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CHAPTER 1 &

NEURAL NETWORKS AND FUZZY
SYSTEMS

From causes which appear similar, we ezpect similar effects. This is the sum

tolal of all our ezperimenlal conclusions.

David Hume
An Inquiry Concerning Human *

Understanding

A learning machine is any device whose actions are influenced by past ezperi-

ences.

Nils Nilsson

Learning Machines

Man is a species that invents its own responses. Il is out of this unique ability

to invent, to improvise, his responses that cultures are barn.

Ashley Montagu
Culture and the Evolution of Man
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NEURAL AND FUZZY MACHINE INTELLIGENCE

This book examines how adaptive systems respond to stimuli. Systems map inputs
to outputs, stimuli to responses. Adaptation or learning describes how data changes the

system, how sample data changes system parameters, how training changes behavior.
Neural Pre-Attentive and Attentive Processing

The human visual system behaves as an adaptive system. Consider how it responds to

this stimulus pattern:

What do we see when we look at the Kanizsa [1976] square? We see a square with
bright interior. We see illusory boundaries. Or do we? We recognize a bright square.
Technically we do not see it, because it is not there.

The Kanizsa square exists in our brain, not “out there” in physical reality on the page.
Out there only four symmetric ink patterns stain the page.

In the terminology of eighteenth-century philosopher Immanuel Kant [1783-87), the four
ink stains are noumena, “things in themselves.” Light photons bounce off the noumena
and stimulate our surface receptors, retinal neurons in this case. The noumena-induced
sensation produces the Kanizsa-square phenomenon or perception in our brain. There

would be no Kanizsa squares in the spacetime continuum without brains or brainlike

systems to perceive them.

129



Today we understand many of the neural mechanisms of perception that Kant could
only guess at. The realtime interaction of millions of competing and cooperating ncurons
produces the Kanizsa square illusion {Grossberg, 1987, and everything we “sce.”

We take for granted our high-speed, distributed, nonlincar, massively parallel pre-
attentive processing. In our visual processing we pay no atiention to how we secgment
images, enhance contrasts, or discount background luminosity. When we process sound
we pay no attention to how our cochleas filter out high-frequency signals [Mead, 1989] or
how our auditory cortex breaks continuous speech into syllables and words, compensates
for rhythmic changes in speech duration, and detects and often corrects errors in pronun-
ciation, grammar, and meaning. We likewise ignore our realtime pre-attentive processing
in the other sense modalities, in smell, taste, touch, and balance.

We experience these pre-attentive phenomena, but we ignore them and cannot control
or completely explain them. Natural selection has ensured only that we perform them,
ceaselessly and fast.

Attention precedes recognition. We recognize segmented image pieces and parsed
speech units. An emergent “search light,” perhaps grounded in thalamic neurons [Crick,
1984], seems to selectively focus attention in as few as 70 to 100 milliseconds. We look,
see, pay attentiog, then recognize.

Neural network theory studies both pre-attentive and attentive processing of stimuli.
This leaves unaddressed the higher cognitive functions involved in reasoning, decision mak-
ing, planning, and control. The asynchronous, nonlinear neurons and synapses in our brain
perform these functions under uncertainty. We reason with scant evidence, vague concepts,
heuristic syllogisms, tentative facts, rules of thumb, principles shot through with.excep-
tions, and an inarticulable pantheon of inexact intuitions, hunches, suspicions, beliefs,
estimates, guesses, and the like.

Natural selection evolved this uncertain cognitive calculus. Our cultural conditioning
helps refine it. A fashionable trend in the West has been to denigrate this uncertain-
ty calculus as illogical, unscientific, and nonrigorous. We even call it “fuzzy reasoning”

or “fuzzy thinking.” Modern philosophers [Churchland, 1981] often denigrate the entire

cognitive framework as “folk psychology.”
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Yet we continue to use our fuzzy calculus. With it we run our lives, families, carcers,
industrics, hospitals, courts, armics, and governments. In all these fields we employ the

products of exact science, but as tools and decision aids. The final control remains {uzzy.

FUZZINESS AS MULTIVALUEDNESS

Fuzzy theory holds that all things are matters of degree. It mechanizes much of our
“folk psychology.” Fuzzy theory also reduces black-white logic and mathematics to special
limiting cases of gray relationships. Along the way it violates black-white “laws of logic,”
in particular the law of noncontradiction not-(A and not-A) and the law of excluded middle
either A or nol-A, and yel resolves the paradoxes or antinomies [Kline, 1980)] that these
laws generate. Does the speaker tell the truth when he says he lies? Is set A a member
of itself if A equals the set of all sets that are not members of themselves? Fuzziness also
provides a fresh, and deterministic, interpretation of probability and randomness.

Mathematically fuzziness means multivaluedness [Rosser, 1952; Rescher, 1969] and
stemns from the Heisenberg position-momentum uncertainty principle in quantum mechan-
ics [Birkhoff, 1936). Three-valued fuzziness corresponds to truth, falsehood, and indetermi-
nacy, or to pfesence, absence, and ambiguity. Multivalued fuzziness corresponds to degrees

of indeterminancy or ambiguity, partial occurrence of events or relations.

Bivalent Paradoxes as Fuzzy Midpoints | .

Consider the bivalent paradoxes again. A California bumpersticker reads TRUST ME.
Suppose instead a bumpersticker reads DON'T TRUST ME. Should we trust the driver?
If we do, then, as the bumpersticker instructs, we do not. But if we don’t trust the driver,
then, again in accord with the bumpersticker, we do trust the driver. The classical liar
paradox has the same form. Does the liar from Crete lie when he says that all Cretans are

liars? If he lies, he tells the truth. If he tells the truth, he lies. Russell’s barber is a man
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in a town whose advertises his services with the logo “I shave all, and only, those men who
don’t shave themsclves.” Who shaves the barber? If he shaves himself, then according to
his logo he does not. If he does not, then according to his logo he does. Consider the card

that says on one side “The sentence on the other side is true,” and says on the other side

“The sentence on the other side is false.”

The “paradoxes” have the same form. A statement § and its negation not-S have the

same {ruth-value {(S):
t((S) = {((not-S) . (1)

The two statements are both TRUE (1) or both FALSE (0). This violates the laws of

noncontradiction and excluded middle. For bivalent truth tables remind us that negation
reverses truth value:
t(not-S) = 1 — #S) .~ (2)

So (1) reduces to

(S) = 1-4S) . 3)

If Sis true, if ¢{(S) = 1,thenl = 0. ¢{(S) = 0 also implies the contradiction 1 = 0.
The fuzzy or multivalued interpretation accepts the logical relation (3) and, instead of

insisting that t(S)' = 0Oor t(S) = 1, simply solves for ¢(S) in (3):

2t($) = 1 , . (4)

or
() = ; (5)

=3 -
So the “paradoxes” reduce to literal half-truths. They represent in the extreme the uncer-

tainty inherent in every empirical statement and in many mathematical statements. Geo-

metrically, the fuzzy approach places the paradoxes at the midpoint of the 1-dimensional
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unit hypercube [0, 1]. More gencral paradoxes reside at the midpoint of n-dimensional
hypcrcubes, the unique point equidistant to all 2" vertices.

Multivaluedness also resolves the classical sorites paradoxes. Consider a heap of sand.
Is it still a heap if we remove onc grain of sand? How about two grains? Three? If we
arguc bivalently by induction, we eventually remove all grains and still conclude that a
heap remains, or that it has suddenly vanished. No single grain takes us from heap to
non-heap. The same holds if we pluck out hairs from a nonbald scalp or remove 5%, 10%,
or more of the molecules from a table or brain. We transition gradually, not abruptly,
from a thing to its opposite. Physically we experience degrees of occurrence. In terms of
statements about the physical processes, we arrive again at degrees of truth.

Suppose there are n grains of sand in the heap. Removing one grain leaves n — 1 grains
and a truth value (S,-;) of the statement S,_, that the n — 1 sand grains are a heap.

The truth value {(S,.-1) obeys ¢(S.—1) < 1 in general. t(S,_;) may be close to unity,

but we have some nonzero doubt d,_; about the truth of the matter. (The argument still
holds if there exist no doubting creatures in the universe.) For instance [Gaines, 1983],
(S.) = 1 — dn (6)

where 0 < d, < dpey € ... € dpem < ... < 1. So t{S,—m) approaches zerd
as m increases to n. If we argue inductively, we can interpret the overall inference as the
forward chain “(If S,,, then S,._;) and (If S._1, then S._;) and ... and (If S;, then Sp).”

If we multiplicatively interpret the conjunction operator, then

t(Sa — Sa-m) = ﬁ (1 = da-k) - (7)

If we interpret the conjunction operator as the minimum operator, as discussed in the

homework problems at the end of the chapter, then

t(Se — Sn-m) = min(l — dn, ..., 1 — dn-m) - (8)
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= 1 - max(d,., seey du—m) . (9)

In both cases the implication truth value {(S. — So) equals zero (or some small number).
We pay a truth-value fec for cach application of modus ponens, of concluding B from A
and A — B. The overall inference is vacuous. This reflects the everyday epistemological

precept that the longer an explanation, the less we tend to trust it.

Fuzziness in the Twentieth Century

Logical paradoxes and the Heisenberg uncertainty principle led to the development
of continuous or “fuzzy” logic in the 1920s and 1930s. Quantum theorists allowed for
indeterminacy by including a third or middle truth value in the bivalent logical framework.
The next step allowed degrees of indeterminacy, viewing TRUE and FALSE‘és the two
limiting cases of the spectrum of indeterminacy.

Polish logician Jan Lukasiewicz {Rescher, 1969] first formally developed a three-valued
logical system in the early 1930s. Lukasiewicz extended the range of truth values from
{0, 1/2, 1} to all rational numbers in [0, 1}, and finally to all numbers in [0, 1] itself.
Logics that use the general truth function ¢: {Statements} —+ [0, 1] define continous
or “fuzzy” logics. Logicians refer to this system as L;. The exercises at the end of the
chapter develop Lukasiewicz’s fuzzy logic.

In the 1930s quantum philosopher Max Black [1937] applied continuous logic compo-
nentwise to sets or lists of elements or symbols. Historically, Black drew the first fuzzy-set
membership functions. Black called the uncertainty of these structures vagueness. Antici-
pating Zadeh'’s fuzzy set theory, each element in Black’s multivalued sets and lists behaved
as a statement in a continuous logic.

In 1965 systems scientist Lotfi Zadeh [1965) published the paper “Fuzzy Sets” that
formally developed mulitivalued set theory, introduced the term fuzzy into the technical
literature, and inaugurated a second wave of interest in multivalued mathematical struc-

tures, from systems to topologies. The recent emergence of fuzzy commerical products, as

134




well as new theory, has gencrated a third wave of interest in multivalued systems.

Zadch extended the bivalent indicator function I4 of nonfuzzy subset A of X,

1 f z € A
[A(I) = (10)
0ifl z¢ A

to a multivalued indicator or membership function ms : X — [0, 1). This allows

us to combine such multivalued or fuzzy sets with the pointwise operators of indicator

functions:

Ixa 8(z) = min(la(z), Is(2)) , (11)

Iau B(z) = max(la(z), I(z)) , ; (12)
Le(z) = 1 = Ix(z) , (13)

AC B iffi Iu(z) < Ip(z) forallz in X . (14)

The membership value m4(z) measures the elementhood or degree to which element z.

belongs to set A:

my(z) = -Degree(z € A) . (15)

Just as the individual indicator values I4(z) behave as statements in bivalent propositional
calculus, membership values m4(z) correspond to statements in a continuous logic. If A
defines a fuzzy subset of the real line, as in Figure 1.7 below, then in principle we can
graph my : R — [0, 1] in two dimensions. In practice indicator functions /4 graph as

step functions or rectangular pulses on the real line.
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Sets as Points in Cubes

Fuzziness prevents logical certainty at the level of black-white axioms. This secems
unsettling to some [Quine, 1981] and liberating to others.

At the system level fuzziness allows us to build computer chips and systems that “in-
telligently” control subways, automobile systems, and numerous consumer electronic and
other devices. At this level fuzzy processing may resemble neural processing.

Neural networks and fuzzy systems process inexact information and process it inexact-
ly. Neural networks recognize ill-defined patterns without an explicit set of rules. Fuzzy
systems estimate functions and control systems with partial descriptions of system behav-
ior. Experts may provide this heuristic knowledge, or, as we illustrate in Chapters 17 - 19,
neural networks may adaptively infer it from sample data.

Newral and fuzzy systems share a more formal mathematical property. They share the
same state space. A set of n neurons defines a sequence of n-dimensional continuous or
“fuzzy” sets. The neurons emit bounded signals.

The neuronal signals range from some minimum value to some maximum value, say
from 0 to 1. At each instant the n-vector of neuronal outputs defines a fuzzy unit or fit
vector. Each fit value indicates the degree to which the neuron or element belongs to the
n-dimensional fuzzy set.

The neuronal state space, the set of all possible neural outputs, equals the set of all n-
dimensional fit vectors, the fuzzy power set. Both equal the unit hypercube I = [0, 1]* =
[0, 1] x ... x [0, 1], the set of all vectors of length n and with coordinates in the unit
interval [0, 1]. Chapter 17 discusses fuzzy systems and associative memories, which map
unit cubes to unit cubes, fuzzy sets to fuzzy sets. We shall use this recent geometric view
of sets as points [Kosko, 1987-90] throughout this book.

The 2" vertices of /" represent extremized neuronal-output combinations, as we often
find in networks of competitive or laterally inhibitive neurons. Many feedback neural net-
works [Hopfield, 1984] drive initial states inside the unit cube to nearest vertices. These

systems dynamically disambiguate fuzzy input descriptions by minimizing their fuzzy en-
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tropy. The midpoint of the cube, where a fuzzy set A equals its own opposite A€, has
maximal {uzzy entropy, as we discuss in Chapter 16. The black-white vertices have mini-
mal fuzzy entropy.

Proper fuzzy sets, nonvertex points, A violate the “laws” of noncontradiction and
cxcluded middle: A N A° # @ and A U A° # X. In Chapter 16 we show that fuzzy

entropy, the measure of fuzziness, balances the fuzzy count of the overlap A N A€ and

vA* <
underlap¥in a simple ratio: E(A) = Z(: - ,':c)-

There are 2" bit vectors of length n. They define the vertices of I™. So the vertices
also represent the nonfuzzy power set of the n elements z,, ..., z,, the set of all nonfuzzy
subsets of the n elements. Tllc bit value 0 in the ith slot of a bit vector indicates the
absence of element z; in that subset. The bit value 1 indicates the presence of z; in the
subset. The bit vector (1 0 1 0 0) indicates the subset {z;, z3} of set {z,, 2, z3, 24, 75}

Fit values equal the mebership values m4(z;) discussed above. Fit values measure
partial set membership or degrees of elementhood. The fit value 1/5 indicates that element
z; belongs only slightly to the fuzzy subset A. The fit value 1/2 indicates that z; belongs
to fuzzy set A as much as it does not—as much as it belongs to the complement fuzzy set
A-.

Consider the set X of two elements z; and z5. The power set of X, denoted 2%, contains

the four subsets of X : 2¥ = {@, {z,}, {22}, X}. These four nonfuzzy sets correspond

to four bit vectors:

Q
1l

(0 0)
{z} = (10)
{za} = (0 1)

X = (11)

i

The fuzzy power set F£(2*), which contains all continuum-many fuzzy subsets of X, cor-

responds to unit square. Figure 1.1 displays the fuzzy power set F(2%).
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FIGURE 1.1  Fuzzy power set F(2%) of X corresponds to the unit square
when X = {z,, z,}. The four nonfuzzy subsets in the nonfuzzy power set 2%
correspond to the four corners of the 2-cube. The fuzzy subset A correponds
to the fit vector (1/3, 3/4) and to a point inside the 2-cube if ma(z,) = 1/3
and m4(z2) = 3/4. The midpoint M of the unit square corresponds to the

maximally fuzzy set.

Figure 1.1 représents the fuzzy subset A as a point inside the 2-dimensional unit hyper-
cube. If A has membership degrees or fit values ms(z1) = 1/3 and mu(z;) = 3/4—so0
z) belongs to A less than z, does—then A corresponds to the fit vector (1/3, 3/4}.

The cube midpoint corresponds to the maximally fuzzy set M. The midpoint set M
uniquely obeys the peculiar relation M = M N M = M U M = M¢, and so
maximally violates the bivalent laws of noncontradiction and excluded middle. The clas-
sical paradoxes of logic and set theory correspond to midpoint phenomena. Note that the

cube midpoint in Figure 1.1 is uniquely equidistant to all 22 vertices. The cube midpoint

behaves as the black hole of set theory.
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Subsethood and Probability

Elementhood represents a special case of subsethood. Subscthood mcasures the degree

to which set A belongs to set B, the degree to which A is a subset of B. We denote this

subsethood measure as S(A, B):

S(A, B) = Degree(A C B) . (16)

Subsethood provides a unified set-theoretic framework for fuzziness and probability. For
instance, in the simplest case A equals the singleton set {z;}. Then the subsethood of {z;}

in B equals the membership or elementhood value mg(z;):

5({zi}, B) = map(z) . ; (17)

(17) follows directly from the Subsethood Theorem (22) below when we interpret {z;} as

a bit vector with a 1 in the tth slot and Os elsewhere.

Subsethood reveals the connection between fuzziness and randomness. Subsethood re-
duces probability to set theory. Randomness does not depend on the fuzziness or ambiguity
of an event. It depends on the uncertainty between certain events. Randomness equals’
the uncertainty that arises when a nonfuzzy set B is partially contained in one of its own
nonfuzzy subsets A. S(A, B) = 1since Ais a subset of B. But in general multivaluedness

holds. The converse subsethood S(B, A) is less than one but greater than zero:

0 < S(B, A) < 1 . | (18)

Classical set theory implicitly forbids the strict inequalities in (18). The law of excluded
middle dictates that every set either is or is not a subset of every other set. As a result,
for centuries theorists have had to arbitrarily define probability as a frequency ratio or
stipulate that it obeyed certain axioms. They could not derive probability from more

fundamental concepts.

Fuzzy theory derives the axioms of the conditional probability measure P(B|A),
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P(A n B)
RA t

the probability that B occurs given that A occurs, from the properties of the subscthood

P(B|A)

measurc S(A, B). H X defines the “sample space” of all clementary outcomes of an

experiment, then X is a “sure event” since P(X) = 1. Then (19) implies that cvery

probability P(A) equals the conditional probability P(A|X):

P(A) = P(AIX) . (20)

This identity reflects the general subsethood relationship

P(A) = S(X, A) . (21)

On the surface the subsethood relation (21) seems absurd. How can supersét X belong
to one of its own subsets? How can the whole be part of one of its own parts? X cannot
totally belong to A unless X = A. But X can partially belong to A. The Subsethood
Theorem in Chapter 16 proves that this partial containment depends directly on the over-
lap between X and A, the intersection X N A. Figure 1.2 illustrates the Pythagorean
geometry of the Subsethood Theorem in three dimensions. The shaded hyper-rectangle

defines F(28), the fuzzy power set of B.
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FUZZY SUBSETHOOD
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FIGURE 1.2 Subsethood Theorem in R3. X contains 3 elements, z,, z,
and z3, and 8 nonfuzzy subsets. Fuzzy subset B = (1/4, 1/2, 1/3) contains
infinitely many fuzzy subsets B’ such that S(B’, B) = 1. They define the
shaded hyper-rectangle. S(A, B) < 1 since A lies outside the hyper-rectangle.
The closer A to the hyper-rectangle, the larger the subsethood S(A, B). B*
denotes the subset of B closest to A. B” equals AN B and uniquely defines an

orthogonal or Pythagorean relationship betweer 4 and B.

The Subsethood Theorem relates S(A, B) to the magnitudes of A, B,and A N B:

M(A 0 B)
M(A)

The ratio in (22) resembles, behaves as, and generalizes the defining ratio (19) of conditional

probability. M(A) denotes the fuzzy count of fit vector A:

S(A, B)
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MA) = a + ... + a, . (23)

M (A) generalizes the classical cardinality count, which sums only 1s and 0s. In the infinite
case appropriate integrals replace summations. (22) implies that the fuzzy entropy E(A)
of A equals the degree to which AN A€ contains ils own superset AUAC: E(A) = S(AU
A°, AN A°).

In Figure 1.2, A = (3/4, 1/3, 1/6) and B = (1/4, 1/2, 1/3). Then the closest
subset B* to A that satisfies the total-subsethood condition

b < by .., bl < b (24)

corresponds to B = (1/4 1/3 1/6), which also equals the pairwise minimum of A and B.

(24) generalizes (14) above. As discussed in Chapter 16, the Subsethood Theorem ensures

this in general:

B = AnB . (25)

(23) implies that M(A) = 15/12 = 5/4, and M(A N B) = 3/4. Then the Subsethood
Theorem gives S(A, B) = (3/4)/(5/4) = 3/5 = 60%. '

Relative frequency provides the clearest example of between-set fuzziness. Suppose we
flip a coin, draw balls from urns, or shoot at a target. The elementary events in X are
trials. Each trial is successful or unsucessful. So X does not possess fuzzy subsets in its
event space (its sigma-algebra). Each coin flips results in a head or a tail, not something
in between. Suppose A defines the subset of successful trials. If X contaiﬁs n trials, then
A corresponds to a vertex of /" and equals a bit vector of Is and 0s. Suppose n4 successes
out of n trials. 1s indicate successes, and Os indicate failures. The event X equals total

success, the bit vector of all 1s. X contains n successes. Then, since AN X = A, the

Subsethood Theorem (22) gives

S(X, A) = ’;—" . (26)
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Historically prob:.bility theorists have called the subsethood ratio in (26), or its limit,
the “probability of success” or P(A). This adds only a cultural tag. The success ratio
na/n behaves no differently in its deterministic subscthood framework than it did in its
“random” framework. The relative-frequency ratio still provides a stable estimate for
probability values in our physical, engincering, economic, and gambling models. It still
implies all the theorems it has always implied.

But we cannot derive the relative-frequency ratio from between-set relationships if we
deny the strict inequality (18) and insist that subsethood is two-valued. Bivalence forces
us to assume the ratio as a theoretical primitive.

Whether by design or by accident we have historically followed the bivalent path in
mathematics for almost 3,000 years. Bivalence has simplified our formal frameworks but
at a cost. It has led to logical paradoxes (bivalent contradictions), unexplained primitives,

and “randomness” in a universe that seems to obey physical laws and where every event

has causes.

THE DYNAMICAL SYSTEMS APPROACH TO MACHINE
INTELLIGENCE: THE BRAIN AS A DYNAMICAL SYSTEM

Several engineering and scientific disciplines study how adaptive systems respond to
stimuli. Electrical engineers study the topic as signal processing, nonlinear filtering, coding
theory, circuit design, and adaptive control. Computer scientists study it as algorithm and
automata theory, computer design, robotics, and artificial intelligence. Mathematicians
study it as function approximation, statistical estimation, combinatorial optimization, and
dynamical systems. Philosophers study it as epistemology, causality, and action. Biologists
study it as neuroscience, biophysics, ecology, evolution, and population biology. Psycholo-
gists study it as reinforcement learning, psychometrics, and cognitive science. Economists
study it as utility maximization, game theory, econometrics, and market equilibrium the-
ory. Cultural anthropologists study it as culture.

We shall emphasize electrical engineering as we seck general principles of how adaptive
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systems process information. We call these principles machine intelligence principles. We
shall draw freely from the related fields of engineering and science.

The term artificial intelligence usually refers to the computer-scientific approach to
machine intelligence. This approach emphasizes symbolic processing and tree search. Al
has become the emblem for a popular computer-age view of the brain: brain = computer.
This view ranges from classical science-fiction speculation (the computer HAL in 2001: A

Space Odyssey) to proposed space-based weapons systems.

We shall explore machine intelligence from a dynamical-systems viewpoint: brain =
dynamical system. On this view a maple leaf falling to a potential-energy minimum on
the ground better déscribes brain activity than does a computer executing instructions.
The dynamical models we shall study are cast as large systems of differential or differ-
ence equations. The principles describe local or global interactions of nonlinear parallel
processes. N

Some of these machine-intelligence principles and mechanisms may explain natural phe-
nomena and processes. Some already extend our theoretical and mathematical knowledge.
But ultimately they should help us build smarter machines. They should give rise to new
computational devices—electrical, optical, molecular, plasma, fluid, or other devices.

In this sense machine intelligence becomes an engineering discipline. Nearly a half cen-
tury ago, Norbert Wiener [1948] outlined the first incarnation of such a machine-intelligence
engineering. Wiener called it cybernetics. '

We shall focus our analysis on artificial neural networks and fuzzy systems. These new,
related systems represent broad classes of “machine-intelligent” adaptive systems. Chap-
ters 2 - 6 describe neural network theory. Chapters 7 - 15 describe engineering api)li'cations
of ncural networks. Chapters 16 - 19 present a geometric theory of fuzzy sets and systems

and its neural extension to adaptive fuzzy systems.

Neural and Fuzzy Systems as Function Estimators

Neural networks and fuzzy systems estimate input-output functions. Both are trainable
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dynamical systems. Sample data shapes and “programs” their time evolution. Unlike
statistical estimators, they estimate a function without a mathematical model of how
outlputs depend on inputs. They arec model-free estimators. They “lcarn from expericnce”
with numerical and, sometimes, linguistic sample data.

Neural and fuzzy systems encode sampled information in a parallel-distributed frame-
work. Both {rameworks are numerical. We can prove theorems to describe their behavior
and limitations. We can implement neural and fuzzy systems in digital or analog VLSI
circuitry or in optical-computing media, in spatial-light modulators and holograms.

Artificial neural networks consist of numerous, simple processing units or “neurons”
that we can globally program for computation. We can program or train neural networks
to store, recognize, and associatively retrieve patterns or database entries; to solve combi-
natorial optimization problems; to filter noise from measurement data; to control ill-defined
problems; in summary, to estimate sampled functions when we do not know the form of
the functions.

The human brain contains roughly 10! or 100 billion neurons [Thompson, 1985]. That
number approximates the number of stars in the Milky Way Galaxy, and the number of
galaxies in the known universe. As many as 10* synaptic junctions may abut a single
neuron. That gives roughly 10'® or 1 quadrillion synapses in the human brain. The brain.
represents an asynchronous, nonlinear, massively parallel, feedback dynamical system of
cosmological proportions.

Artificial neural systems may contain millions of nonlinear neurons and interconnecting
synapses. Future artificial neural systems may contain billions of real or virtual model
neurons. In general no teacher supervises, stabilizes, or synchronizes these large-scale
nonlinear systems.

Many feedback neural networks can learn new patterns and recall old patterns simul-
taneously, and ceaselessly. Supervised neural networks can learn far more input-output
pairs, or stimulus-response associations, than the number of neurons and synapses in the
network architecture. Since neural networks do not use a mathematical model of how a
system’s output depends on its input—since they behave as model-free estimators—-we can

apply the same neural network architecture, and dynamics, to a wide variety of problems.
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Like brains, ncural networks recogi‘ize patterns we cannot even define. We call this
property recognilion without definition. Who can define a tree, a pillow, or their own face
to the satisfaction of a computer pattern-recognition system? These and most concepts we
learn ostenstvely, by pointing out examples. We do not learn them as we learn the definition
of a circle. We abstract these concepts from sample data, just as a child abstracts the color
red from observed red apples, red wagons, and other red things, or as Plato abstracted
triangularity from considered sample triangles.

Recognition without definition characterizes much intelligent behavior. It enables sys-
tems to generalize. Dogs, lizards, and slugs recognize multitudes of unforeseen, complex
patterns without, of course, any ability to define them. Descriptive natural languages
developed only yesterday in human evolution. Yet a great deal of modern philosophy,
influenced by formal logic and behaviorist psychology, has insisted on concept definition
preceding recognition or even discussion. Below we discuss how this insistence has helped
shape the field of artificial intelligence and its emblem: the expert system.

Neural networks store pattern or function information with distributed encoding. They
superimpose pattern information on the same associative-memory medium—on the many
synaptic connections between neurons. Distributed encoding enables neural networks to
complete partial patterns and “clean up” noisy patterns. So it helps neural networks
estimate continuous functions.

Distributed encoding endows neural networks with fault tolerance and “graceful degra-
dation.” If we successively rip out handfuls of synaptic connections from a neural network,
the network tends to smoothly degrade in performance, not abruptly fail. Computers and
digital VLSI chips do not gracefully degrade when their components fail. Natural selection
seems to have favored distributed encoding in brains, at least in sections of brains.

Neural networks, and brains, pay a price for distributed encoding: crosstalk. Distribut-
ed encoding produces crosstalk or interference between stored patterns. Similar patterns
may clump together. New patterns may crowd out older learned patterns. Older patterns
may distort newer patterns.

Crosstalk limits the neural network’s storage capacity. Different learning schemes pro-

vide different storage capacities. The number of neurons bounds the number of patterns a
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ncural network can store reliably with the simplest unsupervised learning schemes. Even
for more sophisticated supervised learning schemes, storage capacity ultimately depends on
the number of network ncurons and synapses, as well as on their function. Dimensionality
limils capacily.

Biological ncurons and synapses motivate the neural network’s topology and dynamics.
We interpret neurons as simple input-output functions, threshold switches for two-state
neurons and asymptotic threshold switches for continuous neurons. We interpret synapses
as adjustable weights. In neural analog VLSI chips [Mead, 1989}, operational amplifiers
model nonlinear neurons, and resistors model synapses.

The overall network behaves a.s an adaptive function estimator. Indeed commercial
adaptive estimators are simple, usuallyv linear, neural networks. These include antennae

beam formers, high-speed modems, and echo-cancellers for long-distance telephone calls.

Neural Networks as Trainable Dynamical Systems

Neural networks geometrize computation. Network activity burrows a trajectory in a
state space of large dimension, say R". Each point in the state space defines a snapshot
of a possible neural network configuration. _

The trajectorylbegins with a computational problem and ends with a computational
solution. The user or the environment specifies the system’s initial conditions, which
define where the trajectory begins in the state space. In pattern learning, the pattern to
be learned defines the initial conditions. In pattern recognition or recall, the pattern to be
recognized defines the initial conditions.

Most of the trajectory corresponds to {ransieal behavior or computations. Synaptic
values gradually change to learn new pattern information. Neuronal outputs fluctuate.

The trajectory ends where the system reaches equilibrium, if it ever reaches equilibrium.
In the simplest and rarest case, the equilibrium attractor is a fixed point of the dynamical
system. Most popular neural networks converge to fixed points. In more complicated cases

the equilibrium attractor is a limit cycle or limit torus. In Chapter 4 we discuss a crude
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method for storing discrete time-varying patterns as limit cycles in feedback networks. The

cquilibrium attractors are robust or structurally stable if small perturbations do not distort

or destroy them.

In general, and in most dynamical systems, the equilibrium attractor is aperiodic
or chaotic. Once the network enters this region of the state space, it wanders forev-
er without apparent structure or order. Yao and Freeman [1990] have used dynamical
neural models and time-series data to argue that rabbit olfactory bulbs process odor in-
formation with chaotic attractors. As discussed in the homework problems, the function
Tr41 = c zx (I — zi) behaves as a chaotic dynamical system for values of ¢ near 4 and
z values in the unit interval [0, 1]. |

In Chapter 3 we discuss global Lyapunov functions for proving that certain feedback
neural networks converge to fixed points from any initial conditions. Geometrically we can
view the Lyapunov function as a surface sculpted by learned pattern information, as in
Figure 1.3.

Figure 1.3 illustrates the geometry of fixed-point stability in feedback neural networks.
Patterns behave as rocks on the rubber sheet of learning. The patterns, as well as “spuri-
ous” or unlearned patterns, dig out attractor basins in the state space and tend to rest at
the local Lyapunov minimum of the attractor. The Lyapunov sheet changes shape as the
system learns new patterns. Input patterns Q rapidly classify to nearest stored neighbors
as if they were ball bearings rolling into local depressions in a gravity field. In a fixed-point
attractor basins the state-trajectory balls stop at the local minima (or hover arbitrarily
close to it). In limit-cycle attractors, the ball @ would rotate in an elliptical orbit inside
the attractor basin. In limit-tori attractors, Q would cycle toroidally in the attractor basin,
as if, in R3, winding around the surface of a bagel. In chaotic attractors, @ would wander
aperiodically within the attractor region.

In all these cases, the number of attractor basins does not affect the speed of conver-
gence, the rate at which Q falls into the attractor basin. The dimensionality of the state
space also does not in principle affect the convergence rate. In practice, Q converges ex-
ponentially quickly. This suggests that global stability may underlie our biological neural

networks’ ability to rapidly recognize patterns, generate answers, and exhibit appropriate
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' muscle reflexes independent of the amount of pattern information in our brains. Computer-

type storage devices tend to slow as the number and complexity of patterns stored in them

TL

increases.

FIGURE 1.3 Global stability of a feedback neural network. Learning en-
codes the vector patterns Py, P, ... by gradually sculpting a Lyapunov or

“energy” surface in the augmented state space R**'. Input vector pattern Q
rapidly “rolls” into the nearest attractor basin, where the system classifies Q
as a learned pattern P or misclassifies Q as a spurious pattern. @Q’s descent

rate does not depend on the number of stored patterns.

Mathematically we can describe the time evolution of the neural network by the (au-

tonomous) dynamical system equation

x(t) = f(x) , (27)
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where the overdot denotes time differentiation. The state vector x(t) describes all neuronal

and synaptic values of the ncural network at time t. The neural network reaches steady

stalec when

x = 0, (28)

holds indefinitely or until new stimuli perturb the system out .of equilibrium. Neural
computation seeks to identify the steady-state condition (28) with the solution of a com-
putational problem, whether in pattern recognition, image segmentation, optimization, or
numerical analysis.

We can locally lincarize f by replacing f with its Jacobian matrix of partial derivatives
J. The ecigenvalues of J describe the system’s local behavior about an equilibrium point.
For instance, if all eigenvalues have negative real parts, then the local equilibrium is a fixed
point and the system converges to it eylcponentially quickly. More abstractly, generalized
cigenvalues or Lyapunov ezponents describe the underlying dynamical contraction and
expansion that may produce chaos.

We can classify neural network models according as they learn with supervision (pattern-
class information) and according as they contain closed synaptic loops or feedback. Figure

1.4 provides a rough taxonomy of several popular neural network models.
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FIGURE 1.4 Taxonomy of neural network models.

Supervised feedforward models provide the most tractable, most applied neural models.
We discuss these stochastic gradient systems in Chapter 5, and mention recent attempts to
extend these supervised systems into the feedback domain. Unsupervised feedback mod-
els provide the most biologically plausible, but mathematically most complicated, models.
These networks simultaneously learn and recall patterns. Both neurons and synapses
change state when these systems learn and when they recall, recognize, or reconstruct
pattern information. Chapter 6 proves global stability for many of these adaptive c_!ynam-
ical systems in the RABAM Theorem. Unsupervised feedforward neural networks tend to

converge to locally sampled pattern-class centroids, as discussed in Chapters 4,6, and 9.

Fuzzy Systems and Applications

Fuzzy systems store banks of fuzzy associations or commonsense “rules.” A fuzzy traffic

controller might contain the fuzzy association “If traffic is heavy in this direction, then keep
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the light greeen longer.” Fuzzy phenomena admit degrees. Some traffic configurations are
heavier than others. Some green-light durations are longer than others. The single fuzzy
association (HEAVY, LONGER) encodes all these combinations.

Fuzzy systems are even newer than ncural systems. Yet already engineers have suc-
cessfully applied fuzzy systems in many commercial areas. Fuzzy systems “intelligently”
automate subways; focus cameras and camcorders; tune color televisions, control automo-
bile transmissions, cruise controllers, and emergency braking systems; defrost refrigerators
and control air conditioners; automate washing machines and vacuum sweepers; guide
robot-arm manipulators; invest in securities; control»t‘.raﬁic lights, elevators, and cement
mixers; recognize Kanji characters; select golf clubs; even arrange flowers.

Most of these applications originated in Japan, though fuzzy products are sold and ap-
plied throughout the world. Until very recently, Western scientists, engineers, and math-
ematicians have overlooked, discounted, or even attacked early versions of fuzzy theory,
usually in favor of probability theory. Below, and especially in Chapter 16, we examine this
philosophical resistance in more detail and present a new geometrical theory of continuous
or “fuzzy” sets and systems.

Fuzzy systems “reason” with parallel associative inference. When asked a question or
given an input, a fuzzy system fires each fuzzy rule in parallel, but to different degree, to.
infer a conclusion or output. Thus fuzzy systems reason with sets, “fuzzy” or continuous
sets, instead of bivalent propositions. This generalizes the Aristotelian logical framework
that still dominates science and engineering. In one second a digital fuzzy VLSI chip
may execute thousands, perhaps millions, of these parallel-associative set inferences. We
measure such chip performance in FLIPS, fuzzy logical inferences per second.

Fuzzy systems estimate sampled functions from input to output. They may use linguis-
tic (symbolic) or numeric samples. An expert may articulate linguistic associations such
as (HEAVY, LONGER). Or a fuzzy system may 'ada.ptively infer and modify its fuzzy
associations from representative numerical samples.

In the latter case, neural and fuzzy systems naturally combine. The combination
resembles an adaptive system with sensory and cognitive components. Neural parameter

estimators embed directly in an overall fuzzy architecture. Neural networks “blindly”
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generate and refine fuzzy rules from training data. Chapters 17-19 describe and illustrate

these adaptive fuzzy systems.

Adaptive fuzzy systems learn to control complex processes very much as we do. T'hey
begin with a few crude rules of thumb that describe the process. Experts may give them
the rules. Or they may abstract the rules from observed expert behavior. Successive
experience refines the rules and, usually, improves performance.

Chapter 18 applies this adaptive cognitive process to backing up a truck-and-trailer
rig to a loading dock. (A supervised neural system can also solve this problem, though
at much greater computational cost. So far the truck-and-trailer dynamical system has
eluded mathematical characterization.) The fuzzy system quickly learns a set of governing
fuzzy rules as it samples actual truck-and-trailer trajectories. Additional training samples
improve only marginally the fuzzy system’s performance. This properly is better experi-
enced than explained. As an exercise for the reader, you might try backing your car into

the same parking space five times from five different starting positions.

INTELLIGENT BEHAVIOR AS ADAPTIVE MODEL-FREE
ESTIMATION |

Below we discuss neural and fuzzy systems in more detail. First we examine the
properties neural and fuzzy systems share with us and, more broadly, with all intelligent
systems. These properties reduce to the single abstract property of adaptive model-free
function estimation: Intelligent systems adaptively estimate continuous functions from data
without specifying mathematically how outputs depend on inputs. We now elaborate this
thesis.

A function f, denoted f: X — Y, maps an input domain X to an output range Y.
For every element z in the input domain X, the function f uniquely assigns the element
y in the output range Y. We denote this unique assignments asy = f(z). f(z) = 2°
defines a cubic function. f(zi, 72, z3) = (21, 22, 27 — z3) defines a “saddle” or

hyperbolic-paraboloid vector function in physical or 3-dimensional space R®. Pressure is
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a function of tempcrature, mass of energy (e = m c?), gravity of mass, erosion of gravity,

consumption of income. Functions define causal hypotheses. Science and engineering paint

our pictures of the universe with functions.

Humans, animals, reptiles, amphibians, and others also estimate functions. We all re-
spond to stimuli. We associate responses with stimuli. We associate actions with scenarios,
class labels with patterns, effects with causes. Equivalently, we map stimuli to responses.

Mathematically, all these systems transform inputs to outputs. The transformation
defines the input-output function f : X — Y. Indeed the transformation defines the
system. We can operatively characterize any system—atomic, molecular, biological, eco-
logical, economic or legal, geological, galactic—by how it transforms input quantities into
output quantities.

We call system behavior “intelligent” if the system emits appropriate, problem-solving
responses when faced with problem stimuli. The system may use an associatiye memory
embedded in the resistive network of an analog VLSI chip or embedded in the synaptic

webs of its brain. Or the system may use a mathematical algorithm to search a decision

tree, as in computer chess programs.

Generalization and Creativity

Intelligent systems also generalize. Their behavioral repertoires exceed their experience.
Eightenth-century philosopher David Hume saw why: Intelligent systems associate similar
responses with similar stimuli. Small input changes produce small output changes.” Hence
they estimate continuous functions. The pilot lands the airplane at night the same way
if only a few of the runway lights are out or if the new runway differs only slightly from
more familiar runways. The leopard stalks like prey in like ways in like circumstances.
Each minnow in a school smoothly adjusts its swimming behavior to the position of its
smoothly moving neighbors.

Function continuity accounts for much novel or creative behavior, if not all of it. We call

system behavior “novel” if the system emits appropriate responses when faced with new or
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unexpected stimuli. “Novel ideas,” says behaviorist psychologist B.F. Skinner {1953], are
“responses never made before under the same circumstances....Novel contingencies generate
novel forms of behavior.” Usually these new stimuli resemble known or learned stimuli,
and our responses usually resemble known responses.

Geometrically, when systems generalize or “create” they map stimulus balls to response
balls. Consider a known stimulus-response pair (X, y). Stimulus x dcfines a point in the
stimulus space S, the set of all possible stimuli for the problem at hand. In practice S
often corresponds to the real Euclidean vector space R". Response y defines a point in
the response space R, which may correspond to RP.

Now imagine a stimulus ball Bx centered about stimulus x and a response ball B,
centered about response y. All the stimuli x’ in By resemble stimulus x. The closer
stimulus x’ is to stimulus x, and hence the smaller the distance d(x’,x), the more x’
resembles x. The responses y’ in B, behave similarly. .

Suppose y = f(x) for some unknown continuous function f : R® — RP. The function
f defines the sampled system. Suppose further that f generates the response ball from
the stimulus ball: By = f(Bx). So for every similar response y’ in By, we can find some
similar stimulus x’ in By such that y' = f(x'). Formally f maps the stimulus ball onto
to the response ball.

(We use the term “ball” loosely. Technically, f(Bx) need not define an open ball in RP.
Thus we measure By with a volume measure below in (29). The Open Mapping Theoremin
real analysis {Rudin, 1974] implies that all bounded onto linear transformations f map the
open ball By to some set in R? that contains the open ball By, wherey = f(x). At best
we can only locally approximate most system transformations f as linear transformations.)

Then we can measure the creativity Cg,(f) of system f, given the stimulus ball By,

by the volume ratio

V(By)
C = —2¥/ 29
where the V operator (Lebesgue measure) measures ball volume in R" or RP. Cp,, crude

as it is, captures many intuitions. It also resembles a spectral transfer function.
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Consider the extreme cascs of infinite and zero creativity. For a fixed nondegenerate
response ball By, as the stimulus ball By contracts to x, the creativity measure Cpg,(f)
increases to infinity. (The point x has zero volume.) Cpg,(f) also increases to infinity if
the stimulus ball is constant and nondegenerate but the response ball By expands without
bound as its radius approaches infinity. In both cases an infinitely creative system emits
infinitely many responses when prescnted with, in the first case, a vanishingly small number
of stimuli or, in the second case, a fixed set of stimuli.

Infinite creativity need not represent infinite problem solving. The reinforcing environ-
ment selects “solutions” from our varied or creative responses. Most creative solutions are
impractical. We can emit creative responses without solving problems or contributing to
our genetic fitness. Sometimes we call these responses “art” or “play.”

At the other extreme, zero creativity occurs when the response ball By vanishes or
when the stimulus ball expands without bound as its radius grows to infinity.*In the first
case the system f is a constant function. It maps all stimuli in Bx to a single value y in
RP. Such an f is “dumb” or “dull.” In the second case, for an infinite-radius stimulus
ball By, the stimuli overwhelm the system’s response repertoire. Such systems resemble
classical pattern-recognition devices that are sensitive only to well-defined, well-centered
patterns (faces, zip codes, bar codes).

Small variations in input provide the simplest novel stimuli. The physical or cultural
environment may produce these variations. Or we may systematically produce them as
grist for our analytical mill. We may vary stimuli to solve a crossword puzzle, to fit physical
variables to astronomical data, or to formulate and resolve a mathematical conjt_:cf.ure.

We are all forward-looking creatures. We tend not to see the gradual causal chains that
precede our every action, idea, and innovation. Even Beethoven’s Fifth Symphony appears
less a discontinuity when we examine Beethoveen’s notebooks and a variety of preceding
musical compositions by him and by other composers.

Variation and selection drive biologiéa.l and cultural evolution. Physical and cultural
environments drive the selection process. Function continuity, and other factors, drive

variation.
Nature and man experiment with local variations of input parameters. This generates
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local variations of output paramecters. Then selection processes filter the new outputs.
More accurately, they filter the corresponding new systems. We call the new systems
“winners” or “fit” if they pass through the selection filters, “losers” or “unfit” if they do
notl pass through.

Variation and sclection rales may vary, especially over long stretches of geological or
cultural time. Different perturbed processes unfold at different speeds. So some evolu-
tionary stretches appear more “punctuated” than others [Gould, 1980]. This means some

measures of change—ultimately time derivatives—are nonlinear. It does not mean that

the underlying input-output functions are discontinuous.

Learning as Change

Intelligent systems also learn or adapt. They learn new associations, new patterns, new
functional dependencies. They sample the flux of experience and encode new information.
They compress or quantize the sampled flux into a small, but statistically representative,
set of prototypes or exemplars. Sample data changes system parameters. |

“Learning” and “adaptation” are linguistic gifts from antiquity. They simply mea.n
parameter change. The parameters may be numerical weight_s in an inner-product sum,
average neurotransmitter release rates at synaptic junctions, or gene (allelle) frequencies
at chromosonal loci in populations. ‘

“Learning” usually applies to synaptic changes in brains or nervous systems, coefficient
changes in estimation or control algorithms or devices, or resistor changes in analdg VLSI
circuitry. Sometimes we synonymously apply “adaptation” to the same changing param-
eters. In evolutionary theory “adaptation” applies to positive changes in gene frequencies
[Wilson, 1975].

In all cases learning means change. Formally, a system learns if and only if the system
parameter vector or matrix has a nonzero time derivative. In neural networks we usually
represent the synaptic web by an adjacency or connection matrix M of numerical synaptic

values. Then learning is any change in any synapse:
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M # O . (30)

We can learn well or lecarn badly. But we cannot learn without changing, and we cannot
change without learning.

Learning laws describe the synaptic dynamical system, how the system encodes in-
formation. They determine how the synaptic-web process unfolds in time as the system
samples new information. This shows one way that neural networks compute with dynam-
ical systems. Neural networks also identify neural activity with dyvnamical systems. This
allows the systems to decode information.

In principle we can harness any dynamical system to encode and decode some informa-
tion. We can view a kinetic swirl of molecules, a joint population of Iynxes and rabbits, and
a solar system as systems that transform input states to output states. Initial conditions
and perturbations encode questions. *Transient. behavior computes answers. ) Equilibri-
um behavior provides answers. In the extreme case we can even view the universe as a
dynamical-system “computer.” A godlike entity may choose Big-Bang initial conditions,
and there are infinitely many, to encode certain information or to ask certain questions.
The dynamical system computes as the universe expands transiently. Universal equilibri-
um behavior could represent the computational output: a heat-death pattern or perhaps |
a periodic or chaotic oscillation of expansion and contraction. '

Consider mowing a lawn of green grass. The mower “teaches™ the lawn the short-grass
pattern. The lawn consists of a parallel field of grass blades. Grass blades learn what they
are cut. The lawn behaves as a semi-permanent, yet plastic, information storage medium.
It tolerates faults and distributes cut patterns over large numbers of parallel units. We
can mow our name in the lawn, and read or decode it from a rooftop. In principle we can
encode all known information in a sufficiently big lawn. Eventualiy the lawn will forget
this information if we do not resample comparable data, if we do not re-mow the lawn to
a similar shape.

Ultimately learning provides only a means to some computational end. Neural networks

learn patterns or functions or probability distributions to recognize future patterns, filter
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future input streams of data, or solve future combinatorial optimization problems. Fuzzy
systems lcarn associative rules to cstimate functions or control systems. We climb the
ladder of learning and kick it away when we reach the roof of computation. We care how
the learned paramecter performs in some computational system, not how it was learned,
just as we applaud the piano recital and not the practice sessions.

Neural and fuzzy systems ultimately learn some unknown probability (subsethood)
function p(x). The probability density function p{x) describes a distribution of vector
patterns or signals X, a few of which the neural or fuzzy system samples. When a neural or
fuzzy system estimates a function f: X — Y, it in effect estimates the joint probability
density p(x, y). Then solution points (x, f(x)) should reside in high-probability regions
of the input-output product space X' x Y.

We do not need to learn if we know p(x). We could proceed directly to our computa-
tional task with techniques from numerical analysis, corpbinatorial optimization, calculus
of variations, or any other mathematical discipline. The need to learn varies inversely with
the quantity of information or knowledge. '

Sometimes the patterns cluster into exhaustive decision classes D, ..., Di. The deci-
sion classes may correspond to high-probability regions or “mountains.” (If the pattern
vectors are two-dimensional, then p(x) defines a hilly surface in three-dimensional space
R3) Then class boundaries correspond to low-probability regions or “valleys”.on the
probability surface.

Supervised learning uses class-membership information. Unsupervised learning does
not. An unsupervised learning system processes each sample x but does not “know” that
x belongs to class D; and not to class D;. Unsupervised learning uses unla‘belled-s;mples.
_Neither supervised nor unsupervised learning systems assume knowledge of the underlying
probability density function p(x).

Suppose we want to train a speech-recognition system at an international airport.
We want the German lightbulb to light up when someone speaks German to the speech-
recognition system, the Hindi lightbulb to light up when someone speaks Hindi, and so on.
The system learns as we feed it training waveforms or spectrograms.

We supervise the learning if we label each training sample as German, Hindi, Japanese,

158



etc. We may do this to compute an error. If the English lightbulb lights up for a German
sample, we may algorithmically punish the system for this misclassification.

An unsupervised system learns only from the raw training samples. We do not indicate
language class labels. Unsupervised systems adaptively cluster like patterns with like pat-
terns. The specch-recognition system gradually clumps German speech patterns together.
In competitive learning, for instance, the system learns class centroids, centers of pattern
mass.

Unsupervised learning may seem difficult and unreliable. But most learning is unsu-
pervised, since we do not know accurately the labels of most sample data, especially in

realtime processing. Every second our biological synapses learn without supervision on a

single pass of noisy data.

SYMBOLS VS. NUMBERS: RULES VS. PRINCIPLES

We all share another property: We cannot articulate the mathematical rules that de-
scribe, if not govern, our behavior. We can ask a violinist how she plays, and she can tell
us. But her answer will not be a mathematical function. In general her answer will not
enable us to reproduce her behavior.

All lifeforms recognize vast numbers of patterns. The most primitive patterns r.elate to
how an organism forages, avoids predators, and reproduces [Wilson, 1975].

On this planet only man articulates rules, and he articulates very few. We articulate
some rules in grammar, common law, and science (“physical laws”). ' Yet all our natural
languages, living and dead, and all our systems of law have culturally evolved without
conscious design and not in accord with articulated principles [Hayek, 1973]. To some
extent this also holds for our accumulated knowledge of medical, biological, and social
science.

There have been exceptions, and the exceptions have helped create the field of artificial
intelligence. Last century linguists developed the articulated language Esperanto. Mathe-

matician Giuseppe Pcano similarly devised the language Interlingua. A few fans still learn
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and spzak Esperanto and Interlingua, but far fewcr speak them than speak Latin. This
century computer scientists have consciously created the many computer programming lan-
guages. Today programmers frequently use C| Pascal, and even Fortran, and infrequently
use Algol and Jovial.

Computer scientists developed artificial intelligence in large part around the computer
language Lisp, or list processing, and more recently around Prolog, or logic programming.
Lisp and Prolog process symbols and lists of symbols. Symbolic logic, the bivalent propo-

sitional and predicate calculi, underlies their processing structure.

Expert System Knowledge as Rule Trees

Al systems store and process propositional rules. The rules are logical implications:
IF A, THEN B. They associate actions B with conditions A. The rule antecedents and
consequents correspond to step functions defined on their universes of discourse. One part
of the input space activates or “fires” A as true, and the other part does not activate A.

Collections of rules define “knowledge bases” or “rulebases.” The rule A — B local-
ly structures the knowledge of A and B as a logical implication. The knowledge base
globally structures the rules as an acyclic tree {or forest). The logical-implication paths
A—= B = C — D — ... flow from the tree’s root nodes or antecedents to its leaf
nodes or consequents. The term knowledge base stems from the computer-scientific term
database. Because of the tree structure of knowledge bases, we might more accurately call
them knowledge trees. Chapter 4 discusses fuzzy cognitive maps, which use feedback and
vector-matrix operations to convert knowledge trees to knowledge networks.

Knowledge engineers search the knowledge tree to enumerate logical paths. Path
enumeration defines the inference process. Forward-chaining inference proceeds from
knowledge-tree antecedents to consequents. Backward-chaining inference proceeds from
consequents or observations to plausible antecedents or hypotheses. Forward-chaining
inference answers what-if question. It derives effects from causes. Backward-chaining in-

ference answers why or how-come questions. It suggests causes for observed effects. Path-
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enumeration complexity increases nonlinearly with the number of rules storeu. Realtime
path enumeration in large knowledge trees may be combinatorially prohibitive, requiring
hcuristic or approximatc scarch strategics [Pearl, 1984).

Knowledge engincers acquire, storc, and process the bivalent rules as symbols, not as
numerical entities. This often allows knowledge engincers to rapidly acquire structured
knowledge from experts and to cfficiently process it. But it forces experts to articulate

the propositional rules that approximate their expert behavior, and this they can rarely do.

Symbolic vs. Numeric Processing

Symbolic processing fits naturally in the brain-as-computer framework. Language
strings model thoughts or shortterm memory. Rules and relations between language strings
model longterm memory. Programming replaces learning. Logical inference replaces time
evolution and nonlinear dynamics. Feedforward flow through knowledge trees replaces
feedback equilibria.

But we cannot take the derivative of a symbol. We require a sufficiently continuous
function. Symbol processing precludes mathematical analysis in the traditional senses
of engineering and the physical sciences. The symbolic framework allows us to quickly
represent structured knowledge as rules, but prevents us from directly applying the tools of
numerical mathematics and from directly implementing Al systems in large-scale integrated
circuits.

Figure 1.5 provides a taxonomy of model-free estimators. The taxonomy divides the
knowledge type into structured (rule-like) and unstructured types and divides the frame-

work into symbolic or numeric. All entries define model-free estimators because users need

not state how outputs mathematically depend on inputs.
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FIGURE 1.5 Taxonomy of model-free estimators. User need not state how

‘ system outputs explicitly depend on inputs.

Figure 1.5 outlines the advantages and disadvantages of machine-intelligent systems.
Al expert systems exploit structured knowledge, when knowledge engineers can acquire it,
but store and process it outside the analytical and computational numerical framework.

Neural networks exploit their numerical framework with theorems, efficient numerical
algorithms, and analog and digital VLSI implementations. But neural networks cannot
directly encode structured knowledge. They superimpose several input-outpuf samples
(x1, Y1), (X2, ¥2), .-+, (Xm, Xm) on a black-box web of synapses. Unless we check all
input-output cases, we do not know what the neural system has learned, and in general
we do not know what it will forget when it superimposes new samples (xi, yi) atop the
old. We cannot directly encode the commonsense traffic-light rule “If traffic is heavy in
one direction, keep the light green longer in that direction.” Instead we must present
the system with a sufficiently large set of input-output pairs, combinations of numerical

traffic-density measurements and green-light duration measurements.
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Fuzzy Systems as Structured Numerical Estimators

Fuzzy systems directly encode structured knowledge but in a numerical framework. We
enter the fuzzy association (HEAVY, LONGER) as a single entry in a2 FAM-rule matrix.
Each entry defines a fuzzy associative memory (FAM) “rule” or input-output transforma-

tion. In Chapter 17 we discuss the fuzzy control of an inverted pendulum. Figure 1.6

shows a bank of FAM rules sufficient to control an inverted pendulum.

NM

NS

AB z

PS

. PM NM

T e

FIGURE 1.6  Bank of FAM rules to control an inverted pendulum. Each

entry in the FAM matrix defines a fuzzy association between output {uzzy sets

and paired input fuzzy sets.

8, A@, and v define fuzzy variables. Fuzzy variables 8 and A# define the system’s state
variables. The angle fuzzy variable § measures the angle the pendulum shaft makes with

the vertical and ranges from —90 to 90. The angular velocity fuzzy A0 variable measures
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the instantancous rate of change of angle values. In practice it mecasures the difference

between successive angle values. OQutput fuzzy variable v measures the current to a motor

controller that adjusts the pendulum shaft.

Each fuzzy variable can assume five fuzzy-set values: Negative Medium (NM), Negative
Small (NS), Zero (ZE), Positive Small (PS), and Positive Medium (PM). The entry at the
center of the FAM matrix defines the steady-state FAM rule: “IFF 0 = ZE AND A0
=2ZE, THEN v=727LE"

We usually define the fuzzy-set values NM, ..., PM as trapczoids or triangles over
regions of the rcal line. For the fuzzy angle vanable 0, we can define ZE as a narrow
triangle centered at the zero value in the interval [-90, 90}. Then the angle value 0 be-
longs to the fuzzy set ZE to degree 1. The angle values 3 and -3 may belong to ZE only to

degree 0.6. Figure 1.7 shows seven trapezoidal fuzzy-set values assumed by fuzzy variable 0.

FIGURE 1.7  Seven trapezoidal fuzzy-set values assumed by fuzzy variable

0. Each value of 0 belongs to each fuzzy set to some, but usually zero, degree.
The exact value 3 belongs to the zero fuzzy number ZE to degree 0.6, to the

positive small fuzzy number PS to degree .2, and to positive medium PM to

-
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degree 0.

Fuzzy systcms allow uscrs to articulate lingusitic FAM rules by entering values in a
[FAM matrix. Once a fuzzy cngincer defines variables and {uzzy sets, the engineer can
design a prototype fuzzy system in minutes.

Chapter 17 shows that a large neural-type matrix encodes each FAM rule. When fuzzy
variables assume fuzzy subsets of the real line, as when we define ZE as a triangle centered
about 0, then these associative matrices have uncountably infinite dimension. This endows
cach FAM rule with rich structure and “memory capacity.” FAM systems do not add these
matrices together, which avoids neural-type crosstalk.

A virtual representation scheme allows us to exploi} the coding and capacity proper-
ties of these infinite matrices without actually writing them down. This holds for binary
input-output FAMs (BIOFAMs), which includes all fuzzy systems used in commercial ap-
plications. BIOFAMs accept nonfuzzy scalar inputs, such as 0 = 15 and AD = -10,

and generate nonfuzzy scalar outputs, such asv = —3.

Generating Fuzzy Rules With Product-Space Clustering

Neural networks can adaptively generate the FAM rules in a fuzzy system. We illustrate
this in Chapters 17 - 20 with the new technique of unsupervised product-space clustering.
Synaptic vectors quantize the input-output space. Clustered synaptic vectors track how
experts associate appropriate responses with input stimuli. Each synaptic cluster estimates
a FAM rule. The experts who generate the input-output data need not articulate th—e FAM
rules. They need only behave as experts. The key geometric idea is cluster equals rule.

Consider the input-output product space of the inverted-pendulum system. There are
two input variables and one output variable, so the input-output product space equals R®
(in practice a three-dimensional sub-cube within R3). Each input-output triple (0, Af, v)
defines a point in R3. The time evolution of the inverted-pendulum system defines a
smooth curve or t.ra.ject.ofy in R3. As the fuzzy system stabilizes the inverted pendulum

to its vertical position, the trajectory may spiral into the origin of R®, where the above
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stcady-state FAM rule keeps the system in equilibrium until perturbed.

Each fuzzy variable can assume five fuzzy subsets of the z, y, or z coordinate axcs of
13. The Cartesian product of these fuzzy subsets defines 125 (5 x 5 x 5) FAM cells in the
input-output product space R3. Most system trajectories pass through only a few FAM
cells. We show in Chapter 17 that these FAM cells equal FAM rules because the FAM
cells equal fuzzy cartesian products, and the uncountably infinite entries in the associative
matrices correspond to these cartesian products. So FAM rule equals associative (fuzzy
Hebb) matrix, which equals fuzzy cartesian product, which equals FAM cell.

Unsupervised neural clustering algorithms efficiently track the density of input-output
samples in FAM cells. We need only count the number of synaptic vectors in each FAM cell
at any instant to estimate, and to weight, the underlying FAM rules used by the expert or
physical process that generates the input-output data. This produces an adaptive histogram
of FAM-cell occupation. Chapters 17 - 20 apply the adaptive product-space:clustering
methodology to inverted-pendulum control, backing up a truck-and-trailer in a parking
lot, and realtime target tracking.

Supi)ose a system contains n fuzzy variables, and each fuzzy variable can assume m
fuzzy-set values. This defines m™ FAM cells in the input-output product space R™. Differ-
ent fuzzy variables can assume different types and different numbers of fuzzy-set variables. -
So in genefa.l there are my x ...x m, FAM cells. Suppose n = m = 3. Suppose
the fuzzy sets are low, medium, and high and have bounded extent. Then a Rubik’s cube
represents the input-output product space partitioned into 27 FAM cells if the fuzzy sets
do not overlap. In general FAM cells have nonempty but fuzzy intersection.

If we define n fuzzy variables, each with m fuzzy-set values, then there are 2"'"~p-ossible
fuzzy systems. Expert articulation, fuzzy engineering, and adaptive estimation produce
only a small fraction of the total number 2™" of possible fuzzy systems. Different fuzzy-set
definitions and different encoding or decoding strategies (“inferencing” techniques) pro-

duce different classes of 2™" possible fuzzy systems.
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Fuzzy Systems as Parallel Associators

Fuzzy systems store and process FAM rules in parallel. Mathematically a fuzzy system
maps points in an input product hypercube (possibly of infinite dimension) to points in an
output hypercube. [Fuzzy systems associate output fuzzy sets with input fuzzy sets, and so
behave as associative memories. Unlike neural associative memories, fuzzy systems do not
sum the associative matrices that represent FAM rules. Neural networks sum throughputs.
Fuzzy systems sum oulputs.

Summing outputs avoids crosstalk and achicves modularity. We can meaningfully look
inside the black box of fuzzy model-free estimator. Figure 1.8 displays the generic fuzzy

system architecture for a single-input, single-output FAM system.

FAM Rule 1

' |
-y B : |
w. | ;
: FAM Rule 2 , ‘
A e LT o [~ |
1 '
' : N
i . - t
i . 1
t FAM Rule m L
i
! (e 80 |8, .
e e e e e e - = . . =, — - 2

FAM SYSTEM . ST

FIGURE 1.8 Fuzzy system architecture. The system maps input fuzzy
sets A to output fuzzy sets B. The system stores separate FAM rules and in

parallel fires each FAM rule to some degree for each input. Experts or adaptive
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algorithms determine the FAM-rule weights w;. Experts may usc only w; = 1
(articulates rule) or w; = 0 (omits rule). Centroidal output converts fuzzy-set

vector BB to a scalar. In BIOFAM systems A dcfines a unit binary vector or

delta pulse.

Fuzzy inference computes the output fuzzy sets B}, weights them with the scalar weights

w;j, and sums them to produce the output fuzzy set B:

B = zijJI- . (31)
b)

In principle in (31) we sum over all m™ possible FAM rules since most rules have weight
w; = 0. Chapter 17 discusses the mechanism of the two types of fuzzy inference,
correlation-product and correlation-minimum inference.

Adaptive fuzzy systems use sample data and neural or statistical algorithms to choose
the coeflicients w; and thus to-define the fuzzy system at each time instant. Adaptation
changes the system structure. Geometrically, a time-varying between-cube mapping defines
an adaptive fuzzy system. In the simplest case, if the input fuzzy sets define points in the
unit hypercube I", and the output fuzzy sets define ;;oints in the unit hypercube I?, then
transformation S defines a fuzzy system if S maps I" to I?, S : I® — I?. Then S
associates fuzzy subsets of the output space Y with fuzzy subsets of the input space X.

So S(A) = B. S defines an adaptive fuzzy system if S changes with time:

dS
— £ 0 . 32
7 . (32

BIOFAM systems convert the vector B into a single scalar output valuey € Y. We
call this process defuzzification, although to defuzzify a fuzzy set formally means to round
it off from some point in a unit hypercube to the nearest bit-vector vertex. Fuzzy engineers

sometimes compute y as the mode yma, of the B distribution,

mB(Ymaz) = sup {mB(y)3 y €Y} . (33)

mg denotes the fuzzy membership function mg : Y — [0, 1] that assigns fit values or
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occurrence degrees Lo the clements of Y. If the output space Y equals a finite set of values

{y1, ---, ¥p}, as in some computer discretizations, then we can replace the supremum in

(33) with a maximum:

mp(Yumax) = max mp(y;) (34)

The more popular centroidal defuzzification technique uses all, and only, the infor-

mation in the fuzzy distribution B to compute y as the centroid j or center of mass of

B:

/:y mg(y) dy

[ matv)dy

—00

(35)

provided the integrals exist. In practice we restrict fuzzy subsets to finite stretches of
the real line. In Chapter 19 we prove that if the fuzzy variables assume only symmetric
trapezoid-like fuzzy-set values, then (35) reduces to a simple discrete ratio. The numerator
and denominator contain only m products. This discrete centroid trivializes the computa-
tional burden of defuzzification and admits direct VLSI implementation.

Figure 1.8 and equation (31) additively combine the weighted fuzzy sets B;. Earlier
fuzzy systems [Mamdani, 1977} combined output fuzzy sets with pairwise maxima. Unfor-

tunately, the maximum combination technique,

B = max min(w;, B}) , (36)
7

based upon the so-called “extension principle” of classical fuzzy theory [Klir, 1988], tends to
produce a uniform distribution for B as the number of combined fuzzy sets increases [Kosko,
1987|. A uniform distribution always has the same mode and centroid. So, ironically, as
the number of FAM rules increases, system sensitivity decreases.

The additive combination technique (31) tends to invoke the fuzzy version of the Cen-
tral Limit Theorem. The added fuzzy waveforms pile up to approximate a symmetric

unimodal, or bell-shaped, membership function. Different fuzzy waveforms produce simi-
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larly shaped output distributions B but centered about different places o1 the real line. We
consistently obscrve this tendency towards a Gaussian membership function after summing
only a few fuzz)" waveforms. (Technically the CLT requires normalization by the square-
root of the number of summed waveforms. Equation (31) does not normalize B because,
for dcfuzzification, we carc only about the relative values in B, the relative degrees of
occurrence of output values.)

The maximum combination technique (36) forms the envelope of the weighted fuzzy
sets B;-. Then B resembles the silhouette of a desert-full of sand dunes. As the number of .
sand dunes increases, the silhouette becomes flatter. The additive combination technique
(31) piles the sand dunes atop one other to form a sand mountain.

Fuzzy inference allows us to reason with sets as if they were propositions. The virtual-
representation scheme for FAM rules greatly simplifies the fuzzy inference process if we use
exact numerical inputs. Figure 1.9 illustrates the FAM (correlation-minimum) inference
procedure derived in Chapter 17. We can apply this inference procedure in parallel to any

number of FAM rules with any number of antecedent fuzzy-variable conditions.
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FIGURE 1.9 FAM inference procedure. The fuzzy system converts the
numerical inputs, § = 15 and A8 = —10, into the numerical output v = -3.
Since the FAM rules combine the antecedent terms with AND, the smaller
of the two fit values scales the output fuzzy set. If the FAM rules combined

antecedents disjunctively with OR, the larger of the fit values would scale the
output fuzzy set.
Fuzzy Systems as Principle-Based Systems

Al expert systems chain through rules. Inference proceeds down, or up, branches of

a decision tree. Except for chess trees or other game trees, in practice these search trees
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. arc wider than they are deep. Shallow trees (or forests) can exaggérate the all-or-none
eflect of bivalent propositional rules. Relative to deeper trees, shallow trees use a smaller
.proportion of their stored knowledge when they inference. They arc noninteractive.

Fuzzy systems are shallow but fully interactive. Every inference fires every FAM rule,
itsell a fuzzy expert system, to some degree. A similar property holds for the feedback
fuzzy cognitive maps discussed in Chapter 4.

Consider an Al judge and a fuzzy judge. Opposing counsel present the same evidence
and testimony to both judges. The Al judge rounds off the truth value of every key
statement or alleged fact to TRUE or FALSE (1 or 0), opens a rule book, uses the true
statements to activate or choose the antecedents of some of the rules, then logically chains
through the rule tree to reach a decision. A more sophisticated Al judge may chain through
the rule tree with uncertainty-factor algorithms or heuristic search algorithms.

The fuzzy judge weights the evidence to different degrees, say with fractional values in
the unit interval [0, 1]. The fuzzy judge does not use a rule book. Instead the fuzzy judge
determines to what degree the fuzzy evidence invokes a large set of vague legal principles.
The fuzzy judge may cite case precedents to enunciate these principles or to illustrate their

. relative importance. The fuzzy judge reaches a decision by combining these fuzzy facts
and fuzzy principles in an unseen act of intuition or judgement. If pressed, the fuzzy judge.
may defend or explain the decision by citing the salient facts and relevant legal principles,
precedents, and perhaps rules. In general the fuzzy judge cannot articulate an exact legal
audit trail of the decision process.

The distinction between the Al judge and the fuzzy judge reduces to the distinction
between rules and principles. Recently legal theorists [Dworkin, 1968-77; Hayek, 1973]
have focused on this distinction and challenged the earlier “positivist” legal theories of law
as articulated rules [Kelsen, 1954; Hart, 1961].

Rules, as Dworkin [1977] says, apply “in an all-or-none fashion.” Principles “have
a dimension that rules do not—the dimension of weight or importance,” and the court
“cites principles as its justification for adopting and applying a new rule.” Rules greatly

outnumber principles. Principles guide while rules specify:
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“Only rules dictate results, come what may. When a contrary result has been
rcached, the rule has been abandoned or changed. Principles do not work that
way; they incline a decision one way, though not conclusively, and they survive

intact when they do not prevail.”

Rules tend to be black or white. They abruptly come into and out of existence. We
post rules on signs, vote on them as propositions, and send them in memos: must be 18
to vote, open from 8 am to 5 pm, $500 fine for littering, office term lasts four years, can
take only five sick days a year, and so on. Rules come and go as culture evolves.

Principles evolve as culture evolves. Most legal principles in the United States grew out
of medeval British common law. Each year their character changes slightly, adaptively,
as we apply them to novel circumstances. These principles range from very abstract
principles; such as presumption of innocence or freedom of contract, to more behavioral
principles, such as that no one can profit from a crime or you cannot challengeia contract
if you acquiese to it and act on it. _

Each principle admits a spectrum of e:gceptions. In each case a principle holds only
to some, often slight, degree. Judges cite case precedents in effect to estimate the current
weight of principles. All the principles “hang together” to some degree in each decision,
just as all the fuzzy rules (principles) in Figure 1.5 contribute to some degree to the final
inference or decision. .

We often call AI expert systems rule-based systems because they consist of a bank
or forest of propositional rules and an “inference engine” for chaining through the rules.
The rule in rule-based emphasizes the articulated, expertly precise nature of the-stored
knowledge.

The Al precedent and modern legal theory suggest that we should call fuzzy systems
principle-based systems. The fuzzy rules or principles indicate how entire clumps of
output spaces associate with clumps of input spaces. Indeed FAM rules often behave as
partial derivatives. Many applibations require only a few FAM rules for smooth system
control or estimation. In general Al rule-based systems would require vastly more precise

rules to approximate the same system performance.
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Adaptive fuzzy systems usc ncural (or statistical) techniques to abstract fuzzy prin-
ciples from sampled cases and to gradually refine those principles a.s the system samples
new cases. The process resembles our everyday acquisition and refincinent of commonsense
knowledge. Future machine-intelligent systems may match, then someday exceed, our a-
bility to learn and apply the {uzzy commonsense knowledge—knowledge we can articulate

only rarely and inexactly—that we use to run our lives and run our world.
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PROBLEMS

1. Lukasiewicz’s continuous or “fuzzy” logic (L, logic) uses a continuous-valucd truth

function t : S — [0, 1] defined on the set S of statements. Lukasicwicz defined

the generalized conjunction (AND), disjunction (OR), negation (NOT) operators

respectively as

t(A AND B) min(t(4), ¢(B)) ,
t(AOR B) = max(t(A), t(B)) ,

t((NOT-A) = 1 — t(A) ,

for statements A and B. Prove the generalized noncontradiction-excluded-middle

law:
t(AAND ~ A) + {(AOR ~ A) = 1

This equality implies that the classical bivalent law of noncontradiction, {(A AND ~
A) = 0, holds if and only if the classical bivalent law of excluded middle, t(A OR ~
A) = 1, holds. Note that in the case of bivalent “paradox,” when t(A) = {(NOT-A),
the equality reduces to the equality 1/2 + 1/2 = 1.

.Let t : S — [0, 1] be a continuous or “fuzzy” truth function on the set S

of statements. Define the Lukasiewicz implication operator as the truth function
tL(A — B) = min(1, 1 —t(A) + t(B)) for statements A and B. Then prove the

following generalized fuzzy modus ponens inference rule:
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lL(A — B) = ¢

t(A) > a
Therefore t(B) > max(0,a + c—1)
Hence if t(A) = tL(A — B) = 1, then ¢{(B) = 1, which generalizes classical

bivalent modus ponens.

3. Use the continuous logic operations in Problem 2 to prove the following gencralized

fuzzy modus tollens inference rule:

lL(A — B) = C .
{(B) < b
Therefore t(A) < min(l, 1—-c + b)

Hence if t1{A — B) = 1 and t{(B) = 0, then t(A) = 0, which generalizes

classical bivalent modus tollens.
4. Define the Gaines implication operator as

min(l. {((B)/t(4)) if t(A) > 0

(A — B) = {
1 if  A) =0

Use the Gaines implication operator tg(A — B) to derive generalized fuzzy modus
ponens and modus tollens inference rules. The conclusion of the inference rules should

differ from the conclusions of the inference rules in Problems 2 and 3.

5. Exclusive-or (XOR) equals negated logically equivalence:
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L TR S

(A XOR B) = 1 — ((A= B)

Equivalence equals biconditionality. Bivalent statements are equivalent if and only
il the two statements have the same truth values. So the exclusive-or relation holds

between two bivalent statements if and only if the two statements have opposite
truth values.
Fuzzy statements can be equivalent to different degrees. But equivalence still equals

biconditionality:

{(A=B) = t((A — B)AND (B — A))
Prove that if we use the Lukasiewicz implication operator, then exclusive-or equals
the absolute difference (or {* or fuzzy Hamming distance) of the truth values ¢(A)

and t(B):

t.(A XOR B) = |t(A) — (B)]

. Set X contains n elements z,, ..., Z,. So X contains 2" nonfuzzy subsets A. Define

the bivalent indicator function 74 of nonfuzzy set A as

1 f z;, € A
IA(I.') =
0 if I, q A

So 14 defines the mapping Io: X — {0, 1}.

Suppose we extend 4 to a multivalued mapping by augmenting its range from {0, 1}
to {y1,---,Ym}, wherey;, = 0,y, = l,and0 < y; < 1 if 1 < j < m.

Then 14 defines the mapping I, : X — {y1, ..., ym}. How many multivalued
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subscts does X have? In the 2-dimensional case, X = {z,, .}, draw the planar ‘

lattice that describes the multi-dimensional power set of X, all its multi-dimensional

subsets, when m = 3, and when m = 5.

. Consider the discrete dynamical system

Teyr = f(zk)

= cxx (1 — z&)

for z values in [0, 1] and 0 < ¢ < 4. Many dynamical systems transition into

chaos as we increase a control or gain parameter, such as c¢. Select ¢ = 3.5 and use
the two choices of initial conditions, zo = .5 and zo = .51, to generate z,, ..., Z5.
Plot the two trajectories on graph paper. Are they aperiodic (chaotic) or periodic?

Does a difference of .01 in initial condition significantly affect the overall shape of

the discrete trajectory? _

Now repeat the above experiment but use the gain parameter ¢ = 3.9 (or ¢ = 4). No

matter how close two initial conditions, in a chaotic dynamical system they always

produce divergent trajectories. Does ¢ = 3.9 produce chaos?
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CHAPTER 16

FUZZINESS VERSUS PROBABILITY

So far as the laws of mathematics refer to realily, they are not certain. And so
Jar as they are certain, they do not refer to reality.

. . . Albert Einstein

Fuzzy Sets and Systems

We now explore fuzziness as an alternative to randomness for describing uncertainty.
We develop the new sets-as-points geometric view of fuzzy sets. This view identifies a
fuzzy set with a point in a unit hypercube, a nonfuzzy set with a vertex of the cube, and
a fuzzy system as a mapping between hypercubes. Chapter 17 examiﬁes fuizy é);st:ems.

Paradoxes of two-valued logic and set theory, such as Russell’s paradox, correspond to
the midpoint of the fuzzy cube. We geometrically answer the fundamental questions of
fuzzy theory—How fuzzy is a fuzzy set? How much is one fuzzy set a subset of another?7—
with the Fuzzy Entropy Theorem and the Fuzzy Subsethood Theorem.

We develop a new geometric proof of the Subsethood Theorem. A corollary shows that
the apparently probabilistic relative frequency 54 equals the deterministic subsethood

S(X, A), the degree to which the sample space X is contained in its subset A. So the
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frequency of successful trials equals the degree to which all trials are successful. We examine
recent Bayesian polemics against fuzzy theory in light of the new scts-as-points theorems.

An clement belongs to a fuzzy sct to some degree in [0, 1]. An clement belongs to a
nonfuzzy sct all or nonc, 1 or 0. More fundamentally, one set is a subset of one of the set
to some degree. Scts fuzzily contain subsets as well as elements. Subsethood generalizes

clementhood. We shall argue that subsethood generalizes probability as well.

Fuzziness in a Probabilistic World

Is uncertainty the same as randomness? If we are not sure about something. is it
only up to chance? Do the notions of likelihood and probability exhaust our notions of
uncertainty? , v

Many people, trained in probability and statistics, believe so. Some even sa_v:so, and say
so loudly. These voices often arise from the Bayesian camp of statistics, where probabilists
view probability not as a frequency or other objective testable quantity, but as a subjective
state of knowledge. '

Baly&sian physicist E. T. Jaynes [1979] says that “any method of inference in which
we represent degrees of plausibility by real numbers, is necessarily either equivalent to
Laplace’s [probability], or inconsistent.” He claims physicist R. T. Cox [1946] has proven
this as a theorem, \a claim we examine below.

More recently, Bayesian statistician Dennis Lindley [1987] issued an explicit challenge:
“probability is the only sensible description of uncertainty and is adequate for all problems
involving uncertainty. All other methods are inadequate.”

Lindley directs his challenge in large part at fuzzy theory, the theory that all things
admit degrees, but admit them deterministically. We accept the probabilist’s challenge
from the fuzzy viewpoint. We will defend fuzziness with new geometric first principles
and will qu&tion the reasonableness and the axiomatic status of randomness. The new
view is the sets-as-points view [Kosko, 1987] of fuzzy sets: A fuzzy set defines a point in a

unit-hypercube, and a nonfuzzy set defines a corner of the hypercube.

184




-5

Randomnness and fuzziness differ conceptually and theoretically. We can illustraté‘;omc
differences with examples. Others we can prove with theorems, as we show below. |

Randomness and fuzziness also share many similaritics. Both systems describe uncer-
tainty with numbers in the unit interval [0, 1]. This ultimately mcans that both systems
describe uncertainty numerically. Both systems combinc sets and propositions associa-
tively, commutatively, and distributively. The key distinction concerns how the systems
jointly treat a thing A and its opposite A°. Classical set theory demands A N A¢ = @,
and probability theory conforms: P(A N A°) = P(O) = 0. So A N A€ represents a
probabilistically impossible event. But fuzziness begins when A N A° # @.

Questions raise doubt, and doubt suggests room for change. So to commence the ex-

position, consider the following two questions, one fuzzy and the other probabilistic:
Tt
(i) Isit always and everywhere true that A N A = @ 7

(i) Do we derive or assume the conditional probability operator

P(A n B),
P(A)

The second question may appear less fundamental than the first question, which asks.

P(Bl|A) = (1)

whether fuzziness exists. The Entropy-Subsethood Theorem below shows that the first
question reduces to the second questions: We measure the fuzziness of fuzzy set A when
we measure how much the superset A U A€ is a subset of its own subset A N A°, a
paradoxical relationship unique to fuzzy theory. In contrast, in probability theory the like
relationship is impossible (has zero probability): P(A N Al A U A°) = P(GIXj = 0,
where X denotes the sample space or “sure event”.

The conditioning or subsethood in the second question lies at the heart of Bayesian
probabilistic systems. We may accept the absence of a first-principles derivation of P(B|A).
We can simply agree to take the ratio relationship as an axiom. But the new sets-as-points
view of fuzzy sets derives its conditioning operator as a theorem from first principles. The
history of science suggests that systems that hold theorems as axioms continue to evolve.

The first question asks whether we can logically or factually violate the law of noncontra-
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diction—one of Aristotlc’s three “laws of thought™ along with the laws of excluded middle,
A U A = X, and identity, A = A. Sct fuzzincss occurs when, and only wlncn, it is
violated. Classical logic and set theory assume that we cannot violate the law of noncon-
tradiction or, cquivalently, the law of excluded middle. This makes the classical theory

black or white. Fuzziness begins where Western logic ends—where contradictions begin.

Randomness vs. Ambiguity: Whether vs. How Much

Fuzziness describes event ambiguity. It measures the degree to which an event occurs,
not whether it occurs. Randomness describes the uncertainty of even{ occurrence. An
event occurs or not, and you can bet on it. The issue concerns the occurring event: Is it
uncertain in any way? Can we unambiguously distinguish the event from its o;posite?

Whether an event occurs is “random”. To what degree it occurs is fuzzy. Whether an

ambiguous event occurs—as when we say there is 20% chance of light rain tomorrow—

involves compound uncertainties, the probability of a fuzzy event.

We regularly apply probabilities to fuzzy events: small errors, satisfied customers, A
students, safe investments, developing countries, noisy signals, spiking neurons, dying cells,
charged particles, nimbus clouds, planetary atmospheres, galactic clusters. We understand
that, at least aroun;l the edges, some satisfied customers can be somewhat unsatisfied, some
A students might equally be B+ students, some stars are as much in a galactic cluster as out
of it. Events can transition more or less smoothly to their opposites, making classification
hard near the midpoint of the transition. But in theory—in formal descriptions and in
textbooks—the events and their opposites are black and white. A hill is a mountain if it
is at least T meters tall, not a mountain if it is one micron less than z in height [Quine,
1981]. Every molecule in the universe either is or is not a pencil molecule, even those that
hover about the pencil’s surface.

Consider some further examples. The probability that this chapter gets published is
one thing. The degree to which it gets published is another. The chapter may be edited
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in hundreds of ways. Or the essay may be marred with typographical errors, and so on.

Question: Does quantum mechanics deal with the probability that an unambiguous
clectron occupics spacetime points? Or does it deal with the degree to which an clectron,
or an clectron smear, occurs at spacetime points? Does |]? dV measure the probability
that a random-point electron occurs in infinitesimal volume dV? Or [Kosko, 1990] does
it mecasure the degree to which a deterministic clectron cloud occurs in dV?7 Different
interpretation, different universe. Perhaps even existence admits degrees at the quantum
level.

Suppose there is 50% chance that there is an apple in the refrigerator (electron in a
cell). That is one state of aflairs, perhaps arrived at through frequency calculations or a
Bayesian state of knowledge. Now suppose there is hall an apple in the refrigerator. That
is another state of affairs. Both states of affairs are superficially equivalent in terms of
their numerical uncertainty. Yet physically, ontologically, they differ. One is, “random”,
the other fuzzy.

Consider parking your car in a parking lot with painted parking spaces. You can
park in any space with some probability. Your car will totally occupy one space and
totally unoccupy all other spaces. The probability number reflects a frequency history or
Bayesian brain state that summarizes which parking space your car will totally occupy.
Alternatively, you can park in every space to some degree. Your car will partially, and
deterministically, occupy every space. In practice your car will occupy most spaces to ..
zero degree. Finally, we can use numbers in [0, 1] to describe, for each parking space, the -
occurence probability of each degree of partial occupancy—probabilities of fuzzy events.

If we assume events are unambiguous, as in balls-in-urns experiments, there is no set
fuzziness. Only “randomness” remains. But when we discuss the physical universe, every
assertion of event ambiguity or nonambiguity is an empirical hypothesis. We habitually
overlook this when we apply probability theory. Years of such oversight have entrenched
the sentiment that uncertainty is randomness, and randomness alone. We systematical-
ly assume away event ambiguity. We call the partially empty glass empty and call the
small number zero. This silent assumption of universal nonambiguity resembles the pre-

relativistic assumption of an uncurved universe. A N A° = O is the “parallel postulate™

187



of classical set theory and logic, indeed of Western thought.

If fuzziness is a genuine typeof uncertainty, if fuzzincss exists, the physical consequences
arc universal, and the sociological conscquence is startling: scicatists, especially physicists,
have overlooked an entire mode of reality.

Fuzziness is a Lype of dcterministic uncertainty. Ambiguily is a property of physical
phenomena. Unlike fuzziness, probability dissipates with increasing information. After the
fact “randomness” looks like fiction. Yet many of the laws of science are time reversible,
invariant if we replace time ¢ with time —t. If we run the universe in reverse as if it were a
video tape, where does the “randomness” go? There is as much ambiguity after a sample-
space experiment as before. Increasing information specifies the degrees of occurrence.
Even if science had run its course and all the facts were in, a platypus would remain only
roughly a mammal, a large hill only roughly a mountain, an oval squiggle only roughly an
ellipse. Fuzziness does not require that God plays dice. .

Consider the inexact oval in Figure 16.1. Does it make more sense to say that the oval
is probably an ellipse, or that it is a fuzzy ellipse? There seems nothing random about the
matter. The situation is deterministic: All the facts are in. Yet uncertainty remains. The

uncertainty arises from the simultaneous occurrence of two properties: to some extent the
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‘ inexact oval is an ellipse, and to some extient it is nol an cllipse.

Figure 16.1 Inexact-oval. Which statement better describes the situation:

‘ “It is probably an ellipse” or “It is a fuzzy ellipse™?

More formally, does m4(z), the degree to which element z belongs to fuzzy set A,
equal the probability that z belongs to A? Is ms{z) = Prob{z ¢ A} true? Cardinality-
wise, sample spaces cannot be too big. Else a positive measure cannot be both countably
additive and finite, and thus in general cannot be a probability measure [Chung, 1974].
The space of all possible oval figures is too big, since there are more of these than real
numbers. Almost all sets are too big for us to define probability measures on them, yet we
can always define fuzzy sets on them.

Probability theory is a chapter in the book of finite measure theory. Many probabilists
do not care for this classification, but they fall back upon it when defining terms {Kac,
1959]. How reasonable is it to believe that finite measure theory—ultimately, the summing

of nonnegative numbers to unity—exhaustively describes the universe? Does it really

describe any thing?
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Surely from time to time cvery probabilist wonders whether probability describes any-
thing rcal. From Democritus to Einstein, there has been the suspicion that, as David
Hume [1748]) put it, “though there be no such thing as chance in the world, our ignorance
of the real cause of any cvent has the same influence on the understanding and begets a
like species of belicf.” When we modcl noisy processes by extending diflerential equations
to stochastic differential equations, as in Chapters 4-6, we introduce the formalism only as
a working approximation to several underlying unspecified processes, processes that pre-
sumably obey deterministic differential equations. In this sense conditional expectations
and martingale techniques might seem reasonably applied, for example, to stock options
or commodity futures phenomena, where the behavior involved consists of aggregates of

aggregates of aggregates. The same techniques seem less reasonably applied to quarks,

leptons, and void.

The Universe as a Fuzzy Set

The world, as Wittgenstein [1922] observed, is everything that is the case. In this
spirit we can summarize the ontological case for fuzziness: The universe consists of all
subsets of the universe. The only subsets of the universe that are not in principle fuzzy
are the constructs of classical mathematics. The integer 2 belongs to the even integers,
and does not belor;g to the odd or negative integers. All other sets—sets of particles, cells,
tissues, people, ideas, galaxies—in principle contain elements to different degrees. Their
membership is partial, graded, inexact, ambiguous, or uncertain. .

The same universal circumstance holds at the level of logic and truth. The only logically
true or false statements—statements S with truth value ¢(S) in {0, 1}-are tautologies,
theorems, and contradictions. If statement S describes the universe, if S is an empirical
statement, then 0 < {(S) < 1 holds by the canons of scientific method and by the lack
of a single demonstrated factual statement S with ¢(S) = 1 or {(S) = 0. Philosopher

Immanuel Kant (1787} wrote volumes in search of factually truc logical statements and

logically true factual statements.
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Logical truth differs in kind from factual truth. “2 = 1 + 1” has truth value 1. “Grass
is green” has truth value less than 1 but greater than 0. This produces the math/universe
crisis Einstein laments in his quote at the beginning of this chapter. Scientists have im-
posed a two-valued mathematics, shot through with logical “paradoxes™ or autinomies
[Kline, 1980}, on a multivalued universe. Last century John Stuart Mill [1843] argued
that logical truths represent limiting cases of factual truths. This accurately summarized
the truth-value distinction between 0 < t(S) < 1 and {(S) = Oor {(S) = 1 but,
cast in linguistic form, secems not to have persuaded modern philosophers. The Heisen-
berg uncertainty principle, with its continuum of indeterminacy, forced multivaluedness
on science, thougﬁ few Western philosophers [Quine, 1981] have accepted multivalued-
ness. Lukasiewicz, Godel, and Black [Rescher, 1969] did accept it and developed the first
continuous or “fuzzy” logic and set systems.

Fuzziness arises from the ambiguity or vagueness [Black, 1937] between a thing A and
its opposite A°. If we do not know A with certainty, we do not know A¢ with certainty
either. Else by double negation we would know A with certainty. This ambiguity pro-
duces nondegenerate overlap: A N A° # @, which breaks the “law of noncontradiction.”
Equivalently, it also produces nondegenerate underlap [Kosko,1986b]: A U A° # X,
which breaks the “law of excluded middle.” Here X denotes the ground set or universe of.
discourse. (Probabilistic or stochastic logics [Gaines, 1983] do not break these laws: P(A
and not-A) = 0 and P(A or not-A) = 1.) Formally, probability measures cannot take

fuzzy sets as arguments. We must first quantize, round off, or defuzzify the fuzzy sets to

the nearest nonfuzzy sets.

THE GEOMETRY OF FUZZY SETS: SETS AS POINTS

It helps to see the geometry of fuzzy sets when we discuss fuzziness. To date researchers
have overlooked this visualization. Instead they have interpreted fuzzy sets as generalized
indicator or membership functions {Zadeh, 1965), mappings m4 from domain X to range

[0, 1). But functions are hard to visualize. Fuzzy theorists [Klir, 1988] often picture
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membership functions as two-dimensional grapls, with the domain X represented as a one-
dimensional axis. The geometry of fuzzy scts involves both the domain X' = {z, ..., z,}
and the range [0, 1] of mappings m,4: X — [0, 1]. The geometry of fuzzy scts aids us
when we describe fuzziness, define fuzzy concepts, and prove fuzzy theorems. Visualizing
this gcometry may by itself provide the most powerful argument for fuzziness.

An odd question reveals the gecometry of fuzzy sets: What does the fuzzy powd sel
F(2X), the set of all fuzzy subsets of X, look like? It looks like a cube. What does a fuzzy
set look like? A point in a cube. The set of all fuzzy subsets equals the unit hypercube
I* = [0, 1]*. A fuzzy set is any point [Kosko, 1987] in the cube /™. So (X, I™) defines the
fundamental mecasurable space of (finite) fuzzy theory. We can teach much of the theory
of fuzzy sets—more accurately, the theory of continuous sets—on a Rubik’s cube.

Vertices of the cube /™ define nonfuzzy sets. So the ordinary power set 2% | the set of
all 2" nonfuzzy subsets of X, equals the Boolean n-cube B" : 2X = B". Fuzzy sets fill
in the lattice B to produce the solid cube I": F(2X) = I

Consider the set of two elements X = {z,, z2}. The nonfuzzy power set 2* contains
four sets: 2X = {@, X, {z1}, {z2}}. These four sets correspond respectively to the four
bit vectors (0 0), (1 1), (1 0), and (0 1). The 1s and 0s indicate the presence or absence
of the ith element z; in the subset. More abstractly, we can uniquely define each subset A
as one of the two-valued membership functions mq: X —s {0, 1}.

Now considerithe fuzzy subsets of X. We can view the fuzzy subset A = (§ 32) as
one of the continuum-many continuous-valued membership functions m4 : X — [0, 1].
Indeed this corresponds to the classical Zadeh [1965) sets-as-functions definition of fuzzy
sets. In this example element z, belongs to, or fits in, subset A a little bit—to dégree 8
Element z, has more membership than not at 2. Analogous to the bit vector representa-
tion of finite (countable) sets, we say that the fit vector (3 2) represents A. The element
m4(z;) equals the ith fit [Kosko, 1986b] or fuzzy unit value. The sets-as-points view then

geometrically represents the fuzzy subset A as a point in /?, the unit square, as in Figure

16.2.
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Figure 16.2  Sets as points. The fuzzy subset A is a point in the unit 2-cube
with coordinates or fit values (3 2). The first element z, fits in or belongs to
A to degree 3, the element z; to degree 2. The cube consists of all possible

fuzzy subsets of two elements {z;, z,}. The four corners represent the power

set 2% of {z,, z,}.

The midpoint of the cube I” is maximally fuzzy. All its membership values equal 1.
The midpoint is unique in two respects. First, the midpoint is the only set A that not only

equals its own opposite A° but equals its own overlap and underlap as well:

A = AN A = AU A = A . (2)

Second, the midpoint is the only point in the cube /™ equidistant to each of the 2"

vertices of the cube. The nearest corners are also the farthest. Figure 16.2 illustrates this
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metrical relationship.

We combinc fuzzy scts pairwise with minimum, maximum, and order reversal, just as we

combine nonfuzzy scts. So we combine set elements with the operators of Lukasicewicz con-

tinuous logic [Rescher, 1969]. We define fuzzy sct intersection fitwise by pairwise minimum

(picking the smaller of the two clements), union by pairwise maximum, and complemen-

tation by order reversal:

mang
. MAuB

M A<

For example:

ANB
AU B

AC
A N A°
AU A°

= min(m,4, mp)

= max(ma, mp)

= 1 — my
= (1
= (9
= (9
= (1
= (0
= (0
= (1

7

]

5)
)
5)
)
5)
5)

5)

(4)
(5)

The overlap fit vector A N A° in this example does not equal the vector of all zeroes,

and the underlap fit vector A U A° does not equal the vector of all ones. This holds

for all properly fuzzy sets, all points in I" other than vertex points. Indeed the min-max
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definitions give at once the following fundamental characterization of fuzziness as nonde-

gencerate overlap and nonexhaustive underlap.

Proposition. A is properly fuzzy il A N A€ # O
ifTAU A # X.

The proposition says thal Aristotle’s laws of noncontradiction and excluded middle
hold, but they hold only on a set of measure zero. They hold only at the 2" vertices of I™.
In all other cases, and these are as many of these as there are real numbers, contradictions
occur to some degree. In this sense contradictions in generalized set theory and logic
represent the rule and not the exception. Fuzzy cubes box Aristotelian sets into corners.

Completing the fuzzy squarc illustrates this fundamental proposition. Consider again
the two-dimensional fuzzy set A defined by the fit vector (% i—’) We find the corresponding
overlap and underlap sets by first finding the complement set A€ and then combining the

fit vectors pairwise with minimum and with maximum:

A=@47%

a =G 9

_ AN A = (3 9
Au A = (33

The sets-as-points view shows that these four points in the unit square hang -together,
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and move together, in a very natural way. Consider the gcometry of Figure 16.3.

{x1}=(10) .

{x2}=(0 l)r : .X=(l 1)
-3 S Ao ... .. ;A.%‘. ’
x2 )
Ll.. AOA‘% ...... 45.6‘ .....
T

D=(00)
X1

Figure 16.3 Completing the fuzzy square. The fuzzier A is, the closer A
is to the midpoint of the fuzzy cube. As A approaches the midpoint, all four
points—A, A5, A N A°, and A U A°—contract to the midpoint. The less

fuzzy A is, the closer A is to the nearest vertex. As A approaches the vertex,
all four points spread out to the four vertices and the bivalent power set 2X is
recovered. In an n-dimensional fuzzy cube, the 2" fuzzy sets with elements a;

or 1 — a; similarly contract to the midpoint or expand to the 2" vertices as A

approaches total fuzziness or total bivalence.

In Figure 16.3 the four fuzzy sets involved in the fuzziness of set A—thesets A, A®, 4N A€,
and A U A°—contract to the midpoint as A becomes maximally fuzzy and expand out
to the Boolean corners of the cube as A becomes minimally fuzzy. The same contraction

and expansion occurs in n dimensions for the 2" fuzzy sets defined by all combinations
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of my(z,) and mue(zy),...,ma(z,) and mue(z,). The same contraction and cxpansion
occurs in n dimensions for the 2" fuzzy scts defined by all combinations of m(z,) and
Mmac(z1),...,ma(zn) and mae(x,).

At the midpoint nothing is distinguishable. At the vertices everything is distinguish-
able. These extremes represent the two ends of the spectrum of logic and sct theory. In

this sense the midpoint represents the black hole of set theory.

Paradox at the Midpoint

The midpoint is full of paradox. Classical logic and set theory forbid the midpoint by
the same axioms, noncontradiction and excluded middle, that generate the of “paradoxes™
or antinomies of bivalent systems. Where midpoint phenomena appear in Western thought,
thoerists have invariably labeled them “paradoxes” or denied them altogether.: Midpoint
phenomena include the half-empty and half-full cup, the Taoist Yin-Yang, the liar from
Crete who said that all Cretans are liars, Bertrand Russell’s set of all sets that are not

S

members of themselves, and Russell’s barber.

Russell’s barber is a bewhiskered man who lives in a town and who shaves. His barber
shop sign says that he shaves a man if and only if he does not shave himself. So who
shaves the barber? If he shaves himself, then by definition he does not. But if he does

not shave himself, then by definition he does. So he does and he does not—contradiction

“paradox”). Gaines [1983] observed that we can numerically interpret this paradoxical
p

-

circumstance as follows.

Let S be the proposition that the barber shaves himself and not-5 that he does no:.
Then since S implies not-S and not-S implies S, the two propositions are logically equiv-

alent: S = not-S. Equivalent propositions have the same truth values:

t(S) = t( not-S) (6)

1 - Ss) . (7)
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Solving for £(S) gives the midpoint point of the truth interval (the onc-dimensional cube
[0,1]): ¢(S) = 3. The midpoint is equidistant to the vertices 0 and 1. In the bivalent
(two-valued) casc, roundofl is impossible and paradox occurs. (6) and (7) describe the log-
ical form of the many paradoxes, though diflerent paradoxes involve different descriptions
[Quinc, 1987].

In bivalent logic both statements S and not-S must have truth value zero or unity.
The fuzzy resolution of the paradox uses only the fact that the truth values are equal. It
does not constrain their range. The midpoint value % emerges from the structure of the
problem and the order-reversing effect of negation.

The paradoxes of classical set theory and logic illustrate the price we pay for an arbitrary
insistence on bivalence [Quine, 1981). Scientists often insist on bivalence in the name of
science. But in the end this insistence reduces to a mere cultural preference, a reflection
of an educational predilection that goes back at least to Aristotle. Fuzziness shows that
there are limits to logical certainty. We can no longer assert the laws of noncontradiction
and excluded middle for sure—and for free.

Fuzziness caries with it intellectual responsibility. We must explain how fuzziness fits
in bivalent systems, or vice versa. The fuzzy théo;isi must explain why so many people
have been in error for so long. We now have the machinery to offer an explanation: We
round off. Rounding off, quantizing, simplifies life and often costs little. We agree to call
empty the near empty cup, and present the large pulse and absent the small pulse. We
round off points inside the fuzzy cube to the nearest vertex. This roundoff heuristic works
fine as a first approximation to describing the universe until we get near the midpoint of
the cube. We find these phenomena harder to roundoff. In the logically extreme Case, at
the midpoint of the cube, the procedure breaks down completely because every vertex is
equally close. If we still insist on bivalence, we can only give up and declare paradox.

Faced with midpoint phenomena, the fuzzy skeptic resembles the flat-earther, who de-

nies that the earth’s surface is curved, when she stands at the north pole, looks at her

compass, and wants to go south.
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Counting with Fuzzy Sets

How big is a fuzzy set? The size or cardinality of A, A (A), cquals the sum of the fit

values of A:

n

M(A) =5 ma(z) . (8)

i=1
The count of A = (3 3) equals M(A) = ; + 2 = 2. Some fuzzy theorists
[Zadeh, 1983] call the cardinality measure M the sigma-count. The measure M generalizes
[Kosko, 1986a) the classical counting measure of combinatorics and measure theory. (So
(X, I™, M) defines the fundamental measure space of fuzzy theory.) In general the measure
M does not yield integer values.
The measure M has a natural geometric interpretation in the sets-as-points;framework.

M(A) equals the magnitude of the vector drawn from the origin to the fuzzy set A, as

Figure 16.4 illustrates.
L]
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Figure 16.4 The count M(A) of A equals the fuzzy Hamming norm (! nor-

m) of the vector drawn from the origin to A.
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Cousider the {7 distance between fuzzy sets A and B in [™:

(A, B) = {JZ“: hna(zi) - mg(zi)l” | (9)

where 1 S p < oo . The {? distance is the physical Euclidean distance actually
illustrated in the figures. The simplest distance is the {! or fuzzy Hamming distance,
the sum of the absolute fit differences. We shall use fuzzy Hamming distance throughout,
though all results admit a general {7 formulation. Using the fuzzy Hamming distance we

can rewrite the count M as the desired ! norm:

M(4) = Smaz) o)
= Xi:ImA(za) ~ 0] (11)
= Z.;lmA(zi) ~ mg(z:)| (12)
= 4, 0) . | (13)

THE FUZZY ENTROPY THEOREM

How fuzzy is a fuzzy set? We measure fuzziness with by a fuzzy entropy measure.
Entropy is a generic notion. It need not be probabilistic. Entropy measures the uncertainty
of a system or message. A fuzzy set describes a type of system or message. Its uncertainty

equals its fuzziness.
The fuzzy entropy of A, E(A), varies from 0 to 1 on the unit hypercube I*. Only the




cube vertices have zcro entropy, since nonfuzzy scts arc unambiguous. The cube midpoint
uniquely has unity or maximum entropy. [uzzy entropy sngoothly incrcases as a set point
moves from any vertex to the midpoint. Klir [1988] discusses the algebraic requirements
for fuzzy entropy mecasures.

Simple geometric considerations lead to a ratio form for the fuzzy cntropy [Kosko,
1986b). The closer the fuzzy set A is to the ncarest vertex A,car, the farther A is from the
farthest vertex Ay,,. The farthest vertex Ay, resides opposite the long diagonal from the
nearest vertex Aneer. Let a denote the distance {'(A, Ancar) to the nearest vertex, and let

b denote the distance ['(A, Aj.,) to the farthest vertex. Then the fuzzy entropy equals

the ratio of a to b:

a 11(14, Ancar)
E(A) = 2 = M0 fnear) 14
(A = 3 = W@ a.) (14)
. ) . . W 3
Figure 16.5 shows the sets-as-points interpretation of the fuzzy entropy, where A = ( :'; ;),
Ancar = (0 1), and Aper = (l O). Soa = % + % = {5 and b = % + % = -:-%SO

E(4) = L.
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Figure 16.5 Fuzzy entropy, E(A) = %, balances distance to nearest vertex ‘

with distance to farthest vertex.

Alternatively, if you read this in a room, you can imagine the room as the unit cube

I? and your head as a fuzzy set in it. Once you locate the nearest corner of the room, the

farthest corner resides opposite the long diagonal emanating from the nearest corner. If

you put your head in a corner, then @ = 0, and so E£(A) = 0. If you put your head
in the metrical center of the room, every corner is nearest and farthest. So ¢ = b, and
E(A) = L

Overlap and underlap characterize set fuzziness. So we can expect them to affect the
measure of fuzziness. Figure 16.3 shows the connection. By symmetry, each of the four
points A, A, A N A and A U ACis equally close to its nearest vertex. The common

distance equals a. Similarly, each point is equally far from its farthest vertex. The common
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distance equals b. One of the first four distances is the count M(A N A°). Onc of the sccond
four distances is the count M(A U A). This gives a geometric proof of the Fuzzy Entropy
Theorem [Kosko, 1986Dh-87], which states that fuzziness consists of counted violations of

the law of noncontradiction balanced with counted violations of the law of excluded middle.

M(A 0 A°)

Fuzzy Entropy Theorem: E(A) m (15)

An algebraic proof is straightforward. The completed fuzzy square in Figure 16.6, contains

a geometric proof (in this special case).
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Figure 16.6 Geometry of the Fuzzy Entropy Theorem. By symmetry each
of the four points on the completed fuzzy square is equally close to its nearest

vertex and equally far from its farthest vertex.

The Fuzzy Entropy Theorem explains why set fuzziness begins where Western logic

ends. When sets (or propositions) obey the laws of noncontradiction and excluded middle,



overlap is empty and underlap is exhaustive So A(4 N A°) = 0and M(A U A°) = n,
and thus E(A) = 0. '

The Fuzzy Entropy ‘Theorem also provides a first-principles derivation of the basic fuzzy
set operations of minimum (intersection), maximum (union), and order reversal (comple-
mentation) proposed in 1965 by Zadch at the inception of fuzzy theory. (Lukasicwicz first
proposed these operations for continuous or fuzzy logics in the 1920s [Rescher, 1969].)

For the fuzzy theorist, this result also shows that triangular norms or T-norms [Klir,
1988], which generalize conjunction or intersection, and the dual triangular co-norms C,

which generalize disjunction or union, do not have the first-principles status of min and

max. For, the triangular-norm inequalities,

T(z,y) < min(z, y) < max(z. y) < C(z,3) , (16)

show that replacing min with any T in the numerator term M(A N A€) can only make the
numerator smaller. Replacing max with any C in the term M(A U A°) can only make the
denominator larger. So any T or C not identically min or max makes the ratio smaller,
strictly smaller if A is fuzzy. Then the entropy theorem does not hold, and the resulting
pseudo-entropy measure does not equal unity at the midpoint, though it continues to be
maximized there. We can see this with the product T-norm [Prade, 1985]) Tz, y) = zy
and its DeMofgan dual conorm C(z, y) = 1 = T(l—-z,1-y) = z+y — zy,
or with the bounded sum T-norm T'(z, y) = max(0, z+y — 1) and DeMorgan dual
C(z, y) = min(1, z+y). The Entropy Theorem similarly fails in general if the negation or
complementation operator N(z) = 1 — z with a parameterized operator No(z) = ==
for nonzeroa > -—1.

All probability distributions, all sets A with AM{{4) = 1, in I" form a n— 1 dimensional
simplex S™. In the unit square the probability simplex equals the negatively sloped diagonal
line. In the unit 3-cube it equals a solid triangle. In the unit 4-cube it equals a tetrahedron,
and so on up.

If no probabilistic fit value p; satisfies p; > 3, then the Fuzzy Entropy Theorem
implies [Kosko, 1987| that the the distribution P has fuzzy entropy E(P) = 5. Else




E(P) < 5. Sothe probability simplex S™ is entropically degencratc for large dimensions
n. This result also shows that-the uniform distribution (1, ..., 1) maximizes fuzzy entropy
on S" but not uniquely. This in turn shows that fuzzy cutropy differs from the average-
information mcasurc of probabilistic entropy, which the uniform distribution maximizes
uniquely.

The Fuzzy Entropy Theorem implies that, analogous to log i, a unit of fuzzy informa-
tion equals l—_L! or ‘—'!'1, depending on whether the fit value f obeys f < % or f > %

The event z can be ambiguous or clear. It is ambiguous if f equals approximately %
and clear if f equals approximately 1 or 0. If an ambiguous event occurs, is observed, is
disambiguated, ctc., then it is maximally informative: E(f) = E(%) = 1. If a clear
event occurs, is observed, etc., it is minimally informative: E(f) = E(0) = E(1) = 0.
This agrees with the information interpretation of the probabilistic entropy measure log ;—,,
where the occurrence of a sure event (p = 1) is minimally informative (zero entropy) and

the occurrence of an impossible event (p = 0) is maximally informative (infinite entropy). .

THE SUBSETHOOD THEOREM

Sets contain subsets. A is a subset of B, denoted A C B, if and only if every element-
in A is an element of B. The power set 28 contains all of B’s subsets. So, alternatively

[Bandler-Kohout, f980], A is a subset of B iff A belongs to B’s power set:

A C B ifandonlyif A4 € 28. . (17)

The subset relation corresponds to the implication relation in logic. In classical logic
truth maps the set of statements {S} to two truth values: t: {S} — {0, 1}. Consider

the truth-tabular definition of implication for bivalent propositions P and Q:



0]0 1
011 1
110 0
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The implication is false if and only if the antecedent P is true and the consequent Q is
false—when “truth implies falsehood.”

The same holds for subsets. Representing sets as bivalent functions or “indicator”
functions m, : X — {0, 1}, Ais a subset of B ifl there is no clement z that belongs to

A but not to B, or my(z) = 1 but mg(z) = 0. We can ;cwﬁl’é-this membership-function

definition as

A C B ifandonlyif mu(z) < mg(z) forallz . (18)

Zadeh [1965] proposed the same relation for fuzzy set containment. We refer to this as
the dominated membership function relatioﬁ.s;hipl fA = (30.7and B =(4.7.9),
then A is a fuzzy subset of B, but B is not a fuzzy subset of A. Either fuzzy set A is, or
is not, a fuzzy subset of B. So the relation of fuzzy subsethood is not fuzzy. It is either
black or white.

The sets-as-points view asks a geometric question: What do all fuzzy subsets of B look
like? What does the fuzzy power set of B—F(25), the set of all fuzzy subsets of B—look
like? The dominated membership function relat.ionﬂship implies that F(28) defines the
hyper-rectangle snug against the origin in a unit hypercube with side lengths equal to the
fit values m4(z;). Figure 7 displays the fuzzy power set of the set B = (3 2). F(2B)
has infinite count if B is not empty. For finite-dimensional sets, we can measure the size

of F(28) [Kosko, 1987] as the Lebesgue measure or volume V(B), the product of the fit

values:
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v(B) = ][ mse(z:) . (19)
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Figure 16.7 Fuzzy power set F(28) as a hyper-rectangle in the fuzzy cube.
Side lengths equal the fit values mp(z;). The size or volume of F(2%) equals

the product of the fit values.

T

Figure 16.7 illustrates that F(28) is not a fuzzy set. Either cube point A is or is not in
the hyper-rectangle I'(28). Different points A outside the hyper-rectangle [7(2?) resemble
subsets of B to different degrees. The bivalent definition of subsethood ignores this.

The natural generalization defines fuzzy subsets on F(28): Some sets A belong to
F(25) to different degrees. Then the abstract membership function mg(;s)(A) can equal
any number in [0, 1]. This defines degrees of subsethood.

Let S(A, B) denote the degree to which A is a subset of B:
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S(A, B) = Degree (A C D) (20)

= mppo)(A) . (21)

5(., .) denotes the subscthood mcasure. S(., .) takes values in [0,1]. We will sce that it
provides the fundamental, unifying structure in fuzzy theory.

We want to measure S(A, B). We will first present an earlier {Kosko, 1986b-87)
algebraic derivation of the subsethood measure S(A, B). We will then present a new,
more fundamental, gecometric derivation.

We call the algebraic derivation the fil-violation strategy. Intuitively we study a law by
breaking it. Consider again the dominated membership function relationship: A C B if
and only if my(z) < mpg(z) for all z in X.

Suppose element z, violates the dominated membership function relationship: m4(z,)
> mp(z,). Then A is not a subset of B, at least not totally. Suppose further that the
dominated membership inequality holds for all other elements . Only element z,, violates
the relationship. For instance, X may consist of one hundred values: X = {z, ..., Z100}-
The violation might occur, say, with the first element: z, = z,. Then intuitively A is
largely a subset of B. Suppose that X contains a thousand elements, or a trillion elements,
and only the first element violates (18). Then it seems A is overwhelmingly a subset of B;
perhaps S(A, B) = .999999999999.

This example suggests we should count fit violations in magnitude and frequency. The
greater the violations in magnitude, mu(z,) — mpg(z,), and the greater the number of
violations relative to the size M(A) of A, the less A is a subset of B or, equivalently, the

more A is a supersel of B. For, both intuitively and by (18), supersethood and subsethood

relate as additive opposites:

SUPERSETHOOD(A, B) = 1 - S(A, B) . (22)

We count violations by adding them. If we sum over all z, the summand should equal




mu(z,) — mp(z,) when this difference is positive, and cqual zero when it is nonpositive.

So the summand cquals max(0, m4(z) — mg(z)). So the unnormalized count equals the

sum of these maxina:

Zmax(O, mua(z) — mp(z)). | (23)

X
The count M(A) provides a simple, and appropriate, normalization factor. Below we
formally arrive at M(A) by examining boundary cases in the geometric approach to sub-
sethood. We can assume M({A) > 0, since M(A) = 0 if and only if A is empty. The
empty set trivially satisfies the dominated membership function relationship (18). So it

is a subsetl of every set. Normalization gives the minimal mecasure of nonsubsethood, of

superscthood:
Y max(0, ma(z) — mp(z))
SUPERSETHOOD(A, B) = A(A) . (24)

Then subsethood is the negation of this ratio. This gives the minimal fit-violation measure

of subsethood:

>_max(0, mu(z) — mp(z))

1 — A : (25)

S(A, B)

The subsethood measure may appear ungraceful at first, but it behaves as it should.
S(A, B) = 1if and only if (18) holds. For if (18) holds, (23) sums zero violations. Then
S(A, By =1 - 0 = 1. If S(A, B) = 1, every numerator summand equals zero. So
no violation occurs. At the other extreme, S(4, B) = 0 if and only if B is the empty
set. The empty set uniquely contains no proper subsets, fuzzy or nonfuzzy. Degrees of
subsethood occur between these extremes: 0 < S(4, B) < L

The subsethood measure relates to logical implication. Viewed at the 1-dimensional
level of fuzzy logic, and so ignoring the normalizing count (M(A) = 1), the subsethood

measure reduces to the Lukasiewicz implication operator:



S(A, B) = 1 — max(0, my — my) (26)
=1 — [I =min(1 —= 0,1 — (my — mp))] (27)
= min(l, 1 -~ my + mp) (28)

The min(.) operator in (28) clearly generalizes the above truth-tabular definition of biva-

lent implication.

Consider the fit vectors A = (20 .4 .5)and B = (.7 .6.3.7). Neither
set is a proper subset of the other. A is almost a subsct of B but not quite since
mu(z3) — mp(zs) = 4 — 3 = 1 > 0. Hence S(A, B) = 1 - Tl_n = 1

Similarly S(B, A) =1 - 2 = 13
St_xbsethood applies to nonfuzzy sets. Consider thesets C = {z;, z;, 73, =5, Z7, Zg9, Z10,

Z12, Z14} and D = (z,, z3, z4, Zs, T, T7, s, Z9, Z10, T12, Z13, T14} With corresponding .

bit vectors

C=(11101010110101)

0111111111011 T1)

(w
1l

C and D are not subsets of each other. But C should very nearly be a subset of D since
4 2

only z, violates (18). We find S(C, D) = 1 — } = SwhileS(D,C) =1 - & =1,
So D is more a subset of C than it is not. This holds because the two sets are largely

equivalent. They have much overlap: M(C N D) = 8. This observation anticipates the

Fuzzy Subsethood Theorem presented below.
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We now turn to a new and purely geometric derivation of the subsethood opcrator
S(A, B). Consider the sets-as-points geometry of subsethood in Figure 16.7. Sct A is
cither in the hyper-rectangle 7(28) or not in it. Intuitively S(A, B) should approach
unity as A approaches the fuzzy power sct [7°(28). S(A, B) should decrease, and the
superscthood measure 1 — S(A, B) should increase, as A moves from F(25).

So the key idea is metrical: How close is A to F(2B)? Let d(A, F(2B)) denote this
[P distance defined in (9). d(A, B') denotes the distance between A and point B’ in the
hyper-rectangle, and B’ C B. Distance d(A4, F(2)) equals the smallest such distance.
Since the hyper-rectangle F(2P) is closed and bounded (compact) and convex, some subset

B of B achieves this minimum distance. So the infimum, the greatest lower bound, equals

the distance d(A, B‘):'

d(A, F(25)) = inf {d(A, B'): B € F(25)) C O (30)

= d(A, B") . (31)

We can easily locate the closest set B* in the hypercube geometry. If A is a subset of
B—if A is in the hyper-rectangle F(28)—then A equals the closest subset: A = B*. So
suppose A is not a proper subset of B. Then A lies outside the hyper-rectangle F(2%).

We cal slice the unit cube /" into 2" hyper-rectangles by extending the sides of F(25)
to hyperplanes. The hyperplanes intersect perpendicularly (orthogonaﬂly), at least in the
Euclidean case. F(2B) defines one of the hyper-rectangles. The hyper-rectangle interiors
correspond to the 2" cases whether mu(z;) < mp(zi) or mu(zi) > mp(z;) for fixed B
and arbitrary A. The edges correspond to the loci of points where some m4(z;) = mg(z;).

The 2" hyper-rectangles classi{y as mized or pure membership domination. In the pure
case either my < mpg,orm, > mpg, holds in the hyper-rectangle interior for all z and all

interior points A. In the mixed case my(z;) < mp(z;) holds for some of the coordinates
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i, and m(z;) > mp(z;) holds for the remaining coordinates z; in the interior for all ' ‘

interior A. So there arc only two pure membership-domination hyper-rectangles, the sct

of proper subsets F7(28) and the set of proper supersets, which includes X

Figure 16.8 illustrates how the fuzzy power set F(28) of B = (% :3,) lincarly ex-
tends to partition the unit squarc into 22 rectangles. The non-subscts Ay, Az, and A;
reside in distinct quadrants. The northwest and southeast quadrants define the mixed

membership-domination rectangles. The southwest and the northeast quadrants define

the pure rectangles.

{(x2}=(0 1) . X=(11)

]
{(x1}=(10)

.;
@=(00)

T e

X1
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Figure 16.8 Partition of hypercube /™ into 2" hyper-rectangles by linear-
ly extending the edges of F(2B). We find the nearest points By and Bj to
points A; and Aj in the northwest and southeast quadrants by the normals
from F(25) to A, and A;. The nearest point B" to point A; in the northeast
quadrant is B itself. This “orthogonal” optimality condition allows d(A, B) by
the general Pythagorean Theorem as the hypotenuse in an IP “right” triangle.

212




13 is the ncarest set 137 to A in the pure superset hyper-rectangle. To find the nearest
sct 37 in the mixed casc we draw a perpendicular (orthogonal) linc scgment from A to
I7(28). Convexity of [F(28) is ultimately responsible. In Figure 16.8 the perpendicular
lines from A, and Aj intersect line edges (1-dimensional linear subspaces) of the rectangle
F(28). The line from A, to B, the corner of F(2B), is degencrately perpendicular since B
is a zero-dimensional linear subspace.

These “orthogonality” conditions also hold in three dimensions. Let your room again
be the unit 3-cube. Consider a large dictionary fit snugly against the floor corner cor-
responding to the origin. Point B equals the dictionary corner farthest from the origin.
Extending the three exposed faces of the dictionary partitions the room into 8 octants. The
dictionary occupies one octant. We connect points in the other 7 octants to the nearest
points on the dictionary by drawing lines, or tying strings, that perpcndiculariy intersect
one the three exposed faces, or one of the three exposed edges, or the corner B.

The “orthogonality” condition invokes the {P-version of the Pythagorean Theorem. For

our I' purposes:

d(A, B) = d(A, B") + d(B, B") . (32)
The more familiar {>-version, actually pictured in Figure 16.8, requires squaring these
distances. For the general & case:

lA-BIP = llA-B'IP + I1B" - BIF , )

or equivalently,

Yolai=bP = Y lai—6F + Y 16 -6 . (34)
=1 =1

=1
Equality holds for all p > 1 since, as is clear from Figure 16.8 or 16.10 and, in general,
from the algebraic argument below, either §7 = a; or §7 = &;.

This Pythagorean equality is surprising. We have come to think of the Pythagorean
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Theorem (and orthogonality) as an € or Hilbert-space property. Yet herc it holds in cvery

€* space—if B* is thc sct in F(28) closest to A in €0 distance. Of course for other sets
strict incquality holds in general if p # 2. This suggests a special status for the closest set
B*. We shall sce below that the Subscthood Theorem confirms this suggestion. We shal)
use the term “orthogonality” loosely to refer to this P Pythagorecan relationship, while
remembering its customary restriction to €2 spaces and inner products.

A natural interpretation defines supersethood as thedistance d(A, F(28)) = d(A, B-).
Supersethood increases with this distance; subsethood decreases with it. To keep superset-
hood, and thus subsethood, unit-interval valued, we must suitably normalize the distance.

A constant provideé the simplest normalization term for d(A, B"). That constant
cquals the maximum unit-cube distance, n# in the general [P case and n in our €' case.
This gives the candidate subsethood measure

d(A, B*)

S(A, B) = 1 - =722 | (35)

This candidate subsethood measure fails in the boundary case when B is the empty
set. For then d(A, B*) = d(A, B) = M(A). So the measure in (35) gives S(4, @) =
1 - ﬁiﬂ > 0. Equality holds exactly when A = X. But the empty set has no subsets.
Only normalization factor M(A) satisfies this boundary condition. Of course M(A) = n
when A = X. Explicitly we require S(A, @) = 0, as well as S(@, A) = 1.

Normalizing by n also treats all equidistant points the same. Consider points 4, and A,
in Figure 16.9. Both points are equidistant to their nearest F(28) point: d(A,, B;) = d(A,, B;)
. But A, is closer to B than A; is. In particular A is closer to the horizontal line defined
by the fit value mp(z2) = 2. The count M(A) reflects this: M(A;) > M(A;). The count
gap M(A;) ~M(A;) arises from the fit gap involving z,, and reflects d(A,, B) < d(A., B).
In gencral the count M(A) relates to this distance, as we can see by checking extreme cas-

es of closeness of A to B (and drawing some diamond-shaped {' spheres centered at B).

Indeed if m4 > mp everywhere, d(A, B) = M(A) - M(B).
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Figure 16.9 Dependence of subsethood on the count M(A). A, and A,
are equidistant to F(2B) but A, is closer to B than A, is; correspondingly,
M(A;) > M(A;2). Loci of points A of constant count M(A) define line seg-
ments parallel to the negatively sloping long diagonal. [! spheres centered at

B are diamond shaped.

-

Since F(2%) fits snugly against the origin, the count M(A) in any of the other 2* — 1
hyper-rectangles can be only larger than the count M(B*) of the nearest F(28) points. The
normalization choice of n leaves the candidate subsethood measure indifferent to which of
the 2 — 1 hyper-rectangles contains A and to where A resides is in the hyper-rectangle.
Each point in each hyper-rectangle involves a different combination of fit-violations and
satisfactions. The normalization choice of M(A) reflects this fit-violation structure and

behaves appropriately in boundary cases.
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The normalization choice M(A) leads to the subscthood measure

d(A, B7)
M(A)

We now show that this measure equals the subscthood measure (25) derived algebraically

S(A, B) = 1 (36)

above.
Let B’ be any subset of B. Then by definition the nearest subset 3° obeys the inequal-

ity:

> lai = ;P < > o = 8P, (37
=1 =1

where for convenience a; = my(x;), and b; = mp(z;). We will assume p = 1 but the

following characterization of b; holds for any p > 1.

“Orthogonality” implies a; > b;. So first suppose a; = b7. This equality holds if and
only if no violation occurs: a; < b;. (If this condition holds for all 7, then A = B-".) So
max(0, a; — &) = 0. Next suppose a; > b;. This inequality holds if and only if a violation
occurs: a; > b;. (If this holds for ﬂl ¢, then B = B*.) So b} = b; since B* is the subset
of B nearest to A. Equivalently, a; > b; holds if and only if max(0, a; — ) = a; — b,
The two cases together prove that max(0, a; — &) = la; — b;|. Summing over all z;

gives

d(A, B*) = f:max(o, ma(z:) — ma(z)) . (38)

i=1
So the two subsethood measures (25) and (36) are equivalent.

This proof also proves a deeper characterization of the optimal subset 5°:

B =AnNnB . (39)

For if a violation occurs, then a; > &;, and §; = b;. So min(a;, §;) = b;. Otherwise

a; = b7, and so min(a;, b)) = b;. So B* = A NB.
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This in turn proves that B* is a point of double optimality. B~ is both the subset of B
ncarcst A, and A*, the subsct of A ncarest to B:
d(B, F(2%)) = d(B, A") = d(B, B°) . (40)

Figurc 16.10 illustrates that B* = A N B = A" identifies the set within both the
hyper-rectangle F(24) and the hyper-rectangle 7(2%) that has maximal count M(A N B).
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Figure 16.10. B- as both the subset of B nearest A and the subset A® of A n-
earest B: B = A" = AN B. Thedistanced(4, B*) = M(4) - M(AN B)

illustrates the Subsethood Theorem.

Figure 16.10 also shows that the distance d(A, B") equals a vector magnitude differ-
ence: d(A, B°) = M(A) — M(A n B). Dividing both sides of this equality by
M(A) and rearranging proves a still deeper structural characterization of subsethood, the

Subsethood Theorem.
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M(A N DB
SubsethoodTheorem. sSA, B) = ——gmﬂ-—) . (a1)

The Subscthood Theorem immediately implies a Bayes Theorem:

Subsethood Theorem.

M(B) S(B, A)
M(A) :

S(A, B) (42)

since (41) implies M(A N B) = M(B) 5(B, A).

The ratio form of the subsethood measure S(A, B) has the same ratio {?rm as the
conditional probability P(B|A) has in (1). We derived the ratio form for the subsethood
measure S(A, B) but assumed it for the conditional probability P(B|A). Since every
probability is a conditional probability, P(A) = P(A]X), this suggests we can reduce
probability to subsethood. We shall argue that this reduction holds both frequentist or
“objective” probability and axiomatic or Bayesian or “subjective” probability.

Consider the physical interpretation of randomness as the relative frequency n4/n. n,
denotes the number of successes that occur in n trials. Historically probabilists have called
the success ratio ( or its limit) ng/n the “probability of success” or P(A). We can now
derive the relative-frequency definition of probability as S(X, A), the degree to which a
bivalent superset X, the sample space, is a subset of its own subset A. The contept of
“randomness” never enters the deterministic set-theoretic framework. This holds equally
for flipping coins, drawing balls from urns, or computing Einstein-Bose statistics.

Suppose A is a nonfuzzy subset of X. Then

M(A 0 X)

M(X) (43)

S(X,A) =
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M(A)

= MXx) (44)
= %’1 . (45)

The n elements of X constitute the de facto universe of discourse of the “experiment.”
(We can take the limit of the ratio S(X, A) if it mathematically makes sense to do so
[Kac, 1959].) The “probability” 24 has reduced to a degree of subscthood, a purely fuzzy
set-theoretical relationship. Perhaps if, centuries ago, scientists had developed set theory
before they formalized gambling, the undefined notion of “randomness™ might never have
culturally prevailed, if even survived, in the age of modern science.

The measure of overlap M(A N X) f)rovides the key component of relative frequency.
This count does not involve “randomness”. M(A N X) counts which elements are identical
or similar. The phenomena themselves are deterministic and black or white. The same
situation gives the same number. We may use the number to place bets or to switch a
phone line, but it remains part of the description of a specific state of affairs. We need not
invoke an undefined “randomness” to further describe the situation.

Subsethood subsumes elementhood. We can interpret the membership degree m4(z;)
as the subsethood degree S({z;}, A), where {z;} denotes a singleton subset or “elemen-
t” z; of X. {a:.} corresponds to a bit vector with a 1 in the ith slot and 0s elsewhere:
{z:} = (0,...,0,1,0,...,0). If we view A as the fit vector (al,...,a;,...,a,,), then
{z:.}n A = (0,...,0,q;,0,...,0), the ith coordinate projection. Since the count M({z;})

equals one, the Subsethood Theorem gives

M({zi} 0 4)

S({Ii}a A) Al({z,}) (46)
= M((0,...,0;...,0) ) (47)
= ay (48)
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= mu(z) | (49)

= Decgree(z; € A) . (50)

So subsethood reduces to clementhood if antecedent sets are bivalent singlcton sets.

The subscthood orthogonality conditions project A onto the facing side of the hyper-
rectangle F(28). This projection gives the “normal equations” of least-squares parameter
estimation [Sorenson, 1980], a version of which we saw in Chapter 5. In general for two
R™ vectors x and y, we prOJect x onto y to give the projection vector p = cy. The

difference x — p is orthogonalto y: (x — p)Ly. So

0 = (x —--’p)yT (51)
= (x - )y’ ) (52)
= xyT - oy’ , (53)

where column vector yT denotes the transpose of row vector y. (53) gives the projection

coefficient ¢ as the familiar normal equations:

T

Xy
c = —— 54
yy7 (54)

n

Z I Yi
=5— . (55)

>

=1

Consider the unit square in Figure 16.10 with the same A4, say A = (2 1). But
suppose we shift B directly to the left to B = (0 3). This contracts the rectangle F (28) to

the line segment [0 2] along the vertical axis. These assumptions simplify the correlation




mathematics yet still preserve the least-squares structure. We expect that B = ¢B,
orcB = A N B, when we project A onto I7(2B) or, cquivalently in this special case,
when we project A onto B. The intersection A N I3 equals the minimum fit vector (0 ;—),

ABT = 042 = 1 and BBT = 0+(2)? = 5. Then

_ ABT
© = BBT
= —‘::-;- = §- s
! 4
and .
B = ¢B
3.2
1
= (0 3)

= ANB ,

as expected. More generally if B = (b, &), b = 0,6, > 0,and a; < by, then

T
c = A8 _ f‘.Ll’_;_Li;"_b’_ (56)
B BT 2+ 8
a; b
= 57
7 (57)
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az
= 5 | (58) '

Thene B = (0 °—§;h) = (0a) = AN Bsincca, < by
Subscthood has extended the Pythagorean Theorem, relative frequency, and element-
hood, and involves the normal equations of least-square estimation. We shall now sce how

subsethood relates to axiomatic or Bayesian probability and to fuzzy entropy.

Bayesian Polemics

Bayesian probabilists interpret probability as a subjective state of knowledge. In prac-
tice they use relative frequencics (subsethood degrees) but only to approximate these “s-
tates of knowledge.” .

Bayesianism is often a polemical doctrine. Some Bayesians claim that the;l, and only
they, use all and only the available uncertainty information in the description of uncertain
_ phenomena. This stems from the Bayes Theorem expansion of the “a posteriori” condi-

tional probability P(H;|E), the probability that H;, the :th of k-many disjoint hypotheses

{H;}, is true given observed evidence E:

P(E n H)

P(H;|E) P(E) (59)
P(E|H;) P(H;) o

P(E) (60)

P(E|H;) P(H;) (61)

k
Y P(E\H;) P(Hj))

Jj=t

since the hypotheses partition the sample space X : H, U H, U ... U H; = X and
H;nH; = @ if 1 # ;.




The Bayesian approach uses all available information in computing the posterior dis-
tribution P(/1;|E) by using the “a priori” or prior distribution P(11;) of the hypotheses.
The Baycsian approach stems from the ratio form of the conditional probability mcasure.

The Subscthood Theorem trivially implics Bayes Theorem when the hypotheses {/1;}
and cvidence E arc nonfuzzy subsets. Morc important, the Subsethood Theorem implics

the Fuzzy Bayes Theorem in the more interesting case when the observed data E is fuzzy:

S(H;, E) M(H,)

S(E,H)) = = (62)
.Z S(H;, E) M(H;)
S(H;, E) f;
kb( ) Ji , (63)
Z S(H;, E) J;

where f; = 'z((g’)) = M(n@ = S(X, H;) gives the “relative frequency” of H;, the degree
to which all the hypotheses are H;.

The Subsethood Theorem implies inequality when the partitioning hypotheses are
fuzzy. For instance, if k = 2, H¢ is the complement of an arbitrary fuzzy set H,
and evidence E is fuzzy, then [Kosko, 1986b] the occurrence of nondegenerate hypothesis

overlap and underlap gives a lower bound on the posterior subsethood:

S(H, E) fu
SEH) 2 SH By + S E)e

where fy = S(X, H). The lower bound increases with Af(H) and decreases with M(H¢).
Since a like lower bound holds for S(E, HH¢), adding the two posterior subsethoods gives

(64)

the additive inequality

S(E, H) + S(E, H?) > 1 , (65)

an inequality Zadeh [1983] arrived at independently by directly defining a “relative sigma-

count” as the subsethood measure given by the Subsethood Theorem. If H is nonfuzzy,



cquality holds as in the additive law of conditional probability:

PUHIE) + PUHIE) = 1 . (66)

The Subsethood Theorem implies a deeper Bayes theorem for arbitrary fuzzy sets, the

Odds-Form Fuzzy Bayes Theorem:

S(A 0 H, A;) _ S(As N H, A) S(H, Aq) o
S(A 0 H, 45)  S(Asn A, A) S(H, A5) (67

We prove this theorem directly by replacing the subsethood terms on the righthand side
with their equivalent ratios of counts, canceling like terms three times, multiplying by

:—:ﬁ:—gm; rearranging, and applying the Subsethood Theorem a second time.

We have now developed enough fuzzy theory to examine critically the recent anti-
fuzzy polemics of Lindley [1987] and Jaynes [1979) (and thus Cheeseman [1985] who uses

Jaynes’ arguments). To begin we observe four more corollaries of the Subsethood Theorem:

G) 0 <. S(H, A) < 1, (68)
() S(H, A) = 1 it HC A (69)
(iii) S(H,A U Ay) = S(H, A)) + S(H. A;) — S(H. 4, 0 Aw) . (T0)
(iv) S(H, Ay N A2) = S(H, A) S(A 0 H, Ay). (71)

Each relationship follows from the ratio form of S(A, B). The third relationship (70) uses
the additivity of the count M(A), which follows from min{(z,y) + max(z, y) = z + y.

Suppose we make the notational identification S(H, A) = P(A|H). We then obtain
the defining relationships of conditional probability Lindley proposed:
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Convezity: 0 < P(A|ll) < 1 and P(AH) = 1 if [l implies A, (72)
Addition : P(A, U A|H) = P(AH) + P(A[H) — P(A, N Ay|)(73)

Multiplication: P(A; N Alll) = P(A||H) P(A:JA N H). (74)

“From these three rules,” Lindley tells us, “all of the many, rich and wonderful results
of the probability calculus follow. They may be described as the axioms of probability.”
Lindley takes these as “unassailable” axioms: “We really have no choice about the rules
governing our measurement of uncertainty: they are dictated to us by the inexorable laws
of logic.” Lindley proceeds to build a “coherence” argument around the Odds-Form Bayes

Theorem, which he correctly deduces from the axioms as the equality

P(Adds 0 H) _ P(AAy 0 H) P(AglH)
P(AglA, 0 H) P(Ai|l45 N H) P(A3|H) °

where here we interpret A° as not-A. “Any other procedure,” Lindley claims, “is inco-

(75)

herent.” This polemic evaporates in the face of the above four subsethood corollaries and
the Odds-Form Fuzzy Bayes Theorem. Ironically, rather than. establish the primacy of
axiomatic probability, Lindley seems to argue that it is fuzziness in disguise.

Maximum-entropy estimation provides another source of Bayesian probability polemic
[Cheeseman, 1985]. Here the axiomatic argument rests on the so-called Cox’s Theorem
[1946).

According to physicist E.T. Jaynes [1979): ““Cox proved that any method of inference in
which we represent degrees of plausibility by real numbers, is necessarily either equivalent
to Laplace’s, or inconsistent,” where Jaynes cites Laplace as an early Bayesian probabilist.
In fact Cox used bivalent logic (Boolean algebra) and other assumptions to show that,
again according to Jaynes, the “conditions of consistency can be be stated in the form of

functional equations,” namely the probabilistic product and sum rules:

225



P(A N BIC) = P(A|B n C) P(BIC) , (76)
P(B|A) + P(B|A) = 1 . (77)

The Subsethood Theorem implies

S(C,An B) = 5(B n C,A)S(C, B) , (78)

S(A, B) + S(A, B 2 1, (79)

with, as we have seen, equality holding for the second subsethood relationship when B is

nonfuzzy, which holds in the Cox-Jaynes setting.

In the probabilistic case overlap and underlap are degenerate. So P(AN A°|B) = P(Q|B)
= %‘% = 0,and P(B|AN A°) = P(B|®)isundefined. Yet in general S(B, AN A°) > 0, ‘
and we can define S(A N A°, B) when A and B are fuzzy or nonfuzzy.

Jaynes’ claim is either false or concedes that probability is a special case of fuzziness.

For strictly speaking, since the subsethood measure S(A, B) satisfies the multiplicative
and additive laws specified by Cox and yet differs from the conditional probability P(B|A),
Jaynes’ claim is false.

Presumably Jaynes was unaware of fuzzy sets. He suggests that the fréquency -t.l;eory of
probability provides the only alternative uncertainty theory, and we have reduced relative
frequency to the subsethood measure S(X, A). So if we restrict consideration to nonfuzzy
sets A and B, equality holds in the above subsethood relations, and Jaynes argues correctly:
probability and fuzziness coincide. But fuzziness exists, indeed abounds, outside this
restriction and classical probability theory does not. So fuzzy theory extends probability

theory. Equivalently, probability represents a special case of fuzziness.




When we examine Cox’s actual arguments, we find that Cox assumes that the uncer-
tainty combination opcrators arc continuously twice differentiable. Min and max arc not

twice differentiable. Technically, Cox’s theorein docs not apply.

THE ENTROPY-SUBSETHOOD THEOREM

We independently derived the Fuzzy Entropy Theorem and the Subsethood Theorem
from first principles, from sets-as-points unit-cube geometry. Both theorems involve ratios
of cardinalities. So we can suspect a connection.

The Entropy-Subscthood Theorem shows that the connection involves overlap A N A¢
and underlap A U A°. The theorem ecliminates fuzzy entropy in favor of subsethood.
So subsethood emerges as the fundamental, characterizing quantity of fuzziness—and, ar-

guably, of probability as well.

Entropy-Subsethood Theorem: E(A) = S(A U A5, A n A%) . (80)

The theorem follows if we replace B and A in the Subsethood Theorem with respectively
overlap A N A€ and underlap A U A°. Since overlap is a subset of underlap, since
S(A N A%, A U A°) = I, the intersection of the two sets equals the overlap.

The Entropy-Subsethood Theorem describes a peculiar relationship. It gives fuzziness
or ambiguity as the degree to which the superset A U A€ is a subset of its own subset
A N A the extent to which the whole is a part of one of its own parts, a relationship
Western logic forbids.

This relationship violates our ingrained Venn-diagram intuitions of unambiguous set

inclusion. Only the midpoint of I™ yields total containment of underlap in overlap. The
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cube vertices yield zero containment. This parallels in the extreme the relative frequency

rclationship S(X, A) = Z&, where nonfuzzy subset A contains to some degree its nonfuzzy

superset X.
Figure 16.11 illustrates the Entropy-Subscthood Theorem. It shows that d°, the short-

est distance from underlap A U A€ Lo the hyper-rectangle that defines the fuzzy power

sct of overlap A N A¢, equals the distance d(A U A%, A N A°) = d(A, A‘)l and equals
a difference of vector magnitudes: d° = M(A U A¢) — M(A N A°).

(-‘(z)=(01)k X=(11)
3
3 Te———— VAL
X2
1| S/ JANAT . NAS. . ...
4
D=(00) {x1}=(10)

Figure 16.11 Entropy-Subsethood Theorem in two dimensions. Just as the
long diagonals have equal length, d(A, A°) = d(AU A, AN A°) = d° = M(AUAS) -
M(A N A°), the shortest distance from A U A° to the fuzzy power set of A N A°.

The Entropy-Subsethood Theorem implies that no probability measure measures fuzzi-
ness. For the moment, suppose not. Suppose fuzzy entropy measures nothing new; fuzzi-

ness is simply disguised probability. Suppose, as Lindley [1987] claims, that probability




theory “is adequate for all problems involving uncertainty.” Then there exists some proba-
bility measure P such that P = E. P cannot cqual zcro cverywhere because P(X) = 1.
Then there is some A such that ’(A) = F(A) > 0. Bul in a probability space overlap -
or underlap are degenerate: A N A = @,and A U A° = X.

The Entropy-Subscthood Theorem then impliesthat 0 < P(A) = [E(A) = S(AU A,
A N A%) = S(X, @). X can be a subset to nonzero degree of the emply set only if X
itsell is emply, and hencec only if A isempty: X = A = . Then the sure event X is
impossible: P(X) = P(@) = 0. Or the impossible event is sure: P(@) = 1. Either
outcome gives a bivalent contradiction, impervious to normalization. So there exists no

probability measure P that measures fuzziness. Fuzziness exists.
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10.

11.

12.

13.

14.

15.

Prove the fuzzy De Morgan Laws:

(a) AN B = (AU B
(b) AUB = (A°n B

. Prove:

nt/r

0 < (A, Ancar) < - < (A, Afar) 0% p> 1.

Prove the £ -version of the Fuzzy Entropy Theorem:

(A, Anear) _ M(AN A%)

E(4) 0(A, A,)  M(AU A9

Prove: M(A)+ M(B)= M(ANB)+ M(AU B).
Prove: 1M(AN A°) + IM(AU A%) =1
Prove:

(a) E(P)=-X if M(P)=1andall p; <1/2,
n-}
(b) E(P)< 2y if M(P)=1 and some p; > 1/2.

Prove the fit-violation version of the Subsethood Thoerem:

Y max(0,m4 — mp(z)) M
_ z _ M(A n B)
S(A.B) =1 - M(A) = TM{A)

Prove:
S(E, H;) = ?i(ﬁ'_l_w‘_. ,

> S(H;, E) f;
J=1
where f; = S(X, H;), the nonfuzzy sets H,,..., Hx partition X, and E is fuzzy.

Prove:

‘ S(H,E)fu
S(E,H) 2 S(H,E)fuy + S(He,E) fye’




I6.

17.

18.

19.

where fi; = S(X, ) and £ and If are arbitrary fuzzy scts.

Prove the Odds-Form Bayes Theorem:

S(Al ﬂII,Ag) _ S(/lQﬂIl,A]) S(I{, A'z)
S(A QL AS) T S(Asn I, A) S(H, A35)

for arbitrary fuzzy sels Ay, A,, and /1.

Prove directly the additive inequality: S(4,B) + S(A,B°) > 1.
Prove:

(a) 0< S(H,A) <1,

(b) S(H,A)=1 il HCA,

(c) S(H, AU Az) = S(H,A\) + S(H, A2) = S(H, A1 0 Ay)
(d) S(H,A; N Ay) = S(H,A,) S(A: Q0 H, A3) .

Show that N,(N,(z)) = z for the generalized negation operator

) - 4
1+az’

N,(z) = a>-1, 0<z<1,

If we define intersection (1 pointwise by
T(z,y)=1-min(l, [(1 -2+ (1 -¥/1), p>0,

how should we define the corresponding De Morgan dual union Us?

. What De Morgan dual union operator corresponds to the intersection operator

max(0, z +y —1)7?

Zadeh’s consequent conjunction syllogism schematizes as




Q1 As ac Ds
Q2 As are Cs

Therefore: @ As arc DBs and Cs

Show that if @, = S(A, B) and Q; = S(A,C), then the fuzzy quantifier Q obeys

max(0, @ + Q2 —1) < @ < min(Q1, Q).

Define the volume subsethood measure V(A, B) as

v(AN B)

V(4,8) = =To5

for fit vectors A = (ay,...,a,) and B = (by,...,b;) such that a; > 0. v(A)is

the Lebesgue or volume measure of A:

v(4) = ]
i=1
The volume subsethood measure V(A, B) measures the ratio of the volume of the
overlap hyper-rectangle F(2478) to the volume of A’s fuzzy power set F(24). Prove
that the volume subsethood measure V(A, B) underestimates the subsethood mea-

sure S(A, B): .

V(A,B) < S(A,B)
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ADAPTIVE FUZZY SYSTEMS FOR BACKING
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Abstract ¥

We developed fuzzy and neural-network control systems to back up a simulated truck,
and truck-and-trailer, to a loading dock in a planar parking lot. The fuzzy systems per-
formed well until we randomly removed over 50 % of their fuzzy-associative-memory (FAM)
rules. They also performed well when we replaced key FAM equilibration rules with de-
structive or “sabotage” rules. We trained the neural network systems with the supervised
backpropagation learning algorithm and tested their robustness by removing random sub-
sets of training data in learning sequences. The neural systems performed well but required
extensive computation for training. We used unsupervised differential competitive learn-
ing (DCL), and product-space clustering, to adaptively generate FAM rules from training
data. The original fuzzy and neural control systems generated trajectory data. The DCL
system rapidly recovered the underlying FAM rules. Product-space clustering converted
the neural truck systems into structured sets of FAM rules that approximated the neural

system’s behavior.
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Fuzzy and Neural Control Systems

We construct fuzzy and neural control systems directly from control data, but from
different types of control data. Fuzzy systems use a small number of structured linguistic
input-output samples from an expert or from some other adaptive estimator. Neural
systems use a large number of numeric input-output samples from the control process or
from some other database. Adaptive fuzzy systems also use numeric control data.

Figure 1 illustrates this difference. The neural system estimates function f: X — Y
from several numerical point samples (z;,y;). The fuzzy system estimates f from a few

fuzzy set samples or fuzzy associations (A;, B;).

(a)

FIGURE 1 Geometry of neural and fuzzy function estimation. The neural
approach (a) uses several numerical point samples. The fuzzy approach (b)
uses a few fuzzy set samples.

Fuzzy and neural systems offer a key advantage over traditional control approaches.
They offer model-free estimation of the control system. The user need not specify how
the controller’s output mathematically depends on its input. Instead the user provides a
few common-sense associations of how the control variables behave. Or the user provides
a statistically representative set of numerical training samples. Even if a math-model
controller is available, fuzzy or neural controllers may prove more robust and easier to
modify.

Which system, fuzzy or neural, performs better for which type of control problem de-




pends on the type and availability of sample data. If experts provide structured knowledge
of the control process, or if sufficient numerical training samples are unavailable, the fuzzy
approach may be preferable. We can construct a fuzzy control system with comparative
ease when experts or fuzzy engineers provide accurate structured knowledge. A fuzzy con-
trol system seems a reasonable benchmark in such cases, even if we can develop a neural
controller or math-model controller.

If we have representative numerical data but not structured expertise, the neural ap-
proach may be preferable. Or a statistical regression approach may be more appropriate.
The data simply tell their own story—if there is a story to tell. Yet even here we can
use a hybrid fuzzy-neural system, an adaptive fuzzy system. We can use the numerical
data to generate fuzzy associative memory (FAM) rules. The FAM rules can then form the
skeleton of a fuzzy control architecture. In short, if structured knowledge is unavailable,
estimate it. This may be more practical than it would i'.i»pear because of the small number
of control FAM rules needed to reliably control many realworld processes.

How can we compare fuzzy and neural controllers? Abstract comparison proves difficult
because both approaches build a control black box in different ways. That they build black
boxes distinguishes them from math-model controllers. It also suggests we can compare
them, at least approximately, by their black-box control performance.

Each control system generated an output control surface as it ranged over the common
input space of parameter values. Figure 5 below shows three-dimensional control surfaces
for the fuzzy and neural controllers. For control systems with few input parameters with
moderately quantized ranges, we can store both fuzzy and neural controllers—or rather
their quantized control surfaces—as decision look-up tables. Then once we specify a system
performance criterion, we can in principle quantitatively compare the contfollers.

Comparing syl'stem trajectories proved more complicated. In the case at hand, we
wanted to back up a truck, and truck-and-trailer, to a loading dock. We can measure and
compare the quality and quantity of the truck trajectory, perhaps with mean-squared er-
ror criteria. Intuitively, we preferred smooth short trajectories to jagged long trajectories.
Reaching the loading-dock goal was also important. In practice it is the most impor-

tant performance requirement. We must balance the trajectory type with the trajectory



destination, and this reduces to the pragmatic issue of balancing means and ends.

Below we develop a simple fuzzy control system and a simple neural control system
for backing up a truck, and truck-and-trailer, in an open parking lot. The recent neural
network truck backer-upper simulation of Nguyen and Widrow [1989] motivated our choice
of control problem. ,

The fuzzy control system compared favorably with the neural controller in terms of
black-box development effort, black-box computational load, smoothness of truck trajec-
tories, and robustness.

We studied robustness of the fuzzy control systems in two ways. We deliberately added
confusing FAM rules—“sabotage” rules—to the system, and we randomly removed differ-
ent subsets of FAM rules. We studied robustness of the neural controller by randomly .
removing different portions of the training data in learning sequences. We also converted

the neural control systems to structured FAM-bank sj;;tems.

Backing up a truck

Figure 2 shows the simulated truck and loading zone. The truck corresponds to the cab
part of the neural truck in the Nguyen-Widrow neural truck backer-upper system. The
three state variables ¢, z, and y exactly determine the truck position. ¢ specifies the angle
of the truck with the horizontal. The coordinate pair (z,y) specifies the position of the
rear center of the truck in the plane.

The goal was to make the truck arrive at the loading dock at a right angle (¢; = 90°)
and to align the position (z,y) of the truck with the desired loading dock (zy,ys). We
considered only backing up. The truck moved backward by some fixed distance at every
stage. The loading zone corresponded to the plane {0,100] x [0,100], and (z;,ys) equaled
(50,100).

At every stage the fuzzy and neural controllers should produce the steering angle 6 that
backs up the truck to the loading dock from any initial position and from any angle in the

loading zone.
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FIGURE 2 Diagram of simulated truck and loading zone.

Fuzzy Truck Backer-Upper System ; o

We first specified each controller’s input and output variables. The input variables were
the truck angle ¢ and the z-position coordinate z. The output variable was the steering-
angle signal §. We assumed enough clearance between the truck and the loading dock so

we could ignore the y-position coordinate. The variable ranges were as follows:

0<z<100 ,
—90 < $<270 ,
~30<6<30 . .

Positive values of § represented clockwise rotations of the steering wheel. Negative values
represented counterclockwise rotations. We discretized all values to reduce computation.
The resolution of ¢ and § was one degree each. The resolution of z was 0.1.

Next we specified the fuzzy-set values of the input and output fuzzy variables. The
fuzzy sets numerically represented linguistic terms, the sort of linguistic terms an expert
might use to describe the control system’s behavior. We chose the fuzzy-set values of the

fuzzy variables as follows:
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Angle ¢ z-position z Steering-angle signal § .

RB: Right Below LE: Left NB: Negative Big
RU: Right Upper LC: Left Center NM: Negative Medium
RV: Right Vertical CE: Center NS: Negative Small
VE: Vertical RC: Right Center ZE: Zero

LV: Left Vertical RI: Right PS:  Positive Small
LU: Left Upper -~ " PM: Positive Medium
LB: Left Below PB: Positive Big

Fuzzy subsets contain elements with degrees of membership. A fuzzy membership
function m4 : Z — [0,1] assigns a real number between 0 and 1 to every element z in
the universe of discourse Z. This number m 4(z) indiates the degree to which the object
or data z belongs to the fuzzy set A. Equivalently, m4(z) defines the fit (fuzzy unit) value
[Kosko, 1986] of element z in A.

Fuzzy membership functions can have different shapes depending on the designer’s pref-
erence or experience. In practice fuzzy engineers have found triangular and trapezoidal
shapes help capture the modeler’s sense of fuzzy numbers and simplify computation. Fig-
ure 3 shows membership-function graphs of the fuzzy subsets above. In the third graph,
for example, § = 20° is Positive Medium to degree 0.5, but only Positive Big to degree 0.3.

In Figure 3 the fuzzy sets CE, VE, and ZE are narrower than the other fuzzy sets.

These narrow fuzzy sets permit fine control near the loading dock. We used wider fuzzy

sets to describe the endpoints of the range of the fuzzy variables ¢, z, and 8. The wider
fuzzy sets permitted rough control far from the loading dock.

Next we specified the fuzzy “rulebase” or bank of fuzzy associative memory (FAM) rules.
Fuzzy associations or “rules” (A, B) associate output fuzzy sets B of control values with
input fuzzy sets A of input-variable values. We can write fuzzy associations as antecedent-
consequent pairs or IF-THEN statements.

In the truck backer-upper case, the FAM bank contained the 35 FAM rules in Figure 4.
For example, the FAM rule of the left upper block (FAM rule 1) corresponds to the following
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FIGURE 3 Fuzzy membership functions for each linguistic fuzzy-set value.
To allow finer control, the fuzzy sets that correspond to near the loading dock
are narrower than the fuzzy sets that correspond to far from the loading dack.

fuzzy association:
IF z = LE AND ¢ = RB, THEN 6 = PS.

FAM rule 18 indicates that if the truck is in near the equilibrium position, then the
controller should not produce a positive or negative steering-angle signal. The FAM rules
in the FAM-bank matrix reflect the symmetry of the controlled system.

For the initial condition z = 50 and ¢ = 270, the fuzzy truck did not perform well.
The symmetry of the FAM rules and the fuzzy sets cancelled the fuzzy controller output in
a rare saddle point. For this initial condition, the neural controller (and truck-and-trailer
below) also performed poorly. Any perturbation breaks the symmetry. For example, the
rule (If z = 50 and ¢ = 270, then 8 = 5) corrected the problem.

The three-dimensional control surfaces in Figure 5 show steering-angle signal outputs
0 that correspond to all combinations of values of the two input state variables ¢ and
z. The control surface defines the fuzzy controller. In this simulation the correlation-
minimum FAM inference procedure, discussed in [Kosko, 1990a), determined the fuzzy

control surface. If the control surface changes with sampled variable values, the system
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FIGURE 5 (a) Control surface of the fuzzy controller. Fuzzy-set values
‘determined the input and output combination corresponding to FAM rule 2
(IF z=LC AND ¢=RB, THEN 6=PM). (b) Corresponding control surface of
the neural controller for constant value y=20.
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behaves as an adaptive fuzzy controller. Below we demonstrate unsupervised adaptive
control of the truck and the truck-and-trailer systems.

Finally, we determined the output action given the input conditions. We used the
correlation-minimum inference method illustrated in Figure 6. Each FAM rule produced
the output fuzzy set clipped at the degree of membership determined by the input condi-
tions and the FAM rule. Alternatively, correlation-product inference [Kosko, 1990a] would
combine FAM rules multiplicatively. Each FAM rule emitted a fit-weighted output fuzzy
set O; at each iteration. The total output O added these weighted outputs:

0 = ZO.' (1)
= Swmin(fi8) 2)

where f; denotes the antecedent fit value and S; represents the consequent fuzzy set of
steering-angle values in the ith FAM rule. Earlier i':lzzy systems combined the output
sets O; with pairwise maxima. But this tends to produce a uniform output set O as the
number of FAM rules increases. Adding the output sets O; invokes the fuzzy version of
the Central Limit Theorem. This tends to produce a symmetric, unimodal output fuzzy
set O of steering-angle values.

Fuzzy systems map fuzzy sets to fuzzy sets. The fuzzy control system’s output defines
the fuzzy set O of steering-angle values at each iteration. We must “defuzzify” the fuzzy
set O to produce a numerical (point-estimate) steering-angle output value 6.

As discussed in [Kosko, 1990a], the simplest defuzzification scheme selects the value
corresponding to the mazimum fit value in the fuzzy set. This mode-selection approach
ignores most of the information in the output fuzzy set and requires an-additional decision
algorithm when multiple modes occur.

Centroid defuzzification provides a more effective procedure. This method uses the
fuzzy centroid 8 as output:

ZP: 6; mo(6;)
e (3)

P ?

Y mo(6;)

=1

D
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FAM Rule 13 RV,CEFS)

FIGURE 6 Correlation-minimum inference with centroid defuzzification
method. Then FAM-rule antecedents combined with AND use the minimum
fit value to activate consequents. Those combined with OR would use the

r

mazimum fit value. §

where O defines a fuzzy subset of the steering-angle universe of discourse © = {6,,...,6,}.
The central-limit-theorem effect produced by adding output fuzzy set O; benefits both max-
mode and centroid defuzzification. Figure 6 shows the correlation-minimum inference and
centroid defuzzification applied to FAM rules 13 and 18. We used centroid defuzzification
in all simulations.

With 35 FAM rules, the fuzzy truck controller produced successful truck backing-up
trajectories starting from any initial position. Figure 7 shows typical examples of the fuzzy-
controlled truck trajectories from different initial positions. The fuzzy control system did
not use (“fire”) all FAM rules at each iteration. Equivalently most output consequent sets
are empty. In most cases the system used only one or two FAM rules at each iteration.

The system used at most 4 FAM rules at once.

Neural Truck Backer-Upper System

The neural truck backer-upper of Nguyen and Widrow [1989] consisted of multilayer
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FIGURE 7 Sample truck trajectories of the fuzzy controller for initial
positions (z,y,4): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,—10).

feedforward neural networks trained with the backpropagation gradient-descent (st_ocha.stic-
approximation) algorithm. The neural control systen"i"consisted of two neural networks:
the controller network and the truck emulator network. The controller network produced
an appropriate steering-angle signal output given any parking-lot coordinates (z,y), and
the angle ¢. The emulator network computed the next position of the truck. The emulator
network took as input the previous truck position and the current steering-angle output
computed by the controller network.

We did not train the emulator network since we could not obtain “universal” synaptic
connection weights for the truck emulator network. The backpropagation learning algo-
rithm did not converge for some sets of training samples. The number of training samples .
for the emulator network might exceed 3000. For example, the combinations of training ..
samples of a given angle ¢, z-position, y-position, and steering angle signal 6 might cor-
respond to 3150 (18 x § x § x 7) samples depending on the division of the input-output
product space. Moreover, the training samples were numerically similar since the neuronal
signals assumed scaled values in [0,1] or [-1,1]. For example, we treated close values, such
as 0.40 and 0.41, as distinct sample values.

Simple kinematic equations replaced the truck emulator network. If the truck moved
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backward from (z,y) to (z’,3') at an iteration, then

' = z+rcos(¢) , (4)
¥y = y+rsin(¢) , (5)
¢ = ¢+96 . (6)

r denotes the fixed driving distance of the truck for all backing movements. We used
equations (4)-(6) instead of the emulator network. This did not affect the post-training
performance of the neural truck backer-upper since the truck emulator network back-
propagated only errors.

We trained only the controller network with backpropagation. The controller network
used 24 “hidden” neurons with logistic sigmoid functions. In the training of the truck-
controller, we estimated the ideal steering-angle signal at each stage before we trained the
controller network. In the simulation, we used the arc-shaped truck trajectory produced
by the fuzzy controller as the ideal trajectory. The fuzzy controller generated each training
sample (z,y, @, 0) at each iteration of the backing-up process. We used 35 training sample
vectors and needed more than 100,000 iterations to train the controller network.

Figure 5b shows the resulting neural control surface for y = 20. The neural control
surface shows less structure than the corresponding fuzzy control surface. This reflects
the unstructured nature of black-box supervised learning. Figure 8 shows the network
connection topology for our neural truck backer-upper control system.

Figure_ 9 shows typical examples"%f the neural-controlled truck trajectories from sev-
eral initial positions. Even though we trained the neural network to follow the smooth

arc-shaped path, some learned truck trajectories were non-optimal.

Comparison of Fuzzy and Neural Systems

As shown in Figure 7 and 9, the fuzzy controller always smoothly backed up the truck

but the neural controller did not. The neural-controlled truck sometimes followed an

irregular path.

248




Truck Controller

¢k steering signal
y Truck +1
k . —— X,
Emulator kel
T Y
24 hidden units

FIGURE 8 Topology of our neural control system.

(a) (b) (©)

FIGURE 9 Sample truck trajectories of the neural controller for imitial
positions (z,y,¢): (a) (20,20,30), (b) (30,10,220), and (c) (30,40,-10).
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(a) (b)

FIGURE 10 The fuzzy truck trajectory after we replaced the key steady-
state FAM rule 18 by the two worst rules: (a) IF z = CE AND ¢ = VE,
THEN 6 = PB, and (b) IF z = CE AND ¢ = VE, THEN 6 = NB.

Training the neural control system was time-consuming. The backpropagation algo-
rithm required thousands of back-ups to train the controller network. In some cases, the
learning algorithm did not converge.

We “trained” the fuzzy controller by encoding our own common sense FAM rules. Once
we develop the FAM-rule bank, we can compute control outputs from the resulting FAM-
bank matrix or control surface. The fuzzy controller did not need a truck emulator and
did not require a math model of how outputs depended on inputs.

The fuzzy controller was computationally lighter than the neural controller. Most
computation operations in the neurgxl': controller involved the multiplication, addition, or
logarithm T)f two real numbers. In the fuzzy controller, most computational operations

involved comparing and adding two real numbers.

Sensitivity Analysis

We studied the sensitivity of the fuzzy controller in two ways. We replaced the FAM
rules with destructive or “sabotage” FAM rules, and we randomly removed FAM rules.




(@ (b)

FIGURE 11 Fuzzy truck trajectory when (a) no FAM rules are removed
and (b) FAM rules 7, 13, 18 and 23 are removed.

We deliberately chose sabotage FAM rules to confound the system. Figure 10 shows the
trajectory when two sabotage FAM rules replaced the important steady-state FAM rule—
FAM rule 18: the fuzzy controller should produce zero output when the truck is nearly in
the correct parking position. Figure 11 shows the truck trajectory after we removed four
randomly chosen FAM rules (7, 13, 18, and 23). These perturbations did not significantly
affect the fuzzy controller’s performance.

We studied robustness of each controller by examining failure rates. For the fuzzy
controller we removed fixed percentages of randomly selected FAM rules from the system. -
For the neural controller we removed training data. Figure 12 shows performance errors
averaged over ten typical back-ups with missing FAM rules for the fuzzy controller and *
missing training data for the neural controller. The missing FAM rules and training data
ranged from 0 % to 100 % of the total. In Figure 12a, the docking error equaled the
Euclidean distance from the actual final position (¢, z, y) to the desired final position (¢y,

zg, Ys):

Docking Error = \/(4’;, -2+ (zs—z)3+(yr—vy)3 . (7)

In Figure 12b, the trajectory error equaled the ratio of the actual trajectory length of the
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FIGURE 12 Comparison of robustness of the controllers: (a) Docking and

Trajectory error of the fuzzy controller, (b) Docking and Trajectory error of
the neural controller.

truck divided by the straight line distance to the loading dock:

length of truck trajectory
distance(initial position, desired final position) -

(8)

Trajectory Error =

e

Adaptive Fuzzy Truck Backer-Upper

Adaptive FAM (AFAM) systems generate FAM rules directly from training data. A
one-dimensional FAM system, S : I — I?, defines a FAM rule, a single association of the
form (A;, B;). In this case the input-output product space equals I™ x JP. As discussed in
[Kosko, 1990a], a FAM rule (4;, B;) defines a cluster or ball of points in the product-space
cube I™ x I centered at the point (A;, B;). Adaptive clustering algorithms can estimate the
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unknown FAM rule (4;, B;) from training samples in R?. We used differential competitive
learning (DCL) to recover the bank of FAM rules that generated the truck training data.

We generated 2230 truck samples from 7 different initial positions and varying an-
gles. We chose the initial positions (20,20), (30,20), (45,20), (50,20), (55,20), (70,20), and
(80,20). We changed the angle from —60° to 240° at each initial position. At each step, the
fuzzy controller produced output steering angle §. The training vectors (z, ¢, §) defined
points in a three-dimensional product-space. z had 5 fuzzy set values: LE, LC, CE, RC,
and RI. ¢ had 7 fuzzy set values: RB, RU, RV,VE, LV, LU, and LB. 0 had 7 fuzzy set
values: NB, NM, NS, ZE, PS, PM, and PB. So there were 245 (5 x 7 x 7) possible
FAM cells. |

We defined FAM cells by partitioning the effective product-space. FAM cells near the
center were smaller than outer FAM cells because we chose narrow membership functions
near the steady-state FAM cell. Uniform partitions of the product-space produced poor
estimates of the original FAM rules. As in Figure 3, this reflected the need to judiciously
define the fuzzy-set values of the system fuzzy variables.

We performed product-space clustering with the version of DCL discussed in [Kosko,
1990a). If a FAM cell contained at least one of the 245 synaptic quantization vectors, we
entered the corresponding FAM rule in the FAM matrix.

Figure 13a shows the input sample distribution of (z,4). We did not include the
variable 6 in the figure. Training data clustered near the steady-state position (z = 50
and ¢ = 90°). Figure 13b displays thé synaptic-vector histogram after DCL classified 2230
training vectors for 35 FAM rules. Since successful FAM system generated the training
samples, most training samples, and thus most synaptic vectors, clustered in the steady-
state FAM cell.

DCL product-space clustering estimated 35 new FAM rules. Figure 14 shows the DCL-
estimated FAM bank and the corresponding control surface. The DCL-estimated control
surface visually resembles the underlying unknown control surface in Figure 5a. The two
systems produce nearly equivalent truck-backing behavior. This suggests adaptive product-
space clustering can estimate the FAM rules underlying expert behavior in many cases,

even when the expert or fuzzy engineer cannot articulate the FAM rules.
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FIGURE 13 (a) Input data distribution, (b) Synaptic-vector histogram.
Differential competitive learning allocated synaptic quantization vectors to
FAM cells. The steady-state FAM cell (CE, VE; ZE) contained the most
synaptic vectors.

X

LE LC CE RC RI
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FIGURE 14 (a) DCL-estimated FAM bank. (b) Corresponding control
surface.




IE LC CE RC RI
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FIGURE 15 (a) FAM bank generated by the neural control surface in
Figure 5b. (b) Control surface of the neural BP-AFAM system in (a).

We also used the neural control surface in Figure 5b to estimate FAM rules. We divided
the input-output product-space into FAM cells as in the fuzzy control case. If the neural
control surface intersected the FAM cell, we entered the corresponding FAM rulein a FAM
bank. We averaged all neural control-surface values in a square region over the two input
variables z and ¢. We assigned the average value to one of 7 output fuzzy sets. Figure 15
shows the resulting FAM bank and corresponding control surface generated by the neural
contro] surface in Figure 5b. This new control surface resembles the original fuzzy control-~
surface in Figure 5a more than it rc#e'inbles the neural control surface in Figure 5b. Note
the absenc: of a steady-state FAM rule in the FAM matrix in Figure Sa.

Figure 16 compares the DCL-AFAM and BP-AFAM control surfaces with the fuzzy
control surface in Figure 5a. Figure 16 shows the absolute difference of the control surfaces.
As expected, the DCL-AFAM system produced less absolute error than the BP-AFAM
system produced.

Figure 17 shows the docking and trajectory errors of the two AFAM control systems.
The DCL-AFAM system produced less docking error than the BP-AFAM system produced
for 100 arbitrary backing-up trials. The two AFAM systems generated similar backing-up
trajectories. This suggests that black-box neural estimators can define the front-end of
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(a) Absolute difference of the FAM surface in Figure 5a and

the DCL-estimated FAM surface in Figure 14b. (b) Absolute difference of the
FAM surface in Figure 5a and the neural-estimated FAM surface in Figure 15b.

FIGURE 16

FAM-structured systems. In principle we can use this technique to generate structured
FAM rules for any neural application. We can then inspect and refine these rules and

perhaps replace the original neural system with the tuned FAM system.

Fuzzy Truck-and-Trailer Controller

R\

We added a trailer to the truck system, as in the original Nguyen-Widrow model.

Figure 18 shows the simulated truck-and-trailer system. We added one more variable (cab
angle, ¢.) to the three state variables of the trailerless truck. In this case a FAM rule takes

the form

= NS.

THEN B

= RB AND ¢. = PO,

IF z = LE AND ¢,

-trailer

and ¢, determined the position of the truck-and

variables z, y, ¢,

The four state

Fuzzy

corresponded to ¢ for the trailerless truck.

system in the plane. Fuzzy variable ¢,

with respect to the center line along the trailer.

variable ¢, specified the relative cab angle

¢. ranged from —90° to 90°. The extreme cab angles 90° and —90° corresponded to two
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FIGURE 17  (a) Docking errors and (b) Trajectory errors of the DCL-
AFAM and BP-AFAM control systems.
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(Xx,¥) (x,y): Cartesian coordinate of the rear end, [0,100].
(u, v) : Cartesian coordinate of the joint.
¢, : Angle of the trailer with horizontal, {0,360].

@ : Relative angle of the cab with trafler, [-90,90).
O : Steering angle, [-30,30).

B : Angle of the trailer updated at each step, {-30,30].

FIGURE 18  Diagram of the simulated truck-and-trailer system.

“jackknife” positions of the cab with respect to the trailer. Positive ¢, value indicated
that the cab resided on the left-hand side of the trailer. Negative value indicated that it
resided on the right-hand side. Figure 18 shows a positive angle value of ¢..

Fuzzy variables z, ¢;, and ¢. defined the input variables. Fuzzy variable 8 defined the
output variable. 8 measured the angle that we needed to update the trailer at each itera-
tion. We computed the steering-angle output § with the following geometric relationship.
With the output B value computed, the trailer position (z,y) moved to the new position

(= v'):
z' = z+rcos(¢+B), (9)
v = y+rsin(ée+B8), (10)
where r de-x-xotes a fixed backing distance. Then the joint of the cab and the trailer (u,v)
moved to the new position (u’,v’):
v = :;:'—lcos(¢g + B), (11)
v = o — Usin(¢ +B), (12)
where £ denotes the trailer length. We updated the directional vector (dirU,dirV'), which
defined the cab angle, by
dirU’' = dirU + Au, (13)
dirV' = dirV + Av, (14)
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FIGURE 19 Membership graphs of the three fuzzy-set values of fuzzy
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FIGURE 20 FAM bank of the fuzzy truck-and-trailer control system.

where Au = v’ — u, and Av = v' — v. The new directional vector (dirU’,dirV’) defines
the new cab angle ¢,. Then we obtain the steering angle value as § = ¢, — ¢, where
&cn denotes the cab angle with the horizontal. We chose the same fuzzy-set values and
membership functions for B as we chose for 6. B ranged from —30° to 30°. We chose the
fuzzy-set values of ¢. as NE, ZR and PO as in Figure 19.

Figure 20 displays the 5 FAM-rule matrices in the FAM bank of the fuzzy truck-and-
trailer system. In Figure 20 we fixed the fuzzy variable z as LE, LC, CE, RC, and RI.
There were 735 (7 x 5 x 7 x 3) possible FAM rules and only 105 actual FAM rules.

Figure 21 shows typical backing-up trajectories of the fuzzy truck-and-trailer control
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FIGURE 21 Sample truck-and-trailer trajectories from the fuzzy con-
troller for initial positions (z, y, ¢, ¢): (a) (25, 30, —20, 30), (b) (80, 30,
210, —40), and (c) (70, 30, 200, 30).

system from different initial positions. The truck-and-trailer backed up in different direc-
tions depending on the relative position of the cab with respect to the trailer. The fuzzy
control systems successfully controlled the truck-and-trailer in jackknife positions.

BP Truck-and-Trailer Control Systems

We added the cab-angle variable ¢, as to the backpropagation-trained neural truck con-
troller as an input. The controller netiwork contained 24 hidden neurons with output vari-
able 8. Tl; training samples consisted of 5-dimensional space of the form (z,y, ¢, ¢, B)-
We trained the controller network with 52 training samples from the fuzzy controller: 26
samples for the left half of the plane, 26 samples for the right half of the plane. We
used equations (9)-(14) instead of the emulator network. Training required more than
200,000 iterations. Some training sequences did not converge. The BP-trained controller
performed well except in a few cases. Figure 22 shows typical backing-up trajectg;j?s_‘qf

.the BP truck-and-trailer control system from the same initial positions used in Figliré él.

We performed the same robustness tests for the fuzzy and BP-trained truck-and-trailer

controllers as in the trailerless truck case. Figure 23 shows performance errors averaged
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FIGURE 22 Sample truck-and-trailer trajectories of the BP-trained con-
troller for initial positions (z, y, ¢, ¢.): (a) (25, 30, —20, 30), (b) (80, 30, 210,
—40), and (c) (70, 30, 200, 30).

over ten typical back-ups from ten different initial positions. These performance graphs

resemble closely the performance graphs for the trailerless truck systems in Figure 12.

AFAM Truck-and-Trailer Control Systems

We generated 6250 truck-and-trailer data using the original FAM system in Figure 20.
We backed up the truck-and-trailer from the same initial positions as in the trailerless truck
case. The trailer angle ¢, ranged from —60° to 240°, and the cab angle ¢, assumed only
the three vllues —45°, 0°, and 45°. The training vectors (z, ¢:, ¢., B) defined points in the
four-dimensional input-output product-space. We nonuniformly partitioned the product
space into FAM cells to allow narrower fuzzy-set values near the steady-state FAM cell.

We used DCL to train the AFAM truck-and-trailer controller. The total number of FAM
cells equaled 735 (7 x 5 x 7 x 3). We used 735 synaptic quantization vectors. The DCL
algorithm classified the 6250 data into 105 FAM cells. Figure 24 shows the synaptic-vector
histogram corresponding to the 105 FAM rules. Figure 25 shows the estimated FAM bank
by the DCL algorithm. Figure 26 shows the original and DCL-estimated control surfaces

for the fuzzy truck-and-trailer systems.
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FIGURE 23 Comparison of robustness of the two truck-and-trailer con-
trollers: (a) Docking and trajectory error of the fuzzy controller, (b) Docking
and trajectory error of the BP controller.
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FIGURE 24 Synaptic-vector histogram for the AFAM truck-and-trailer
system.
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FIGURE 25 DCL-estimated FAM bank for the AFAM truck-and-trailer

system.

Figure 27 shows the trajectories of the original FAM and the DCL-estimated AFAM

truck-and-trailer controllers. Figure 27a and 27b show the two trajectories from the initial
position (z, y, ¢:, ¢.) = (30,30,10,45). Figure 27c and 27d show the trajectories from
initial position (60,30,210,~60). The original FAM and DCL-estimated AFAM systems
exhibited comparable truck-and-trailer control performance except in a few cases, where
the DCL-estimated AFAM trajectories were irregular.
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(b) DCL-estimated control surfaces for the truck-and-trailer system

FIGURE 26 (a) Original control surface (b) DCL-estimated control surface




(c) Original FAM (d) DCL-estimated FAM

FIGURE 27 Sample truck-and-trailer trajectories from the original and
the DCL-estimated FAM systems starting at initial positions (z, v, ¢, &) =
(30,30,10,45) and (60,30,210,—60).

Conclusion

We quickly engineered fuzzy systems to successfully back up a truck and truck-and-
trailer system in a parking lot. We used only common sense and error-nulling intuitions
to generate sufficient banks of FAM rules. These systems performed well until we removed
over 50 % of the FAM rules. This extreme robustness suggests that, for many estimation
and control problems, different fuzzy engineers can rapidly develop prototype fuzzy systems
that perform similarly and well.

The speed with which the DCL clustering technique recovers the underlying FAM bank
further suggests that we can likewise construct fuzzy systems for more complex, higher-
dimensional problems. For these problems we may have access to only incomplete numer-
ical input-output data. Pure neural-network or statistical-process-control approaches may
generate systems with comparable performance. But these systems will involve far greater

computational effort, will be more difficult to modify, and will not provide a structured



representation of the system’s throughput. .

Our neural experiments suggests that whenever we model a system with a neural net-

work, for little extra computational cost we can generate a set of structured FAM rules that
approximate the neural system’s behavior. We can then tune the fuzzy system by refining

the FAM-rule bank with fuzzy-engineering rules of thumb and with further training data.
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APPENDIX: Product-space Clustering with Differential

Competitive Learning

Product-space clustering [Kosko, 1990a] is a form of stochastic adaptive vector quanti-
zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters
in R™. Stochastic competitive learning systems are neural AVQ systems. Neurons compete
for the activation induced by randomly sampled patterns. The corresponding synaptic fan-
in vectors adaptively quantize the pattern space R". The p synaptic vectors m; define the
p columns of the synaptic connection matrix M. M interconnects the n input or linear
neurons in the input neuronal field Fix to the p competing nonlinear neurons in the output
field Fy. Figure 28 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function p(x), which de-
scribes the distribution of patterns in R". More synaptic vectors arrive at more probable
regions. Where sample vectors x are dense or sparse, synaptic vectors m; should be dense
or sparse. The local count of synaptic vectors then gives a nonparametric estimate of the

volume probability P(V) for volume V C R™:

P(V) = /V p(x) dx (15)
-~ Number of m; € V (16)
- .

In the extreme case that V = R™, this approximation gives P(V) = p/p = 1. For improb-
able subsets V, P(V) = 0/p = 0.




Stochastic Competitive Learning Algorithms

The metaphor of competing neurons reduces to nearest-neighbor classification. The
AVQ system compares the current vector random sample x(t) in Euclidean distance to the
p columns of the synaptic connection matrix M, to the p synaptic vectors m,(t),...,m,(t).
If the jth synaptic vector m;(t) is closest to x(t), then the jth output neuron “wins” the
competition for activation at time ¢. In practice we sometimes define the nearest N synaptic
vectors as winners. Some scaled form of x(t) — m;(¢) updates the nearest or “winning”
synaptic vectors. “Losers” remain unchanged: m;(t + 1) = m;(t). Competitive synaptic
vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b)].

The following three-step process describes the competitive AVQ algorithm, where the
third step depends on which learning algorithm updates the winning synaptic vectors.

Competitive AVQ Algorithm

1. Initialize synaptic vectors: m;(0) = x(3), i=1,...,p.
Sample-dependent initialization avoids many pathologies that can distort nearest-

neighbor learning.
2. For random sample x(t), find tHe closest or “winning” synaptic vector m;(t):
llm;(t) = x| = min [mi() —x@)I (17)

where ||x||? = 2] 4 --- + 22 defines the squared Euclidean vector norm of x. We can.

define the IV synaptic vectors closest to x as “winners”.

3. Update the winning synaptic vector(s) m;(t) with an appropriate learning algorithm.
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Differential competitive learning (DCL)

Differential competitive “synapses” learn only if the competing “neuron” changes its

competitive status [Kosko, 1990c]:
my; = Si(y;) [ Si(z:) —mi) (18)
or in vector notation,
m; = Si(y;)[S(x)-m;] (19)

where S(x) = (51(z1),---,50(zs)) and m; = (myj,...,mn;). ™myi; denotes the synaptic
weight between the ith neuron in input field Fx and the jth neuron in competitive field
Fy. Nonnegative signal functions S; and S; transduce the real-valued activations z; and
y; into bounded monotone nondecreasing signals Si(z;) and S;(y;). 7; and S;(y;) denote
the time derivatives of m;; and S;(y;), synaptic and signal velocities. S;(y;) measures the
competitive status of the jth competing neuron in Fy. Usually S; approximates a binary

threshold function. For example, S; may equal a steep binary logistic sigmoid,

1

T¥e (20)

y

Si(y;) =

for some constant ¢ > 0. The jth neuron wins the laterally inhibitive competition if 5; = 1,

loses if S;=0.

For discrete implementation, we use the DCL algorithm as a stochastic difference equa-

tion [Kong, 1991]:

m;(t+1) = m;(t) + e AS;(y;(t)) [ S(x(¢)) — mj(¢) ] if the jth neuron wins, (21)
m(t+1) = my(t) if the ith neuron loses. (22)

AS;(y;(t)) denotes the time change of the jth neuron’s competition signal S;(y;) in the
competitive field Fy:

AS;5(y;i(t)) = sgnS;(vi(t +1)) - S;(v;(¥))] - (23)
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We define the signum operator sgn(z) as

1 if z>0
sgn(z) = 0 if =0 . (24)
-1 if z<0

{c:} denotes a slowly decreasing sequence of learning coefficients, such as ¢, = .1(1 —
t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981] requires a de-
creasing gain sequence {c;} to suppress random disturbances and to guarantee convergence

to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,

Yo = o0 (25)
t=1
but not too slowly,
¢ < oo . (26)
t=1

Harmonic-series coefficients, ¢; = 1/¢, satisfy these constraints.

We approximate the competitive signal difference AS; as the activation difference Ay;:

Kot

- AS;(y;(2)) "= sgal wi(t+1) — y;(t) ] (27)
= Ay{t) . | (28)

Input neurons in feedforward networks usually behave linearly: S;(z;) = =;, or S(x(t)) =
x(t). Then we update the winning synaptic vector m;(t) with

m;(t+1) = my(t)+c Ay;(t) [x(t) — m;(t)] . (29)

We update the Fy neuronal activations y; with the additive model

BE+1) = 3() + D SEE) mi) + 3 SmE)ws - (30)
3 k

2N



Input field Fy Competition field Fy

FIGURE 28 Topology of the laterally inhibitive DCL network.

For linear signal functions S;, the first sum in (30) reduces to an inner product of sample

and synaptic vectors:
> zi(t) mi(t) = x7(t) my(t) - (31)
]
Then positive learning tends to occur—Am;; > 0—when x is close to the jth synaptic
vector m;.
Since a binary threshold function approximates the output signal function Si(yx), the
second sum in (30) sums over just the winning neurons: Y wy; for all winning neurons y; .
P k
The p X p matrix W contains the Fy within-field synaptic connection strengths. Di-
agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite

themselves and inhibit all other neurons. Figure 28 shows the connection topology of the
laterally inhibitive DCL network.
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Product-space clustering

We divided the space 0 < z < 100 into five nonuniform intervals [0, 32.5], [32.5,47.5],
[47.5,52.5], [52.5,67.5], and [67.5,100]. Each interval represented the five fuzzy-set values
LE, LC, CE, RC, and RI. This choice corresponded to the nonoverlapping intervals
of the fuzzy membership function graphs m(z) in Figure 3. Similarly, we divided the
space ~90 < ¢ < 270 into seven nonuniform intervals [-90, 0], [0,66.5], [66.5,86], [86, 94],
[94,113.5], [113.5,182.5], and [182.5,270], which corresponded respectively to RB, RU,
RV,VE, LV, LU, and LB. We divided the space —30 < § < 30 into seven nonuniform
intervals [-30, —20], [-20, ~7.5], [-7.5, —2.5], [-2.5,2.5], [2.5,7.5], [7.5,20], and [20, 30),
which corresponded to NB, NM, NS, ZE, PS, PM, and PB.

DCL classified each input-output data vector into one of the FAM cells. We added a
FAM rule to the FAM bank if the DCL-trained synaptic vector fell in the FAM cell. In
case of ties we chose the FAM cell with the most densely clustered data.

For the BP-AFAM generated from the neural control surface in Figure 15, we divided
the rectangle [0,100] x [—90,270] into 35 nonuniform squares with the same divisions
defined above. Then we added and averaged the control surface values in the square. We
added a FAM rule to the FAM bank if the averaged value corresponded to one of the seven
FAM cells. .

For the truck-and-trailer case, wg_.giivided the space —90 < ¢. < 90 into three intervals
[-90,—12.5], [-12.5,12.5], and [12.5; 90], which corresponded to NE, ZR, and PO. There
were 735 FAM cells, and 735 possible FAM rules, of the form (z, ¢, ¢; 8)-
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ABSTRACT

We compared fuzzy and Kalman-filter control systems for realtime target tracking.
Both systems performed well, but in the presence of mild process (unmodeled effects) noise
the fuzzy system exhibited finer control. We tested the robustness of the fuzzy controller
by removing random subsets of fuzzy associations or “rules” and by AaddingA destructive or
“sabotage” fuzzy rules to the fuzzy system. We tested the robustness of the Kalman track-
ing system by increasing the variance of the unmodeled-effects noise process. The fuzzy
controller performed well until we removed over 50% of the fuzzy rules. The Kalman con-
troller’s performance quickly degraded as the unmodeled-effects variance increased. We
used unsupervised neural-network learning to adaptively generate the fuzzy coatroller’s
fuzzy-associative-memory structure. The fuzzy systems did not require a mathematical

model of how system outputs depended on inputs.
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Fuzzy and Math-Model Controllers

Fuzzy controllers differ from classical math-modcl controllers. Fuzzy controllers do
not require a mathematical model of how control outputs functionally depend on control
inputs. Fuzzy controllers also differ in the type of uncertainty they represent and how they
represent it. The fuzzy approach represents ambiguous or fuzzy system behavior as partial
implications or approximate “rules of thumb”—as fuzzy associations (A;, B;).

Fuzzy controllers are fuzzy systems. A finite fuzzy set A is a point [Kosko, 1987] in
a unit hypercube /™ = [0,1]*. A fuzzy system F : I" — I? is a mapping between
unit hypercubes. I™ contains all fuzzy subsets of the domain space X = {z1,...,z,}.
I™ is the fuzzy power set F(2X) of X. IP contains all the fuzzy subsets of the range
. space Y = {y1,.-.,¥p}- Element z; ¢ X belongs to fuzzy set A to degree mu(z;). The 2"
nonfuzzy subsets of X correspond to the 2" corners of the fuzzy cube I*. The fuzzy system
'F maps fuzzy subsets of X to fuzzy subsets of Y. In general, X and Y are continuous not
discrete sets.

Math-model controllers usually represent system uncertainty with probability dis-
tributions. Probability models describe system behavior with first-order and second-order
statistics—with conditional means and covariances. They usually describe unmodeled ef-
fects and measurement imperfections with additive “noise” processes.

Mathematical models of the system state and measurement procésses facilitate a mean-
squared-error analysis of system behavior. In general we cannot accurately articulate such
mathematical models. This greatly restricts the range of realworld applications. In practice
we often use linear or quasi-linear (Markov) mathematical models.

Mathematical state and measurement models also make it difficult to add non-mathem-
atical knowledge to the system. Experts may articulate such knowledge, or neural networks
may adaptively infer it from sample data. In practice, once we have articulated the math
model, we use human expertise only to estimate the initial state and covariance conditions.

Fuzzy controllers consist of a bank of fuzzy associative memory (FAM) “rules” or

associations (A;, B;) operating in parallel, and operating to different degrees. Each FAM
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rule is a set-level implication. It represents ambiguous expert knowledge or learned input-
output transformations. A 'AM rule can also summarize the behavior of a specific math-
ematical model. The system nonlinearly translorms exact or fuzzy state inputs to a fuzzy
set output. This output fuzzy set is usually “defuzzified” with a centroid operation to
gencrate an exact numerical output. In principle the system can use the entire fuzzy dis-
tribution as the output. We can easily construct, process, and modify the FAM bank of
IFAM rules in software or in digital VLSI circuitry. i

Fuzzy controllers require that we articulate or estimate the FAM rules. The fuzzy-set
framework provides more expressiveness than, say, traditional expert-system approaches,
which encode bivalent propositional associations. But the fuzzy framework does not elimi-
nate the burden of knowledge acquisition. We can use neural network systems to estimate
the FAM rules. But neural systems also require an accurate (statistically representative)
set of articulated input-output numerical samples. Below we use unsupervised competitive
learning to adaptively generate target-tracking FAM rules.

Experts can hedge their system descriptions with fuzzy concepts. Although fuzzy con-
trollers are numerical systems, experts can contribute their knowledge in natural language.
This is especially important in complex problem domains, such as economics, medicine,
and history, where we may not know how to mathematically model system behavior.

| Below we compare a fuzzy controller with a Kalman-filter controller for realtime target
tracking. This problem admits a simple and reasonably accurate mathematical description
of its state and measurement processes. We chose the Kalman filter as a benchmark because
of its many optimal linear-systems properties. We wanted to see whether this “optimal”
controller remains optimal when compared with a computationally lighter fuzzy controller
in different uncertainty environments.

We indirectly compared the sensitivity of the two controllers by varying their system
uncertainties. We randomly removed FAM rules from the fuzzy controller. We also added
“sabotage” FAM rules to the controller. Both techniques modeled less-stuctured control
environments. For the Kalman filter, we varied the noise variance of the unmodeled-eftects

noise process.

Both systems performed well for mildly uncertain target environments. They degraded
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diffcrently as the system uncertainty increases. The fuzzy controller’s performance de- .
graded when we removed more than half the FAM rules. The Kalman-filter controller’s .

performance quickly degraded when the additive state noise process incrcased in variance.

Realtime Target Tracking

A target tracking system maps azimuth-elevation inputs to motor control outputs. The
nominal target moves through azimuth-elevation space. Two motors adjust the position
of a platform to continuously point at the target.

The platform can be any directional device that accurately points at the target. The
device may be a laser, video camera, or high-gain antenna. We assume we have available
a radar or other device that can detect the direction from the platform to the target.

The radar sends azimuth and elevation coordinates to the tracking system at the end
of each time interval. We calculate the current error ex in platform position and change in

error ¢;. Then a fuzzy or Kalman-filter controller determines the control outputs for the

motors, one each for azimuth and elevation. The control outputs reposition the platform.

. We can independently control movement along azimuth and elevation if we apply the

same algorithm twice. This reduces the problem to matching the target’s position and
velocity in only one dimension. 4

Figure 1 shows a block diagram of the target tracking system. The controller’s output

v gives the estimated change in angle required during the next time interval. In principle

a hardware system must transduce the angular velocity v into a voltage or current.
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Clock—- Lartch

Target :
Position Vi
- G Coatroller *1Transducer Motor
Delay =
vk-l
Platform
Position

FIGURE 1  Target tracking system.

FUZZY CONTROLLER

We restrict the output angular velocity v of the fuzzy controller to the interval [~6, 6].
So we must insert a gain element before the voltage transduction. This gain must equal
one-sixth the maximum angle through which the platform can turn in one time interval.
Similarly, the position error ex must be scaled so that 6 equals the maximum error. The
product of this scale factor and the output gain provides a design parameter—the “gain”
of the fuzzy controller.

The fuzzy controller uses heuristic control set-level “rules” or fuzzy associative memory
(FAM) associations based on quantfzed values of e, éx, and ve_;. We define seven fuzzy

levels by the following library of fuzzy-set values of the fuzzy variables e, éx, and ve_;:
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LN : Large Ncgative

MN : Medium Negative
SN :  Small Negative
ZE : Zero

SP : Small Positive
MP : Medium Positive

LP : Large Positive

We do not quantiie inputs in the classical sense that we assign each input to exactly
one output level. Instead, each linguistic value equals as a fuzzy set that overlaps with
adjacent fuzzy sets. The fuzzy controller uses trapezoidal fuzzy-set values, as Figure 2
shows. The lengths of the upper and lower bases provide design parameters that we must
calibrate for satisfactory performance. A good rule of thumb is adjacent fuzzy-set values

should overlap approzimately 25 percent. Below we discuss examples of calibrated and

uncalibrated systems. The fuzzy controller attained its best performance with upper and

lower bases of 1.2 and 3.9—26.2% overlap. Different target scenarios may require more or

less overlap.

2 L L R L T T T
L5k .
b LN _ZE_ _SP _MP LP )
0.5+ .
0 N 4 \“ . 5, ;‘1: "
-8 -6 -4 -2 0 2 4 6 8
UNIVERSE OF DISCOURSE

FIGURE 2 Library of overlapping fuzzy-set values defined on a universe
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of dis-oursc.

We assign cach system input to a fit vector of length 7, where the ith fit, or fuzzy unit
[Kosko, 1986], cquals the value of the ith fuzzy set at the input valuc. In other words,
the :th fit measures the degree to which the input belongs to the ith fuzzy-set value. For
instance, we apply the input values 1, —4, and 3.8 to the seven {uzzy scts in the library to

obtain the {it vectors

1 — (0 00 .7 .70 0) ,
-4 — (001 0 0 0 0 0) ,

38 — (0 0 0 0 .1 1 0)

We determine these fit values above by convolving a Dirac delta function centered at the

input value with each of the 7 fuzzy sets:

msp(3.8) = 8(y ~ 3.8) * mgp(y) = .1 . (1)

If we use a discretized universe of discourse, then we use a Kronecker delta function in-
stead. Equivalently, for the discrete case n-dimensional universe of discourse X = {zy,...,
Zn}, a control input corresponds to a bit (binary unit) vector B of length n. A single 1
element in the ith slot represents the “crisp” input value z;. Similarly, we represent the
kth library fuzzy set by an n-dimensional fit vector A, that contains samples of the fuzzy
set at the n discrete points within the universe of discourse X. The degree to which the
crisp input z; activates each fuzzy set equals the inner product B - Ay of the bit vector B
and the corresponding fit vector Ay.

We formulate control FAM rules by associating output fuzzy sets with input fuzzy sets.

The antecedent of each FAM rule conjoins ek, €x, and vi_y fuzzy-set values. For example,

IF e, = MP AND ¢, = SN AND v, = ZL, THEN v. = SP.

We abbreviate this as (M P,SN, ZE; SP).
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The scalar activation valuc w; of the ith FAM rule’s consequent equals the minimum
of the three antecedent conjuncts’ values. If alternatively we combine the antecedents
disjunctively with OR, the activation degree of the consequent would cqual the mazimum
of the three antecedent disjuncts’ values. In the following example, ma(er) denotes the

degree to which e belongs to the fuzzy set A:

LN MN SN ZE SP MP LP

ex = 26 ~— (0 0 0 0 1 .4 0
& = -2.0 — (0 o0 1 0 0 0 0
ve—; = 1.8 -— (0 0 0 .1 1 0 0)

mpyp(er) = .4

msn(ér) = 1

mze(vka1) = .1
w; = min(4,1,.1) = .1

So the system activates the consequent fuzzy set SP to degree w; = .I1.

The output fuzzy set’s shape depends on the FAM-rule encoding scheme used. With
correlation-minimum encoding, we clip the consequent fuzzy set L; in the library of fuzzy-

set values to degree w; with pointwise minimum:

mo(y) = min(wi’mL.‘(y)) . (2)

With correlation-product encoding, we multiply L; by w;:

moily) = wimi(y) » 3)

or equivalently,

0,' = w; L,' . (4)

Figure 3 illustrates how both inference procedures transform L; to scaled output O;. Ior
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the example above, correlation-product inference gives output fuzzy set O; = .1SP,

where L; = SP denotes the fuzzy set of small but positive angular velocity values.
/"'\ N\
(a) ) : K \
4/ \ _ AR
Consequent L; Output O;
V2
4 A

(©) [\
TV

Consequent L_;

FIGURE 3 FAM inference procedure depends on FAM rule encoding proce-

dure:  (a) correlation-minimum encoding, (b) correlation-product encoding.

The fuzzy system activates each FAM rule consequent set to a different degree. For the
tth FAM rule this yields the output fuzzy set O;. The system then sums the O; to form
the combined output fuzzy set O:

0O = ZOI ) (5)
or equivalently,

N .
mo(y) = Z:mo.-(y)- (6)

The control output vi equals the fuzzy centroid of O:

_ Jymolwdy

, (M
/ mo(y)dy

Uk
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where the limits of integration correspond to the entire universe of discourse Y of angular
velocity values. Figure 4 shows an example of correlation-product inference for two FAM

rules followed by centroid defuzzification of the combined output fuzzy sct.

spP ZE ZE SP
. . 1

t | T —j """"" -T-
It e.=SP and e, = ZE and v,., = ZE. b ' !
then v, = SP. ¢ [

. ZE , «SP SN.‘ ZE

t 1 f

U
il e, = ZE and e, = SP and v,., = SN, ‘ —-———_-A——- —_l—'-——’—A:;--
then Vk=ZE. ; 7 i‘

1 [} .

€ ék. Vk-1

Vi

FIGURE 4  Correlation-product inferences followed by centroid defuzzifi-
cation. FAM rule antecedents combined with AND use the minimum fit value

to activate consequents. Those combined with OR use the mazimum fit value.

To reduce computations, we can discretize the output universe of discourse Y to p values,

Y = {v1,--.,¥,}, which gives the discrete fuzzy centroid

P

Z y; mo(y;)
=t (8)

Ve = )

> mo(y;)
J'=l - .
Fuzzy Centroid Computation

We now develop two discrete methods for computing the fuzzy centroid (7). Theorem
1 states that we can compute the global centroid v, {from local FAM-rule centroids. The-

orem 2 states that vy can be computed from only 7 sample points if all the fuzzy sets
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are symmelric and unimodal (in the broad sensec of a trapezoid peak), though otherwise

arbitrary. Both results reduce computation and favor digital implementation.

Theorem 1: If correlation-product inference determines the output fuzzy sets, then we

can compute the global centroid vi from local FAM-rule centroids:

N
> wicl;

w = S—— . (9)

N
Zw;[;
i=1

Proof. The consequent fuzzy set of each FAM rule ecquals one of the fuzzy-set values
- shown in Figure 2. We assume each fuzzy set includes at least one unity value, m4(z) = 1.

Define I; and ¢; as the respective area and centroid of the :th FAM rule’s consequent set

L;:
L = [mu@y , (10)

/ y mr(y)dy

¢ =
/ my(y)dy
/ y mL(y)dy
= T ,
substituting from (10). Hence
/ ymy(y)dy =l . (11)

Using (3), the result of correlation-product inference, we get

[ ymo(ndy = [ ywimu(ydy
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= w / y me(y)dy

= wicli (12)
substituting from (11). Similarly,

/mo.-(y) dy = /W-' m,(y)dy

= w,—]; ) (13)

substituting from (10).

We can use (12) and (13) to derive a discrete expression equivalent to (7):

N
/ymo(y)dy = /y[Zmo‘.(y)]dy substituting from (6) ,

=1

= Z /ymo;(y) dy

= ;w;qfi , (14)
from (12). Similarly,

/ mo(y)dy = / g;mo;(y)dy

= Z / mo,(y)dy
= Zw;li (15)

from (13). Substituting (14) and (15) into (7), we derive a new form for the centroid:
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N

Z wicl;

o
Z w;[;

i=1

. (16)

Vg

which is equivalent to (9). Each summand in cach summation of (16) depends on only

a single FAM rule. So we can compute the global output centroid from local FAM-rule

centroids. Q.L.D.

Theorem 2:  If the 7 library fuzzy sets are symmetric and unimodal (in the trapezoidal
sense) and we use correlation-product inference, then we can compute the centroid vy from

only 7 samples of the combined output fuzzy set O:

>_mo(y;) v; J;
=1 (17)

Uk

i: mo(y;) Jj

=1

The 7 sample points are the centroids of the output fuzzy-set values.

Proof. Define O; as a fit vector of length 7, where the fit value corresponding to
the zth consequent set has the value w;, and the other entries equal zero. If all the fuzzy
sets are symmetric and unimodal, then the jth fit value of O; is a sample of mo, at the

centroid of the jth fuzzy set. The combined output fit vector is

-_— N -—
O = Oi- .~ . (18)

=1

Since N
mo(y) = Y _moly) ,
i=1

the jth fit value of O is a sample of mo at the centroid of the jth fuzzy set. Equivalently,

the jth fit value of O equals the sum of the output activations w; from the FAM rules with
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consequent fuzzy scts equal to the jth library fuzzy-set value. .

Define the reduced universe of discourse as Y = {yi,.-.,y7} such that y; equals the

centroid of the sth output fuzzy set. In vector form

Y = (yla"‘)y7)

= (-Gv —4, _21 0, 2: 4, 6)
for the library of fuzzy sets in Figure 2. Also define the diagonal matrix
J = diag(Ji,-..,J7) , (19)

where J; denotes the area of the jth fuzzy-set value. If the ith FAM rule’s consequent fuzzy

set equals the jth fuzzy-set value, then the jth fit value of O increases by w;, ¢ = yj,
and I = J;. So |
oJyT = Zmo(yj)yj.]j = Ewicili . (20)
I=1 i=1
Also,
-— 7 N
oT = Zmo(yj).]j = ZwiIi ) (21)
j=1 ) i=1

where 1 = (1,...,1). Substituting (20) and (21) into (16) gives

7
> mo(y;) y; Ji

e = = : (22)
Zmo(yj) Jj

=1

which is equivalent to (17). Therefore, (22) gives a simpler, but equivalent form of the
centroid (7) if all the fuzzy sets are symmetric and unimodal, and if we use correlation-

product inference to form the output fuzzy sets O;. Q.E.D.

Consider a fuzzy controller with the fuzzy sets defined in Figure 2, and 7 FAM rules

with the following outputs:
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. 1 w; Consequent

1 0.0 MP
2 02 SP
3 1.0 ZE
4 04 SN
5 0.1 SP
6 0.8 ZE
7 0.6 SN

Figure 5 shows the combined output fuzzy set O, with the SN, ZF, and SP components
displayed with dotted lines. Using (7) we get a velocity output of —0.452. Alternatively,
the combined output fit vector O equals (0, 0, 1.0, 1.8, 0.3, 0, 0). From (22) we get

—2x1 4+ 0x1.8 + 2x0.3
Uk 1 + 18 + 03

289



13

0.5t

- -3 -2 -1 ¢ 1 2 3 4

UNIVERSE OF DISQOURSE

FIGURE 5 Output fuzzy set O.

Fuzzy Controller Implementation

A FAM bank or “rulebase” of FAM rules defines the fuzzy controller. Each FAM rule
associates one consequent fuzzy set with three antecedent fuzzy-set conjuncts.

Suppose the ith FAM rule is (MP,SN,ZE;SP). Suppose the inputs at time k are

ex =26, & = —2.0, and vg_; = 1.8. Then
w; = min(mup(er), msn(ér), mze(vi_t))
= min(4, 1, .1)
= .1 .

If all the fuzzy sets have the same shape, then they correspond to shifted versions of a
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. single fuzzy set ZL:
mgsp(y) = m(y—2)

Define ¢, ¢', and v* as the centroids of the corresponding antecedent fuzzy sets in the

example above. So ¢ =4, é' = —‘Z, and v* = 0. Then the output activation cquals

w; = min(mzgex — €'), mzg(éx — &), mze(vio - v'))
= min(mzg(—1.4), 1nZE(Q), mzg(1.8))
= min(4, 1, .1)
= 1,

as computed above. Figure 6 schematizes such a FAM rule when presented with crisp

inputs.

Yy
%-{-
3
&
e m e mmannd

i

o+ A0 L_w, Correlation-Product
. é : i orrelation-Produc
S Mze () ~ fun - Inference

<
=
|
: )
3
N
[21]
—
-~

FIGURE 6  Algorithmic structure of a FAM rule for the special case of

identically-shaped fuzzy sets and correlation-product inference.
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The output fuzzy sct O; in Figure 6 equals the fuzzy set ZE scaled by w; and shifted .

by ci: -
mo,(y) = wimze(y — ) - ' (23)
Figure 7 illustrates O;.
moi(y)
w. /
i
] y
C

FIGURE 7  Trapezoidal output fizzy set O;.

The fuzzy control system activates a bank of FAM rules operated in parallel, as shown
in Figure 8. The system sums the output fuzzy sets to form the total output set O, which

the system converts to a “defuzzified” scalar output by computing its fuzzy centroid.
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FIGURE 8 Fuzzy control system as a parallel FAM bank with centroidal
output. ’

KALMAN FILTER CONTROLLER

We designed a one-dimensional Kalman filter to act as an alternative controller. The

state and measurement equations take the general form

Tepr = Prpipze + Trprp we + VYeprw we

Hk Tk + ‘/k ) (24)

Zk

where V; denotes Gaussian white noise with covariance matrix . If V. is colored noise
or if R = 0, then the filtering-error covariance matrix Py becomes singular. The state zy

and the measurements z; are jointly Gaussian. Mendel [1987] gives details of this model.
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Assume the following one-dimensional model:
(I)k_H'k = Fk+l,k = \Ilk-f-l,k = ]{k = 1 for a” k,

uy = e + ér . ' (25)

Let 244 denote the output velocity required at time & to exactly lock onto the target at

time k+1. So the controller output at time & equals the “predictive” estimate Tipx = k.

Note that
er = T — Tpp
= iklk—l ’
€k = € — €k

Substituting (25) into (24), we get the new state equation
Thpr = T + e + e + wi , (26)

where w; denotes white noise that models target acceleration or other unmodeled effects.

The new measurement equation is

ze = e + WV
= Tgpp-1 + Tap-r + Vi (27)

- ]
= zklk—l + ‘/k ..
Since we assume Zyx;—; and Vi are uncorrelated, the variance of V{ is

R, = E[V7]

= E[552|k;1] + B[V (28)
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= Pik—r + R

The general form of the recursive Kalman filter equations is

Tiik
[\’k
Trit|k

Pryr—1

Th(k—1 + Kilze — Hi Eeea] s

Pk|k—l[{3[[[k])k|k—1[{{ + R,

D1k Tape + Yherk vk (29)
Qk,k-nPk_1|k_1‘I>£k_1 + Fk,k_ka-sz:k_, ,

U — [{kf’.]k]Pklk—l ’

where Qx = Var{wy) = Elwiw]]. Substituting (25), (27), (28) and the definition of vy

into (29), we get the following one-dimenstonal Kalman filter:

fre = vk + KV,
Pryr—y
K, =
,\ R;g ?
Ve = Iap + e t+ e, . (30)

Pie-r = Peop-r + Qi

Py = [I — Ki]Pura

Unlike the fuzzy controller, this Kalman filter does not automatically restrict the output

vy to a usable range. We must apply a threshold immediately after the controller. To

remain consistent with the fuzzy controller, we set the following thresholds:

|lve] < 9.degrees azimuth ,

lve] < 4.5 degrees elevation.
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Fuzzy and Kalman Filter Control Surfaces

Ilach control system maps inputs to outputs. Geometrically, these input-output trans-
formations define control surfaces. The control surfaces arc sheets in the input space
(since the output velocity v, is a scalar). Three inputs and one output give rise to a
four-dimensional control surface, which we cannot plot. Instead, for each controller we can
plot a family of three-dimensional control surfaces indexed by constant values of the fourth
variable, the error ex, say. Then each control surface corresponds to a different value of
the error ey.

The fuzzy control surface characterizes the fuzzy system’s fuzzy-set value definitions
and its bank of FAM rules. Different sets of FAM rules yield different fuzzy controllers,
and hence different control surfaces. Figure 9 shows a cross section of the FAM bank when
er = ZFE. Each entry in this linguistic matrix represents one FAM rule with e, = ZFE

as the first antecedent term.

Vik-1

LN MN SN ZE SP mMp Le

LN LN LN LN LN MN SN ZE

MN LN LN LN MN SN ZE SP

SN LN LN MN SN ZE SP mMP

ZE LN MN SP mMpP LP

Do
-

SP MN SN MP LP LP

tp | P | P

me SN ZE

Lp ZE Sp MP | LP LP LP LP

FIGURE 9 e, = ZF cross section of the fuzzy control system’s FAM bank.

Each entry represents one FAM rule with e, = ZFE as the first antecedent term.
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The shaded FAM rule is “IF ¢, = Z£ AND ¢ex = SP AND v, = SN,
THEN v, = Z£[,” abbreviated as (ZE,SP,SN; ZE). Note thc ordinal anti-
symmectry of this FAM-bank matrix. The six other cross-scction FAM-bank
matrices arc similar. We can climinate many FAM rule entries without greatly

perturbing the fuzzy controller’s behavior.

The entire FAM bank—including cross sections for e, equal to each of the seven fuzzy-
set values LN, MN, SN, ZE, SP, MP, and L P—dectermines how the system maps input
fuzzy sets to output fuzzy sets. The fuzzy set membership functions shown in Figure 2
determine the degree to which each crisp input value belongs to cach fuzzy-set value. So
both the fuzzy-set value definitions and the FAM bank determine the defuzzified output
v;. for any set of-crisp input values ey, €, and vi_;.

Figure 10 shows the control surface of the fuzzy controller for e, = 0. We plotted the
control output v, against é; and vi_;. Since we use the same algorithm for tracking in
azimuth and elevation, the control surfaces for the two dimensions differ in scale only by

a factor of two.

FIGURE 10 Control surface of the fuzzy controller for constant error
er = 0. We plotted the control output vy against é, and vi_; along the

respective west and south borders.

The Kalman filter has a random control surface that depends on a time-varying pa-
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rameter. From (30) we see that

v = Iy + e + e,

- re [
Ty = w + KV,

where V! denotes white noise with variance given by (28). Combining these two equations

gives the equation for the random control surface:

vp = v ‘e +ep + 1(;;Vkl . (31)

At time k the noise term K V) has variance

ol = K}R;, (32)
Pl I
g upon substituting from (30) ,
k
P

Pie—r + Ry’

substituting from (28). Combining (31) and (32) gives a new control surface equation:
Ve = vk + oex + & + oV, (33)

where V/' denotes unit-variance Gaussian noise. So the Kalman filter’s control output
equals the sum of the three input variables plus additive Gaussian noise with time-dependent

variance o7. For constant error e, we can interpret (33) as a smooth control surface in R®

defined by

vk = vy t+ e + ek,
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and perturbed at time & by Gaussian noise with variance o3.

In our simulations the standard deviation o4 converged alter only a few iterations. We
uscd unity initial conditions: Py, = R = 1 for all &.

Table 1 lists the convergence rates and stcady-state values of oy for three differen-
t values of the variance Var(w) of the white-noisc, unmodeled-effects process wi. For
Var(w) = 0, o, decreases rapidly at first—os = .10, o7 = .05—but does not attain

its stcady-state value of zero within 100 iterations.

Var(w) | Steady-state | Number of iterations

value of o) | required for convergence

1.00 0.79 2
0.25 0.46 4
0.05 0.22 9

TABLE 1  Convergence rates and steady-state values of oy for different val-

ues of the variance Var(w) of the white-noise, unmodeled-effects process w.

Figure 11 shows four realizations of the Kalman filter’s random control surface for
erx = 0, each at a time k when o has converged to its steady-state value. For each plot, we
used output thresholds and initial variances for the azimuth case: |vi| < 9.0, By = P,

= 1.0. As with the fuzzy controller, elevation control surfaces equal scaled versions of the

corresponding azimuth control surfaces.
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FIGURE 11 Realizations of the Kalman filter’s random control surface
with ex = 0 for different values of the variance Var(w) and steady-state values
of the standard deviation oy: (a) Var(w) = or =0, (b) Var(w) = .05,

or = .22; (c) Var(w) = .25, o, = .46; (d) Var(w) = 1.0, op = .79.

SIMULATION RESULTS

Our target-tracking simulations model several realworld scenarios. Suppose we have
mounted the target tracking system on the side of a vehicle, aircraft, or ship. The system
tracks a missile that cuts across the detection range on a straight flight path. The target

maintains a constant speed of 1,870 miles-per-hour and comes within 3.5 miles of the




platform at c'osest approach. The platform can scan from 0 to 180 degrees in azimuth at
a maximum rate of 36 degrees-per-second, and from 0 (vertical) to 90 degrees in elevation
at a maximum ratc of 18 degrees-per-second. The sampling interval is 1/4 of a second.
The gain of the fuzzy controller equals 0.9. So the maximum ecrror considered is 10 degrees
azimuth and 5 degrees elevation. We threshold all error values above this level.

Figure 12 demonstrates the best performance of the fuzzy controller for a simulated
scenario. The solid lines indicate target position. The dotted lines indicate platform
position. To achieve this performance, we calibrated the three design parameters—upper
and lower trapezoid bases and the gain. Figures 13 and 14 show examples of uncalibrated
systems. Too much overlap causes excessive overshoot. Too little overlap causes lead or
lag for several consecutive time intervals. A gain of 0.9 suffices for most scenarios. We
can fine-tune the fuzzy control system by altering the percentage overlap between adjacent
fuzzy sets.

Figure 15 demonstrates the best performance of the Kalman-filter controller for the
same scenario used to test the fuzzy controller. For simplicity, By = Fgpg for all values of
k. For this study we chose the values 1.0 (unit variance) for azimuth and 0.25 for eleva-
tion. This 1/4 ratio reflects the difference in scanning range. We set Q to 0 for optimal
performance. Figure 16 shows the Kalman-filter controller’s performance when @, = 1.0

azimuth, 0.25 elevation.

Sensitivity Analysis

We compared the uncertainty sensitivity of the fuzzy and Kalman-filter control systems.
Under normal operating conditions, when the FAM bank contains all fuzzy control rules,
and when the unmodeled-effects noise variance Var(w) is small, the controllers perform
almost identically. Under more uncertain conditions their performance differs. The Kalman
filter’s state equation (26) contains the noise term w; whose variance we must assume.

When Var(w) increases, the state equation becomes more uncertain. The fuzzy control
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FAM rules depend implicitly on this same equation, but without the noisc term. Instead,
the fuzziness of the FAM rules accounts for the system uncertainty. This suggests that we
can increase the uncertainty of the implicit state equation by omitling randomly selected
FAM rules. Figures 17 and 18 show the effect on the rooi-mean-squared error (RMSE) in
degrees when we omit FAM rules and increase Var(w). Each data point averages ten runs.

The controllers behave differently as uncertainty increcases. The RMSE of the fuzzy
controller increases little until we omit nearly sixty percent of the FAM rules. The RMSE
of the Kalman filter increases steeply for small values of Var(w), then gradually levels off.

We also tested the fuzzy controller’s robustness by “sabotaging” the most vulnerable
FAM rule. This could reflect lack of accurate expertise, or a highly unstructured problem.

Changing the consequent of the stcady-state FAM rule (ZL,ZE, Z L, ZF) to LP gives the

following nonsensical FAM rule:

IF the platform points directly at the target
AND both the target and the platform are stationary,

THEN turn in the positive direction with maximum velocity.

Figure 19 shows the fuzzy system’s performance when this sabotage FAM rule replaces
the steady-state FAM rule. When the sabotage FAM rule activates, the system quickly

adjusts to decrease the error again. The fuzzy system is piecewise stable.
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FIGURE 12  Best performance of the fuzzy controller: (a) azimuth position

and error, (b) elevation position and error. Fuzzy set overlap is 26.2%.
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FIGURE 13  Uncalibrated fuzzy controller: (a) azimuth position and error,

(b) elevation position and error. Fuzzy set overlap equals 33.3%. Too much

overlap causes excessive overshoot.
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FIGURE 14  Uncalibrated fuzzy controller: (a) azimuth position and error,

(b) elevation position and error. Fuzzy set overlap equals 12.5%. Too little

overlap causes lead or lag for several consecutive time intérvals.
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FIGURE 15 Kalman filter controller with unmodeled-effects noise variance

Var(w) = 0: (a) azimuth position and error, (b) elevation position and error.
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FIGURE 16  Kalman filter controller with Var(w) = 1.0 azimuth, 0.25

elevation: (a) azimuth position and error, (b) elevation position and error.
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FIGURE 19  Fuzzy controller with a “sabotage” FAM rule: (a) azimuth po-
sition and error, (b) elevation position and error. The sabotage rule (ZE,ZE,ZE; LP)
replaces the steady-state FAM rule (ZE,ZE,ZE; ZE). The system quickly

adjusts each time the sabotage rule activates.
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Adaptive FAM (AFAM)

We used unsupervised product-space clustering [Kosko, 1990a] to train an adaptive
FAM (ATAM) fuzzy controller. Diflerential competitive lcarning (DCL) adaptively clus-
tered input-output pairs. The Appendix describes product-space clustering with DCL. For
this study, there were four input neurons in F,. A manually-designed FAM bank and 80
random target trajectories generated 19,236 training vectors. Each product-space training
vector (er, €x, vk—1, i) defined a point in R*.

Symmetry allowed us to reflect about the origin all sample vectors with negative errors
ex. We then trained 3,000 synaptic quantization vectors (p = 3,000) in the positive error
half-space. For each éample vector, we defined the 10 closest synaptic vectors as “winners”
(N = 10). The matrix W of Fy within-field synaptic connection strengths had diagonal
elements w; = 2.9, off-diagonal elements w;; = —0.1; After training, we reflected the
3,000 synaptic quantization vectors about the origin to give 6,000 trained synaptic vectors.

The product-space FAM cells uniformly partitioned the four-dimensional product
space. Each FAM cell represented a single FAM rule. The four fuzzy variables could assume
only the 7 fuzzy-set values LN, MN, SN, ZE, SP, MP, and LP. So the product space
contained 7 = 2401 FAM cells. '

At the end of the DCL training period, we defined a FAM cell as occupied only if it
contained at least one synaptic vector. For some combinations of antecedent fuzzy sets,
synaptic vectors occupied more than one FAM cell with different consequent fuzzy sets. In
these cases we computed the centroid of the consequent fuzzy sets weighted by the number
of synaptic vectors in their FAM cells. We chose the consequent fuzzy set as that output
fuzzy-set value with centroid nearest the weighted centroid value. We ignored other FAM
rules with the same antecedents but different consequent fuzzy sets.

Figure 20(a) shows the ex = ZFE cross section of the original FAM bank used to
generate the training samples. Figure 20(b) shows the same cross section of the DCL-

estimated FAM bank. Figure 21 shows the original and DCL-estimated control surfaces

for constant error ez = 0.
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for constant error ¢ = 0.
The regions where the two control surfaces differ correspond to infrequent high-velocity

situations. So the original and DCL-estimated control surfaces yield similar results. Table

2 compares the controllers’ root-mecan-squared crrors for 10 randomly-selected target tra-

jectories.
Vi Vi1
LN MN SN ZE SP Mp LP LN MN SN ZE SP MP LP
LN [ MN| SN | zE LN MN| SN | zE
MN | M| sn|zE | sP MN SN | ZE | sp-
SN MN| SN | ZE | sp | mP SN MN| sp ~M;’
e, ZE MN| SN [ zE | sp | mp ék ZE | MN| MN| SN Mp M.l."
sp | MN| SN | ZE | sp | mP sp | M| 'sN | zE|'sp | mp
MP| SN | ZE | SP | mp N Mp| sN.| zE | sp
Lp | ZE| P | MP Lp | zE|'sp | mp
(a) (b)

FIGURE 20 = Cross sections of the original and DCL- estimated FAM banks
when e, = ZE: (a) original, (b) DCL- estimated.
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(a) (b)

FIGURE 21  Control surfaces for constant error ¢, = 0: (a) original,
(b) DCL-estimated.
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Trajectory Azimuth Elevation

Number  Original Estimated Original Estimated

1 2.33. 2.33 3.31 3.37
2 4.14 4.14 3.03 2.89
3 6.11 6.11 3.69 3.68
4 3.83 3.83 3.32 3.30
5 4.02 4.02 = 3.11 3.10
6 - 2.84 2.84 1.20 1.21
7 3.22 3.22 3.04 2.98
8 0.75 0.74 2.00 2.00
9 9.28 9.27 5.50 5.41
10 1.81 1.81 2.29 2.29
Average 3.83 3.83 3.05 3.02

TABLE 2 Root-mean-squared errors for 10 randomly-selected target tra-
jectories. The original and DCL-estimated FAM banks yielded similar results
since they differed only in regions corresponding to infrequent high-velocity

situations.

Conclusion

We developed and compared a fuzzy control system and a Kalman-filter control system
for realtime target tracking. The fuzzy system represented uncertainty with continuous or
fuzzy sets, with the partial occurence of multiple alternatives. The Kalman-filter system
represented uncertainty with the random occurence of an exact alternative. Accordingly,
our simulations tested each system’é response to a different family of uncertainty envi-
ronments, one fuzzy and the other random. In general representative training data can

“blindly” generate the governing FAM rules.
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These simulations suggest that in many cases fuzzy controllers may be a robust, com-
putationally effective alternative to linear Kalman filter, indeed to nonlinear extended
Kalman filter, approaches to realtime system control—even when we can accurately artic-

ulate an input-output math model.
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Appendix: Product-space Clustering with
Differential Competitive Learning

Adaptive Vector Quantization

Product-space clustering [Kosko, 1990a] is a form of stochastic adaptive vector quanti-
zation. Adaptive vector quantization (AVQ) systems adaptively quantize pattern clusters
in R*. Stochastic competitive-learning systems are neural AVQ systems. Neurons com-
pete for the activation induced by randomly sampled patterns. The corresponding fan-in
vectors adaptively quantize the pattern space R*. The p synaptic vectors m; define the
p columns of the synaptic connection matrix M. M interconnects the n input or linear
neurons in the input neuronal field Fx to the p competing nonlinear neurons in the output
field Fy. Figure 22 below illustrates the neural network topology.

Learning algorithms estimate the unknown probability density function p(x), which
describes the distribution of patterns in R*. More synaptic vectors arrive at more probable
regions. Where sample vectors x are dense or sparse, synaptic vectors m; should be dense
or sparse. The local count of synaptié vectors then gives a nonparametric estimate of the

volume density P(V) for volume V C R™:

P(V) = /V p(x)dx (34)

Numberof m; € V
p

¢
—~

[~

o
N

In the extreme case that V = R", this approximation gives P(V) = p/p = 1. For
improbable subsets V, P(V) = 0/p = 0.
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Stochastic Competitive Learning Algorithms

The metaphor of competing neurons reduces to nearest-neighbor classification. The
AVQ system compares the current vector random sample x(t) in Euclidean distance to the
p columns of the synaptic connection matrix M, to the p synaptic vectors my(t), ..., m,(t).
If the jth synaptic vector m;(t) is closest to x(t), then the jth output neuron “wins” the
competition for activation at time ¢. In practice we sometimes define the nearest N synaptic
vectors as winners. Some scaled form of x(¢) — mj;(t) updates the nearest or “winning”
synaptic vectors. “Losers” remain unchanged: m;(f+1) = m;(t). Competitive synaptic
vectors converge to pattern-class centroids exponentially fast [Kosko, 1990b].

The following thfee—step process describes the competitive AVQ algorithm, where the

third step depends on which learning algorithm updates the winning synaptic vectors.
Competitive AVQ Algorithm

1. Initialize synaptic vectors: m;(0) = x(z),¢ = 1,..., p. Sample-dependent initial-

ization avoids many pathologies that can distort nearest-neighbor learning.

2. For random sample x(t), find the closest or “winning” synaptic vector m;(t):

lm;(¢) — x()If = min{lmi(¢) — x| , (36)

where ||x||? = z? + ... + z2 defines the squared Euclidean vector norm of x. We

can define the IV synaptic vectors closest to x as “winners.”

3. Update the winning synaptic vector(s) m;(t) with an appropriate learning algorithm.
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Differential Competitive Learning (DCL)

Differential competitive “synapses” learn only if the competing “neuron” changes its

competitive status [Kosko, 1990c]:

mi = S(y;)[Si(a) — mi] . (37)

or in vector notation,
m; = S;(y)[S(x) - my] , (38)
where S(x) = (Si(z1),...,Sn(zs)) and m; = (myj,...,mn;). m;; denotes the synaptic

value between the ith neuron in input field Fx and the jth neuron in competitive field
Fy. Nonnegative signal functions S; and S; transduce the real-valued activations z; and
y; into bounded monotone nondecreasing signals Si(z;) and S;(y;). r;; and S;(y;) denote
the time derivatives of m;; and S;(y;), synaptic and signal velocities. S;(y;) measures the
competitive status of the jth competing neuron in Fy. Usually S; approximates a binary

threshold function. For example, S; may equal a steep binary logistic sigmoid,

1

1+ e ¥ (39)

S;i(y;)

k]

for some constant ¢ > 0. The jth neuron wins the laterally inhibitive competition if
S; =1, loses if S; = 0.
For discrete implementation, we use the DCL algorithm as a stochastic difference

equation [Kong, 1991]:

m;(t+1) = m;(t) + ¢ AS;(y;(8))[S(x(t)) — m,(t)] if the jth neuron wins, (40)

m;(t +1) = my(t) if the ¢th neuron loses. (41)

AS;(y;(t)) denotes the time change of the jth neuron’s competition signal S;(y;) in the
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competition layer Fy:

AS;i(y;(t)) = sgn[Si(y;(t+1)) — Si(y;(1)] - (42)

We define the signum operator sgn(z) as

1 if z >0
sgn(z) = 0if z=0 . (43)
-1 if £ < 0
{c:} denotes a slowly decreasing sequence of learning coefficients, such as ¢, = O(1 -

t/2000) for 2000 training samples. Stochastic approximation [Huber, 1981] requires a de-
creasing gain sequence {c;} to suppress random disturbances and to guarantee convergence
to local minima of mean-squared performance measures. The learning coefficients should

decrease slowly,

f:cg = o0 , (44)

but not too slowly,

icf < 0o . | (45)

t=1
Harmonic-series coefficients, ¢; = 1/t, satisfy these constraints.

We approximate the competitive signal difference AS; as the activation difference Ay;:

AS;(yi(t)) = sgnlyi(t+1) — y;(t)] (46)

= Ay(t) - (47)

Input neurons in feedforward networks usually behave linearly: S;(z;) = z;, or S(x(t)) = x(t).

Then we update the winning synaptic vector m;(t) with
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mi(t+1) = mjt) + e Ay;()x(t) — my(?)] - (48)

We update the Fy neuronal activations y; with the additive model

WD) = B0 + D SEOm0 + D SO - (09)

For linear signal functions S;, the first sum in (49) reduces to an inner product of sample

and synaptic vectors:

Samst) = Omy() . (50)

Then posifive learning tends to occur—Am;; > 0—when x is close to the jth synaptic
vector m;. ,

Since a binary threshold function approximates the output signal function Si(yx), the
second sum in (49) sums over just the winning neurons: Z wy; for all winning neurons y .

The p x p matrix W contains the Fy within-field sykna,ptic connection strengths. Di-
agonal elements w;; are positive, off-diagonal elements negative. Winning neurons excite
themselves and inhibit all other neurons. Figure 22 shows the connection topology of the

laterally inhibitive DCL network.
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Input field FX. Competition field FY

FIGURE 22  Topology of the laterally inhibitix;e DCL network.






