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C H A P T E R  1 

NEURAL NETWORKS AND FUZZY 
SYSTEMS 

From causes which appear similar, we ezpect similar eficls. This is the sum 

total o j  all our ezperimerrlal corlcltrsions. 

David Hume 

An Inquiry Concerning Human 

Understanding 

A learning machine is any device whose actions are infiuenced by  past ezpen- 

ences. 

Nils Nilsson 

Learning Machines 

Man is a species that invents its own responses. It is out o j  this unique ability 

to invent, to improvise, his responses that cul tum are born. 

Ashley Montagu 

Culture and the Euolulion oj  Man 



NEURAL AND FUZZY MACHINE INTELLIGENCE 

This book examines how adaptive systems respond to stimuli. Systems map inputs 

to outputs, stimuli to responses. Adaptation or learning describes how data  changes the 

system, how sample data  changes system parameters, how training changes behavior. 

Neural Pre-Attentive and Attentive Processing 

Tile human visual system behaves as an adaptive system. Consider how it responds to 

this stimulus pattern: e db 
\#'hat do we see when we look a t  the Icanizsa (19761 square? We see a square with 

bright interior. We see illusory boundaries. Or do we? We recogizize a bright square. 

Technically we do  not see it, because it is not there. 
* 

The I<anizsa square exists in our brain, not "out theren in physical reality on the page. 

Out there only four symmetric ink patterns stain the page. 

In the terminology of eighteenth-century philosopher Immanuel I<ant [1783-871, the four 

ink stains are noumena, "things in themselves." Light photons bounce off the noumena 

and stimulate our surface receptors, retinal neurons in this case. T h e  noumena-induced 

sensation produces the Kanizsa-square phenomenon or perception in our brain. There 

would be no Kanizsa squares in the spacetime continuum without brains or  brainlike 

systems to  perceive them. 



Today we understand many of the neural meclianisms of perceptiol~ that I<ant could 

only guess at .  The  real time interaction of millions of competing and cooperating neurons 

produccs tlle I<anizsa square illusion [Crossberg, 19871, and everytlling we "see." 

We take for granted our Iligll-sped, distributed, nonlinear, massively parallel pre-  

a t t e n t i v e  processing.  In our visual processing we pay no attention to  how we segment 

images, enhance contrasts, or discount background luminosity. When we proccss sound 

we pay no attention t o  how our cochleas filter out high-frequency signals [Mead, 19891 or 

how our auditory cortex breaks continuous speech into syllables and words, compensates 

for rhythmic changes in speech duration, and detects and often corrects errors in pronun- 

ciation, grammar, and meaning. LVe likesvise ignore our realtime pre-attentive processing 

in the  other sense modalities, in smell, taste, touch, and balance. 

We experience these pre-attentive phenomena, but we ignore them and cannot control 

or  completely explain them. Natural selection has ensured only that  we perform them, 

ceaselessly and fast. 

Attention precedes recognition. \Ye recognize segmented image pieces and parsed 

speech units. An emergent "search light," perhaps grounded in thalamic neurons [Crick, 

19841, seems t o  selectively focus attention in as few as 70 to 100 milliseconds. We look, 

see, pay attention, then recognize. 

Neural network theory studies both pre-attentive and attentive processing of stimuli. 

This  leaves unaddressed the higher cognitive functions involved in reasoning, decision mak- 

ing, planning, and control. The  asynchronous, nonlinear neurons and synapses in our brain 

perform these functions under uncertainty. We reason with scant evidence, vague concepts, 
- - 

heuristic syllogisms, tentative facts, rules of thumb, principles shot through with excep- 

tions, and an  inarticulable pantheon of inexact intuitions, hunches, suspicions, beliefs, 

estimates, guesses, and the like. 

Natural selection evolved this uncertain cognitive calculus. Our cultural conditioning 

helps refine it. A fashionable trend in the \Vest has been to denigrate this uncertain- 

ty calculus as illogical, unscientific, and nonrigorous. We even call it "fuzzy reasoningn 

or  "fuzzy thinking." Modern philosophers [Churchland, 19811 often denigrate the entire 

cognitive framework as "folk psychology-" 



Yct we continue to  use our fuzzy calculus. With it we run our lives, families, carccrs, 

ind~lstrics, I~ospitals, courts, arn~ics, and govcrnmcnts. In all these fields wc cnlploy tlle 

~ , rodi~c ts  of cxact science, but as tools and dccision aids. Tlic final control remains fuzzy. 

FUZZINESS AS MULTIVALUEDNESS 

Fuzzy theory holds that all things are matters of degree. It mechanizes much of our 

"folk psychology." Fuzzy theory also reduces black-white logic and mathematics to  special 

limiting cases of gray relationships. Along tlie way it violates black-white "laws of logic," 

ill particular the law of noncontradiction not-(A and not-A) and the law of excluded middle 

either A o r  not-A, and yet resolves tlie paradoxes or antinomies II<line, 1980) that these 

laws generate. Does the speaker tell the truth when he says he lies? Is set A a member 

of itself if A equals the set of all sets that are not members of themselves? Fuzziness also 

provides a fresh, and deterministic, interpretation of probability and randomness. 

Mathematically fuzziness means multivaluedness [Rosser, 1952; Rescher, 19691 and 

sterns from the  Heisenberg position-momentum uncertainty principle in quantum mechan- 

ics [Birkhoff, 1936). Three-valued fuzziness corresponds to  truth,  falsehood, and indetenni-. 

nacy, or to presence, absence, and ambiguity. Multivdued fuzziness corresponds to  degrees 

of indeterminancy or ambiguity, partial occurrence of events or  relations. 

Bivalent Paradoxes as Fuzzy Midpoints 

Consider the bivalent paradoxes again. A California bumpersticker reads TRUST ME. 

Suppose instead a bumpersticker reads DON'T TRUST ME. Should we trust tile driver? 

If we do, then, as the bumpersticker instructs, we do not. But if we don't trust the driver, 

then, again in accord with the bumpersticker, we do  trust the driver. T h e  classical liar 

paradox has the same form. Does the liar from Crete lie when he says that all Cretans are 

liars? If he lies, he tells the truth. If hc tells the truth, he lies. Russell's barber is a man 



in a town whose advertises his services with the logo "I shavc all, and only, t l~ose  men who 

don't shavc thcmsclves." Who sl~aves the barber? If he shaves I~i~nsclf, thcn according to  

his logo he docs not. If Ire docs not, then according to his logo IIC does. Cor~sider the card 

that says on one side "The sentence on the other side is true," and says on the otller side 

"Tlie sentence on the othcr side is false." 

T h e  "paradoxesn have tlle samc form. A statement S and its negation not-S have the 

same truth-value t (S): 

i(S) = t(not-S) . (1) 

T h e  two statements are both TRUE (1) or both F.4LSE (0). This violates the laws of 

noncontradiction and excluded middle. For bivalent truth tables remind us that negation 

reverses t ruth value: 

So (1) reduces to  

If S is true, if t (S)  = 1, then 1 = 0. t(S) = 0 dso implies the contradiction 1 = 0. 

T h e  fuzzy o r  multivalued interpretation accepts the logical relation (3) and, instead of 

insisting that  t (S)  = 0 or t (S)  = 1, simply solves for t (S)  in (3): 

1 
i(S) = , . ( 5 )  

So the "paradoxes" reduce to  literal half-truths. They represent in the extreme the uncer- 

tainty inherent in every empirical statement and in many mathematical statements. Geo- 

metrically, t he  fuzzy approach places the paradoxes at the midpoint of the 1-dimensional 



unit hypercube [O, 11. More paradoxcs reside a t  the midpoint of n-dimensional 

I~ypcrcubes, the unique point cquid is ta~~t  to all 2" vertices. 

M ul tivaluedncss also resolves the classical soiiles paradoxes. Consider a heap of sand. 

Is it still a heap if we remove onc grain of sand? How about two grains? Three? If we 

argue bivalently by induction, we evc~ltually remove all grains and still coriclude that a 

heap remains, or that  it lias suddenly vanished. No single grain takes us from heap to 

non-heap. T h e  same holds if we pluck out hairs from a nonbald scalp or remove 5%, lo%, 

or more of the  molecules from a table or brain. We transition gradually, not abruptly, 

from a thing t o  its opposite. Physically we experience degrees of-occurrence. In terms of 

statements about the physical processes, \ve arrive again a t  degrees of truth. 

Suppose there are it grains of sand ia tlie heap. Removirig one grain leaves i z  - 1 grains 

and a truth value t(Sn-l) of the statement Sn,l that the n - 1 sand grains are a heap. 

T h e  t ruth value t(Sn-,) obeys t(Sn-l) < 1 in general. t(Sn-,) may be close to unity, 

but we have some nonzero doubt d,-l about the truth of the matter. (The argument still 

holds if there exist no doubting creatures in the universe.) For instance [Gaines, 19831, 

where O _< d,, d , ,  _< . . . 5 dn-, 5 . . . - < 1. SO t(Sn-,) approaches zero 

as rn increases to  n. If we argue inductively, we can interpret the overall inference as the 

forward chain "(If Sn, then and (If Sn-l, then Sn-2) and ... and (If S1, then So)." 

If we multiplicatively interpret the conjunction operator, then 

If we interpret the conjunction operator as the minimum operator, as discussed in the 

homework problems a t  the end of tlie chapter, then 



In both cases the implicatiorl tr11t11 valuc l(S, - So) equals zero (or sornc s~niill nun~bcr). 

We pay a truth-value fee for each application of modus ponens, of co~lcluding B from A 

and A ---t 8. Thc overall infcrencc is vacuous. This reflects the everyday epistemological 

precept that the longer an explanation, the less we tend to trust it. 

Fuzziness in the Twentieth Century 

Logical paradoxes and the lieiscnberg uncertainty principle led to the development 

of continuous or "fuzzy" logic in the 1920s and 1930s. Quantum theorists allowed for 

indeterminacy by including a third or middle truth value in the bivalent logical framework. 

The next step allowed degrees of indeterminacy, viewing TRUE and FALSE as the two 

limiting cases of the spectrum of indeterminacy. 

Polish logician Jan Lukasiewicz [Rescher, 1969) first formally developed a three-valued 

logical system in the early 1930s. Lukasiewicz extended the range of truth values from 

(0, 1/2, 1) to all rational numbers in (0, 11, and finally to all numbers in [0, 11 itself. 

Logics tha t  use the general truth function t: {Statements) ---+ [0, 11 define continous 

or "fuzzyn logics. -Logicians refer to this system as L1. The exercises a t  the end of the 

chapter develop Lukasiewicz's fuzzy logic. 

In the 1930s quantum philosopher Max Black [I9371 applied continuous logic wmpo- 

nentwise to  sets or lists of elements or symbols. Historically, Black drew the first 'f~zzy-set 

mcmbership functions. Black called the uncertainty of these structures vagueness. Antici- 

pating Zadeh's fuzzy set theory, each element in Black's multivalued sets and lists behaved 

as  a statement in a continuous logic. 

In 1965 systems scientist Lotfi Zadeh [I9651 published the paper "Fuzzy Setsn that 

formally developed multivalued set theory, introduced the term fuzzy into the technical 

literature, and inaugurated a second wave of interest in multivalued mathematical struc- 

tures, from systems to topologies. The recent emergence of fuzzy commerical products, as 



well as ncw theory, has gcncratcd a third wave of interest in multivalued systems. 

Zadcll cxtcndcd thc bivalcnt ind ica tor  furiction IA of nonfuzzy subset A of X, 

to a multivalued indicator or m e m b e r s h i p  function r n ~  : A' --, 10, 1). This allows 

us to  combine such multivalued or fuzzy sets with the pointwise operators of indicator 

functions: 

A C B iff I A ( z )  5 IB(z )  for all z in X . (14)  

T h e  membership value mA(z) measures the elementhood or degree to  which element z, 

belongs t o  set A: 

Just  as the individual indicator values I A ( z )  behave as statements in bivalent propositional 
. -  

calculus, membership values ~ ? z ~ ( z )  correspond to statements in a continuous logic. If A 

defines a fuzzy subset of the real line, as in Figure 1.7 below, then in principle we can 

graph r n ~  : R --+ [0, I] in two dimensions. In practice indicator functions IA  graph as 

step functions or rectangular pulses on the real line. 



Sets as Points in Cubes 

P'r~zzincss prevents logical certainty at tile level of black-wl~itc axio~ns. This sccrns 

unscttli~ig to some [Quine, 19811 and liberating to otllers. 

A t  tlie system level fuzziness allows us to build computer chips and systems that "in- 

telligently" control subways, automobile systems, and numerous consunler electronic and 

other devices. At this level fuzzy processing may resemble neural processing. 

Neural networks and fuzzy systems process inexact information and process it inexact- 

ly. Neural networks recognize ill-defined patterns without an explicit set of rules. Fuzzy 

systems estimate functions and control systems with partial descril>tions of system bellav- 

ior. Experts may provide this heuristic kno\vledge, or, as we illustrate in Chapters 17 - 19, 

neural networks may adaptively infer it from sample data. 

b r a 1  and fuzzy systems share a more formal mathematical property. They.sbre the 

same state space. A set of n neurons defines a sequence of n-dimensional continuous or 

"fuzzyn sets. The neurons emit bounded signals. 

The neuronal signals range from some minimum value to some maximum value, say 

from 0 to 1. At each instant the n-vector of neuronal outputs defines a fuzzy unit or fit 

vector. Each fit value indicates the degree to which the neuron or element belongs to the 

n-dimensional fuzzy set. 

The neuronal s tate  space, the set of all possible neural outputs, equals the set of all n- 

dimensional fit vectors, the fuzzy power set. Both equal the unit hypercube In = (0, 11" = 

10, 1) x . . . x [0, 11, the set of all vectors of length n and with coordinates in tjle unit 

interval [0, 11. Chapter 17 discusses fuzzy systems and associative memories, which map 

unit cubes to  unit cubes, fuzzy sets to fuzzy sets. We shall use this recent geometric view 

of sefs as poinfs [I<osko, 1987-901 throughout this book. 

The 2" vertices of In represent extremized neuronal-output combinations, as we often 

find in networks of competitive or laterally inhibitive neurons. Many feedback neural net- 

works [Hopfield, 19841 drive initial states inside the unit cube to nearest vertices. These 

systems dynamically disambiguate fuzzy input descriptions by minimizing their fuzzy en- 



tropy. The midpoillt of the cube, wllcre a fuzzy set A equals its own opposite AC, has 

max.ima1 fuzzy entropy, as we disc~lss in Cllapter 16. The black-wliitc \~crticcs have mini- 

lnal fuzzy entropy. 

Proper fuzzy sets, nonvcrtex points, A violate tllc "laws" of noncontradiction and 

excluded middle: A n AC # 0 and A U AC # X. In C11apter 16 we sllow that fuzzy 

entropy, the measure of fuzziness, balances tlle fuzzy count of the overlap A n AC and ,,, A \/A‘. M A n A  
underlap in a slmple ratio: E(A)  = H. 

There are 2" bit vectors of length n. They define the vertices of In. So the vertices 

also represent the nonfuzzy power set of the it elements 2 1 ,  . . . , x,, the set of all nonfuzz~ 

subsets of tile tt  elements. The bit value 0 in the it11 slot of a bit vector indicates the 

absel~ce of element xi in that subset. The bit value 1 indicates the presence of z, in the 

subset. The bit vector (1 0 1 0 0) indicates the subset {XI, 2 3 )  of set {z l ,  zz, 23, x4, z5)- 

Fit values equal the mebership values mA(z;) discussed above. Fit values measure 

partial set membership or degrees of elementhood. The fit value 1/5 indicates that element 

z; belongs only slightly to the fuzzy subset A. The fit value 112 indicates that z; belongs 

to fuzzy set A as much as it  does not-as much as it belongs to  the complement fuzzy set 

A'. 

Consider the set X of two elements zl and 22 .  The power set of X, denoted ZX, contains 

the four subsets of X : 2' = (0, {z,), {z2), X). These four nonfuzzy sets correspond 

to four bit vectors: 

The fuzzy power set F(zX), which contains all continuum-many fuzzy subsets of X ,  cor- 

responds to unit square. Figure 1.1 displays the fuzzy power set F(2'). 



FIGURE 1.1 Fuzzy power set F(2X) of X corresponds to the unit square 

when X = (21, z2}. The four nonfuzzy subsets in the nonfuzzy power set 2" 

correspond t o  the four corners of the 2-cube. The fuzzy subset A correponds 

to  the fit vector (1/3, 3/4) and to a point inside the 2-cube if mA(zl) = 1/3 

and mA(zz) = 3/4. The midpoint M of the unit s q u q e  corresponds to  the 

maximally fuzzy set. 

Figure 1.1 represents the fuzzy subset A as a point inside the Zdimensional unit hyper- 

cube. If A has membership degrees or fit values mA(zl) = 1/3 and mA(z2) = 3 1 4 1 0  

z1 belongs to  A less than 1.2 does-then A corresponds to the fit vector (113, 3/4f. 

The cube midpoint corresponds to the maximally fuzzy set M. The midpoint set M 

uniquely obeys the peculiar relation M = M n MC = M u MC = Me, and so 

maximally violates the bivalent laws of noncontradiction and excluded middle. The clas- 

sical paradoxes of logic and set theory correspond to midpoint phenomena. Note that the 

cube midpoint in Figure 1.1 is uniquely equidistant to all 2' vertices. The cube midpoint 

behaves as the black hole of set theory. 



Subsethood and Probability 

Elcmentliood represents a special cirsc of srrlrsetlrood. Subscthood mcaures t l ~ e  degrcc 

to wliicl~ set A belotlgs to set B, the degree to wliicli A is a subset of B. We denote this 

subsctliood measure as S(A, B): 

Subsethood provides a unified set-theoretic framework .for fuzziness and probability. For 

instance, in the simplest case A equals the singleton set { x i ) .  Then the subsethood of { x i )  

in B equals tlie membership or elcmentllood value m g ( x i ) :  

(17) follows directly from the Subsethood Theorem (22) below when we interpret ( x i )  as 

a bit vector with a 1 in the i th  slot and 0s elsewhere. 

Subset hood reveals the connect ion between fuzziness and randomness. Subset hood re- 

duces probability t o  set theory. Randomness does not depend on the fuzziness or ambiguity 

of an event. It depends on the uncertainty between certain events. Randomness equals' 

the uncertainty that arises when a nonfuzzy set B is partially contained in one of its own 

nonfuzzy subsets A'; S(A, B) = 1 since A is a subset of B. But in general multivaluedness 

holds. The converse subsethood S(B, A) is less than one but greater than zero: 

Classical set theory implicitly forbids the strict inequalities in (18). The law of excluded 

middle dictates that every set either is or is not a subset of every other set. As a result, 

for centuries theorists have had to arbitrarily define probability as a frequency ratio or 

stipulate that it obeyed certain axioms. They could not derive probability from more 

fundamental concepts. 

Fuzzy theory derives the axioms of the conditional probability measure P(BI A),  



tllc probability that B occurs given that A occurs, from the prol>crties of tile subsctl~ood 

mcasurc S ( A ,  B). If A' defines the "samplc spacen of all clemcntary outcomcs of an 

experiment, tllen A' is a "sure event" since P ( X )  = 1. Then (19)  implies that every 

probability P ( A )  equals the conditional probability P(A1X):  

P ( A )  = P ( A I X )  . 

This idcnti ty reflects the general su bsethood relationship 

On the surface the subsethood relation (21) seems absurd. How can supersdt X belong 

to one of its own subsets? How can the whole be part of one of its own parts? A' cannot 

totally belong to  A unless X = A. But X can partially belong to  A. The Subsethood 

Theorem in Chapter 16 proves that this partial containment depends directly on  the over- 

lap between X and A, the intersection X n A. Figure 1.2 illustrates the Pythagorean 

geometry of the Subsethood Theorem in three dimensions. The shaded hyper-rectangle 

defines F(2B),  the fuzzy power set of B. 



FUZZY SUBSETHOOD 

FIGURE 1.2 Subsethood Theorem in P. .X contains 3 elements, z,, 2 2 ,  

and 53, and 8 nonfuzzy subsets. Fuzzy subset B = (1/4, 1/2, 1/3) contains 

infinitely many fuzzy subsets B' such that S(B1, B )  = 1.  They define the 

shaded hyper-rectangle. S(A, B) < 1 since A Lies outside the hyper-rectangle. 

The closer A to the hyper-rectangle, the larger the subsethood S(A, B). B' 

denotes the subset of B closest to A. B' equals .4 n B and uniquely defines an 

orthogonal or Pythagorean relationship between A and B. 

- 

The Subsethood Theorem relates S ( A ,  B) ICI the magnitudes of A, B, and -4 n B: 

The ratio in (22) resembles, behaves as, and generalizes the defining ratio (19) of conditional 

probability. M ( A )  denotes the fuzzy count of fit vector A: 



h!(A) gcncralizcs tlrc classical cardinality count, wl~ich sums only 1s and 0s. In tile infinite 

case appropriate integrals replace summations. (22) implies that the fuzzy entropy E ( A )  

of A equals the degree to  whiclt A n AC contains its own superset A U AC : E ( A )  = S(A u 
A', A n Ac). 

In Figure 1.2, A = (314, 113, l/G) and B = (1/4, 112, 113). Then the closest 

subset 13' t o  A that satisfies tlie total-subsethood condition 

corresponds to  B' = (1/4 1/3 1/G), which also equals the pairwise minimum of A and B. 

(24) generalizes (14) above. As discussed in Chapter 16, the Subsethood Theorem ensures 

this in general: 

(23) implies tha t  M(A)  = 15/12 = 514, and M(A B) = 3/4. Then the Subsethood 

Theorem gives S(A,  B) = (3/4)/(5/4) = 315 = 60%. 

Relative frequency provides the clearest example of between-set fuzziness. Suppose we 

flip a coin, draw balls from urns, or shoot a t  a target. The elementary events in X are 

trials. Each ,trial is successful or unsucessful. So X does not possess fuzzy subsets in its 

event space (its sigma-algebra). Each coin flips results in a head or a tail, not something 

in between. Suppose A defines the subset of successful trials. If X contains n trials, then 

A corresponds to  a vertex of In and equals a bit vector of I s  and 0s. Suppose n~ successes 

out  of n trials. 1s indicate successes, and 0s indicate failures. The  event X equals total 

success, the bit vector of all Is. X contains 11 successes. Then, since A n A' = A, the 

S u  bsethood Theorem (22) gives 



I-Iistorically prob;:bility theorists have called the sr~lsctliood ratio in (26), or its limit, 

the "probability of success" or P(A) .  This adds only a cultural tag. The  success ratio 

i r A / t l  bel~avcs no diflercntly in its detcr~ni~iistic subsctliood framework than it did in its 

"random" framework. The relative-frequency ratio still provides a stable estimate for 

probability values in our physical, engineering, economic, and gambling models. It still 

implies all the theorems it has always implied. 

But we cannot derive the relative-frequency ratio from between-set relationships if we 

deny the strict inequality (18) and insist that  subsethood is two-valued. Bivalence forces 

us t o  assume the ratio as a theoretical primitive. 

\.l'l~cther by design or by accident we have historically followed the bivalent path in 

mathematics for almost 3,000 years. Bivalence has simplified our formal frameworks but 

a t  a cost. It has led to logical paradoxes (bivalent contradictions), unexplained primitives, 

and "randomnessn in a universe that seems to obey physical laws and where every event 

has causes. 

THE DYNAMICAL SYSTEMS APPROACH TO MACHINE 
INTELLIGENCE: THE BRAIN AS A DYNAMICAL SYSTEM 

Several engineering and scientific disciplines study how adaptive systems respond to 

stimuli. Electrical engineers study the topic as signal processing, nonlinear filtering, coding 

theory, circuit design, and adaptive control. Computer scientists study it as algorithm and . 

automata theory, computer design, robotics, and artificial intelligence. Mathematicians 

study i t  as function approximation, statistical estimation, combinatorial optimization, and 

dynamical systems. Philosophers study it as epistemology, causality, and action. Biologists 

study it as neuroscience, biophysics, ecology, evolution, and population biology. Psgcholo- 

gists study it as reinforcement learning, psychometrics, and cognitive science. Economists 

study i t  as utility maximization, game theory, econometrics, and market equilibrium the- 

ory. Cultural anthropologists study it as culture. 

M'e shall emphasize electrical engineering as we seek general principles of how adaptive 



systems proccss information. We call tlrese principles machine inlelligence principles. We 

sllall draw freely from ttie related fields of engineering and science. 

'I'l~c tcrm ariijicial inielligcncc usually refers to the computer-scientific approach to 

machine in tclligencc. This a~proacli emptlasizes symbolic processing and tree search. A1 

has become the eniblem for a popular computer-age view of the brain: brain = coinyufer. 

This view ranges from classical science-fiction speculation (the computer HAL in 2001: A 

Space Odyssey)  to  proposed space-baed weapons systems. 

We shall explore machine intelligence from a dynamicd-systems viewpoint: brain = 

dynamical system. On this view a maple leaf falling to a potential-energy minimum on 

the ground better describes brain activity than does a computer executing instructions. 

Tlie dynamical models we shall study arc cast as large systems of differential or differ- 

ence equations. The principles describe local or global interactions of nonlinear parallel 

processes. 

Some of these.machine-intelligence principles and mechanisms may explain natural phe- 

nomena and processes. Some already extend our theoretical and mathematical knowledge. 

But  ultimately they should help us build smarter machines. They should give rise to new 

computational devices-electrical, optical, molecular, plasma, fluid, or other devices. 

In this sense machine intelligence becomes an engineering discipline. Nearly a half cen- 

tury ago, Norbert Wiener [I9481 outlined the first incarnation of such a machine-intelligence 

engineering. Wiener called it cybernetics. 

We shall focus our analysis on artificial neural networks and fuzzy systems. These new, 

related systems represent broad classes of "machine-intelligentn adaptive systems. Chap- 

ters 2 - 6 describe neural network theory. Chapters 7 - 15 describe engineering applkations 

of neural networks. Chapters 16 - 19 present a geometric theory of fuzzy sets and systems 

and its neural extension to adaptive fuzzy systems. 

Neural and Fuzzy Systems as Function Estimators 

Neural networks and fuzzy systems estimate input-output functions. Both are trainable 



dynamical systems. Sample data  shapes and "programs" their time evolution. Unlike 

statistical estiniators, they estimate a firnctio~l without a matllcmatical model of how 

ou tlxtts dcpcrld on inputs. They are model-free esti~nators. Thcy " l c a r ~ ~  from experiencen 

with numerical and, sometimes, linguistic sample data. 

Neural and fuzzy systems encode sanlpled itlfor~liation in a parallel-distributed frame- 

work. Both frameworks arc numerical. We can prove tlleoren~s to  describe tlieir behavior 

and limitations. We can implement neural and fuzzy systems in digital or analog VLSI 

circuitry or  in optical-computing media, in spatial-light modulators and holograms. 

Artificial neural networks consist of numerous, simple processing units or "neuronsn 

that we can globally program for computation. \Ve can program or train neural networks . 

to store, recognize, and associatively retrieve patterns or database entries; to solve combi- 

natorial optimization problems; to filter noise from measurement data; to control ill-defined 

problems; in summary, to estimate sampled functions when we do not know t$e form of 

the functions. 

The  human brain contains roughly 10" or 100 billion neurons [Thompson, 19851. That 

number approximates the number of stars in the Milky Way Galaxy, and the number of 

galaxies in the known universe. As many as lo4 synaptic junctions may abut a single 

neuron. Tha t  gives roughly lOI5  or 1 quadrillion synapses in the human brain. T h e  brain 

represents a n  asynchronous, nonlinear, massively parallel, feedback dynamical system of 

cosmological proportions. 

Artificial neural systems may contain millions of nonlinear neurons and interconnecting 

synapses. Future artificial neural systems may contain billions of real or virtual model 

neurons. In general.'no teacher supervises, stabilizes, or synchronizes these large-scale 

nonlinear systems. 

Many feedback neural networks can learn new patterns and recall old patterns simul- 

taneously, and ceaselessly. Supervised neural networks can learn far more input-output 

pairs, or stimulus-response associations, than the number of neurons and synapses in the 

network architecture. Since neural networks do not use a mathematical model of how a 

system's output depends on its input--since they behave as model-free estimators-we can 

apply the same neural network architecture, and dynamics, to  a wide variety of problems. 
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Like brains, neural networks recog~.ize patterns we cannot even define. We call this 

property recognition without definition. Who can define a tree, a pillow, or tlleir ow11 face 

to the satisfaction of a computer pattern-recog~lition systcrn? These and most concepts we 

learn ostensively, by pointing out examples. We do not learn tliem as we learn tlie defini tion 

of a circle. We abstract these concepts from sample data, just as a cl~ild abstracts the color 

red from observed red apples, red wagons, and other red things, or as Plato abstracted 

triangularity from considered sample triangles. 

Recognition without definition characterizes much intelligent behavior. It enables sys- 

tems t o  generalize. Dogs, lizards, and slugs recognize multitudes of unforeseen, complex 

patterns without, of course, any ability to define them. Descriptive natural languages . 

developed only yesterday in human evolution. Yet a great deal of modern philosophy, 

influenced by formal logic and behaviorist psychology, has insisted on concept definition 

preceding recognition or even discussion. Below we discuss how this insistence, has helped 
..:, . .- C 

shape the field of artificial intelligence and its emblem, the expert system. 

Neural networks store pattern or function information with distributed encoding. They 

superimpose pattern information on the same associative-memory medium--on the many 

synaptic connections between neurons. Distributed encoding enables neural networks to  

complete partial patterns and "clean upn noisy patterns. So it helps neural networks 

estimate continuous functions. 

Distributed encoding endows neural networks with fault tolerance and "graceful degra- 

dation." If we successively rip out handfuls of synaptic connections from a neural network, 

the network tends to  smoothly degrade in performance, not abruptly fail. Computers and 

digital VLSI chips do  not gracefully degrade when their components fail. ~atural 'selection 

seems to  have favored distributed encoding in brains, a t  least in sections of brains. 

Neural networks, and brains, pay a price for distributed encoding: crosstalk. Distribut- 

ed encoding produces crosstalk or interference between stored patterns. Similar pat terns 

may clump together. New patterns may crowd out older learned patterns. Older patterns 

may distort newer patterns. 

Crosstalk limits the neural network's storage capacity. Different learning schemes pro- 

vide different storage capacities. The number of neurons bounds the number of patterns a 



neural network can store reliably with the simplest u~lsuptrvised learning schemes. Even 

for more sopllisticatcd supervised learning scliemes, storage capacity ultitnately depends on 

tlle numl>cr of ~lctwork neurons and synapses, as well as OII t l~cir function. Dimctr~iotralii!~ 

l imifs  capacily. 

Biological neurons and synapses motivate tllc neural network's topology and dynamics. 

We interpret neurolis as simple input-output functions, tl~resliold switches for two-state 

neurons and asymptotic threshold switches for continuous neurons. We interpret synapses 

as adjustable weights. In neural analog VLSI chips [Mead, 19891, operational amplifiers 

model nonlinear neurons, and resistors model synapses. 

The  overall nctwork behaves as an adaptive function estimator. Indeed commercial 

adaptive estimators are simple, usually linear, neural net\vorks. These include antennae 

beam formers, liigli-speed modems, and echo-cancellers for long-distance telephone calls. 

Neural Networks as Trainable Dynamical Systems 

Neural networks geometrize computation. Network activity burrows a trajectory in a 

state space of large dimension, say R. Each point in the state space defines a snapshot 

of a possible neural network configuration. 

The  trajectory begins with a computational problem and ends with a computational 

solution. The  user or the environment specifies the system's initial conditions, which 

define where the trajectory begins in the state space. In pattern learning, the pattern to 

be learned defines the initial conditions. In pattern recognition or recall, the pattern to  be 

recognized defines the initial conditions. 

Most of the trajectory corresponds to Iransient behavior or con~putations. Synaptic 

values gradually change to  learn new pattern information. Neuro~ial outputs fluctuate. 

The  trajectory ends where the system reaches equilibrium, i f  it ever reaches equilibrium. 

In the simplest and rarest case, the equilibrium attractor is a fixed poin t  of the dynamical 

system. Most popular neural networks converge to fixed points. In more complicated cases 

the equilibrium attractor is a limit cycle or limit torus. In Chapter 4 we discuss a crude 



rnctl~od for storing discrete time-varying patterns as limit cycles in feedback networks. Tlie 

equilibrium attractors are robust or structurnlly stable if small perturbations do not distort 

or destroy t l~cm.  

In general, and in most dynamical systen~s, the equilibrium attractor is apetiodic 

or c l ~ a o t i c .  Oiice the network enters this region of tlie state space, it wanders forcv- 

er  witliout apparent structure or order. Yao and Freeman [1990] have used dynamical 

neural models and time-series data  to argue that rabbit olfactory bulbs process odor in- 

formation with chaotic attractors. As discussed in the homework problems, the function 

x1;+1 = c xk (1 - zk) behaves as a chaotic dynamical system for values of c near 4 and 

z values in the unit interval [0, 1). 

In Chapter 3 we discuss global Lyapunov functions for proving that certain feedback 

neural networks converge to  fixed points from any initial conditions. Geometrically we can 

view the Lyapunov function as a surface sculpted by learned pattern information, as in 

Figure 1.3. 

Figure 1.3 illustrates the  geometry of fixed-point stability in feedback neural networks. 

Patterns behave as rocks on the  rubber sheet of learning. The patterns, as well as "spuri- 

ous" or  unlearned patterns, dig out attractor basins in the state sp- and tend to rest at 

the local Lyapunov minimum of the attractor. The  Lyapunov sheet changes shape as the. 

system learns new patterns. Input patterns Q rapidly classify to  nearest stored neighbors 

as if they were ball bearings rolling into local depressions in a gravity field. In a fixed-point 

attractor basins the state-trajectory balls stop a t  the local minima (or hover arbitrarily 

close to  it). In limit-cycle attractors, the ball Q would rotate in an elliptical orbit inside 

the attractor basin. In limit-tori attractors, Q ~vould cycle toroidally in the attractor basin, 

as if, in R3, winding around the surface of a bagel. In chaotic attractors, Q \vould wander 

aperiodically within the attractor region. 

In all tllese cases, the number of attractor basins does not affect the speed of conver- 

gence, the rate  a t  which Q falls into the a t  tractor basin. The dimensionality of the s tate  

space also does not in principle affect the convergence rate. In practice, Q converges ex- 

ponentially quickly. This suggests that global stability may underlie our biological neural 

networks' ability to  rapidly recognize patterns, generate answers, and exhibit appropriate 



muscle reflexes independent of tlie amount of pattern information in our brains. Computer- 

type storage devices tcrid to slow as tlte number a r~d  co~nplcxity of patterns stored in t l ~ e m  

FIGURE 1.3 Global stability of a feedback neural network. Learning en- 

codes the vector patterns PI,  Pz, . . . by gradually sculpting a Lyapunov or .. 

"energyn surface in the augmented state space R"+'. Input vector pattern Q 
I, 

rapidly "rollsn into the nearest attractor basin, where the system classifies Q , 
as a learned pattern P or misclassifies Q as a spurious pattern. Q's descent 

rate does not depend on the number of stored patterns. 
- 

Mathematically we can describe the time evolution of the neural network by the (au- 

tonomous) dynamical system equation 



wherc thc ovcrdot dcnotes time differentiation. The state vector x ( t )  de ;crib= all neurorzal 

and synaptic valucs of the neural network a t  time t. The neural network reaches steady 

slalc wllcrl 

liolds indefinitely or until new stimuli perturb the system out .of equilibrium. Neural 

compu tatiorz seelis to identify the steady-state condition (28) wi tll the solution of a com- 

putational problem, whether in pattern recognition, image segmentation, optimization, or 

numerical analysis. 

M'e can locally linearize f by replacing f with its Jacobian matrix of partial derivatives 

J. Tile eigenvalues of J describe the system's local belzavior about an equilibrium point. 

For instance, if all eigenvalues have negative real parts, then the local equilibrium is a fixed 

point and the system converges to it exponentially quickly. More abstractly, 'generalized 

eigenvalues or Lyapunov ezponenis describe the underlying dynamical contraction and 

expansion that may produce chaos. 

We can classify neural network models according as they learn with supervision (pattern- 

class information) and according as they contain closed synaptic loops or feedback. Figure 

1.4 provides a rough taxonomy of several popular neural network models. 
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FIGURE 1.4 Taxonomy of neural network models. 

Supervised feedforward models provide the most tractable, most applied neural models. 

We discuss these stochastic gradient systems in Chapter 5, and mention recent attempts to 

extend these supervised systems into the feedback domain. Unsupervised feedback mod-' 

els provide the most biologically plausible, but mathematically most complicated, models. 

These networks simultaneously learn and recall patterns. Both neurons and synapses 

change state when these systems learn and when they recall, recognize, or reconstruct 

pattern information. Chapter 6 proves global stability for many of these adaptive dynam- - 
ical systems in the RABAM Theorem. Unsupervised feedforward neural networks tend to 

converge to locally sampled pattern-class centroids, as discussed in Chapters 4,6, and 9. 

Fuzzy Systems and Applications 

Fuzzy systems store banks of fuzzy associations or commonsense "rules." A fuzzy traffic 

controller might contain the fuzzy association "If trafic is heavy in this direction, then keep 



the light greccn longer." Fuzzy pllenomena admit degrees. Some traffic configurations are 

henvier than otl~ers.  Some green-light durations are longer than others. The  single fuzzy 

association (IiEAVY, LONGER) encodes all tllese combinations. 

Fuzzy systems are even newer than ncural systems. Yet already engineers have suc- 

ccssfully applied fuzzy systems in many commercial areas. Fuzzy systems uintelligently" 

automate subways; focus cameras and camcorders; tune color televisions, control automo- 

bile transmissions, cruise controllers, and emergency braking systems; defrost refrigerators 

and control air conditioners; automate washing machines and vacuum sweepers; guide 

robot-arm manipulators; invest in securities; control traffic lights, elevators, and cement 

mixers; recognize Kanji characters; select golf clubs; even arrange flowers. 

Most of these applications originated in Japan, though fuzzy products are sold and ap- 

plied tl~roughout the world. Until very recently, Western scientists, engineers, and math- 

ematicians have overlooked, discounted, or even attacked early versions of f u ~ z y  theory, 

usually in favor of probability theory. Below, and especially in Chapter 16, we examine this 

philosophical resistance in more detail and present a new geometrical theory of continuous 

o r  ufuzzy" sets and systems. 

Fuzzy systems "reason" with parallel associative inference. When asked a question or  

given an input, a fuzzy system fires each fuzzy rule in parallel, but t o  different degree, to. 

infer a conclusion or output. Thus fuzzy systems reason with sets, "fuzzyn or  continuous 

sets, instead of bivalent propositions. This generalizes the Aristotelian logical framework 

that  still dominates science and engineering. In one second a digital fuzzy VLSI chip 

may execute thousands, perhaps millions, of these parallel-associative set inferences. We 
. - 

measure such chip performance in FLIPS, fuzzy logical inferences per second. 

Fuzzy systems estimate sampled functions from input to output. They may use linguis- 

tic (symbolic) or numeric samples. An expert may articulate linguistic associations such 

as (HEAVY, LONGER). Or a fuzzy system may adaptively infer and modify its fuzzy 

associations from representative numerical samples. 

In the  latter case, neural and fuzzy systems naturally combine. The  combination 

resembles an  adaptive system with sensory and cognitive components. Neural parameter 

estimators embed directly in an  overall fuzzy architecture. Neural networks "blindlyn 



generate and refi:le fuzzy rules from training data. Chapters 17-19 describe and illustrate 

tllesc adaptive fuzzy systcms. 

Adaptive fuzzy systems learn to control co~nplex processes very much as we do. 'l'lrey 

begin wit11 a few crude rules of thumb that describe the process. Experts may give them 

the rules. Or they lnay abstract tlie rules from observed expert bel~avior. Successive 

experience refines the rules and, usually, improves performance. 

Chapter 18 applies this adaptive cognitive process to backing up a truck-and-trailer 

cig t o  a loading dock. (A  supervised neural system can also solve this problem, though 

a t  much greater computational cost. So far the truck-and-trailer dynamical system has 

eluded mathematical characterization.) The fuzzy system quickly learns a set of governing ' 

fuzzy rules as it samples a.ctual truck-and-trailer trajectories. Additional training sanlples 

improve only marginally the fuzzy system's performance. This properly is better experi- 

enced than explained. As an exercise for the reader, you might try backing yqur car into 

the same parking space five times from five different starting positions. 

INTELLIGENT BEHAVIOR AS ADAPTIVE MODEL-FREE 
ESTIMATION 

Below we discuss neural and fuzzy systems in more detail. First we examine the 
. , . 

properties neural and fuzzy systems share with us and, more broadly, with all intelligent - 
.*, 

systems. These properties reduce to the single abstract property of adaptive model-free 

function estimation: Intelligent systems adaptively estimate continuous functions frum data 

without specijying mathematically how outputs depend on inputs. We now elaborate this 

thesis. 

A func t ion  f ,  denoted f : A' -, Y, maps an input domain A' to  an output range Y. 

For every element z in the input domain X, the function j uniquely assigns the element 

y in the output range Y. We denote this unique assignments as y = f (2). f (z) = z3 

defines a cubic function. f(zl, 2 2 ,  zs) = (zl, 2 2 ,  z: - 2;) defines a "saddlen or 

hyperbolic-paraboloid vector function in physical or 3-dimensional space @. Pressure is 



a function of tcmpcrature, mass of e n e r a  (e = m c2),  gravity of mass, erosion of gravity, 

consumption of income. Functions define causal hypotl~escs. Science and engineering paint 

our picturcs of tlrc univcrse with functions. 

Humans, animals, reptila,  amphibians, and others also est in~ate  functions. We d l  re- 

spond t o  stimuli. We associate responses with stimuli. We associate actions with scenarios, 

class labels with patterns, effects with causes. Equi\ralently, we map stimuli to  responses. 

Mathematically, all these systems transform inputs to outputs. The  transformation 

defines the input-output function f : X -+ Y. Indeed the transformation defines the 

system. We can operatively characterize any system-atomic, molecular, biological, em- 

logical, economic or legal, geological, galactic-by how it transforms input quantities into ' 

output quantities. 

We call. system behavior "intelligentn if the system emits appropriate, problem-solving 

responses when faced with problem stimuli. The system may use an  associatiye memory 

embedded in the resistive network of an  analog VLSI chip or embedded in the synaptic 

webs of its brain. Or the system may use a mathematical algorithm to  search a decision 

tree, as in computer chess programs. 

Generalization and Creativity 

Intelligent systems also generalize. Their behavioral repertoires exceed their experience. 

Eightenth-century philosopher David Hume saw why: Intelligent systems associate similar 

responses with similar stimuli. Small input changes produce small output change%.-Hence 

they estimate continuous functions. The pilot lands the airplane at night the same way 

if only a few of the runway lights are out or if the new runway differs only sligl~tly from 

more familiar runways. The  leopard stalks like prey in like ways in like circumstances. 

Each minnow in a school smoothly adjusts its swimming behavior t o  the position of i ts 

smoothly moving neighbors. 

Function continuity accounts for much novel or creative behavior, if not all of it. We call 

system behavior 'noveln if the system emits appropriate responses when faced with new or 



unexpected stirnuli. "Novel ideas," says behaviorist psycllologist B. F .  Skinner [1953], are 

"responses never made before under tlic same circumstances.. . .Novel con ti ngencies generate 

novel forms of bcliavior." Usually these new stimuli resenlblc kriowrr or learned stimuli, 

and our responses usually resemble known responses. 

Geometrically, wlien systems generaliu: or "create" they map stimulus balls to response 

balls. Consider a known stimulus-rcsponse pair (x, y). Sti~nulus x defines a point in the 

stimulus space S ,  the set of all possible stimuli for the problem at  hand. In practice S 

often corresponds to the real Euclidean vector space Rn. Response y defines a point in 

the response space R, which may correspond to RP. 

Now imagine a stimulus ball Bx centered about stjmulus x and a response ball By 

centered about response y. All  the stimuli x' in Bx resemble stimulus x. The closer 

stimulus x' is to stimulus x, and hence the smaller the distance d(xl,x), the more x' 

resembles x. The responses y' in By behave similarly. ,. 

Suppose y = f (x)  for some unknown continuous function f : Rn -, RP. The function 

f defines the sampled system. Suppose further that f generates the response ball from 

the stimulus ball: By = f (B,). So for every similar response y' in By, we can find some 

similar stimulus x' in Bx such that y' = f(x'). Formally f maps the stimulus ball onto 

to  the  response ball. 

(We use the term "ball" loosely. Technically, f (B,) need not define an open ball in RP. 

Thus we measure By with a volume measure below in (29). The Open Mapping Theorem in 

real analysis [Rudin, 19741 implies that all bounded onto linear transformations f map the ? 

open ball Bx to some set in RP that contains the open ball By, where y = j (x). At best 

we &n only locally approximate most system transformations f as linear transfoimBtions.) 

Then we can measure the creat ivi ty CB,( f )  of system j, given the stimulus ball Bx, 

by the volume ratio 

where the V operator (Lebesgue measure) measures ball volume in Rn or RP. CB,, crude 

as i t  is, captures many intuitions. It also resembles a spectral transfer function. 



Consider tlie cx t ren~e  cases of infinite and zero creativity. For a fixed nondegenerate 

rcspollsc ball By, tlic stimr~lus ball B, co~itracts to x, tllc c~.cativity measure CB,(j) 

increases to  infinity. (The point x I i a s  zero volume.) CB,( f )  also increases to infinity if 

the  stimulus ball is constant and nondegenerate but the response ball By expands witllout 

bound as its radius approacl~cs infinity. In both cases an infinitely creative system emits 

infinitely many responses when presented with, in the first case, a vanishingly small number 

of stimuli or, in the second case, a fixed set of stimuli. 

Infinite creativity need not represent infinite problem solving. T h e  reinforcing environ- 

ment selects "solutions" from our varied or creative responses. Most creative solutions are 

impractical. We can emit creative responses without solving proble~ns or contributing to 

our genetic fitness. Sollwtimes we call these responses "art" or "play." 

At  the other extreme, zero creativity occurs wl~en the response ball By vanishes or 

when the  stimulus ball expands without bound as its radius grows to  infinity.' In the first 

case the  system f is a constant function. It  maps all stimuli in Bx to  a single value y in 

R*. Such an  j is "dumbn or "dull." In the second case, for an infinite-radius stimulus 

ball Bx, the  stimuli overwhelm the system's response repertoire. Such systems resemble 

classical pattern-recognition devices that are sensitive only t o  well-defined, well-centered 

patterns (faces, zip codes, bar codes). 

Small variations in input provide the simplest novel stimuli. T h e  physical or cultural 

environment may produce these variations. Or we may systematically produce them as 

grist for our analytical mill. We may vary stimuli to solve a crossword puzzle, to  fit physical 

variables t o  astronomical data, or to  formulate and resolve a mathematical conjecture. - 
\Ve are  all for\vard-looking creatures. We tend not to see the gradual causal chains that 

precede our every action, idea, and innovation. Even Beethoven's Fifth Symphony appears 

less a discontinuity when we examine Beethoveen's notebooks and a variety of preceding 

musical compositions by him and by other composers. 

Variation and selection drive biological and cultural evolution. Physical and cultural 

environments drive the selection process. Function continuity, and other factors, drive 

variation. 

Nature and man experiment with local variations of input parameters. This generates 



I(.cal variations of output parameters. Tllen sclcctiorl processes f i l  ter the new outputs. 

More accurately, tllcy filter tllc corresponding ncw systcnis. Wc call t l ~ e  new systems 

"win~~crs"  or "fit" if  tllcy pass tllrougl~ thc sclcction filtcrs, "losers" or "unfit" if t l~cy  do 

not pass through. 

Variation and sclcction rates may vary, especially ovcr long strctchcs of geological or 

cultural time. Different perturbed processes unfold at  different speeds. So some evolu- 

tionary stretches appear more "punctuated" than others [Gould, 19801. This means some 

measures of change-ulti mately time derivatives-are nonlinear. It  does not mean that 

the underlying input-ou tpu t functions are discontinuous. 

Learning as Change 

Intelligent systems also learn or adapt. They learn new associations, new patterns, new 

functional dependencies. They sample the flux of experience and encode new information. 

They compress or quantize the sampled flux into a small, but statistically representative, 

set of prototypes o r  exemplars. Sample data changes system parameters. 

"Learningn and "adaptation" are linguistic gifts from antiquity. They simply mean 

parameter change. The parameters may be numerical weights in an  inner-product sum, 

average neurotransmitter release rates a t  synaptic junctions, or gene (allelle) frequencies 

a t  chromosonal loci in populations. 

"Learning" usually applies to synaptic changes in brains or nervous systems, coefficient 

changes in estimation or control algorithms or devices, or resistor changes in andlog VLSI 

circuitry. Sometimes we synonymously apply "adaptationn to  the same changing param- 

eters. In evolutionary tlleory "adaptationn applies to positive changes in gene frequencies 

[M'ilson, 19751. 

In all cases learning means change. Formally, a system learns if and only if the system 

parameter vector or matrix has a nonzero time derivative. In neural networks we usually 

represent the synaptic web by an adjacency or connection matrix M of numerical synaptic 

values. Then learning is any change in any synapse: 



We can learn well or lcarri badly. But wc cannot leara witl~out changing, and wc ca111lot 

cllangc witliout Icarni~lg. 

Lcarning laws dcscribc tlic syiiaptic dynaniical system, how t h e  systern encodes in- 

formation. They determine liow the synaptic-web process unfolds in time as the system 

samples new information. This shows one way that neural networks compute with dynam- 

ical systems. Neural networks also identify neural activity with dynamical systems. Tllis 

allows the systems to dccode information. 

In principle \ve can harness any dynamical system to encode and decode some informa- 

tion. We can view a kinetic swirl of molecules, a joint population of lj-nses and rabbits, and 

a solar system as systems that transform input states to output states. Initial conditions 
.+ I - 

and perturbations encode questions. Transient behavior computes answers. Equilibri- 

um behavior provides answers. In the extreme case we can even view the universe as a 

dynarnical-system "computer." A godlike entity may choose Big-Bang initial conditions, 

and there are infinitely many, to encode certain information or to ask certain questions. 

The dynamical system computes as the universe expands transiently. Universal equilibri- 

um behavior could represent the computational output: a heat-death pattern or perhaps 

a periodic or chaotic oscillation of expansion and contraction. 

Consider mowing a lawn of green grass. The mower "teachesr the lawn the short-grass 

pattern. The lawn consists of a parallel field of grass blades. Grass blades learn what they 

are cut. The lawn behaves as a semi-permanent, yet plastic, information storage medium. 

It tolerates faults and distributes cut patterns over large numbers of parallel units. We 

can mow our name in the lawn, and read or decode it from a rooft'top. In principle we can 

encode all known information in a sufficiently big la\vn. Eventually the lawn will forget 

this information if we do not resample comparable data, if we do not re-mow the lawn to 

a similar shape. 

Ultimately learning provides only a means to some computational end. Neural networks 

learn patterns or functions or probability distributions to recognize future patterns, filter 



future inr u t streams of data, or solve fu turc combinatorial optimization problems. Fuzzy 

systcms learn associative rr~les to cst i~natc  functions or control systems. We climb the 

ladder of learning and kick it away whcn we reach the roof of computation. We care how 

the learned parameter perforins in some computational system, not how it was learned, 

just as we applaud the piano rccital and not the practice sessions. 

Neural and fuzzy systems ultimately learn some unknown probability (subsethood) 

function y(x). The probability density function Ax) describes a distribution of vector 

patterns or  signals x, a few of which the neural or fuzzy system samples. When a neural or 

fuzzy system estimates a function / : X -+ Y, it in effect estimates the joint probability 

density y(x,  y). Then solution points (x, j ( x ) )  should reside in high-probability regions 

of the input-output product spacc A' x 1;. 

M1e do  not need to learn if we know p(x). We could proceed directly to our computa- 

tional task with techniques from numerical anal~sis ,  .wmbinatorial optimization, calculus 

of variations, or any other mathematical discipline. The  need to  learn varies inversely with 

the quantity of information or knowledge. .- 

Sometimes the patterns cluster into exhaustive decision classes Dl, . . . , DL. T h e  deci- .:.- -*. 

sion classes may correspond to  high-probability regions o r  "mountains." (If the pattern 

vectors are  two-dimensional, then p(x) define. a hilly surface in three-dimensional space . ,  

P.) Then class boundaries correspond to  low-probability regions or "valleysn~.on the . ",* , "  

probability surface. ,.:~ 

Supervised learning uses class-membership information. Unsupervised learning does 

not. An unsupervised learning system processes each sample x but does not 'known that 
* 

x belongs to  class D; and not to class D,. Unsupervised learning uses unlabelled samples. 

Neither supervised nor unsupervised learning systems assume knowledge of the underlying 

probability density function p(x). 

Suppose we want to train a speech-recognition system a t  an international airport. 

We want the German lightbulb to light up when someone speaks German to the speech- 

recognition system, the Hindi lightbulb to light up when someone speaks Hindi, and so on. 

T h e  system learns as we feed it training waveforms or spectrograms. 

We supervise the learning if wc label each training sample as German, Iiindi, Japanese, 



etc. We may do this to computc an error. If tlie English lightbull> liglits up for a Gel-man 

sample, wc inay algoritl~~nically ~ ~ t ~ l i i s l ~  tlle system for tl~is misclassification. 

A n  unsupervised systcnl learns only Trow the raw training samples. M'e do 1101 i~~d ica tc  

language class labcls. Unsupervised systelns adaptively cluster like pattcrns wit11 like pat- 

terns. T l ~ e  specch-rccognitiori syste~n gradually clumps German speccll patterns togetl~er. 

In competitive learning, for instance, tlie system learns class centroids, centers of pattern 

mass. 

Unsupervised learning may seem difficult and unreliable. But most learning is unsu- 

pervised, since we do not know accurately the labels of most sample data, especially in 

real time processing. Every second our biological synapses learn without supervision on a 

single pass of noisy data. 

SYMBOLS VS. NUMBERS: RULES VS. PRINCIPLES 

We all share another property: We cannot articulate the mathematical rules that de- 

scribe, if not govern, our behavior. We can ask a violinist how she plays, and she can tell 

us. But  her answer will not be a mathematical function. In general her answer will not 

enable us to reproduce her behavior. 

All lifeforms recognize vast numbers of patterns. The most p i k t i v e  patterns relate to 

how an organism forages, avoids predators, and reproduces [Wilson, 19751. 

On this planet only man articulates rules, and he articulates very few. \ire articulate 

some rules in grammar, common law, and science ("physical lawsn). 'Yet all our -natural 

languages, living and dead, and all our systems of law llave culturally evolved without 

conscious design and not in accord with articulated principles [Hayek, 19731. To some 

extent this also holds for our accumulated knowledge of medical, biological, and social 

science. 

There have been exceptions, and the exceptions have helped create the field of artificial 

intelligence. Last century linguists developed the articulated language Esperanto. Mathe- 

matician Giuseppe Peano similarly devised the language Interliiigua. A fcw fans still learn 



and spzak Esperanto and It~tcrlingua, but far fewcr s p d  them than speak Latin. This 

ceritury computer scientists have consciously created tlie many computer I>rogrnni~~ii~ig lan- 

guages. Today programmers frequently use C, Pascal, and even Fortran, and in frcque~itly 

use Algol and Jovial. 

Computer scientists developed artificial iritelligence in large part around the computer 

language Lisp, or lisf processing, and Inore recently around Prolog, or logic pi-ogi.ainming. 

Lisp and Prolog process symbols and lists of symbols. Symbolic logic, the bivalent propo- 

sitional and predicate calculi, underlies their processing structure. 

Expert System Knowledge as Rule Trees 

A1 systems store and process propositional rules. The rules are logical i?lplications: 

IF A, THEN B. They associate actions B with conditions A. The rule antecedents and 

consequents correspond to step functions defined on their universes of discourse. One part 

of the input space activates or "firesn A as true, and the other part does not activate A. 

Collections of rules define "knowledge basesn or "rulebases." The rule A -, B local- 

ly structures the knowledge of A and B as a logical implication. The  knowledge base 

globally structures the rules as an acyclic tree (or forest). The logical-implication paths 

A -+ B -, C -+ D -+ . . . flow from the tree's root node- or antecedents to its leaf 

nodes or consequents. The term knolcledge base stems from the computer-scientific term . 

database. Because of the tree structure of knowledge bases, we might more accurately call 

them knowledge trees. Chapter 4 discusses fuzzy cognitive maps, which use feedback and 

vector-matrix operations to convert knowledge trees to kno~vledge networks. 

I<nowledge engineers search the knowledge tree to enumerate logical paths. Path 

enumeration defines the injerence process. Forward-chaining inference proceeds from 

knowledge-tree antecedents to consequents. Backward-chaining inference proceeds from 

consequents or  observations to plausible antecedents or hypotheses. Forward-chaining 

inference answers what-if question. It derives effects from causes. Backward-chaining in- 

ference answers why or how-come questions. It suggests causes for observed effects. Path- 



cnu~neratiorl complexity inc rcases rlo~llincarly with the number of rules storco. Realtime 

~xitltlr e n ~ ~ ~ n e r a t i o n  i n  Iargc knowledge trccs n-ray bc co~nbinatorially prohibitive, rcqr~irirlg 

I~curistic or al>proxirnatc scarcli strategies [Pearl, 1954). 

I(nowlcdgc crlgincers a.cquire, storc, and process the bi~alcnt  rules as symbols, not as 

numerical cnti ties. This oftc11 allows knowlcdge cngirlcers to rapidly acquire structured 

knowledge from experts and to eficiently proccss it. But it forces experts to articulate 

the propositional rules that approximate their expert behavior, and this they can rarely do. 

Symbolic vs. Numeric Processing 

Symbolic processing fits naturally in the brain-as-computer framework. Language 

strings model thoughts or shortterm memory. Rules and relations between language strings 

model longterm memory. Programming replaces learning. Logical inference replaces time 

evolution and nonlinear dynamics. Feedforward flow through knowledge trees replaces 

feedback equilibria. 

But  we cannot take the derivative of a symbol. We require a sufficiently continuous 

function. Symbol processing precludes mathematical analysis in the traditional senses 

of engineering and the physical sciences. The symbolic framework allows us to quickly 

represent structured knowledge as rules, but prevents us from directly applying the tools of 

numerical mathematics and from directly implementing A 1  systems in large-scale integrated 

circuits. 

Figure 1.5 provides a taxonomy of model-free estimators. The taxonomy divides the 

knowledge type into structured (rule-like) and unstructured types and divides the frame- 

work into symbolic or numeric. All entries define model-free estimators because users need 

not state how outputs mathematically depend on inputs. 
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FIGURE 1.5 Taxonomy of model-free estimators. User need not state how 
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Figure 1.5 outlines the advantages and disadvantages of machine-intelligent systems. 

A1 expert systems exploit structured knowledge, when knowledge engineers can acquire it, 

but store and process it outside the analytical and computational numerical framework. 

Neural networks exploit their numerical framework with theorems, eacient numerical 

algorithms, and analog and digital VLSI implementations. But neural networks cannot 

directly encode structured knowledge. They superimpose several input-output <amples 

(XI, y l ) ,  (XZ, y2), . . . , (x,, x,) on a black-box web of synapses. Unless we check all 

input-output cases, we do not know what the neural system has learned, and in general 

we do not kno\\- what it will forget when it superimposes new samples ( x k ,  yc) atop the 

old. We cannot directly encode the commonsense traffic-light rule "If traffic is heavy in 

one direction, keep the light green longer in that direction." Instead we must present 

the system with a suficiently large set of input-output pairs, combinations of numerical 

traffic-density measurements and green-light duration measurements. 



Fuzzy Systems as Structured NumericaI Estimators 

Fmzy systems directly encode structured knowledge but ici a nurncrical framework. We 

entcr the fuzzy association (I-IEAVY, LONGER) as a single entry in a FAM-rule matrix. 

Each entry defines a fuzzy associative memory (FAM) "rulen or input-output transforma- 

tion. In Chapter 17 we discuss the fuzzy control of an inverted pendulum. Figure 1.6 

shows a bank of FAM rules suficient t o  control a n  inverted pendulum. 

FIGURE 1.6 Bank of FAM rules to control an inverted pendulum. Each 

entry in the FAM matrix defines a fuzzy associ~tion between output fuzzy sets 

and paired input fuzzy sets. 

8 ,  A@, and v define fuzzy variables. Fuzzy variables 8 and A0 define the system's state 

variables. The  angle fuzzy variable 0 measures the angle the pendulum shaft makes with 

the vertical and ranges from -90 to  90. The  angular velocity fuzzy A0 variable measures 



tllc ir~stantanwus rate of clrangc of a ~ ~ g l c  valucs. In  practice it rrlcasurcs tlrc differcncc 

bctwvcct~ succcssivc angle valucs. Output fr~zz)' \*ariable v rncasurcs tllc currcnt to a nlotor 

col~trollcr tllat adj~rsts t l ~ c  per~dulirri~ sliaft. 

Facl~ fuzzy variable can assurnc five fuzzy-sct \.alucs: Negative h4cdiu1n (NM) ,  Ncgativc 

Srnall (NS), &ro (ZE), Positivc Smdl (I'S), and Positive Medium (I'M). l'llc cr~try at t l ~ c  

ccrltcr of the FAM matrix dcfincs the steady-state FAA.{ rule: "IF 0 = ZE A N D  A0 

= ZE, THEN u = ZE." 

M'e usually dcfinc the fuzzy-sct values NM, . . ., Phl as trapczoids or triangles over 

regions of the real line. For thc fuzzy angle variable 0, we can define ZE as a narrow 

triangle centered at the zero value in tlic interval [-go, 901. Tllen tlie angle value 0 be- . 

long to tllc fuzzy set ZE to degree, 1. T l ~ e  anglc values 3 and -3 rnay belong to ZE only to  

degree O.G. Figure 1.7 shows seven trapezoidal fuzzy-set values assumed by fuzzy variable 0. 

FIGURE 1.7 Seven trapezoidal fuzzy-set values assumed by fuzzy variable 

0.  Each value of 0 belongs to each fuzzy set to some, but usually zero, degree. 

The exact value 3 belongs to the zero fuzzy number ZE to  degree 0.6, to the 

positive small fuzzy number PS to degree .a. and to positive medium PM to 



dcgrcc 0. 

Fr~zzy systcnls allow uscrs to articr~latc l i~~gr~si t ic  FAM rules by cntcring valrrcs io a 

FAM rnatrix. Once a fuzzy cnginccr dcfincs variallcs and fuzzy scts, tllc cnginccr can 

dcsign a prototype fuzzy system in minutes. 

Chapter 17 sllows that a large neural-type rnatrix cncodes each FAM rule. Wllen fuzzy 

variables assume fuzzy subsets of the real line, as when w e  dcfine ZE as a triangle centered 

about 0, then these associative matrices have uncountably infinite dimension. This endows 

each FAM rule with rich structure and "memory capacity." FAM systems do not add these 

matrices together, wllicll avoids neural- type crosstalk. 

A virtual representation schenle allows us to exploit the coding and capacity proper- 

tics of these infinite matrices without actually writing them down. This holds for binary 

input-output FAMs (BIOFAMs), which includes all fuzzy systems used in commercial ap- 

plications. BIOFAMs accept nonfuzzy scalar inputs, such as 0 = 15 and ~b = -10, 

and generate nonfuzzy scalar outputs, such as u = -3. 

Generating Fuzzy Rules With Product-Space Clustering 

Neural networks can adaptively generate the FAM rules in a fuzzy system. We illustrate 

this in Chapters 17 - 20 with the new technique of unsupervised product-space clustering. 

Synaptic vectors quantize the input-output space. Clustered synaptic vectors track how 

experts associate appropriate responses with input stimuli. Each synaptic cluster estimates - 
a FAM rule. T h e  experts rvho generate the input-output data  need not articulate the FAA4 

rules. They need only behave as experts. The key geometric idea is cluster equals rule. 

Consider the input-output product space of the inverted-pendulum system. There are 

two input variables and one output variable, so the input-output product space equals R3 

(in practice a three-dimensional sub-cube within R3). Each input-output triple (0, AO, v )  

defines a point in R3. The time evolution of the inverted-pendulum system defines a 

smooth curve o r  trajectory in P. As the fuzzy system stabilizes the inverted pendulum 

t o  its vertical position, the trajectory may spiral into the origin of P, where the above 



steady-state FAM ru:e keeps the system in equilibrium until perturbed. 

Each fuzzy variable can assume five fuzzy st~bsets of the z, y, or r coordinate axes of 

l13. Tllc Cartesiari product of tllese fllzzy subsets defines 125 (5 x 5 x 5) PAhI cells in tlle 

input-output product space R3. Most system trajectories pass tllrougll only a few FAM 

cells. We show in Chapter 17 that tllcse F'AM cells equal FAM rules because tlie FAM 

cells equal fuzzy cartesian products, and tile uncou~ltably infinite entries in tlie associative 

matrices correspond to these cartesian products. SO FAM rule equals associative (fuzzy 

Hebb) matrix, which equals fuzzy cartesian product, which equals FAM cell. 

Unsupervised neural clustering algorithms efficiently track the density of input-output 

samples in FAM cells. We need only count tlle number of synaptic vectors in each FAM cell 
' 

at any instant to estimate, and to weight, the underlying FAM rules used by the expert or 

physical process that generates the input-output data. This produces an adaptive histogram 

of FAM-cell occupation. Chapters 17 - 20 apply the adaptive product-spacei.clustering 

methodology to  inverted-pendulum control, backing up a truck-and-trailer in a parking 

lot, and realtime target tracking. 

Suppose a system contains n fuzzy variables, and each fuzzy variable can assume rn 

fuzzy-set values. This defines mn FAM cells in the input-output product space R". Differ- .- 

ent fuzzy variables can assume different types and different numbers of fuzzy-set variables. . 

So in general there are ml x . . . x m, FAM cells. Suppose n = m = 3. Suppose 

the fuzzy sets are low, medium, and high and have bounded extent. Then a Rubik's cube 

represents the input-output product space partitioned into 27 FAM cells if the fuzzy sets 

do not overlap. In general FAM cells have nonempty but fuzzy intersection. - 
If we define n fuzzy variables, each with m fuzzy-set values, then there are 2"" possible 

fuzzy systems. Expert articulation, fuzzy engineering, and adaptive estimation produce 

only a small fraction of the total number 2"" of possible fuzzy systems. Different fuzzy-set 

definitions and different encoding or decoding strategies ("inferencingn techniques) pro- 

duce different classes of 2mn possible fuzzy systems. 



Fuzzy Systems as Parallel Associators 

I7t1zzy systems store and process FAM rt~lcs in parallel. Matl~cmatically a fuzzy system 

maps points in an input product hypercube (possibly of infinite dimension) to points in an 

output hypercube. Fuzzy systems associate output fuzzy sets with input fuzzy sets, and so 

behave as associative memories. Unlike neural associative memories, fuzzy systen~s do not 

sum the associative matrices that represent FAM rules. Neural networks sum throughputs. 

Fuzzy systems sum oulpuls. 

Summing outputs avoids crosstalk and achieves modularity. We can meaningfully look 

inside the black box of fuzzy model-free estimator. Figure 1.8 displays the generic fuzzy 

systexn architecture for a single-input, single-output FAM system. 

I FAM Rule 1 

I 
I 

FAM R u b  2 

I FAM Rule m I 

I I 

I I 

L , , - - - - - - - - - - - - - ' - - - L  

FAM SYSTEM 

FIGURE 1.8 Fuzzy system architecture. The system maps input fuzzy 

sets A to  output fuzzy sets B. The system stores separate FAM rules and in 

parallel fires each FAM rule to some degree for each input. Experts or adaptive 



algorithms determine the FAM-rule wcigl~ts w,. Experts may use only wj = 1 

(articulates rule) or w, = o (omits rule). Ccntroidal outpr~t  converts fuzzy-set 

vcctor B to a scalar. In BIOFAM systcms A dcfines a unit binary vector or 

delta pulse. 

Fuzzy inference computes the output fuzzy sets B;, wcights them with the scalar wcigl~ts 

wj, and sums them to produce the output fuzzy set 13: 

In principle in (31) we suln over all inn possible FAA4 rules since most rules have weight 

w; = 0. Chapter 17 discusses the mecl~at~ism of the two types of fuzzy infereoce, 

correlation-product and correlation-minimu111 inference. 

Adaptive fuzzy systems use sample data and neural or statistical algorithm to choose 

the coefficients wj and thus to-define the fuzzy system a t  each time instant. Adaptation 

changes the system structure. Geometrically, a time-varying between-cube mapping defines 

an adaptive fuzzy system. In the simplest case, if the input fuzzy sets define points in the 

unit hypercube In ,  and the output fuzzy sets define points in the unit hypercube I P ,  then 

transformation S defines a fuzzy system if S maps In to  I P ,  S : In -+ I P .  Then S 

associates fuzzy subsets of the output space Y with fuzzy subsets of the input space X. 

So S ( A )  = B. S defines an adaptive fuzzy system if S changes with time: 

BIOFAM systems convert the vector B into a single scalar output value y E Y. We 

call this process defuzzification, altl~ough to defuzzify a fuzzy set formally means-to round 

it off from some point in a unit hypercube to t l ~ e  nearest bit-vector vertex. Fuzzy engineers 

sometimes compute y as the mode y,, of the B distribution, 

ms(yma,) = sup {me(y) : y E Y) . (33) 

m e  denotes the fuzzy membership function rns : Y ---+ (0, I] that assigns fit values or 



occurrence degrees to tltc clcrnents of Y. If the out.put space Y equals a finite sct of values 

{yl, . . . , y,), as it1 somc compr~tcr discrctizations, then we can rcplacc t11c sirprcn~un~ in 

(33)  with a maximitrn: 

Tlie more popular centroidal defuzzification technique uses all, and only, tlic infor- 

mation in the fuzzy distribution B to compute y as tlie centroid # or center of mass of 

B: 

provided the integrals exist. In practice we restrict fuzzy subsets to finite stretches of 

the real line. In Chapter 19 we prove that if the fuzzy variables assume only symmetric 

trapezoid-like fuzzy-set values, then (35) reduces to a simple discrete ratio. The numerator 

and denominator contain only m products. This discrete centroid trivializes the computa- 

tional burden of defuzzification and admits direct VLSI implementation. 

Figure 1.8 and equation (31) additively combine the weighted fuzzy sets Bi. Earlier 

fuzzy systems [Mamdani, 19771 combined output fuzzy sets with pairwise maxima. Unfor- 

tunately, the maximum combination technique, 

B = max I min(wj, B;) , 
. -  

(36)  

based upon the so-called "extension principlen of classical fuzzy theory [I<lir, 1988], tends to 

produce a uniform distribution for B as the number of combined fuzzy sets increases [I<osko, 

19871. A uniform distribution always has the same mode and centroid. So, ironically, as 

the number of FAM rules increases, system sensitivity decreases. 

The  additive combination technique (31) tends to invoke the fuzzy version of the Cen- 

tral Limit Theorem. The added fuzzy waveforms pile up to approximate a symmetric 

unimodal, or bell-shaped, membership function. Different fuzzy waveforms produce simi- 



larly shapedoutput distriblttions f? but centered about different places 01 the real line. We 

consistently obscrvc this tcndcncy towards a Gaussian membcrship function after summing 

only a fcw fuzzy wavcforms. ('l'cchnically the CLT requires normnlizatio~~ by the square- 

root of tlic number of summed waveforms. Equation (31) does not rlormalize B because, 

for dcfuzzification, we care only about the relativc values in B, t l ~ e  relativc degrees of 

occurrence of output valucs.) 

The  maxi mum combination technique (36) forms the envelope of tlie weighted fuzzy 

sets Bj. Then B resembles the silhouette of a desert-full of sand dunes. As the number of . 

sand dunes increases, the silhouette becomes flatter. The  additive combination technique 

(31) piles the sand dunes atop one other to form a sand mountain. 

Fuzzy inference allows us to reason with sets as if they were propositions. The virtual- 

representation scheme for FAM rules greatly simplifies tlle fuzzy inference process if we use 

exact numerical inputs. Figure 1.9 illustrates the FAM (correlation-minimuq) inference 

procedure derived in Chapter 17. We can apply this inference procedure in parallel to any 

number of FAM rules with any number of antecedent fuzzy-variable conditions. 



FIGURE 1.9 FAM inference procedure. The fuzzy system, converts the 

numerical inputs, 0 = 15 and A8 = -10, into the numerical output v = -3. 

Since the FAM rules combine the antecedent terms with AND, the smaller 

of the  two fit values scales the output fuzzy set. If the FAM rules combined 

antecedents disjunctively with OR, the larger of the fit values would scale the 

output  fuzzy set. 

Fuzzy Systems as Principle-Based Systems 

A1 expert systems chain through rules. Inference proceeds down, or up, branches of 

a decision tree. Except for chess trees or other game trees, in practice these search trees 



C 

are wider than they are deep. Sliallow trees (or forests) can exaggerate tllc all-or-none 

effect of bivalent propositional rules. Relative to deeper trees, sliallow trees use a snlaller 

,proportion of tlieir storcd k~lowlcdgc when they ioference. Tliey arc no~lintcractive. 

I7uzzy systems are sliallow but fully interactive. Every iufercnce fircs every FAM rule, 

itself a fuzzy expert syst.cn, to some degree. A similar property liolds for the fccdback 

fuzzy cognitive maps discussed in  Cliapter 4. 

Consider an A1 judge and a fuzzy judge. Opposing counsel present the same evidence 

and testimony to both judges. The A1 judge rounds off tlie truth value of every key 

statement or alleged fact to TRUE or FALSE (1 or 0), opens a rule book, uses the true 

statements to activate or clioose thc antecedents of some of the rules, then logically chains 

tllrough the rule tree to rcach a dccision. A more sophisticated A1 judge may cliain through 

the rule tree with uncertainty-factor algorithms or heuristic search algorithms. 

The fuzzy judge weights the evidence to different degrees, say with fractiongl values in 

the unit interval (0, I]. The fuzzy judge does not use a rule book. Instead the fuzzy judge 

determines to  what degree the fuzzy evidence invokes a large set of vague legal principles. 

The fuzzy judge may cite case precedents to enunciate these principles or to illustrate their 

relative importance. The fuzzy judge reaches a decision by combining these fuzzy facts 

and fuzzy principles in an unseen act of intuition or judgement. If pressed, the fuzzy judge. 

may defend or explain the decision by citing the salient facts and relevant legal principles, 

precedents, and perhaps rules. In general the fuzzy judge cannot articulate an exact legal 

audit trail of the decision process. -. . 

The distinction between the A1 judge and the fuzzy judge reduces to the distinction 

between rules and principles. Recently legal theorists [Dworkin, 1968-77; ~ a ~ e k ;  1973) 

have focused on this distinction and challenged the earlier "positivist" legal theories of law 

as articulated rules [Kelsen, 1954; Hart, 19611. 

Rules, as Dworkin [1977] says, apply "in an all-or-none fashion." Principles "have 

a dimension that rules do not-the dimension of weight or importance," and the court 

"cites principles as its justification for adopting and applying a new rule." Rules greatly 

outnumber principles. Principles guide while rules specify: 



"011ly rules dictate results, come wflat may. When a contrary result has been 

reached, tllc rule has bcclr abandoned or clranged. Principles do not work that 

way; tlicy i~icl i~le  a dccisioli olie way, tllougli not conclusively, and thcy survivc 

intact when tlrey do not prevail." 

Rules tend to  be black or wlrite. They abruptly come into and out of eristcnce. We 

post rules on signs, vote on them as propositions, and scnd tliem in memos: must be 18 

to  vote, open from 8 am to 5 pm, $500 fine for littering, office term lasts four years, can 

take only five sick days a year, and so on. Rules come and go as culture evolves. 

Principles evolve as culture evolves. Most legal principles in the United States grew out 

of rnedeval British comlnoli law. Each year their character changes sliglitly, adaptively, 

as we apply them to novel circumstances. These principles range from vcry abstract 

principles, such as presumption of innocence or freedom of contract, to  more behavioral 
t 

principles, such as that no one can profit from a crime or you cannot challenge a contract 

if you acquiese to  it and act on it. 

Each principle admits a spectrum of exceptions. In each case a principle holds only 

t o  some, often slight, degree. Judges cite case precedents in effect to  estimate the current 

weight of principles. All the  principles Uhang together" to some degree in each decision, 

just as all the fuzzy rules (principles) in Figure 1.5 contribute to some degree to  the final 

inference or decision. 

We often call A1 expert systems rule-based systems because they consist of a bank 

or forest of propositional rules and an "inference enginen for chaining through the rules. 

T h e  rule in rule-based emphasizes the articulated, expertly precise nature of, the-stored 

knowledge. 

The  A1 precedent and modern legal theory suggest that we should call fuzzy systems 

principle-based systems. The  fuzzy rules or principles indicate how entire clumps of 

output spaces associate with clumps of input spaces. Indeed FAM rules often behave as 

partial derivatives. Many appl&tions require only a few FAM rules for smooth system 

control or  estimation. In general A1 rule-based systems would require vastly more precise 

rules to  approximate the same system performance. 



a Adaptive fuzzy systems usc neural (or statistical) techniques to abstract fuzzy prin- 

ciplcs from samplcd c u e s  and to  g rad~~a l ly  rcfinc thosc principles as tllc systcm samples 

ncw casts. 'I'l~c process rcscmblcs our cvcryday acquisition and refinctncnt of cornlnollscnsc 

knowlcdgc. 1:u ture mncliinc-in telligcn t systems may match, thcn someday exceed, our a- 

bility to lcarn and apply thc fuzzy cornmonscnse knowledge-knowlcdgc wc can articulate 

only rarely and inexactly-that wc usc to run our lives and run our world. 
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PROBLEMS 

1. Lukasiewicz's cont in~~ous  or "fuzzyn logic (L1 logic) uses a continuous-valucd truth 

function t : S ---t [0, 11 defined on tllc set S of statements. Lukasiewicz defined 

the generalized conjunctio~i (AND), disjunction (OR), negation (NOT) operators 

respectively as 

t ( A  AND B) = n~in(t(A), t ( B ) )  , 

for statements A and B. Prove the generalized noncontradiction-excluded-middle 

law: 

t(A AND - A) + 2(A OR -- A) = 1 . 

This equality implies that the classical bivalent law of noncontradiction, t(A A N D  - 
A) = 0, holds i f  and only if the classical bivalent law of excluded middle, t(A OR - 
A) = 1, holds. Note that in the case of bivalent "paradox," when t(A) = t(NOT-A), 

the equality reduces to the equality 112 + 112 = 1. 

2. Let t : S - [O, 11 be a continuous or "fuzzyn truth function on the set S 

of statements. Define the Lukasiewicz implication operator as the truth function 

tL(A -4 B )  = min(1, 1 - t(A) + t (B))  for statements A and B. Then prove the 

following generalized fuzzy modus ponens inference rule: 



Hence i f  t ( A )  = t L ( A  - B )  = 1 ,  then t ( B )  = 1, which generalizes classical 

bivalent modus potrens. 

3. Use the continuous logic opcrations in Problem 2 to prove the following generalized 

fuzzy modus tollens i~~fercncc rule: 

t L ( A  B )  = c 

i ( B )  I 6 

- 
Therefore t (A)  5 min(1, I - = ' +  b)  . 

Hence if i t ( A  + B) = 1 and t ( B )  = 0, then t ( A )  = 0, which generalizes 

classical bivalent modus tollens. 

4. Define the Gaines implication operator as 

Use the Gaines implication operator tc(.4 - B )  to derive generalized fuzzy nlodus 

ponens and modus follens inference rules. The conclusion of the inference rules should 

differ from the conclusions of the inference rules in  Problems 2 and 3. 

5. Exclusive-or ( X O R )  equals negated logically equivalence: 



Equivalcncc equals biconditionality. Bivale~~t  s t a t cn~e~ l t s  arc equivale~~t  i f  and o111y 

i f  the two statcnients have tile same truth values. So the exclusivc-or relation 11olds 

between two bivalent statements if and only if the two statements have opposite 

truth valucs. 

Fuzzy statements can be equivalent to different degrees. But equivalence still equals 

bicondi tionali ty: 

t (A  = B )  = t ( ( A  ---t B )  AND ( B  -+ A ) )  . 

Prove that if we use the Lukaiiewicz implication operator, then exclusive-or equals 

the absolute difference (or I' or fuzzy Hamming distance) of the truth values t ( A )  

and t (B ) :  

tL(A XOR B )  = It(A) - t (B )J  

6. Set X contains n elements zl, . . . , z,. So X contains 2" nonfuzzy subsets A. Define 

the bivalent indicator function IA of nonfuzzy set A as 

So lA defines the mapping lA : A' - (0, 1). 

Suppose we extend IA to a multivalued mapping by augmenting its range from (0, 1) 

to ( ~ 1 , .  . . ,ym),  where YI  = 0, ym = 1 , a n d O  < y, < 1 if  1 < j < nz. 
Then IA defines the mapping IA : XI - { Y ~ ,  . . . , ym). How many multivalued 



subscts does X have? In tile 2-dimensional case, X = {xl, z2),  draw the p1ana.r 

lattice that describes the multi-dimensional power set of X ,  all its ~nulti-dimensional 

subsets, wllcn nz = 3, and wlien 112 = 5. 

7. Consider tlic discrctc dyna~nical system 

for z values in  [0, 11 a.nd 0 < c _< 4. Many dynan~ical systcms transition into 

chaos as we illcrease a control or gain parameter, such as c. Select c = 3.5 and use 

the two . . choices of initial conditions, so = .5 and xo = -51, to generate XI,. . . , xzo. 

Plot the two trajectories on graph paper. Are they aperiodic (chaotic) or periodic? 

Does a difference of -01 in initial condition significantly affect the overall shape of 

the discrete trajectory? 

Now repeat the above experiment but use the gain parameter c = 3.9 (or c = 4). No 

matter how close two initial conditions, in a chaotic dynarnical system they always 

produce divergent trajectories. Does c = 3.9 produce chaos? 
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FUZZINESS VERSUS PROBABILITY 

So jar as  tire laws o j  tnathentatics refer to ineality, they are iiot certain. Aird so 
jar as  they are certain, they do t ~ o t  refer to reality. 

. . . Albert Einstein 

Fuzzy Sets and Systems 

We now explore fuzziness as an a1 ternative to randomness for describing uncertainty. 

We develop the new sefs-as-points geometric view of fuzzy sets. This view identifies a 

fuzzy set with a point in a unit hypercube, a nonfuzzy set with a vertex of the cube, and 

a fuzzy system as a mapping between hypercubes. Chapter 17 examines fuzzy systems. 

Paradoxes of two-valued logic and set theory, such as Russell's paradox, correspond to 

the midpoint of the fuzzy cube. We geometrically answer the fundanlental questions of 

fuzzy theory-How fuzzy is a fuzzy set? How much is one fuzzy set a subset of another?- 

with the Fuzzy Entropy Theorem and the Fuzzy Subsethood Theorem. 

We develop a new geometric proof of the Subsethood Theorem. A corollary shows that 

the apparently probabilistic relative frequency X equals the deterministic su bsethood 

S(X, A), the degree to which the sample space X is contained in its subset A. So the 



frcqucncy of succcssft~l trials cqltals tllc dcgrec to wl~iclr all trials arc successful. \Vc examine 

rcccrlt Ilaycsian ~>olclnics a.gdnst fuzzy tllcory in  light of tllc tlcw scts-as-points theorems. 

An c l c m c ~ ~ t  belongs to a f t ~ ~ z y  sct to sonlc dcgrce in [O, I ] .  1\11 clcll lc~~t bclonss to  A 

nonfuzzy sct all or  nonc, 1 or 0. More fundarncntally, one set is a subset of one of tilt set 

to some dcgrce. Scts fuzzily contain subsets as well as clemcnis. Subsethood generalizes 

clemcnthood. We sl~all  argue that s11bset1100d generalizes probability as wwll. 

f izziness in a ProbabiIistic World 

Is uncertainty thc same as randomness? If wc are not surc about somcthillg, is it 

only up t o  cl~ance? Do tlic rlotions of likelihood and probability cshaust our notions of 

uncertainty? .. . 

Many people, trained in probability and statistics, believe so. Some even say so, and say 

so loudly. These voices often arise from the Bayesian camp of statistics, where probabilists 

view probability not as a frequency or other objective testable quantity, but as a subjective 

state of knowledge. 

Bayesian physicist E. T. Jaynes [I9791 says that  "any method of inference in which 

we represent degrees of plausibility by real numbers, is necessarily either equivalent to 

Laplace's [probability], or inconsistent." He claims physicist R. T. Cox [1946] has proven 

this as a theorem, a claim we examine below. 

More recently, Bayesian statistician Dennis Lindley [I9871 issued an explicit challenge: 

"probability is the only sensible description of uncertainty and is adequate for all -problems 

involving uncertainty. All other methods are inadequate." 

Lindley directs his challenge in large part a t  fuzzy theory, the theory that all things 

admit degrees, but admit them deterministically. We accept the probabilist's challenge 

from the fuzzy viewpoint. We will defend fuzziness with new geometric first principles 

and will question the reasonableness and the axiomatic status of randomness. The new 

view is the  sets-as-points view [I<osko, 19871 of fuzzy sets: A fuzzy set defines a point in a 

unit-hypercube, and a nonfuzzy set defines a corner of the hypercube. 



*= 
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ltando~nncss and f\lzzincss differ conceptually and tl~corctically. We can illustratc~omc 

diffcrcnccs with cxa~nplcs. Others \\.e ca11 prove \\.it11 tllcorcnls, as wc sl~ow I,cloi\~. 

I~andonincss and Crrzzir~crss also sl~arc marly similarities. 1301.11 systcms tlcscril~c unccr- 

tainty wit11 nurnbcrs in the unit i~rtcrval [0, I]. l'llis ultimately nicalls t l ~ a t  both systclns 

describe unccrtai~ity numerically. Botli systerlis combine sets and prol>osi tions associa- 

tively, commutativcly, and distributively. The key distinction concerns 11ow the systems 

jointly treat a thing A and its opposite AC. Classical set theory demands A n AC = 0, 

and probability theory conforms: P(A f l  A') = P ( O )  = 0. So A n AC represents a 

probabilistically im,possible event. But fuzziness begins when .4 n A' # 0. 

Questions raise doubt, and doubt suggests room for change. So to commcnce the ex- 

position, consider the f~ l lo \~ ing  two questions, one fuzzy and the other probabilistic: 
- -a 

(i) Is it always and everywhere true that .4 n AC = 0 ? 

(ii) Do we derive or assume the conditional probability operator 

The second question may appear less fundamental than the first question, which asks- 

whether fuzziness exists. The Entropy-Subsethood Theorem below shows that the first 

question reduces to the second questions: We measure the fuzziness of fuzzy set A when 

we measure how much the superset A u A' is a subset of its own subset A n A', a - 
paradoxical relationship unique to fuzzy theory. In contrast, in probability theory the like 

relationship is impossible (has zero probability): P(A n ACI A U A') = ~ ( 0 1 ~ )  = 0, 

where X denotes the sample space or "sure event". 

The conditioning or subsethood in the second quest ion lies at the heart of Bayesian 

probabilistic systems. We may accept the absence of a first-principles derivation of P(B1A). 

We can simply agree to take the ratio relationship as an axiom. But the new sets-as-points 

view of fuzzy sets derives its conditioning operator as a theorem from first principles. The 

history of science suggests that systems that hold theorems as axioms continue to evolve. 

The first question asks whether we can logically or factually violate the law of noncontra- 



dictioll-onc of Aristotle's tllrce "laws of t l lo~~gl~t"  along wit11 Lllc Iaws of excluded middle, 

A U Ac = .A', and identity, A = A. Sct ft~zzitlcss occurs wl~crl, and otlly when, it is 

violated. Classical logic and set theory assume tllat we cannot violale the law of noncon- 

tradiction or, cquivalcntly, tllc law of excluded middle. Tllis makes tlie classical theory 

black or wl~itc. Fuzziness begins wllcre Wcstcrn logic ends-where contradictions begin. 

Randomness vs. Ambiguity: Whether vs. How Much 

Fuzziness describes evcnt ambiguity. It measures the degree to which an event occurs, 

not whetller it occurs. Ra~idomness describes tlle uncertainty of evetzl occurrence. A n  

event occurs or not, and you can bet on it. The issue concerns the occurring event: Is it 
1 .  

uncertain in any way? Can we unambiguously distinguish the event from its opposite? 

Whether an event occurs is "randomn. To what degree it occurs is fuzzy. Whether an 

ambiguous event occurs-as when we say there is 20% chance of light rain tomorrow- 

involves compound uncertainties, the probability of a fuzzy event. 

We regularly apply probabilities .to fuzzy events: small errors, satisfied customers, A 

students, safe investments, developing countries, noisy signals, spiking neurons, dying cells, 

charged particles, nimbus clouds, planetary atmospheres, galactic clusters. We understand 

that, a t  least around the edges, some satisfied customers can be somewhat unsatisfied, some 

A students might equally be B+ students, some stars are as much in a galactic cluster as out 

of it. Events can transition more or less smoothly to their opposites, making classification 

hard near tlic midpoint of the transition. But in tlleory-in formal descriptions and in 

textbooks-the events and their opposites are black and white. A hill is a mountain if it 

is at least x meters tall, not a mountain if it is one micron less than 3: in height [Quine, 

1951]. Every molecule in the universe either is or is not a pencil molecule, even those that 

hover about the pencil's surface. 

Consider some further examples. The probability that this chapter gets published is 

one thing. The degree to which i t  gets published is another. The chapter may be edited 



in Iiundrcds of ways. Or tllc cssay Inay bc marrcd wit11 typographical errors, and so 011. 

Question: 1)ocs qrlantr~m n~ccliatiics dcal wit11 t l ~ c  prol>ability that an ~ ~ n a n l b i ~ r ~ o l l s  

clcctron occupics spacctimc points? Or docs it dcal wit11 tllc dcgrce to wl~iclr ari clcct.rol,, 

or  an electron smear, occurs a t  spacctimc points? Docs /$I2 dl' measure tlie [>robability 

tlrat a random-point clectron occurs i n  infiuitcsinial v o l ~ ~ m e  dI/? Or [I<osko, 19901 docs 

it  measure the degree to whiclr a dctermi~~istic clcctron cloud occurs in dV? Differcllt 

interpretation, different universe. Perllaps even existence admits degrees a t  the qua~itunl 

level. 

Suppose there is 50% chance that there is an apple in the refrigerator (electron ill  a 

cell). That is one state of affairs, perliaps arrived a t  through frequency calculations or a . 

Bayesian state of knowledge. Nou' suppose tllerc is half an apple in tlie refrigerator. That 

is another state of affairs. Both states of affairs are superficially equivalent in terms of 

their numerical uncertainty. Yet physically, ontologically, they differ. One is, "random", 

the other fuzzy. 

Consider parking your car in a parking lot with painted parking spaces. You can 

park in any space with some probability. Your car will totally occupy one space and 

totally unoccupy all other spaces. The.probability number reflects a frequency history or 

Bayesian brain state that summarizes which parking space your car will totally occupy, 

Alternatively, you can park in every space to some degree. Your car will partially, and . 

deterministically, occupy every space. In practice your car will occupy most spaces to -. ... 

zero degree. Finally, we can use numbers in (0,l) to describe, for each parking space, the - ,  . 

occurence probability of each degree of partial occupancy-probabilities of fuzzy events. 

If we assume events are unambiguous, as in balls-in-urns experiments, there is no set 

fuzziness. Only "randomnessn remains. But when we discuss the physical universe, every 

assertion of event ambiguity or norian~biguity is an empirical hypothesis. We habitually 

overlook this when we apply probability theory. Years of such oversight have entrenched 

the sentiment that uncertainty is randomness, and randomness alone. We systeniatical- 

ly assume away event ambiguity. We call the partially empty glass empty and call the 

small'number zero. This silent assumption of universal nonambiguity resembles the pre- 

relativistic assumption of an uncurved universe. A n AC = 0 is the "parallel postulaten 



of classical set tllcory and logic, itldccd of Wcstcr~i tl~ouglrt. 

I f  fl~zzincss is a gctlllinc typoof ~~~lccrtaitif.y, if f~ lzz i~~css  exists, tllc l)l~ysical conscq1tctlccs 

arc ~~tlivcrsat, and t l ~ c  sociological c o ~ i s c q ~ ~ c ~ ~ c c  is startlitlg: scic~~tists,  csl)cciallp l)liysicists, 

liave ovcrlookcd an ctitirc rnodc of reality. 

Fuzziness is a type of dctcrtninistic unccrtaitlty. Ambiguity is a property of j)llysical 

pllcnomena. Utili kc fuzziness, probability dissipates with increasing information. A itcr tlle 

fact "randomncssn looks like fiction. Yct many of the laws of science are time reversible, 

invariant if we replace time i with time -1. If we run the universe in reverse as if i t  were a 

video tape, where does the "randomnessn go? There is as much ambiguity after a sample- 

space experiment as before. Increasing inforination specifies the degrees of occurrence. . 

Eve11 if science had run its coilrse and dl the facts were in, a platypus would remain only 

roughly a mammal, a large hill only roughly a mountain, an oval squiggle only roughly wl 

ellipse. Fuzziness does not require that God plays dice. 

Consider the inexact oval in Figure 16.1. Does it make more sense to say that the oval 

is probably an ellipse, or that it is a fuzzy ellipse? There seems nothing random about the 

matter. The situation is deterministic: All the facts are in. Yet uncertainty remains. The 

uncertainty arises from the simultaneous occurrence of two properties: to some extent the 



, . 

-inexact oval is a n  cllipsc, and to some exlent it is no1 an cllipsc. 

Figure 16.1 Inexactaval. Which statement better describes the situation: 

"It is probably an ellipsen or UIt is a fuzzy ellipsen? 

More formally, does mA(s), the degree to which element z belongs to fuzzy set A, 

equal the probability that x belongs to A? Is mA(x) = Prob{x c A) true? Cardinality- 

wise, sample spaces cannot be too big. Else a positive measure cannot be both countably 

additive and finite, and thus in general cannot be a probability measure [Chung, 19741. 

The space of all possible oval figures is too big, since there are more of these ttian real 

numbers. Almost all sets are too big for us to def ne probability measures on them, yet we 

can always define fuzzy sets on them. 

Probability theory is a chapter in the book of finite measure theory. Many probabilists 

do not care for this classification, but they fall back upon it when defining terms [I<ac, 

19591. How reasonable is it to believe that finite measure theory-ultimately, the summing 

of nonnegative numbers to unity--exhaustively describes the universe? Does it really 

describe any thing? 



S~lrely from tinic to lirnc every prol~abilist worlders wl~ctl~er l~robability dc.cribcs any- 

t l ~ i r ~ g  real. Frorn Dc~iiocri t~~s to Ilinstci~~, t l~crc Ilas  bccn t l ~ c  susl>iciol~ tllat, ,as Ilavid 

I111rnc [1748] put it, "tl1o11g11 ll~crc IJC 110 sl~cli tliing as chnncc in t11c worlcl, our ig~ioralrcc 

of the real cause of any cvent l las tllc same i~~flucncc on the understanding and bcgcts a 

like species of Lclicf." Wllcn we modcl noisy proccsscs by extending diITcrcntia1 cqr~ations 

to stocllastic difrercntial equations, as i n  CI~a~>tcrs  4-6, we introduce tile formalisnl only as 

a working approximation to several underlying unspecified processes, processes that pre- 

sumably obey deterministic diterential equations. In this sense conditional expectations 

and martingale techniques might seem reasonably applied, for example, to stock options 

or commodity futures I ~ l l e ~ i o n ~ e ~ ~ a ,  wl~el-c the behavior involved consists of aggregates of 

aggregates of aggregates. The same techniques seem less reasonably applied to quarks, 

leptons, and void. 

The Universe as a Fuzzy Set 

The world, as Wittgenstein [1922) observed, is everything that is the case. In this 

spirit we can summarize the ontological case for fuzziness: The universe consists of all 

subsets of the universe. The only subsets of the universe that are not in principle fuzzy 

are the constructs of classical mathematics. The integer 2 belongs to the even integers, 

and does not belong to the odd or negative integers. All other sets-sets of particles, cells, 

tissues, people, ideas, galaxies-in principle contain elements to different degrees. Their 

membership is partial, graded, inexact, ambiguous, or uncertain. . .  . 
The same universal circumstance holds at the level of logic and truth. The only logically 

true or false statements-statements S with truth value t(S) in (0, 1)-are tautologies, 

theorems, and contradictions. If statement S describes the universe, if S is an empiiicnl 

statement, then 0 < t (S)  < 1 holds by the canons of scientific method and by the lack 

of a single demonstrated factual statement S with t(S) = 1 or t(S) = 0. Philosopher 

Immanuel Kant (17871 wrote volumes in search of factually true logical statements and 

logically true factual statements. 



I ~ g i c a l  truth diflcrs in kind frorn factual truth. "2 = 1 + 1" has trrlttll value 1. "Grass 

is grccnn Ilas trrrtll valltc lcss tllatl I btrt grcatcr tlian 0. This produccs tllc nl;ttll/trtiivcr.sc 

crisis Einstcia Iatnctits i n  liis c111otc at tllc bcginllirlg of tliis cllaptcr. Sci<:tiI.isI.s Ilavc im- 

posed a two-valued matllcmatics, shot tlirougll wit11 logical "paradoxes" or ilrrtiriorilics 

[I<linc, 19SO], on a multivalucd utiivcrse. Last ccntury Jolin Stuart Mill 11843) argued 

that  logical truths represelit limiting cases of factual truths. Tllis accurately sumtnarizcd 

the truth-value distinction bctwccn 0 < t ( S )  < 1 and i(S) = 0 or t ( S )  = 1 but, 

cast in linguistic form, seems not to have persuaded modern pliilosophers. The Heisen- 

berg uncertainty principle, with its continuum of indeterminacy, forced multivaluedness 

on science, though few \Irestcrn philosophers [Quine, 1981) have accepted rnultivalued- 

ncss. Lukasiewicz, Godcl, atld ,Black [Rescher, 19G9) did accept it and developed the first 

continuous or "fuzzy" logic and set systen~s. 

Fuzziness arises from the ambiguity or vagueness [Black, 19371 between a tlling A and 

its opposite A'. If we do not know A with certainty, we do  not know A' with certainty 

either. Else by double negation we would know A with certainty. This ambiguity pro- 

duces nondegenerate overlap: A n AC # 0, which breaks the "law of noncontradiction." 

Equivalently, i t  also produces nondegenerate underlap [Kosko,1986b]: A U A' # X, 
which breaks the "law of excluded middle." Here X denotes the ground set or universe of. 

discourse. (Probabilistic or stochastic logics [Gaines, 19831 do not break these laws: P ( A  

and not-A) = 0 and P ( A  or not-A) = 1.) Formally, probability measures cannot take 

fuzzy sets as arguments. We must first quantize, round off, or defuzzify the fuzzy sets to 

the nearest nonfuzzy sets. 

THE GEOMETRY OF FUZZY SETS: SETS AS POINTS 

I t  helps to  see the geometry of fuzzy sets when we discuss fuzziness. To date researcl~ers 

have overlooked this visualization. Instead they have interpreted fuzzy sets as generalized 

indicator or membership functions [Zadeh, 19651, mappings r n ~  from domain A' to range 

[0, 11. But functions are hard to visualize. Fuzzy theorists [Klir, 19881 often picture 
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mc~nl)crslti~> fur~ctior~s as trvo-dimensional grapl~s, wit11 tltc clomai~t A' rcl)rcscnte<l z a one- 

clinicrisiorta.1 axis. '1'11~ gco~~ictry of f t ~ ~ % y  scts i~ivolvcs 1)ot11 ~ I I C  doltlaill .+' = {zI ,  . . . , I,) 
and tlic range [O, I ]  of ~iiit~)l)i~igs 7 1 1 ~  : .+' -' (0, 1 1 .  ' 1 ' 1 1 ~  gm~sictry of rllmy SCLS aids [IS 

wl~cn wc dcscribc fr~zzincss, defi11c fuzzy concepts, and provc fuzzy tltcorems. Visualizing 

tllis gcomclry may by ilsclf provide tllc most powcrful argr~nier~t for- fuzziness. 

A n  odd qucstioti rcvcals tlie gcometry of fuzzy scls: Wliat does thc fuzzy power set 

F(2"), tlle set of a11 fuzzy subsets of X, look like? It looks like a cube. \Yltat does a fuzzy 

set look like? A point in a cube. The set of all fuzzy subsets equals the unit hypercube 

In = [0, 11". A fuzzy set is any point [Mosko, 19871 in tlie cube In. So (X, In) def nes the 

fundanicntal nicasura.ble space of (finite) fuzzy tl~eory. We can tcacli much of the theory . 

of fuzzy sets-niorc accurately, the tlicory of contit~notrs sets--on a Rul~ik's cul~e. 

\Jertices of the cube In define nonfuzzy sets. So the ordinary power set 2', the set of 

all 2" nonfuzzy subsets of A', equals the Boolean n-cube Bn : 2' = Bn. Fuzzy sets fill 

in the lattice Bn to produce the solid cube In : F(2') = In. 

Consider the set of two elements X = (21, 22). The nonfuzzy power set 2x contains 

four sets: zX = (0, A', (z,}, {zz)). These four sets correspond respectively to the four 

bit vectors (0 O), (1 l), (1 O), and (0 1). The 1s and 0s indicate the presence or absence 

of the ith element xi in the subset. More abstractly, we can uniquely define each subset A 

as one of the two-valued membership functions r n ~  : X ---, {O, 1). 

Now consider the f&zy subsets of X. We can view the fuzzy subset A = (f !) as 

one of the continuum-many continuous-valued membership functions r n ~  : X ---+ [O, 1). 

Indeed this corresponds to the classical Zadeh 11965) sets-as-functions definition of fuzzy 

sets. In this example element zl belongs to, or fits in, subset A a little bit-to degree $. 
Element x2 has more membership than not at :. Analogous to tlie bit vector representa- 

tion of finite (countable) sets, we say that the jif vector (; !) represents A. The element 

mA(zi) equals the i t h  fil [I<osko, I ~ S G ~ ]  or fuzzy unit value. The sets-as-points view then 

geometricdly represents the fuzzy subset A as a point in 12, the unit square, as in Figure 

16.2. 



Figure  16.2 Sets as points. The fuzzy subset A is a point in the unit 2-cube 

with coordinates or fit values (5 !). The first element 11 fits in or belongs to 

A to degree j, the element 12 to degree f. The cube consists of all possible 

fuzzy subsets of two elements { r l ,  z2). The four corners represent the power 

set 2" of {xl, xz). 

. C  

The midpoint of the cube In is maximally fuzzy. All its membership values equal 5.  
The midpoint is unique in two respects. First, the midpoint is the only set A that not only 

equals its own opposite AC but equals its own overlap and underlap as well: 

Second, the midpoint is the only point in the cube In equidistant to each of the 2" 

vertices of the cube. The nearest corners are also the farthest. Figure 16.2 illustrates this 



tnctrical rclationsl~ip. 

\Vc combiac fuzzy sets j)air~isc \vi l l i  t l l i t ~ i ~ l l u t l l ,  nlaxinlurn, and order reversal, just a wc 

cotnl)itlc nonfuzzy scts. So \vc cotiil)inc sct clcmct~ts wit11 tllc ol,crators of IA~~hsics\*icz cotl- 

tinuo~ts logic [Resclier, 19G9]. Wc define fuzzy sct i~ltcrscction fitwisc by pair\visc minimum 

(picking tlie s~nallcr of tllc two clcmcnts), u~lion by j)airwisc maxin~u~n, and colnplcme~~- 

tation by ordcr rcvcrsal: 

For example: 

The overlap fit vector A n AC in this example does not equal the vector of all zeroes, 

and the underlap fit vector A U A' does not equal the vector of all ones. This holds 

for all properly fuzzy sets, all points in In other than vertex points. Indeed the min-max 



definitions give a t  orlce t l ~ c  followiug fur~damcl~tnl cl~aractcrization of fuzzi~less as n o ~ ~ d c -  

gcllcrate ovcrlap and noncxl~ar~stivc ~ ~ ~ ~ < l c r l a l t .  

Proposi t ion .  A is properly fuzzy ilf A n AC # 0 

i l f A U A c  # X .  

Tlie propositiol~ says that Aristotlc's laws of nonco~itradictioli and excluded middle 

hold, but they hold only on a set of measure zero. They hold only a t  the 2" vertices of In. 

In all other cases, and these are as many of these as there are real numbers, contradictions 

occur to  some degree. In this sense contradictions in generalized set theory and logic 

rcprcsent the rule and not the exception. Fuzzy cubes box Aristotelian sets into corners. 

Cotnpleting the juzzy squa~-c illustrates t l~ is  lunda~lle~ltal proposition. Consider again 

the two-dimensional fuzzy set A defined by the fit vector (i !). We find the corresponding 

overlap and underlap sets by first finding the complement set AC and tllen combining the 

fit vectors pairwise with minimum and with maximum: 

The sets-as-points view shows that these four points in the unit square hang-tagether, 



and ~novc  togctl~cr, in a very natural way. Co~lsidcr t l ~ c  gconietry of Figure 16.3. 

Figure 16.3 Completing the fuzzy square. The fuzzier A is, the closer A 

is to the  midpoint of the  fuzzy cube. As A approaches the midpoint, all four 

points-A, A', A n A", and A u A'--contract to the midpoint. The less 

fuzzy A is, the closer A is to the nearest vertex. As A approaches the vertex, 

all four points spread out  to tlie four vertices and the bivalent power set zX is 

recovered. In an n-dimensional fuzzy cube, the 2" fuzzy sets with elements a; 

o r  1 - a; similarly contract t o  the midpoint or expand to the 2" vertices ai A 

approaches total fuzziness or total bivalence. 

In Figure 16.3 the four fuzzy sets involved in the fuzziness of set A-thesets A, A', -4 n A', 

and A U Ac--contract to  the  midpoint as A becomes maximally fuzzy and expand out 

t o  the Boolean corners of the  cube as A becomes minimally fuzzy. T h e  same contraction 

and expansion occurs in n dimensions for the 2" fuzzy sets defined by all combinations 



of mA(xl)  and mnc(xl), . . . , i ~ t ~ ( x , )  a ~ i d  nzAc(zn). The sanlc contraction and cxl,ansioll 

occurs in n dimcnsio~ls for tllc 3" frlzzy sets dcfincd by all coml~inations of I I I . . ~ ( I , )  and 

nlAc(xl ), . . . , nzA(xn) and ~ r r , ~ ~ ( x , , ) .  

At tlle midpoint nothing is distinguisllablc. At tllc vertices cverytlling is distinguis11- 

ablc. Thcsc extrcmcs rcprcscnt tlrc two ends of tllc sl>ectrum of logic and sct t l~corj.  In 

this sense the midpoint rcprcscnts t l ~ c  black llolc of set tlreory. 

Paradox at the Midpoint 

The midpoint is full of paradox. Classical logic and set theory forbid t l ~ c  midl>oiut b! 

the same axioms, noncontradictio~l and excluded middle, that generate tlie of "paradoxes" 

or antinomies of bivalent systems. Where midpoint phenomena appear in Western thought, 

thoerists have invariably labeled them "paradoxesn or denied them altogether. Midpoint 

phenomena include the half-empty and half-full cup, the Taoist Yin-Yang, the liar from 

Crete who said that all Cretans are liars, Bertrand Russell's set of all sets that are not ._ 
members of themselves, and Russell's barber. 

Russell's barber is a bewhiskered man who lives in a town and who shaves. His barber 

shop sign says that he shaves a man if and only if he does not shave himself. So who 

shaves the barber? If he shaves himself, then by definition he does not: But if he does .. 

not shave himself, then by definition he does. So he does and he does not-contradiction ... 

("paradoxn). Gaines 11983) observed that we can numerically interpret this paradoxical 

circumstance as follows. 

Let S be the proposition that the barber shaves himself and not-S that he does no:. 

Then since S implies not-S and not-S implies S, the two propositions are logically equiv- 

alent: S = not-S. Equivalent propositions have the same truth values: 



Solvirig for t(S) gives tlrc midpoint point of tlrc truth ilrtcrval (tlrc otrc-dinlcnsional cube 

(0, I]): f(S) = i. 'rllc ~nidpoint is cqclidistatrt to the wrticcs 0 arltl I .  I r l  t l ~ c  bivalc,lt 

(two-vaiucd) case, ro~t~idofr is i~n~,ossiblc and paradox occurs. ( 6 )  alrtl (7) ticscribc t l ~ c  log- 

ical f o t ~ n  of llrc many ~>aradoxcs, tllougl~ di fTcrcnt paradoscs i~rvolvc di ffcrcn t dcscrij>tiolis 

[Quinc, 19871. 

In bivalcnt logic both statemc~lts S and not-S must have t rut l~ valuc zero or unity. 

The fuzzy resolution of tlic paradox uses only the fact that the truth values are equal. It 

does not constrain their range. The midpoint value i emerges from tlle structure of the 

problem and the order-reversing effect of negation. 

The paradoxes of classical set theory and logic illustrate the price we pa? for an arbitrary . 

i~lsistcnce on bivalcnce [Quine, 1981). Scientists often insist on bivalcnce in the name of 

science. But in the end this insistence reduces to a mere cultural preference, a reflection 

of an educational predilection that goes back at  least to Aristotle. Fuzziness shows that 

there are limits to logical certainty. We can no longer assert the laws of noncontradiction 

and excIuded middle for sure-and for free. 

Fuzziness caries with it intellectual responsibility. We must explain how fuzziness fits 
. .  . 

in bivalent systems, or vice versa The fuzzy theorist must explain why so many people 

have been in error for so long. We now have the machinery to offer an explanation: We. 

round off. Rounding off, quantizing, simplifies life and often costs little- We agree to call 

empty the near empty cup, and present the large pulse and absent the small pulse. We 

round off points inside the fuzzy cube to the nearest vertex. This roundofi heuristic works 

fine as a first approximation to describing the universe until we get near the midpoint of 

the cube. We find these phenomena harder to roundoff. In the logically.extreme Ease, at  

the midpoint of the cube, the procedure breaks down completely because every vertex is 

equally dose. If we still insist on bivalence, we can only give up and declare paradox. 

Faced with midpoint phenomena, the fuzzy skeptic resembles the flat-earther, who de- 

nies that the earth's surface is curved, when she stands at  the north pole, looks at her 

compass, and wants to go south. 



e Counting with Fuzzy Sets 

The count of A  = (f !) equals M ( A )  = f + ; = {. Some fuzzy tlleorists 

(Zadeh, 19831 call the cardinality measure M the sigma-counl. The measure M generalizes 

[I<osko, 1986a] the classical counting measure of conlbinatorics and measure theory. (So . 

(.A', In, M) defines the fundamental measure space of fuzzy tlleory.) In general the measure 

1\11 does not yield integer values. 

The measure M has a natural geometric interpretation in the sets-as-points framework. 

M ( A )  equals the magnitude of the vector drawn from the origin to the fuzzy set -. _ A, as 

Figure 16.4 illustrates. 
n 

Figure 16.4 The count M ( A )  of A equals the fuzzy Hamming norm (1' nor- 

m) of the vector drawn from the origin to A. 



Cotlsiclcr tllc 1'' clist;l.~lcc I)ct\vcc~~ fuzzy scts A arlcl 13 i l l  In: 

tvl~ere 1 < p m . The l2 distance is the pl~ysical Euclidean distance actually 

illustrated in the figures. Thc simplcst distance is the I' or fuzzy Hamming distance, 

the sum of the absolute fit differences. We shall use fuzzy Hamming distance throughout, 

though all results admit a general 1P formulation. Using the fuzzy Hamming distance tve 

can rewrite the count M as the desired 1' norm: . . 

THE FUZZY ENTROPY THEOREM 

How fuzzy is a fuzzy set? We measure fuzziness with by a juzzy entropy measure. 

Entropy is a generic notion. It need not be probabilistic. Entropy measures the uncertainty 

of a system or message. A fuzzy set describe. a type of system or message. Its uncertainty 

equals its fuzziness. 

The fuzzy entropy of A, E(A), varies from 0 to 1 on the unit hypercube I". Only the 



crtbc vcrticcs llavc zcro entropy, since nonfr~zzy scts a r c  ~rnambiguous. l'hc cube ~n idpo in t  

r~n iq t~c ly  11% unity o r  ~ n a x i m r ~ m  cntropy. Fuzzy cotrol>y s~nootl l ly illcrcascs as a set point 
C 

m o w s  from any vcrtcx t o  t l ~ c  l n i d l m i ~ ~ t .  Klir [1983] <liscusscs tllc algebraic rcclr~irclllents 

for fuzzy entropy nicasures. 

Simplc gco~llctr ic cons idcra t io~~s  lcad t o  a ratio form for tllc fuzzy cntrol>y [ I~osko ,  

19SGbJ. T h e  closer t h e  fuzzy set A is t o  the  nearcst vertex A,,,, thc farther A is from the  

farthest vertex A/,,. T h e  fartliest vertex Ajar rcsides opposite thc  long diagonal from t h e  

nearest vertex A,,,. Let a denote t h e  distance /'(A, A,,,,) t o  the  nearest vertex, and  let 

6 denote t h e  distance /'(A, A,,,) t o  t h e  farthest vertex. Then  tlie fuzzy entropy equals 

t h e  ratio of a to  6: 

a 
- f1(14, Anear) 

E ( A )  = - - 
b /'(A, Ajar) 

Figure lG.5 shows the  sets-as-points interpretation of t h e  fuzzy entropy, where A = ( f  f), 
1 1 7 A,.., = (0 1), and Ala, = (1 0). So a = - 3 + ; = Ti and b = 2 3 + ! = 12-  So 



Figure 16.5 Fuzzy entropy, E(A) = t ,  balances distance t o  nearest vertex 

with distance to farthest vertex. 

Alternatively, if you read this in a room, you can imagine the room as the unit cube 

13 and your head as a fuzzy set in it. Once you locate the nearest corner of the room, the 

farthest corner resides opposite the long diagonal emanating from the nearest corner. If 

you put your head in a corner, t l~en a = 0, and so E ( A )  = 0. If you put your head 

in the metrical center of the room, every corner is nearest and farthest. So a = I, and 

E(A)  = 1. 

Overlap and underlap characterize set fuzziness. So we can expect them to affect the 

measure of fuzziness. Figure 16.3 shows the connection. By symmetry, each of the four 

points A, A', A n A', and A U A' is equally close to its nearest vertex. The common 

distance equals a. Similarly, each point is equally far from its farthest vertex. The common 



distancc equals 6. Oric of tllc first four distarlccs is tllc count M ( A  n A'). One of tllc second 

four distarices is tlrc c o u ~ ~ t  AI(A U /IC). ?'Iris givcs a gco~nclric proof of tlrc Fuzzy Entropy 

'L'lieorcrn [liosko, 108GI>-871, wliicli states that ftrzzi~lcss corlsists of cor~ritcd violatioris of 

tlle law of ~~oncontradictio~~ balar~ccd wit11 courlted violatiolls of tile law of cxcludcd middlc. 

f i z z y  Entropy Theorem: 

An algebraic proof is straightforward. The con~pleted fuzzy square in Figure 1G.G, contains 

a geometric proof (in this special case). 

Figure 16.6 Geometry of the Fuzzy Entropy Theorem. By symmetry each 

of the four points on the completed fuzzy square is equally close to its nearest 

vertex and equally far from its farthest vertex. 

The Fuzzy Entropy Theorem explains why set fuzziness begins where Western logic 

ends. When sets (or propositions) obey the laws of noncontradiction and excluded middle, 



overlap is empty and undcrlap is cxl~austivc So Af(.4 n A') = 0 ancl A4(A u AC) = n, 

and tllus E(A)  = 0. 

l'lle Fuzzy Entropy 'l'l~corem also providcs a first-principles dcrivat.iot~ of the basic fuzzy 

set operations of minimum (intersection), maximum (union), atid ordcr reversal (con~plc- 

mentation) proposed in 19G5 by Zadcli a t  the inception of fuzzy tltcory. (Ltrk;lsicwicz first 

proposed these operations for continuous or fuzzy l e i c s  in the 1920s [Itcscher, 19691.) 

For the fuzzy tlleorist, this result also shows that triangular norms or T-norms [Klir, 

19881, which generalize conjunction or intersection, and the dual triangular cunorms C, 

which generalize disjunction or union, do not hare the first-principles status of min and 

m a .  For, the triangular-norm inequalities, 

show that  replacing min with any T in the numerator term M(A n AC) can only make the 

numerator smaller. Replacing rnax with any C in the term M(A U At) can only make the 

denominator larger. So any T or C not identically min or max makes the ratio smaller, 

strictly smaller if A is fuzzy. Then the entropy theorem does not hold, and the resulting 

pseudo-entropy measure does not equal unity at the midpoint, though it  continues to be 

maximized there. We can see this with the product T-norm [Prade, 19851 T(z,  y) = zy  

and its DeMorgan dual co-norm C(z, y) = 1 - T ( l  - z, 1 - y) = z + y - zy, 

or with the bounded sum T-norm T(z, y) = m . ( O ,  z + y - 1) and DeMorgan dual 

C ( z ,  y ) = min(1, z + y ). The Entropy Theorem similarly fails in general if the negation or 

complementation operator N(z)  = 1 - z with a operator N.(z) =- 

for nonzero a > - 1. 

All probability distributions, all sets A with AIi,=l) = 1, in In form a r z -  1 dimensional 

simplex Sn. In the  unit square the probability simples equals the negatively sloped diagonal 

line. In the unit 3-cube it equals a solid triangle. In the unit 4-cube it equals a tetrahedron, 

and so on up. 

If no probabilistic fit value pi satisfies pi > i, then the Wzzy Entropy Theorem 

implies [Kosko, 19871 that the the distribution P has fuzzy entropy E ( P )  = A. Else 



a E(IJ)  < 5. So the I~rol~abi l i ty  simplex Sn is c~ltropically dcgellcratc for largc dimensions 

iz. 'l'liis rcsr~lt also SIIO\VS t l~at. t lrc ulrifornl distribution ($, . . . , i) maxinrizcs fuzzy c ~ r t r o ~ > ~  

on S" but 11ot rlniclucly. 'l'llis i l l  tr~rlr slrows tllat fozzy c11tro1,y difrcrs fro111 t l ~ c  avcmgc- 

itlforlnation rncasurc of probabilistic entropy, wllicl~ the uniform distribution maximizes 

uniquely. 

T h e  Fuzzy Entropy Tl~eorem implies tliat, analogous to log :, a unit of fuzzy informa- 
I tion equals & or y, depending on \vvbetller the fit value j obeys j 5 i or  j 2 i. 

T h e  event z can be ambiguous or clear. It is ambiguous if / equals approximately i 
and  clear if f equals approximately 1 or  0. If an ambiguous event occurs, is observed, is 

disambiguated, etc., then it is ~naximally infortnative: E ( f )  = E ( i )  = 1. If a clear . 
event occurs, is observed, etc., it is minimally informative: E ( f )  = E(0) = E(1) = 0. 

This agrees with the infornlation interl>rctation of the probabilistic entropy measure log 1, 
P 

where the occurrence of a sure event (p = 1) is minimally informative (zero entropy) and 

the occurrence of an impossible event (p = 0) is maximally informative (infinite entropy). . 

a THE SUBSETHOOD THEOREM 

Sets contain subsets. A is a subset of B, denoted A c B, if and only if every element 

in A is a n  element of B. T h e  power set 2* contains all of B's subsets. So, alternatively 

[Bandler-Kohout, 19801, A is a subset of B iff A belongs to  B's power set: 

A c B if and only if A f z B  . - - (17) 

T h e  subset relation corresponds to  the implication relation in logic. In classical logic 

truth maps the set of statements {S) to  two truth values: t : {S) - (0, 1).  Consider 

the  truth-tabular definition of implicatiotl for bivalent propositions P and Q: 



- Q 
1 

1 

1 0  :C 0 1 

Tlie implication is false if and only i f  tlie antecede~it P is true and the consequent Q is 

false-when "truth implies falsehood." 

The same holds for subsets. Representing sets as bivalent functio~is or "indicator" 

futlctions r n ~  : X L (0, 11, A is a subset of B iff thdie is . no . e-kment x  tliat belongs to . 
.:. . - ;.. 

A but not to B, or m A ( x )  = 1 but nzB(x) = 0. We call rcwritl-this membership-function 

definition as 

A c B if and only if m ~ ( z )  5 m ~ ( z )  for all x  . (18) 

I 

- .  . - .- 

Zadeh 119651 proposed the same relation for . . .fuzzy set cbnt'ainment. .- We refer to this as 

the dominated membership junction relationship: If A = (.3 0 -7) and B = (.4 .7 -9); 

a 
then A is a fuzzy subset of B, but B is not a fuzzy subset of A. Either fuzzy set A is, or 

is not, a fuzzy subset of B. So the relation of fuzzy subsethood is not fuzzy. It is either 

black or white. 

The sets-as-points view asks a geometric question: What do all fuzzy subsets of B look 

l i b ?  What does the fuzzy power set of B - F ( ~ ~ ) ,  the set .of.all fuzzy subsets of B-look 
.. , 

like? The dominated membership function relationship implies that F(2B)  defines the 

hyper-rectangle snug against the origin in a unit hypercube with side lengths equal to the 

fit values m A ( z i ) .  Figure 7 displays the fuzzy power set of the set B = (f 1). F(2') 

has infinite count if B is not empty. For finite-dimensional sets, we can measure the size 

of ~ ( 2 ~ )  [Kosko, 19871 as the Lebesgue measure or volume V ( B ) ,  the product of the fit 

values: 
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i 

~ 



Figure 16.7 Fuzzy power set ~ ( 2 ' )  as a hyper-rectangle in the fuzzy cube. 

Side lengths equal the fit values mB(zi). The size or volume of F(2B)  equals 

the product Bf the fit values. 

Figure 16.7 illustrates that F(2') is not a fuzzy set. Either cube point A is or is not in 

the hyper-rectangle F(2'). Different points A outside the hyper-rectangle F(2*)  resemble 

subsets of B to different degrees. The bivalent definition of subsethood ignores this. 

The natural generalization defines fuzzy subsets on F(2'): Some sets A belong to 

~ ( 2 ' )  to different degrees. Then the abstract membership function n l F ( p ) ( A )  can equal 

any number in [0, 11. This defines degrees of subsethood. 

Let S(A, B )  denote the degree to which A is a subset of B: 



S(., .) dcnotcs t l ~ e  strlselhood mcasum. S(., .) takes values in [0,1]. Wc will see that it 

provides the fundamental, unifying structure in fuzzy tlleory. 

We want to measure S(A, B). We will first present an earlier [I<osko, 1986b-871 

algebraic derivation of the sulsethood measure S(A, B). We will then present a new, 

more fundamental, geometric derivation. 

\Ve call the algebraic derivation the fil-violation slralegy. Intuitively we study a la\\, by 

breaking it. Consider again the dominated membership function relationship: A c B if 

and only if mA(z) _< ms(z) for all x in X. 

Suppose element z, violates the dominated membership functio~l relationship: t?zA(x,) 

> mB(z,). Then A is not a subset of B, a t  least not totally. Suppose further that the 

dominated membership inequality holds for all other elements z. Only element z, violates 

the relationship. For instance, X may consist of one hundred values: X = {z1, . . . , zIo0). 
The violation might occur, say, with the first element: zl = z,. Then intuitively A is- 

largely a subset of B. Suppose that X contains a thousand elements, or a trillion elements, 

and only the first element violates (18). Then it seems A is overwhelmingly a subset of B; 

perhaps S(A, B) = -999999999999. 

This example suggests we should count fit violations in magnitude and frequency. The - 
greater the violations in magnitude, mA(z,) - ms(z,), and the greater the number of 

violations relative to the size h4(A) of A, the less A is a subset of B or, equivalerrtly, the 

more A is a superset of B. For, both intuitively and by (18), supersethood and subsethood 

relate as additive opposites: 

We count violations by adding them. If we sum over all t, the summand should equal 



nzA(z,) - nis(z,) wller: tliis difTercncc is positive, and cqtral zero when it is nonpositive. 

So tlic summand equals max(0, 1liA(z) - l?z~(z))-  So tllc unnormalizcd count equals the 

sun1 of t l~csc ~naxitna: 

C m a x ( 0 ,  niA(z) - ine(x)). 
ttx 

(23 

The cou~l t  M(A) provides a simple, and appropriate, normalization factor. Below we 

formally arrive a t  M(A) by examining boundary GWS in the geometric approach to sub- 

sethood. We can assume M(A) > 0, since Af(.4) = 0 if and only if A is empty. The 

empty set trivially satisfies the dominated membership function relationship (18). So it 
. . 

is a subset of every set. Normalization gives the mitlirnal nwasure of nonsubsetl~ood, of 

supersct hood: 

Then subsethood is the negation of this ratio. This gives the minimal fit-violation measure 

of subsethood: 

The subsethood measure may appear ungraceful at first, but it behaves as it  should. 

S(A, B) = 1 if and only if (18) holds. For if (18) holds, (23) s u m  zero violationi Then 

S(A, B) = 1 - 0 = 1. If S(A, B) = 1, every numerator summand equals zero. So 

no violation occurs. At the other extreme, S(A, B) = 0 if and only if B is the empty 

set. The  empty set uniquely contains no proper subsets, fuzzy or nonfuzzy. Degrees of 

subsethood occur between these extremes: 0 < S(AI B )  < 1. 

The subset hood measure relates to logical implication. Viewed a t  the 1-dimensional 

level of fuzzy logic, and so ignoring the normalizing count (M(A) = l), the subsethood 

measure reduces to the Lukasiewicz implication operator: 



The min(.) operator in (28) clearly generalizes the above truth-tabular definition of biva- 

lent implication. 

Consider the fit vectors A = (-2 0 .4 .5) and B = (.7 .G .3 .7). Neither 

set is a proper subset of the other. A is almost a subset of B but not quite since 
10 rnA(z3) - ms(z3) = -4 - .3 = -1 > 0. Hence S(A,  B) = 1 - i& = - 11- 

similarly S(B,  A) = I - = '0 23' 

Subsethood applies to nonfuzzy sets. Consider the sets C = {zl , 2 2 ,  2 3 , 2 5 ,  2 7 ,  29,  210, 

212 ,  214)  and D = ( 2 2 ,  23 ,  24 ,  25 ,  2 6 ,  27 ,  2 8 ,  29 ,  210, 212,  213, 214) with mrresponding 

bit vectors 

C and D are not subsets of each other. But C should very nearly be a subset of D since 
1 only z l  violates (18). We find S(C, D) = 1 - - 9 = 9 while S(D, C )  = 1 - 4 - 2 9 12 - 3'  

So D is more a subset of C than it is not. This holds because the two sets are largely 

equivalent. They have much overlap: M(C n D) = 8. This observation anticipates the 

Fuzzy Subsethood Theorem presented below. 



We now turn to a new and purely gcomctric derivation of the subsethood opcrator 

S(A, B). Consider the scts-ns-points gmnietry of sr~bsetllood in Figure 16.7. Sct A is 

citl~cr in the hyper-rcctanglc F(2") o r  not i l l  it. Illtuitively S(A, U) sllould al,j>roncl~ 

u~lity as A approaclles the fuzzy powcr set F(2'). S(A,  B)  should dccrcasc, and tllc 

super-sctllood measure 1 - S(A, L3) sl~ould increase, ns A moves from ~ ( 2 ~ ) .  

So tllc key idea is metrical: flow close is A to F(zB)? Let d(A, F(2')) denote this 

1P distance defined in (9). d(A, B') denotes the distance between A and point B' in the 

hyper-rectangle, and B' c B. Distance d(A, ~(2 ' ) )  equals the  smallest such distance. 

Since the hyper-rectangle F(2') is closed and bounded (compact) and convex, some subset 

B' of B achieves this niit~imum distance. So the infimum, the greatest lower bound, equals . 

the distance d(A, B'): 

d(A, ~ ( 2 ' ) )  = inf {d(A, B') : B' E ~ ( 2 ' ) )  (30) 

= d(A, B') . (31) 

We can easily locate the closest set B' in the hypercube geometry. If A is a subset of 

B-if A is in the hyper-rectangle F(2')-then A equals the closest subset: A = B'. So 

suppose A is not a proper subset of B. Then A lies outside the hyper-rectangle ~ ( 2 ' ) .  

We cal slice the unit cube In into 2" hyper-rectangles by extending the sides of F(2') 

to hyperplanes. The hyperplanes intersect perpendicularly (orthogon~lly), a t  lei&[ in the 

Euclidean case. F(2') defines one of t11c hyper-rectangles. The hyper-rectangle interiors 

correspond to the 2" cases whether ? 7 2 , 4 ( 2 ; )  < nrB(xi) or mA(zi) > mB(zi) for fixed B 

and arbitrary A. The edges correspond to the loci of points where some nlA(xi) = mB(x;) .  

The 2" hyper-rectangles classify as mized or pure membership domination. In the pure 

case either r n ~  < m s ,  or m~ > m s ,  holds in the hyper-rectangle interior for all z and all 

interior points A. In the mixed case mA(zi) < me(zi) holds for some of the coordinates 



x i ,  and m ,(zj) > ms(zj) l~olds for the remaining coordinates x,  in thc interior for all 

in tcrior A. So there arc only two pure membership-dominat ion hyper-rectangles, t l ~ c  sct 

of propcr subsets F(2") atid t l ~ c  set of proper supcrscts, which inc lude  A'. 

Figure 16.8 illustrates ilotv the fuzzy power set ~ ( 2 ' )  of B = (i 3) li~iearly ex- 

tclids to  partition t l ~ c  unit square illto z2 rectangles. Tllc non-subscts A,, A2, and A3 

rcsidc in distinct quadrants. Tlle nortl~west and southeast quadrants define the mixed 

membership-domination rectangles. T h e  southwest and the  nortlieast quadrants define 

Figure 16.8 Partition of hypercube In into 2" hyper-rectangles by linear- 

ly extending the  edges of ~ ( 2 ~ ) .  We find the nearest points B; and B,' to 

points Al and A3 in the northwest and southeast quadrants by the normals 

from F(zB) to A, and A3. T h e  nearest point B' to point A2 in the northeast 

quadrant  is B itself. This "orthogonaln optimality condition allows d(A, B )  by 

the general Pythagorean Theorem as the hypotenuse in an P "rightn triangle. 



I1 is tllc ricnrcst sct 11' to .4 ~ I I  tllc plrrc s~~l)crscl l~y~~cr-rcctat~~;lc. 'Ib fi11c1 tllc I I C ~ L I - C S ~  

sct 13' i l l  t l ~ c  rllixcd casc wc dra\\- a l ) c r l ~ c ~ ~ ~ i i c ~ ~ l a r  (ortl~ogoaal) lillc scglncl~t fro111 11 to 

F(2") .  Convexity of ~ ( 2 ' )  is rtltimatcly rcsj~onsiblc. I n  Figurc 1G.S tllc pcr~~cndiculnr 

lines from Al and Ag intcrscct linc cdgcs (1-di~nc~lsio~lal linear subspaccs) of the recta~lgle 

F(28). The linc from A2 to 13, tllc corncr of F ( P ) ,  is degcncratcly perpendicular sincc D 

is a zero-dimensional linear subspace. 

Tl~esc "orthogonality" conditions also hold in three dimensions. Let your room again 

be the unit 3-cube. Consider a large dictionary fit snugly against tlie floor corner cor- 

responding to the origin. Point B equals tlle dictionary corner farthest from the origin. 

Extending the three exposed faces of the dictionary partitions the room into 8 octants. The 

dictionary occupies one octant. We connect points in the other 7 octants to the nearest 

points on the dictionary by drawing lines, or tying strings, that perpendicularly intersect 

one the three exposed faces, or one of the three exposed edges, or the corner B. 

The "orthogonalityn condition invokes the 1P-version of the Pythagorean Theorem. For 

our I' purposes: 

d(A, B) = d(A, B') + d(B, B') . (32) 

The more familiar 12-version, actually pictured in Figure 16.8, requires squaring these 

distances. For the general 4P case: 

or equivalently, 

Equality holds for all p 2 1 since, as is clear from Figure 16.8 or 16.10 and, in general, 

from the algebraic argument below, either b;' = a; or 6;' = 6;. 

This Pythagorean equality is surprising. M'e have come to think of the Pythagorean 



Tl~corern (and ortl~ogonality) as a n  P or liilbcrt-spacc propcrty. I'ct hcrc it l~olds in  every 

CP space-if Do is lllc sct i l l  F(2B) closcst to A in P distitrlcc. Of coursc for otl~cr sets 

strict illcqtlality Ilolds i l l  gc11cra1 i f  1)  # 3. 'I'l~is S I I ~ C S ~ S  a sj)ccial s t a t ~ ~ s  for tllc closest set 

B'. W c  sl~all scc bclow t l~a t  t l ~ c  Subsclllood Tl~corem confirms t11is suggestion. M1e sl~all 

tlsc tllc term Uorthogo~~ality" looscly to refer to tl~is P Pytl~agorcall relationship, \vl~ile 

remembering its customary rcstrictio~l to e2 spaces and inner products. 

A natural interprctatiotl defines supcrscthood as tliedistance d(A, ~ ( 2 ~ ) )  = d(A, B'). 

Supersetllood increases with this distance; subsethood decreases wi tll it. To keep superset- 

hood, and thus subsethood, unit-interval valued, we must suitably norn~alize the distance. 

A constant provides tllc simplest normalization term for d(A, B'). That constant . 

cquals tllc maximum oait-cobc distance, 11: in the general l P  case and n in our l" case. 

This gives the candidate subsethood measure 

This candidate subsethood measure fails in the boundary case when B is the empty 

set. For then d(A, B*) = d(A, B)  = M(A) .  So the measure in (35) gives S(A, 0) = 

1 - 34 n > 0. Equality holds exactly when A = X. But the empty set has no subsets. 

Only normalization factor M ( A )  satisfies this boundary condition. Of course M ( A )  = n' 

when A = X. Explicitly we require S(A, 0) = 0, as well as S ( 8 ,  A) = .l, 

Normalizing bfn also treats all equidistant points the same. Consider points A1 and A2 

in Figure 16.9. Both points are equidistant to their nearest F(2B) point: d(Al, Bi) = d(A2, Bi) 

. But Al is closer to B than A2 is. In particular Al is closer to the horizontal line fiefined 

by the fit value ms(x2) = f . The count M(A) reflects this: M(Al) > M(A2). The count 

gap M(AI ) - M(A2) arises from the fit gap involving zl , and reflects d( Al  , B) < d(A2, B). 

In general the count M(A) relates to this distance, as we can see by checking extreme cas- 

es of closeness of A to B (and drawing some diamond-shaped 1' spheres centered at B). 

Indeed if r n ~  > rn* everywhere, d ( A ,  B) = M(A) - M(B). 



Figure 16.9 Dependence of subsethood on the count M ( A ) .  Al and A2 

are equidistant to F(2B)  but A1 is closer to B than A2 is; correspondingly, 

M ( A r )  > M(A2) .  Loci of points A  of constant count M ( A )  define line seg- 

ments parallel to the negatively sloping long diagonal. 1' spheres centered at 

B are diamond shaped. 

Since F(2B)  fits snugly against the origin, the count M ( A )  in any of the other 2" - 1 

hyper-rectangles can be only larger than the count M ( B 0 )  of the nearest F(2') points. The 

normalization clloice of n leaves the candidate subsethood measure indifferent to which of 

the 2" - 1 hyper-rectangles contains A  and to where A resides is in the hyper-rectangle. 

Each point in each hyper-rectangle involves a different combination of fit-violations and 

satisfactions. The normalization choice of M(A) reflects this fit-violation structure and 
. - 

behaves appropriately in boundary cases. 



M'c now sllow tllat tllis rncasurc cq~lals tile s~~bsctllood mcasurc (25) dcrivcd algcbmically 

above. 

Let 8' bc any subset of 13. Then by definition the llearest subset 13' obeys tile inequal- 

i ty: 

wl~erc for convenience a; = nzA(zi), al~d 6; = tnB(zi) .  \hTe will ~ S S U I I I C  p = 1 but ~ I I C  

following characterization of 6; holds for any p > 1. 

"Orthogonalityn implies a; 2 I;'. So first suppose a; = b;'. This equality holds if and 

only if no violation occurs: a; 5 6;. (If this co~ldition holds for all i, then A = B'.) So 

max(0, a; - b;) = 0. Next suppose a; > bT. This inequality holds if and only if a violation 

occurs: a; > 6;. (If this holds for all i ,  then B = B*.) So b;' = b; since B' is the subset 

of B nearest to A. Equivalently, a; > 6; holds if and only if max(0, a; - b;) = ai - 6;. 
The two cases together prove that max(0, a; - b;) = la; - b;l. Summing over all r ;  

gives 

So the two subsethood measures (25) and (36) are equivalent. 

This proof also proves a deeper characterization of the optimal subset B': 

B ' = A ~ B .  (39) 

For if a violation occurs, then a; > b;, and b; = b;'. So min(a;, 6;) = b;'. Otherwise 

a; = b:, and so min(ai, bi) = b;'. So B* = A n B. 



l'llis in  turn provcs tliat B' is a point of do~ll>lc ol)ti~)~aIity. B' i s  Lot11 thc s u  bsct of B 

ncarcst A, and A',  t l~c  srlbsct of A ~lcarcst to D: 

d(B, ~ ( 2 " ) )  = d(B, A' )  = d(B, B') . (40) 

Figurc 16.10 illustrates that B' = A n B = 11' identifies the set within botll thc 

Ilypcr-rcctanglc F(2") and the llypcr-rectangle ~ ( 2 ' )  t11al has maximal count M(A n B) .  

x =  ( 1  1) j 
I 

-4 

{ I  

i I 
I 
I 
I ( X I ) = ( !  0 )  i 

3 ! 

Figure 16.10. B' as both the subset of B nearest A and the subset A' of A n- 

earest B : B' = A' = A n  13. Thedistanced(A, B') = 4.1(.4) - M ( A  n B) 

illustrates the Subsethood Theorem. 

Figure 16.10 also shows that the distance d(A,  B') equals a vector magnitude differ- 

ence: d(A, B') = M(A) - M ( A  n B). Dividing both sides of this equality by 

M(A) and rearranging proves a still deeper structural characterization of subsethood, the 

Su bsethood Theorem. 



Subset hood Tlleorem. 

siilcc (41) implies A4(A n B) = A4(B) S(B,  A) .  

The ratio form of the subsethood measure S(A, B) has the same ratio forin as the 
8 .  

conditional probability P(B1A) has in (1). We derived the ratio form for the subsethood 

measure S(A, B) but assumed it for the conditional probability P(BIA). Since every 

probability is a conditional probability, P(A) = P(AIX), this suggests we can reduce 

probability to subsethood. We shall argue that this reduction holds both frequentist or 

Uobjectiven probability and axiomatic or Bayesian or "subjectiven probability. 

Consider the physical interpretation of randomness as the relative frequency nA/n. n~ 

denotes the number of successes that occur in n trials. Historically probabilists have called 

the success ratio ( or its limit) nA/n the "probability of successn or P(A). We can now 

derive the relative-frequency definition of probability as S(X, A), the degree to which a 

bivalent superset A', the sample space, is a subset of its own subset A. The conkept of 

"randomnessn never enters the deterministic set-theoretic framework. This holds equally 

for flipping coins, drawing balls from urns, or computing Einstein-Bose statistics. 

Suppose A is a nonfuzzy subset of X .  Then 



Tlie n elements of X constitute tlle de facto universe of discourse of t l ~ e  "exj>erirnent." 

(We can take the limit of the ratio S(X, A) i f  it mathematically makes sense to do so 

[Kac, 19591.) The "probabilityn has reduced to a degree of subsethood, a purely fuzzy 

set- t heoretical relationship. Perhaps if, centuries ago, scientists had developed set theory 

before they formalized gambling, the undefined notion of "randomness" might never have 

culturally prevailed, if even survived, in the age of modern science. 

The ~neasure of ovcrlap Ad(A n X )  provides the key component of relative frequency. 

This count does not involve "randomness". A4(A fl X) counts which elements are identical 

or similar. The phenomena themselves are deterministic and black or white. The same 

situation gives the same number. We may use the number to place bets or to s\vitch a 

phone line, but it remains part of the description of a specific state of affairs. We need not 

invoke an undefined "randomnessn to further describe the situation. 

Subsethood subsumes elementhood. We can interpret the membership degree mA(zi) 

as the subsethood degree S((zi) ,  A), where (xi) denotes a singleton subset or "elemen- 

t" xi of A'. { x i )  corresponds to a bit vector with a 1 in the ith slot and 0s elsewhere: .: 

{xi) = (0,. . . ,0,1,0,. . . ,0). If we view A as the fit vector (al,. . . ,a;, . . .,a,), then .., 

{xi) n A = (0,. . . ,0, a;, 0,. . . ,0), the ith coordinate projection. Since the count M ( { z i } )  :-- 

equals one, the Subsethood Theorem gives 



So subsctllood rcduccs to clcn~cntliood if anlcccdcnl scts arc bivalent sillglctoll scts. 

Tl~c s~~bsctl~ood ort1,ogonality conditions projcct A onto tllc facil~g sick of the Ilyl>er- 

rectangle F(2B). This projection gives the "normal equationsn of least-squares parameter 

estimation [Sorenson, 19SO], a version of which we saw in Chapter 5. In general for two . - 
R" vectors x and y, we project x onto y to give the projection vector p = c y. The 

difference x - p is ortllogonal to y : (x - p) l y. So 

where column vector yT denotes the transpose of row vector y. (53) gives the projection @ 
coefficient c as the familiar normal equations: 

Consider the unit square in Figure 16.10 with the same A, say A = ( $1. But 

suppose we shift B directly to the left to B = (0 $). This contracts the rectangle F(2') to 

the line segment 10 f ]  along the vertical axis. These assumptions simplify the correlation 



nintllcmatics yct still prcscrvc tlrc Ic,ast-squares structure. M'c cxpccl tlrat f3' = cB,  

or cf3 = A n 13, wlrclr wc I,rojccl A olito ~ ( 2 ' )  or, cq~~i\mlcrrtly i l l  llris spccinl cnsc, 

wlleri wc projccl A or,l.o 13. 'I'lrc illtcrscclion A  fl 13 cqlla!s lhc ~ l ~ i r l i l ~ l ~ l r ~ ~  fit vcctor (0 f ) ,  
2 A B ~  = o + :  = ;,and B U ~  = 0 + (!)2 = ;. TI~CII  

and 

as expected. Morc generally i f  B = (bl  b), 6, = 0, 62 > 0, and a2 < b2, tllen 



Tllcn c B = (0 e) = (0 n 2 )  = A n /I si~lcc n2 5 lb. 

Subscthood I l a s  cxtcndcd tllc Pytl~agorcan Tlicorem, relative frcqucncy, and elemcnt- 

flood, and i~ivolvcs  tlie normal cquntiorls of least-sq~~are cstimdior~. \Vc sllall now scc llow 

subsctl~ood rclates to axiomatic or I3ayesian probability and to fuzzy entropy. 

Bayesian Polemics 

Bayesian probabilists interpret probability as a subjeclivc statc of knowledge. In prac- 

tice tliey use relative frequencies (subsethood degrees) but only to approxi~nate thcse "s- 

tates of knowledge." 

Bayesianism is often a polemical doctrine. Some Bayesians claim that they, and only 

they, use all and only the available uncertainty information in the description of uncertain 

phenomena. This stems from the Bayes Theorem expansion of the "a posteriorin condi- 

tional probability P(HilE), the probability that Hi, the ith of k-many disjoint hypotheses 

{Hi), is true given observed evidence E: 

since the hypotheses partition the sample space X : HI u Hz u . . . U Hk = X and 

Hi n Hj = 0 if i # j. 



' r l ~c  Bayesian approacll uscs all availallc iliforlnation i l l  colnputing tllc posterior dis- 

t r i b ~ ~ t i o ~ l  P(/I;IE) by using the ua priorin or prior (Iistril)utio~~ I1(l1;) of tltc I~ypotl~cses. 

'I'llc 13aycsiat1 approacl~ stclns froni t11c ratio for111 of tllc coll<litiollal j>rol>ability mmurc.  

Tile Sulsctllood Tlleorcm trivially implics Ilaycs l'l~corc~ii wl~e~i  tllc Iiypotl~cscs {N;) 

and cvidct~ce 6 arc nonfuzzy subscts. Morc iml~orta~it, tltc SuLsctl~ood Thcorcm implics 

tllc Ihuzzy Baycs Tlicorem in tlae morc intcrcsti~ig casc \\?llcn the obscrved data E is fuzzy: 

S(H;, E) A4(1fi) 
S(E ,  H i )  = k 

( I ,  B)  A!(N,) 

where fi = A$(X' )  = n = S(X,  Hi) gives the "relative frequencyn of Hi, the degree 

to which all the hypotheses are Hi. 

The Subsethood Theorem implies inequality when the partitioning hypotheses are 

fuzzy. For instance, if k = 2, HC is the complement of an arbitrary fuzzy set H, 

and evidence E is fuzzy, then [Kosko, 1986bl the occurrence of nondegenerate hypothesis 

overlap and underl-ap gives a lower bound on the posterior subsethood: 

where fH = S(X, H). The lower bound increases \\pith Ill(H) and decreases with M(HC). 

Since a like lower bound holds for S(E ,  Iic), adding tlie t\vo posterior subsethoods gives 

tlie additive inequality 

an inequality Zadeh [1983] arrived a t  independently by directly defining a "relative sigrna- 

countn as the subsethood measure given by the Subsethood Theorem. If H is nonfuzzy, 



cqrlality l~olds as ill  t l ~ e  additive law of coriditior~al ~>robability: 

'l'llc Subsctl~ood Tlicorcrn implies a deeper Bays tl~corcm for arbitrary fuzzy scts, tllc 

Odds-Form hzzy Bayes Theorem: 

We prove this theorem directly by rel>lacing tllc sul~scthood terms o n  the righthand side 

wit11 thcir equivalent ratios of counts, canceling like terms three times, multiplying by 
M ( A l  n If)' 
M ( A ~  n 11)' rearranging, and applying the Subsethood Theorem a second time. 

We have now developed enough fuzzy theory to examine critically the recent anti- 

fuzzy polemics of Lindley (19871 and Jaynes [1979] (and thus Cheeseman [1985] who uses 

Jaynes' arguments). To begin we observe four more corollaries of the Subsethood Theorem: 

(ii) S(H, A)  = 1 if H c A, (69) 

(iv) S(H, A, n Az) = S(H, A * )  S(A1 fl H1 A2). (71 

Each relationship follows from the ratio form of S(A, B). The third relationship (70) uses 

the additivity of the wunt M(A) ,  which follows from min(t, y) + max(z, y) = z + y. 

Suppose we make the notational identification S(H, A)  = P(A(H) .  We then obtain 

the defining relationships of conditional probability Lindley proposed: 



h4ultiplic0lion : P(AI n A2111) = P(AIIN) P(A21AI fl H). (74) 

"From these three. rules," Lindley tells us, *all of tlie many, rich and wonderful results 

or the probability calculus follow. They may bc dcscril>ed a s  tllc asio~lls of pl.obiibility.'' 

Lindley takes these as "unassailal~lc" axioms: "\f7c really have no choice about tllc rules 

governing our measure~nent of uncertainty: tliey are dictated to  us by tlie iuexorable laws 

of logic." Lindley proceeds to build a "coherence" argument around the Odds-Form Bayes 

Theorem, which he correctly deduces from the axioms as the equality 

where here we interpret AC as not-A. "Any other procedure," Lindley claims, "is inco- 

herent." This polemic evaporates in the face of the above four subsethood coroHaries and 

the Odds-Form Fuzzy Bayes Theorem. Ironically, rather than establish the primacy of 

axiomatic probability, Lindley seems to argue that it is fuzziness in disguise. 

Maximum-entropy estimation provides another source of Bayesian probability polemic 

[Cheeseman, 1985). Here the axiomatic argument rests on the so-called Cox's Theorem 

[1946]. 

According to physicist E.T. Jaynes [1979]: "Cox proved that ally method of inference in 

which we represent degrees of plausibility by real numbers, is necessarily either equivalent 

to  Laplace's, or inconsistent," wlicre Jaynes cites Laplace as an early Bayesian probabilist. 

In fact Cox used bivalent logic (Boolean algebra) and other assumptions to show that, 

again according to  Jaynes, the "conditions of consistency can be be stated in the form of 

functional equations," namely the probabilistic product and sum rules: 



Tlie Subsethood Theorem implies 

with, as we have seen, equality holding for the second subsethood relationship when B is 

nonfuzzy, which holds in the Cox- Jaynes setting. 

In the probabilistic case overlap and underlap are degenerate. So P(A n AcJ B) = P(01B) 
- = 0, and P(BIA n Ac) = P(BI0)  is undefined. Yet in general S(B,  A n A') > 0, - P(B)  

and we can define S(A n A', B)  when A and B are fuzzy or nonfuzzy. 

Jaynes' claim is either false or concedes that probability is a special case of fuzziness. 

For strictly speaking, since the subsethood measure S(A, B) satisfies the multiplicative 

and additive laws specified by Cox and yet differs from the conditional probability P(BIA),  

Jaynes' claim is false. 
. . - 

Presumably Jaynes was unaware of fuzzy sets. He suggests that the frequency tlleory of 

probability provides the only a1 ternative uncertainty theory, and we have reduced relative 

frequency to the subsethood measure S(X, A). So if we restrict consideration to nonfuzzy 

sets A and B, equality holds in the above subsethood relations, and Jaylles argues correctly: 

probability and fuzziness coincide. But fuzziness exists, indeed abounds, outside this 

restriction and classical probability theory does not. So fuzzy theory extends probability 

theory. Equivalently, probability represents a special case of fuzziness. 



W l i c ~ ~  we cxami~ie Cox's actual argtrn~etils, we find that Cox a s u m c s  1Ilat tllc tlnccr- 

tai~lty co~nbinatio~l operators arc c o ~ i t i ~ ~ t ~ o ~ ~ s l y  lruice dil'fcrcnliclble. h4 in  and Inax arc not 

t\vicc diKcrentiablc. 'I'cclinically, Cos's t I ~ m ~ . c ~ n  docs 11ot apply. 

T H E  ENTROPY-SUBSETHOOD THEOREM 

We independently derived the Fuzzy Entropy Theorem and t l ~ c  Subsethood Theoren, 

from first from sets-as-points unit-cube geometry. Both theorems involve ratios 

of cardinalities. So we call suspect a connection. 

Tlle Entropy-Subscthood Thcorcm sllo~s~s that thc connection in\$ol\-cs ovcrlal-> A n AC 

and underlap A U AC. The tlleorem clin~i~lates fuzzy entropy in favor of subselllood. 

So subsethood emerges as the fundamental, characterizing quantity of fuzziness-and, ar- 

guably, of probability as well. 

Entropy-Subsethood Theorem: E ( A )  = S(A u A', A n A') . (80) 

The theorem follows if we replace B and A in the Subsethood Theorem rvi th respectively 

overlap A n AC and underlap A U A'. Since overlap is a subset 'of underlap', since 

S ( A  n A', A U A') = 1, the intersection of the two sets equals the overlap. 

The Entropy-Su bsethood Theorem dcscri bes a peculiar relationship. It gives fuzziness 

or ambiguity as the degree to whicll the superset A U AC is a subset of its own subset 

A n A', the extent to which the whole is a part of one of its own parts, a relationship 

Western logic forbids. 

This relationship violates our ingrained Venn-diagram intuitions of unambiguous set 

inclusion, Only the midpoint of In yields total containment of underlap in overlap. The 



cube vcrticcs ~ i c l d  zcro containment. 'I'lris l~arallcls in  tlrc extreme 1ll.e rclativc ircq~rcllcy 

rclatiot~sllip S(X, A )  = F, wllcrc l~ol~fllzzy srlbsct A corilail~s to sotiic dcgrcv its ~ ~ o ~ l l u z z y  

slr~'cr-scl A'. 

Figurc 16.11 illustrates llle Entrol>y-Sr~bsctllood 'l'llcorcm. It shows that d o ,  tile slrort- 

a t  <listancc from urldcrlap A u A' to tllc I~~~,cr-rcctanglc thal defilles tllc fuzzy power 

set of overlap A n A', equals tllc distntrcc d(A U AC, A f3 AC) = d(/l, A') arid cqtlals 

a difTerence of vcctor magt~itudes: d' = A4(A U AC) - M(A fl AC). 

Figure 16.11 Entropy-Subsethood Theorem in two dimensions. Just as the 

long diagonals have equal length, d(A, A') = d(A U AC, A n A') = d' = M(A U A') - 
Af(A n A'), the  shortest distance from A U A' to  the fuzzy power set of A n A'. 

T h e  Entropy-Subsethood Theorem implies that no probability measure measures fuzzi- 

ness. For the  moment, suppose not. Suppose fuzzy entropy measures notlli~lg new; fuzzi- 

ness is simply disguised probability. Suppose, as Lindley [1987] claims, that probability 



theory "is ac-lcq~ratc for all ~ ~ r o b l c r ~ ~ s  irlvolving unccrtai 11 ty." 'I'licn lltcrc csists sottlc I)roba- 

bility mcasurc P strcl~ t l ~ a t  P = k. P cannot cqual zero cvcrywl~crc I,ccnusc />(A') = 1. 

'I'licn t l~c rc  is solnc A srrcli tllxt / ' ( A )  = / ? (A )  > 0. 1311 t i r t  ;r ~)rol);rl)ilily s l ~ ~ c c  o\*crli~~, 

or undcrlap are dcgcncratc: A n AC = 0, and -4 U AC = A'. 

Tilc Entrol>y-Subsctl~ood Thcorcm tllcr~ implies tltal 0 < P ( A )  = ]:(A) = S ( A  u AC, 

A f l  A c )  = S ( X ,  0).  X can be a s~tbset  to  nonzero dcgrcc of tllc crnpty sct only if A' 

itself is empty, and Ilence only if A  is empty: A' = A = 0 .  Tlrcri tllc sure event A' is 

impossible: P ( X )  = P ( 0 )  = 0. Or the impossible event is sure: P(0) = 1. Either 

outcome gives a bivalent contradiction, i~npervious to normalization. So there exists no 

probability mcasurc P tliat measures fuzziness. Fuzziness ex ists. 



- 
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7. Prove the fuzzy Dc Morgat~ JAWS: 

8. Prove: 
t z ' l ~  

0 5 P ( A ,  A ~ ~ ~ ~ )  5 - 2 5 ['(A, Ajar) 5 I~"P , 1) 2 1. 

9. Prove the C1-version of the Fuzzy Entropy Theorern: 

10. Prove: A4(A) + A4(B) = A4(A n B )  + A4(A U 13). 

1 1 .  Prove: i M ( A  n AC) + iAd(A U At) = 1. 

12. Prove: 

(a) E(P) = if M(P) = 1 and all pi 5 1/2, 

1 
(b) E(P) < if M(P) = 1 and some pj > 112. 

13. Prove the fit-violation version of the Subsethood Thoerern: 

14. Prove: 

where fi  = S ( X ,  H i ) ,  the nonfuzzy sets H,, . . . , H I ;  partition X,  and E is fuzzy. 

15. Prove: 



wllcrc 111 = S ( X ,  If) and E alld /I are arbitrary ftizzy scls. 

16. I'rovc llic Odds-Form Daycs l'llcorcln: 

S(A,  n I / ,  A,) - - s(n2 n I / ,  A , )  S ( I l ,  A,) 
S t  n I ,  A )  s(.45 n I f ,  A ,  ) S ( I / ,  A;)  ' 

for arbitrary fuzzy sels Al , A2, and N. 

17. Prove directly the addilive inequality: S(A, B) t S(A,BC)  2 1. 

18. Prove: 

(a) 0 i S ( N , A )  I 1, 

(b) S ( N ,  A )  = l if  If C A ,  

( d )  S ( H ,  A, n A2) = S ( H ,  A, )  S(A,  n I{, A2) . 

19. Show that  IV,(IV,(z)) = z for the generalized negation operator 

20. If we define intersection nT pointwise by 

how should we define tlie corresponditlg De >!organ dual union Us? 

21. What  De Morgan dual union operator corresponds to  the intersection operator 

22. Zadeh's consequent conjunction syllogism schematizes as 



Tl~crefore: Q As arc Bs a ~ i d  CS 

Show that i f  Q1 = S(A, 13) and Q2 = S(A, C ) ,  Illen tllc fuzzy quantifier Q obeys 

23. Define the voltlme s7rbsctlrood measure V(A ,  B )  as 

for fit vectors A = ( a ] , .  . . ,a,) and B = (61,. .. ,b,) such that a; > 0. v (A)  is 

the Lebesgue or volume measure of A: 

The volume subsethood measure V(A ,  B) measures the ratio of the volume of the 

overlap hyp$r-rectangle ~ ( 2 ~ " ' )  to the volume of A's fuzzy power set F(zA). prove 

that the volume subsethood measure V ( A ,  B) underestimates the subsethood mea- 

sure S(A,  B): - 
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Abstract 

We developed fuzzy and neural-network control systems to back up a simulated truck, 

and truck-and-trailer, to a loading dock in a planar parking lot. The fuzzy systems per- 

m formed well until we randomly removed over 50 % of their fuzzy-associative-memory (FAM) 

rules. They also performed well when we replaced key FAM equilibration rules with de- 

structive or "sabotagen rules. We trained the neural network systems with the supervised 

backpropagation learning algorithm and tested their robustness by removing random sub- 

sets of training data in learning sequences. The neural systems performed well but required 

extensive computation for training. We used unsupervised differential competitive learn- 

ing (DCL), and product-space clustering, to adaptively generate FAM rules from training 

data. The original fuzzy and neural control systems generated trajectory data. The DCL 

system rapidly recovered the underlying FAM rules. Product-space clustering converted 

the neural truck systems into structured sets of FAM rules that approximated the neural 

system's behavior. 
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Fuzzy and Neural Control Systems 

We construct fuzzy and neural control systems directly from control data, but from 

different types of control data. Fuzzy systems use a small number of structured linguistic 

input-output samples from an expert or from some other adaptive estimator. Neural 

systems use a large number of numeric input-output samples from the control process or 

from some other database. Adaptive fuzzy systems also use numeric control data. 

Figure 1 illustrates this difference. The neural system estimates function f : X ---+ Y 

from several numerical point samples (x ; ,  y;). The fuzzy system estimates f from a few 

fuzzy set samples or fuzzy associations (A;, B;). 

FIGURE 1 Geometry of neural and fuzzy function estimation. The neural 
approach (a) uses several numerical point samples. The fuzzy approach (b) 
uses a few fuzzy set samples. 

Fuzzy and neural systems offer a key advantage over traditional control approaches. 

They offer model-be estimation of the control system. The user need not specify how 

the controller's output mathematically depends on its input. Instead the user provides a 

few common-sense associations of how the control variables behave. Or the user provides 

a statistically representative set of numerical training samples. Even if a math-model 

controller is available, fuzzy or neural controllers may prove more robust and easier to 

modify. 

Which system, fuzzy or neural, performs better for which type of control problem de- 



pends on the type and adab i l i t y  of sample data. U experts provide structured knowledge 

of the control process, or if sufficient numerical training samples are unavailable, the fuzzy 

approach may be preferable. We can construct a fuzzy control system with comparative 

ease when experts or fuzzy engineers provide accurate structured knowledge. A fuzzy con- 

trol system seems a reasonable benchmark in such cases, even if we can develop a neural 

controller or mat h-model controller. 

If we have representative numerical data but not structured expertise, the neural a p  

proach may be preferable. Or a statistical regression approach may be more appropriate. 

The data simply tell their own story-if there is a story to tell. Yet even here we can 

use a hybrid fuzzy-neural system, an adaptive fuzzy system. We can use the numerical 

data to generate jk ty  associative memory (FAM) rules. The FAM rules can then form the 

skeleton of a fuzzy control architecturn. In short, if structured knowledge is unavailable, - 
estimate it. This may be more practical than it would Lppear because of the small number 

of control FAM rules needed to reliably control many realworld processes. 

How can we compare fuzzy and neural controllers? Abstract comparison proves difficult 

because both approaches build a control black box in different ways. That they build black 

boxes distinguishes them from math-model controllers. It also suggests we can compare 

them, at least approximately, by their black-box control performance. 

Each control system generated an output wntrul surface as it ranged over the common 

input space of parameter values. Figure 5 below shows three-dimensional control surfaces 

for the fuzzy and neural controllers. For control systems with few input parameters with 

moderately quantized ranges, we can store both fuzzy and neural controllers--or rather 

their quantized control surfaces-as decision look-up tables. Then once we specify a system 

performance criterion, we can in principle quantitatively compare the controllers. 

Comparing system trajectories proved more complicated. In the case at hand, we 

wanted to back up a truck, and truck-and-trailer, to a loading dock. We can measure and 

compare the quality and quantity of the truck trajectory, perhaps with mean-squared er- 

ror criteria. Intuitively, we preferred smooth short trajectories to jagged long trajectories. 

Reaching the loading-dock goal was also important. I .  practice it is the most impor- 

tant performance requirement. We must balance the trajectory type with the trajectory 



destination, and this reduces to the pragmatic issue of balancing means and ends. 

Below we develop a simple fuzzy control system and a simple neural control system 

for backing up a truck, and truck-and-trailer, in an open parking lot. The recent neural 

network truck backer-upper simulation of Nguyen and Widrow 119891 motivated our choice 

of control problem. 

The fuzzy control system compared favorably with the neural controller in terms of 

black- box development effort, black-box computational load, smoothness of truck trajec- 

tories, and robustness. 

We studied robustness of the fuzzy control systems in two ways. We deliberately added 

confusing FAM rules-"sabotagen rules-to the system, and we randomly removed differ- 

ent subsets of FAM rules. We studied robustness of the neural controller by randomly 

removing different portions of the training data in learning sequences. We also converted 

the neural control systems to structured FAM-bank sfstems. 

Backing up a truck 

Figure 2 shows the simulated truck and loading zone. The truck corresponds to the cab 

part of the neural truck in the Nguyen-Widrow neural truck backer-upper system. The 

three state variables 4, z, and y exactly determine the truck position. 4 specifies the angle 

of the truck with the horizontal. The coordinate pair (z,y) specifies the position of the 

rear center of the truck in the plane. 

The goal was to make the truck arrive at the loading dock at a right angle (4, = 90°) 

and to align the position (2, y) of the truck with the desired loading dock (zf,yt). We 

considered only backing up. The truck moved backward by some fixed distance at every 

stage. The loading zone corresponded to the plane (0,1001 x (0,1001, and (2, , yf ) equaled 

(50,100). 

At every stage the fuzzy and neural controllers should produce the steering angle 8 that 

backs up the truck to the loading dock kom any initial position and from any angle in the 

loading zone. 



loading dock (x, . yf) 
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rear 

FIGURE 2 Diagram of simulated truck and loading zone. 

Fuzzy Truck Backer-Upper System , - 
A. 

We first specified each controller's input and output variables. The input variables were 

the truck angle 4 and the x-position coordinate x. The output variable was the steering- 

angle signal 8. We assumed enough clearance between the truck and the loading dock so 

we could ignore the y-position coordinate. The variable ranges were as follows: 

Positive values of B represented clockwise rotations of the steering wheel. Negative values 

represented counterclockwise rotations. We discretized all values to reduce computation. 

The resolution of 4 and 8 was one degree each. The resolution of x was 0.1. 

Next we specified the fuzzy-set values of the input and output fuzzy variables. The 

fuzzy sets numerically represented linguistic terms, the sort of linguistic terms an expert 

might use to describe the control system's behavior. We chose the fuzzy-set values of the 

fuzzy variables as follows: 



Ande 4 

RB: Right Below 

RU: Right Upper 

RV: Right Vertical 

VE: Vertical 

LV: Left Vertical 

LU: Left Upper 

LB: Left Below 

x-position x Steering-angle signal 9 

LE: Left NB: Negative Big 

LC: Left Center NM: Negative Medium 

CE: Center NS: Negative Small 

RC: Right Center ZE: Zero 

RI: Right PS: Positive Small 

- . .PM:  PositiveMedium 

PB: PositiveBig 

Fuzzy subsets contain elements with degrees of membership. A fuzzy membership 

function r n ~  : Z .--+ [O, 11 assigns a real number between 0 and 1 to every element z in 

the universe of discourse 2. This number mA(t) indi&tes the degree to which the object 

or data z belongs to the fuzzy set A. Equivalently, mA(z) defines the f i t  (fuzzy unit) value 

[Kosko, 19861 of element z in A. 

Fuzzy membership functions can have different shapes depending on the designer's pref- 

erence or experience. In practice fuzzy engineers have found triangular and trapezoidal 

shapes help capture the modeler's sense of fuzzy numbers and simplify computation. Fig- 

ure 3 shows membership-function graphs of the fuzzy subsets above. In the third graph, 

for example, 8 = 20" is Positive Medium to degree 0.5, but only Positive Big to degree 0.3. 

In Figure 3 the fuzzy sets CE, VE, and Z E  are narrower than the other fuzzy sets. 

These narrow fuzzy sets permit fine control near the loading dock. We used wider fuzzy 

sets to describe the endpoints of the range of the fuzzy variables 4, 2, and. 8. The wider 

fuzzy sets permitted rough control far from the loading dock. 

Next we specified the fuzzy "rulebasen or bank of fuzty associative memory (FAM) rules. 

Fuzzy associations or "rules" (A, B) associate output fuzzy sets B of control values with 

input fuzzy sets A of input-variable values. We can write fuzzy associations as antecedent- 

consequent pairs or IF-THEN statements. 

In the truck backer-upper case, the FAM bank contained the 35 FAM rules in Figure 4. 

For example, the FAM rule of the left upper block (FAM rule 1) corresponds to the following 



FIGURE 3 Fuzzy membership functions for each linguistic fuzzy-set value. 
To allow finer control, the fuzzy sets that correspond to near the loading dock 
are narrower than the fuzzy sets that correspond to far from the loading d d .  

fuzzy association: 

IF x = LE AND 4 = RB, THEN 8 = PS. 

FAM rule 18 indicates that if the truck is in near the equilibrium position, then the 

controller should not produce a positive or negative steering-angle signal. The FAM rules 

in the FAM-bank matrix reflect the symmetry of the controlled system. 

For the initial condition z = 50 and 4 = 270, the fuzzy truck did not perform well. 

The symmetry of the FAM rules and the fuzzy sets cancelled the fuzzy controller output in 

a rare saddle point. For this initial condition, the neural controller (and truck-and-trailer 

below) also performed poorly. Any perturbation breaks the symmetry. For example, the 

rule (If z = 50 and 6 = 270, then 8 = 5) corrected the problem. 

The three-dimensional control surfaces in Figure 5 show steering-angle signal outputs 

8 that correspond to all combinations of d u e s  of the two input state variables 4 and 

z. The control surface defines the fuzzy controller. In this simulation the correlation- 

minimum FAM inference procedure, discussed in [Kosko, 1990a], determined the fuzzy 

control surface. If the control surface changes with sampled variable values, the system 



FIGURE 4 FAM-bank matrix for the fuzzy truck backer-upper controller. - 
,C. 

FIGURE 5 (a) Control surface of the fuzzy controller. Fuzzy-set values 
determined the input and output combination corresponding to FAM rule 2 
(IF ==LC AND &FU3, THEN 8=PM). (b) Corresponding control surface of 
the neural controller for constant value y=20. 



behaves as an adaptive fuzzy controller. Below we demonstrate unsupervised adaptive 

control of the truck and the truck-and-trailer systems. 

Finally, we determined the output action given the input conditions. We used the 

correlation-minimum inference method illustrated in Figure 6. Each FAM rule produced 

the output fuzzy set clipped at the degree of membership determined by the input condi- 

tions and the FAM rule. Alternatively, correlation-product inference [Kosko, 1990aJ would 

combine FAM rules multiplicatively. Each FAM rule emitted a fit-weighted output fuzzy 

set 0; at each iteration. The total output 0 added these weighted outputs: 

where fi denotes the antecedent fit value and Si represents $. the consequent fuzzy set of 

steering-angle values in the ith FAM rule. Earlier fuzzy systems combined the output 

sets 0; with pairwise maxima. But this tends to produce a uniform output set 0 as the 

number of FAM rules increases. Adding the output sets Oi invokes the fuzzy version of 

the Central Limit Theorem. This tends to produce a symmetric, unirnodd output fuzzy 

set 0 of steering-angle values. 

Frizzy systems map fuzzy sets to fuzzy sets. The fuzzy control system's output defines 

the fuzzy set 0 of steering-angle values at each iteration. We must "defuzzify" the fuzzy 

set 0 to produce a numerical (point-estimate) steering-angle output value 9. 

As discussed in [Kosko, 1990a], the simplest defuzzification scheme selects the vaIue 

corresponding to the mazimum fit value in the fuzzy set. This mode-selection approach 

ignores most of the information in the output fuzzy set and requires an.additional decision 

algorithm when multiple modes occur. 

Centroid defuzzification provides a more effective procedure. This method uses the 

fuzzy centmid 8 as output: 
P 
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FIGURE 6 Correlation-minimum inference with centroid defuzzification 
method. Then FAM-rule antecedents combined with AND use the minimum 
fit value to activate consequents. Those combined with OR would usethe 
mcrzimum fit value. 

1 

Q' 

where 0 defines a fuzzy subset of the steering-angle universe of discourse O = (el,. . . ,4). 
The central-limit-thewem effect produced by adding output fuzzy set Oi benefits both max- 

mode and centroid defuzzification. Figure 6 shows the correlation-minimum inference and 

centroid defuzdication applied to FAM rules 13 and 18. We used centroid defuzzification 

in all simulations. 

With 35 FAM rules, the fuzzy truck wntroller produced successful truck backing-up 

trajectories starting fiom any initial position. Figure 7 shows typical examples of the h m y -  

controlled truck trajectories fiom different initial positions. The fuzzy control system did 

not use ("fire") all FAM rules at each iteration. Equivalently most output consequent sets 

are empty. In most cases the system used only one or two FAM rules at each iteration. 

The system used at most 4 FAM rules at  once. 

Neural Truck Backer-Upper System 

The neural truck backer-upper of Nguyen and Widrow (19891 consisted of multilayer 



FIGURE 7 Sample truck trajectories of the fuzzy controller for initial 
positions (x, y,$): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,-10). 

feedforward neural networks trained with the backpropagation gradient-descent (stochastic- a 

approximation) algorithm. The neural control systeh consisted of two neural networks: 

the controller network and the truck emulator network. The controller network produced 

an appropriate steering-angle signal output given any parking-lot coordinates (2, y), and 

the angle 4. The emulator network computed the next position of the truck. The emulator 

network took as input the previous truck position and the current steering-angle output 

computed by the controller network. 

We did not train the emulator network since we could not obtain "universal" synaptic 

connection weights for the truck emulator network. The backpropagation learning algo- , 

rithm did not converge for some sets of training samples. The number of training samples 

for the emulator network might exceed 3000. For example, the combinations of training .. 

samples of a given angle 4, x-position, y-position, and steering angle signal 8 might cor- 

respond to 3150 (18 x 5 x 5 x 7) samples depending on the division of the input-output 

product space. Moreover, the training samples were numerically similar since the neuronal 

signals assumed scaled values in [O,l] or [-I, 11. For example, we treated close values, such 

as 0.40 and 0.41, as distinct sample values. 

Simple kinematic equations replaced the truck emulator network. If the truck moved 



backward from (z,y) to (z', y') at an iteration, then 

T denotes the fixed driving distance of the truck for all backing movements. We used 

equations (4)-(6) instead of the emulator network. This did not affect the post-training 

performance of the neural truck backer-upper since the truck emulator network back- 

propagated only errors. 

We trained only the controller network with backpropagation. The controller network 

used 24 "hiddenn neurons with logistic sigmoid functions. In the training of the truck- 

controller, we estimated the ideal steering-angle signal at each stage before we trained the 

controller network. In the simulation, we used the arc-shaped truck trajectory produced 

by the fuzzy controller as the ideal trajectory. The fuzzy controller generated each training 

sample (2, y, +,8) at each iteration of the backing-up process. We used 35 training sample 

vectors and needed more than 100,000 iterations to train the controller network. 

Figure 5b shows the resulting neural control surface for y = 20. The neural control 

surface shows less structure than the corresponding fuzzy control surface. This reflects 

the unstructured' nature of black-box supervised learning. Figure 8 shows the network 

connection topology for our neural truck backer-upper control system. 
; 

Figure3 shows typical examplea~&f the neural-controlled truck trajectories from sev- 

eral initial positions. Even though we trained the neural network to follow the smooth 

arc-shaped path, some learned truck trajectories were non-optimal. 

Comparison of Fuzzy and Neural Systems 

As shown in Figure 7 and 9, the fuzzy controller always smoothly backed up the truck 

but the neural controller did not. The neural-controlled truck sometimes followed an 

irregular path. 

248 
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FIGURE 8 Topology of om neural control system. 

24 bidden units 

FIGURE 9 Sample truck trajectories of the neural controller for initial 
positions (~,y,t$): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,-10). 



FIGURE 10 The fuzzy truck trajectory after we replaced the key steady- 
state FAM rule 18 by the two worst rules: (a) IF z = CE AND 4 = VE, 
THEN 6 = PB, and (b) IF 2 = CE AND 4 = VE, THEN 8 = NB. 

Training the neural control system was time-consuming. The backpropagation a l p  

rithm required thousands of back-ups to train the controller network. In some cases, the 

learning algorithm did not converge. 

We "trainedn the fuzzy controller by encoding our own common sense FAM rules. Once 

we develop the FAM-rule bank, we can compute control outputs fiom the resulting FAM- 

bank matrix or control surface. The fuzzy controller did not need a truck emulator and 

did not require a math model of how outputs depended on inputs. 

The fuzzy controller was computationally lighter than the neural controller. Most 

computation operations in the neura) controller involved the multiplication, addition, or - 
logarithm of two real numbers. In the fuzzy controller, most computational operations 

involved comparing and adding two real numbers. 

Sensitivity Analysis 

We studied the sensitivity of the fuzzy controller in two ways. We replaced the FAM 

rules with destructive or "sabotage" FAM rules, and we randomly removed FAM rules. 



FIGURE 11 Fuzzy truck trajectory when (a) no FAM rules are removed 
and (b) FAM rules 7,13,18 and 23 are removed. 

We deliberately chose sabotage FAM rules to confound the system. Figure 10 shows the 

trajectory when two sabotage FAM rules replaced the important steady-state FAM rule- 

FAM rule 18: the fuzzy controller should produce zero output when the truck is nearly in 

the correct parking position. Figure 11 shows the truck trajectory after we removed four 

randomly chosen FAM rules (7, 13,18, and 23). These perturbations did not significantly 

Bffed the fuzzy controller's performance. 

We studied robustness of each controller by examining failure rates. For the fuzzy 

controller we removed fixed percentages of randomly selected FAM rules from the system. 

For the neural controller we removed training data. Figure 12 shows performance errors 

averaged over - ten typical back-ups ? . t h  missing FAM rules for the fuzzy controller and . 
missing training data for the neural controller. The missing FAM rules and training data 

ranged from 0 % to 100 % of the total. In Figure 12a, the docking error equaled the 

Euclidean distance from the actual final position (4, z, y) to the desired final position (4f, 

Zf ' ~f 1: 

Docking Error = \/(t$f - 4))' + (zf - z)' + (yf - y)' . (7) 

In Figure 12b, the trajectory error equaled the ratio of the actual trajectory length of the 
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FIGURE 12 Comparison of robustness of the controllers: (a) Docking and 
Trajectory error of the fuzzy controller, (b) Docking and Trajectory error of 
the neural controller. 

truck divided by the straight line distance to the loading dock: 

length of truck trajectory 
Trajectory Error = 

dist ance(initia1 position, desired final position) ' (8) 

Adaptive Fuzzy Truck Backer-Upper 

Adaptive FAM (AFAM) systems generate FAM rules directly from training data. A 

one-dimensional FAM system, S : P --+ P', defines a FAM mle, a single association of the 

form (4, B;). In this case the input-output product space equals I" x P. As discussed in 

(Kosko, 1990a], a FAM rule (A;, Bi) defines a cluster or ball of points in the product-space 

cube I" x P centered at the point (A;, B;). Adaptive clustering algorithms can estimate the 



a unknown FAM rule (A;, B;) from training samples in R2. We used differential competitive 

learning (DCL) to recover the bank of FAM rules that generated the truck training data. 

We generated 2230 truck samples kom 7 different initial positions and varying an- 

gles. We chose the initial positions (20,20), (30,20), (45,20), (50,20), (55,20), (70,20), and 

(80,20). We changed the angle from -60" to 240" at each initial position. At each step, the 

fuzzy controller produced output steering angle 8. The training vectors (x, 4, 8) defined 

points in a three-dimensional product-space. x had 5 fuzzy set values: LE, LC, CE, RC, 

and RI. 4 had 7 fuzzy set values: RB, RU, RV, VE, LV, LU, and LB. 8 had 7 fuzzy set 

values: NB, NM, NS, ZE, PS, PM,  and PB. So there were 245 (5 x 7 x 7) possible 

FAM cells. 

We defined FAM cells by partitioning the effective product-space. FAM cells near the 

center were smaller than outer FAM cells because we chose narrow membership functions 

near the steady-state FAM cell. Uniform partitions of the product-space produced poor 

estimates of the original FAM rules. As in Figure 3, this reflected the need to judiciously 

define the fuzzy-set values of the system fuzzy variables. 

Q 
W e  performed product-space clustering with the version of DCL discussed in [Kosko, 

1990al. If a FAM cell contained at least one of the 245 synaptic quantization vectors, we 

entered the corresponding FAM rule in the FAM matrix. 

Figure 13a shows the input sample distribution of (x,$). We did not include the 

variable 8 in the figure. Training data clustered near the steady-state position (z = 50 
, 

and 9 = 9Q0). Figure 13b displays thg synaptic-vector histogram after DCL classified 2230 

training vectors for 35 FAM rules. Since successful FAM system generated the training 

samples, most training samples, and thus most synaptic vectors, clustered in the steady- 

state FAM cell. 

DCL product-space clustering estimated 35 new FAM rules. Figure 14 shows the DCL 

estimated FAM bank and the corresponding control surface. The DCLestimated control 

surface visually resembles the underlying unknown control surface in Figure 5a. The two 

systems produce nearly equivalent truck-backing behavior. This suggests adaptive product- 

space clustering can estimate the FAM rules underlying expert behavior in many cases, 

even when the expert or fuzzy engineer cannot articulate the FAM rules. 



(a) Input dab distribution 
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(b) Synaptic-vector histogram 

FIGURE 13 (a) Input data distribution, (b) Synaptic-vector histogram. 
Differential competitive learning allocated synaptic quantization vectors to 
FAM cells. The steady-state FAM cell (CE, VE; ZE) contained the most 
synaptic vectors. 

FIGURE 14 (a) DCL-estimated FAM bank. (b) Corresponding control 
surface. 



FIGURE 15 (a) FAM bank generated by the neural control surface in 
Figure 5b. (b) Control surface of the neural BP-AFAM system in (a). 

We also used the neural control surface in Figure 5b to estimate FAM rules. We divided 

the input-output product-space into FAM cells as in the fuzzy control case. I£ the neural 

control surface intersected the FAM cell, we entered the corresponding FAM rule in a FAM 

bank. We averaged aU neural control-surface values in a square region over the two input 

variables z and 4. We assigned the average value to one of 7 output fuzzy sets. Figure 15 

shows the resulting FAM bank and corresponding control surface generated by the neural 

control surface in Figure 5b. This new control surface resembles the original fuzzy control 

surface in Figure 5a more than it res4tnbles the neural control surface in Figure 5b. Note - - - 
the absence of a steady-state FAM rule in the FAM matrix in Figure 5a. 

Figure 16 compares the DCLAFAM and BP-AFAM control surfaces with the fuzzy 

control surface in Figure 5a. Figure 16 shows the absolute difference of the control surfaces. 

As expected, the DCL-AFAM system produced less absolute error than the BP-AFAM 

system produced. 

Figure 17 shows the docking and trajectory errors of the two AFAM control systems. 

The DCEAFAM system produced less docking error than the BP-AFAM system produced 

for 100 arbitrary backing-up trials. The two AFAM systems generated similar backing-up 

trajectories. This suggests that black-box neural estimators can define the front-end of 



FIGURE 16 (a) Absolute difference of the FAM surface in Figure 5a and 
the DCL-estimated FAM surface in Figure 14b. (b) Absolute difference of the 
FAM surface in Figure 5a and the neural-estimated FAM surface in Figure 15b. 

FAM-structured systems. In principle we can use this technique to generate structured 

FAM rules for any neural application. We can then inspect and refine these rules and 

perhaps replace the original neural system with the tuned FAM system. 

Fuzzy Truck-and-Trailer Controller 

J .& 

We a d e d  a trailer to  the tru& system, as in the original Nguyen-Widrow model. 

Figure 18 shows the simulated truck-and-trailer system. We added one more variable (cab 

angle, 4,) to the three state variables of the trailerless truck. In this case a FAM rule takes 

the form 

IF z = LE AND 4: = RB AND 4, = PO, THEN /3 = NS. 

The four state variables z, y, 4:, and 4, determined the position of the truck-and-trailer 

system in the plane. Fuzzy variable 6: corresponded to 4 for the trailerless truck. Fuzzy 

variable 4, specified the relative cab angle with respect to the center line along the trailer. 

4, ranged from -90" to 90". The extreme cab angles 90" and -90" corresponded to two 
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FIGURE 17 (a) Docking errors and (b) Trajectory errors of the DCL- 
AFAM and BP-AFAM control systems. 
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FIGURE 18 Diagram of the simulated truck-and-trailer system. 

"jackknife" positions of the cab with respect to the trailer. Positive 4c value indicated 

that the cab resided on the left-hand side of the trailer. Negative value indicated that it 

resided on the right-hand side. Figure 18 shows a positive angle value of 4,. 
Fuzzy variables z, &, and 4, defined the input variables. Fuzzy variable P defined the 

output variable. /3 measured the angle that we needed to update the trailer at each itera- 

tion. We computed the steering-angle output 8 with the following geometric relationship. 

With the output /3 value computed, the trailer position (z, y) moved to the new position 

(=I, ?/'I: 
2' = t + r  Cos(4t+P), (9) 

Y' 5 Y + rsin(4t + P), - (10) 

where r denotes a fixed badring distance. Then the joint of the cab and the trailer (u,u) 

moved to the new position (u', u'): 

where L denotes the trailer length. We updated the directional vector (dir U, di+V), which 

defined the cab angle, by 

dirU' = dirU + Au, 

dirV1 = dirV + Au, 



FIGURE 19 Membership graphs of the three fuzzy-set values of fuzzy 
variable 4,. 
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FIGURE 20 FAM bank of the fuzzy truck-and-trailer control system. 

.3 - 
where Au = u' - u, and Av = u' - u. The new directional vector (dirU',dirV') defines 

the new cab angle 4:. Then we obtain the steering angle value as 6 = &,h - (bC,h, where 

4 , ~ ,  denotes the cab angle with the horizontal. We chose the same fuzzy-set values and 

membership fimctions for /3 as we chose for 8. /3 ranged from -30" to 30°. We chose the 

fuzzy-set values of 4, as NE, ZR and PO as in Figure 19. 

Figure 20 displays the 5 FAM-rule matrices in the FAM bank of the fuzzy truck-and- 

trailer system. In Figure 20 we fixed the fuzzy variable z as LE, LC, CE, RC, and RI. 

There were 735 (7 x 5 x 7 x 3) possible FAM rules and only 105 actual FAM rules. 

Figure 21 shows typical backing-up trajectories of the fuzzy truck-and-trailer control 



FIGURE 2 1 Sample truck-and-trailer traject ones from the fuzzy con- 
troller for initial positions (2, y, 4,, 4,): (a) (25, 30, -20, 30), (b) (80, 30, 
210, -40), and (c) (70,30,200,30). 

system from different initial positions. The truck-and-trailer backed up in different direc- 

tions depending on the relative position of the cab with respect to the trailer. The fnzzy 

control systems successfully controlled the truck-and-trailer in jackknife positions. 

BP Truck-and-Trailer Control Systems 

I We added the cab-angle variable 4, as to the backpropagation-trained neural truck con- 

troller as an input. The controller n$work contained 24 hidden neurons with output vari- - 
able B. The training samples consisted of !j-dimensional space of the form (2, y, 4t, 4=,B). 

We trained the controller network with 52 training samples from the fuzzy controller: 26 

samples for the left half of the plane, 26 samples for the right half of the plane. We 

used equations (9)-(14) instead of the emulator network. Training required more than 

200,000 iterations. Some training sequences did not converge. The BP-trained controller 

performed well except in a few 'cases. Figure 22 shows typical backing-up trajectories of - -'. . -. . 

the BP truck-and-trailer control system from the same initial positions used in Figure 21. 

We performed the same robustness tests for the fuzzy and BP-trained truck-and-trailer 

controllers as in the trailerless truck case. Figure 23 shows performance errors averaged 
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FIGURE 22 Sample truck-and-trailer trajectories of the BP-trained con- 
troller for initial positions (2, y, A, &): (a) (25,30, -20,30), (b) (80,30,210, 
-40), and (c) (70,30, 200,30). 

over ten typical back-ups from ten different initial positions. These performance graphs 

resemble closely the performance graphs for the trailerless truck systems in Figure 12. 

a AFAM Truck-and-mailer Control Systems 

We generated 6250 truck-and-trailer data using the original FAM system in Figure 20. 

We backed up the truck-and-trailer kom the same initial positions as in the trailerless truck 

case. The trailer angle +t ranged froin -60" to 240°, and the cab angle 4, assumed only - 
the three values -45", 0°, and 45". The training vectors (z,& 4,, p) defined points in the 

four-dimensional input-output product-space. We nonuniformly partitioned the product 

space into FAM cells to allow narrower fuzzy-set values near the steady-state FAM cell. 

We used DCL to train the AFAM truck-and-trailer controller. The total number of FAM 

cells equaled 735 (7 x 5 x 7 x 3). We used 735 synaptic quantization vectors. The DCL 

algorithm classified the 6250 data into 105 FAM cells. Figure 24 shows the synaptic-vector 

histogram corresponding to the 105 FAM rules. Figure 25 shows the estimated FAM bank 

by the DCL algorithm. Figure 26 shows the original and DCL-estimated control surfaces 

for the fuzzy truck-and-trailer systems. 

a 
261 
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FIGURE 23 Comparison of robustness of the two truck-and-trailer con- 
trollers: (a) Docking and trajectory error of the fuzzy controller, (b) Docking 
and trajectory error of the BP controller. 
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FIGURE 24 Synaptic-vector histogram for the AFAM truck-and-trailer 
system. 
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FIGURE 25 DCL-estimated FAM bank for the AFAM truck-and-trailer 
system. 

Figure 27 shows the trajectories of the original FAM and the DCL-estimated AFAM 

truck-and-trailer controllers. Figure 278 and 27b show the two trajectories from the initial 

position (2, y, q$, 4,) = (30,30,10,45). Figure 27c and 27d show the trajectories iiom 

initial position (60,30,210,-60). The original FAM and DCEestimated AFAM systems 

exhibited comparable truck-and-trailer control performance except in a few cases, where 

the DCL-estimated AFAM trajectories were irregular. 
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(a) Original control surfaces for the truck-and-trailer system 

x=RC . . x = RI 

@) DCGestimated control surfaces for the truck-and-trailer system 

FIGURE 26 (a) Original control surface (b) DCL-estimated control surface 
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FIGURE 27 Sample truck-and-trailer trajectories from the original and 
the DCL-estimated FAM systems starting at initial positions (z, y, &, c$=) = 
(30,30,10,45) and (60,30,210,-60). 

Conclusion 

We quickly engineered fuzzy systems to successfully back up a truck and truck-and- 

trailer system in a parking lot. We used only common sense and error-nulling intuitions 

to generate sufficient banks of FAM ryles. These systems performed well until we removed 

over 50 %%f the FAM rules. This extreme robustness suggests that, for many estimation 

and control problems, different fuzzy engineers can rapidly develop prototype fuzzy systems 

that perform similarly and well. 

The speed with which the DCL clustering technique recovers the underlying FAM bank 

further suggests that we can likewise construct fuzzy systems for more complex, higher- 

dimensional problems. For these problems we may have access to only incomplete numer- 

ical input-output data. Pure neural-network or statistical-process-control approaches may 

generate systems with comparable performance. But these systems will involve far greater 

computational effort, will be more difficult to modify, and will not provide a structured 



represent ation of the system's throughput. 

Our neural experiments suggests that whenever we model a system with a neural net- 

work, for little extra computational cost we can generate a set of structured FAM rules that 

approximate the neural system's behavior. We can then tune the fuzzy system by refining 

the FAM-rule bank with fuzzy-engineering rules of thumb and with further training data. 

.. .. 
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APPENDIX: Product-space Clustering with Differential 

Competitive Learning 

Produd-space clustering [Kosko, 1990aI is a form of stochastic adaptive vector qumti- 

zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters 

in R". Stochastic competitive learning systems are neural AVQ systems. Neurons compete 

for the activation induced by randomly sampled patterns. The corresponding synaptic fan- 

in vectors adaptively quantize the pattern space R". The p synaptic vectors mi define the 

p  columns of the synaptic connection matrix M. M interconnects the n input or linear 

neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output 

field Fy. Figure 28 below illustrates the neural network topology. 

Learning algorithms estimate the unknown probability density function p(x), which de- 

scribes the distribution of patterns in R". More synaptic vectors arrive at more probable 

regions. Where sample vectors x are dense or sparse, synaptic vectors mi should be dense 

or sparse. The local count of synaptic vedors then gives a nonparametric estimate of the 

volume probability P(V) for volume V c R": 

Number of mj E V 
X 

P 

In the extreme case that V = R", this approximation gives P(V) = p /p  = 1. For improb- 

able subsets V, P(V) = O/p = 0 .  



~ Stochastic Competitive Learning Algorithms 

The metaphor of competing neurons reduces to nearest-neighbor classification. The 

AVQ system compares the current vector random sample x(t) in Euclidean distance to the 

p columns of the synaptic connection matrix M, to the p synaptic vectors ml(t), . . . , m,(t). 

If the j th  synaptic vector mj(t) is closest to x(t), then the j th output neuron "wins" the 

competition for activation at time t. In practice we sometimes define the nearest N synaptic 

vectors as winners. Some scaled form of x(t) - mj(t) updates the nearest or "winning" 

synaptic vectors. "Losersn remain unchanged: m;(t + 1) = mi(t). Competitive synaptic 

vectors converge to pattern-class centroids exponentially fast [Kosko, 1990bl. 

The following three-step process describes the competitive AVQ algorithm, where the 

third step depends on which learning algorithm updates the winning synaptic vectors. 

Competitive AVQ Algorithm 

1. Initialize synaptic vectors: ~ ( 0 )  = x(i), i = 1,. . . ,p. 

Sample-dependent initialization avoids many pathologies that can distort nearest- 

neighbor learning. 

2. For random - sample x(t), find th'e dosest or "winningn synaptic vector mj(t): 

where IlxII? = Z: + . - + z: defines the squared Euclidean vector norm of x. We can 

define the N synaptic vectors dosest to x as  Uwinnersn. 

3. Update the winning synaptic vector(s) m j(t) with an appropriate learning algorithm. 



Differential competitive learning (DCL) 

Differential competitive "synapses" learn only if the competing "neuron" changes its 

competitive status [Kosko, 1990c]: 

or in vector notation, 

where S(x) = (Sl(zl) ,..., Sn(z,)) and m j  = (mlj ,..., mnj). m;j denotes the synaptic 

weight between the ith neuron in input field F' and the jth neuron in competitive field 

Fy. Nonnegative signal functions S; and Sj transduce the real-valued activations zi and 

yj into bounded monotone nondecreasing signals Si(zi) and Sj(yj). 7izij and ~ j ( ~ j )  denote 

the time derivatives of m;j and Sj(yj), synaptic and signal velocities. Sj(yj) measures the 

competitive status of the j th  competing neuron in Fy . Usually Sj approximates a binary 

threshold function. For example, Sj may equal a steep binary logistic sigrnoid, 

for some constant c > 0. The j th  neuron wins the laterally inhibitive competition if Sj = 1, 
'2- 

loses if Sj = 0. 

For discrete implementation, we use the DCL algorithm as a stochastic difference equa- 

tion [Kong, 1991): 

mj(t + 1) = mj(t) + Q ASj(~j( t ) )  [ S(x(t)) - mj(t) ] if the j th neuron wins, (21) 

mi(t + 1) = m;(t) if the ith neuron loses. (22) 

ASj(yj(t)) denotes the time change of the j th neuron's competition signal Sj(yj) in the 

competitive field Fy : 



We define the signum operator sgn(x) as 

{ Q )  denotes a slowly decreasing sequence of learning coefficients, such as Q = .1(1- 

t/2000) for 2000 training samples. Stochastic approximation [Huber, 19811 requires a de- 

creasing gain sequence { q )  to suppress random disturbances and to guarantee convergence 

to local minima of mean-squared performance measures. The learning coefficients should 

decrease slowly, 

but not too slowly, 

Harmonic-series coefficients, ct = l l t ,  satisfy these constraints. 

We approgmate the competitive signal difference ASj as the activation difference Ayj: 

Input neurons in feedforward networks usually behave linearly: S;(z;) = z;, or S(x(t)) = 

x(t). Then we update the winning synaptic vector mj(t) with 

We update the Fy neuronal activations yj with the additive model 



Input fiild FX Competition field Fy 

FIGURE 28 Topology of the laterally inhibitive DCL network. 

For linear signal functions Si, the first sum in (30) reduces to an inner product of sample 

and synaptic vectors: 

Then positive learning tends to occur-Amij > 0-when x is dose to the j th  synaptic 

vector mi. 

Since a binary threshold function approximates. the output signal function Sk(yk), the 

second sum in (30) sums over just the winning neurons: wkj for d winning neurons yk . 
.$ 

k 
The p P p matrix W contains the Fr within-field synaptic connection strengths. Di- 

agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite 

themselves and inhibit all other neurons. Figure 28 shows the connection topology of the 

laterally inhibitive DCL network. 



We divided the space 0 < z 5 100 into five nonuniform intervals [O, 32-51, [32.5,47.5], 

[47.5,52.5], [52.5,67.5], and [67.5,100]. Each interval represented the five fuzzy-set values 

L E ,  L C ,  C E ,  RC, and RI. This choice corresponded to the nonoverlapping intervals 

of the fuzzy membership function graphs m(z) in Figure 3. Similarly, we divided the 

space -90 5 4 5 270 into seven nonuniform intervals [-go, 01, [O, 66.51, [66.5,86], [86,94], 

[94,113.5], [113.5,182.5], and [182.5,270], which corresponded respectively to R B ,  RU, 

R V ,  VE, L V ,  L U ,  and LB. We divided the space -30 5 9 < 30 into seven nonuniform 

intervals [-30, -201, [-20, -7.51, [-7.5, -2.51, [-2.5,2.5], [2.5,7.5], [7.5,20], and [20,30], 

which corresponded to N B ,  N M ,  N S ,  Z E ,  P S ,  P M ,  and PB. 

DCL classified each input-output data vector into one of the FAM cells. We added a 

FAM rule to the FAM bank if the DCEtrained synaptic vector fell in the FAM cell. In 

case of ties we chose the FAM cell with the most densely clustered data. 

For the BP-AFAM generated from the neural control surface in Figure 15, we divided 

the rectangle [O, 1001 x [-go, 2701 into 35 nonuniform squares with the same divisions 

defined above. Then we added and averaged the control surface values in the square. We 

added a FAM rule to the FAM bank if the averaged value corresponded to one of the seven 

FAM cells. 

For the truck-and-trailer case, we ,$divided the space -90 5 +e 5 90 into three intervals 

[-go, -1221, [-12.5,12.5], and [12.5,90], which corresponded to NE, Z R ,  and PO. There 

wete 735 FAM cells, and 735 possible FAM rules, of the form (z, 4t, +; P). 
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ABSTRACT 

We compared fuzzy and I<alrnan-filter control systems for realtime target tracking. 

Both systems performed well, but in the presence of mild process (unmodeled effects) noise 

the fuzzy system exhibited finer control. We tested the robustness of the fuzzy controller 

by removing random subsets of fuzzy associations or "rules" and by ,adding destructive or 

"sabotage" fuzzy rules to the fuzzy system. We tested the robustness of the Kalman track- 

ing system by increasing the variance of the unmodeled-effects noise process. The fuzzy 

controller performed well until we removed over 50% of the fuzzy rules. The Kalman con- 

troller's performance quickly degraded as the unmodeled-effects variance increased. We 

used unsupervised neural-network learning to adaptively generate the fuzzy controller's 

fuzzy-associative-memory structure. The fuzzy systems did not require a mathematical - .  
model of how system outputs depended on inputs. 
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Fuzzy and Math-Model Controllers 

Fuzzy controllers differ from clhssical matll-model controllers. Fuzzy controllers do 

not require a mathematical model of how control outputs fr~nctionally depend on control 

inputs. Fuzzy controllers also dilier in the type of uncertainty they represent and lrow they 

represent it. The fuzzy approach represents ambiguous or fuzzy system behavior as partial 

implications or approximate "rules of thumbn-as fuzzy associations (A ; ,  B;). 

Fuzzy controllers are fuzzy systems. A finite fuzzy set A is a point [I<osko, 19871 in 

a unit hypercube In = [O, 11". A fuzzy system F : I n  -+ IP is a mapping between 

unit hypercubes. In contains all fuzzy subsets of the domain space X = {xl,. . . , x , ) .  

I n  is the fuzzy power set F(2X)  of X. I p  contains all the fuzzy subsets of the range 

- space Y = { y l , .  . . , y,). Element z; c X belongs to fuzzy set A to degree mA(zi) .  The 2" 

nonfuzzy subsets of X correspond to the 2" corners of the fuzzy cube In. The fuzzy system 

'F maps fuzzy subsets of X to fuzzy subsets of Y. In general, X and Y are continuous not 

discrete sets. 

Math-model controllers usually represent system uncertainty with probability dis- 

tributions. Probability models describe system behavior with first-order and second-order 

statistics-with conditional means and covariances. They usually describe unmodeled ef- 

fects and measurement imperfections with additive "noisen processes. 

Mathematical models of the system state and measurement processes facilitate a rnean- 

squared-error analysis of system behavior. In general we cannot accurately articulate such 

mathematical models. This greatly restricts the range of realworld applications. In practice 

we often use linear or quasi-linear (Markov) mathematical models. 

Mathematical state and measurement models asso make it difficult to add non-mathem- 

atical knowledge to the system. Experts may articulate such knowledge, or neural networks 

may adaptively infer it from sample data. In practice, once we have articulated the math 

model, we use human expertise only to estimate the initial state and covariance conditions. 

Fuzzy controllers consist of a bank of fuzzy associative inemory (FAM) "rules* or 

associations (A;, Bi) operating in parallel, and operating to different degrees. Each FAM 



rule is a set-level in~plication. It represents ambiguous expert knowledge or learned input- 

output transformations. A FAM rule can also summarize tlie bcliavior of a specific matli- 

ernatical model. T l ~ c  systcrn nonlinearly transfor~ns cxact or fuzzy state inputs to a fuzzy 

set output. This output fuzzy set is usually "defuzzificd" wit11 a centroid operation to  

generate an exact numerical output. In principle the system can use tlre entire fuzzy dis- 

tribution as the output. We can easily construct, process, and modify the I7AM bank of 

FAM rules in software or in digital VLSI circuitry. 

Fuzzy controllers require tliat we articulate or estimate the FAM rules. The  fuzzy-set 

framework provides more expressiveness than, -say; traditional expert-system approaches, 

which encode bivalent propositional associations. But the fuzzy framework does not elimi- 

nate the burden of knowledge acquisition. We can use neural network systems to estimate 

the FAM rules. But neural systems also require an accurate (statistically representative) 

set of articulated input-output numerical samples. Below we use unsupervised competitive 

learning to adaptively generate target-tracking FAM rules. 

Experts can hedge their system descriptions with fuzzy concepts. Although fuzzy con- 

trollers are numerical systems, experts can contribute their knowledge in natural language. 

This is especially important in complex problem domains, such as economics, medicine, 

and history, wheie we may not know how .to mathematically model system behavior. 

Below we compare a fuzzy controller with a Kalman-filter controller for realtime target 

tracking. This problem admits a simple and reasonably accurate mathematical description 

of its state and measurement processes. We chose the I<alman filter as a benchmark because 

of its many optimal linear-systems properties. We wanted to see whether this "optimaln 

controller remains optimal when compared with a conlpu tat ionally lighter fuzzy controller 

in different uncertainty environments. . . 

We indirectly compared the sensitivity of the tivo controllers I>y varying their system 

uncertainties. We randomly removed FAR4 rules from the fuzzy controller. We also added 

"sabotage" FAM rules to the con troller. Both tecliniques modeled less-stuctured control 

environments. For the I<alman filter, we varied the noise va.riance of the unmodeled-effects 

noise process. 

Both systems performed well for mildly uncertain target environments. They degraded 



diffc rently as tllc systcm uncertainty increases. Tlle fuzzy co~~trollcr's performance de- 

graded when wc removed more than Iialf the FAM rules. Tile I(a11nan-fil ter controller's 

performance quickly degraded wllen the additive state noise proccss itlcrcasc<l in variance. 

Realtime Target Tracking 

A target tracking system maps azimuth-elevation inputs to motor control outputs. The 

nominal target moves tllrougll azimuth-elevation space. Two motors adjust the position 

of a platform to continnously point at the target. 

The platform call be any directional device that accurately points a t  the target. The 

device may be a laser, video camera, or high-gain antenna. M'e assume we have available 

a radar or other device that can detect the direction from the platform to the target. 

The radar sends azimuth and elevation coordinates to the tracking system a t  the end 

of each time interval. We calculate the current error ek in platform position and change in 

error ik. Then a fuzzy or Kalman-filter controller determines the control outputs for the 

motors, one each for azimuth and elevation. The control outputs reposition the platform. 

We can independently control movement along azimuth and elevation if we apply the 

same algorithm twice. This reduces the problem to matching the target's position and 

velocity in only one dimension. 

Figure 1 shows a block diagram of the target tracking system. The controller's output 

vk gives the estimated change in angle required during the next time interval. In principle 

a hardware system must transduce the angular velocity vr; into a voltage or current. 
. . 
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vk 

We restrict the output angular velocity v k  of the fuzzy controller to the interval [-6, 61. 

So we must insert a gain element before the voltage transduction. This gain must equal 

one-sixth the maximum angle through which the platform can turn in one time interval. 

Similarly, the position error e k  must be scaled so that 6 equals the maximum error. The 

product of this scale factor and the output gain provides a design ~arameter-the "gain'.' 

of the fuzzy controller. . 

The fuzzy controller uses heuristic control set-level "rules" or fuzzy associative memory 

(FAM) associations based on cpantized values of e r ,  e l ,  and vr-I. We define seven fuzzy 

levels by the following library of fuzzy-set values of the fuzzy variables ek, h, and vk-r: 

d Delay A 

vk- 1 



L : Large Ncgati ve 

A 4  N : Mcdium Negative 

S N  : Small Ncgative 

Z E :  Zero 

SP : SmallPositive 

M P  : MediumPositive 

LP : Large Positive 

\Ve do not quantize inputs in the classical sense that we assign each input to exactly 

one output level. Instead, each linguistic value equals as a fuzzy set that overlaps with 

adjacent fuzzy sets. The  fuzzy controller uses trapezoidal fuzzy-set values, a s  Figure 2 

shows. The lengths of the upper and lower bases provide design parameters that we must 

calibrate for satisfactory performance. A good rule of thumb is adjacent fuzzy-set values 

should overlap approsimately 25 percent. Below we discuss examples of calibrated and 

uncalibrated systems. The fuzzy controller attained its best performance with upper and 

lower bases of 1.2 and 3.9-26.2% overlap. ~ i f f e r e n t  target scenarios may require more or 

less overlap. 

UNIVERSE OF DLSCOURSE 

FIGURE 2 Library of overlapping fuzzy-set values defined on a universe 



We assign eacli system input to  a fit vector of lc~lgtli 7, whcre tlic it11 41, or /tizzy unit 

[I<osko, 1986], cquals the value of tllc it11 fuzzy set a t  tlie input valuc. 111 other words, 

the itli fit measures the degree t o  wliicl~ the input belongs to tile itli fuzzy-set value. For 

instance, we apply the input values 1, -4, and 3.8 to the seven fuzzy sets in the library t o  

obtain tlie fit vectors - .  

. We determine these fit values above by convolving a Dirac delta function centered a t  the  

input value with each of the 7 fuzzy sets: 

If we use a discretized universe of discourse, then we use a Kronecker delta function in- 

stead. Equivalently, for the discrete case n-dimensional universe of discourse X = {xI , . . . , 
x,), a control input corresponds to  a bit (binary unit) vector B of length n. A single 1 

element in the i th  slot represents the "crisp" input value xi. Similarly, we represent the 

kth library fuzzy set by a n  n-dimensional fit vector Ak that  contains samples of the fuzzy 

set a t  the n discrete points within the universe of discourse X. The degree to  which the 

crisp input xi activates each fuzzy set equals the inner product B - Ak of the bit vector B 

and the corresponding fit vector Ak. . 

Mie formulate control FAA4 rules by associating output fuzzy sets with input fuzzy sets. 

The  antecedent of each FAM rule conjoins ek, ik, and vk-1 fuzzy-set values. For example, 

IF  ek = AfP AND ek = SN AND vk-I = Z E ,  THEN vk = SP. 

\Ve abbreviate this as (AdP, SN, Z E ;  SP). 



l'lic scalar activation valnc w; of t l ~ c  it11 I ~ A M  rulc's consequent equals the mi~ imum 

of the t l~ rcc  antecedent conjuncts' values. I f  altcrnativcly we coml>inc tlre antecedents 

disjuuctivcly with OR, the activation degree of tllc conscqr~cnt wor~ld cqual tlic maxiiiz~iiiz 

of tllc tllree antecedent disjuncts' values. I11 tile following example, nzn(ek) denotes the 

degrec to which ek belongs to tile fuzzy set A: 

So the  system activates the consequent fuzzy set SP to degree w; = .l. 

The output fuzzy set's shape depends on the FAM-rule encoding scheme used. With 

correlation-minimum encoding, we clip the consequent fuzzy set L; in the library of fuzzy- 

set values to degree w; with pointwise minimum: 

Wit11 correlation-product encoding, \ye nlultiply L; by to;: 

or equivalently, 

0; = W; L; . (4) 

Figure 3 illustrates how both inference procedures transform L; to scaled output 0;. For 



thc cxa.mplc abovc, correlation-product inlercncc givcs output fuzzy set 0; = . ISP, 

wllcrc Li = Sl' dcnotes the fuzzy set of small but positivc angular vclocity values. 

Consequent L ; Output 0 ; 

Consequent L Output 0 i 

FIGURE 3 FAM inference procedure depends on FAM rule encoding proce- 

dure: (a) correlation-minimum encoding, (b) correlation-product encoding. 

The fuzzy system activates each FAM rule consequent set to  a different degree. For the 

ith FAM rule this yields the output fuzzy set 0;. The system then. sums the 0; t o  form 

the combined output fuzzy set 0: 

or equivalently, 

Tlle control output vr; equals the fuzzy centroid of 0: 



I 

wliere Clie limits of integra.t ion correspond to the entire r~nivcrse of discor~rse Y of angular 

velocity values. Figure 4 sl~ows an example of correlation-product infercncc for two FAM 

rules foIlowed by ccr~troid dcfr~zzificdion of tlic combined o r~ tp r~ t  fuzzy scl. 

I f  e, = SP and c, = ZE and v,., = ZE. 
/? A A-;,----Q-- 

then v, = Sf'. ; SP A A &----- 
---- -_--  -- - - -  -- --  --,-- 

If e, = ZE and e, = SP and v,., = SN. 
then v, = ZE. I I 

1 

FIGURE 4 Correlation-product inferences followed by centroid defuzzifi- 

cation. FAM rule antecedents combined with AND use the minimum fit value 

to activate consequents. Those combined with OR use the mazimum fit value. 

To reduce computations, we can discretize the output universe of discourse Y to p values, 

Y = {yl, . . . , yp), which gives the discrete fuzzy centroid 

Fuzzy Centroid Computation 

1% now develop two discrete methods for computing the fuzzy centroid (7). Theorem 

1 states that  we can compute the global centroid v k  from local FAM-rule centroids. The- 

orem 2 states that vk can be computed from only 7 sa.mple points if  all the fuzzy sets 



are symmetric and unimodal (in the broad sense of a tral>czoid peak), t l~ough otherwise 

arbitrary. Bot11 resul ts reducc computation and favor digital i n~p lc~ncn  tatio~i.  

T h e o r e m  1: If correlation-product inference determines the output fuzzy sets, then we 

can compute the global centroid vk from local FAM-rule centroids: 

Proof .  The consequent fuzzy set of each FAM rule equals one of the fuzzy-set values 

shown in Figure 2. We assume each fuzzy set includes a t  least one unity value, mA(x)  = 1. 

Define I; and c; as the respective area and centroid of the it11 FAM rule's consequent set 

substituting from (10). Hence 

Using (3), the result of correlation-product inference, we get 



substituting from (11) .  Similarly, 

substituting from (10).  

We can use (12) and (13)  to derive a discrete expression equivalent to (7): 

N 1 y rno(y)dy = / y ( ~ m o i ( y ) ] d y  substituting from ( 6 )  , 
i=l 

from (12). Similarly, 

from (13).  Substituting (14) and (15)  into (7), \ire derive a new form for the centroid: 



whicl~ is equivalent to (9). Eacli summand in cacli summation of (16) dcpcnds on only 

a single FAM rule. So we can compute the global output centroid from . , local FAM-rule 

centroids. Q.E.D. 

T h e o r e m  2: If the 7 library fuzzy sets are symmetric and unimodal (in the trapezoidal 

sense) and we use correlation-product inference, then we can compute tlie centroid vl; from 

only 7 samples of the combined output fuzzy set 0: 

• The 7 sample points are the centroids of the output fuzzy-set values. 

Proof.  Define 0; as a fit vector of length 7, where the fit value corresponding to  

the i th  consequent set has the value w;, and the other entries equal zero. If all the fuzzy 

sets are symmetric and unimodal, then the j t h  fit value of 0; is a sample of mo; a t  the 

centroid of the jtll fuzzy set. The combined output fit vector is 

Since 

the j t h  fit value of 0 is a sample of rno at  the centroid of the j th  fuzzy set. Equivalently, 

the jtll fit value of 0 equals the sum of the output activations 20; from tile FAM ruIes with 



conscqricnt fuzzy scts cqual to tllc jtli library fuzzy-set value. 

Dcfinc tllc rcduccd univcrsc of discor~rse as Y = {91,. . . , y7) SLICII tllat yj  equals the 

ccntroid of tlic j t h  o u t p t ~ t  fr~zzy sct. In vector form 

I' = ( ~ l , . . . , ~ 7 )  

= (-6, -4, -2, 0, 2, 4, 6) - .  

for the library of fuzzy sets in Figure 2. Also define the diagonal matrix 

J = d i a g ( J l , - . . , J i )  , (19) 

where Jj denotes the area of the jtli fuzzy-set value. If the it11 FAM rule's consequent fuzzy 

set equals the j t h  fuzzy-set value, then the j t h  fit value of 0 increases by w;, c; = yj, 

and Ii = J j .  So 
7 N 

O J Y ~  = ~ m o ( y j ) y j J ,  = C w i q ~ i  - 
j=1 i= 1 

(20) 

Also, 

where 1 = (1,. . . , I ) .  Substituting (20) and (21) into (16) gives 

which is equivalent to  (17). Therefore, (22) gives a simpler, but equivalent form of the 

centroid (7) if all the fuzzy sets are symmetric and unimodal, and if we  use correlation- 

product inference to form the output fuzzy sets 0;. Q.E.D. 

Consider a fuzzy controller with the fuzzy sets defined in Figure 2, and 7 FAR4 rules 

with the following outputs: 



Figure 5 shows the combined output fuzzy set 0, with the SN, ZE, and SP components 

displayed with dotted lines. Using (7) we get a velocity output of -0.452. Alternatively, 

a the combined output fit vector 0 equals (0, 0, 1.0, 1.8, 0.3, 0, 0). From (22) we get 

-2 x 1 + 0 x 1.8 + 2 x 0.3 
~k = = -0.452 . 

1 + 1.8 + 0.3 



UI.rTVERSE OF DISCOURSE 

FIGURE 5 Output  fuzzy set 0. 

Fuzzy Controller Implement at ion 

A FAM bank or L'rulebasen of FAM rules defines the fuzzy controller. Each FAM rule 

associates one consequent fuzzy set with three antecedent fuzzy-set conjuncts. 

Suppose the- i t h  FAM rule is (MP,  SN, ZE; SP) .  Suppose the inputs a t  time k are 

ek = 2.6, ik = -2.0, and v k - ~  = 1.8. Then 

. .. . 

If all the  fuzzy sets have the same shape, then they correspond to  shifted versions of a 



I 

1 

a single fuzzy set ZE:  

a 

291 

. 

t7aSll(y) = mze(y - 2) . 
. . 

Define e', 2, and v i  as tlic ccntroids of the corresponding antcccdellt fuzzy sets in the 

example above. So ei = 4, ki  = -2, and v i  = 0. Then the output activation cq~rals 

w ;  = min(nzZg(ek - e i ) ,  nazE(ik - k i ) ,  t1zZE(v~-l - v i ) )  

= min(mzs(-l.4), tnzE(0), rnz~(1 .8) )  

= min(.4, 1, .l) 

= -1 , 

as computed above. Figure G schematizes such a FAA4 rule when presented with crisp 

inputs. 

-. 
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FIGURE 6 Algorithmic structure of a FAA4 rule for the special case of 

identically-shaped fuzzy sets and correlation-product inference. 



The output fuzzy sct 0; in Figurc 6 equals thc fuzzy sct Z E  scalcd by ~ o i  and shifted 

by c;: - 

~ 7 2 ~ ; ( y )  = ~ U ; T ? Z ~ ~ ( Y  - c;)  . (23) 

Figurc 7 illustrates 0;. 

FIGURE 7 Trapezoidal output fuzzy set '0;. 

The fuzzy control system activates a bank of FAA4 rules operated. in parallel, as shown 

in Figure 8. The system sums the output fuzzy sets to form the total output set 0, which 

the system converts to a "defuzzifiedn scalar output by computing its fuzzy centroid. 
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< b  

,b 

I t 

vk-1. I 1 

I I FAM Rule N 
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I 
I 
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Delay 

FIGURE 8 Fuzzy control system as a parallel FAM bank with centroidal 

output. 

KALMAN FILTER CONTROLLER 

We designed a one-dimensional KaIinan filter to act as an alternative controller. The 

state and measurement equations take the general form 

where Vk denotes Gaussian white noise with covariance matrix Rk. If 1.5 is colored noise 

or if Rk = 0, then the filtering-error covariance matrix Pklk becomes singular. The state xk 

and the measurements zl; are jointly Gaussian. Mendel [1987] gives details of this model. 



Assume the following onc-dimensional model: 

Let ~ r ; + ~  denote the output velocity required at timc k to exactly lock onto the target at 

time k+1. So the controller output at time k equals tile "predictive" estilnate 5k+llk = vr;. 

Note that 

Substituting (25) into (24), we get the new state equation 

where wk denotes white noise that models target acceleration or other unmodeled effects. 

The new measurement equation is 

Since we assume ZLlk-l and Vk are uncorrelated, the variance of \fL is 



Tllc gcncral form of tlrc rccursivc I<alman filter equations is 

where Qk = Var(wk) = E [ w ~ w ~ ] .  Substituting (25), (27), (28) and the definition of vk 

into (29), we get the following one-dimensional I<alman filter: 

Unlike the fuzzy controller, this I<alman filter does not automatically restrict the output 

vl; to a usable range. We must apply a threshold immediately after the controller. To 

remain consistent with the fuzzy controller, we se t ' t he ' fo l lo~ in~  thresholds: 

J v k J  5 9.degrees azimuth , 

lvkl -< 4.5 degrees elevation. 



Fuzzy and Kalman Filter Control Surfaces 

Each control system maps inputs to oulputs. Gco~nctrically, tllesc input-output trans- 

formations defiile control surfaces. Tllc COII trol surfaccs arc shects in thc input space 

(since the output velocity uk is a scalar). Tllree inputs and onc output give rise to a 

four-di mensional control surface, which we cannot plot. I nslead, for each -. controller we can 

plot a family of three-dimensional control surfaces indexed by constant values of the fourth 

variable, the  error ek, say. Then each control surface corresponds to a different value of 

the error ek. 

Tlie fuzzy control surface characterizes tlie fuzzy systern's fuzzy-set value definitions 

and its bank of FAM rules. Different sets of FAh4 rules yield different fuzzy controllers, 

and hence different control surfaces. Figure 9 shows a cross section of the FAM bank when 

e k  = ZE.  Each entry in this linguistic matrix represents one FAM rule with ek = Z E  

as the first antecedent term. 

FIGURE9 e k  = ZEcrosssectionoftliefiizzycontrolsystem'sFAMbank. 

Each entry represents one FAh4 rule with ek = Z E  as the f rst antecedent term. 



Tile sl~adcd FAR4 rule is "IF ek = Z E  AND kr; = SP AND vr;-1 = SN, 

THEN vk = ZE," abbreviated as (ZE, SP, S N ;  Z E ) .  Note tllc ordinal anti- 

symmctry of t l~ is  FAM-bank matrix. T l ~ e  six otller cross-scction FA h4-bank 

matrices are similar. We can eliminate many FAR4 rule cntrics ~v i t l~ou t  grcatly 

perturbing tlle fuzzy controller's behavior. 

The  entire FAM bank-including cross sections for ek equal to each of the seven fuzzy- 

set values LN, MI\', S N ,  Z E ,  SP, h4P, and LP-determines how the system maps input 

fuzzy sets t o  output fuzzy sets. The  fuzzy set membership fullctio~ls shown in Figure 2 

determine the degree to which each crisp input value belongs to cacl~ fuzzy-set value. So 

both the fuzzy-set value definitions and the F'AM bank determine the defuzzified output 

vk for any set of crisp input values ek, ek, and vl;-1. 

Figure 10 shows the control surface of the  fuzzy controller for ek = 0. We plotted the 

control output vr; against ik and vk-I. Since we use the same algorithm for tracking in 

azimuth and elevation, the control surfaces for the two dilnensions differ in scale only by 

a factor of two. 

FIGURE 10 Control surface of the fuzzy controller for constant error 

er; = 0. U'e plotted the control output vr; against 6.k and ~ r ; - ~  along the 

respective west and south borders. 

The Kalman filter has a random control surface that depends on a time-varying pa- 



ramef.er. From (30) we see that 

v k  = kklk  + Ck + i k  , 

k k l k  = v k - 1  + IikV,' , 

. , 
where VL denotes white noise with variance given by (28). Combining these two equations 

gives the equation for the random control surface: 
. .-- 

vk = up- I + e k  + ik + I<k 15: . 

At time k the  noise term I(kV,' has variance 

- p:lk-l - - upon substituting from (30) , 
Rlk 

substituting from (28). Combining (31) and (32) gives a new control surface equation: 

i where Vc denotes unit-variance Gaussian noise. So the Kalman filter's control output 

equals the sum of the three input variables plus addi'tive'~aussian noise with time-dependent 

variance a:. For constant error e k ,  itre can interpret (33) as  a smooth control surface in R3 

defined by 



a and ~,crturbcd a t  time k by Gaussian noise with variance a:. 

In  our simulations the standard deviation a k  convcrgcd after only a few iterations. We 

used ur~ity initial conditions: Pol, = Rk = 1 for all k. 

Table 1 lists tlie convergence rates and steady-state values of a k  for three differen- 

t values of tlie variance Var(w) of tlie white-noise, unn~odeled-effects process wk. For 

Var(zu) = 0, a k  decreases rapidly a t  first-as = . lo,  017 = .05-but does not attain 
- ,  

its steady-state value of zero within 100 iterations. 

TABLE 1 Convergence rates and steady-state values of a k  for different val- 

ues of the variance Var(w) of the white-noise, unmodeled-effects process wk. 

I/ar(w) 

Figure 11 shows four realizations of the I<alman filter's random control surface for 

ek = 0, each at a time k when a k  has converged to its steady-state value. For each plot, we 

used output thresholds and initial variances for the azimutll case: lvkl 5 9.0, Rk = Polo 

= 1.0. As with the fuzzy controller, elevation control surfaces equal scaled versions of the  

corresponding azimuth control surfaces. 

Steady-state 

value of a k  

Number of iterations 

required for convergence 



FIGURE 11 Realizations of the ~(alman filter's random control surface 

with ek = 0 for different values of the variance Var(w) and steady-state values 

of the standard deviation a k :  (a) Var(w) = o k  = 0, (I)) Vat-(w) = .05, 

a k  = -22; (c) I/ar(w) = .25, a k  = .46; (d) Ifar(w) = 1.0, crk = .79. 

SIMULATION RESULTS 
. . 

Our target-tracking simulatiolls model several realworld scenarios. Suppose we have 

mounted the target tracking system on the side of a vehicle, aircraft, or ship. The system 

tracks a missile that cuts across tlle detection range on a straight flight path. The target 

maintains a constant speed of 1,870 miles-per-hour and comes within 3.5 miles of the 



platform a t  c'osest approach. The platform can scan from 0 to 180 degrees in azimuth a t  

a maximum rate of 36 degrees-per-second, and from 0 (vertical) to 90 dcgrees in elevation 

a t  a maximum rate of I8 degrces-per-second. T l ~ c  sampling interval is 1/4 of a second. 

The gain of tile fuzzy controller equals 0.9. So the maximum error co~isitlered is 10 degrees 

aziniuth and 5 degrees elevation. We threshold all error valucs abovc this level. 

Figure 12 demonstrates the best perforlnance of the fuzzy controller for a simulated 

scenario. The solid lines indicate target position. The dotted lines'indicate platform 

position. To achieve this performance, we calibrated the three design parameters-upper 

and lower trapezoid bases and the gain. Figures 13 and 14 show exa~nples of uncalibrated 

systems. Too much overlap causes excessive overshoot. Too little overlap causes lead or 

lag for several consecutive time intervals. A gain of 0.9 sufices for most scenarios. We 

can fine-tune the fuzzy control system by altering the percentage overlap between adjacent 

fuzzy sets. 

Figure 15 demonstrates the best performance of the I<alman-filter controller for the 

same scenario used to test the fuzzy controller. For simplicity, Rk = Polo for all values of 

k. For this study we chose the values 1.0 (unit variahce) for azimuth and 0.25 for eleva- 

tion. This 114 ratio reflects the difference in scanning range. We set Qk to 0 for optimal 

performance. Figure 16 shows the Icalman-filter controller's performance when Qk = 1.0 

azimuth, 0.25 elevation. 

Sensitivity Analysis 

\Ve compared the uncertainty sensitivity of the fi~zzy and I<alman-filter control systems. 

Under normal operating conditions, when the FAM bank contains all fuzzy control rules, 

and when the unmodeled-effects noise variance I/ar(w) is small, the controllers perform 

alrnost identically. Under more uncertain conditions their perforlnance differs. The I<alman 

fi1ter's.stat.e equation (26) contains the noise term 101, wliose variance we must assume. 

!\'hen l /ar(w)  increases, the state equation becomes more uncertain. The fuzzy control 



FAM rules depend implicitly on this same equation, but witl~out tllc noisc term. Instead, 

the fl~zzincss of t l ~ c  FAM rules accounts for t l ~ e  systeni unccrta.il~ty. This suggests that we 

can increase tllc uncertainty of the implicit state cqi~atio~l by omitting rar~domly selected 

FAh4 rules. Figures 17 arid 18 sllow the effect on the rod-tncan-sqtrarcd error (RMSE) in 

degrees when we omit FAM rules and increase Var(w) .  Each data point averages ten runs. 

Thc controllers bchave differently as uncertainty incrcascs. Tlie RMSE of the fuzzy 

controller increases little until we omit nearly sixty percent of tlie F~h4'rules. The RMSE 

of the Icalman filter increases steeply for small values of I/ar(tu),  then gradually levels off. 

We also tested the fuzzy controller's robustness by "sabotagingn the most vulnerable 

FAA4 rule. This could reflect lack of accurate expertise, or a highly unstructured problem. 

Clianging the consequent of the steady-state PAM rule (ZE, ZE,  ZE;  ZE)  to LP gives the 

following nonsensical FAM rule: 

IF the platform points directly at  the target 

AND both the target and the platform are stationary, 

THEN turn in the positive direction with maximum velocity. 

Figure 19 shows the fuzzy system's performance when this sabotage FAM rule replaces 

the steady-state FAM rule. When the sabotage FAM rule activates, the system quickly 

adjusts to decrease the error again. The fuzzy system is piecewise stable. 



FIGURE 12 Best performance of the fuzzy controller: (a) azimuth position 

and error, (b) elevation position and error. Fuzzy set overlap is 26.2%. 



FIGURE 13 Uncalibrated fuzzy controller: (a) a.zimut.11 position and error, 

(b) elevation position and error. Fuzzy set overlap equals 33.3%. Too much 

overlap causes excessive overshoot. 



FIGURE 14 Uncalibrated fuzzy controller: (a)  azimuth position and  error, 

(b) elevation position and error. Fuzzy set overlap equals 12.5%. Too little 

overlap causes lead o r  lag for several consecutive t ime intervals. 



FIGURE 15 Kalman filter controller with unmodeled-effects noise variance 

1 Var(w)  = 0: (a) azimuth position and error, (b) elevation position and error 
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FIGURE 16 Kalman f lter controller with Var(to)  = 1.0 azimuth, 0.25 

elevation: (a) azimuth position and error, (11) elevatio~l position a.nd error. 



FIGURE 17 Root-mean-squared error of the fuzzy controller with random- 

ly selected FAM rules omitted. 

FIGURE 18 Root-mean-squared error of the I<alman filter con troller as 

V a r ( w )  varies. 
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FIGURE 19 Fuzzy controller with a "sabotagen FAM rule: (a) azimuth po- 

sition and error, (b) elevation position and error. The sabotage rule (ZE,  Z E ,  ZE ;  L P )  

replaces the steady-state FAM rule (ZE,  ZE,  ZE; ZE).  The system quickly 

adjusts each time the sabotage rule activates. 



Adaptive FAM (AFAM) 

IVc uscd unsupervised product-space clustering [I<osko, 1990aI to train a11 adaptive 

FAR4 (AFAM) fuzzy controller. Differential co~npetitive Icarning (DCL) adaptively clus- 

tered input-output pairs. The Appendix describes product-space clustering with DCL. For 

this study, there were four input neurons in Pz. A manually-designed FAA4 bank and 80 

randorn target trajectories generated 19,236 training vectors. Each product-space training 

vector (ek, Gk,  vk-1, vk) defined a point in R4. 

Symmetry allowed us to reflect about the origin all sample vectors with negative errors 

er,. We then trained 3,000 synaptic quantization vectors (p = 3,000) in the positive error 

half-space. For each sample vector, we defined the 10 closest synaptic vectors as "winners" 

(N  = 10). The matrix IY of Fy within-field synaptic connection strengths had diagonal 

elements w;; = 2.9, off-diagonal elements w;, = -0.1. After training, we reflected the 

3,000 synaptic quantization vectors about the origin to give 6,000 trained synaptic vectors. 

The product-space FAM cells uniformly partitioned the four-dimensional product 

space. Each FAM cell represented a single FAM rule. The four fuzzy variables could assume 

only the 7 fuzzy-set values LN, MN, SN, ZE, SP, MP, and LP .  So the product space 

contained 7* = 2401 FAM cells. 

At the end of the DCL training period, we defined a FAM cell as occupied only if it 

contained a t  least one synaptic vector. For some combinations of antecedent fuzzy sets, 

synaptic vectors occupied more than one FAM cell with different consequent fuzzy sets. In 

these cases we computed the centroid of the consequent fuzzy sets weighted by the number 

of synaptic vectors in their FAM cells. We cliose the consequent fuzzy set as that output 

fuzzy-set value with centroid nearest the weighted 'centroid value. IVe ignored other FAM 

rules with the same antecedents but different consequent fuzzy sets. 

Figure 20(a) shows the ek = Z E  cross section of the original FAM bank used to 

generate the training samples. Figure 20(b) shows the same cross section of the DCL- 

estimated FAA4 bank. Figure 21 shows the original and DCL-estimated control surfaces 

for constant error ek = 0. 
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for constant error ek = 0. 

Tllc regions wl~crc t l ~ e  two control surfaces differ correspond to infrequent high-velocity 

situations. So tlic original and DCL-estimated control surfaces yield similar results. Tablc 

2 compares tlic controllers' root-mcan-squared crrors for 10 randomly-selected target tra- 

jcctorics. 
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FIGURE 20 Cross sections of the original and DCL- estimated FAM banks 

when ek = ZE: (a) original, (b) DCL- estimated. 
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(a) (b) 

FIGURE 21 Control surfaces for constant error e k  = 0: (a) original, 

(b) DCL-estimated. 



Trajectory 

Number 

1 

2 

3 

4 

5 

6 

Azimuth 

Original Estimated 

2.33 2.33 

4.14 4.14 

6.11 6.11 

3.83. 3.83 

4.02 4.02 

2.84 2.84 

Elevation 

OriginaI Estimated 

3.31 3.37 

3.03 2.89 

3.69 3.68 

3.32 3.30 . 

3.11 3.10 

1.20 1.21 

Average 3.83 3.83 3.05 3.02 

TABLE 2 Root-mean-squared errors for 10 randomly-selected target tra- m jectories. The original and DCL-estimated FAM banks yielded similar results 

since they differed only in regions corresponding to infrequent high-velocity 

situations. 

Conclusion 

We developed and compared a fuzzy control system and a I<alman-filter control system 

for realtime target tracking. The fuzzy system represented uncertainty with continuous or 

fuzzy sets, with the partial occurence of multiple alternatives. The Kalman-filter system 

represented uncertainty with the random occurence of an exact alternative. Accordingly, 

our simulations tested each system's response to a different family of uncertainty envi- 

ronments, one fuzzy and the other random. In general representative training data can 

"blindlyn generate the governing FAM rules. 



These simulations suggest that in many cases fuzzy controllers may be a robust, com- 

~utationally effective alternative to linear I<aIman filter, indeed to nonlinear extended 

Kalman filter, approaches to  realtime system contro leven when we can accurately artic- 

ulate an input-output math model. 
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Appendix: Product-space Clustering with 
Differential Competitive Learning 

Adaptive Vector Quantization 

Product-space clustering [Kosko, 1990al is a form of stochastic adaptive vector quanti- 

zation. Adaptive vector quantization ( AVQ) systems adaptively quantize pattern clusters 

in Rn. Stochastic competitive-learning systems are neural. AVQ systems. Neurons com- 

pete for the activation induced by randomly sampled patterns. The corresponding fan-in 

vectors adaptively quantize the pattern space Rn. The p synaptic vectors mj define the 

p columns of the synaptic connection matrix M. M interconnects the n input or linear 

neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output 

field Fy.  Figure 22 below illustrates the neural network topology. 

Learning algorithms estimate the unknown probability density function p(x), which 

describes the distribution of patterns in Rn. More synaptic vectors arrive at  more probable 

regions. Where sample vectors x are dense or sparse, synaptic vectors mi should be dense 

or sparse. The local count of synaptic vectors then gives a nonpararnetric estimate of the 

volume density P(V)  for volume V c Rn: 

N 
Number of mj E V 

N 

P 

In the extreme case that V = Rn, this approximation gives P(V) = p / p  = 1. For 

improbable subsets V, P(V)  = Olp  = 0. 



Stochastic Competitive Learning Algorithms 

The metaphor of competing neurons reduces to nearest-neighbor clzksification. The 

AVQ system compares the current vector random sample x(t)  in Euclidean distance to the 

p columns of the synaptic connection matrix M, to the p synaptic vectors ml(t) ,  . . . , m,(t). 

If the j t h  synaptic vector mj(t)  is closest to x(t),  then the j t h  output neuron "wins" the 

competition for activation a t  time t . In practice we sometimes define the nearest N synaptic 

vectors as winners. Some scaled form of x(t)  - mj(t) updates the nearest or "winningn 

synaptic vectors. "Losers" remain unchanged: mi(t  + 1) = m;(t). Competitive synaptic 

vectors converge to  pattern-class centroids exponentially fast [I<osko, 1990bl. 

The following three-step process describes the competitive AVQ algorithm, where the 

third step depends on which learning algorithm updates the winning synaptic vectors. 

Competitive AVQ Algorithm 

1. Initialize synaptic vectors: mi(0) = x(i),  i = 1, . . . , p. Sample-dependent initial- 

ization avoids many pathologies that can distort nearest-neighbor learning. 

2. For random sample x(t),  find the closest or "winning" synaptic vector m,(t): 

where ( I x ( ( ~  = x: + . . . + xi defines the squared Euclidean vector norm of x. We 

can define the N synaptic vectors closest to x as "winners." 

3. Update the winning synaptic vector(s) mj(t)  with an appropriate learning algorithm. 



e Differential Competitive Learning (DCL) 

Differential competitive "synapsesn learn only if the competing "neuronn changes its 

competitive status [I<osko, 1990~1: 

hij = ~j(Yj)[si(xi) - mij] , (37) 

or in vector notation, 

where S(x) = (Sl(zl), . . . , Sn(x,)) and m, = (mlj, . . . , mnj). mi, denotes the synaptic 

value between the i th neuron in input field Fx and the j th  neuron in competitive field 

Fy. Nonnegative signal functions Si and Sj transduce the real-valued activations xi and 

y, into bounded monotone nondecreasing signals Si(xi) and Sj(yj). inij and ~ , ( y , )  denote 

the time derivatives of mij and Sj(yj), synaptic and signal velocities. Sj(yj) measures the 

competitive status of the j t h  competing neuron in F'. Usually Sj approximates a binary 

threshold function. For example, S, may equal a steep binary logistic sigmoid, 

1 
S j ( ~ j )  = l + e - %  ' (39) 

for some constant c > 0. The jth neuron wins the laterally inhibitive competition if 

S, = 1, loses if Sj = 0. 

For discrete implementation, we use the DCL algorithm as a stochastic difference 

equation [I<ong, 19911: 

mj(t  + 1) = mj(t)  + ct ASj(yj(t))[S(x(t)) - m,(t)] if the j t h  neuron wins, (40) 

m;(t + 1) = mi(t)  if the ith neuron loses. (41) 

ASj(yj(t)) denotes the time change of the j t h  neuron's competition signal Sj(yj) in the 



competition layer Fy: 

We define the signum operator sgn(x) as 

{ c t )  denotes a slowly decreasing sequence of learning coefficients, such as ct = .1(1 - 

t/2000) for 2000 training samples. Stochastic approximation [Huber, 19811 requires a de- 

creasing gain sequence to  suppress random disturbances and to  guarantee convergence 

to local minima of mean-squared performance measures. The learning coefficients should 

decrease slowly, 

but not too slowly, 

Harmonic-series coefficients, ct = l l t ,  satisfy these constraints. 

We approximate the competitive signal difference AS, as the activation difference Ayj: 

Input neurons in feedforward networks usually behave linearly: Si(xi) = xi, or S(x( t ) )  = x ( t ) .  

Then we update the winning synaptic vector mj(t) with 



We update the Fy neuronal activations yj with the additive model 

For linear signal functions S;, the first sum in (49) reduces to an inner product of sample 

and synaptic vectors: 

Then positive learning tends to occur-Amjj > 0-when x is close to the j th  synaptic 

vector mj. 

Since a binary threshold function approximates the output signal function Sk(yk), the 

second sum in (49) sums over just the winning neurons: wkj for all winning neurons yk . 
k 

The p x p matrix W contains the Fy within-field synaptic connection strengths. Di- 

agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite 

themselves and inhibit all other neurons. Figure 22 shows the connection topology of the 

laterally inhibitive DCL network. 
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FIGURE 22 Topology of the laterally inhibitive DCL network. 




