Spectral Classification With the International Ultraviolet Explorer: An Atlas of B-Type Spectra

Janet Rountree and George Sonneborn
Remote sensing is assuming a role in the search for natural resources. Research has shown that satellite imagery may be important in locating certain types of petroleum and mineral deposits. Either direct or indirect indications of natural resource occurrences have to be detectable from standard or enhanced imagery data. These indications are the result of geochemical alteration of oils or geochemical stress on vegetation in affected areas as compared to the surrounding unaffected area.

Traditional mapping of geological structure can be accomplished using satellite imagery data. In petroleum exploration this may be helpful in remote underdeveloped countries, but probably will not be utilized extensively in well mapped areas such as the U.S., Canada, and Europe.

In the case of petroleum, it is generally accepted that petroleum migrates to the surface where it can interact geochemically and geobotanically. Petroleum ranging from asphalt to methane is encountered as seeps or microseeps in soils above petroleum trapped at depth. Tonal anomalies have been reported on Landsat imagery, for example, from Wyoming.

It is believed that iron depletion and the presence of hydrocarbons in the soil over the Patrick Draw field may be the cause of the stressed sagebrush at that location (N. L. Froman, 1976 and R. W. Marrs and R. Gaylord, 1981). At other locations such anomalies have been attributed to development roads and well locations developed after the discovery of an oil field.

Tonal anomalies in Railroad Valley, Nevada provide an interesting case for the use of enhanced imagery to clarify an anomaly. Oil was discovered in the Eocene at 4000 feet below the valley floor. The anomalies do not coincide with the outline of the known production. This case would provide a good case to investigate both geochemically and geobotanically.
Spectral Classification With the
International Ultraviolet Explorer:
An Atlas of B-Type Spectra

Janet Rountree and
George Sonneborn
Goddard Space Flight Center
Greenbelt, Maryland
Remote sensing is assuming a role in the search for natural resources. Research has shown that satellite imagery may be important in locating certain types of petroleum and mineral deposits. Either direct or indirect indications of natural resource occurrences have to be detectible, from standard or enhanced imagery data. These indications are the result of geochemical alteration of _oils or geochemical stress on vegetation in affected areas as compared to the surrounding unaffected area.

Traditional mapping of geological structure can be accomplished using satellite imagery data. In petroleum exploration this may be helpful in remote underdeveloped countries, but probably will not be utilized extensively in well mapped areas such as the U.S., Canada, and Europe.

In the case of petroleum, it is generally accepted that petroleum migrates to the surface where it can interact geochemically and geobotanically. Petroleum ranging from asphalt to methane is encountered as seeps or microseeps in soils above petroleum trapped at depth. Tonal anomalies have been reported on Landsat imagery, for example, from Wyoming. It is believed that iron depletion and the presence of hydrocarbons in the soil over the Patrick Draw field may be the cause of the stressed sagebrush at that location (N. L. Froman, 1976 and R. W. Marrs and R. Gaylord, 1981). At other locations such anomalies have been attributed to development roads and well locations developed after the discovery of an oil field.

Tonal anomalies in Railroad Valley, Nevada provide an interesting case for the use of enhanced imagery to clarify an anomaly. Oil was discovered in the Eocene at 4000 feet below the valley floor. The anomalies do not coincide with the outline of the known production. This case would provide a good case to investigate both geochemically and geobotanically.
SPECTRAL CLASSIFICATION WITH
THE INTERNATIONAL ULTRAVIOLET EXPLORER:
AN ATLAS OF B-TYPE SPECTRA

by
Janet Rountree and George Sonneborn
Laboratory for Astronomy and Solar Physics
NASA/Goddard Space Flight Center

I. Introduction

A set of criteria for the spectral classification of B stars in the ultraviolet was published by Rountree & Sonneborn (1991, Paper I). In that paper it was shown that photospheric absorption lines in the 1200—1900A wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a two-dimensional system consistent with the optical MK system. The stellar wind lines are not used for classification on this system. Stars with peculiar wind lines are distinguished from "normal" stars, and are marked with the suffix "w." The observational material used in Paper I consisted of high-resolution spectra from the International Ultraviolet Explorer (IUE) archives, suitably resampled and displayed. Insofar as possible, the standard stars on which the ultraviolet classification was based were chosen from among the MK standards.

A number of representative spectra were shown in Paper I, in order to illustrate the classification method. But these spectral plots were reduced in scale by approximately 50%, and thus were not suitable for practical classification work. The purpose of the present Atlas is to make available a larger number of spectra at the scale used for classification. These spectra represent a dense matrix of standard stars, and also some interesting individual cases. Readers may use the figures in this Atlas to classify their own IUE spectra, after processing the data as described in Section II below. The recommended procedure for spectral classification with the Atlas is described in Section IV.

Although the Atlas should be useful as a guideline for ultraviolet spectral classification with instruments other than IUE, it should not be used for this purpose without reobserving the standard stars to make sure that there are no systematic effects.

II. Data Processing

The spectra comprising this Atlas were taken with the IUE short-wavelength prime (SWP) spectrograph in the high-dispersion mode. The extracted spectral data, produced by the standard processing provided by the IUE Project, were resampled to a resolution of 0.25A, normalized to a rough continuum level between 1150—1900A, and plotted on 11in. x 17in. paper on a laser printer. For details of the data reduction steps, see Walborn, Nichols-Bohlin, & Panek (1985) and Paper I. Our data processing procedures differ from those of the previous authors only in that the continuum normalization has been made autonomous rather than interactive and that the plots were produced on a laser printer rather than a CalComp plotter. The software needed to resample and normalize the spectra is available at the IUE Regional Data Analysis Facility at Goddard Space Flight Center. If the user does not have access to a laser printer that accommodates 11in. x 17in. paper, the spectral plots may be produced piecemeal on smaller paper, but the original scale (10A/cm) should be preserved. It is strongly recommended that any spectra last processed before the improved extraction software was put into production (1981 November) be reprocessed by the IUE Project before undertaking the resampling procedure.
III. Description of the Atlas

All the stars whose spectra are presented in this Atlas were drawn from the list in Table 2 of Paper I or from a second list of approximately 100 stars that were subsequently classified (without knowledge of their previous MK types) on the same ultraviolet system (Rountree & Sonneborn 1993, Paper II). In general, these are stars with visual magnitudes brighter than about 6.5, having normal MK types in the range B0—B8 III—V according to Rountree & Sonneborn (1968), Hiltner, Garrison, & Schild (1969), or Morgan & Keenan (1973). A few supergiants were drawn from the work of Walborn & Nichols-Bohlin (1987).

The spectra are arranged in montages of four or five per two-page spread, or "plate." The wavelength scale is indicated by tick marks at 10Å intervals above and below each spectrum, with numerical values of the wavelength in Angstroms shown at the bottom of the page. The crosses along the wavelength scales mark the echelle order splice points. The quantity plotted as a fine line at the top of each spectrum is the normalized data quality factor, which in these plots primarily indicates (by a downward spike) areas in which the data points may be contaminated by a camera reseau. The most important spectral lines, especially those used in classification, are identified along the top of each plate. The stars are identified to the left of their spectra. The spectral type given for each star is the ultraviolet spectral type; in most cases, this is identical with the optical MK type. In Parts 2 and 3 of the Atlas the rotational velocity from Usugui & Fukuda (1982) or the date of observation is also given. Overall characteristics of the spectral type range covered by each plate are described in the text at the left of the spectra.

There are three parts to the Atlas. Part 1, Plates 1—14, contains sequences of spectra of standard stars for direct use in classification. Plates 1—7 show spectral-subtype (or temperature type) sequences for dwarf (class V), subgiant (class IV), and giant (class III) stars. Almost all of these stars are standards listed by Morgan & Keenan (1973) or by Rountree Lesh (1968). On the main sequence, where very fine subdivisions are possible, we provide some overlap between the groups of spectra on successive pages, so that the user will always be able to bracket the spectrum to be classified between two standards. Plates 8—14 present luminosity sequences at seven spectral subtypes. In these montages, some of the standards in classes III—V have been replaced with other stars whose spectra were judged to be equally representative of their type, so as to give as many examples as possible of normal ultraviolet spectra. The supergiants (class Ia) whose spectra appear here are the stars described by Walborn & Nichols-Bohlin (1987). These stars have not been classified on the ultraviolet spectrum — the spectral types given are the optical MK types. The supergiant spectra are reproduced in this Atlas in order to show the full range of variation of certain spectral lines as a function of stellar luminosity.

Part 2 of the Atlas, Plates 15—20, illustrates the effect of rapid stellar rotation on the ultraviolet spectrum. Each plate in this section displays two pairs of spectra; each pair, closely matched in spectral type, consists of the spectrum of a slowly rotating star (v sin i usually <50 km/s) and the spectrum of a rapidly rotating star (v sin i usually >200 km/s). Although most of the rapid rotators are not standards, these illustrations should be helpful to the user who wishes to classify the spectrum of a broad-lined program star, since they show how these spectra are likely to differ from the narrow-lined standards.

Finally, spectra with anomalous stellar wind lines, primarily strong absorption lines of C IV λ1548, 1550, Si IV λ1393, 1402, and/or N V λ1238, 1242, are illustrated in Part 3, Plates 21—26. These are stars whose ultraviolet spectral types have a "w" suffix in the classification of Rountree & Sonneborn (1991). As in Paper I, italics are used in the text accompanying Plates 21—26 to distinguish ultraviolet spectral types from optical MK types. The spectrum of at least one "normal" star of identical type is presented with each anomalous spectrum to show the good match in the photospheric absorption lines, which alone are used in classification. More detailed studies of some of these stars are referenced in the text opposite the spectrum in question.

IV. Use of the Atlas

After the user's program spectra have been processed as described in Section II, they may be classified by direct comparison with the spectra in this Atlas. As in the MK system, the ultraviolet classification system is defined by its standard stars, most of which are illustrated here. Therefore, a program star should be assigned the type of the standard star that it most closely resembles. It must be emphasized that the comparison should be made using only photospheric absorption lines. The N V, Si IV, and C IV lines should not be used in classification; they should be taken into account only in assigning the "w" suffix.
Table 1 lists the standard stars of the ultraviolet classification system, as well as the photospheric lines used as classification criteria. This is a slightly updated version of the similar table in Paper I.

In our experience, it is possible to assign a very accurate temperature type to a star from its ultraviolet spectrum, while luminosity class may be more difficult to identify accurately (see Paper II). Therefore, we recommend first locating the spectrum of a program star among the standards on the main sequence, and then going to the luminosity-effects plate at that spectral type to see if the star appears to be a subgiant or giant. If it does, its temperature type should be verified by locating the spectrum on the subgiant or giant sequence. Of course, this is an iterative procedure, since temperature type and luminosity class are not completely independent. Finally, the N V, Si IV, and C IV lines, if present, should be compared with the same lines in the standard spectrum to see whether the program star has an anomalous stellar wind. The behavior of the wind lines in the standard stars is described in the text accompanying the spectra in Part 1. It is also noted in italics in Table 1.

V. Conclusion

It is hoped that this Atlas will find extensive use in the classification of IUE high-resolution spectra, especially for stars that have not been observed in the visible region. Spectral types obtained by the procedures outlined here and in Paper I should be entirely consistent with MK spectral types. In principle, the same standards and criteria can be used for spectra obtained with a different ultraviolet spectrograph, but in that case the standards should be reobserved with the other instrument to avoid systematic effects.

References

Uesugi, A., & Fukuda, I. 1982, Revised Catalog of Stellar Rotational Velocities (Kyoto: Kyoto Univ.).
<table>
<thead>
<tr>
<th>V</th>
<th>IV</th>
<th>III</th>
<th>V</th>
<th>IV</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>v Ori</td>
<td>HD 75821</td>
<td>B5</td>
<td>35 Eri, r Aur</td>
<td>Si II dominates spectrum</td>
</tr>
<tr>
<td></td>
<td>1640A (He II) strong</td>
<td>Interpolate between V and III</td>
<td></td>
<td>Si II, Si III, Al III stronger</td>
<td>Si IV present, C IV absent</td>
</tr>
<tr>
<td></td>
<td>17174A (N IV) strong</td>
<td>SI IV, C IV absorption</td>
<td></td>
<td>stronger than B5 V</td>
<td>Si IV stronger, C IV absent</td>
</tr>
<tr>
<td></td>
<td>1748-51 (N III) marked</td>
<td></td>
<td>B6</td>
<td>β Sex</td>
<td>Similar to B5 V but Al III</td>
</tr>
<tr>
<td></td>
<td>SI IV, C IV strong absorption</td>
<td></td>
<td></td>
<td>stronger</td>
<td>Si IV present, C IV absent</td>
</tr>
<tr>
<td>B0.5</td>
<td>HD 36960,</td>
<td>λ Lep</td>
<td>B7</td>
<td>α Leo</td>
<td>Al II, C I prominent</td>
</tr>
<tr>
<td></td>
<td>N III present to strong</td>
<td>Interpolate between V and III</td>
<td></td>
<td>Al III weaker than B6 V</td>
<td>Si IV present, C IV absent</td>
</tr>
<tr>
<td></td>
<td>C III strong</td>
<td>SI IV, C IV absorption</td>
<td></td>
<td>Si IV present, C IV absent</td>
<td>Si IV, C IV absent</td>
</tr>
<tr>
<td></td>
<td>SI IV, C IV strong absorption</td>
<td></td>
<td>B8</td>
<td>18 Tau</td>
<td>No standard in program</td>
</tr>
<tr>
<td>B1</td>
<td>α Sco, 42 Ori</td>
<td>α Vir</td>
<td></td>
<td>125 IV</td>
<td>Si II dominant</td>
</tr>
<tr>
<td></td>
<td>N IV weak to absent</td>
<td>Interpolate between V and III</td>
<td></td>
<td>Al II, C I prominent</td>
<td>Si II, Al II stronger than B7 V</td>
</tr>
<tr>
<td></td>
<td>He II marked</td>
<td>SI IV, C IV absorption</td>
<td></td>
<td>Al III, Fe III absence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1247A (C III) strong</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV strong, C IV wk. absorption</td>
<td>SI IV, C IV absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1.5</td>
<td>HD 35299,</td>
<td>λ Sco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1254A marked but <1247A</td>
<td>Interpolate between V and III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>He II weak</td>
<td>SI IV, C IV absorption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV absorp., C IV wk. to absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>22 Sco</td>
<td>γ Peg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1254A (Si II) = 1247A (C III)</td>
<td>SI III, Al III, Fe III</td>
<td>n³ Ori</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1310A (Si II) = <1300A (Si III)</td>
<td>stronger than B2 V</td>
<td></td>
<td>C III, Al III, Fe II, Fe III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>He II weak to absent</td>
<td>1600-10A (Fe II) stronger</td>
<td></td>
<td>stronger than B2 IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV moderate, C IV absent</td>
<td>SI IV strong, C IV absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2.5</td>
<td>α Sgr</td>
<td>HD 32612</td>
<td>n³ Cyg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1254A (Si II) > 1247A (C III)</td>
<td>Interpolate between V and III</td>
<td></td>
<td>SI IV strong, C IV present</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1310A (Si II) < 1300A (Si III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1485A (Si II blend) present</td>
<td>SI IV present, C IV absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV absorption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>η Uma, η Aur</td>
<td>HD 134687, 125 Tau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1254A (Si II) >> 1247A (C III)</td>
<td>Interpolate between V and III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1310A (Si II) > 1300A (Si III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1485A (Si II blend) marked</td>
<td>SI IV present, C IV absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV weak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV weak to absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>HD 20809</td>
<td>53 Per</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1310A (Si II) > 1300A (Si III)</td>
<td>SI IV present, C IV absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1485A (Si II blend) prominent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI IV weak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 - Ultraviolet Spectral Classification Criteria and Standard Stars
Part 1

Standard Stars
Main Sequence
B0 - B2

The earliest main-sequence B stars are characterized by lines of He II λ1640, N IV λ1718, and N III λ1748,1751, which decrease smoothly from B0 to B1. C III λ1247 begins to weaken at B1, while the photospheric Si II lines λ1264 and λ1310 begin to increase in strength. The ratio λ1264/λ1247 is approximately unity at B2 V.

In these standard main-sequence stars, Si IV λ1393, 1402 is mainly photospheric, and shows a marked decrease at B2. The stellar wind lines C IV λλ1548, 1550 are essentially absent by B2.
Main Sequence

B2 - B5

The ratio Si II λ1264/C III λ1247 increases monotonically from B2 to B5 on the main sequence, as does the ratio Si II λ1310/Si III λ1300. The photospheric Si II lines λ1485 and λ1533 also become prominent in this spectral type range.

Si IV λλ1393, 1402 decreases to marginal strength, while C IV λλ1548, 1550 is not normally present in main-sequence stars later than B2.
Main Sequence
B5 - B8

The lines of Si II dominate the stellar spectrum throughout this range of main-sequence types. Fe III λ1892, 1896 weakens at types later than B5, while Al III λ1854, 1861 reaches a maximum at B6.
Subgiants

B0 - B2

In the subgiants, He II λ1640 remains prominent and C III λ1247 remains strong through B2. Spectral type is determined by the relative strength of the Si II photospheric lines. C IV λ1548, 1550 can sometimes be seen as late as B2.
Subgiants

B2.5 - B7

The photospheric Si IV lines persist until type B5 in the subgiants. The relative strength of the Si II and Si III spectra makes a useful spectral type criterion.
Giants

B0 - B2

In the giant stars He II λ1640 persists to B2, N IV λ1718 to B1, and N III λλ1748, 1751 to B0.5. Although C III λ1247 is stronger than on the main sequence, the ratio λ1264/λ1247 is still near unity at B2 III. Si IV λλ1393, 1402 and C IV λλ1548, 1550 exhibit P Cygni profiles at B0 III, and remain as strong absorption lines throughout this spectral type range.
Si IV persists to B5 and C IV to B3 in normal giant stars, but the spectrum of stars in the B3—B8 range is still dominated by Si II lines.
Luminosity Effects at B0

The indicated lines of C III, N IV, N III, and Al III all increase in going up the luminosity sequence from main sequence to giants. The wind lines of N V, Si IV, and C IV exhibit P Cygni profiles in giants and supergiants.
Luminosity Effects at B0.5

The C III, N IV, N III, and Al III lines are luminosity indicators. The stellar wind lines are in absorption, except in the supergiants.
Luminosity Effects
at B1

The Si III multiplet at λ1290-1300 is luminosity-sensitive in the B1—B3 spectral type range. C II, Si IV, C IV, and Al III exhibit P Cygni profiles in supergiants, but not in stars of luminosity class III—V.
Luminosity Effects at B2

Lines of C III, Si III, Fe II, and Fe III are luminosity indicators for main-sequence, subgiants, and giant stars at spectral type B2. C II, Si IV, C IV, and Al III exhibit P Cygni profiles in supergiants.
Luminosity Effects at B2.5

The principal luminosity indicators at spectral type B2.5 remain the lines of C III, Si III, Fe II, and Fe III. The Si II blend at λ1485 makes its first appearance at this spectral type. The supergiant wind features of C II, Si IV, C IV, and Al III are weaker than at B2.
Luminosity Effects
at B3

Lines of C III, Si III, Fe II, and Fe III remain luminosity-sensitive at type B3, but show less variation than at earlier types. The most prominent wind feature in B3 supergiants is C IV λ1548, 1550.
Luminosity Effects at B5

Lines of Si II, Si III and Al III are luminosity indicators for classes III, IV, and V. In the supergiants, the wind lines of C II, Si IV, C IV, and Al III are in absorption.
Part 2

Effects of Stellar Rotation
Rotation Effects

at B0.5

With the exception of Si IV and C IV, all the marked spectral lines in these stars are photospheric. They are broader and shallower in the rapid rotators HD 135160 and δ Sco than in the slow rotators HD 36960 and λ Lep. Both width and depth must be taken into account in estimating the strength of these lines for classification purposes.
Rotation Effects

B1 - B1.5 Main Sequence

Unlike the photospheric and stellar wind lines, the interstellar lines are unaffected by rotation. They are easily picked out in the stellar spectra of rapid rotators HD 154445 and HD 37303 by their very sharp profiles. Some lines, e.g. Si II λ1526, have both stellar and interstellar components.
Rotation Effects
B1.5 - B2 Giants and Subgiants

Rotation effects tend to be less pronounced for stars above the main sequence, but they can produce apparent differences in the signal-to-noise ratio (S/N). Note that the instrumental S/N is about 30 for all the digital plots in this Atlas.

α Pyx
B1.5 III
ν sin i = 20 km/s
HD 70930
B1.5 III
ν sin i = 220 km/s
HD 39777
B2 IV
ν sin i = 40 km/s
ρ Sco
B1.7 IV
ν sin i = 155 km/s
Rotation Effects
B2.5 - B3 Subgiants

Line broadening can pose a less severe problem for the classification of the mid-B stars, where the stellar wind is weak and the photospheric Si II lines are not yet saturated. For example, HD 150745, with a $v\sin i$ of 285 km/s, is one of the fastest rotators in this program, yet its spectrum is quite comparable to that of the moderate rotator δ Ori B.

δ Ori B
B2.5 IV
$v\sin i = 35$ km/s

HD 150745
B2.5 IV
$v\sin i = 285$ km/s

HD 134687
B3 IV
$v\sin i = 40$ km/s

τ Tau
B3 IV
$v\sin i = 180$ km/s
Rotation Effects
B5 - B6 Giants and Subgiants

The spectrum of the late B stars is dominated by lines of Si II, whose relative strength is the principal classification criterion. In order to ensure that both depth and width of the lines are accurately taken into account, it is useful to have both broad-lined and narrow-lined standard spectra.
Rotation Effects
B6 - B7 Giants

Many of the late B giant standards, including 16 Tau, 17 Tau, and η Tau, are members of the Pleiades cluster. This cluster is a particularly good source of broad-lined standards, although narrow-lined stars are found there also.
Part 3

Stellar Wind Effects
Stellar Wind Effects

at B0 - B0.5

Both \(\upsilon \) Ori and \(\tau \) Sco are MK standards for type B0 V. In the ultraviolet, however, \(\tau \) Sco exhibits greatly enhanced lines of N V, Si IV, and C IV. We use \(\upsilon \) Ori as the standard for ultraviolet classification at B0 V, while \(\tau \) Sco is designated B0 Vw, indicating that the stellar wind lines appear to be "abnormal" in comparison with the standard. The two spectra of \(\tau \) Sco presented here were taken over three years apart; there is no indication of long-term variability in the stellar wind, but variations on a shorter time scale cannot be ruled out. Walborn, Nichols-Bohlin, & Panek (1985) also describe the enhanced stellar wind features of \(\tau \) Sco, which they classify as B0.2 V.

Although it is a \(\beta \) Cephei variable, \(\beta \) Cru has a normal optical MK type of B0.5 III and a normal ultraviolet spectrum. In contrast, HD 53974, whose optical type is also B0.5 III (Rountree Lesh 1968), was given the ultraviolet classification of B0.5 IIIw by Rountree & Sonneborn (1991), who cited its broad stellar wind lines and especially the P Cygni profiles of N V and C IV.
Stellar Wind Effects

at B1

The MK standard for B1 III is o Per; o Sco is a β Cephei variable and a spectroscopic binary, but at classification dispersion both its optical and its ultraviolet spectra are normal for B1 III. However, ξ¹ CMa, another β Cephei variable, is classified B1 III w because of the P Cygni profiles of the N V and C IV lines, and the weakness of the Si IV absorption lines. Rountree and Sonneborn (1991) cite evidence for a variable stellar wind in this star.

Grady, Bjorkman, and Snow (1987) describe 2 Vul as a Be star with a variable wind and a partially resolved discrete absorption component. In the example displayed here, the C IV doublet is greatly enhanced in comparison with the normal spectrum of HD 63578. The latter star is a rapid rotator (v sin i = 200 km/s).
Stellar Wind Effects

at B1.5

HD 85871 and HD 166596 have anomalously strong C IV lines, in comparison with the normal B1.5 III spectrum of HD 70930. The Si IV lines have peculiar profiles, in addition to enhanced line strength.

The C IV lines, normally absent at B1.5 IV, are prominent in the spectrum of 19 Mon. Grady, Bjorkman, & Snow (1987) describe this star as having a variable stellar wind. Emission at H α is cited by Irvine (1975) and Hirata & Asada (1976).
Plate 23b
Stellar Wind Effects

B2 Dwarfs

The ultraviolet spectrum of 13 Sco is normal for a rapidly rotating B2 V star ($v \sin i = 225 \text{ km/s}$). In particular, the C IV lines are vanishingly weak. The other B2 dwarfs depicted here exhibit different degrees of C IV enhancement. The choppiness of the spectra of HD 57150 and HD 161056, due to a poor echelle ripple correction in the data processing, makes precise classification difficult.

Shore & Brown (1990) reported C IV and Si IV line variations in HD 37017. Balmer line emission in HD 57150 and HD 72067 has been described by Slettebak (1982).
Stellar Wind Effects

The B2 Subgiant \(\zeta \) Cas

The \(\beta \) Cephei variable \(\delta \) Cet has a normal ultraviolet spectrum for a B2 V slow rotator (\(v \sin i = 10 \) km/s). The N V lines are absent, Si IV lines are moderately strong, and C IV is very weak. In \(\zeta \) Cas, which is not a \(\beta \) Cephei variable, the wind lines are all enhanced and are variable in strength. This variation is especially remarkable in the C IV lines. Someborn, Garhart, and Grady (1987) set an upper limit of several months for the time scale of the wind variability in this star.

HD 163472 (B2 IVw) has an ultraviolet spectrum very similar to \(\zeta \) Cas. Its potential variability has not been studied.
Stellar Wind Effects
Mid-B Dwarfs

HD 192685 is essentially identical with the B2.5 V standard σ Sgr, except for the abnormal profiles of the Si IV lines and the abnormal strength of the C IV doublet. In HD 72356, all the stellar wind lines are enhanced in comparison with the B4 V standard HD 20809.
Spectral Classification With the International Ultraviolet Explorer: An Atlas of B-Type Spectra

Janet Rountree and George Sonnebom

Goddard Space Flight Center
Greenbelt, Maryland 20771

National Aeronautics and Space Administration
Washington, DC 20546-0001

Rountree and Sonneborn: Goddard Space Flight Center, Greenbelt, Maryland 20771

Unclassified - Unlimited

Subject Category 90

New criteria for the spectral classification of B stars in the ultraviolet show that photospheric absorption lines in the 1200-1900Å wavelength region can be used to classify the spectra of B-type dwarfs, subgiants, and giants on a two-dimensional system consistent with the optical MK system. This atlas illustrates a large number of such spectra at the scale used for classification. These spectra provide a dense matrix of standard stars, and also show the effects of rapid stellar rotation and stellar winds on the spectra and their classification. The observational material consists of high-dispersion spectra from the International Ultraviolet Explorer archives, resampled to a resolution of 0.25Å, uniformly normalized, and plotted at 10Å/cm. The atlas displays such spectra for about 100 stars, arranged in spectral-type, luminosity, and rotational velocity sequences. The atlas should be useful for the classification of other IUE high-dispersion spectra, especially for stars that have not been observed in the optical.