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ABSTRACT

In this paper we consider the problem of using reduced order dynamic con>

pensators to control a class of nonlinear parabolic distributed parameter sys-

tems. We concentrate on a system with unbounded input and output operators

governed by Burgers' equation. We use a linearized model to compute low-

order-finite-dimensional control laws by minimizing certain energy function-

als. We then apply these laws to the nonlinear model. Standard approaches

to this problem employ model/controller reduction techniques in conjunction

with LQG theory. The approach used here is based on the finite-dimensional

Bernstein/Hyland optimal projection theory which yields a fixed-finite-order

controller.
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Optimal Fixed-Finite-Dimensional Compensator

1 Introduction

In recent years considerable attention has been devoted to the problem

of using feedback to control fluid dynamic systems. This problem is com-

plex and particularly difficult when one is faced with phenomena such as

shocks. Moreover, these systems are governed by nonlinear partial differen-

tial equations so that the natural state of the system is infinite dimensional.

If one assumes that "full state feedback" is necessary to design practical

controllers, then one would conclude that feedback control of fluid dynamic

system is "not practical". However, it is well known that even in finite di-

mensional control systems one rarely has the ability to accurately sense all

states, so that some form of dynamic compensation must be used.

This idea clearly extends to infinite dimensional problems and there is

a growing literature on observers/compensators for distributed parameter

systems. In this paper we consider a boundary control problem governed by

Burgers' equation. We selected this problem because Burgers' equation is

an infinite dimensional model that captures some phenomena (e.g., shocks)

often observed in fluid flows and because it is simple enough to provide

real insight into the problem. The goal is to show that it is possible to

use modern control theory to produce practical finite dimensional dynamic

compensators for boundary control of nonlinear partial differential equations

of the type that occur naturally in fluid dynamics.

We shall present a short summary of one approach (the optimal projec-

tion method due to Bernstein and Hyland) and show how this approach can

be used in conjunction with standard numerical schemes to produce a real-

izable low order controller. The optimal projection method is one of many
approaches to this problem. However, we shall concentrate on this method

because a very nice theory has already been developed (for bounded input

and output operators) and we are more interested in illustrating (to non-

experts) that recent results in distributed parameter control theory can be

used to design practical feedback laws, than in discussing the "best" ap-

proach to the problem. It will be clear from our presentation that we are

writing for those that are not necessarely "control experts". The extension

of the general theoretical results to unbounded input and output operators

will appear in a forthcoming paper. However, for the compensators pre-

sented here, we do not need the most general theory since we use the finite

dimensional version of the optimal projection method.

As noted above it is almost impossible to observe the whole state. Con-
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trois and sensors are limited to a few points or segments of the boundary, so

it is necessary to construct an appropriate observer (estimator) of the state

and design a feedback control law (called a compensator) based on the in-

formation available from the observed (estimated) state variable. Boundary

control and observation often leads to unbounded input and output opera-

tors. Stabilization by dynamic feedback or compensation has been consid-

ered by Curtain [5], Fujii [8], and Nambu [12] for classes of parabolic as well

as hyperbolic systems, including control and observation at the boundary.

All of these approaches produce stabilization schemes that either have the

same finite order as that of a high-order approximate model, or alternatively,

open-loop model reduction or closed-loop control reduction techniques are

applied to achieve a lower-order compensator. An advance was made by

Schumacher [15], when he gave a theory for designing finite-dimensional

compensators for a large class of systems, including parabolic and delay sys-

tems. However, in his theory it was assumed that the control and observation

operators arc bounded. Curtain [4] presented an alternative compensator

design which applied to the same class of systems, except that unbounded

inputs and outputs were allowed. In [14], Pritchard and Salamon established

a framework based on semigroup theory for treating the linear quadratic reg-

ulator problem for infinite-dimensional systems with unbounded input and

output operators. Their approach is based on a weak formulation of the Ric-

cati equations which characterize the optimal feedback law in an appropriate

dual space.

Here we consider the problem of designing a fixed-finite-dimensional com-

pensator for a class of distributed system governed by Burgers' equation,
where the control and the observation are implemented at the boundary of

the domain. The possibility of applying this approach to distributed pa-

rameter systems was first suggested by Johnson in [9] and Pearson [13].

The idea of fixing the order of the finite-dimensional compensator, while

retaining the distributed parameter model was expanded and developed by

Bernstein and Hyland in [1] and [2]. The method extends the full order

LQG case to an "optimal fixed-finite-order compensator" characterized by

four equations; two modified Riccati equations and two modified Lyapunov

equations, coupled by an oblique projection whose rank is precisely equal to

the order of the compensator. Bernstein and Hyland assumed that the con-

trol and observation operators were bounded and hence boundary control

and observations were not covered by their theory.

We will present a Bernstein/Hyland type fixed-finite-dimensional com-

pensator design, which does extend to unbounded input/output problems.
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In Section 2 we discuss the existence of a finite-dimensional compensator for

parabolic distributed parameter systems with unbounded control and obser-

vation. In Section 3 we summarize the infinite-dimensional optimal projec-

tion theory from [1], and derive the corresponding equations and feedback

gains which characterize the fixed-finite-order compensator. In Section 4 we

present an example, construct the approximation schemes, and discuss the

computational algorithm used for the optimal projection design synthesis.

Finally, Section 5 contains numerical results and Section 6 is devoted to a

few closing remarks.

2 A Theoretical Existence Result

We consider the following abstract Cauchy problem

_(t) = Az(t) + Bu(t), z(O) = zo E H (1)

V(t) = Cz(t) t >_0 (2)

where H is a Hilbert space, u(.) E L2(0 T;_m), y(.) E L2(0 T; _), and

A is the infinitesimal generator of analytic semigroup S(t) on H, generally

unstable, with exponential growth rate

w0 = lim t -1 log IIS(0llz<m> 0
t---_oo

(3)

so that

[[S(t)[[£(H ) <_ Me (w°+_)t for all _ > 0, t >_ 0 (4)

for some constant M = M(wo, e) >_ 1. Throughout the remainder of this

paper we let A denote the translation A = -A + wI, where w is fixed

and w > w0, so that A. has well-defined fractional powers (A)P on H and

-A is the generator of a strongly continuous analytic semigroup S(t) on H

satisfying

IIS(011Lcm-<Me -_', t > 0. (5)

In order to allow for unbounded operators B and C, we assume that B

E/:(R m, V) and C E £(W, Re), where W and V are also Hilbert spaces such
that

"D(A) C_W _ H '-_ Y (6)

with continuous dense injections. More precisely, we assume that B* is
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[A*]_-bounded, or equivalently,

[A]-TB 6 £(R'_, H) for 0 < 3' < 1. (7)

Similarly, for the operator C we assume that

C[A]-" E £(g, _) for 0 < 3"< 1. (8)

It is helpful to interpret (1-2) in mild form. In particular, the solution

z(t) is given by

f0 tz(t) = S(t)Zo + S(t - s)Bu(s)ds,

and the output by

0 < t < T (9)

f0 ty(t) = CS(t)zo + C S(t - s)Bu(s)ds. (10)

We assume that S(t) is also an analytic semigroup on W and that the

following hypotheses are satisfied:

(H-I) There exists a constant b(T) > 0 such that for every T > 0,

fT S(T - s)Bu(s)ds 6 W and

IlfoTS(T- s)Bu(s)dsllw < b(T)llu(.)llL,(O T;.=) (11)

for every u(-) E L2(0 T; Era).

(H-2) There exists a constant c(T) > 0 such that for every T > 0,

fOT IICS(t)zlIL2{O T;_t)dt < c(T)llzllv (12)

for every x E W.

We now give sufficient conditions which imply that the system (1-2) can

be stabilized by a finite-dimensional compensator of the form

_b(t) = Acw(t) - Bcy(t) w(O) = wo (13)

= cow(t) (14)
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where Ac E NNcxNo, Be E NN, x,n, and Cc E _txNc are suitably chosen

matrices. We need the following well-posedness result for the connected

system (1-2) and (13-14). This result and proof may be found in [4].

Proposition 2.1 Let (H-1)-(H-g) be satisfied, then for all zo E W, Wo E

_N_ there exists a unique solution pair z(t) and w(t) of (1-2) and (13-14).

This means that z(t) is continuous in H and absolutely continuous in V,

that (1) is satisfied for almost every t > 0 where u(t) is given by (14), and

that w(t) E _u, is continuously differentiable and satisfies (13) where y(t)

is given by (2).

In addition to hypotheses (H-I) and (H-2), we assume:

(H-8) Stabilizability Condition (S.C.)

There exists an operator F E £.(H, _m) such that AF = A + BF

generates an analytic semigroup Sf(t) = e (A+BP)t and SF(t) is expo-

nentially stable on H, i.e.,

IISF(t)II (H) < MFe -_r=, for WF > 0. (15)

(H-4) Detectability Condition (D.C.)

There exists an operator G E £(_'_,H) such that AG = A + GC

generates an analytic semigroup SG(t) = e (A+GC}t and SG(t) is expo-

nentially stable on H, i.e.,

IISG(t)IIr(H ) < Mae -'_at, for wa > O. (16)

(tt-5) In addition to (H-3) and (H-4) there exists a finite-dimensional

subspaxe R C W, with dim R _< Nc such that

(i) SF(t)R C R, for all t > 0,

(ii) Range G C R,

(iii) R C_7)(AF).

Moreover, there exist linear maps i: _Nc _ R, _r : H _ _Nc such that

7ri = Is,, iTrx = x for x E R. (17)

Note that (H-5) implies that _rAFi is a well defined linear map on _Sc. We

will show that the system

_b(t) = _r (AF + GC) iw(t) - lrGy(t), w(O) = wo (18)
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u(t) = Fiw(t) (19)

defines a stabilizing compensator for the Cauchy problem (1-2). The follow-

ing result is a slight extension of Theorem 2.5 in [7] for unbounded inputs

and outputs.

Theorem 2.2 If (H-1)-(H-5} are satisfied, then the closed-loop system de-

fined by (1-2) and (I8-19) is exponential stable.

Proofi Note that without loss of generality we can assume that dim R = No.

By Proposition 2.1 it follows that the closed-loop system is a well-posed

Cauchy problem. Let Zo E W, Wo E _Nc and z(t), w(t) be defined by (1-2)

and (18-19), respectively. Since z(t) E W, if x(t) is defined by

x(t) = iw(t)- z(t) t > O,

then x(t) belongs to W and it is straightforward to show that

Therefore,

z(t)

which implies that x(t) = Sa(t)x(O).
follows.

_b(t) = 7r AF i w(t) + 7r GC x(t). (20)

_0 t= i_rSF(t)iwo+ i_rSr(t-s)irGCx(s)ds - z(t)

Z'= Sf(t)iWo+ SF(t-s)aCx(s)ds - z(t)

I'= S(t)iwo+ S(t-s)[BFiw(s)+GCx(s)]ds

/:- s(t) zo + s(t - s) B _(s) as

Z'= S(t)x(o)+ S(t-s)aCx(s)ds,

The stability of x(t), w(t) and z(t)
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3 Optimal Projection Theory

Consider the steady-state fixed-order dynamic compensator problem, de-

fined by the infinite-dimensional control system

_(t) = Az(t) + Bu(t) + Hlrl(t) (21)

with measurements

y(t) = Cz(t) + H2rl(t ). (22)

The objective is to design a finite-dimensional fixed-order dynamic compen-
sator

_c(t) = Aczc(t) + Bey(t) .(23)

u(t) = Ccze(t) (24)

which minimizes the steady-state performance criterion

J(Ac, Bc, cc) def lim l fot [( )]= - E Rlz(s), z(s)) + u(s)TR2u(s ds (25)
t_c_ t

where the operators A, B and C satisfy all the assumptions given in the

previous section and El.] is the expectation. In addition, assume that the

state and measurements are corrupted by a white noise _7(t) in the Hilbert

space/_, with zero-mean Gaussian, H1 • /:(H, H), //2 • £(H, _), R1 E

£:(H) is self-adjoint and nonnegative definite, and that R2 is an rn x m

symmetric positive-definite matrix. We assume that the disturbance and

measurements are independent, i.e., H1 H i = 0, Vl = HI HI • £(H) is

nonnegative definite and of trace class, and that V2 = 112 H i • _txt is

positive definite. Also, it is assumed that the initial state z(O) = zo is

Gaussian and independent of r/(.). The compensator will be assumed to be

of fixed, finite order Ne (i.e., zc(t) E _Sc) and the optimization is performed
over Ac E _gcxNc, Be E _N_xt and Ce E _mxN,

If one introduces the augmented state space 7/ = H x _N_, then the

closed-loop system becomes a linear system on 7/. Consequently, define the

closed-loop operator J[ : 7)(,4) C_ 7/ -_ 7/on the dense domain :D(.A) =
D(A) x _Nc by

.,4= BcC Ac = 0 0 + B_C Ac "
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Since the operator

[a0]o o :Z)(A)-_7_,

generates an analytic semigroup

eAt 0 ]0 I.c
t>__0,

then conditions (7)-(8) imply that ,4 is also closed and generates an analytic

semigroup eAt on 7_ (see [10]). To guarantee that J is finite and indepen-
dent of initial conditions we restrict our attention to the set of admissible

compensators defined by

£ = {(Ac, Be, C,:) : eAt is exponentially stable}. (26)

If (Ac, Be, Co) E S, then there exist a > 1 and/_ > 0 such that

Ile tll < ore-_t t > O. (27)

Moreover, we know from Theorem 2.2 above that ,9 is non-empty. We now

state some results found in [1] and [2].

Lemma 3.1 If O and /3 e F_.(H) have finite rank and are nonnegative

definite, then 0/3 is nonne9ative semi-simple. Furthermore, if rank (QP) =

Nc, then there ezist G and F E _.( H, _Nc) and a positive semi-simple matviz
M E _Nc ×Nc such that

0/3 = G'MF (28)

Fa* = INt. (29)

Proof: Bernstein and Hyland give a complete proof of this result in [1]. Here

we outline their proof in order to illustrate the form of the faztorization of

(_/3 and to provide a description of the operators G and r. Since (_ and

/5 have finite rank, there exists a finite dimensional subspace Z C H such

that (_Z C Z, QZ ± = 0,/3Z c Z and/3Z ± = 0. Hence there exists an
orthonormal basis for H and in this basis (_ and/3 have the infinite matrix

representations

0] 0]0 0 ' 0 0 '
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where Q1,/51 E Nrxr and r = dim Z. Consequently, there exists an invert-

ible ¢ E _rxr such that/_ = ¢-1(_1/_1¢ is nonnegative and diagonal and

_/5 is nonnegative and semi-simple. If rank (QP) = No, then it is clear that
(I) can be chosen so that

where A E NNcxNc is positive and diagonal. Hence,

0 Ioo 0 0 1_ '

and if we define G, M and F by

c c sT0101[°T0
¢-1 0

M = S-1AS,

for any invertible S E NN, ×N,, then G, F and M provide the desired factor-

ization and this completes the proof.

Throughout the paper we will refer to G,AF and M satisfying the above
lemma as a (G - M - F) - factorization of QP. For convenience we define

E = BI_-IB * and E = C*V_-IC and let ÀNo and In denote respectively

the Ne x lye identity matrix and the identity operator on H, respectively.

We state Bernstein's and Hyland's main theorem which provides a set of

necessary conditions that characterize the optimal steady-state fixed order

dynamic compensator for bounded input and output operators (see [1]).

Theorem 3.2 Let B and C be bounded operators and let Nc be given and

suppose that there exists a controllable and observable dynamic compen-

sator (Ac, B_, C¢) e _q of order Nc which minimizes J given by (25), then

there exist nonnegative definite operators Q, P, (_, and f_ on H such that

Ac, Be, and Cc are given by

Ac = r(A- Qn - EP)G* (30)
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Bc = rQC*Vi -1 (31)

Cc = B'PP* (32)

for some (G - M - F) - factorization of QP and such that, with r = G*F fi

£(H), the following conditions are satisfied:

Q : D(A*) -+ T_(A) P : 7)(A) --4 7)(A*)

: H + I)(A) P : H _ Z)(A*)

rank (0) = rank (P) = rank (OP)

and

0 = (A - rQE-)Q + Q(A - rQ_)* + V1 + rQ_QT* (33)

0 = (A- EPr)*P+ P(A - EPr) + R1 + r*PEPr (34)

0 = [(A- EP)Q + _)(A - EP)* + Q_Q] r* (35)

= [(A - Q_)*/5 +/5(A - Q_) + PEP] r. (36)0
k J

Note that these necessary conditions consist of a system of four operator

equations, including a pair of modified Riccati equations and a pair of mod-

ified Lyapunov equations which are coupled by the operator r 6/_(H). The

operator r is idempotent, since r 2 = rr = G*FG*F = G*In_F = G*F = r.

In general r is an oblique projection and may not be orthogonal since there

is no requirement that r be self-adjoint. Moreover, we note that in view of

Lemma 3.1, Theorem 3.2 applies to (SACS -1 , SBc, CoS -1 ) for any invertible

S 6 _Nc×Nc, since the (G- M - F)-factorization of _/5, used to determine

Ac, Bcand Co, is not unique. However, the operator r remains invariant

over the class of factorizations. An easy computation yields the following
identities:

0 = rQ and t5 =/St. (37)

It is helpful to have an alternative form of the optimal projection equa-

tions to actually compute the optimal fixed-order compensator of the ap-

proximating finite-dimensional plant. The following result for bounded input

bounded output operators may be found in [1].

Proposition 3.1 If B and C are bounded, then the optimal projection equa-

tions (33)-(36) are equivalent, respectively, to

0 = AQ + QA* + V1 - Q_Q + r±Q_Qr*l (38)
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0 = A*P + PA + Ra - PEP + T__PEPTI (39)

o = ApO+ O,Ap+ -  ±Q Qrl (40)
0 = a'qP + PAq + PEP - rTPEPr. (41)

where

T± ----IH -- "r, Ap = A - EP and Aq = A - Q_. (42)

This form of the optimal projection equations shows that there is a
connection between Theorem 3.2 and the standard LQG result when dim

H = N < oo. In this case, we note that the (G - M - F)-factorization of

QP when Nc = N is given by G = F = IN and M = QP. Since r = IN

and r j_ = 0, it follows that (38)-(39) reduce to the standard observer and

regulator Riccati equations.

To obtain a geometric interpretation of the optimal projection we intro-

duce the "quasi-full-state" estimate

_.(t) = G* ze(t) • H, (43)

so that v_(t) = _(t) and Zc(t) = F_(t). Hence, the closed-loop system can

be written as

_(t) = Az(t) + BCe_k.(t) (44)

z(t) = r(A + BCe - [_eC)T_.(t) + rBcCz(t) (45)

where

[3_ = QC*V21 and Ce = -R2 -1B*P. (46)

This shows that the geometric structure of the quasi-full-order compen-

sator is dictated by the projection r. Sensor inputs T13cCz are annihilated

unless they are contained in T_(r*) = A/'(r) ±, while v_ employed in the con-

trol input is contained in T_(v). Consequently, T_(r) and T_(r*) are the

control and observation subspaces of the compensator, respectively. In order

to modify the previous results so that they will apply directly to unbounded

B and C operators, care must be exercised to precisely define the weak

forms of (33)-(36) and (38)-(41). We shall not consider this problem in this

short note. However, we shall use these systems to guide the approximations

below.
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4 Finite Dimensional Approximation

In general, the optimal projection equations (38)-(41) are infinite dimen-

sional operator equations. To actually use these equations to compute the

optimal fixed-finite-order compensator, a finite dimensional approximation

is needed (see [2] for details).

Let H N for N = 1,2, ..., be a sequence of finite dimensional linear

subspaces of H and let 79N : H _ H N be the canonical orthogonal

projections. Let A N E £(Hig), Big E f-.(_ m, HN), C N E £(Hig, _t),

RYl • I:(H N) and V N • £(H N) be given and consider the approximating

system

_,ig(t) = ANzN(t) + BiguN(t) + H_rlN(t)

uN(t) = cN_N(t) + H_C(t).
(47)

(48)

The goal is to design a sequence of finite-dimensional dynamic compensators
of fixed order Nc of the form

]_(t) = A_zN(t)+ BNyN(t) (49)
_ig(t) = C[zig(t), (50)

which minimizes the performance criterion

Ig Ig Ig def=lim - f01t E[(RNzig(s ) zig(s)) + u(s)TR2u(s)]ds"g (Ae,Be ,C if)
t--+e_ t

(51)
k N

Now, for each N = 1,2,..., let tJ_fN)ta'=l be a::: ::basis_ for H Ig. Also, for any

linear operator F N with domain and range in H N, unless otherwise noted,

we use the same symbol F N for its matrix representation with respect to

the basis chosen. Let _ig denote the kig-square Gram matrix corresponding

to the basis ----_=)ff_v}:_1 (e.g., _ig = [( c/N' __,jC_//N] )" Note that

(AN) * = (_ig)-l(Aig)-I-@N (Big) * = (Big)'l'_ Ig (52)

(Gig). = (_trffig)-l(cig) T (_ig) = Big R2-1(BN)-r ff2ig (53)

(TN), = (_?N)-I(TN)T_t_N (_N) = (_N)_I(cN)Tv21c N (54)
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and if we define the k N x k N nonnegative definite matrices

QN de.f QN (_I/N)- 1

ON de=f 0N(_I/N)_ 1

¢N _f ¢IN(_N)-I

_N dej BNR2-1(BN)T

pN de__f_NpN

pN de.._f _ N p N

p_ deal I,_NRN

_N de.._f (cN)Tv21cN '

then the matrix equivalence of the operator equation (38)-(41) become

0 = ANQ_ +QN(AN)T + VON -- W0g'_N_Nw_N_0_0

N N--N N N T
+_l Qo r'o Qo (_.) (55)

o = (A'_)TP_+ P_A '_ + P_ - p:r#p:
NT NN NN

-t-(_'±) P_ Eo Pd rj. (56)

0 N ^N _N N T w_N_Nf}N= ApoQO + Qo (Apo) + "_o "-'o "co
N N -N N N T

--r.j_ Qo E0 Qo (ri) (57)

0 = (A_)rP N + P_A N + PoNENP N
N T N N N N

-(¢j.) P_ }30 P{_ Tj_. (58)

The approximating optimal dynamic compensator (A N, BN, c_) of order

Nc is then given by

A_ = r_'(AN N-_-Qo 5-]'0 -- _NpN)(GoN)T (59)

B N N N NT -1= ro Qo (c) v_ (60)
Cc N -- _R_I(BN)'rpN(FON)T (61)

where F N, G N E _ N_xkN and M_ E _NcxNc provide a (G N - M0N - F_v) -

factorization of O N P0N.

We turn now to an example. Consider Burgers' equation, with Neumann

boundary control given by

o o2 o?_;-_z(t,x) = _-_x2Z(t,x)- z(t,x) z(t,x), O<x<l, t>O (62)

z(O,x) = zo(x) (63)

_---_z(t,O) = -ul(t), _-----_z(t,l) = u2(t), (64)
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and observations

y,(t) = z(t,o) (65)
y2(t) -- z(t,1), (66)

where e = _e > O and Re is the Reynolds number. Initially, we consider
the linearized Neumann boundary control problem

0 02
_z(t, =) = ,b-_2z(t, =), o < = < 1, t > 0 (67)

z(o,=) -- _0(=) (68)

_-_Z(t,O) -_- --_,(t), o-_z(t,l)= u2(t). (69)

We will apply the linearized feedback control laws constructed from this

model to the nonlinear Burgers' equation. System (67)-(69) can be placed

into the standard state space framework by defining the operator A_ on

H -- L2(0, 1) by

A,¢ = _" (70)

for all ¢ e D(A,) = {¢ E H2(0, 1): ¢'(0) = ¢'(1) = 0}. Define W = V* =

H}(O, 1)=:D(A2)andletB : --+VbedefinedbyB--._V'where.4=

-Ac +wI and we assume that w is not an eigenvalue of A_ with homogeneous

Neumann boundary conditions, so that .2. is boundedly invertible on L2 (0, 1).

The Neumann map Af is defined by the boundary system given in [11, pages

53-56]. Let C : W -_ 32 defined by

[ ¢(0) ] (71)C¢= ¢(1) '

The boundary control problem (67)-(69) can be represented by a differential

equation

d

d-'t = A,z(t) + Bu, z(O) = zo (72)

y(t) = Cz(t). (73)

It is well known that A, generates an analytic semigroup S(t) on H. More-

over, the spectrum a(A,) of A, consists of all eigenvalues ,_n, n = 0, 1, 2,...

given by "_n = -en 27r2 and for each eigenvalue ,_, the corresponding eigen-
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function Cn is given by

¢0(x) = 1 ¢,(x) = V_cos(n_rx), 0 < z < 1.

One can easily verify conditions (7)-(8), by taking 3' = ¼ (see [li D.

straightforward to show that (H-1)-(H-5) are valid.

(74)

It is

5 Numerical Results

Now, we formulate a specific approximation scheme for the boundary control

problem (74). For each N = 2, 3,... let divide the unit interval [0,1] into N
i-1 i = 1,2,... N + 1. Let H yequal subinterval [xi, Xi+l], xi = _VTf, , --- Span

{hN1,
i Ji=O where h/N(.) are the standard hat functions defining continuous

piecewise linear splines (see [3]). Note that k N = dim H N = N + 2 and let

the approximate solution zY(t, x) of z(t, x) for equation (72)-(73) be given
by

N+I

zN(t' ) = E zN(t)hN(x) (75)
i=0

for some z N(t) E _, i = 0, 1,..., N + 1. Standard finite element approxima-

tions yield the ODE system

dzN(t) = ANzN(t) + BNu(t), zN(o) = ZoN (76)

YN(t) = CNzN(t) (77)

where the matrices A N, B N, C N can be easely computed by using the
Ritz-Galerkin approximation.

For our numerical example, we set c_ = _, the initial condition zo(x) =

sin(_rx), rl = 171 ---- 1 and r2 ---- v2 ---- 10 -3. Also, R1 = rlIy, R2 --- r2Im,

V1 = VlIH, and V2 = v2It. Therefore, it follows from Section 3 that RoN =
rt_ N and VoN = vl(_N) -1 where _N is the Gram matrix. In this numerical

example we will compare the approximating optimal LQG (i.e., Nc = N + 2)

with the dynamic compensators of various order No. The optimal projection

equations (55)-(58) were solved using the homotopic continuation algorithm

described in [16]. The approximating controllers defined by the linear fixed-

order compensator (B N and CN) were applied to Burgers' equation (62)-
(66).
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We note that N = 32 produces converged optimal LQG designs. Hence,

the reduced order compensators were tested on both the linear and nonlinear

problem using the N -- 32 order finite element model.

In the full order case N = 32 and Nc = 34, the converged feedback and

observer functional gains are given in Figures 1 and 2, respectively. Since

we are controlling the flux at each end point x = 0 and x = 1, we have

two feedback functional gains, the one plotted with solid line is the flux

control gain at the origin and the one plotted with dashed line is the flux

control at the end point x = 1. Similarly, since we are sensing the flow

at the origin and the end point, we have two observer gains (solid line for

observer gain at the origin and dashed line for the observer gain at x = 1).

Next, we applied the full order controller to Burgers' equation resulting in

the nonlinear closed-loop trajectory given in Figure 3.

In the fixed-order case, we considered the accuracy of the impulse and

step responses of the various reduced order compensator designs compared

to the corresponding responses of the full order LQG design. Figure 4 il-

lustrates the linear closed-loop impulse response for the full-order LQG and

reduced order compensator (of order Nc = 16) designs. The impulse re-

sponse of the linear closed-loop system for the 16th-order compensator is

in perfect agreement with the LQG response. Note that in Figure 4 we see

only one plot for both designs because both plots are essentially the same.

Similar trends are seen (Figure 5) in the comparisons of the step responses

(for the same design case) with the corresponding LQG responses.

For the nonlinear closed-loop response, the 16th-order compensator was

applied to Burgers' equation and we see (in Figure 6) excellent agreement

with the full order closed-loop trajectory response. Hence, replacing the

32nd-order optimal LQG controller by a 16th-order compensator produces

a closed-loop system with minor performance degradation.

We also compared the performances of the closed-loop system of the 4th-

order compensator with the full order LQG responses. Figures 7 and 8 are

the impulse and step responses of the linear closed-loop system, respectively.

If one compares these responses with the corresponding responses for the full

order LQG controller shown in Figures 4 and 5, then it is clear that the 4th-

order compensator performs almost as well as the full order LQG controller.

Similar comments hold for the nonlinear closed-loop responses. For example,

the 4th-order compensator response (Figure 9, solid line} compares well to

the LQG response (Figure 9, Dashed lines), especially after time T = 1.0.
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6 Conclusion

The purpose of this note was to show that finite dimensional dynamic com-

pensators could be used to control a nonlinear partial differential equation

without significant loss in performance. Although there is considerable the-

oretical and numerical work for bounded input and bounded output oper-

ators, numerical results for the unbounded control and observation opera-

tors are not as fully developed as the theory. For example, several authors

have considered questions of existence of stabilizing dynamic compensators

(even for nonlinear plants [6]) for boundary control problems. However,
approaches, such as the optimal projection method, that result in a "com-

putable" fixed order compensator have not been applied to more general

boundary control problems. Although the numerical results presented here

show that the optimal projection method can produce excellent designs for
problems with boundary control and observation, there are a number of the-

oretical and numerical issues that need to be resolved in order to extend this

approach to practical problems of this type.
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