the array X and the flag ODF_FFT, and once passing the

array Y and the flag ODF FFT. WORK returns the values

of AMPX, PHASEX, FREQX, IWXMAX, G_FLAGX, and AVGX after

the first call, and AMPY, PHASEY, FREQY, IWYMAX,

G FLAGY, and AVGY after the second call. PSIGN is set

to the default value of 0.0 (if PSIGN remains as 0.0

then this indicates failure to predict the skiprope

frequency). The flags G_FLAGX and G_FLAGY are checked,

with 4 resulting cases:

I) If both G_FLAGX and G_FLAGY are true, calculate FAVG

as the average of FREQX and FREQY, the period TAVG

as the reciprocal of FAVG, the constant WK = i000.0,

TLNGTH*TAVG/(360*PI), UMAX = WK*AMPY, and VMAX = WK*

6

AMPX. Print the values of AMPX, PHASEX, and FREQX,
AMPY, PHASEY, and FREQY, 57.3 * (PHASEX - PHASEY)
(the phase difference between x and y), UMAXand
VMAX, and TAVG to the screen.

2) If G FLAGX is true and G FLAGY is false, set FAVG =
FREQX, TAVG = 1.0/FAVG, WK = i000.0 * TLNGTH * TAVG/
(360,PI), VMAX = WK*AMPX, and UMAX= 7777.0. Print
to the screen the warning that the y axis data is
suspect, with the calculated frequency outside the
search band. (The frequency returned for y is the
predicted midpoint of the search band.) This data
should not be used without caution. Neither the
polarity nor the yaw maneuver calculations are per-
formed. The value of VMAX is printed to the screen.

3) If G FLAGY is true and G FLAGX is false, set FAVG =
FREQ', TAVG = 1.0/FAVG, WK = i000.0 * TLNGTH * TAVG/
(360,PI), UMAX = WK*AMPY, and VMAX = 7777.0. Print

to the screen the warning that the x axis data is

suspect, with the calculated frequency outside the

search band. (The frequency returned for x is the

predicted midpoint of the search band.) This data
should not be used without caution. Neither the

polarity nor the yaw maneuver calculations are per-

formed. The value of UMAX is printed to the screen.

4) If both G FLAGX and G FLAGY are false, set UMAX,

VMAX, FAVG, TAVG, WK, and PSIGN to 7777.0 and print

to the screen that both axes are bad and offer 3

suggestions for action: i) look at the time plots of

the gyro signals; 2) look at the FFT plots; and 3)

widen the search band.

The polarity PSIGN is calculated using the dif-

ference between IWXMAX and IWYMAX and compating to

0.5*TAVG. Two cases are checked: i) IWYMAX greater than

IWXMAX, and 2) IWXMAX greater than IWYMAX. For case i)

TEST is set to DT * (IWYMAX - IWXMAX). If TEST is

greater than 0.5*TAVG, then PSIGN = -i.0, else PSIGN =

1.0. For case 2) TEST is set to DT * (IWXMAX - IWYMAX).

If TEST is greater than 0.5*TAVG, then PSIGN = 1.0, else

PSIGN = -i.0. Print PSIGN to the screen.

If the logical flag ODF TIME is set to .TRUE., then

calculate TWX, TWY, WX, WY, U, V, and T, and print T,

WX, WY, U, and V to the file F TXYUV.DAT. Note that all

of these variables are only caYculated if ODF_TIME is

true. (As stated in the variables definition section,

TWX = COS(2.0 * PI * FAVG * DT * (I - l) + PHASEX),

TWY = C0S(2.0 * PI * FAVG * DT * (I - i) + PHASEY),

WX = TWX*AMPX, WY = TWY*AMPY, U = -PSIGN*WK*AMPY*TWX,

V = -PSIGN*WK*AMPX*TWY, and T = TO + (LB + I - 2)*DT.)

If the yaw maneuver logical flag S FLAG is .TRUE.,
then calculate the number of rotations The orbiter

7

should execute, RNROT= (the minimum of (UMAX, VMAX))/

(2.0 * R_ARM). If PSIGN = 1.0, set the character

variable POLARITY to 'POSITIVE', and if PSIGN = -i.0,

set POLARITY to 'NEGATIVE'. Calculate the time when

the tether is over the orbiter nose, TXMAX = DT *

(IWXMAX - i) (note that this time is a relative time

to the beginning of the data window only!). Calculate

the time when the tether is over an orbiter wing, TYMAX

= TXMAX + 0.25 * TAVG + TSHIFT + TO (note that thi's is

an absolute or mission time quantity). Print the

values of the data window midpoint time TMIDPT and the
last time in the data buffer TF to both the screen and

the file F YAWMAN.DAT. The time TYMAX must be adjusted

to account for the orbiter orientation with respect to

the yaw axis. The operator is prompted to input and

verify the orbiter yaw axis angle OYAWANG. Calculate the

burn time delay BTDEL = PSIGN * OYAWANG/(360.0*FAVG) and

add to TYMAX. Compare the time TYMAX to TF.

If TYMAX is less than or equal to TF, add multiples of

the period TAVG to TYMAX (TYMAX = TYMAX + TAVG) until

TYMAX exceeds TF. For K = 1 to 5, calculate the time

for the yaw maneuver TT = TYMAX + (K - l) * TAVG, and

print both to the screen and the file F YAWMAN.DAT the

revolution label (K - i), POLARITY, 360.0 * FAVG,

RNROT, and TT.

Regardless of whether the file F TXYUV.DAT has been

printed or not, irrespective of the value of S FLAG, and

for all 4 cases of G FLAGX and G FLAGY combinations,
call subroutine ODTF and write the file F RECORD.DAT.

(Pass the values of: TO, TMIDPT, TF, DT, LE, LB, LEB,

TLNGTH, AMPX, FREQX, PHASEX, AMPY, FREQY, PHASEY, .FAVG,

TAVG, WK, PSIGN, UMAX, VMAX, FLOW, FHIGH, AVGX, AVGY.)

Close all files (logical units ii, 12, 13, 17, and 18).

Subroutine WORK(IOA, ANG, AMP, PHASE, FREQ, ITMAX,

G_FLAG, BIAS, FFT_FLAG)

Definition of Variables/Flags

Variables passed as arguments

IOA - logical unit number for writing output file

unit ii is for file F FFTX.DAT, 12 for F FFTY.DAT

ANG - gyro rate data (either x or y axis)

AMP - amplitude of the gyro rate data at the calculated

skiprope frequency FREQ

PHASE - phase of the skiprope frequency relative to the

beginning of the data window at index LB

FREQ - calculated skiprope frequency

ITMAX - time index of the maximum gyro rate

8

G FLAG - logical flag indicating whether the returned
value of FREQ is good, i.e., whether FREQ is
found within the bounds of the frequency
search band

BIAS - mean value of the gyro rate data array ANG after
applying Hann window

FFT FLAG - logical flag controlling the writing of the
files F FFTX.DAT and F FFTY.DAT; initially
set to ?TRUE.

Parameters
NDIM - dimension of the arrays ang and aux (set = 3000)

NCDIM - dimension of the complex array awo (set = 8200)

NFT - number of points in the Fourier Transform (set =

8192)
NPNT - number of points used in the least squares curve

fitting polynomial (set = 7)

Constants

PI - set to 3.1415926

DFR - conversion factor from radians to degrees (set to

57.2957795)

RFD - conversion factor from degrees to radians (set to

0.017453292)

Common Variables

LB - first time index (of gyro rate data array ang)

LE - last time index (of gyro rate data array ang).

DT - average sample time

DF - frequency sample rate

FLOW - low frequency bound of the frequency search band

FHIGH - high frequency bound of the frequency search

band

Other Variables

AUX - gyro rate data array, shifted so first index is 1

AWO - complex data array, used for the Fourier Transform

NTBI - number of data points in array ANG (LE - LB + i)

LBI - index shift used in creating array AUX (i - LB)

XMAX - maximum value of gyro rate data found in array

AUX

IFRST - index of the transformed array AWO corresponding

to FLOW (IFRST = 1 + INT(FLOW/DF))

ILAST - index of the transformed array AWO corresponding

to FHIGH (ILAST = 1 + INT(FHIGH/DF))

FR - frequency corresponding to index I in transformed

array AWO (FR = (I- I)*DF)

KF - index of maximum modulus of array AWO

XFREQ - array of 7 points, consisting of the moduli of

the 7 entries of the array AWO with indices

centered about KF, used in the least squares

curve fitting of FREQ

9

PHIMAG - array of 7 points, consisting of the imaginary
parts of the 7 entries of the array AWOwith
indices centered about KF, used in the least
squares fitting of PHASEI

PHREAL - array of 7 points, consisting of the real
parts of the 7 entries of the array AWOwith
indices centered about KF, used in the least
squares fitting of PHASER

FQ_P0 - interpolated index value returned by the curve
fitting subroutine LSCF

PHASEI - imaginary part of PHASE, interpolated by LSCF
PHASER- real part of PHASE, interpolated by LSCF
SCALE - scaling factor to give transformed data in units

of deg/sec and represent actual rate data

Output Files

F FFTX.DAT, F FFTY.DAT
-- File F FFTX.DAT has logical unit number ii (stored

in IOA), and F FFTY.DAT has logical unit Dumber 12. For
long tether lengths (small skiprope frequencies), 1006
lines are printed; for short tether lengths (larger
skiprope frequencies), 336 lines are printed. Each line
has the format:
FR, XMAX, REAL(AWO(I)), AIMAG(AWO(I))
(Here XMAX = SCALE * modulus of AWO(I))

Subroutines Calls (in order of calling)

HANN (NTBI, AUX, BIAS)

FOUR1 (AWO, NFT, I)

LSCF (FQ_P0, XMAX, XFREQ, i, G_FLAG)

G FLAG is set after this first call to LSCF (with the 1

in the 4th argument). If G FLAG is .TRUE., then LSCF is

called twice more to interpolate the imaginary and real

parts of PHASE:

LSCF (FQ_P0, PHASEI, PHIMAG, 2, G_FLAG)

LSCF (FQ_P0, PHASER, PHREAL, 2, G_FLAG)

Code Discussion

The values of the gyro rate data array ANG, logical

unit indicator IOA, and file print flag FFT FLAG are

passed in the calling statement, as are the common vari-

ables LB, LE, DT, DF, FLOW, and FHIGH. The parameters

NDIM, NCDIM, NFT, and NPNT are set to the values 3000,

8200, 8192, and 7, respectively, and the constants PI,

DFR, and RFD to 3.1415926, 57.2957795, and 0.017453292,

respectively. The real array AUX is dimensioned to

i0

NDIM, the real arrays XFREQ, PHIMAG, and PHREAL to NPNT,
the complex array AWOto NCDIM, and G_FLAG and FFT_FLAG
are declared logical variables.

The number of data points NTBI in the array ANG
(NTBI = LE - LB + i) and the first index shift LBI (LBI
= 1 - LB) are calculated. Letting the index I range

from LB to LE, the new index IL = I + LBI ranges from 1

to NTBI. Set the array AUX(IL) = ANG(I), so AUX is the

same array as ANG, but with starting index i rather than

LB. Calculate the mean of the array AUX (and thus of

ANG) and apply the HANN window to AUX by calling the

subroutine HANN.

Make the complex array AWO by setting the real

parts of the first NTBI entries of AWO equal to the

corresponding entry in AUX, with the imaginary parts

set to 0.0, and padding the rest of AWO with zeroes.

Find the Fourier Transform of AWO using the FFT routine

FOUR1 (version supplied by "Numerical Recipes").
Search for the maximum modulus of the transformed

array AWO. First, set XMAX = 0.0, and calculate the

frequency indices IFRST = i + INT(FLOW/DF) and ILAST =

1 + INT(FHIGH/DF). For I ranging from IFRST to ILAST,

calculate FR = (I-I)*DF, and check to see if the modulus

of AWO(I) (CABS(AWO(I))) is greater than XMAX; if so,

set XMAX = CABS(AWO(I)), KF = I (save the index of the

maximum found), and FREQ = FR (save the frequency of the

maximum).

Once the search is completed and the maximum known,

interpolate to find the best quadratic fitting the 7

points centered on the maximum. The array XFREQ holds

the values of the moduli of the 7 points, the array

PHIMAG holds the imaginary parts of the 7 points, and

the array PHREAL holds the real parts of the 7 points.

Call the curve fitting subroutine LSCF (passing XFREQ)

to calculate the interpolated frequency index FQ P0 and

the modulus XMAX at FQ P0, and set G FLAG to true or

false. If G FLAG is true, then call LSCF again (pass-

ing PHIMAG) to find PHASEI, the imaginary part of PHASE,

and call LSCF a third time (passing PHREAL) to find

PHASER, the real part of PHASE. The maximum frequency

is FREQ = FREQ + DF * FQ P0. If G FLAG is false, then

set KF to the index of the frequency search band mid-

point, XMAX = CABS(AWO(KF)), PHASEI = AIMAG(AWO(KF)),

PHASER = REAL(AWO(KF)), and FREQ = DF * (KF - i). Cal-

culate the scaling factor SCALE = 4.0/(NTBI - i), the

scaled maximum modulus AMP = SCALE * XMAX, the PHASE =

-ATAN2(PHASEI, PHASER), and the time index of the max-

imum frequency ITMAX = INT((I.0/(FREQ*DT))*(I.0-PHASE/

(2.0*PI)) + 0.5) + I. If ITMAX is greater than one

period, subtract one period from ITMAX, i.e., if ITMAX*

DT is greater than (I.0/FREQ), then ITMAX = ITMAX -

Ii

INT(I.0/(FREQ*DT)).
If FFT FLAG is true, print to the file indicated

by the logical unit number stored in IOA. Print 1006
lines, unless FREQ is greater than 0.0035, in which
case only print 336 lines. For I ranging from 1 to
either 336 or 1006, calculate FR = (I-I)*DF, XMAX =
SCALE*CABS(AWO(I)), and write FR, XMAX, REAL(AWO(I)),
and AIMAG(AWO(I)) to the output file.

Subroutine HANN (LA, All, BIAS)

Definition of Variables

Variables passed as arguments

LA - number of data points in array All (equals NTBI)

All - data array (ANG or AUX) which Hann window is ap-

plied to

BIAS - mean of array All (after windowing)

Constants

PI - set to 3.1415926

Other Variables

HW - array holding the calculated discrete Hann window

ITM - index of midpoint of array All

RM - ITM as a real variable

Subroutine Calls

MEAN (LA, All, BIAS)

Code Discussion

The array All, and LA, the length of All, are

passed in the calling statement. The constant PI is

set to 3.1415926, and the array HW is dimensioned to

3000. The index of the midpoint of All is calculated,

ITM = (LA - 1)/2, and converted to a real value RM. For

index IT ranging from -ITM to ITM, calculate index I =

1 + IT + ITM and HW(I) = 0.5 * (i.0 - COS(PI * IT)/RM),

and apply the Hann window HW to the array All, All(I) =

All(I) * HW(I). Call subroutine MEAN to find the mean

value BIAS of the windowed array All, and subtract the

windowed BIAS from the windowed array, All(I) = All(I)-

HW(I) * BIAS.

12

Subroutine MEAN (LA, A22, SA)

Definition of Variables

Variables passed as arguments
LA - length of the data array A22
A22 - data array
SA - mean value of array A22

Code Discussion

m

The values of the array A22, and LA, the length of

array A22, are passed by the calling statement. SA is

the sum of the values of the individual entries of A22,

divided by LA.

Subroutine FOUR1 (DATA, NN, ISIGN)

Subroutine FOUR1 is the standard FFT routine found

in "Numerical Recipes".

Definition of Variables

Variables passed as arguments

DATA - data array (complex, but converted to a re_l

array of double length)

NN - number of points in the Fourier Transform

ISIGN - +i indicates forward transform, -i inverse

Other Variables

WR, WI, WPR, WPI, WTEMP, THETA - all double precision

variables used in the usual array shuffling procedures

Code Discussion

Subroutine FOUR1 utilizes the array shuffling pro-

cedure common to most FFT routines. For more details,

consult "Numerical Recipes", or other sources that dis-

cuss FFT routines at length.

13

Subroutine LSCF (P0, FMAX, U IN, IOPT, G FLAG)

Definition of Variables/Flags

Variables passed as arguments
PO - interpolated location of maximum
FMAX - value of the maximum located at PO
U IN - input ordinate array (length of 7)

IOPT - action option, either 1 or 2

IOPT = i: Find PO and compute maximum at P0

IOPT = 2: Only compute value at P0

G FLAG - indicates data validity, TRUE if the peak is

inside the search zone, FALSE if outside

Other Variables

US17 - sum of U_IN(I) and U_IN(7)

US35 - sum of U_IN(3) and U IN(5)

COFI - constant term in fitting quadratic

COF2 - coefficient of linear term in fitting quadratic

COF3 - coefficient of square term in fitting quadratic

Code Discussion

Subroutine LSCF does a least squares curve fit of

a quadratic to 7 data points sampled at integral inter-

vals. The indices of the 7 points range from -3 to +3.

The quadratic is F(P) = COFI + COF2*P + COF3*P**2, the

max occurs at P0 = -COF2/(2*COF3), and the maximum

value is F(P0) = COFI - (COF2**2)/(4.0*COF3). The 3

coefficients are computed by multiplying the 3x7 matrix

-8 12 24 28 24 12 8

-9 -6 -3 0 3 6 9 (each term is divided

5 0 -3 -4 -3 0 5 by 84)

times the array U IN (7 entries in the array), with the

results COFI = first row x U_IN, COF2 = second row x

U IN, and COF3 = third row x U_IN. The array U_IN and
the option variable IOPT are passed by the calllng

statement. To further use the symmetry of the matrix,

US17 = U IN(l) + U IN(7) and US35 = U_IN(3) + U IN(5)
are created. COFI? COF2, and COF3 are calculated as

described above. COF3 is checked to be sure that it

does not equal 0.0 (equaling 0.0 would prevent calcula-

tion of the maximum F(P0) = COFI-(COF2**2)/(4.0*COF3));

if COF3 = 0.0 then G FLAG is set to false and control

returns to the calling subroutine WORK.

For IOPT option I, calculate P0 = -0.5*COF2/COF3,

FMAX = (COFI + 0.5*P0*COF2)/84, and set G_FLAG to true.

To check if the calculated P0 is valid, compare the

absolute value of P0 to 3; if ABS(PO) greater than 3,

then set G FLAG to false. For IOPT option 2, calculate

FMAX = (COWl + P0*(COF2 + P0*COF3))/84.

14

Subroutine FBAND (FL, FH, TLKM, PF)

Definition of Variables

Variables passed as arguments
FL - low frequency bound of the frequency search band
FH - high frequency bound of the frequency search band
TLKM - tether length in kilometers
PF - percentage used to compute frequency search band

Common Variables

DENSITY - tether density in kg/km (set to 8.35 kg/km)

TOTALL - total tether length (set to 22.0 km)

MSAT - satellite mass in kg (set to 510.0 kg)

MORB - orbiter mass in kg (set to i00000.0 kg)

ALTKM - orbit altitude in km (set to 325.0 km)

Other Variables

FC - center frequency of the frequency search band =

0.5 * SQRT(CK * MSTAR/TLKM)

(estimate of the skiprope frequency based on the

tether parameters listed as common variables and

the average tether length TLKM)

OMSQ - orbit rate squared (OMSQ = ORBRATESQ(ALTKM))

CK - working variable = 3.0 * OMSQ / DENSITY

MO - sum of orbiter mass and tether mass (but not the

satellite mass!) MO = MORB + TOTALL * DENSITY

Q - working variable = 0.5 * DENSITY * TLKM

MSTAR - working variable = ((MO-Q)*(MSAT+Q))/(MO+MSAT)
DF - fraction of FC to be subtracted from FC to create

FL and added to FC to create FH (DF = FC*PF/100.0)

Function Call

REAL FUNCTION ORBRATESQ (ALTKM)

Parameters

GM - acceleration due to gravity, in meters/sec**2 (set

to 9.81098)

RE - radius of earth in km (set to 6378.17)

Other Variables

R - GM/(1000.0 * RE)

ORBRATESQ - R/(i. 0 + ALTKM/RE)**3

Code Discussion

The values of the average tether length in km,

15

TLKM, and the percentage around the estimated skiprope
frequency, PF, are passed as arguments of the calling
statement, and tether/orbiter parameters DENSITY,
TOTALL, MSAT, MORB, and ALTKM are passed as common
variables. Using equations derived from the dynamical

analysis of the skiprope frequency vs tether length,

the estimated skiprope frequency FC is calculated (see

the variable list for the equations used). Search band

bounds FL and FH are computed from FC by using the per-

centage PF, FL = FC-FC*PF/100.0 and FH = FC+FC*PF/100.0.

Subroutine READINDATA (T0,TF,X,Y,TLG,MODE,LF,MFLAG)

Definition of Variables/Flags

Variables passed as arguments

TO - time tag for first point in buffer

TF - time tag for last point in buffer

X(I) - x axis gyro data array (deg/sec)

Y(I) - y axis gyro data array (deg/sec)

TLG(I) - tether length array (kilometers)

MODE - integer variable, signifying the amcsmode for

the last time point 'TF'

amcsmode = 0 indicates no valid data

amcsmode = 1 indicates passive case

amcsmode = 2 indicates yaw hold

amcsmode = 3 indicates spin case

LF - number of time points stored in each array

MFLAG - logical flag to denote if the amcsmode

changed from 1 or 2 to a 0 or 3 between the
times of TO and TF

Other Variables

JMODE - amcsmode of time tag TO

External Input File

IDFTXY.DAT

The external input file IDFTXY.DAT simulates the

preprocessed telemetry data stream. Each line has the

following format:

TIME, X(I), Y(I), TLG(I), MODE

Code Discussion

The external input file IDFTXY.DAT is opened as

logical unit i0 and the first line read, with the time
recorded as TO and the MODE value as JMODE. A read

loop is entered, and lines will be read as long as the

16

MODEremains unchanged or if the MODEonly changes from
1 to 2 or 2 to i, until the end of the file. If the
MODEchanges other than from 1 to 2 or 2 to i, then
reading stops, and MFLAG is set to false. The last
line read, whether or not the end of file is reached,
has the time recorded as TF, the MODEvalue returned to
the main program, and is the point where LF is calcula-
ted. The file IDFTXY.DAT is then closed.

Subroutine ODTF (TO, TM, TF, DT, LE, LB, LEB, TL, AX,
FX, PX, AY, FY, PY, FA, TA, WK, PSIGN,
UMAX, VMAX, FL, FH, AVGX, AVGY)

Definition of Variables

Variables passed as arguments
TO - first time point in buffer (mission elapsed time)
TM -time at midpoint of data window (met)
TF - last time point in buffer (met)
DT - sample time (sec)
LE - index of last point in data window
LB - index of first point in data window
LEB - number of points used in data window
TL - tether length used for this data window (km)
AX - peak magnitude of x axis gyro rate (deg/sec)

FX - calculated skiprope frequency in x axis (hz)

PX - phase angle in x axis

AY - peak magnitude of y axis gyro rate (deg/sec)

FY - calculated skiprope frequency in y axis (hz)

PY - phase angle in y axis

FA - average frequency with G FLAG set to true

TA - average period, reciprocal of FA

WK - conversion factor from rate data to skiprope amli-

tude (meter-sec/deg)

PSIGN - skiprope polarity w.r.t Z LVLH axis

UMAX - maximum in plane midnode skiprope amplitude

VMAX - maximum out of plane midnode skiprope amplitude

FL - lower boundary of the frequency search band (hz)

FH - upper boundary of the frequency search band (hz)

AVGX - computed mean of the Hann-windowed x axis gyro

rate data

AVGY - computed mean of the Hann-windowed y axis gyro

rate data

Output File

F RECORD.DAT (with logical unit number 18)

The output file F_RECORD.DAT has 6 lines with the

following format:

17

TM
LB, LE, LEB
TO, TF, DT, TL, WK, PSIGN

AX, FX, PX, AY, FY, PY

FA, TA, UMAX, VMAX, FL, FH

AVGX, AVGY

Code Discussion

The variables in the variable list are passed as

arguments and written to logical unit 18 (output file

F RECORD.DAT) in the format described above.

18

Quick Reference

Required External Files

PARAM.DAT (read in the main program)

The external input file PARAM.DAT consists of two lines

having the following format:

PF SRCH_BAND, R_ARM, ODF_TIME, ODF FFT

DENSITY, TOTALL, MSAT, MORB, ALTKM

IDFTXY.DAT (read in the subroutine READINDATA)

The external input file IDFTXY.DAT simulates the pre-

processed telemetry data stream. It consists of a

maximum of 3000 lines with the following format:

TIME, X(I), Y(I), TLG(I), MODE

Operator Input Prompts (in order of appearance in the

main program)

Prompt: Yaw maneuver calculations will not be performed

unless requested. Type yes (y) to calculate,

no (n) otherwise.

Prompt: DT is (DT value), is this okay to use - yes (y)

or no (n)
If no, then prompt: Enter DT in seconds

Prompt: Recommend using at least (LEAST value) points

for 3 data cycles. Last point in buffer is

(LF). What is the starting time index?

After receiving the start time index LB, the prompt
continues with: What is the last time index?

Prompt: Tether length is (TLNGTH value) kilometer_ - ok

to use, reply with a yes (y) or a no (n)

If no, then prompt: Enter the tether length in kilome-

ters, and then repeat original tether length prompt.

Prompt: FLOW & FHIGH = (FLOW, FHIGH values)

Are these bounds okay to use - y or n

If no, then prompt: Enter the two values in hz, and

then repeat original frequency bounds prompt.

Prompt: Enter orbiter yaw axis angle in degrees

Verification prompt: Orbiter nose is degrees wrt

X-LVLH axis. Is this correct (Y or N)?

If no, repeat the original orbiter yaw axis angle

prompt.

19

Warnings/Abort Situations

If mode flag M FLAG is false, the following warning is
printed to the screen:

WARNING

AMCSMODE STATUS CHANGED DURING THIS DATA STREAM

NUMBER OF POINTS REDUCED - DATA SET HAS SAME MODE

WILL SET AMCSMODE TO LAST READING

If AMCSMODE = 0, then print this warning:

AMCSMODE INDICATES NO VALID DATA - PROGRAM ABORTS

The following warning is printed if AMCSMODE = 3

AMCSMODE INDICATES SPIN CASE - PROGRAM ABORTS

Warning for G FLAGY false and G FLAGX true:

Y AXIS DATA IS SUSPECT - FREQ OFT OF BAND

FREQUENCY RETURNED IS PREDICTED MIDPOINT

DATA SHOULD NOT BE USED WITHOUT CAUTION

NEITHER POLARITY NOR YAW MANEUVER CALCULATIONS ARE

PERFORMED

Warning for G FLAGX false and G FLAGY true:
X AXIS DATA IS SUSPECT - FREQ OUT OF BAND

FREQUENCY RETURNED IS PREDICTED MIDPOINT

DATA SHOULD NOT BE USED WITHOUT CAUTION

NEITHER POLARITY NOR YAW MANEUVER CALCULATIONS ARE

PERFORMED

Warning for both G FLAGX and G FLAGY false:

BOTH AXES ARE BAD ***** 3 SUGGESTIONS

i) SUGGEST LOOK AT TIME PLOTS OF GYRO SIGNALS.

2) SUGGEST MAKE FFT PLOTS AND LOOK AT DATA.

3) SUGGEST WIDENING SEARCH BAND.

If the curve fitting subroutine LSCF calculates the

quadratic coefficient COF3 = 0.0, print this warning:
****************** WARNING *******************

QUADRATIC COEFFICIENT EQUALS ZERO - CANNOT COMPUTE A

MAXIMUM FREQUENCY VALUE.

2O

TEST PLAN FOR THE BACKUPSKIPROPE OBSERVER

UNIVERSITY OF NEW ORLEANS

Steve Rodrigue, George Ioup, Juliette Ioup, Abolfazl Amini

24 DEC 1991

INTRODUCTION

This document describes the Test Plan and Procedures for evaluating the

Frequency Domain Skiprope Observer. The plan is divided into two parts, one

- for Station 2 conditions, and the second for Station 1 conditions. No concrete

performance requirements exist at Station i, because the main focus of the

Observer is to support a yaw maneuver at Station 2. Nevertheless, two tests

-- using simulations at Station 1 are included to demonstrate Observer

• performance. Additional Station 1 tests using model test signals are also

included to demonstrate and/or define Observer performance boundaries at

Station i.

The test cases enumerated in the ECR, using both model gyro signal plus

actual simulation data, will be fully documented with input data and filter

-- output results. These cases should be used to verify observer code whenever

the code is transferred to a different computer system.

This Test Plan calls for using simulated gyro noise. The noise source to

be used for all testing is a portable random number generator as documented in

Reference and included as Appendix 2.A herein. The model for

generating a Gaussian distribution for noise is also a part of Appendix 2.A.

-- PART I - STATION 2 CONDITIONS: (2.4 km TETHER LENGTH)

_ This part is divided into four Test Groups:

A. Six cases using model gyro signals per ECR

-- B. Three cases using simulation data per ECR

C. Systematic error testing without noise (using model gyro signals)

D. Systematic error testing with noise (using model gyro signals)

- The purpose of the first two groups is to establish test case results for

code transfer as well as prove performance of the Observer. Where noise is

modelled using the random number generator, documentation of these cases will

include the initial value of the random number seed. Users of the test plan

--should use any or all of the fully documented cases to verify the code -

results should vary from the results documented only to within expected

roundoff error. Users should also vary the initial value of the random number

seed to fully statistically test the Observer.

Cases in Group A will verify the ECR requirements in paragraph 3.2.(1)

and 3.2.(2), i.e., the error of the angular rate amplitude shall not exceed 2%,

-with a maximum total phase error of 25 degrees after 15 minutes from the last

time point used in the data window.

Cases 1 and 2 in Group B use simulation data to verify that the secondary

Observer meets the performance requirements for the primary Observer.

Amplitude and phase errors will be measured on a root-mean-square basis as

outlined in the ECR, paragraphs 5.3.2 and 5.3.1.

Case 3 of Group B will be tested the same as cases 1 and 2; however, the
conditions inherent to this case violate the constraints and limitations

- enumerated in the ECR. This case is included to demonstrate trend_ in

degradation for highly transient conditions.

Cases in Group C are used to best define the ultimate performance of the

Observer under ideal (noise-free) conditions. Model gyro signals are inputted

to the Observer for a range of frequencies at Station 2 and for various

pairings of skiprope and pendulous phases. Percentage errors between the input

-- values and output values of the skiprope amplitude, frequency, and phase are

reported.

-- Cases in Group D are used to define the expected performance in a noisy

environment. For each case in Group C, 50 different noisy signals are

generated (using the portable random number generator and the Box-Muller

algorithm to generate Gaussian distributed noise described in Appendix 2.A).

The maximum amplitude, frequency, and phase errors found in the set of 50 noise

runs are reported, as well as the average errors over the 50 runs. For each

frequency tested (Ii total), the largest maximum and largest average errors are

-- also reported.

2

A: STANDARDIZEDTEST CASES

_These test cases are specified in the ECR and have a model gyro signal of the
following form:

N(T) + A0 + AI*COS(2*PI*FI*(I-I)*DT + PHI1) + A2*COS(2*PI*F2*(I-I)*DT + PHI2)

where N(T) = GAUSSIAN DISTRIBUTED NOISE WITH SIGMA = 2.8E-04 DEG/S
A0 = ORB RATE (DES/S)
A1 = SKIPROPE AMPLITUDE (DES/S)
ml = SKIPROPE FREQUENCY(HZ)
PHI1 = SKIPROPE PHASE (DES)
A2 = PENDULOUSAMPLITUDE (DES/S)
F2 = PENDULOUSFREQUENCY(HZ)
PHI2 = PENDULOUSPHASE (DES)
DT = SAMPLETIME (SEC) i

Input data files to the Observer must be in the following format:

_ TIME, X GYROSIGNAL, Y GYROSIGNAL, TETHER LENGTH, AMCSMODE

Both the x gyro signal and y gyro signal are of the form detailed above.
Please note that the x and y gyro signals should be generated independently,

-- albeit concurrently, and have distinct Gaussian distributed noise terms (as

detailed explicitly in the discussion of the noise generation found in Appendix

2.A). At Station 2 the tether length is 2.4 km, and amcsmode can be either 1

-- or 2. The time values must be spaced at the sample rate, preferably 1.024 s.

Users may write their own signal generating programs, or they may use the

program CREATE.FOR listed in Appendix 2.A.

The following table is the list of values used to generate the model gyro

signals. Please note the following:

- I) The skiprope amplitude and frequency values, and the pendulous amplitude

values are used for both the x and y signals.

_ 2) The orb rate is added only to the y gyro signal (A0 = 0.0 for the x gyro

signal).

3) Skiprope phase is the y axis value.

4) Pendulous phase is the x axis value.

The x axis value is phase + 90.0.

The y axis value is phase - 90.0.

-- 5) Gaussian distributed standard deviation noise of 2.8E-03 deg/s is i0 times

the expected noise sigma of 2.8E-04 deg/s.

6) All test cases should use data lengths of at least 3 skiprope periods and a

sample time of 1.000 s or 1.024 s (one skiprope period is calculated as

1.0 / (freq x sample time)).

- 7) Pendulous frequency = 0.03125 Hz

-- 8) Cases with non-zero noise should use i0 runs each.
runs constitute the output.

The averages of the i0

CASE NOISE ORB SKIPROPE PENDULOUS

NO. RATE AMP FREQ PHASE AMP PHASE

1 0.0 0.06 0.02 0.0054 163.0 0.0 10.0

2 2.8E-03 0.06 0.02 0.0054 163.0 0.0 i0.0

3 0.0 0.06 0.02 0.0046 -40.0 0.5 60.0

4 2.8E-03 0.06 0.02 0.0046 -40.0 0.5 60.0

5 2.8E-03 0.06 0.15 0.0054 70.0 0.0 50.0

6 2.8E-03 0.06 0.15 0.0054 70.0 0.5 50.0

_ Appendix 2.B lists tables of results for all six cases and 40 initial values of

the random number seed (4 test cases with non-zero noise x i0 noise runs each).

B: SIMULATION RUNS (VERIFICATION MATRIX)

For this group of the simulations, the user should use the option to print the

calculated rates in the Observer program (UNOMSC.FOR),i.e., set ODF TIME to

true. A root_mean_square comparison of the skiprope amplitudes and-phases is

then performed between the original simulation data and the data generated by

the Observer. A sample comparison program is listed in Appendix 2.C.

CASE SKIPROPE (IN PLANE x OUT OF PLANE) TETHER LENGTH (km)

1 20 x 20 2.4

2 60 x 60 2.4

3 80 x 40 2.4

Notes:

i) Data length should be at least 3 skiprope periods with a sample time of
1.000 s or 1.024 s.

2) These 3 simulations are required by the ECR. The observer should work

properly given any valid simulation, i.e., a simulation without spin.

4

C: SYSTEMATIC ERROR TESTING ACROSS A RANGE OF SKIPROPE

FREQUENCIES AND SKIPROPE / PENDULOUS PHASE PAIRINGS

NOISE-FREE CASE

Model gyro signals are of the same form as detailed in section A. These tests

are of the gyro signal itself, so only one axis is necessary (all parameters

-are used on this one axis). The programs listed in Appendix 2.D automate the

procedure of creating the signals and running the essentials of the Observer by

incorporating various loops into the body of the program to eliminate user

_ input in creating data files and/or running the Observer.

For each frequency in the range (0.0045 - 0.0055 Hz), at intervals of 0.0001 Hz

(a total of ii frequencies), run the following tests:

Parameters:

--orb rate = 0.065 deg/s

" skiprope amp = 0.02 deg/s

pendulous frequency = 0.03125 Hz

pendulous amplitude = 0.5 deg/s

-- data length = at least three periods of data

noise = 2.8E-03 deg/s

sample rate = 1.024 s or 1.000 s

I) Vary the skiprope phase from -180.0 deg to 180.0 deg in increments of i0

deg. For each skiprope phase vary the pendulous phase from -180.0 deg to

180.0 deg in increments of i0 deg (a total of 37 x 37 = 1369 cases).

2) In each case record the per cent errors in the calculated skiprope

amplitude, frequency, and phase.

3) Find the maximum amplitude, frequency, and phase per cent errors and the

associated skiprope and pendulous phases for each.

4) Plot error surfaces of the amplitude, frequency, and phase errors (a total

of 33 plots - 3 plots for each frequency x ii frequencies).

D: SYSTEMATIC ERROR TESTING ACROSS A RANGE OF SKIPROPE

FREQUENCIES AND SKIPROPE / PENDULOUS PHASE PAIRINGS

NOISE CASE

Model gyro signals are of the same form as detailed in section A. These tests

are of the gyro signal itself, so only one axis is necessary (all parameters

are used on this one axis). The programs listed in Appendix 2.D automate the

-- procedure of creating the signals and running the essentials of the Observer by

incorporating various loops into the body of the program to eliminate user

input in creating data files and/or running the Observer.

5

For each frequency in the range (0.0045 - 0.0055 Hz), at intervals of 0.0001 Hz
(a total of ii frequencies), run the following tests:

Parameters:

orb rate = 0.065 deg/s
skiprope amp = 0.02 deg/s

_pendulous frequency = 0.03125 Hz
pendulous amplitude = 0.5 deg/s

data length = at least three periods of data

noise = 2.8E-03 deg/s

--sample rate = 1.024 s or 1.000 s

i) For each of the 1369 phase relationship cases listed in C.I for the

- noise-free case, run 50 noise runs (Gaussian distributed noise).

2) In each case record the average and maximum per cent errors in the

calculated skiprope amplitude, frequency, and phase.

3) Find the maximum per cent errors in the amplitude, frequency, and phase and

the associated skiprope and pendulous phases for each.

4) Find the largest maximum errors in the amplitude, frequency, and phase and

the associated skiprope and pendulous phases for each.

5) Plot representative samples of the surfaces generated in part b).

PART II - STATION 1 CONDITIONS: (20.0 km TETHER LENGTH)
_Mm

w

This part is divided into three Test Groups:

_A. Two cases using simulation data per ECR

B. Systematic error testing without libration component - both noise-free and

noise cases (using model gyro signals)

C. Systematic error testing with libration component - both noise-free and

noise cases (using model gyro signals)

Cases 4 and 5 in Group A use simulation data to verify that the secondary

Observer meets the performance requirements for the primary Observer.

_Amplitude and phase errors will be measured on a root-mean-square basis as

outlined in the ECR, paragraphs 5.3.2 and 5.3.1. (Note: The numbering of the

simulation cases follows the convention of the ECR, which has simulations from

both stations 2 and 1 in one table and numbered sequentially - cases I, 2, and

- 3 at station 2 cases 4 and 5 at station i.)

6

Cases in Group B are used to define the expected performance of the

Observer at Station 1 without the influence of a libration component. Both the

noisy and ideal (noise-free) environments are considered.

Cases in Group C are used to define the expected performance of the

Observer at Station 1 with the influence of a libration component. Both the

noisy and ideal (noise-free) environments are considered.

For both Groups B and C, runs are performed for all cases with data

lengths of 2, 3, and 4 skiprope periods. Noise runs are performed with both

1 sigma and 3 sigma Gaussian distributed noise standard deviations.

A: SIMULATION RUNS (VERIFICATION MATRIX)

-- For this group of the simulations, the user should use the option to print the

calculated rates in the Observer program (UNOMSC.FOR),i.e., set ODF TIME to

true. A root mean_square comparison of the skiprope amplitudes and phases is

then performed between the original simulation data and the data generated by

- the Observer. A sample comparison program is listed in Appendix 2.C.

-- CASE SKIPROPE (IN PLANE x OUT OF PLANE) TETHER LENGTH (km)

_ 4 80 x 40 20.0

5 80 x 80 20.0

-- Notes:

i) Data length should be at least 3 skiprope periods with a sample time of

1.000 s or 1.024 s.

- 2) These 2 tests are required by the ECR. The observer should be able to work

properly given any valid simulation, i.e., a simulation without spin.

B: SYSTEMATIC ERROR TESTING OF MODEL SIGNALS WITHOUT LIBRATION

USING DATA LENGTHS OF 2, 3, OR 4 SKIPROPE PERIODS

Model gyro signals are of the same form as detailed in section A, part I. The

CREATE.FOR program listed in Appendix 2.A can be used to generate signals for

this group. Appendix 2.D lists programs that automate the data file generatior

and Observer testing for the cases in this group.

7

For each of the desired data lengths, data files should be generated with the
-following values:

PARAMETERS:
_ LIBRATION SKIPROPE PENDULOUS

%MPLITUDE (X AXIS) 0.004 0.0034 0.05

_ (Y AXIS) 0.004 0.0034 0.05 (units = deg/s)

FREQUENCY (X AXIS)

(Y AXIS)

PHASE (X AXIS)

(Y AXIS)

SIGMA = 2.8E-04 deg/s

9RB RATE = 0.065 deg/s

)T = 1.024 s or 1.000 s

1/2713 0.0019 0.089

1/3132 0.0019 0.089

varies varies 0.0

varies varies -90.0

(units = Hz)

(units = deg)

I) For the model signal without libration component vary the skiprope phase

from -180.0 deg to 180.0 deg in increments of i0 deg (a total of 37 cases).

2) In each case record the per cent errors in the calculated skiprope

amplitude, frequency, and phase.

3) Find the maximum amplitude, frequency, and phase per cent errors and the

associated skiprope phases for each.

--4) Plot error curves of the amplitude, frequency, and phase errors (a total of

3 plots).

-0o the following steps for Gaussian distributed noise signals, using

noise = 1 x sigma = 2.8E-04 and noise = 3 x sigma = 8.4E-03:

For each of the 37 phase relationship cases listed in i) for the noise-free

case, run 50 noise runs (Gaussian distributed noise).

5) In each case record the average and maximum per cent errors in the

-- calculated skiprope amplitude, frequency, and phase.

7) Plot representative samples of the curves generated in part 6).

C: SYSTEMATIC ERRORTESTING OF MODELSIGNALS WITH LIBRATION
USING DATA LENGTHSOF 2, 3, OR 4 SKIPROPE PERIODS

Model gyro signals are of the same form as detailed in section A, part I, with
the addition of a libration component term of the form:

ALIB*COS(2*PI*FLIB*(I-1)*DT + PHLIB)

where ALIB = LIBRATION AMPLITUDE
FLIB = LIBRATION FREQUENCY
DT = SAMPLE RATE
PHLIB = LIBRATION PHASE

Appendix 2.A lists a program (CRELIBR.FOR) that generates a model gyro signal

with a libration component. Appendix 2.D lists programs that automate the

- signal

generation and Observer evaluation for the cases in this group.

For each of the desired data lengths, data files should be generated with the

following values:

PARAMETERS:

LIBRATION SKIPROPE PENDULOUS

AMPLITUDE (X AXIS)

(Y AXIS)

0.004 0.0034 0.05

0.004 0.0034 0.05

FREQUENCY (X AXIS)

(Y AXIS)

1/2713 0.0019 0.089

1/3132 0.0019 0.089

PHASE (X AXIS) varies varies 0.0

(Y AXIS) varies varies -90.0

SIGMA = 2.8E-04 deg/s

ORB RATE = 0.065 deg/s

DT = 1.024 s or 1.000 s

(units. = deg/s)

(units = Hz)

(units = deg)

i) For the model signal with libration component vary the skiprope phase from

-180.0 deg to 180.0 deg in increments of i0 deg. For each skiprope phase,

vary the libration phase from -180.0 deg to 180.0 deg (a total of 1369 cases

37 skiprope phases x 37 libration phases).

_ 2) In each case record the per cent errors in the calculated skiprope
amplitude, frequency, and phase.

3) Find the maximum amplitude, frequency, and phase per cent errors and the

-- associated skiprope and libration phases for each.

4) Plot error surfaces of the amplitude, frequency, and phase errors (a total
-- of 3 plots).

Do the following steps for Gaussian distributed noise signals, using
noise = 1 x sigma = 2.8E-04 and noise = 3 x sigma = 8.4E-03:

i 5) For each of the 1369 phase relationship cases listed in I) run 50 noise runs

'- (Gaussian distributed noise).

i-

6) In each case record the average and maximum per cent errors in the

calculated skiprope amplitude, frequency, and phase.

7) Find the maximum average per cent errors in the amplitude, frequency, and

!_ phase and the associated skiprope and libration phases for each.

8) Find the largest maximum errors in the amplitude, frequency, and phase and
the associated skiprope and libration phases for each.

9) Plot representative samples of the surfaces generated in part 6).

I0

APPENDIX 1

C

C

C

C

NAME IS UNOMSC.FOR (BACK UP SKIPROPE OBSERVER)
THIS VERSION IS COMBINED FROM UNO AND MSFC

DATE IS SEPTEMBER 1991

INTEGER NDIM, NFT, NPNT, AMCSMODE

PARAMETER (NDIM= 3000, NFT=8192, NPNT=7)

PARAMETER (PI=3.1415926, DFR=57.2957795, RFD=0.017453292)

REAL*4 X(NDIM), Y(NDIM), TLG(NDIM)

CHARACTER*I REPLY

CHARACTER*8 POLARITY

LOGICAL G_FLAGX, G_FLAGY, S_FLAG, M__FLAG, ODF_TIME,
ODF FFT

REAL*4 PF_SRCH_BAND, R_ARM, DENSITY, TOTALL, MSAT, MORB,
ALTKM

COMMON/FREQ/DENSITY, TOTALL, MSAT, MORB, ALTKM

COMMON LB, LE, DT, DF, FLOW, FHIGH

C READ IN DATABASE PARAMETERS FROM FILE 'PARAM.DAT'

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PF SRCH BAND IS % NUMBER TO COMPUTE SEARCH BAND.

R ARM IS DISTANCE FROM ORBITER C.M. TO CENTER LINE

OF DEPLOYER BOOM.

ODF TIME IS LOGICAL FLAG TO CONTROL PRINTING OF TIME

DATA TO OUTPUT FILE. THIS FLAG IS NOMINAL .FALSE.

MEANING TIME DATA IS NOT PRINTED.

ODF FFT IS LOGICAL FLAG TO CONTROL PRINTING OF FREQUENCY

DOMAIN DATA (FFT'S) TO OUTPUT FILE. THIS FLAG IS
NOMINAL .TRUE... THE DATA IS PRINTED OUT.

DENSITY IS TETHER DENSITY IN KG PER KM = 8.35 KG/KM.
TOTALL IS TOTAL TETHER LENGTH = 22.0 KILOMETERS.

MSAT IS SATELLITE MASS IN KGS. DEFAULT = 510.

MORB IS ORBITER MASS IN KGS. DEFAULT = i00,000.

ALTKM IS ORBIT ALTITUDE IN KM. DEFAULT = 325. KM.

OPEN(10,FILE='PARAM.DAT' ,STATUS='OLD')

READ(10,*) PF SRCH_BAND, R_ARM, ODF_TIME, ODF FFT

READ(10,*) DENSITY, TOTALL, MSAT, MORB, ALTKM

CLOSE(10,STATUS='KEEP')

OPEN FILE COMMANDS

THESE ARE OUTPUT FILES FOR RECORD.

CLOSE STATEMENTS APPEAR JUST PRIOR TO 'END" STATEMENT.

OPEN(II,FILE='F FFTX.DAT',STATUS='UNKNOWN')

OPEN(12,FILE='F FFTY.DAT',STATUS='UNKNOWN')

OPEN(13,FILE='F--TXYUV.DAT',STATUS='UNKNOWN')

OPEN(17,FILE='F YAWMAN.DAT',STATUS='UNKNOWN')

OPEN(18,FILE='F_RECORD.DAT',STATUS='UNKNOWN')

THE RATE GYRO DATA SHOULD ALWAYS BE IN LVLH FRAME AND

IS THE RATE RELATIVE TO LVLH. I.E. ORBITAL RATE HAS

ALREADY BEEN REMOVED. NOTE: PROGRAM WILL STILL WORK

1

C PROPERLY IF ORBITAL RATE IS NOT REMOVED.

C

C

C

GO READ FILE FOR TELEMETRY DATA

CALL READINDATA (TO, TF, X, Y, TLG, JMODE, LF, M_FLAG)
CHECK ON M FLAG STATUS... SET AMCSMODE BY M FLAG AND JMODE.

PRINT*, 'ESTIMATED TETHER LENGTH IN KILOMETERS IS ',TLG(LF)

IF (M_FLAG) THEN
AMCSMODE = JMODE

C AMCSMODE STATUS ON TELEMETRY NEVER CHANGED FOR ALL

POINTS,

C OR CHANGED BETWEEN MODES 1 & 2 ONLY.

ELSE

PRINT *,' **************************************

PRINT * , ' WARNING '

PRINT * ,' **************************************

PRINT *,' AMCSMODE STATUS CHANGED DURING THIS DATA

STREAM '

MODE. '

PRINT *,' NUMBER OF POINTS REDUCED - DATA SET HAS SAME

PRINT *,' WILL SET AMCSMODE TO LAST READING'

AMCSMODE = JMODE

ENDIF

PRINT *, ' AMCSMODE IS = ' , AMCSMODE

IF (AMCSMODE.EQ.0.) THEN
PRINT*

**

PRINT*,'AMCSMODE INDICATES NO VALID DATA - PROGRAM

ABORTS'

**

PRINT*,'AMCSMODE INDICATES SPIN CASE - PROGRAM

ABORTS'

C

C

C
SET VALUE FOR FLAG (S_FLAG) TO CONTROL COMPUTATIONS OF YAW
MANEUVER OUTPUTS. THIS IS BASED ON AMCSMODE AND TETHER

LENGTH.

C OPERATOR HAS FULL CONTROL OF OPTION TO EXECUTE THIS

COMPUTATION.

C S FLAG (LOGICAL) USED TO DENOTE IF YAW MANEUVER

2

COMPUTATIONS
C ARE REQUIRED. IF 'TRUE' MEANS DO THE YAW

COMPUTATIONS.

C IF 'FALSE' MEANS DO NOT DO THE

COMPUTATIONS.

C

S FLAG = .FALSE.

PRINT*,'YAW MANEUVER CALCULATIONS WILL NOT BE PERFORMED

UNLESS'

PRINT*,'REQUESTED. TYPE YES (Y) TO CALCULATE, NO (N)

OTHERWISE.'

READ(6,99) REPLY

IF (REPLY .EQ. 'Y' .OR. REPLY .EQ. "y') S_FLAG = .TRUE.

C

C

C

SAMPLING TIME IS COMPUTED AS AVERAGE VALUE OF ALL DATA

THE COMPUTED VALUE CAN BE REPLACED BY OPERATOR -

IF OPERATOR SO DESIRES.

C

C

C

COMPUTE AVERAGE SAMPLE TIME FOR ALL DATA

DT=(LAST TIME - FIRST TIME)/ NUMBER OF POINTS MINUS 1

OR READ IN DT.

2

(N) '

C

VALUE'

DT = (TF - T0)/FLOAT(LF-I)

PRINT *,'DT IS :',DT,' IS THIS OKAY TO USE - YES (Y) OR NO

READ (6, 99) REPLY

IF (REPLY .EQ. 'N' .OR. REPLY .EQ.

PRINT *,'ENTER DT IN SECONDS"

READ*,DTNEW

ELSE

GO TO 4

ENDIF

CHECK TO SEE IF THE NEW DT IS LEGAL

IR = INT(0.1 + DTNEW/DT)

IF (IR.LT.2) THEN
PRINT *

'n') THEN

, 'CANNOT REDUCE THE DT - MUST USE COMPUTED

GO TO 4

ELSE

I = 1

J = 1

X(I) = X(J)

Y(I) = Y(J)

TLG(I) = TLG(J)

IF (J+IR .LT. LF) THEN
I = I + 1

J = J + IR

GO TO 3

ELSE

LF = I

GO TO 2

ENDIF

3

C

C

C

C

5

C

RUN.'

TIME'

AND'

C

C

7

USE '

C

C

C

C

ENDIF

CONTINUE

TLNGTH = 0.5 *(TLG(1) + TLG(LF))

CALL FBAND (FLOW, FHIGH, TLNGTH, PF_SRCH_BAND)

LEAST = INT(6./(FLOW+FHIGH))

LEAST IS ESTIMATE OF HOW MANY POINTS TO USE FOR A MINIMUM

OF 3 CYCLES OF SKIPROPE.

CONTINUE

PRINT*,' RECOMMEND USING AT LEAST ',LEAST,' POINTS FOR'

PRINT*,' 3 DATA CYCLES. LAST POINT IN BUFFER IS ',LF

PRINT*,'WHAT IS THE STARTING TIME INDEX ?'

READ*,LB

PRINT*,'WHAT IS THE LAST TIME INDEX ? '

READ*,LE

IF (LE .ST. LF) THEN

PRINT*,'NOT ENOUGH POINTS IN BUFFER TO MAKE AN ACCURATE

PRINT*,'DO YOU WISH TO ENTER NEW START TIME AND LAST

PRINT*,'INDICES (Y OR N)? IF NO, THE PROGRAM WILL ABORT

PRINT*,'REQUEST REFILLING THE BUFFER AND RUNNING AGAIN.'

READ(6,99) REPLY

IF (REPLY.EQ.'Y'.OR.REPLY.EQ.'y') GO TO 5

PRINT*,'PROGRAM WILL ABORT - REFILL BUFFER AND RUN AGAIN.'

STOP

END IF

IF(0. EQ. MOD(LE-LB+I,2)) LE=LE-I

THIS MAKES LE SUCH THAT NUMBER OF POINTS (LE-LB+I) IS ODD

TLNGTH = 0.5 *(TLG(LB) + TLG(LE))

PRINT *,' TETHER LENGTH IS :',TLNGTH,' KILOMETERS - OK TO

PRINT *,' REPLY WITH A YES (Y) OR A NO (N) '

READ (6,99) REPLY

IF (REPLY .EQ. 'N' .OR. REPLY .EQ. 'n') THEN

PRINT *,' ENTER TETHER LENGTH IN KILOMETERS'

READ*, TLNGTH
GO TO 7

ENDIF

CALL FBAND TO GET FREQUENCY SEARCH BANDS

CALL FBAND (FLOW, FHIGH, TLNGTH, PF_SRCH_BAND)

9 PRINT*,'FLOW & FHIGH = ',FLOW, FHIGH
PRINT*,' ARE THESE BOUNDSOKAY TO USE - Y OR N'
READ (6,99) REPLY
IF (REPLY .EQ. 'N' .OR. REPLY .EQ. 'n') THEN

PRINT*,'ENTER THE TWOVALUES IN HZ'
READ*, FLOW, FHIGH
GO TO 9

ENDIF

C

C
C

99 FORMAT(AI)

LEB=LE-LB+I
PRINT*,'START INDEX - STOP INDEX - TOTAL POINTS PROCESSED'
PRINT*,LB, LE, LEB

'DT = ' DT ' * * * TETHER LENGTH IN KILOMETERS =PRINT *, , ,

' TLNGTH

C

C

C

C

C

C

DF=I. 0/(NFT*DT)

TSHIFT = DT*(LB-I)

TMIDPT = TO + DT *((LB+LE-2)/2)

TSHIFT IS DELTA TIME FROM START TIME OF BUFFER (I.E. TO)

TO FIRST TIME POINT USED IN THIS RUN (DATA WINDOW).

TMIDPT IS TIME POINT OF MIDDLE OF DATA WINDOW.

CALL WORK(II,X,AMPX,PHASEX,FREQX, IWXMAX, G_FLAGX, AVGX,

ODF FFT)

CALL WORK(12,Y,AMPY,PHASEY,FREQY,IWYMAX, G_FLAGY, AVGY,

ODF FFT)

PSIGN = 0.0

C PSIGN SET TO ZERO - DEFAULT VALUE IN CASE FILTER CAN'T

PREDICT

C SKIPROPE

C

C

CHECK ON GOODNESS FLAGS

IF (G FLAGX. AND. G_FLAGY)

#

#

#

THEN

FAVG = 0.5 * (FREQX + FREQY)

TAVG = 1.0 / FAVG

WK = 1000.*TLNGTH*TAVG / (360,PI)
UMAX = WK * AMPY

VMAX = WK * AMPX

PRINT*,'X AMP = ',AMPX,' X PHASE = ',PHASEX*ISO.Q/PI,

' X FREQ = ' FREQX

PRINT*,'Y AMP = ',AMPY,' Y PHASE = ',PHASEY*IS0.0/PI,

' Y FREQ = ' FREQY

PRINT *,'PHASE DIFFERENCE (DEGREES) BETWEEN X & Y =

, 57.3 * (PHASEX - PHASEY)

5

C

'MAX U = ' UMAX,' MAX V =PRINT*,

ELSEIF (.NOT. G FLAGY. AND. G_FLAGX) THEN

FAVG = FREQX

TAVG = i. 0 /FAVG

WK = 1000.*TLNGTH*TAVG/ (360 * PI)

VMAX = WK * AMPX

UMAX = 7777.

' VMAX

PRINT *,'Y AXIS DATA IS SUSPECT - FREQ OUT OF BAND'

PRINT *,'FREQUENCY RETURNED IS PREDICTED MIDPOINT'

PRINT *,'DATA SHOULD NOT BE USED WITHOUT CAUTION'

PRINT *,'MAX V = ', VMAX

PRINT *,'NEITHER POLARITY NOR YAW MANEUVER CALCULATIONS ARE

PERFORMED '

GO TO 88

ELSEIF (.NOT.G FLAGX.AND.G_FLAGY)

FAVG = FREQY

TAVG = I. 0 /FAVG

WK = 1000.*TLNGTH*TAVG/ (360"PI)

UMAX = WK * AMPY

VMAX = 7777.

THEN

PRINT *,'X AXIS DATA IS SUSPECT - FREQ OUT OF BAND'

PRINT *,'FREQUENCY RETURNED IS PREDICTED MIDPOINT'

PRINT *,'DATA SHOULD NOT BE USED WITHOUT CAUTION'

PRINT *,'MAX U = ', UMAX

PRINT *,'NEITHER POLARITY NOR YAW MANEUVER CALCULATIONS ARE

PERFORMED'

GO TO 88

ELSEIF ((.NOT.G_FLAGX).AND.(.NOT.G_FLAGY)) THEN

PRINT *,'BOTH AXES ARE BAD ***** 3 SUGGESTIONS'

PRINT *,'i) SUGGEST LOOK AT TIME PLOTS OF GYRO

SIGNALS.'

PRINT *,'2)

PRINT *,'3)

UMAX = 7777.

VMAX = 7777.

FAVG = 7777.

TAVG = 7777.

WK = 7777.

PSIGN= 7777.

GO TO 88

C

C

C

SUGGEST MAKE FFT PLOTS AND LOOK AT DATA.'

SUGGEST WIDENING SEARCH BAND.'

DATA IS BAD. WRITE OUTPUT AT LABEL '88'

ENDIF

C

C

C

C

C

PRINT *,'AVERAGE PERIOD IN SECONDS IS :' ,TAVG

THE INTEGERS 'IWXMAX' AND 'IWYMAX' ARE TIME INDICES WHERE X

AND Y VALUES ARE A MAXIMUM. THIS CORRESPONDS TO WHERE

COSINE(PHI) = 1 OR PHI = 2*PI.

IF IWYMAX GT IWXMAX , MEANS POLARITY IS POSITIVE ABOUT Z

6

C
C
C
C
C
C

C
C
PERIOD
C

C
C
C
C

C
C

C

C

C

C

C

PROVIDED THE TIME DIFFERENCE BETWEEN IWYMAX AND IWXMAX IS

EQUIVALENT TO 90 DEGREES.

IWYMAX COULD BE GREATER THAN IWXMAX FOR NEGATIVE ROTATION

BUT THIS WOULD REQUIRE A 270 DEGREE TRAVEL TIME.

THUS THE TEST FOR POLARITY IS 180 DEGREES TRAVEL TIME.

IF (IWYMAX .GT. IWXMAX) THEN

TEST = DT*FLOAT(IWYMAX-IWXMAX)

TEST IS TIME IN SECONDS TO GO FROM X-AXIS TO Y-AXIS.

POLARITY DICTATED BY THIS TIME BEING GT OR LT 1/2 OF

IF (TEST .GT. 0.5*TAVG) THEN
PSIGN = -i.0

ELSE

PSIGN = +i.0

ENDIF

ENDIF

NOW DO CASE FOR X PEAK OCCURS AFTER Y PEAK

THIS IS SAME LOGIC AS ABOVE IN PRINCIPLE

IF (IWXMAX .GT. IWYMAX) THEN

TEST = DT*FLOAT(IWXMAX - IWYMAX)

IF (TEST .GT. 0.5*TAVG) THEN
PSIGN = +i.0

ELSE

PSIGN = -i.0

ENDIF

ENDIF

ALL DONE - SIGN COMPUTATIONS ARE COMPLETED

PRINT *,' POLARITY OF SKIPROPE = ', PSIGN

PRINT*

WRITE TIME DATA TO FILE FOR RECORD ONLY IF REQUESTED.

REQUEST IS IF ODF TIME FLAG IS TRUE.
m

IF (ODF_TIME) THEN

DO I = I,LEB

TWX = COS(2.0*PI*FAVG*DT*(I-I)+PHASEX)

TWY = COS(2.0*PI*FAVG*DT*(I-I)+PHASEY)

WX = TWX * AMPX

WY = TWY * AMPY

U = -PSIGN * WK * AMPY * TWX

V = -PSIGN * WK * AMPX * TWY

T = TO + (LB + I - 2)*DT

WRITE(13,*)T,WX,WY,U,V
END DO

ENDIF

IF STATION 2 FLAG SET TO 'TRUE' THEN DO YAW MANEUVER
l

7

C
C

C
C
C

C
C

C
C
TIMES
C

CALCULATIONS, OTHERWISESKIP TO LABEL 88.

IF (S_FLAG) THEN

CALCULATENUMBEROF ROTATIONS ORBITER SHOULDEXECUTE•

RNROT= (AMINI (UMAX, VMAX))/ (2.0 * R_ARM)

SPECIFY POLARITY
IF (PSIGN .EQ. i.) THEN

POLARITY = 'POSITIVE'
ELSE

POLARITY = 'NEGATIVE'
ENDIF

OUTPUTREV NUMBER,POLARITY, # OF ROTATIONS, AND START

THIS DATA ALSO GOESTO FILE. DATA SET TIME TAG IS GIVEN
BY 'TMIDPT'.
C
C
C
C
C
C
C
C
C
C
C
C
& TYMAX
C

BURNTIMES CALCULATEDHERE ASSUMETHAT THE ORBITER NOSE IS
ALIGNED WITH THE X-LVLH AXIS
IF THIS IS NOT THE CASE, THE BURN TIMES MUST BE ADJUSTEDTO
ACCOUNTFOR WHERETHE NOSE IS WRTTHE X LVLH AXIS
THIS TIME ADJUSTMENTIS : (YAWANGLE/360*FAVG) IN SECONDS•
YAWANGLE IS DEGREESNOSE IS AWAYFROMX-LVLH.
FAVG IS VALUE FROMFREQUENCYMEASUREMENTS(IN HZ).

CALCULATE5 BURNTIMES AND OUTPUTTO SCREENAND FILE 17
FIRST, ESTABLISH TIME WHENX AND Y ARE MAXIMUMS- TXMAX

TXMAX = DT*(IWXMAX-I)
TYMAX = TXMAX+ 0.25*TAVG + TSHIFT + TO
WRITE (6,76) TMIDPT, TF
WRITE (6,*)
WRITE (17,76) TMIDPT, TF
WRITE (17,77)

76 FORMAT(' MIDPOINT TIME FOR THIS DATA WINDOWIS
• ' El8 6 /• , • f

$,' TIME TAG ON LAST POINT IN BUFFER IS :',E18.6)

PRINT*

77 FORMAT(' REV LABEL POLARITY RATE(D/S) # OF

ROTATIONS '

$,' START TIME')

C

C NOW ADJUST BURN START TIMES TO ACCOUNT FOR ORBITER

ORIENTATION.

C THIS REQUIRES OPERATOR INPUT FOR ORBITER YAW ANGLE.

C

61 PRINT*,'ENTER ORBITER YAW AXIS ANGLE IN DEGREES'

8

AXIS'

C
C
COMES
C
(TF) •
C

C

78

C

C

C

17

88

C

C

C

C

C

READ *, OYAWANG

PRINT*,'ORBITER NOSE IS ' , OYAWANG,' DEGREES WRT X-LVLH

PRINT*,'IS THIS CORRECT (Y OR N)?'

READ(6,99) REPLY

IF (REPLY .EQ. 'N' .OR. REPLY .EQ. 'n') GO TO 61

BTDEL = PSIGN * OYAWANG/(360.0*FAVG)

TYMAX = TYMAX + BTDEL

WRITE(6,77)

ADVANCE TIME 'TYMAX' BY INCREMENTS OF TAVG UNTIL 'TIME'

UP THAT IS GREATER THAN TIME OF LAST DATA POINT IN BUFFER

ANY COMPUTED TIMES LESS THAN 'TF' ARE IN THE PAST.

IF (TYMAX .LE. TF) THEN

TYMAX = TYMAX + TAVG

GO TO 78

ENDIF

NOW COMPUTE THE 5 BURN TIMES

DO K=I, 5

TT = TYMAX + (K-I)*TAVG

WRITE(6,17) K-I, POLARITY, 360.*FAVG, RNROT, TT

WRITE(17,17) K-l, POLARITY, 360.*FAVG, RNROT, TT

END DO

FORMAT(I5,7X,A8,FI2.4,7X,F5.1,7X,FI2-2)

ENDIF

CONTINUE

CALL ODTF (TO, TMIDPT, TF, DT, LE, LB, LEB, TLNGTH

$, AMPX, FREQX, PHASEX, AMPY, FREQY, PHASEY

$, FAVG, TAVG, WK, PSIGN, UMAX, VMAX, FLOW, FHIGH

$, AVGX, AVGY)

CLOSE ALL FILES

CLOSE (ii, STATUS='KEEP ')

CLOSE (12, STATUS='KEEP ')

CLOSE (13, STATUS='KEEP ')

CLOSE (17, STATUS='KEEP ')

CLOSE (18, STATUS='KEEP ')

END

9

w

C SUBROUTINE WORK CALCULATES THE AMPLITUDE,PHASE, AND

FREQUENCY

C OF THE DATA. THE FOURIER TRANSFORM SUBROUTINE FOUR1 IS

C CALLED BY SUBROUTINE WORK. WORK RETURNS TO THE MAIN

PROGRAM

C

C

C

C

THE VALUES OF THE AMPLITUDE,PHASE, AND FREQUENCY AS WELL AS

THE TIME INDEX WHERE THE MAXIMUM VALUE OCCURS.

THIS IS BASED ON MODEL OF COS(WT+PHASE).

SUBROUTINE WORK (IOA, ANG, AMP, PHASE, FREQ, ITMAX

$, G__FLAG, BIAS, FFT__FLAG)

INTEGER NDIM, NCDIM

PARAMETER (NDIM=3000, NCDIM=8200, NFT=8192, NPNT=7)

PARAMETER (PI=3.1415926, DFR=57.2957795, RFD=0.017453292)

DIMENSION AUX (NDIM) ,ANG (i)

REAL*4 XFREQ(7), PHIMAG(7) ,PHREAL(7)

COMPLEX AWO(NCDIM)

LOGICAL G FLAG, FFT FLAG

C

C

C

C

C

C

C

C

C

C

C

C

C

C

COMMON LB, LE, DT, DF, FLOW, FHIGH

NTBI=LE-LB+I

NTBI IS FORCED TO BE ODD IN MAIN PROGRAM.

HANN WINDOW ROUTINE USES ODD NUMBER OF POINTS TO TAPER.

LOAD INPUT DATA FROM ANG(I) INTO ARRAY AUX(J).

LBI=I-LB

DO I=LB,LE
IL=I+LBI

AUX (I L) =ANG (I)
END DO

APPLY WINDOW FUNCTION TO TIME SEQUENCE

CALL HANN (NTBI,AUX,BIAS)

MAKE COMPLEX NUMBER AWO(I) FROM REAL NUMBER AUX(I) BY USING

A ZERO IMAGINARY VALUE (AUX(I) IS THE REAL VALUE).

DO I=I,NTBI

AWO (I) =CMPLX (AUX (I), 0.)
END DO

NOW PAD THE DATA STREAM WITH ZEROS OUT TO AWO(8192).

I0

DO I=NTBI+I,NFT

AWO(I) = CMPLX(0.,0.)

END DO

C

C SUBROUTINE FOUR1 DOES THE FOURIER TRANSFORM USING A FFT

METHOD.

C

CALL FOURI(AWO,NFT,I)

C NOW FIND THE MAXIMUM MODULUS VALUE OF THE FOURIER TRANSFORM

DATA

C OVER A SPECIFIED FREQUENCY INTERVAL. THIS INTERVAL IS

CALCULATED

C FROM INPUT DATA AND IS DESIGNED SUCH THAT THE SKIPROPE

C FREQUENCY FALLS WITHIN THIS INTERVAL. THE INTERVAL IS

C SUFFICIENTLY NARROW THAT NO OTHER MODE SHOULD FALL WITHIN

THE

C INTERVAL.

C

C

C

FLOW IS LOWER BOUNDARY OF SEARCH BAND

FHIGH IS UPPER BOUNDARY OF SEARCH BAND

XMAX=0.0

IFRST = 1 + INT(FLOW/DF)

ILAST = 1 + INT(FHIGH/DF)

DO I = IFRST, ILAST

FR = (I-1)*DF

IF (CABS (AWO (I)) .GT. XMAX) THEN

XMAX=CABS (AWO (I))

KF=I

FREQ = FR

END IF

END DO

C CREATE THE 3 DATA SETS TO BE FITTED BY LEAST SQUARES

POLYNOMIAL.

C

FIT.

C

C

C

C

C

C

FOUND.

C

POLYNOMIAL IS 2ND DEGREE AND 7 POINTS WILL BE USED IN CURVE

3 SETS ARE:

MAGNITUDE OF TRANSFORM (SQRT(REAL**2 + IMAG**2))

REAL PART

IMAGINARY PART

CENTER OF DATA SET IS THE FREQUENCY POINT WHERE MAX WAS

DO I = I,NPNT

J = KF-((NPNT+I)/2.0)+I

XFREQ(I) = CABS(AWO(J))

11

C

PHIMAG(I) =

PHREAL(I) =

END DO

AIMAG (AWO (J))

REAL (AWO (J))

C

C

C

C

C

C

DO CURVE FIT ON THE MODULUS OF THE FOURIER TRANSFORM

CALL TO LSCF WITH OPTION 1 DOES 2 THINGS.

CURVE FITS AND COMPUTES TRUE MAX FREQUENCY POINT.

CALL LSCF (FQ_P0, XMAX, XFREQ, i, G_FLAG)

G FLAG = TRUE MEANS MAX FREQUENCY FOUND IN THE SPECIFIED

INTERWE.
C LSCF IS THEN CALLED TWICE WITH OPTION 2 TO EVALUATE THE

POLYNOMIAL

C AT THE CRITICAL FREQUENCY VALUE FOUND IN THE FIRST LSCF

CALL.

C IF FALSE, THEN THE MAXIMUM PEAK OCCURS OUTSIDE THE 7 POINT

RANGE.

C (THIS IS POSSIBLE IF THE INITIAL ESTIMATE OF THE SKIPROPE

FREQUENCY

C ESTIMATED FROM THE TETHER LENGTH IS MUCH DIFFERENT FROM THE

C

ARE

C

C

C

C

C

TRUE VALUE.) WHEN G_FLAG IS FALSE THE INFORMATION RETURNED

VALUES BASED ON THE MIDPOINT OF THE SPECIFIED SEARCH BAND.

IF (G_FLAG) THEN

CALL LSCF (FQ_P0, PHASEI, PHIMAG, 2, G_FLAG)

CALL LSCF (FQ_P0, PHASER, PHREAL, 2, G_FLAG)
ELSE

KF = i+ INT(((FLOW+FHIGH)/2.0)/DF)

XMAX = CABS (AWO (KF))

PHASEI = AIMAG(AWO(KF))

PHASER = REAL(AWO(KF))

FREQ = 0.

FQ P0 = KF - 1.0

END IF

FREQ = FREQ + DF * FQ_PO

SCALING OF TRANSFORMED DATA IS PERFORMED TO GIVE OUTPUTS IN

DEGS/SEC AND REPRESENT ACTUAL RATE DATA.

SCALE = 4.0/FLOAT(NTBI-I)
AMP = SCALE * XMAX

PHASE = -ATAN2(PHASEI,PHASER)

C

C THE FORWARD FOURIER TRANSFORM IS USUALLY DEFINED WITH

EXP(-i*PI*F*T).

C MANY FFT ROUTINES, INCLUDING FOUR1, USE EXP(+i*2*PI*F.*T).

THESE TWO

C DIFFERENT CONVENTIONS FOR THE FORWARD FOURIER TRANSFORM

RESULT IN TWO

12

i

C DIFFERENT FORMS FOR THE SHIFT THEOREM. IN THE FIRST "CASE,

THE SHIFT

C THEOREM STATES THAT IF G(T) TRANSFORMS AS G(F), THEN

G (T+TI) TRANSFORMS

C AS EXP(i*2*PI*F*TI)*G(F). IN THE SECOND CASE, IF G(T)

TRANSFORMS AS

C G(F), THEN G(T+TI) TRANSFORMS AS EXP(-i*2*PI*F*TI)*G(F).

SINCE OUR

C MODEL IS COS(2*PI*F*T + P) = COS(2*PI*F*(T + P/(2*PI*F)),

AND WE USE

C THE FIRST CONVENTION FOR THE FOURIER TRANSFORM, WE EXPECT

OUR PHASE

C TO BE 2*PI*F*P/(2*PI*F) = P. HOWEVER, SINCE THE PROGRAM

USES THE

C SECOND CONVENTION FOR THE FOURIER TRANSFORM, THE PHASE IS

-P, SO TO
C CORRECT FOR THIS DIFFERENCE WE MUST INCLUDE ANOTHER - SIGN:

- (-P) = P.

C

C

C

C

C

C

C

C

C

CALCULATE THE TIME INDEX WHERE THE MAXIMUM RATE OCCURS.

THIS IS BASED ON COS(PHI) = 1 IMPLIES PHI = 2*PI

ITMAX=INT ((i. 0/(FREQ*DT)) * (i. 0-PHASE/(2.0*PI))+0.5) +i"

IF THIS INDEX CORRESPONDS TO A TIME GREATER THAN 1 PERIOD,

THEN SUBSTRACT THE EQUIVALENT OF 1 PERIOD FROM ITMAX.

IF (ITMAX*DT .ST. (I./FREQ)) THEN

ITMAX = ITMAX - INT (1.0/(FREQ*DT))
ENDIF

OUTPUT THE MODULUS OF THE TRANSFORM FROM 0.0 HZ THROUGH THE

PENDULOUS

C FREQUENCY (ASSUMING MAX VALUE IS 0.04 HZ), USING A SPACING

OF DF.

OUTPUT 4 NUMBERS PER LINE: FREQ(HZ), MODULUS(DEG/SEC), REALC

PART,

C

C

C

C

C

C

C

AND IMAGINARY PART. (NOTE: LAST TWO ARE NOT IN DEG/SEC)

DF=I./(8192,8,0.128) = 1./8388.6 = 0.0001192

KQI = .04/DF = 335.54 --- CALL THIS 336

WRITE FFT DATA TO OUTPUT FILE IF FFT FLAG IS TRUE

OTHERWISE DO NOT WRITE TO OUTPUT.

IF (FFT_FLAG) THEN
ILAST = 1006

IF (FREQ .GT. .0035) ILAST = 336

DO I = i, ILAST

FR = (I-1)*DF

XMAX = SCALE*CABS (AWO (I))

WRITE (IOA,*) FR, XMAX, REAL(AWO(I)), AIMAG(AWO(I))

END DO

13

C
C
C

C
C
C
C

ENDIF
RETURN
END

SUBROUTINEHANN (LA,AII, BIAS)

TAPER IS RAISED COSINE CURVE.
MEAN IS COMPUTEDAND REMOVEDFROMINPUT SIGNAL
PARAMETER(PI=3.1415926)
REAL AII(LA), HW(3000)
ITM = (LA-I)/2

RM = FLOAT(ITM)

DO IT= -ITM, ITM

I = 1 + IT + ITM

HW(I)=0.5*(I.0 + COS(PI*FLOAT(IT)/RM))

All (I) =All(I) *HW(I)

END DO

COMPUTE MEAN OF TAPERED SIGNAL

TRUE MEAN IS TWICE COMPUTED VALUE BECAUSE HANN WINDOW

REDUCES VALUE BY FACTOR OF 2. (I.E. MEAN OF WINDOW IS 0.5)

CALL MEAN (LA, All, BIAS)

BIAS = BIAS * 2.0 * LA/(LA-I)

DO I = I,LA

All(I) = All(I) - BIAS * HW(I)
END DO

RETURN

END

C

C

C

C

C

C

C

SUBROUTINE MEAN(LA,A22, SA)

THIS ROUTINE COMPUTES THE DC TERM OF THE DATA STREAM.

MEAN IS NOT REMOVED, BUT ONLY COMPUTED.

REAL A22(LA)
SA = 0.

DO I=I,LA

SA=SA+A22(I)

END DO

SA=SA/FLOAT(LA)

RETURN

END

SUBROUTINE FOURI(DATA,NN, ISIGN)

THIS ROUTINE DOES THE FOURIER TRANSFORM USING A FFT METHOD.

REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

DIMENSION DATA(*)

14

r

1

ii

2

12

13

N=2 *NN

J=l

DO ii I=I,N,2

IF (J.ST. I) THEN

TEMPR=DATA (J)

TEMPI=DATA (J+l)

DATA (J) =DATA (I)

DATA (J+l) =DATA (I+l)

DATA (I)=TEMPR

DATA (I+l) =TEMPI

ENDIF

M=NI2

IF ((M.GE.2).AND.(J.GT.M)) THEN

J=J-M

M=M/2
GO TO 1

ENDIF

J=J+M

CONTINUE

MIMAX= 2

IF (N.GT.MMAX) THEN

ISTEP=2 *MMAX

THETA=6. 28318530717959D0/(ISIGN*MMAX)

WPR=-2. D0*DSIN (0.5D0*THETA) **2

WPI=DS IN (THETA)

WR=I. DO

WI=0. DO

DO 13 M=I,MI_AX,2

DO 12 I=M,N,ISTEP
J=I+MMAX

TEMPR=SNGL (WR) *DATA (J) -SNGL (WI) *DATA (J+l)

TEMPI=SNGL (WR) *DATA (J+l) +SNGL (WI) *DATA (J)

DATA (J) =DATA (I) -TEMPR

DATA (J+ i) =DATA (I + 1) -TEMP I

DATA (I)=DATA (I) +TEMPR

DATA (I+l) =DATA (I+l) +TEMPI

CONTINUE

WTEMP=WR

WR=WR* WPR -WI *WP I +WR

WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

MMAX= I STEP

GO TO 2

ENDIF

RETURN

END

C THIS SUBROUTINE DOES LEAST SQUARES CURVE FIT TO 7 POINTS

C FOR A 2ND DEGREE POLYNOMIAL. THE DATA IS ASSUMED TO BE

SAMPLED

C AT INTEGRAL INTERVALS. ANY SCALING MUST BE DONE OUTSIDE

15

C

C

C

C

C

STREAM)

C

POINTS.

C

C

C

C

C

C

C

C

P0.

C

THIS SUBROUTINE. THE 7 POINTS ARE :

P = -3, -2, -i, O, i, 2, 3

THE POLYNOMIAL IS F(P) = A + B*P + C*P*P.

THE MAX OCCURS AT P = P0 = -B/(2*C).

FREQUENCY CORRESPONDING TO P0 IS PO*DF (DF OF DATA

THIS DELTA IS REFERENCED TO MIDPOINT FREQUENCY OF 7

THE MAX VALUE IS F(P0) = A - _B*B)/(4*C).

SUBROUTINE LSCF (P0, FMAX, U_IN, IOPT, G_FLAG)

ON ENTRY :

U IN IS INPUT ORDINATE VALUES. (7)
IOPT IS OPTION FOR 1 OF 2 THINGS

1 : FIND P0 WHERE MAX OCCURS PLUS COMPUTE MAX VALUE.

2 : COMPUTE VALUE OF POLYNOMIAL AT SPECIFIED FREQUNCY

IF IOPT=2, THEN P0 IS FREQUENCY POINT TO EVALUATE
POLYNOMIAL.

C

C ON EXIT

C P0 IS VALUE OF P WHERE MAX PEAK OCCURS;

C THIS IS WRT CENTER POINT OF DATA.

C FMAX IS VALUE OF FUNCTION AT P=PO.

C G FLAG IS FLAG FOR DATA VALIDITY

C SET TO TRUE IF EVERYTHING IS OKAY

C SET TO FALSE IF PEAK IS OUTSIDE SEARCH ZONE

C **

REAL*4 U IN(*)
LOGICAL G FLAG

C **

C FIRST STEP IS TO DO LEAST SQUARES.

C ALL COEFFICIENTS HAVE BEEN PRE-COMPUTED.

C 'A' IS -8, 12, 24, 28, 24, 12, -8 DIVIDED BY 84

C 'B' IS -9, -6, -3, 0, 3, 6, 9 DIVIDED BY 84

C 'C' IS 5, 0, -3, -4, -3, 0, 5 DIVIDED BY 84

C

C

C

C

US17 = U IN(l) + U IN(7)

us35 = u IN(3) + U IN(5)
A = COFI

COFI = -8.*US17 + 12.*(UIN(2)+U IN(6)) +

24.*US35 + 28.*U_IN(4)
B = COF2

COF2 = 9.*(-U_IN(1)+U_IN(7)) +

6.,(-u IN(2)+U IN(6)) +
3.*(-U_IN (3)+U_IN (S))
C= COF3

COF3 = 5.*US17 -3.*US35 - 4.*U IN(4)

IF (ABS(COF3).LT.I.0E-08) THEN

PRINT*, '********* WARNING ********* '

PRINT*, 'CONSTANT VALUE EQUALS ZERO - CANNOT COMPUTE A

16

MAXIMUM'
PRINT*,'FREQUENCY VALUE.'
G FLAG = .FALSE.
RETURN

ENDIF
C
C
C

C

C

DID NOT DIVIDE BY 84 YET. DO SO FOR MAX PART BUT NOT P0.

COMPUTE P0, VALUE OF F(P) WHERE A+B*P+C*P*P = 0

COMPUTE FUNCTION AT P0; A+B*PO+C*PO*PO = A-B**2/4C

IF (IOPT .EQ. i) THEN

P0=-O.5*COF2/COF3

FMAX = (COFI + 0.5 * P0 * COF2) /84.

G FLAG = .TRUE.

IF (ABS(P0) .GT. 3.0) THEN

PRINT*,'* * * WARNING * * *'

PRINT*,'HAVE NO MAX VALUE IN SPECIFIED INTERVAL'
G FLAG = .FALSE.

ENDIF

ELSE

FMAX = (COFI + P0*(COF2 + P0*COF3))/84.
END IF

RETURN

END

SUBROUTINE FBAND (FL, FH, TLKM, PF)

C

C SUBROUTINE RETURNS FL AND FH; THESE ARE LOW AND HIGH

FREQUENCY

C VALUES TO SEARCH FOR PEAK AMPLITUDE.

C THIS SUBROUTINE COMPUTES SKIPROPE FREQUENCY (FC) FROM THE
MASSES

C OF THE ORBITER AND SATELLITE AND THE TETHER LENGTH. DATA

NEEDED

FOR THESES CALCULATIONS ARE IN COMMON BLOCK 'FREQ" AND AREC

READ

C

C

C

I.E.,

C

C

FROM FILE 'PARAM.DAT' IN MAIN PROGRAM.

TKLM IS THE TETHER LENGTH IN KILOMETERS.

PF IS PERCENT OF SKIPROPE FREQUENCY TO USE AS A DELTA 'F',

BAND IS FROM FC - DELTA (FL) TO FC + DELTA (FH).

REAL*4 DENSITY, TOTALL, MSAT, MORB, ALTKM, FL, FH, FC,

TLKM, PF

COMMON/FREQ/DENSITY, TOTALL, MSAT, MORB, ALTKM

OMSQ = ORBRATESQ (ALTKM)

CK = 3.0 * OMSQ / DENSITY

MO = MORB + TOTALL * DENSITY

Q = 0.5 * DENSITY * TLKM

MSTAR = ((MO-Q)*(MSAT+Q))/(MO+MSAT)

17

FC = 0.5 * SQRT(CK*MSTAR/TLKM)

DF = FC*PF/100.

FL = FC - DF

FH = FC + DF

RETURN

END

REAL FUNCTION ORBRATESQ (ALTKM)

PARAMETER (GM = 9.81098, RE = 6378.17)

R = GM/(i000.0*RE)

ORBRATESQ = R/(I. 0 + ALTKM/RE) **3
RETURN

END

C

C

C

C

C

C

C

C

C

C

-- C

C

C

-- C

C

C

C

C

2

C

-- C

C

C

_ C

C

C

C

-- C

C

C

SUBROUTINE READINDATA (TO, TF, X, Y, TLG, MODE, LF, MFLAG)

SUBROUTINE READS IN DATA FROM FILE. THIS IS EQUIVALENT

TO DATA THAT WILL COME FROM THE PREPROCESSOR BLOCK.

REAL*4 X(1), Y(1), TLG(1)
INTEGER MODE

LOGICAL MFLAG

TO

TF

X(I)

Y(I)

TLG (I)
MODE

LF

MFLAG

: TIME TAG FOR IST POINT IN BUFFER

: TIME TAG FOR LAST POINT IN BUFFER

: X AXIS GYRO DATA (DEG/SEC)

: Y AXIS GYRO DATA (DEG/SEC)
: TETHER LENGTH IN KILOMETERS

: AMCSMODE VALUE FOR LAST TIME POINT 'TF'

AMCSMODE = O, I, 2, OR 3

AMCSMODE = 0 - NO VALID DATA

AMCSMODE = 1 - PASSIVE CASE

AMCSMODE = 2 - YAW HOLD

AMCSMODE = 3 - SPIN CASE

: NUMBER OF TIME POINTS STORED IN X & Y ARRAYS

: LOGICAL TO DENOTE IF AMCSMODE CHANGED FROM 1 OR

TO A 0 OR 3 BETWEEN TIMES OF TO TO TF.

UNOMSC.FOR READS FROM FORTRAN FILE i0, 5 NUMBERS PER LINE.

TIME, X-GYRO RATE, Y GYRO RATE, TETHER LNGTH, AMCSMODE
TIME DATA SHO_LD BE IN SECONDS.

GYRO RATE DATA SHOULD BE IN DEGS/SEC.

TETHER LENGTH IN KILOMETERS.

MODE IS INTEGER BETWEEN 0 AND 3.

MFLAG = .TRUE.

MFLAG IS LOGICAL VARIABLE TO DENOTE THAT MODE STATUS IS

18

C CONSISTENT FOR THE FULL DATA STREAM. IF MODE CHANGES TO

C 0 (NO VALID DATA) OR 3 (SPIN), THEN THE READ OPERATION IS

C STOPPED AND THE BUFFER WILL HAVE A REDUCED NUMBER OF

POINTS.

C THE OPERATOR IS NOTIFIED BY A MESSAGE PRINTED TO THE

SCREEN.

C

OPEN(10,FILE='IDFTXY.DAT',STATUS='UNKNOWN')

C READ FIRST LINE TO GET FIRST TIME

READ (i0, *, END=2) TO, X(1), Y(1), TLG(1), JMODE

C

1

LOOP TO READ DATA

I=2

READ(IO,*,END=2) TF, X(I), Y(I), TLG(I), MODE
I = I + 1

IF (JMODE .EQ. MODE)
GO TO 1

ELSE

IF ((MODE*JMODE)

JMODE = MODE

GO TO 1

ELSE

MFLAG = .FALSE.

GO TO 2

ENDIF

ENDIF

LF=I-I

THEN

.EQ. 2) THEN

C

CLOSE(10, STATUS='KEEP')

RETURN

END

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE ODTF (TO, TM, TF, DT, LE, LB, LEB, TL

$, AX, FX, PX, AY, FY, PY

$, FA, TA, WK, PSIGN, UMAX, VMAX, FL, FH

$, AVGX, AVGY)

WRITE DATA IN ARGUMENT TO FILE

DEFINITION OF DATA ELEMENTS

TO

TM

TF

DT

LE

LB

LEB

TL

AX

: IST TIME POINT IN BUFFER (MET)

: TIME AT MIDPOINT OF DATA WINDOW (MET)

: LAST TIME POINT IN BUFFER (MET)

: SAMPLE TIME - SECONDS

: INDEX OF LAST POINT IN DATA WINDOW

: INDEX OF FIRST POINT IN DATA WINDOW

: NUMBER OF POINTS USED IN DATA WINDOW

: TETHER LENGTH FOR THIS CASE - KILOMETERS

: PEAK MAGNITUDE OF RATE IN X AXIS - DEG/SEC

19

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

FX
PX
AY
FY
PY
FA
TA
WK

: MEASUREDFREQUENCYOF SKIPROPE IN X AXIS - HZ

: PHASE ANGLE IN X AXIS

: PEAK MAGNITUDE OF RATE IN Y AXIS - DEG/SEC

: MEASURED FREQUENCY OF SKIPROPE IN Y AXIS - HZ

: PHASE ANGLE IN Y AXIS

: AVERAGE FREQUENY OF 'GOOD AXES'

: AVERAGE PERIOD OF 'GOOD AXES'

: CONVERSION CONSTANT FROM RATE TO U ; METER-SEC/DEG

PSIGN : DIRECTION OF SKIPROPE - WRT Z LVLH AXIS

UMAX

VMAX

FL

FH

AVGX

AVGY

: MAXIMUM VALUE OF MIDNODE IN X DIRECTION

: MAXIMUM VALUE OF MIDNODE IN Y DIRECTION

: LOWER BOUNDARY OF FREQUENCY SEARCH BAND - HZ

: UPPER BOUNDARY OF FREQUENCY SEARCH BAND - HZ

: COMPUTED MEAN OF X AXIS TIME SEQUENCE

: COMPUTED MEAN OF Y AXIS TIME SEQUENCE

WRITE(18,*) TM

WRITE (18,*) LB, LE, LEB

WRITE (18,*) TO, TF, DT, TL, WK, PSIGN

WRITE(18,*) AX, FX, PX, AY, FY, PY

WRITE(18,*) FA, TA, UMAX, VMAX, FL, FH

WRITE(18,*) AVGX, AVGY

RETURN

END

2O

APPENDIX 2

APPENDIX 2.A

Model Signal Generation Programs with Random Number Generator and
Box-Muller Algorithm for Gaussian Distributed Variates

APPENDIX 2.B

Results of ECR Verification Table 2. Filter Test Cases.

APPENDIX 2.C

Programs for ECR Testing
(i) SIMREAD - Read Simulation Data Files
(2) SIMTEST - Compare Observer Output to Simulation Input
(3) BTBUSO- Compare Observer Output to Model Signal Input

APPENDIX 2.D

Programs for Systematic Testing
(i) NO NOISE - Noise-free Test Cases, Station 2
(2) NOYSE - Noisy Test Cases, Station 2
(3) LIBRATION - Noise-free Tests at Station 1
(4) LIB_NOISE - Noisy Tests at Station 1

APPENDIX 2.E

Simulation Test Results

APPENDIX 2.F

Systematic Test Results
(i) NO NOISE - Noise-free Test Cases, Station 2

(2) NOYSE - Noisy Test Cases, Station 2

(3) LIBRATION - Noise-free Tests at Station 1

(4) LIB_NOISE - Noisy Tests at Station 1

APPENDIX 2.A

Model Signal Generation Programs with Random Number Generator and

Box-Muller Algorithm for Gaussian Distributed Variates

w

The following random number generator is documented

on page 196 of "Numerical Recipes" (Press, Flannery, Teukolsky,

and Vetterling, 1989, Cambridge University Press). Setting the

initial value idum to a negative integer initializes the routine.

function ranl(idum)

dimension r(97)

parameter (ml = 259200, ial = 7141, icl = 54773, rml = 1.0/ml)

parameter (m2 = 134456, ia2 = 8121, ic2 = 28411, rm2 = 1.0/m2)

parameter (m3 = 243000, ia3 = 4561, ic3 = 51349)

data iff /0/

if (idum. lt.0.or.iff.eq.0) then

iff = 1

ixl = mod(icl - idum,ml)

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ixl,m2)

ixl = mod(ial*ixl + icl,ml)

ix3 = mod(ixl,m3)

do j = 1,97

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
end do

idum = 1

end if

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

ix3 = mod(ia3*ix3 + ic3,m3)

j = 1 + (97*ix3)/m3

if (j.gt.97.or.j.lt.l) pause

ranl = r(j)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
return

end

The following Box-Muller algorithm for generating

normally (Gaussian) distributed variates is documented on page

202 of "Numerical Recipes". The random number generator ranl

listed above is used in this algorithm.

function gasdev(idum)

data iset/0/

if (iset.eq.0) then

vl = 2.0*ranl(idum) - 1.0

v2 = 2.0*ranl(idum) - 1.0

r = vl**2 + v2,,2

if (r.ge.l) go to 1

1

else

gset = vl*fac

gasdev = v2*fac
iset = 1

gasdev = gset
iset = 0

end if

return

end

The following two programs, CREATE.FOR and

CRELIBR.FOR, use the random generator ranl and the Box-Muller

algorithm to generate Gaussian distributed noise to be added to

the model test signals for the frequency domain skiprope

observer, if noise is desired.

C Program CREATE.FOR generates model data sets for the UNOMSC.FOR backup skip-

C rope observer program. Five numbers are outputted per line of the data file

C IDFTXY.DAT: time, x (roll) axis gyro rate, y (pitch) axis gyro rate, tether

C length, and amcsmode. The user can opt to include noise and/or dropouts into

C the data. If desired, the program will estimate the skiprope and pendulous

C frequencies as functions of the tether length. (Note: These estimated fre-

C quencies are exactly that - estimates - and definitely should not be con-

C strued as accurate values!)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

The operator is prompted to input the following values:

time sampling interval, beginning time tag

number of data points, standard deviation, and random seed

(standard deviation is i0 X the nominal value of 2.8e-04)

(random seed should be a negative seed)

skiprope amplitude, frequency, and phase (for x axis)

skiprope amplitude, frequency, and phase (for y axis)

1 or 2 to add noise or not, dropout percentage (0.0 to 1.0)

orb rate, pendulous amplitude, frequency, and phase (for x axis)

orb rate, pendulous amplitude, frequency, and phase (for y axis)

tether length, amcsmode

0 to use inputted values to generate model, 1 to estimate skiprope

and pendulous frequencies from the inputted tether length

If noise is added to the data, the program prints to the operator the

values of the signal-to-noise ratios on each axis, XSNR and YSNR.

The signal-to-noise ratio is calculated as the maximum value divided

by the root mean square value for that axis. The noise is calculated

using the Box-Muller method of generating Gaussian noise, and a

portable random number generator called ranl found in "Numerical

Recipes".

REAL X(3000),Y(3000)

C OPEN OUTPUT FILES 'IDFTXY.DAT' (FOR UNOMSC.FOR) AND 'F_REC.DAT' (FOR THE

C ERROR CALCULATION PROGRAM VTBUSO.FOR)

OPEN (9,FILE = 'F REC.DAT',STATUS = 'UNKNOWN')

OPEN (10,FILE = 'IDFTXY.DAT',STATUS = 'UNKNOWN')

C READ INPUTS

2

PRINT*,'ENTER THE TIME SAMPLING INTERVAL DT AND BEGINNING TIME'
READ*,DT,T0
PRINT*,'ENTER NUMBEROF TIME POINTS, STANDARDDEVIATION, RANDOMSEED'
PRINT*,'(RANDOM SEED SHOULDBE A NEGATIVE NUMBER)'
READ*,IPER,SD,ISEED
PRINT*,'SKIPROPE AMPLITUDE ?, FREQUENCY?, PHASE ? (FOR X)'
READ*,AIX,FIX,PHIIX
PRINT*,'SKIPROPE AMPLITUDE ?, FREQUENCY?, PHASE ? (FOR Y)'
READ*,AIY,FIY,PHIIY
PRINT*,'NOISE ? YES = I, NO = 2; % DROPOUTDESIRED (0.0 TO 1.0)'
READ*,NOISE,DROP
PRINT*,'ENTER ORB RATE, PENDULOUSAMP, FREQ, AND PHASE (FOR X)'
READ*,AOX,A2X,F2X,PHI2X
PRINT*,'ENTER ORB RATE, PENDULOUSAMP, FREQ, AND PHASE (FOR Y)'
READ*,AOY,A2Y,F2Y,PHI2Y
PRINT*,'ENTER THE TETHER LENGTHIN KILOMETERS AND AMCSMODE'
READ*,TLNGTH,MODE

C WRITE THE OUTPUTFILE 'F REC.DAT'
WRITE(9,*) NOISE, SD, ISEED

WRITE(9,*) AIX, FIX, PHIIX
-- WRITE(9,*) AIY, FlY, PHIIY

WRITE(9,*) A2X, F2X, PHI2X
C CONVERTPHASESFROMRADIANS TO DEGREES

-- PI = 4.0*ATAN(I.0)

CONVRT = PI/180.0

PHIIX = PHIIX*CONVRT

PHI2X = PHI2X*CONVRT

PHIIY = PHIIY*CONVRT

PHI2Y = PHI2Y*CONVRT

TPIDT = 2.0*PI*DT

C ESTIMATE THE SKIPROPE AND PENDULOUS FREQUENCIES FROM THE TETHER LENGTH

SKIPCI = 0.2119024

-- SKIPC2 = -0.3571371

SKIPC3 = 0.5309507

DISCRI = SKIPC2**2 - 4.0*SKIPC3*(SKIPCI-TLNGTH)

SKIPPR = 40.0*((-I)*SKIPC2 + SQRT(DISCRI))/SKIPC3
PENDCI = 8.0952965E-02

PENDC2 = 0.5571405

PENDC3 = 0.2476189

-- DISCR2 = PENDC2**2 - 4.0*PENDC3*(PENDCI-TLNGTH)

PENDFR = 0.01*(I.O+((-I)*PENDC2 + SQRT(DISCR2))/(2.0*PENDC3))

IF (TLNGTH.LT.I.2) THEN
PENDFR = PENDFR + 0.008

SKIPPR = II6.049*TLNGTH

END IF

SKIPFR = 1.0/SKIPPR

PRINT*,'EST. SKIPROPE FREQ = ',SKIPFR,' EST. PENDULOUS FREQ = ',PENDFR

PRINT*,'IF YOU WISH TO USE THE EST. FREQ TYPE i, ELSE TYPE 0'

READ*,IEST

IF (IEST.EQ.I) THEN

3

FIX = SKIPFR
FIY = SKIPFR
F2X = PENDFR
F2Y = PENDFR

END IF

C CALCULATE THE NOISELESS SIGNAL

-- THEIX = TPIDT*FIX

THE2X = TPIDT*F2X

THEIY = TPIDT*FIY

THE2Y = TPIDT*F2Y

DO I = I,IPER
II = I-I

X(I) = AOX + AIX*COS(THEIX*II+PHIIX)+A2X*COS(THE2X*II+PHI2X)

-- Y(I) = AOY + AIY*COS(THEIY*II+PHIIY)+A2Y*COS(THE2Y*II+PHI2Y)
END DO

_ C LOOP TO INCORPORATE NOISE INTO THE DATA

2

IF (NOISE.EQ.2) GO TO 1

XRMS = 0.0

YRMS = 0.0

icount = 0.0

XMAX = ABS(X(1))

YMAX = ABS(Y(1))

DO I = I,IPER

IF (ABS(X(I)) .GT.XMAX) XMAX = ABS(X(I))

IF (ABS(Y(I)) .GT.YMAX) YMAX = ABS(Y(I))

vl = 2.0 * ranl(iseed) - 1.0

v2 = 2.0 * ranl(iseed) - 1.0
r = vl**2 + v2,,2

if (r.ge.l) go to 2

fac = sqrt(-2.0*log(r)/r)

xn = vl*fac*sd + x(i)

yn = v2*fac*sd + y(i)

XRMS = XRMS + (XN - X(I))**2

YRMS = YRMS + (YN - Y(I))**2

X(I) = XN

Y(I) = YN
END DO

XRMS = SQRT(XRMS/(IPER+I))

YRMS = SQRT(YRMS/(IPER+I))

XSNR = XMAX/XRMS

YSNR = YMAX/YRMS

PRINT*,'XSNR = ',XSNR,' YSNR = ',YSNR

C LOOP TO SIMULATE DROPOUTS IN THE DATA

1 CONTINUE

DROP1 = 1.0 - DROP

DO I = I,IPER

IF (ranI(ISEED).GT.DROPI) THEN

4

x(1) = 0.0
Y(1) = 0.0

END IF

END DO

C WRITE OUT DATA TO IDFTXY.DAT

DO I = I,IPER

TIME = (I-I)*DT + TO

WRITE(10,*)TIME,X(I),Y(I),TLNGTH,MODE

END DO

CLOSE (10,STATUS = 'KEEP')

END

function ranl(idum)

dimension r(97)

parameter (ml = 259200, ial = 7141, icl = 54773, rml = 1.0/ml)

parameter (m2 = 134456, ia2 = 8121, ic2 = 28411, rm2 = 1.0/m2)

parameter (m3 = 243000, ia3 = 4561, ic3 = 51349)

data iff /0/

if (idum.lt.0.or.iff.eq.0) then

iff = 1

ixl = mod(icl - idum,ml)

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ixl,m2)

ixl = mod(ial*ixl + icl,ml)

ix3 = mod(ixl,m3)

do j = 1,97

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
end do

idum = 1

end if

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

ix3 = mod(ia3*ix3 + ic3,m3)

j = 1 + (97*ix3)/m3

if (j.gt.97.or.j.lt.l) pause

ranl = r (j)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
return

end

5

u

C

C

C

--C

C

C

--C

C

C

C

C

C

C

--C

C

C

C

C

C

_ C Program CRELIBR.FOR generates model data sets for the UNOMSC.FOR backup skip-

C rope observer program for the satellite at station 1 with a libration compo-

C nent in the tether. Five numbers are outputted per line of the _ata file

C IDFTXY.DAT: time, x (roll) axis gyro rate, y (pitch) axis gyro rate, tether

-- C length, and amcsmode. The user can opt to include noise and/or dropouts into

C the data. If desired, the program will estimate the skiprope and pendulous

C frequencies as functions of the tether length. (Note: These estimated fre-

-- C quencies are exactly that - estimates - and definitely should not be con-

C strued as accurate values!)

C The operator is prompted to input the following values:

C time sampling interval, beginning time tag

number of data points, standard deviation, and random seed

(standard deviation is i0 X the nominal value of 2.8e-04)

(random seed should be a negative seed)

skiprope amplitude, frequency, and phase (for x axis)

skiprope amplitude, frequency, and phase (for y axis)

1 or 2 to add noise or not, dropout percentage (0.0 to 1.0)

orb rate, pendulous amplitude, frequency, and phase (for x axis)

orb rate, pendulous amplitude, frequency, and phase (for y axis)

libration amplitude for x, libration amplitude for y, and x phase

(y phase is computed as x phase - 90.0)

tether length, amcsmode

0 to use inputted values to generate model, 1 to estimate skiprope

and pendulous frequencies from the inputted tether length

If noise is added to the data, the program prints to the operator the

values of the signal-to-noise ratios on each axis, XSNR and YSNR.

The signal-to-noise ratio is calculated as the maximum value divided

by the root mean square value for that axis. The noise is calculated

using the Box-Muller method of generating Gaussian noise,and a portable

random number generator called ranl found in "Numerical Recipes".

-- REAL X(3000),Y(3000)

C OPEN OUTPUT FILES 'IDFTXY.DAT' (FOR UNOMSC.FOR) AND 'F_REC.DAT' (FOR THE

C ERROR CALCULATION PROGRAM VTBUSO.FOR)

OPEN (9,FILE = 'F REC.DAT' STATUS = 'UNKNOWN')

OPEN (10,FILE = 'IDFTXY.DAT',STATUS = 'UNKNOWN')

C READ INPUTS

PRINT*,'ENTER THE TIME SAMPLING INTERVAL DT AND BEGINNING TIME'

READ*,DT,T0

PRINT*,'ENTER NUMBER OF TIME POINTS, STANDARD DEVIATION, RANDOM SEED'

PRINT*,'(RANDOM SEED SHOULD BE A NEGATIVE NUMBER)'

-- READ*,IPER, SD,ISEED

PRINT*,'SKIPROPE AMPLITUDE ?, FREQUENCY ?, PHASE ? (FOR X)"

READ*,AIX, FIX,PHIIX

_ PRINT*,'SKIPROPE AMPLITUDE ?, FREQUENCY ?, PHASE ? (FOR Y)'

READ*,AIY,FIY,PHIIY

PRINT*,'NOISE ? YES = i, NO = 2; % DROPOUT DESIRED (0.0 TO I.D)'

READ*,NOISE,DROP

-- PRINT*,'ENTER ORB RATE, PENDULOUS AMP, FREQ, AND PHASE (FOR X)'

READ*,AOX,A2X,F2X,PHI2X

PRINT*,'ENTER ORB RATE, PENDULOUS AMP, FREQ, AND PHASE (FOR Y)'

-- READ*,AOY,A2Y,F2Y,PHI2Y

6

PRINT*,'ENTER LIBRATION AMPLITUDE FOR X, Y, AND PHASE FOR X'
READ*,ALX,ALY,PHILX
PRINT*,'ENTER THE TETHER LENGTHIN KILOMETERSAND AMCSMODE'
READ*,TLNGTH,MODE

m

C WRITE THE OUTPUT FILE 'F REC.DAT'

WRITE(9,*) NOISE, SD, ISEED

WRITE(9,*) AIX, FIX, PHIIX

WRITE(9,*) AIY, FlY, PHIIY

WRITE(9,*) A2X, F2X, PHI2X

-- C CONVERT PHASES FROM RADIANS TO DEGREES AND COMPUTE LIBRATION FREQUENCIES

PHILY = PHILX - 90.0

PI = 4.0*ATAN(I.0)

-- CONVRT = PI/180.0

PHIIX = PHIIX*CONVRT

PHI2X = PHI2X*CONVRT

PHIIY = PHIIY*CONVRT

PHI2Y = PHI2Y*CONVRT

PHILX = PHILX*CONVRT

PHILY = PHILY*CONVRT

-- TPIDT = 2.0*PI*DT

FLX = 1/2713.0

FLY = 1/3132.0

C ESTIMATE THE SKIPROPE AND PENDULOUS FREQUENCIES FROM THE TETHER LENGTH

SKIPCI = 0.2119024

SKIPC2 = -0.3571371

-- SKIPC3 = 0.5309507

DISCRI = SKIPC2**2 - 4.0*SKIPC3*(SKIPCI-TLNGTH)

SKIPPR = 40.0*((-I)*SKIPC2 + SQRT(DISCRI))/SKIPC3
-- PENDCI = 8.0952965E-02

PENDC2 = 0.5571405

PENDC3 = 0.2476189

_ DISCR2 = PENDC2**2 - 4.0*PENDC3*(PENDCI-TLNGTH)

PENDFR = 0.01*(I.O+((-I)*PENDC2 + SQRT(DISCR2))/(2.0*PENDC3))

IF (TLNGTH.LT.I.2) THEN

PENDFR = PENDFR + 0.008

- SKIPPR = II6.049*TLNGTH

END IF

SKIPFR = 1.0/SKIPPR

-- ' EST. PENDULOUS FREQ = ' PENDFRPRINT*,'EST. SKIPROPE FREQ = ',SKIPFR,

PRINT*,'IF YOU WISH TO USE THE EST. FREQ TYPE i, ELSE TYPE O'

READ*,IEST

IF (IEST.EQ.I) THEN
FIX = SKIPFR

FlY = SKIPFR

F2X = PENDFR

- F2Y = PENDFR

END IF

7

C CALCULATE THE NOISELESS SIGNAL

THEIX = TPIDT*FIX

THE2X = TPIDT*F2X

THEIY = TPIDT*FIY

-- THE2Y = TPIDT*F2Y

THELX = TPIDT*FLX

THELY = TPIDT*FLY

-- DO I = I,IPER

Ii = I-i

X(I) = A0X + AIX*COS(THEIX*II+PHIIX)+A2X*COS(THE2X*II+PHI2X)

_ # + ALX*COS(THELX*II+PHILX)

Y(I) = A0Y + AIY*COS(THEIY*II+PHIIY)+A2Y*COS(THE2Y*II+PHI2Y)

& + ALY*COS(THELY*II+PHILY)
END DO

C LOOP TO INCORPORATE NOISE INTO THE DATA

2

IF (NOISE.EQ.2) GO TO 1
XRMS = 0.0

YRMS = 0.0

icount = 0.0

XMAX = ABS(X(1))
YMAX = ASS(Y(1))

DO I = I,IPER

IF (ABS(X(I)) .GT.XMAX) XMAX = ABS(X(I))

IF (ABS(Y(I)) .GT.YMAX) YMAX = ABS(Y(I))

vl = 2.0 * ranl(iseed) - 1.0

v2 = 2.0 * ranl(iseed) - 1.0

r = vl**2 + v2,,2

if (r.ge.l) go to 2

fac = sqrt(-2.0*log(r)/r)

xn = vl*fac*sd + x(i)

yn = v2*fac*sd + y(i)

XRMS = XRMS + (XN - X(I))**2

YRMS = YRMS + (YN - Y(I))**2

x(i) = XN
Y(I) = YN

END DO

XRMS = SQRT(XRMS/(IPER+I))

YRMS = SQRT(YRMS/(IPER+I))

XSNR = XMAX/XRMS

YSNR = YMAX/YRMS

PRINT*,'XSNR = ',XSNR,' YSNR = ',YSNR

_ C LOOP TO SIMULATE DROPOUTS IN THE DATA

1 CONTINUE

DROP1 = 1.0 - DROP

DO I = I,IPER

IF (ranI(ISEED) .ST.DROPI) THEN

x(I) = o.o
Y(i) = o.o

v

END IF

END DO

C WRITE OUT DATA TO IDFTXY.DAT

DO I = I,IPER

TIME = (I-I)*DT + TO

WRITE(IO,*)TIME,X(I),Y(I),TLNGTH,MODE

END DO

CLOSE (10,STATUS = 'KEEP')

END

function ranl(idum)

dimension r(97)

parameter (ml = 259200, ial = 7141, icl = 54773, rml = l.O/ml)

parameter (m2 = 134456, ia2 = 8121, ic2 = 28411, rm2 = l.O/m2)

parameter (m3 = 243000, ia3 = 4561, ic3 = 51349)

data iff /0/

if (idum.lt.0.or.iff.eq.0) then
iff = 1

ixl = mod(icl - idum,ml)

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ixl,m2)

ixl = mod(ial*ixl + icl,ml)

ix3 = mod(ixl,m3)

do j = 1,97

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
end do

idum = 1

end if

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

ix3 = mod(ia3*ix3 + ic3,m3)

j = 1 + (97*ix3)/m3

if (j.gt.97.or.j.lt.l) pause

ranl = r(j)

r(j) = (float(ixl)'+ float(ix2)*rm2)*rml
return

end

4

APPENDIX 2.B

Results of ECR Verification Table 2. Filter Test Cases.

This is the F_YAWMAN.DAT file for case 1 of the verification table.

MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9439

1 POSITIVE 1.9439

2 POSITIVE 1.9439

3 POSITIVE 1.9439

4 POSITIVE 1.9439

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

.8 1143.32

.8 1328.52

.8 1513.72

.8 1698.91

.8 1884.11

This is the T REPORT.DAT file for case 1 of the verification table.

INPUT OUTPUT ERROR PHASE GRAD PHASE @ T=I5 MIN

degs/cycle ! degs

Amp x .02000 .02001 -.041%

Amp y .02000 .01999 .063 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000000 Hz

Phase x -107.0 -106.7 .32 .054 .58

Phase y 163.0 163.3 .35 .010 .39

-- Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 7.9 7.9
No noise for this run.

_ Stop index, start index, & number of point = 593 1 593

10.0

-7

The following eleven pages represent the results of case 2

of the verification table. The first ten pages give the results

of the ten individual noise runs, with the F YAWMAN.DAT file

listed first and then the T REPORT.DAT file. The last page lists

the averaged results of the T_REPORT.DAT files.

--MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03
TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9436 .8 1144.53
1 POSITIVE 1.9436 .8 1329.76
2 POSITIVE 1.9436 .8 1514.98
3 POSITIVE 1.9436 .8 1700.21

- 4 POSITIVE 1.9436 .8 1885.44

INPUT OUTPUT ERROR PHASE GRAD
degs/cycle

Amp x .02000 .01989 .565 %
Amp y .02000 .01955 2.226 %

Freq x .00540 .00540 .000005 Hz
Freq y .00540 .00539 .000007 Hz

Phase x -107.0 -107.5 .51 .325
Phase y 163.0 165.2 2.16 .489

Pendulous data, amp, freq, phase =: .000 .03125
Equivalent U & V deflections (meters) =: 7.7 7.8
iseed = -1000

Noise data: 1 sigma value (deg/sec) : .000280
Stop index, start index, & number of point = 593 1 593

PHASE @T=I5 MIN
degs

2.09

4.53

i0.0

-MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03
TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

-- 0 POSITIVE 1.9452 .8 1143.61
1 POSITIVE 1.9452 .8 1328.68
2 POSITIVE 1.9452 .8 1513.75
3 POSITIVE 1.9452 .8 1698.82

-- 4 POSITIVE 1.9452 .8 1883.89

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02005 -.230 %

Amp y .02000 .01975 1.239 %

Freq x .00540 .00540 .000003 Hz

Freq y .00540 .00540 .000004 Hz

Phase x -i07.0 -107.4 .38 .169

Phase y 163.0 163.3 .34 .279

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 7.8 7.9

iseed = -2000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MIN

degs

1.20

1.70

10.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
_ 0 POSITIVE 1.9444

1 POSITIVE 1.9444

2 POSITIVE 1.9444

3 POSITIVE 1.9444

- 4 POSITIVE 1.9444

.303104E+03
.I02298E+04

OF ROTATIONS

.8

.8

.8

.8

.8

START TIME

1143.05

1328.20

1513.35

1698.50

1883.65

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01974 i. 322 %

Amp y .02000 .02024 -1.204 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x -107.0 -106.9 .I0 .084

Phase y 163.0 163.1 .08 .056

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 8.0 7.8
Iseed = -3000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

.03125

PHASE @ T=I5 MIN

degs

.5O

.35

i0.0

7

--MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

_ 0 POSITIVE 1.9440 .8

1 POSITIVE 1.9440 .8

2 POSITIVE 1.9440 .8

3 POSITIVE 1.9440 .8

- 4 POSITIVE 1.9440 .8

.303104E+03

.I02298E+04

START TIME

1144.27

1329.46

1514.64

1699.82

1885.01

w

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02024 -1.224 %

Amp y .02000 .01972 1.384 %

Freq x .00540 .00540 .000002 Hz

Freq y .00540 .00540 .000002 Hz

Phase x -107.0 -107.3 .33 .139

Phase y 163.0 164.2 1.20 .132

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 7.8 8.0
iseed = -4000

Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MIN

degs

i0.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03
TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9405 .8 1145.21

1 POSITIVE 1.9405 .8 1330.73

2 POSITIVE 1.9405 .8 1516.24

3 POSITIVE 1.9405 .8 1701.76

-- 4 POSITIVE 1.9405 .8 1887.28

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01991 .448 %

Amp y .02000 .02040 -2.024 %

Freq x .00540 .00539 .000009 Hz

Freq y .00540 .00539 .000010 Hz

Phase x -107.0 -107.5 .52 .610

Phase y 163.0 164.8 1.85 .679

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 8.0 7.8
iseed = -5000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MIN

degs

3.48

5.15

i0.0

E

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

-- 0 POSITIVE 1.9412 .8

1 POSITIVE 1.9412 .8

2 POSITIVE 1.9412 .8

3 POSITIVE 1.9412 .8

4 POSITIVE 1.9412 .8

.303104E+03

.I02298E+04

START TIME

1144.85

1330.31

1515.76

1701.22

1886.68

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02028 -1.423 %

Amp y .02000 .02004 -.193 %

Freq x .00540 .00540 .000001 Hz

Freq y .00540 .00538 .000016 Hz

Phase x -107.0 -106.3 .73 .044

Phase y 163.0 164.8 1.80 1.097

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 7.9 8.0
Iseed = -6000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

PHASE @ T=I5 MI5

degs

.95

7.13

i0.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS
-- 0 POSITIVE 1.9405 .8

1 POSITIVE 1.9405 .8

2 POSITIVE 1.9405 .8

3 POSITIVE 1.9405 .8

4 POSITIVE 1.9405 .8

.303104E+03
.102298E+04

START TIME

1144.19

1329.71

1515.23

1700.75

1886.27

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01992 .383 %

Amp y .02000 .01996 .184 %

Freq x .00540 .00539 .000008 Hz

Freq y .00540 .00539 .000012 Hz

Phase x -107.0 -105.6 1.42 .502

Phase y 163.0 164.8 1.79 .791

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 7.9 7.8
iseed = -7000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

PHASE @ T=I5 MIN

degs

3.86
5.64

i0.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME
0 POSITIVE 1.9454 .8 1142.47

-- 1 POSITIVE 1.9454 .8 1327.52

2 POSITIVE 1.9454 .8 1512.57

3 POSITIVE 1.9454 .8 1697.62

-- 4 POSITIVE 1.9454 .8 1882.67

i

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x •02000 .01985 .737 %

Amp y .02000 •02034 -1•681%

Freq x •00540 •00539 .000005 Hz

Freq y .00540 .00541 .000013 Hz

Phase x -107.0 -107.4 .39 •357

Phase y 163.0 162.0 1.01 .880

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 8.0 7.8
iseed = -8000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

2.12

5.28

10.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9464 .8 1142.96

-- 1 POSITIVE 1.9464 .8 1327.91

2 POSITIVE 1.9464 .8 1512.87

3 POSITIVE 1.9464 .8 1697.83

- 4 POSITIVE 1.9464 .8 1882.79

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01977 1.143 %

Amp y .02000 .02004 -.209 %

Freq x .00540 .00541 .000008 Hz

Freq y .00540 .00541 .000006 Hz

Phase x -107.0 -108.3 1.29 .501

Phase y 163.0 163.2 .20 .379

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 7.9 7.8
iseed = -9000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

PHASE @ T=I5 MIN

degs

3.73

2.04

i0.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9456 .8 1142.38

-- 1 POSITIVE 1.9456 .8 1327.41

2 POSITIVE 1.9456 .8 1512.45

3 POSITIVE 1.9456 .8 1697.48

-- 4 POSITIVE 1.9456 .8 1882.52

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01999 .069 %

Amp y .02000 .02025 -1.240 %

Freq x .00540 .00540 .000004 Hz

Freq y .00540 .00540 .000005 Hz

Phase x -107.0 -106.5 .45 .256

Phase y 163.0 163.3 .28 .328

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 8.0 7.8

Iseed = -i0000

Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 I 593

PHASE @ T=I5 MIN

degs

1.70

1.87

I0.0

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01996 .179 %

Amp y .02000 .02003 -.152 %

Freq x .00540 .00540 .000005 Hz

Freq y .00540 .00540 .000008 Hz

Phase x -107.0 -107.1 .61 .299

Phase y 163.0 163.9 1.07 .511

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 7.9 7.8

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

2.06

3.55

I0.0

This is the F YWAMAN.DAT file for case 3 of the verification table.

MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.6581 .9 1028.70

1 POSITIVE 1.6581 .9 1245.81

2 POSITIVE 1.6581 .9 1462.92

3 POSITIVE 1.6581 .9 1680.03

4 POSITIVE 1.6581 .9 1897.14

This is the T REPORT.DAT file for case 3 of the verification table.

INPUT OUTPUT ERROR PHASE GRAD PHASE @ T=I5 MIN

degs/cycle degs

Amp x .02000 .02002 -.099 %

Amp y .02000 .01995 .269 %

Freq x .00460 .00460 .000003 Hz

Freq y .00460 .00461 .000009 Hz

Phase x 50.0 49.2 .80 .226 1.74

Phase y -40.0 -41.3 1.28 .705 4.20

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.2 9.2
No noise for this run.

Stop index, start index, & number of point = 593 1 593

60.0

The following eleven pages represent the results of case 4
of the verification table. The first ten pages give the results
of the ten individual noise runs, with the F YAWMAN.DATfile
listed first and then the T_REPORT.DAT file.-- The last page lists
the averaged results of the T REPORT.DAT files.

_MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.6565 .9 1029.51

- 1 POSITIVE 1.6565 .9 1246.83

2 POSITIVE 1.6565 .9 1464.15

3 POSITIVE 1.6565 .9 1681.47

- 4 POSITIVE 1.6565 .9 1898.79

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01989 .556 %

Amp y .02000 .02014 -.676 %

Freq x .00460 .00460 .000001Hz

Freq y .00460 .00460 .000004 Hz

Phase x 50.0 49.4 .61 .044

Phase y -40.0 -40.7 .72 .281

- Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.3 9.2
iseed = -100000

- Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.79

1.88

60.0

_ MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.6618 .9 1026.85

-- 1 POSITIVE 1.6618 .9 1243.48

2 POSITIVE 1.6618 .9 1460.11

3 POSITIVE 1.6618 .9 1676.75

-- 4 POSITIVE 1.6618 .9 1893.38

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02009 -.443 %

Amp y .02000 .02020 -1.014 %

Freq x .00460 .00462 .000016 Hz

Freq y .00460 .00462 .000016 Hz

Phase x 50.0 48.1 1.94 1.244

Phase y -40.0 -42.5 2.49 1.276

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.3 9.2
Iseed = -200000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

7.09

7.77

60.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
_ 0 POSITIVE 1.6579

1 POSITIVE 1.6579

2 POSITIVE 1.6579

3 POSITIVE 1.6579

-- 4 POSITIVE 1.6579

.303104E+03

.I02298E+04
OF ROTATIONS

.9

.9

.9

.9

.9

START TIME

1029.86

1247.00

1464.15

1681.30

1898.44

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01980 .979 %

Amp y .02000 .01971 1.441%

Freq x .00460 .00460 .000000 Hz

Freq y .00460 .00461 .000010 Hz

Phase x 50.0 48.8 1.18 .001

Phase y -40.0 -40.5 .51 .814

Pendulous data, amp, freq, phase =: .500

Equivalent U & V deflections (meters) =: 9.1 9.1
iseed = -300000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

.03125

PHASE @ T=I5 MIN

degs

1.19

3.88

60.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

_ 0 POSITIVE 1.6587 .9

1 POSITIVE 1.6587 .9

2 POSITIVE 1.6587 .9

3 POSITIVE 1.6587 .9

-- 4 POSITIVE 1.6587 .9

.303104E+03
.I02298E+04

START TIME

1029.43

1246.47

1463.51

1680.54

1897.58

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01973 1.347 %

Amp y .02000 .02016 -.799 %

Freq x .00460 .00461 .000010 Hz

Freq y .00460 .00460 .000005 Hz

Phase x 50.0 47.7 2.29 .819

Phase y -40.0 -40.8 .80 .357

Pendulous data, amp, freq, phase =: .500

Equivalent U & V deflections (meters) =: 9.3 9.1
iseed = -400000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MIN

degs

5.68

2.28

60.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

_ 0 POSITIVE 1.6575 .9

1 POSITIVE 1.6575 .9

2 POSITIVE 1.6575 .9

3 POSITIVE 1.6575 .9

-- 4 POSITIVE 1.6575 .9

.303104E+03

.102298E+04

START TIME

1029.04

1246.24

1463.44

1680.63

1897.83

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02001 -.071%

Amp y .02000 .02022 -1.082 %

Freq x .00460 .00461 .000007 Hz

Freq y .00460 .00460 .000001 Hz

Phase x 50.0 49.0 1.04 .570

Phase y -40.0 -40.8 .83 .068

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.3 9.2
iseed = -500000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

3.40

i.ii

60.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

_ 0 POSITIVE 1.6582 .9

1 POSITIVE 1.6582 .9

2 POSITIVE 1.6582 .9

3 POSITIVE 1.6582 .9

-- 4 POSITIVE 1.6582 .9

.303104E+03

.I02298E+04

START TIME

1028.65

1245.75

1462.85

1679.95

1897.05

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02017 -.845 %

Amp y .02000 .01987 .649 %

Freq x .00460 .00461 .000013 Hz

Freq y .00460 .00460 .000000 Hz

Phase x 50.0 49.5 .49 .996

Phase y -40.0 -40.1 .08 .027

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.2 9.3
iseed = -600000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

4.62

.20

60.0

MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.6577

1 POSITIVE 1.6577

2 POSITIVE 1.6577

3 POSITIVE 1.6577

4 POSITIVE 1.6577

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

.9 1029.96

.9 1247.13

•9 1464.30

.9 1681.47

.9 1898.65

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01965 1.757 %

Amp y .02000 .02015 -.735 %

Freq x .00460 .00461 .000012 Hz

Freq y .00460 .00460 .000003 Hz

Phase x 50.0 47.9 2.06 .930

Phase y -40.0 -40.3 .26 .203

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.3 9.1

iseed = -700000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

5.91

1.11

60.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS
0 POSITIVE 1.6561 .9

1 POSITIVE 1.6561 .9

2 POSITIVE 1.6561 .9

3 POSITIVE 1.6561 .9

-- 4 POSITIVE 1.6561 .9

.303104E+03

.I02298E+04

START TIME

1029.72

1247.10

1464.47

1681.85

1899.22

_f

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01974 1.309 %

Amp y .02000 .01975 1.247 %

Freq x .00460 .00460 .000000 Hz

Freq y .00460 .00460 .000001Hz

Phase x 50.0 49.6 .39 .030

Phase y -40.0 -41.4 1.42 .083

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.1 9.1
iseed = -800000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MI5

degs

.51
1.76

60.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

_ 0 POSITIVE 1.6571 .9

1 POSITIVE 1.6571 .9

2 POSITIVE 1.6571 .9

3 POSITIVE 1.6571 .9

-- 4 POSITIVE 1.6571 .9

.303104E+03

.I02298E+04

START TIME

1029.24

1246.49

1463.74

1681.00

1898.25

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02022 -1.115 %

Amp y .02000 .01993 .348 %

Freq x .00460 .00460 .000001Hz

Freq y .00460 .00461 .000007 Hz

Phase x 50.0 49.8 .22 .Iii

Phase y -40.0 -40.8 .84 .575

Pendulous data, amp, freq, phase =: .500

Equivalent U & V deflections (meters) =: 9.2 9.3
Iseed = -900000

Noise data: I sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MIN

degs

.68

3.22

60.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
-- 0 POSITIVE 1.6632

1 POSITIVE 1.6632

2 POSITIVE 1.6632

_ 3 POSITIVE 1.6632

4 POSITIVE 1.6632

.303104E+03

.I02298E+04

OF ROTATIONS

.9

.9

.9

.9

.9

START TIME

1026.13

1242.58

1459.03

1675.48

1891.93

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .02002 -.113 %

Amp y .02000 .02016 -.806 %

Freq x .00460 .00463 .000026 Hz

Freq y .00460 .00461 .000014 Hz

Phase x 50.0 47.5 2.53 2.070

Phase y -40.0 -40.7 .66 1.062

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.3 9.2
iseed = -I000000

Noise data: I sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 I 593

PHASE @ T=I5 MIN

degs

II.i0

5.06

60.0

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .02000 .01993 .336 %

Amp y .02000 .02003 -.143 %

Freq x .00460 .00461 .000009 Hz

Freq y .00460 .00461 .000006 Hz

Phase x 50.0 48.7 1.28 .682

Phase y -40.0 -40.9 .86 .475

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 9.2 9.2

Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

PHASE @ T=I5 MI_

degs

4.10

2.83

60.0

The following eleven pages represent the results of case 5

of the verification table. The first ten pages give the results

of the ten individual noise runs, with the F_YAWMAN.DAT file

listed first and then the T REPORT.DAT file. The last page lists

the averaged results of the--T_REPORT.DAT files.

MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
0 POSITIVE 1.9436

1 POSITIVE 1.9436

2 POSITIVE 1.9436

3 POSITIVE 1.9436

4 POSITIVE 1.9436

.303104E+03

.I02298E+04

OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME

1190.58

1375.80

1561.02

1746.24

1931.46

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14993 .048 %

Amp y .15000 .15022 -.146 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.5 .53 .073

Phase y 70.0 70.4 .37 .068

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 59.0 58.9
iseed = -Ii000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=I5 MI

degs

.89

.70

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S)

-- 0 POSITIVE 1.9437
1 POSITIVE 1.9437
2 POSITIVE 1.9437
3 POSITIVE 1.9437

4 POSITIVE 1.9437

.303104E+03

.I02298E+04

OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME

1190.56

1375.78

1560.99

1746.21

1931.43

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .15003 -.020 %

Amp y .15000 .15015 -.i00 %

Freq x .00540 .00540

Freq y .00540 .00540

.000000 Hz

.000002 Hz

Phase x 160.0 160.4 .42 .026

Phase y 70.0 70.5 .53 .102

Pendulous data, amp, freq, phase =: .000

Equivalent U & V deflections (meters) =: 59.0 59.0
iseed = -12000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

.03125

PHASE @ T=15 MIN

degs

.54

1.03

50.0

--MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9434
1 POSITIVE 1.9434
2 POSITIVE 1.9434
3 POSITIVE 1.9434

-- 4 POSITIVE 1.9434

.303104E+03

.I02298E+04
OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME
1190.72

1375.97
1561.22

1746.46

1931.71

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .15011 -.074 %

Amp y .15000 .15012 -.082 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000002 Hz

Phase x 160.0 160.4 .43 .074

Phase y 70.0 70.6 .59 .164

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 59.0 59.0
iseed = -13000

Noise data: i sigma value (deg/sec) : .000280
Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.79

1.39

50.0

MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
- 0 POSITIVE 1.9436

1 POSITIVE 1.9436

2 POSITIVE 1.9436

3 POSITIVE 1.9436

4 POSITIVE 1.9436

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

5.9 1190.57

5.9 1375.79

5.9 1561.02

5.9 1746.24

5.9 1931.46

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14979 .140 %

Amp y .15000 .14998 .013 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.5 .47 .093

Phase y 70.0 70.2 .23 .046

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 59.0 58.9

iseed = -14000

Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.92

.46

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
_ 0 POSITIVE 1.9438

1 POSITIVE 1.9438

2 POSITIVE 1.9438

3 POSITIVE 1.9438

-- 4 POSITIVE 1.9438

.303104E+03

.102298E+04
OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME

1190.49

1375.69

1560.90

1746.10

1931.31

w

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .15010 -.068 %
Amp y .15000 .15037 -.246 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001 Hz

Phase x 160.0 160.2 .24 .013

Phase y 70.0 70.6 .59 .094

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 59.1 59.0
iseed = -15000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.31

1.05

50.0

_MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9446
-- 1 POSITIVE 1.9446

2 POSITIVE 1.9446
3 POSITIVE 1.9446

-- 4 POSITIVE 1.9446

.303104E+03
.I02298E+04

OF ROTATIONS
5.9
5.9
5.9
5.9
5.9

START TIME
1190.04
1375.18
1560.31
1745.44
1930.57

INPUT OUTPUT ERROR PHASE GRAD
degs/cycle

Amp x .15000 .14995 .031%
Amp y .15000 .15009 -.060 %

Freq x .00540 .00540 .000003 Hz
Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.0 .01 .168
Phase y 70.0 70.1 .13 .043

-- Pendulous data, amp, freq, phase =: .000 .03125
Equivalent U & V deflections (meters) =: 59.0 58.9
iseed = -16000

- Noise data: i sigma value (deg/sec) : .000280
Stop index, start index, & number of point = 593 1 593

PHASE @T=I5 MIN
degs

.82

.34

50.0

- MIDPOINT TIME FOR THIS DATA WINDOWIS :

TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

0 POSITIVE 1.9443 5.9

1 POSITIVE 1.9443 5.9

2 POSITIVE 1.9443 5.9

3 POSITIVE 1.9443 5.9

4 POSITIVE 1.9443 5.9

.303104E+03

.I02298E+04

START TIME

1190.21

1375.37

1560.53

1745.69

1930.84

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14987 .084 %

Amp y .15000 .14994 .040 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.5 .50 .012

Phase y 70.0 70.1 .14 .090

-- Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 58.9 58.9
iseed = -17000

-- Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.56

.58

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
0 POSITIVE 1.9437

1 POSITIVE 1.9437

2 POSITIVE 1.9437

3 POSITIVE 1.9437

-- 4 POSITIVE 1.9437

.303104E+03
.I02298E+04

OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME

1190.51

1375.72

1560.93

1746.14

1931.35

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14977 .152 %

Amp y .15000 .14986 .096 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.5 .55 .029

Phase y 70.0 70.2 .19 .067

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 58.9 58.9
iseed = -18000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.69

.51

50.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9440 5.9 1190.34

1 POSITIVE 1.9440 5.9 1375.52

2 POSITIVE 1.9440 5.9 1560.70

3 POSITIVE 1.9440 5.9 1745.88

-- 4 POSITIVE 1.9440 5.9 1931.06

_w

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14949 .343 %

Amp y .15000 .14994 .038 %

Freq x .00540 .00540 .000001Hz
Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.2 .22 .067

Phase y 70.0 70.3 .27 .049

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 58.9 58.7
iseed = -19000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.55

.51

50.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9439

1 POSITIVE 1.9439

2 POSITIVE 1.9439

3 POSITIVE 1.9439

-- 4 POSITIVE 1.9439

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

5.9 1190.42

5.9 1375.61

5.9 1560.80

5.9 1746.00

5.9 1931.19

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14975 .168 %

Amp y .15000 .15013 -.089 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.2 .19 .045

Phase y 70.0 70.2 .25 .080

Pendulous data, amp, freq, phase =: .000 .03125

Equivalent U & V deflections (meters) =: 59.0 58.8

iseed = -20000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.41

.64

50.0

m

INPUT OUTPUT ERROR
PHASE GRAD

degs/cycle

Amp x .15000 .14988 .080 %

Amp y .15000 .15008 -.054 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.3 .36

Phase y 70.0 70.3 .33

Pendulous data, amp, freq, phase =:

Equivalent U & V deflections (meters) =:
Noise data: 1 sigma value (deg/sec) :

Stop index, start index, & number of point = 593

.060

.080

.000 .03125 50.0

59.0 58.9
.000280

1 593

PHASE @ T=I5 MIN

degs

.65

.72

I

The following eleven pages represent the results of case 6

of the verification table. The first ten pages give the results

of the ten individual noise runs, with the F YAWMAN.DAT file

listed first and then the T REPORT.DAT file. The last page lists

the averaged results of the T_REPORT.DAT files.

-- MIDPOINT TIME FORTHIS DATA WINDOWIS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .102298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

_ 0 POSITIVE 1.9441 5.9 1190.31

1 POSITIVE 1.9441 5.9 1375.49

2 POSITIVE 1.9441 5.9 1560.67

3 POSITIVE 1.9441 5.9 1745.84

-- 4 POSITIVE 1.9441 5.9 1931.02

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14984 .104 %

Amp y .15000 .15014 -.096 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.4 .45 .014

Phase y 70.0 70.1 .05 .048

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.9
iseed = -110000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.51

.28

50.0

MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03
TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

-- 0 POSITIVE 1.9436 5.9 1190.61
1 POSITIVE 1.9436 5.9 1375.84
2 POSITIVE 1.9436 5.9 1561.07
3 POSITIVE 1.9436 5.9 1746.29

-- 4 POSITIVE 1.9436 5.9 1931.52

INPUT OUTPUT ERROR PHASE GRAD
degs/cycle

Amp x .15000 .14932 .451%
Amp y .15000 .14999 .007 %

Freq x .00540 .00540 .000001Hz
Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.4 .45 .069

Phase y 70.0 70.3 .31 .096

Pendulous data, amp, freq, phase =: .500

Equivalent U & V deflections (meters) =: 59.0 58.7
Iseed = -120000

Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 I 593

.03125

PHASE @ T=I5 MIi

degs

.79

.78

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS : .303104E+03
TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

0 POSITIVE 1.9437 5.9 1190.51
1 POSITIVE 1.9437 5.9 1375.72
2 POSITIVE 1.9437 5.9 1560.93
3 POSITIVE 1.9437 5.9 1746.14
4 POSITIVE 1.9437 5.9 1931.35

INPUT OUTPUT ERROR PHASE GRAD
degs/cycle

Amp x .15000 .14946 .357 %
Amp y .15000 .14998 .016 %

Freq x .00540 .00540 .000001 Hz
Freq y .00540 .00540 .000002 Hz

Phase x 160.0 160.3 .27 .055
Phase y 70.0 70.5 .46 .150

Pendulous data, amp, freq, phase =: .500 .03125
Equivalent U & V deflections (meters) =: 58.9 58.7
iseed = -130000

Noise data: 1 sigma value (deg/sec) : .000280
Stop index, start index, & number of point = 593 1 593

PHASE @T=I5 MIN
degs

.53

1.19

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

-- 0 POSITIVE 1.9436 5.9
1 POSITIVE 1.9436 5.9
2 POSITIVE 1.9436 5.9

3 POSITIVE 1.9436 5.9

4 POSITIVE 1.9436 5.9

.303104E+03

.I02298E+04

START TIME

1190.60

1375.82

1561.05

1746.27

1931.50

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14980 .136 %

Amp y .15000 .15020 -.134 %

Freq x .00540 .00540 .000003 Hz

Freq y .00540 .00540 .000000 Hz

Phase x 160.0 160.5 .46 .181

Phase y 70.0 70.1 .15 .025

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.9
Iseed = -140000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

1.33

.27

50.0

-- MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9439

1 POSITIVE 1.9439

2 POSITIVE 1.9439

3 POSITIVE 1.9439

-- 4 POSITIVE 1.9439

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

5.9 1190.45

5.9 1375.65

5.9 1560.85

5.9 1746.04

5.9 1931.24

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14995 .033 %

Amp y .15000 .15008 -.053 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001 Hz

Phase x 160.0 160.4 .37 .019

Phase y 70.0 70.3 .28 .075

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.9
iseed = -150000

Noise data: I sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MI!

degs

.46

.64

50.0

MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

0 POSITIVE 1.9439 5.9

-- 1 POSITIVE 1.9439 5.9

2 POSITIVE 1.9439 5.9

3 POSITIVE 1.9439 5.9

-- 4 POSITIVE 1.9439 5.9

.303104E+03

.I02298E+04

START TIME

1190.44

1375.64

1560.83

1746.03

1931.23

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14975 .165 %

Amp y .15000 .14999 .009 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.3 .27 .022

Phase y 70.0 70.4 .40 .071

-- Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 58.9 58.9
iseed = -160000

-- Noise data: I sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.37

.74

50.0

--MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)

0 POSITIVE 1.9439

1 POSITIVE 1.9439

2 POSITIVE 1.9439

3 POSITIVE 1.9439

-- 4 POSITIVE 1.9439

.303104E+03

.I02298E+04

OF ROTATIONS START TIME

5.9 1190.44

5.9 1375.64

5.9 1560.84

5.9 1746.04

5.9 1931.24

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14961 .260 %

Amp y .15000 .15005 -.032 %

Freq x .00540 .00540 .000000 Hz

Freq y .00540 .00540 .000001 Hz

Phase x 160.0 160.3 .33

Phase y 70.0 70.2 .20

.003

.056

-- Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.8

iseed = -170000

- Noise data: i sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.34

.47

50.0

MIDPOINT TIME FOR THIS DATA WINDOWIS :
TIME TAG ON LAST POINT IN BUFFER IS :
REV LABEL POLARITY RATE(D/S) # OF ROTATIONS

0 POSITIVE 1.9436 5.9
1 POSITIVE 1.9436 5.9

2 POSITIVE 1.9436 5.9

3 POSITIVE 1.9436 5.9

4 POSITIVE 1.9436 5.9

r

.303104E+03

.I02298E+04

START TIME

1190.60

1375.82

1561.04

1746.27

1931.49

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14971 .195 %

Amp y .15000 .14962 .255 %

Freq x .00540 .00540 .000002 Hz

Freq y .00540 .00540 .000000 Hz

Phase x 160.0 160.4 .44 .148

Phase y 70.0 70.3 .33 .006

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 58.8 58.8

iseed = -180000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIl

degs

1.16

.35

50.0

__ MIDPOINT TIME FOR THIS DATA WINDOW IS :

TIME TAG ON LAST POINT IN BUFFER IS :

REV LABEL POLARITY RATE(D/S)
0 POSITIVE 1.9438

-- 1 POSITIVE 1.9438

2 POSITIVE 1.9438

3 POSITIVE 1.9438

-- 4 POSITIVE 1.9438

.303104E+03

.I02298E+04
OF ROTATIONS

5.9

5.9

5.9

5.9

5.9

START TIME

1190.46

1375.67

1560.87

1746.07

1931.27

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14941 .391%

Amp y .15000 .15026 -.172 %

Freq x .00540 .00540 .000001 Hz

Freq y .00540 .00540 .000000 Hz

Phase x 160.0 160.6 .55 .087

Phase y 70.0 70.2 .23 .020

- Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.1 58.7
iseed = -190000

-- Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

.98

.33

50.0

- MIDPOINT TIME FOR THIS DATA WINDOW IS : .303104E+03

TIME TAG ON LAST POINT IN BUFFER IS : .I02298E+04

REV LABEL POLARITY RATE(D/S) # OF ROTATIONS START TIME

-- 0 POSITIVE 1.9431 5.9 1190.84

1 POSITIVE 1.9431 5.9 1376.11

2 POSITIVE 1.9431 5.9 1561.38

3 POSITIVE 1.9431 5.9 1746.64

4 POSITIVE 1.9431 5.9 1931.91

w

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14966 .229 %

Amp y .15000 .14979 .139 %

Freq x .00540 .00540 .000002 Hz

Freq y .00540 .00540 .000003 Hz

Phase x 160.0 160.5 .54 .149

Phase y 70.0 70.6 .58 .169

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 58.9 58.8
iseed = -200000

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593

PHASE @ T=I5 MIN

degs

1.26

1.40

50.0

INPUT OUTPUT ERROR PHASEGRAD
degs/cycle

Amp x .15000 .14966 .226 %

Amp y .15000 .15003 -.017 %

PHASE @ T=I5 MIN

degs

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.4 .43 .074

Phase y 70.0 70.3 .26 .069

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.8

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 1 593_

50.0

INPUT OUTPUT ERROR PHASE GRAD

degs/cycle

Amp x .15000 .14965 .232 %

Amp y .15000 .15001 -.006 %

Freq x .00540 .00540 .000001Hz

Freq y .00540 .00540 .000001Hz

Phase x 160.0 160.4 .41 .075

Phase y 70.0 70.3 .30 .072

Pendulous data, amp, freq, phase =: .500 .03125

Equivalent U & V deflections (meters) =: 59.0 58.8

Noise data: 1 sigma value (deg/sec) : .000280

Stop index, start index, & number of point = 593 i 593

PHASE @ T=I5 MI_

degs

.77

.64

50.0

APPENDIX 2.C

Programs for ECR Testing

(i) SIMREAD - Read Simulation Data Files

(2) SIMTEST - Compare Observer Output to Simulation Input

(3) BTBUSO - Compare Observer Output to Model Signal Input

The program SIMREAD.FOR reads a simulation input file and creates the
output file IDFTXY.DAT for the UNOMSC.FORprogram (frequency domain skip-
rope observer).

1

2

real x,y,tlength,time
integer amcsmode
open (10,file = 'TRUTH.DAT',status = 'old')
open (ll,file = 'IDFTXY.DAT',status = 'unknown')
i = 1
read(10,*,end = 2) time, x, y, tlength, amcsmode, dl, d2
write(ll,*) time, x, y, tlength, amcsmode

i=i+l

go to 1
continue

if = i - 1

print*,'read ',if,' lines of data' !

close(10,status = 'keep')

close(ll,status = 'keep')

end

The program SIMTEST.FOR compares the output of UNOMSC.FOR to the origi-

nal simulation input data file.

w

C

C

C

--C

C

C

_C

C

C

C

--C

--C

C

Z

PROGRAM TO TEST FILTER AGAINST SIMULATION DATA

PHASE ANGLE AT TIME T IS DEFINED AS ARC TAN (V TERM/ U TERM)

PHASE ERROR IS DEFINED AS 'TRUTH' - 'MODEL'.

MAGNITUDE CALCULATED AS SQRT (U**2 + V**2)

MAGNITUDE ERROR EXPRESSED AS PERCENT TERM BY

ERROR.= 100% * (MAG(TRUTH) - MAG(MODEL))/ MAG (TRUTH)

FINAL ERRORS ARE EXPRESSED AS RMS OVER ALL TIME POINTS

NAME IS 'SIMTEST'

INTEGER NDIM

REAL*4 DFR

PARAMETER (NDIM=4000, DFR=57.2958)

REAL*4 UM(NDIM), VM(NDIM), UT(NDIM), VT(NDIM)

REAL*4 RE (NDIM) , RM(NDIM) , RT(NDIM)

REAL*4 PE(NDIM), PM(NDIM), PT(NDIM)

OPEN INPUT FILES - 'F TXYUV.DAT' IS OUTPUT FROM 'UNOMSC.FOR'

(MUST SET ODF TIME TO .TRUE. TO WRITE THIS FILE !!) AND 'TRUTH.DAT'

IS THE SIMULATION DATA FILE (COPY THE APPROPRIATE SIMULATION" DATA

FILE INTO 'TRUTH.DAT' BEFORE RUNNING 'SIMTEST.FOR')

OPEN (ii, FILE = 'F TXYUV.DAT', STATUS = 'OLD')

OPEN (12, FILE = "TRUTH.DAT', STATUS = 'OLD')

C

C

m

3

6

"-- 7

C

READ THE INPUT FILES, AND CALCULATE THE TIME SAMPLING RATES AND

LENGTH OF EACH

READ (ii, *, END=3) TIME1, DI, D2, UM(1), VM(1)

READ (Ii, *, END=S) TIME2, DI, D2, UM(2), VM(2)

I=3

READ (ii, *, END=3) TIME, DI, D2, UM(I), VM(I)

I = I + 1

GO TO 2

LM = I - 1

DT M = TIME2 - TIME1

READ (12, *,

READ (12, *,

I = 3

READ (12, *,
I = I + 1

GO TO 6

LT = I - 1

DT T = T1 - TO

END=7) TO, DI, D2, D3, D4, UT(1), VT(1)

END=7) TI, DI, D2, DS, D4, UT(2), VT(2)

END=7) T, DI, D2, DS, D4, UT(I), VT(I)

LC = MIN0 (LM, LT)

RLC = FLOAT (LC)

PRINT *, ' MODEL DATA HAS ', LM, ' TIME POINTS'

PRINT *, ' TRUTH DATA HAS ', LT, ' TIME POINTS'

• WILL USE ' LC, ' TIME POINTS'PRINT *,

PRINT *,' DT FOR MODEL DATA IS ." ',DT M

PRINT *,' DT FOR TRUTH DATA IS ." ', DT T

WRITE (7, *)

WRITE (7, *)

WRITE(7, *)

WRITE (7, *)

WRITE (7, *)

' MODEL DATA HAS ', LM, ' TIME POINTS'

' MODEL DATA HAS ' LT, ' TIME POINTS •
' WILL USE ' , LC, ' TIME POINTS'

' DT FOR MODEL DATA IS " ' DT M
• I

' DT FOR TRUTH DATA IS : ' DT T

CALCULATE THE OVERALL RMS ERRORS IN THE MAGNITUDE AND PHASE

DO K=I, LC

RM(K)= SQRT(UM(K)**2 + VM(K)**2)

RT(K) = SQRT(UT(K)**2 + VT(K)**2)

PM(K)= DFR * ATAN2(VM(K), UM(K))

PT(K)= DFR * ATAN2(VT(K), UT(K))

RE(K) = i00. * (i. - RM(K)/RT(K))

END DO

CALL SATAN (PM, LC, I)

CALL SATAN (PT, LC, i)

SSQP = 0.

SSQR = 0.

DO K=I, LC

2

C

PE(K) = PM(K) - PT(K)
SSQP = SSQP+ PE(K)**2
SSQR = SSQR+ RE(K)**2

END DO

PHASE = SQRT (SSQP/RLC)
RMAG = SQRT (SSQR/RLC)
PRINT *,' OVERALLRMSMAGNITUDEERROR= '
PRINT *,' OVERALLRMS PHASEERROR = '

, RMAG,' %'
, PHASE,' DEGREES'

WRITE(7,*) ' OVERALL RMS MAGNITUDE ERROR = '

WRITE(7,*) ' OVERALL RMS PHASE ERROR = '

, RMAG, ' %'

, PHASE,' DEGREES'

CLOSE FILES

CLOSE(If, STATUS = 'KEEP')

CLOSE(12, STATUS = 'KEEP')

END

-- C

C

C

_ C

C

C

C

C

C

C

5

C

SUBROUTINE SATAN (A, N, TYPE)

SMART ATAN PROGRAM - REMOVES THE 2 PI JUMPS AT -+ 180.

AS WRITTEN THE PROGRAM IS A POST PROCESSOR. IT COULD BE

ALTERED TO RUN ON-LINE.

TYPE = 1 - ANGLES ARE IN DEGREES, BOTH INPUT AND OUTPUT.

IF TYPE NE I, THEN RADIANS WILL BE USED.

REAL*4 A(1), CHECK, ADD, PI

INTEGER TYPE, N , JK, JK0

LOGICAL FLAG

PARAMETER (PI = 3.1415926)

IF (TYPE .EQ. i)
CHECK = 355.0

ADD = 360.0

ELSE

CHECK = 6.19

ADD = 2.0 * PI

END IF

THEN

JK0 = 2

FLAG = .TRUE.

JK = JK0

DO K = JK,N

IF (ABS(A(K) -A(K-I)) .GT. CHECK) THEN

A(K) = A(K) + SIGN(ADD, A(K-I))

IF (FLAG) THEN
FLAG = .FALSE.

JK0 =K

C

END IF

END IF

END DO

IF (.NOT. FLAG) GO TO 5

RETURN

END

The program VTBUSO.FOR compares the results of UNOMSC.FOR _o the model

signals generated by CREATE.FOR.

-- c

c

-- c

c

c

_ c

open(3,file=,F REC.DAT',status='old')

open(4,file=,F--RECORD.DAT',status='old ')

open(7,file=,T_REPORT.DAT',status='unknown ')

read file from signal generating program (CREATE.FOR) output

read(3,*) knoise, tensigma, iseed

read(3,*) axin, fxin, pxin

read(3,*) ayin, fyin, pyin

read(3,*) apend, fpend, ppend

make sure angles are bounded by pi.

subroutine ajsign puts angles in -pi to + pi range.

pxin = ajsign (pxin)

pyin = ajsign (pyin)

frqin = 0.5 * (fxin + fyin)

period = 1.0/frqin

onesigma = tensigma/lO.O

read file from filter output

read(4,*) tm

read(4,*) ib, le, leb

read(4,*) tO, tf, dt, tl, wk, psign

read(4,*) ax, fx, px, ay, fy, py

read(4,*) fa, ta, u, v, fl, fh

read (4, *) avgx, avgy

px = 57.296"px

py = 57.296"py

epx = abs(abs(pxin) - abs(px))

epy = abs(abs(pyin) - abs(py))

if (axin .he. 0.0) then

eax = i00.*(I. - ax/axin)

else

eax = 357.

endif

4

if (ayin .ne. 0.0) then
eay = i00.*(i. - ay/ayin)

else
eay = 357.

endif

c

c

9

I0

pgx = 360.*abs(frqin - fx)*period

pgy = 360.*abs(frqin - fy)*period

phase_errx = epx + pgx * (900./period)

phase_erry = epy + pgy * (900./period)

close (3,status='keep')

close (4,status='keep')

write(7,9)

write(7,9)

write(7,9)

write (7,9)

write (7, i0)

write(7,11) axin, ax, eax

write(7,12) ayin, ay, eay

write(7,9)

write(7,13) frqin, fx, abs(frqin-fx)

write(7,14) frqin, fy, abs(frqin-fy)

write(7,9)

write(7,15) pxin, px, epx, pgx, phase_errx

write(7,16) pyin, py, epy, pgy, phase_erry

write(7,9)

write(7,17) apend, fpend, ppend

write(7,18) u, v

if (knoise .eq. I) then

write (7,*) ' iseed = ', iseed

write (7,20) onesigma

else

write(7,*) ' No noise for this run.'

endif

write(7, 23) le, ib, leb

format(2x,' ')

format(12x,'INPUT',6X,'OUTPUT',8X,'ERROR',6X,'PHASE GRAD'

$,6X,'PHASE @ T=I5 MIN',/48x,'degs/cycle',12x,'degs',/)

ii format(2x,'Amp x',f10.5,f12.5,f12.3,' %')

12 format(2x,'Amp y',f10.5,f12.5,f12.3,' %')

13 format(2x,'Freq x',f9.5,f12.5,f14.6,' Hz')

14 format(2x,'Freq y',f9.5,f12.5,f14.6,' Hz')

15 format(2x,'Phase x',f8.l,f12.l,f12.2,6x,fS.3,10x,f8.2)

16 format(2x,'Phase y',fS.l,f12.l,f12.2,6x,fS.3,10x,fS.2)

17 format(2x,'Pendulous data, amp, freq, phase =:',fll.3

$,fll.5,f6.1)

18 format(2x,'Equivalent U & V deflections (meters) =:',2f9.1)

20 format(5x,'Noise data: 1 sigma value (deg/sec) :',f14.6)

22 format(2x,'Means in X and Y axes were :',2f12.7,' and'

$,' were removed')

5

23 'Stop index, start index, & number of point =' 3i4)format(2x,

write(7,9)
write(7,9)

close (7, status='keep')
call exit
end

real function ajsign (x)
if (abs(x) .gt. 180.) then

ajsign = x - sign(360., x)
else

ajsign = x
endif
return
end

6

APPENDIX 2.D

Programs for Systematic Testing
(i) NO NOISE - Noise-free Test Cases, Station 2 - page 1

(2) NO_SE - Noisy Test Cases, Station 2 - page 7

(3) LIBRATION - Noise-free Tests at Station 1 - page 16

(4) LIB NOISE - Noisy Tests at Station i - page 23

--C Program NO NOISE.FOR uses the model signal creation (without noise) algorithm
C from the CREATE.FOR program and the WORK, HANN, MEAN, FOUR1, and LSCF sub-

C routines from the UNOMSC.FOR program. NO NOISE.FOR systematically runs

--C through the phase pairings for a given frequency.

REAL X(3000)

COMMON/PARI/LB,LE,NFT,NPNT,NDEG

COMMON/PAR2/DT,PI,DF,PID

dt = 1.024

sd = 2.8e-03

read*,flx, iseed

ib=l

npnt = 7

ndeg = 3

le = int(i/(flx*dt)+0.5)

if (le.eq.2*(le/2)) le = le+l

le = le*3 + ib - 1

NFT=8192

LEB=LE-LB+I

PI=4.0*ATAN(I.0)

DF=I. 0/(NFT*DT)

PID=I80.0/PI

do m = 1,37

phlx = (m-19)*10

do n = 1,37

ph2x = (n-19)*10

CALL CREATE(x,AIX,FIX,PHIX,ph2x)

CALL WORK(X,ampx,frx,phx,aerror,ferror,perror,AlX,FlX,PHlX)

write(ll,*)phlx,ph2x,aerror

write(12,*)phlx,ph2x,ferror

write(13,*)phlx,ph2x,perror

end do

end do

END

SUBROUTINE CREATE(xt,AIX, FIX,PHIX,ph2x)

REAL xt(3000)

dt = 1.024

iper=1000
alx=0.02

aOx=0.065

a2x=0.5

PI = 4.0*ATAN(I.0)

convrt = pi/180.0

philx = phlx*convrt

phi2x = ph2x*convrt

TPIDT = 2.0*PI*DT

F2X = 0.03125

xtheta = tpidt*flx

xphi = tpidt*f2x

DO I = I,IPER

1

Ii = I-I

xt(I) = A0X + AiX*COS(xtheta*Ii+PHilX)+A2X*COS(xphi*Ii+PHi2X)

END DO

RETURN

END

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

SUBROUTINE WORK CALCULATES THE AMPLITUDE,PHASE, AND FREQUENCY

OF THE DATA. THE FOURIER TRANSFORM SUBROUTINE FOUR1 IS

CALLED BY SUBROUTINE WORK. WORK RETURNS TO THE MAIN PROGRAM

THE VALUES OF THE AMPLITUDE,PHASE, AND FREQUENCY AS WELL AS
THE TIME INDEX WHERE THE MAXIMUM VALUE OCCURS.

THIS IS BASED ON MODEL OF COS(WT+PHASE).

SUBROUTINE WORK(ANG,amp,freq,phase,Aerror,Perror,Ferror,AI,Fi,PHIl)

INTEGER NDIM, NCDIM !

PARAMETER (NDIM=3000, NCDIM=8200, NFT=8192, NPNT=7)

DIMENSION AUX (NDIM) ,ANG (i)

REAL*4 XFREQ(7), PHIMAG(7) ,PHREAL(7)

COMPLEX AWO (NCDIM)

COMMON/PARI/LB,LE

COMMON/PAR2/DT,PI,DF,PID

NTBI=LE-LB+I

NTBI IS FORCED TO BE ODD IN MAIN PROGRAM.

HANN WINDOW ROUTINE USES ODD NUMBER OF POINTS TO TAPER.

LOAD INPUT DATA FROM ANG(I) INTO ARRAY AUX(J).
LBI=I-LB

DO I=LB,LE

IL=I+LBI

AUX (IL) =ANG (I)

END DO

APPLY WINDOW FUNCTION TO TIME SEQUENCE

CALL HANN (NTBI,AUX,BIAS)

MAKE COMPLEX NUMBER AWO(I) FROM REAL NUMBER AUX(I) BY USING

A ZERO IMAGINARY VALUE (AUX(I) IS THE REAL VALUE).

DO I=I,NTBI

AWO (I) =CMPLX (AUX (I), 0.)
END DO

NOW PAD THE DATA STREAM WITH ZEROS OUT TO AWO(8192).

2

C

C

C

--C

C

DO I=NTBI+I,NFT

AWO(I) = CMPLX(0.,0.)

END DO

SUBROUTINE FOUR1 DOES THE FOURIER TRANSFORM USING A FFT METHOD.

CALL FOUR1 (AWO, NFT, i)

LOOP TO FIND THE MAXIMUM MODULUS VALUE OF THE FOURIER TRANSFORM

ampMAX=0.0

istart = int((fl-0.001)/df)+l

iend = int((fl+0.0Ol)/df)+l

do i = istart, iend

fr = (i-1)*df

if (cabs(awo(i)).gt.ampmax) then _

ampmax = cabs(awo(i))

kf = i

freq = fr
end if

end do

--C

C

C

C

C

C

C

-- C

C

C

C

C

C

C

C

C

C

CREATE THE 3 DATA SETS TO BE FITTED BY LEAST SQUARES POLYNOMIAL.

POLYNOMIAL IS 2ND DEGREE AND 7 POINTS WILL BE USED IN CURVE FIT.

3 SETS ARE:

MAGNITUDE OF TRANSFORM (SQRT(REAL**2 + IMAG**2))

REAL PART

IMAGINARY PART

CENTER OF DATA SET IS THE FREQUENCY POINT WHERE MAX WAS FOUND.

DO I = I,NPNT

J = KF-((NPNT+I)/2.0)+I

XFREQ(I) = CABS (AWO(J))

PHIMAG(I) = AIMAG(AWO(J))

PHREAL(I) = REAL(AWO(J))

END DO

DO CURVE FIT ON THE MODULUS OF THE FOURIER TRANSFORM

CALL TO LSCF WITH OPTION 1 DOES 2 THINGS.

CURVE FITS AND COMPUTES TRUE MAX FREQUENCY POINT.

CALL LSCF (FQ_P0, ampMAX, XFREQ, i)

CALL LSCF (FQ_PO, PHASEI, PHIMAG, 2)

CALL LSCF (FQ_P0, PHASER, PHREAL, 2)

FREQ = FREQ + DF * FQ_P0

SCALING OF TRANSFORMED DATA IS PERFORMED TO GIVE OUTPUTS IN

C

-- C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C

C

C

C

DEGS/SEC AND REPRESENT ACTUAL RATE DATA.

SCALE = 4.0/FLOAT(NTBI-I)

AMP = SCALE * ampMAX

PHASE = -ATAN2 (PHASEI, PHASER) *pid

THE FORWARD FOURIER TRANSFORM IS USUALLY DEFINED WITH EXP(-i*PI*F*T).

MANY FFT ROUTINES, INCLUDING FOUR1, USE EXP(+i*2*PI*F*T). THESE TWO

DIFFERENT CONVENTIONS FOR THE FORWARD FOURIER TRANSFORM RESULT IN TWO

DIFFERENT FORMS FOR THE SHIFT THEOREM. IN THE FIRST CASE, THE SHIFT

THEOREM STATES THAT IF G(T) TRANSFORMS AS G(F), THEN G(T+TI) TRANSFORMS

AS ExP(i*2*PI*F*TI)*G(F). IN THE SECOND CASE, IF G(T) TRANSFORMS AS

G(F), THEN G(T+TI) TRANSFORMS AS EXP(-i*2*PI*F*TI)*G(F). SINCE OUR

MODEL IS COS(2*PI*F*T + P) = COS(2*PI*F*(T + P/(2*PI*F)), AND WE USE

THE FIRST CONVENTION FOR THE FOURIER TRANSFORM, WE EXPECT OUR PHASE

TO BE 2*PI*F*P/(2*PI*F) = P. HOWEVER, SINCE THE PROGRAM USES THE

SECOND CONVENTION FOR THE FOURIER TRANSFORM, THE PHASE IS -P, SO TO

CORRECT FOR THIS DIFFERENCE WE MUST INCLUDE ANOTHER - SIGN: -(-P) = P.

FERROR = (ABS(FREQ-FI)/0.005) * i00

AERROR = (ABS(AMP-AI)/Al) * i00

PERROR = (ABS(PHASE-PHI1)/360.0) * I00

if (abs(phil).eq.180) perror = (abs(abs(phase)-abs(phil))/360.0)*100.0
RETURN

END

SUBROUTINE HANN (LA,AII, BIAS)

TAPER IS RAISED COSINE CURVE.

MEAN IS COMPUTED AND REMOVED FROM INPUT SIGNAL

PARAMETER (PI=3.1415926)

REAL AII(LA), HW(3000)

ITS = (LA-I)/2

RM = FLOAT(ITM)

DO IT= -ITM, ITM
I = 1 + IT + ITM

HW(I)=0.5*(I.0 + COS(PI*FLOAT(IT)/RM))

All (I) =All (I) *HW (I)
END DO

COMPUTE MEAN OF TAPERED SIGNAL

TRUE MEAN IS TWICE COMPUTED VALUE BECAUSE HANN WINDOW

REDUCES VALUE BY FACTOR OF 2. (I.E. MEAN OF WINDOW IS 0.5)

CALL MEAN (LA, All, BIAS)

BIAS = BIAS * 2.0 * LA/(LA-I)

DO I = I,LA

All(I) = All(I) - BIAS * HW(I)
END DO

RETURN

END

4

C

C

C

C

SUBROUTINE MEAN(LA,A22, SA)

THIS ROUTINE COMPUTES THE DC TERM OF THE DATA STREAM.

MEAN IS NOT REMOVED, BUT ONLY COMPUTED.

REAL A22 (LA)

SA = 0.

DO I=I,LA

SA=SA+A22(I)

END DO

SA=SA/FLOAT(LA)
RETURN

END

C

C

C

ii

2

SUBROUTINE FOUR1 (DATA, NN, ISIGN)

THIS ROUTINE DOES THE FOURIER TRANSFORM USING A FFT METHOD.

REAL* 8 WR, WI, WPR, WPI, WTEMP, THETA

DIMENSION DATA (*)

N=2*NN

J=l

DO ii I=I,N,2

IF (J. GT. I) THEN

TEMPR=DATA (J)

TEMPI=DATA (J+l)

DATA (J) =DATA (I)

DATA (J+l) =DATA (I+l)

DATA (I)=TEMPR

DATA (I+l) =TEMPI

ENDIF

M=N/2

IF ((M.GE.2).AND. (J.GT.M)) THEN

J=J-M

M=M/2
GO TO 1

ENDIF

J=J+M

CONTINUE

MMAX=2

IF (N.GT.MMAX) THEN
ISTEP=2 *MMAX

THETA=6. 28318530717959D0/(ISIGN*MMAX)

WPR=- 2. D0*DSIN (0.5D0*THETA) *'2

WPI=DSIN (THETA)

WR=I. DO

WI=0. DO

DO 13 M=I,MMAX, 2

DO 12 I=M,N, ISTEP
J=I+MMAX

TEMPR=SNGL (WR) *DATA (J) -SNGL (WI) *DATA (J+l)

5

12

13

C
C
C
C

--C
C
C

_C
C
C
C

C
C

--C
C
C
C
C
C
C

--C
C
C

--C

TEMPI=SNGL(WR)*DATA(J+l) +SNGL(WI) *DATA(J)
DATA(J) =DATA(I) -TEMPR
DATA(J+l) =DATA(I+l) -TEMPI
DATA(I) =DATA(I) +TEMPR
DATA(I+l) =DATA(I+l) +TEMPI

CONTINUE
WTEMP=WR

WR=WR*WPR-WI *WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

MMAX=I STEP

GO TO 2

ENDIF

RETURN

END

THIS SUBROUTINE DOES LEAST SQUARES CURVE FIT TO 7 POINTS

FOR A 2ND DEGREE POLYNOMIAL. THE DATA IS ASSUMED TO BE SAMPLED

AT INTEGRAL INTERVALS. ANY SCALING MUST BE DONE OUTSIDE

THIS SUBROUTINE. THE 7 POINTS ARE :

P = -3, -2, -i, 0, i, 2, 3

THE POLYNOMIAL IS F(P) = A + B*P + C*P*P.

THE MAX OCCURS AT P = P0 = -B/(2*C).

FREQUENCY CORRESPONDING TO P0 IS P0*DF (DF OF DATA STREAM)

THIS DELTA IS REFERENCED TO MIDPOINT FREQUENCY OF 7 POINT_.

THE MAX VALUE IS F(P0) = A - (B*B)/(4*C).

SUBROUTINE LSCF (P0, FMAX, U IN, IOPT)

ON ENTRY:

U IN IS INPUT ORDINATE VALUES. (7)
IOPT IS OPTION FOR 1 OF 2 THINGS

1 : FIND P0 WHERE MAX OCCURS PLUS COMPUTE MAX VALUE.

2 : COMPUTE VALUE OF POLYNOMIAL AT SPECIFIED FREQUNCY P0.

IF IOPT=2, THEN P0 IS FREQUENCY POINT TO EVALUATE POLYNOMIAL.

ON EXIT

P0 IS VALUE OF P WHERE MAX PEAK OCCURS;

THIS IS WRT CENTER POINT OF DATA.

FMAX IS VALUE OF FUNCTION AT P=P0.
**

REAL*4 U IN(*)

LOGICAL G FLAG

C **

C FIRST STEP IS TO DO LEAST SQUARES.

C ALL COEFFICIENTS HAVE BEEN PRE-COMPUTED.

C 'A' IS -8, 12, 24, 28, 24, 12, -8 DIVIDED BY 84

C 'B' IS -9, -6, -3, 0, 3, 6, 9 DIVIDED BY 84

C 'C' IS 5, 0, -3, -4, -3, 0, 5 DIVIDED BY 84

C

us17 = u IN(1) + U IN(7)

6

C

C

C

C
C
C
C
C

US35 = U_IN(3) + U_IN(5)
A = COFI
COFI =-8.*US17 + 12.*(U_IN(2)+U_IN(6)) +

24.*US35 + 28.*U IN(4)
B = COF2

COF2 = 9.*(-U_IN(1)+U_IN(7)) +

6.*(-UIN(2)+U_IN(6)) +

3.*(-U_IN(3)+U_IN(5))
C= COF3

COF3 = 5.*US17 -3.*US35 - 4.*U_IN(4)
IF (ABS(COF3).LT.I.0E-08) THEN

PRINT*,'********* WARNING *********'

PRINT*, 'CONSTANT VALUE EQUALS ZERO - CANNOT COMPUTE A MAXIMUM'

'FREQUENCY VALUE 'PRINT*,

RETURN

ENDIF

[

DID NOT DIVIDE BY 84 YET. DO SO FOR MAX PART BUT NoT P0.

COMPUTE P0, VALUE OF F(P) WHERE A+B*P+C*P*P = 0

COMPUTE FUNCTION AT PO; A+B*P0+C*P0*P0 = A-B**2/4C

IF (IOPT .EQ. i) THEN

P0=-0.5*COF2/COF3

FMAX = (COFI + 0.5 * P0 * COF2) /84.

ELSE

FMAX = (COFI + P0*(COF2 + PO*COF3))/84.
END IF

RETURN

END

C Program NOISE.FOR uses the signal creation and noise generation algorithms

C from the CREATE.FOR program and the WORK, HANN, MEAN, FOUR1, and LSCF sub-

C routines from the UNOMSC.FOR program. NOISE.FOR systematically runs through

C the phase pairings for a given frequency.

REAL X(3000),xinit(30OO),ax(100),fx(100),px(100),axe(100),fxe(100),

pxe (i00)

EXTERNAL ranl

COMMON/PARI/LB,LE,NFT,NPNT,NDEG

COMMON/PAR2/DT,PI,DF,PID

dt = 1.024

sd = 2.8e-03

read*,flx,iseed
ib=l

npnt = 7

ndeg = 3

le = int(i/(flx*dt)+0.5)

if (le.eq.2*(le/2)) le = le+l
le = le*3 + ib - 1

7

NFT=8192
LEB=LE-LB+I
PI=4.0*ATAN(I.0)
DF=I. O/(NFT*DT)

-- PID=I80.0/PI
do m = 1,37

phlx = (m-19)*10

_ do n = 1,37

ph2x = (n-19)*10

sumax = 0.0

sumfx = 0.0

sumpx = 0.0
sumaxe = 0.0

sumfxe = 0.0

-- sumpxe = 0.0

amax = 0.0

fmax = 0.0

_ pmax = 0.0

CALL CREATE(xinit,AIX,FIX,PHIX,ph2x)

c Loop to create noise in data

do k = 1,50

-- DO I = 1,1000,2

1 vl = 2.0*ranl(idum) - 1.0

v2 = 2.0*ranl(idum) - 1.0

-- r = vl**2 + v2,,2

if (r.ge.l) go to 1

fac = sqrt(-2.0*log(r)/r)*sd

x(i) = vl*fac + xinit(i)

x(i+l) = v2*fac + xinit(i+l)

END DO

CALL WORK(X,ampx,frx,phx,AXer,PXer,FXer,AIX,FIX,PHIX)

ax(k) = ampx

fx(k) = frx

px(k) = phx

axe(k) = axer

fxe(k) = fxer

pxe(k) = pxer

if (axer.gt.amax) amax = axer

if (fxer.gt.fmax) fmax = fxer

if (pxer.gt.pmax) pmax = pxer

sumax = sumax + ampx
sumfx = sumfx + frx

if (abs(phlx).eq.180) then

sumpx = sumpx + abs(phx)

else

sumpx = sumpx + phx
end if

sumaxe = sumaxe + axer

sumfxe = sumfxe + fxer

sumpxe = sumpxe + pxer
end do

avgax = sumax/50.0

8

avgfx = sumfx/50.0

avgpx = sumpx/50.0

avgaxe = sumaxe/50.0

avgfxe = sumfxe/50.0

avgpxe = sumpxe/50.0

sumax2 = 0.0

sumfx2 = 0.0

sumpx2 = 0.0
sumaxe2 = 0.0

sumfxe2 = 0.0

sumpxe2 = 0.0

do j = 1,50

sumax2 = sumax2 + (ax(j) - avgax)**2

sumfx2 = sumfx2 + (fx(j) - avgfx)**2

if (abs(phlx).eq.180) then

sumpx2 = sumpx2 + (abs(px(j)) - avgpx)**2

else

sumpx2 = sumpx2 + (px(j) - avgpx)**2

end if

sumaxe2 = sumaxe2 + (axe(j) - avgaxe)**2

sumfxe2 = sumfxe2 + (fxe(j) - avgfxe)**2

sumpxe2 = sumpxe2 + (pxe(j) - avgpxe)**2

end do

sdax = sqrt(sumax2/49.0)

sdfx = sqrt(sumfx2/49.0)

sdpx = sqrt(sumpx2/49.0)

sdaxe = sqrt(sumaxe2/49.0)

sdfxe = sqrt(sumfxe2/49.0)

sdpxe = sqrt(sumpxe2/49.0)

write(8,*)phlx,ph2x,amax

write(9,*)phlx,ph2x,fmax

write(10,*)phlx,ph2x,pmax

write(95,*)phlx,ph2x,avgaxe

write(96,*)phlx,ph2x,avgfxe

write(97,*)phlx,ph2x,avgpxe

end do

end do

END

SUBROUTINE CREATE(xt,AIX,FIX,PHIX,ph2x)

REAL xt(3000)

dt = 1.024

iper=1000
alx=0.02

a0x=0.065

a2x=0.5

PI = 4.0*ATAN(I.0)

convrt = pi/180.0

philx = phlx*convrt

phi2x = ph2x*convrt
TPIDT = 2.0*PI*DT

F2X = 0.03125

9

xtheta = tpidt*flx
xphi = tpidt*f2x

DO I = I,IPER
Ii = I-I

xt(I) = AOX + AiX*COS(xtheta*Ii+PHilX)+A2X*COS(xphi*II+PHi2X)

END DO

RETURN

END

_C

C

C

C

--C

C

C

C

--C

C

C

--C

--C

C

C

C

C

C

SUBROUTINE WORK CALCULATES THE AMPLITUDE,PHASE, AND FREQUENCY

OF THE DATA. THE FOURIER TRANSFORM SUBROUTINE FOUR1 IS

CALLED BY SUBROUTINE WORK. WORK RETURNS TO THE MAIN PROGRAM

THE VALUES OF THE AMPLITUDE,PHASE, AND FREQUENCY AS WELL AS

THE TIME INDEX WHERE THE MAXIMUM VALUE OCCURS.

THIS IS BASED ON MODEL OF COS(WT+PHASE).

SUBROUTINE WORK(ANG,amp,freq,phase,Aerror,Perror,Ferror,Ai,Fi,PHIl)

INTEGER NDIM, NCDIM

PARAMETER (NDIM=3000, NCDIM=8200, NFT=8192, NPNT=7)

DIMENSION AUX(NDIM),ANG(1)

REAL*4 XFREQ(7), PHIMAG(7),PHREAL(7)

COMPLEX AWO(NCDIM)

COMMON/PARI/LB,LE

COMMON/PAR2/DT,PI,DF,PID

NTBI=LE-LB+I

NTBI IS FORCED TO BE ODD IN MAIN PROGRAM.

HANN WINDOW ROUTINE USES ODD NUMBER OF POINTS TO TAPER.

LOAD INPUT DATA FROM ANG(I) INTO ARRAY AUX(J).

LBI=I-LB

DO I=LB,LE
IL=I+LBI

AUX (I L) =ANG (I)
END DO

APPLY WINDOW FUNCTION TO TIME SEQUENCE

CALL HANN (NTBI,AUX,BIAS)

MAKE COMPLEX NUMBER AWO(I) FROM REAL NUMBER AUX(I) BY USING

A ZERO IMAGINARY VALUE (AUX(I) IS THE REAL VALUE}.

DO I=I,NTBI

AWO (I) =CMPLX (AUX (I), 0.)
END DO

i0

C
C
C

C

C

C

C

NOW PAD THE DATA STREAM WITH ZEROS OUT TO AWO(8192).

DO I=NTBI+I,NFT

AWO(I) = CMPLX(0.,0.)

END DO

SUBROUTINE FOUR1 DOES THE FOURIER TRANSFORM USING A FFT METHOD.

CALL FOURI(AWO,NFT,I)

LOOP TO FIND THE MAXIMUM MODULUS VALUE OF THE FOURIER TRANSFORM

ampMAX=0.0

istart = int((fl-0.001)/df)+l

iend = int((fl+0.001)/df)+l

do i = istart,iend

fr = (i-l)*df

if (cabs(awo(i)).gt.ampmax) then

ampmax = cabs(awo(i))
kf = i

freq = fr
end if

end do

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CREATE THE 3 DATA SETS TO BE FITTED BY LEAST SQUARES POLYNOMIAL.

POLYNOMIAL IS 2ND DEGREE AND 7 POINTS WILL BE USED IN CURVE FIT.

3 SETS ARE:

MAGNITUDE OF TRANSFORM (SQRT(REAL**2 + IMAG**2))
REAL PART

IMAGINARY PART

CENTER OF DATA SET IS THE FREQUENCY POINT WHERE MAX WAS FOUND.

DO I = I,NPNT

J = KF- ((NPNT+I)/2.0) +I

XFREQ (I) = CABS (AWO (J))

PHIMAG (I) = AIMAG (AWO (J))

PHREAL (I) = REAL (AWO (J))

END DO

DO CURVE FIT ON THE MODULUS OF THE FOURIER TRANSFORM

CALL TO LSCF WITH OPTION 1 DOES 2 THINGS.

CURVE FITS AND COMPUTES TRUE MAX FREQUENCY POINT.

CALL LSCF (FQ_P0, ampMAX, XFREQ, 1)

CALL LSCF (FQ_P0, PHASEI, PHIMAG, 2)

CALL LSCF (FQ_P0, PHASER, PHREAL, 2)

II

C
C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

FREQ = FREQ + DF * FQ_P0

SCALING OF TRANSFORMED DATA IS PERFORMED TO GIVE OUTPUTS IN

DEGS/SEC AND REPRESENT ACTUAL RATE DATA.

SCALE = 4.0/FLOAT(NTBI-I)

AMP = SCALE * ampMAX

PHASE = -ATAN2(PHASEI,PHASER)*pid

THE FORWARD FOURIER TRANSFORM IS USUALLY DEFINED WITH EXP(-i*PI*F*T).

MANY FFT ROUTINES, INCLUDING FOUR1, USE EXP(+i*2*PI*F*T). THESE TWO

DIFFERENT CONVENTIONS FOR THE FORWARD FOURIER TRANSFORM RESULT IN TWO

DIFFERENT FORMS FOR THE SHIFT THEOREM. IN THE FIRST CASE, THE SHIFT

THEOREM STATES THAT IF G(T) TRANSFORMS AS G(F), THEN G(T+TI) TRANSFORMS

AS EXP(i*2*PI*F*TI)*G(F). IN THE SECOND CASE, IF G(T) TRANSFORMS AS

G(F), THEN G(T+TI) TRANSFORMS AS EXP(-i*2*PI*F*TI)*G(F). SINCE OUR

MODEL IS COS(2*PI*F*T + P) = COS(2*PI*F*(T + P/(2*PI*F)), AND WE USE

THE FIRST CONVENTION FOR THE FOURIER TRANSFORM, WE!EXPECT OUR PHASE

TO BE 2*PI*F*P/(2*PI*F) = P. HOWEVER, SINCE THE PROGRAM USES THE

SECOND CONVENTION FOR THE FOURIER TRANSFORM, THE PHASE IS -P, SO TO

CORRECT FOR THIS DIFFERENCE WE MUST INCLUDE ANOTHER - SIGN: -(-P) = P.

FERROR = (ABS(FREQ-FI)/0.005) * i00

AERROR = (ABS(AMP-AI)/AI) * i00

PERROR = (ABS(PHASE-PHI1)/360.0) * I00

if (abs(phil).eq.180) perror = (abs(abs(phase)-abs(phil))/360.0)*100.0

RETURN

END

SUBROUTINE HANN (LA,AII, BIAS)

TAPER IS RAISED COSINE CURVE.

MEAN IS COMPUTED AND REMOVED FROM INPUT SIGNAL

PARAMETER (PI=3.1415926)

REAL AII(LA), HW(3000)

ITM = (LA-I)/2

RM = FLOAT(ITM)

DO IT= -ITM, ITM

I = 1 + IT + ITM

HW(I)=0.5*(I.0 + COS(PI*FLOAT(IT)/RM))

All (I) =All(I) *HW(I)

END DO

COMPUTE MEAN OF TAPERED SIGNAL

TRUE MEAN IS TWICE COMPUTED VALUE BECAUSE HANN WINDOW

REDUCES VALUE BY FACTOR OF 2. (I.E. MEAN OF WINDOW IS 0.5)

CALL MEAN (LA, All, BIAS)

BIAS = BIAS * 2.0 * LA/(LA-I)

DO I = I,LA

All(I) = All(I) - BIAS * HW(I)
END DO

RETURN

END

12

C

C

_C
C

SUBROUTINE MEAN(LA,A22, SA)

THIS ROUTINE COMPUTES THE DC TERM OF THE DATA STREAM.

MEAN IS NOT REMOVED, BUT ONLY COMPUTED.

REAL A22(LA)

SA = 0.

DO I=I,LA

SA=SA+A22(I)

END DO

SA=SA/FLOAT(LA)

RETURN

END

_C

C

C

_ 1

ii

2

SUBROUTINE FOURI(DATA,NN,ISIGN)

THIS ROUTINE DOES THE FOURIER TRANSFORM USING A FFT METHOD.

REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

DIMENSION DATA(*)
N=2*NN

J=l

DO Ii I=I,N,2

IF(J.GT.I)THEN

T EMPR=DATA (J)

TEMPI=DATA(J+1)

DATA (J) =DATA (I)

DATA (J+l) =DATA (I+l)

DATA(I)=TEMPR

DATA(I+I)=TEMPI

ENDIF

M=N/2

IF ((M.GE.2).AND. (J.GT.M)) THEN
J=J-M

M=MI2
GO TO 1

ENDIF

J=J+M

CONTINUE

MMAX=2

IF (N.GT.MMAX) THEN

ISTEP=2*MMAX

THETA=6.28318530717959D0/(ISIGN*MMAX)

WPR=-2.D0*DSIN(O.5D0*THETA)**2

WPI=DSIN (THETA)
WR=I.D0

WI=O.D0

DO 13 M=I,MMAX,2

DO 12 I=M,N,ISTEP

J=I+MMAX

13

12

13

C
C
C

--C
C
C

--C
C

C

C

C

C

--C

C

C

_C

C

C

C

--C

C

C

C

C

C

C

C

-- C

C

C

C

TEMPR=SNGL (WR) *DATA (J) -SNGL (WI) *DATA (J+l)

TEMPI=SNGL (WR) *DATA (J+l) +SNGL (WI) *DATA (J)

DATA (J) =DATA (I)-TEMPR

DATA (J+l) =DATA (I+l) -TEMPI

DATA (I)=DATA (I)+TEMPR

DATA (I+l) =DATA (I+l) +TEMPI
CONTINUE

WTEMP=WR

WR=WR*WPR-WI *WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

MMAX=ISTEP

GO TO 2

ENDIF

RETURN

END

THIS SUBROUTINE DOES LEAST SQUARES CURVE FIT TO 7 POINTS

FOR A 2ND DEGREE POLYNOMIAL. THE DATA IS ASSUMED TO BE SAMPLED

AT INTEGRAL INTERVALS. ANY SCALING MUST BE DONE OUTSIDE

THIS SUBROUTINE. THE 7 POINTS ARE :

P = -3, -2, -I, 0, i, 2, 3

THE POLYNOMIAL IS F(P) = A + B*P + C*P*P.

THE MAX OCCURS AT P = P0 = -B/(2*C).

FREQUENCY CORRESPONDING TO P0 IS P0*DF (DF OF DATA STREAM)

THIS DELTA IS REFERENCED TO MIDPOINT FREQUENCY OF 7 POINTS.

THE MAX VALUE IS F(P0) = A - (B*B)/(4*C).

SUBROUTINE LSCF (P0, FMAX, U_IN, IOPT)

ON ENTRY:

U IN IS INPUT ORDINATE VALUES. (7)

IOPT IS OPTION FOR 1 OF 2 THINGS

1 : FIND P0 WHERE MAX OCCURS PLUS COMPUTE MAX VALUE.

2 : COMPUTE VALUE OF POLYNOMIAL AT SPECIFIED FREQUNCY PO.

IF IOPT=2, THEN P0 IS FREQUENCY POINT TO EVALUATE POLYNOMIAL.

ON EXIT

P0 IS VALUE OF P WHERE MAX PEAK OCCURS;
THIS IS WRT CENTER POINT OF DATA.

FMAX IS VALUE OF FUNCTION AT P=P0.

**

REAL*4 U IN(*)
LOGICAL G FLAG

**

FIRST STEP IS TO DO LEAST SQUARES.

ALL COEFFICIENTS HAVE BEEN PRE-COMPUTED.

'A' IS -8, 12, 24, 28, 24, 12, -8 DIVIDED BY 84

'B' IS -9, -6, -3, 0, 3, 6, 9 DIVIDED BY 84

'C' IS 5, 0, -3, -4, -3, 0, 5 DIVIDED BY 84

14

C

C

C

C
C
C
C
C

US17 = U IN(I) + U_IN(7)
US35 = U IN(3) + U IN(5)
A = COFI
COFI = -8.*US17 + 12.*(U_IN(2)+U_IN(6)) +

24.*US35 + 28.*U IN(4)
B = COF2

COF2 = 9.*(-U_IN(1)+U_IN(7)) +

6.*(-U_IN(2)+U_IN(6)) +

3 .* (-U_IN (3) +U_IN (5))
C= COF3

COF3 = 5.*US17 -3.*US35 - 4.*U IN(4)

IF (ABS(COF3).LT.I.0E-08) THEN

PRINT*, '********* WARNING *********'

PRINT*, 'CONSTANT VALUE EQUALS ZERO - CANNOT COMPUTE A MAXIMUM'

PRINT*, 'FREQUENCY VALUE. '

RETURN

ENDIF

DID NOT DIVIDE BY 84 YET. DO SO FOR MAX PART BUT NOT PO.

COMPUTE P0, VALUE OF F(P) WHERE A+B*P+C*P*P = 0

COMPUTE FUNCTION AT PO; A+B*P0+C*P0*P0 = A-B**2/4C

IF (IOPT .EQ. i) THEN

PO=-O.5*COF2/COF3

FMAX = (COFI + 0.5 * P0 * COF2) /84.

ELSE

FMAX = (COFI + PO*(COF2 + P0*COF3))/84.
END IF

RETURN

END

function ranl(idum)

dimension r(97)

parameter (ml = 259200, ial = 7141, icl = 54773, rml = 1.0/ml)

parameter (m2 = 134456, ia2 = 8121, ic2 = 28411, rm2 = 1.0/m2)

parameter (m3 = 243000, ia3 = 4561, ic3 = 51349)

data iff /0/

if (idum. lt.O.or.iff.eq.0) then
iff = 1

ixl = mod(icl - idum,ml)

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ixl,m2)

ixl = mod(ial*ixl + icl,ml)

ix3 = mod(ixl,m3)

do j = 1,97

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
end do

idum = 1

end if

15

ix1 = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

ix3 = mod(ia3*ix3 + ic3,m3)

j = 1 + (97*ix3)/m3

if (j.gt.97.or.j.lt.l) pause

ranl = r (j)

r(j) = (float(ixl) + float(ix2)*rm2)*rml

return

end

C Program LIBRATION.FOR uses the signal (no noise) generation algorithms from

C the CRELIBR.FOR program and the WORK, HANN, MEAN, FOUR_, and LSCF subroutines

C from the UNOMSC.FOR program. LIBRATION.FOR systematically runs through the

C phase pairings for a given frequency.

REAL X(4000)

COMMON/PARI/LB,LE,NFT,NPNT,NDEG

COMMON/PAR2/DT,PI,DF,PID
dt = 1.024

sd = 2.8e-03

Ib=l

npnt = 7

ndeg = 3
flx = 0.0019

read*,numcycle,iseed

le = int(i/(flx*dt)+0.5)

if (le.eq.2*(le/2)) le = le+l

le = le*numcycle + Ib - 1

NFT=8192

LEB=LE-LB+I

PI=4.0*ATAN(I.O)

DF=I.0/(NFT*DT)

PID=I80.0/PI

do m = 1,37

phlx = (m-19)*10

do n = 1,37

ph2x = (n-19)*10

CALL CREATE(x,AIX, FIX,PHIX,ph2x)

CALL WORK(X,ampx,frx,phx,aerror,ferror,perror,AlX,FIX,PHlX)

write(ll,*)phlx,ph2x,aerror

write(12,*)phlx,ph2x, ferror

write(13,*)phlx,ph2x,perror

end do

end do

END

16

SUBROUTINE CREATE(x, AIX, FIX, PHI IX, ph i2 x)
REAL x(4000)
tlngth=20000.0
dt = i. 024
iper=3000
alx=0. 0034
aOx=0. 065
a2x=0.05
alibx = 0.0046
PI = 4.0*ATAN(I.0)
convrt = pi/180.0
phlx = philx*convrt
ph2x = phi2x*convrt
TPIDT = 2.0*PI*DT
flx = 0.0019
F2X = 0. 089
flibx = 1/2713.0
xtheta = tpidt*flx
xphi = tpidt*f2x
xlibr = tpidt*flibx

DO I = I,IPER
Ii = I-i

TIM =I I*DT

x(I) = A0X + AiX*COS(xtheta*Ii+PHiX)+A2X*COS(xphi*Ii) +

$ alibx*cos (xlibr*il+ph2x)

END DO

RETURN

END

C

--C

C

C

_C

C

C

C

C

SUBROUTINE WORK CALCULATES THE AMPLITUDE,PHASE, AND FREQUENCY

OF THE DATA. THE FOURIER TRANSFORM SUBROUTINE FOUR1 IS

CALLED BY SUBROUTINE WORK. WORK RETURNS TO THE MAIN PROGRAM

THE VALUES OF THE AMPLITUDE,PHASE, AND FREQUENCY AS WELL AS
THE TIME INDEX WHERE THE MAXIMUM VALUE OCCURS.

THIS IS BASED ON MODEL OF COS(WT+PHASE) .

SUBROUTINE WORK(ANG,amp,freq,phase,Aerror,Perror,Ferror,Ai,FI,PHIl)

INTEGER NDIM, NCDIM

PARAMETER (NDIM=4000, NCDIM=8200, NFT=8192, NPNT=7)

DIMENSION AUX (NDIM), ANG (I)

REAL*4 XFREQ(7), PHIMAG(7),PHREAL(7)

COMPLEX AWO(NCDIM)

COMMON/PARI/LB,LE

COMMON/PAR2/DT,PI,DF,PID

NTBI=LE-LB+I

NTBI IS FORCED TO BE ODD IN MAIN PROGRAM.

HANN WINDOW ROUTINE USES ODD NUMBER OF POINTS TO TAPER.

17

C

C

C

C

C

C

-- C

C

C

-- C

C

C

C

C

C

C

LOAD INPUT DATA FROM ANG(I) INTO ARRAY AUX(J).

LBI=I-LB

DO I=LB,LE
IL=I+LBI

AUX (IL) =ANG (I)
END DO

APPLY WINDOW FUNCTION TO TIME SEQUENCE

CALL HANN (NTBI,AUX,BIAS)

MAKE COMPLEX NUMBER AWO(I) FROM REAL NUMBER AUX(I) BY USING

A ZERO IMAGINARY VALUE (AUX(I) IS THE REAL VALUE).

DO I=I,NTBI

AWO (I) =CMPLX (AUX (I) ,0.)

END DO

NOW PAD THE DATA STREAM WITH ZEROS OUT TO AWO(8192).

DO I=NTBI+I,NFT

AWO(I) = CMPLX(0.,0.)
END DO

SUBROUTINE FOUR1 DOES THE FOURIER TRANSFORM USING A FFT METHOD.

CALL FOURI(AWO,NFT,I)

LOOP TO FIND THE MAXIMUM MODULUS VALUE OF THE FOURIER TRANSFORM

ampMAX=0.0

istart = int((fl-0.001)/df)+l

iend = int((fl+0.001)/df)+l

do i = istart,iend

fr = (i-l)*df

if (cabs(awo(i)).gt.ampmax) then

ampmax = cabs(awo(i))
kf = i

freq = fr
end if

end do

18

C

C

C

C

--C

C

C

--C

C

C

_C

C

C

C

C

C

C

_C

C

C

C

--C

C

C

--C

C

C

C

CREATE THE 3 DATA SETS TO BE FITTED BY LEAST SQUARES POLYNOMIAL.

POLYNOMIAL IS 2ND DEGREE AND 7 POINTS WILL BE USED IN CURVE FIT.

3 SETS ARE:

MAGNITUDE OF TRANSFORM (SQRT(REAL**2 + IMAG**2))
REAL PART

IMAGINARY PART

CENTER OF DATA SET IS THE FREQUENCY POINT WHERE MAX WAS FOUND.

DO I = I,NPNT

J = KF-((NPNT+I)/2.0)+I

XFREQ(I) = CABS (AWO(J))

PHIMAG(I) = AIMAG(AWO(J))

PHREAL(I) = REAL (AWO (J))

END DO

DO CURVE FIT ON THE MODULUS OF THE FOURIER TRANSFORM

CALL TO LSCF WITH OPTION 1 DOES 2 THINGS.

CURVE FITS AND COMPUTES TRUE MAX FREQUENCY POINT.

CALL LSCF (FQ_P0, ampMAX, XFREQ, i)

CALL LSCF (FQ_P0, PHASEI, PHIMAG, 2)

CALL LSCF (FQ_PO, PHASER, PHREAL, 2)

FREQ = FREQ + DF * FQ_P0

SCALING OF TRANSFORMED DATA IS PERFORMED TO GIVE OUTPUTS IN

DEGS/SEC AND REPRESENT ACTUAL RATE DATA.

SCALE = 4. O/FLOAT(NTBI-I)

AMP = SCALE * ampMAX

PHASE = -ATAN2 (PHASEI, PHASER) *pid

THE FORWARD FOURIER TRANSFORM IS USUALLY DEFINED WITH EXP(-i*PI*F*T).

MANY FFT ROUTINES, INCLUDING FOUR1, USE EXP(+i*2*PI*F*T). THESE TWO

DIFFERENT CONVENTIONS FOR THE FORWARD FOURIER TRANSFORM RESULT IN TWO

DIFFERENT FORMS FOR THE SHIFT THEOREM. IN THE FIRST CASE, THE SHIFT

THEOREM STATES THAT IF G(T) TRANSFORMS AS G(F), THEN G(T+TI) TRANSFORMS

AS ExP(i*2*PI*F*TI)*G(F). IN THE SECOND CASE, IF G(T) TRANSFORMS AS

G(F), THEN G(T+TI) TRANSFORMS AS EXP(-i*2*PI*F*TI)*G(F). SINCE OUR

MODEL IS COS(2*PI*F*T + P) = COS (2*PI*F* (T + P/(2*PI*F)), AND WE USE

THE FIRST CONVENTION FOR THE FOURIER TRANSFORM, WE EXPECT OUR PHASE

TO BE 2*PI*F*P/(2*PI*F) = P. HOWEVER, SINCE THE PROGRAM USES THE

SECOND CONVENTION FOR THE FOURIER TRANSFORM, THE PHASE IS -P, SO TO

CORRECT FOR THIS DIFFERENCE WE MUST INCLUDE ANOTHER - SIGN: -(-P) = P.

FERROR = (ABS(FREQ-FI)/0.005) * 100

AERROR = (ABS(AMP-AI)/AI) * 100

perror = (abs(abs(phase)-abs(phil))/360.0)*100.0
RETURN

END

19

C

C

C

C

-- C

C

C

SUBROUTINE HANN (LA,AII, BIAS)

TAPER IS RAISED COSINE CURVE.

MEAN IS COMPUTED AND REMOVED FROM INPUT SIGNAL

PARAMETER (PI=3.1415926)

REAL AII(LA), HW(3000)

ITM = (LA-I)/2

RM = FLOAT(ITM)

DO IT= -ITM, ITM
I = 1 + IT + ITM

HW(I)=0.5*(I.0 + COS(PI*FLOAT(IT)/RM))

All (I) =All (I) *HW (I)
END DO

COMPUTE MEAN OF TAPERED SIGNAL

TRUE MEAN IS TWICE COMPUTED VALUE BECAUSE HANN WINDOW

REDUCES VALUE BY FACTOR OF 2. (I.E. MEAN OF WINDOW IS O. 5)

CALL MEAN (LA, All, BIAS)

BIAS = BIAS * 2.0 * LA/(LA-I)

DO I = I,LA

All(I) = All(I) - BIAS * HW(I)

END DO

RETURN

END

C

C

C

C

SUBROUTINE MEAN(LA,A22, SA)

THIS ROUTINE COMPUTES THE DC TERM OF THE DATA STREAM.

MEAN IS NOT REMOVED, BUT ONLY COMPUTED.

REAL A22 (LA)

SA = 0.

DO I=I,LA

SA=SA+A22 (I)
END DO

SA=SA/FLOAT(LA)
RETURN

END

C

C

_C

SUBROUTINE FOURI(DATA,NN, ISIGN)

THIS ROUTINE DOES THE FOURIER TRANSFORM USING A FFT METHOD.

REAL*8 WR,WI,WPR,WPI,WTEMP,THETA

DIMENSION DATA(*)
N=2*NN

J=l

DO Ii I=I,N,2

IF (J. GT. I) THEN

TEMPR=DATA (J)

2O

11

2

12

13

TEMPI=DATA (J+l)

DATA (J) =DATA (I)

DATA (J+l) =DATA (I+l)

DATA (I)=TEMPR

DATA (I+l) =TEMPI
ENDIF

M=N/2

IF ((M.GE.2) .AND. (J.GT.M)) THEN
J=J-M

M=M/2

GO TO 1

ENDIF

J=J+M

CONTINUE

MMAX=2

IF (N.GT.MMAX) THEN

ISTEP=2 *MMAX

THETA=6. 28318530717959D0/(ISIGN*MMAX)

WPR=-2. D0*DSIN (0.5D0*THETA) **2

WPI=DSIN (THETA)
WR=I. DO

WI=0 .DO

DO 13 M=I,MMAX, 2

DO 12 I=M,N,ISTEP
J=I+MMAX

TEMPR=SNGL (WR) *DATA (J) -SNGL (WI) *DATA (J+l)

TEMPI=SNGL (WR) *DATA (J+l) +SNGL (WI) *DATA (J)

DATA (J) =DATA (I) -TEMPR

DATA (J+l) =DATA (I+l) -TEMPI

DATA (I) =DATA (I) +TEMPR

DATA (I+l) =DATA (I+l) +TEMPI

CONTINUE

WTEMP=WR

WR=WR*WPR-WI *WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

MMAX=ISTEP

GO TO 2

ENDIF

RETURN

END

C

C

C

C

C

C

C

C

C

THIS SUBROUTINE DOES LEAST SQUARES CURVE FIT TO 7 POINTS

FOR A 2ND DEGREE POLYNOMIAL. THE DATA IS ASSUMED TO BE SAMPLED

AT INTEGRAL INTERVALS. ANY SCALING MUST BE DONE OUTSIDE

THIS SUBROUTINE. THE 7 POINTS ARE :

P = -3, -2, -i, 0, i, 2, 3

THE POLYNOMIAL IS F(P) = A + B*P + C*P*P.

THE MAX OCCURS AT P = P0 = -B/(2*C).

FREQUENCY CORRESPONDING TO PO IS P0*DF (DF OF DATA STREAM)

THIS DELTA IS REFERENCED TO MIDPOINT FREQUENCY OF 7 POINTS.

21

C
C

C

C

C

C

C

C

C

C

C

C

C

-- C

C

C

C

C

-- C

C

C

-- C

C

C

C

C

C

C

C

C

THE MAX VALUE IS F(P0) = A - (B*B)/(4*C).

SUBROUTINE LSCF (P0, FMAX, U_IN, IOPT)

ON ENTRY:

U IN IS INPUT ORDINATE VALUES. (7)

IOPT IS OPTION FOR i OF 2 THINGS

1 : FIND P0 WHERE MAX OCCURS PLUS COMPUTE MAX VALUE.

2 : COMPUTE VALUE OF POLYNOMIAL AT SPECIFIED FREQUNCY P0.

IF IOPT=2, THEN P0 IS FREQUENCY POINT TO EVALUATE POLYNOMIAL.

ON EXIT

P0 IS VALUE OF P WHERE MAX PEAK OCCURS;

THIS IS WRT CENTER POINT OF DATA.

FMAX IS VALUE OF FUNCTION AT P=PO.
**

REAL*4 U IN(*)

LOGICAL G FLAG
**

FIRST STEP IS TO DO LEAST SQUARES.

ALL COEFFICIENTS HAVE BEEN PRE-COMPUTED.

'A' IS -8, 12, 24, 28, 24, 12, -8 DIVIDED BY 84

'B' IS -9, -6, -3, 0, 3, 6, 9 DIVIDED BY 84

'C' IS 5, O, -3, -4, -3, 0, 5 DIVIDED BY 84

usiv = u IN(1) + U IN(V)
US35 = U IN(3) + U_IN(5)
A = COFI

COFI = -8.*US17 + 12.*(UIN(2)+U_IN(6)) +

24.*US35 + 28.*U IN(4)

B = COF2

COF2 = 9.*(-U_IN(1)+U_IN(7)) +

6.*(-U_IN(2)+U_IN(6)) +

3.*(-U IN(3)+U IN(5))
C= COF3

COF3 = 5.*US17 -3.*US35 - 4.*U IN(4)

IF (ABS(COF3).LT.I.0E-08) THEN

PRINT*,'********* WARNING *********'

PRINT*,'CONSTANT VALUE EQUALS ZERO - CANNOT COMPUTE A MAXIMUM'

PRINT*,'FREQUENCY VALUE.'

RETURN

ENDIF

DID NOT DIVIDE BY 84 YET. DO SO FOR MAX PART BUT NOT P0.

COMPUTE P0, VALUE OF F(P) WHERE A+B*P+C*P*P = 0

COMPUTE FUNCTION AT P0; A+B*P0+C*P0*P0 = A-B**2/4C

IF (IOPT .EQ. i) THEN

P0=-0.5*COF2/COF3

FMAX = (COFI + 0.5 * PO * COF2) /84.

ELSE

22

FMAX = (COFI + P0*(COF2 + P0*COF3))/84.
END IF
RETURN
END

C Program LIB_NOISE.FOR uses the signal and noise generation algorithms from
_ the

C CRELIBR.FOR program and the WORK,HANN, MEAN, FOUR1, and LSCF subroutines
from
C the UNOMSC.FORprogram. LIB NOISE.FOR systematically runs through the phase

-- C pairings for a given frequency.

REAL X(3000) ,xinit (3000) ,ax(100) , fx(100) ,px(100) , axe(100) , fxe(100) ,
pxs (i00)
EXTERNALranl
COMMON/PARI/LB,LE,NFT,NPNT,NDEG
COMMON/PAR2/DT,PI,DF,PID
dt = 1.024
sd = 2.8e-03

read*,numcycle,iseed

ib=l

npnt = 7

ndeg = 3
flx = 0.0019

le = int(i/(flx*dt)+0.5)

if (le.eq.2*(le/2)) le = le+l

le = le*numcycle + ib - 1

NFT=8192

LEB=LE-LB+I

PI=4.0*ATAN(I.0)

DF=I. 0/(NFT*DT)

PID=I80.O/PI

do m = 1,37

phlx = (m-19)*lO

do n = 1,37

ph2x = (n-19)*10

sumax = 0.0

sumfx = 0.0

sumpx = 0.0
sumaxe = 0.0

sumfxe = 0.0

sumpxe = 0.0
amax = 0.0

fmax = 0.0

pmax = 0.0

CALL CREATE(xinit,AIX,FIX,PHIX,ph2x)

c Loop to create noise in data

do k = 1,50

23

1
DO I = 1,1000,2

vl = 2.0*ranl(idum) - 1.0
v2 = 2.0*ranl(idum) - 1.0
r = vl**2 + v2,,2
if (r.ge.l) go to 1
fac = sqrt(-2.0*log(r)/r)*sd
x(i) = vl*fac + xinit(i)
x(i+l) = v2*fac + xinit(i+l)

END DO
CALL WORK(X,ampx,frx,phx,AXer,PXer,FXer,AIX,FIX,PHIX)

ax(k) = ampx

fx (k) = frx

px (k) = phx

axe(k) = axer

fxe(k) = fxer

pxe(k) = pxer

if (axer.gt.amax) amax = axer

if (fxer.gt.fmax) fmax = fxer

if (pxer.gt.pmax) pmax = pxer

sumax = sumax + ampx
sumfx = sumfx + frx

if (abs(phlx).eq.180) then

sumpx = sumpx + abs(phx)
else

sumpx = sumpx + phx
endif

sumaxe = sumaxe + axer

sumfxe = sumfxe + fxer

sumpxe = sumpxe + pxer
end do

avgax = sumax/50.0

avgfx = sumfx/50.0

avgpx = sumpx/50.0

avgaxe = sumaxe/50.0

avgfxe = sumfxe/50.0

avgpxe = sumpxe/50.0

sumax2 = 0.0

sumfx2 = 0.0

sumpx2 = 0.0

sumaxe2 = 0.0

sumfxe2 = 0.0

sumpxe2 = 0.0

do j = 1,50

sumax2 = sumax2 + (ax(j) - avgax)**2

sumfx2 = sumfx2 + (fx(j) - avgfx)**2

if (abs(phlx).eq.180) then

sumpx2 = sumpx2 + (abs(px(j)) - avgpx)**2

else

sumpx2 = sumpx2 + (px(j) - avgpx)**2
end if

sumaxe2 = sumaxe2 + (axe(j) - avgaxe)**2

sumfxe2 = sumfxe2 + (fxe(j) - avgfxe)**2

24

sumpxe2 = sumpxe2 + (pxe(j) - avgpxe)**2

end do

sdax = sqrt(sumax2/49.0)

sdfx = sqrt(sumfx2/49.0)

sdpx = sqrt(sumpx2/49.0)

sdaxe = sqrt(sumaxe2/49.0)

sdfxe = sqrt(sumfxe2/49.0)

sdpxe = sqrt(sumpxe2/49.0)

write(8,*)phlx,ph2x,amax

write(9,*)phlx,ph2x,fmax

write(10,*)phlx,ph2x,pmax

write(95,*)phlx,ph2x,avgaxe

write(96,*)phlx,ph2x,avgfxe

write(97,*)phlx,ph2x,avgpxe
end do

end do

END

SUBROUTINE CREATE(x,AIX,FIX,PHIIX,phi2x)

REAL x(3000),y(3000)

tlngth=20000.0

dt = 1.024

iper=3000

alx=0.0034

a0x=0.065

a2x=0.05

alibx = 0.0046

PI = 4.0*ATAN(I.0)

convrt = pi/180.0

phlx = philx*convrt

ph2x = phi2x*convrt

TPIDT = 2.0*PI*DT

flx = 0.0019

F2X = 0.089

flibx = 1/2713.0

xtheta = tpidt*flx

xphi = tpidt*f2x

xlibr = tpidt*flibx

DO I = I,IPER
II = I-I

TIM =II*DT

x(I) = A0X + AiX*COS(xtheta*II+PHIX)+A2X*COS(xphi*Ii) +

$ alibx*cos(xlibr*il+ph2x)

END DO

RETURN

END

25

_ C
C
C
C
C
C
C

C
C
C
C
C

C
C

C
C
C
C

C
C
C

SUBROUTINEWORKCALCULATESTHE AMPLITUDE,PHASE, AND FREQUENCY
OF THE DATA. THE FOURIER TRANSFORMSUBROUTINEFOUR1 IS
CALLED BY SUBROUTINEWORK. WORKRETURNSTO THE MAIN PROGRAM
THE VALUES OF THE AMPLITUDE,PHASE, AND FREQUENCYAS WELL AS
THE TIME INDEX WHERETHE MAXIMUMVALUE OCCURS.
THIS IS BASED ON MODELOF COS(WT+PHASE).

SUBROUTINE WORK(ANG,amp,freq,phase,Aerror,Perror,Ferror,AI,Fi,PHIl)

INTEGER NDIM, NCDIM

PARAMETER (NDIM=3000, NCDIM=8200, NFT=8192, NPNT=7)

DIMENSION AUX (NDIM) ,ANG (I)

REAL*4 XFREQ(7), PHIMAG(7),PHREAL(7)

COMPLEX AWO(NCDIM)

COMMON/PARI/LB,LE

COMMON/PAR2/DT,PI,DF,PID

NTBI=LE-LB+I

NTBI IS FORCED TO BE ODD IN MAIN PROGRAM.

HANN WINDOW ROUTINE USES ODD NUMBER OF POINTS TO TAPER.

LOAD INPUT DATA FROM ANG(I) INTO ARRAY AUX(J).

LBI=I-LB

DO I=LB,LE

IL=I+LBI

AUX (IL) =ANG (I)

END DO

APPLY WINDOW FUNCTION TO TIME SEQUENCE

CALL HANN (NTBI,AUX,BIAS)

MAKE COMPLEX NUMBER AWO(I) FROM REAL NUMBER AUX(I) BY USING

A ZERO IMAGINARY VALUE (AUX(I) IS THE REAL VALUE).

DO I=I,NTBI

AWO (I)=CMPLX (AUX (I) ,0.)

END DO

NOW PAD THE DATA STREAM WITH ZEROS OUT TO AWO(8192).

DO I=NTBI+I,NFT

AWO(I) = CMPLX(0.,O.)

END DO

26

-- C
C
C

C

SUBROUTINEFOUR1 DOESTHE FOURIER TRANSFORMUSING A FFT METHOD.

CALL FOURI(AWO,NFT,I)

LOOP TO FIND THE MAXIMUM MODULUS VALUE OF THE FOURIER TRANSFORM

ampMAX=0.0

istart = int((fl-0.001)/df)+l

lend = int((fl+0.001)/df)+l

do i = istart,iend

fr = (i-l)*df

if (cabs(awo(i)).gt.ampmax) then

ampmax = cabs(awo(i))
kf = i

freq = fr
end if

end do

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CREATE THE 3 DATA SETS TO BE FITTED BY LEAST SQUARES POLYNOMIAL.

POLYNOMIAL IS 2ND DEGREE AND 7 POINTS WILL BE USED IN CURVE FIT.

3 SETS ARE:

MAGNITUDE OF TRANSFORM (SQRT(REAL**2 + IMAG**2))

REAL PART

IMAGINARY PART

CENTER OF DATA SET IS THE FREQUENCY POINT WHERE MAX WAS FOUND.

DO I = I,NPNT

J = KF- ((NPNT+I)/2.0) +I

XFREQ(I) = CABS(AWO(J))

PHIMAG (I) = AIMAG (AWO (J))

PHREAL (I) = REAL (AWO (J))

END DO

DO CURVE FIT ON THE MODULUS OF THE FOURIER TRANSFORM

CALL TO LSCF WITH OPTION 1 DOES 2 THINGS.

CURVE FITS AND COMPUTES TRUE MAX FREQUENCY POINT.

CALL LSCF (FQ_P0, ampMAX, XFREQ, i)

CALL LSCF (FQ_P0, PHASEI, PHIMAG, 2)

CALL LSCF (FQ_P0, PHASER, PHREAL, 2)

FREQ = FREQ + DF * FQ_P0

SCALING OF TRANSFORMED DATA IS PERFORMED TO GIVE OUTPUTS IN

DEGS/SEC AND REPRESENT ACTUAL RATE DATA.

SCALE = 4.0/FLOAT(NTBI-I)

AMP = SCALE * ampMAX

PHASE = -ATAN2(PHASEI,PHASER)*pid

27

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

THE FORWARD FOURIER TRANSFORM IS USUALLY DEFINED WITH EXP(-i*PI*F*T).

MANY FFT ROUTINES, INCLUDING FOUR1, USE EXP(+i*2*PI*F*T). THESE TWO

DIFFERENT CONVENTIONS FOR THE FORWARD FOURIER TRANSFORM RESULT IN TWO

DIFFERENT FORMS FOR THE SHIFT THEOREM. IN THE FIRST CASE, THE SHIFT

THEOREM STATES THAT IF G(T) TRANSFORMS AS G(F), THEN G(T+TI) TRANSFORMS

AS EXP(i*2*PI*F*TI)*G(F). IN THE SECOND CASE, IF G(T) TRANSFORMS AS

G(F), THEN G(T+TI) TRANSFORMS AS EXP(-i*2*PI*F*TI)*G(F). SINCE OUR

MODEL IS COS(2*PI*F*T + P) = COS (2*PI*F* (T + P/(2*PI*F)), AND WE USE

THE FIRST CONVENTION FOR THE FOURIER TRANSFORM, WE EXPECT OUR PHASE

TO BE 2*PI*F*P/(2*PI*F) = P. HOWEVER, SINCE THE PROGRAM USES THE

SECOND CONVENTION FOR THE FOURIER TRANSFORM, THE PHASE IS -P, SO TO

CORRECT FOR THIS DIFFERENCE WE MUST INCLUDE ANOTHER - SIGN: -(-P) = P.

FERROR = (ABS(FREQ-FI)/0.005) * i00

AERROR = (ABS(AMP-AI)/AI) * 100

perror = (abs(abs(phase)-abs(phil))/360.0)*100.0
RETURN

END

SUBROUTINE HANN (LA,AII, BIAS)

TAPER IS RAISED COSINE CURVE.

MEAN IS COMPUTED AND REMOVED FROM INPUT SIGNAL

PARAMETER (PI=3.1415926)

REAL AII(LA), HW(3000)

ITM = (LA-I)/2

RM = FLOAT(ITM)

DO IT= -ITM, ITM

I = 1 + IT + ITM

HW(I)=0.5*(I.0 + COS(PI*FLOAT(IT)/RM))

All (I) =all (I) *HW (I)

END DO

COMPUTE MEAN OF TAPERED SIGNAL

TRUE MEAN IS TWICE COMPUTED VALUE BECAUSE HANN WINDOW

REDUCES VALUE BY FACTOR OF 2. (I.E. MEAN OF WINDOW IS 0.5)

CALL MEAN (LA, All, BIAS)

BIAS = BIAS * 2.0 * LA/(LA-I)

DO I = I,LA

All(I) = All(I) - BIAS * HW(I)

END DO

RETURN

END

28

C

C

C

C

C

C

C

1

ii

SUBROUTINE MEAN(LA,A22, SA)

THIS ROUTINE COMPUTES THE DC TERM OF THE

MEAN IS NOT REMOVED, BUT ONLY COMPUTED.

REAL A22 (LA)

SA = 0.

DO I=l, LA

SA=SA+A22 (I)

END DO

SA=SA/FLOAT (LA)

RETURN

END

DATA STREAM.

SUBROUTINE FOURI(DATA,NN,ISIGN)

THIS ROUTINE DOES THE FOURIER TRANSFORM USING A FFT METHOD.

REAL*8 WR, WI, WPR, WPI, WTEMP, THETA

DIMENSION DATA (*)

N=2 *NN

J=l

DO ii I=I,N,2

IF (J. GT. I) THEN

TEMPR=DATA (J)

TEMPI=DATA (J+l)

DATA (J) =DATA (I)

DATA (J+l) =DATA (I+l)

DATA (I)=TEMPR

DATA (I + i) =TEMPI

ENDIF

M=N/2

IF ((M.GE.2) .AND. (J.ST.M)) THEN

J=J-M

M=MI2
GO TO i

ENDIF

J=J+M

CONTINUE

MMAX=2

IF (N.GT.MMAX) THEN

I STEP=2 *MMAX

THETA=6. 28318530717959D0/(ISIGN*MMAX)

WPR=-2. D0*DSIN (0.5D0*THETA) *'2

WPI=DSIN (THETA)

WR=I. DO

WI=0. DO

DO 13 M=I,MMAX,2

DO 12 I=M,N,ISTEP

J=I+MMAX

TEMPR=SNGL (WR) * DATA (J) - SNGL (WI) *DATA (J+ 1)

29

12

13

TEMPI=SNGL(WR)*DATA(J+l) +SNGL(WI) *DATA(J)
DATA(J) =DATA(I) -TEMPR
DATA(J+l) =DATA(I+l) -TEMPI
DATA(I) =DATA(I) +TEMPR
DATA(I+l) =DATA(I+l) +TEMPI

CONTINUE

WTEMP=WR

WR=WR*WPR-WI *WPI+WR

WI=WI*WPR+WTEMP*WPI+WI

CONTINUE

MMAX=ISTEP

GO TO 2

ENDIF

RETURN

END

C

C

C

C

-- C

C

C

-- C

C

C

C

C

C

-- C

C

C

_ C

C

C

C

-- C

C

C

-- C

C

C

C

C

-- C

C

C

THIS SUBROUTINE DOES LEAST SQUARES CURVE FIT TO 7 POINTS

FOR A 2ND DEGREE POLYNOMIAL. THE DATA IS ASSUMED TO BE SAMPLED

AT INTEGRAL INTERVALS. ANY SCALING MUST BE DONE OUTSIDE

THIS SUBROUTINE. THE 7 POINTS ARE :

P = -3, -2, -i, 0, i, 2, 3

THE POLYNOMIAL IS F(P) = A + B*P + C*P*P.

THE MAX OCCURS AT P = P0 = -B/(2*C).

FREQUENCY CORRESPONDING TO P0 IS P0*DF (DF OF DATA STREAM)

THIS DELTA IS REFERENCED TO MIDPOINT FREQUENCY OF 7 POINTS.

THE MAX VALUE IS F(P0) = A - (B*B)/(4*C).

SUBROUTINE LSCF (P0, FMAX, U_IN, IOPT)

ON ENTRY:

U IN IS INPUT ORDINATE VALUES. (7)

IOPT IS OPTION FOR 1 OF 2 THINGS

1 : FIND P0 WHERE MAX OCCURS PLUS COMPUTE MAX VALUE.

2 : COMPUTE VALUE OF POLYNOMIAL AT SPECIFIED FREQUNCY P0.

IF IOPT=2, THEN P0 IS FREQUENCY POINT TO EVALUATE POLYNOMIAL.

ON EXIT

P0 IS VALUE OF P WHERE MAX PEAK OCCURS;

THIS IS WRT CENTER POINT OF DATA.

FMAX IS VALUE OF FUNCTION AT P=P0.

REAL*4 U IN(*)

LOGICAL G FLAG
**

FIRST STEP IS TO DO LEAST SQUARES.

ALL COEFFICIENTS HAVE BEEN PRE-COMPUTED.

'A' IS -8, 12, 24, 28, 24, 12, -8 DIVIDED BY 84

'B' IS -9, -6, -3, 0, 3, 6, 9 DIVIDED BY 84

'C' IS 5, 0, -3, -4, -3, 0, 5 DIVIDED BY 84

us17 = u IN(1) + UIN(V)

30

C

C

C

C

C

C

C

C

US35 = U IN(3) + U IN(5)
A = COFI

COFI = -8.*US17 + 12.*(U_IN(2)+U IN(6)) +

24.*US35 + 28.*U IN(4)

B = COF2

COF2 = 9.*(-U_IN(1)+U_IN(7)) +

6.*(-U IN(2)+U_IN(6)) +

3.*(-U-IN (3)+U_IN (5))
C-- COF3

COF3 = 5.*US17 -3.*US35 - 4.*U IN(4)

IF (ABS (COF3). LT. 1.0E-08) THEN

PRINT*,'********* WARNING *********'

PRINT*, 'CONSTANT VALUE EQUALS ZERO - CANNOT COMPUTE A MAXIMUM"

PRINT*, 'FREQUENCY VALUE. '

RETURN

ENDIF
t

DID NOT DIVIDE BY 84 YET. DO SO FOR MAX PART BUT NOT P0.

COMPUTE PO, VALUE OF F(P) WHERE A+B*P+C*P*P = 0

COMPUTE FUNCTION AT P0; A+B*P0+C*P0*P0 = A-B**2/4C

IF (IOPT .EQ. i) THEN

P0=-0.5*COF2/COF3

FMAX = (COFI + 0.5 * P0 * COF2) /84.

ELSE

FMAX = (COFI + P0*(COF2 + P0*COF3))/84.

END IF

RETURN

END

function ranl(idum)

dimension r(97)

parameter (ml = 259200, ial = 7141, icl = 54773, rml = l.O/ml)

parameter (m2 = 134456, ia2 = 8121, ic2 = 28411, rm2 = 1.0/m2)

parameter (m3 = 243000, ia3 = 4561, ic3 = 51349)

data iff /0/

if (idum.lt.0.or.iff.eq.0) then

iff = 1

ixl = mod(icl - idum,ml)

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ixl,m2)

ixl = mod(ial*ixl + icl,ml)

ix3 = mod(ixl,m3)

do j = 1,97

ixl = mod(ial*ixl + icl,ml)

ix2 = mod(ia2*ix2 + ic2,m2)

r(j) = (float(ixl) + float(ix2)*rm2)*rml
end do

idum = 1

end if

ixl = mod(ial*ixl + icl,ml)

31

ix2 = mod(ia2*ix2 + ic2,m2)

ix3 = mod(ia3*ix3 + ic3,m3)

j = 1 + (97*ix3)/m3

if (j.gt.97.or.j-lt-l) pause

ranl = r(j)

r(j) = (float(ixl) + float(ix2)*rm2)*rml

return

end

32

Simulation Test Results

APPENDIX 2.E

These are the results of simulation 3:

MODELDATA HAS 591 TIME POINTS
MODELDATA HAS 901 TIME POINTS
WILL USE 591 TIME POINTS
DT FOR MODELDATA IS : 1.000000000
DT FOR TRUTH DATA IS : 1.000000000
OVERALL RMS MAGNITUDEERROR= 34.42346191
OVERALL RMS PHASE ERROR = 22.10563469

%
DEGREES

The results of simulation 4 are as follows:

MODELDATA HAS 1601 TIME POINTS
MODELDATA HAS 1801 TIME POINTS
WILL USE 1601 TIME POINTS
DT FOR MODELDATA IS : 1.000000000
DT FOR TRUTH DATA IS : 1.000000000
OVERALLRMS MAGNITUDEERROR= 9.227395058
OVERALLRMS PHASE ERROR = 6.498259544

%

DEGREES

These are the results of simulation 5:

MODEL DATA HAS 1601 TIME POINTS

MODEL DATA HAS 1801 TIME POINTS

WILL USE 1601 TIME POINTS

DT FOR MODEL DATA IS : 1.000000000

DT FOR TRUTH DATA IS : 1.000000000

OVERALL RMS MAGNITUDE ERROR = 5.796232224

OVERALL RMS PHASE ERROR = 4.697713375

%

DEGREES

APPENDIX 2.F

Systematic Test Results
(i) NO NOISE - Noise-free Test Cases, Station 2

(2) NOYSE - Noisy Test Cases, Station 2

(3) LIBRATION - Noise-free Tests at Station 1

(4) LIB NOISE - Noisy Tests at Station 1

The following 33 plots are the results of the
NO NOISE.FOR program. (Refer to section I part C of the test
plan.) These plots represent the amplitude, frequency, and phase
errors for the eleven skiprope frequencies running from 0.0045 Hz
to 0.0055 Hz vs. the penduluos and skiprope phases.

Moximum Amplitude Error = 0.118%

Frequency = 0.0045 Hz

m

ch

I

c5
,.. c_

to
_d

q_

q_

d

Moximum Amplitude Error = 0.255%

Frequency = 0.0048 Hz

Moximum Amplitude Error = 0.070%

Frequency = 0.0049 Hz

w

q) .

Mcximum Amplitude Error = 0.258%

Frequency = 0.0050 Hz

o

o

Moximum Amplitude Error = 0.260%

Frequency = 0.0051 Hz

Mcximum AmpLitude Error = 0.121%
Frequency = 0.0052 Hz

m

Mcximum Amplitude Error = 0.266%

Frequency = 0.0055 Hz

Mcximum Amplitude Error = 0.524%
Frequency = 0.0054 Hz

Moximum Amplitude Error = 0.185%

Frequency = 0.0055 Hz

0

Moximum Frequency Error = 0.454%

Frequency = 0.0045 Hz

Maximum Frequency Error = 0.570%
Frequency = 0.0046 Hz

w

Moximum Frequency Error = 0.590%
Frequency = 0.0047 Hz

Moximum Frequency Error = 0.267%
Frequency = 0.0048 Hz

Mcximum Frequency Error = 0.408%
Frequency = 0.0049 Hz

Moximum Frequency Error = 0.,369%
Frequency = 0.0050 Hz

Moximum Frequency Error = 0.405%
Frequency = 0.0051 Hz

%

I

%
c5

Moximum Frequency Error = 0.578%
Frequency = 0.0052 Hz

%

,,j %

%
%

Mcximum Frequency Error = 0.508%
Frequency = 0.0054 Hz

Moximum Phose Error = 0.225%
Frequency = 0.0045 Hz

Moximum Phose Error = 0.147%

Frequency = 0.0046 Hz

cbc,1

tJ

qJ

Moximum Phose Error = 0.276%

Frequency = 0.0047 Hz

Moximum Phose Error = 0.127%
Frequency = 0.0048 Hz

Moximum Phose Error = 0.311%

Frequency = 0.0049 Hz

Maximum Phase Error = 0.255%
Frequency = 0.0050 Hz

Mcximum Phose Error = 0.254%
Frequency = 0.0051 Hz

T-"

Moximum Phose Error = 0.560%

Frequency = 0.0052 Hz

Moximum Phose Error = 0.520%

Frequency = 0.0055 Hz

Mcximum Phase Error = 0.258%

Frequency = 0.0054 Hz

