A PC-Based Simulation of the National Transonic Facility's Safety Microprocessor

J. J. Thibodeaux
NASA Langley Research Center
Hampton, Virginia

W. A. Kilgore and S. Balakrishna
ViGYAN, Inc.
Hampton, Virginia

JULY 1993
SUMMARY

A short study was undertaken to demonstrate the feasibility of using a state-of-the-art off-the-shelf high speed personal computer (PC) for simulating a microprocessor presently used for windtunnel safety purposes at Langley Research Center's National Transonic Facility (NTF). Currently, there is no active display of tunnel alarm/alert safety information provided to the tunnel operators, but rather such information is periodically recorded on a process monitoring computer printout. While this recording does provide adequate data, generally, it does not provide on-line centralized situational information nor permit rapid identification of safety operational violations which are able to halt tunnel operations. It was therefore decided to simulate the existing safety control algorithms and briefly evaluate a real-time display which could provide both current equipment position as well as trouble shooting information. The initial step of this study was to transform the existing microprocessor software into QuickBasic (version 4.5) software for programming into the selected personal computer. After this, hardware checkout was begun. For demonstration, and final evaluation, an already existing PC-based signal input generator was connected to the simulated safety microprocessor. This device was used to simulate inputs that would normally be supplied by tunnel transducers. This study together with another recent control application has shown these inexpensive computers to be reliable, and can be used for sophisticated tasks.
such as information display and protection of expensive wind tunnel equipment at very modest costs. Furthermore, it was learned that safety code transformation along with generating a highly accurate complex situational/warning display could be achieved without a great deal of effort. Included in this short document is the PC source code for the simulation, and a selected real-time alert display along with a brief explanation of the various tunnel safety control checks performed by the NTF's safety microprocessor.
INTRODUCTION

The National Transonic Facility, which is the world's largest cryogenic wind tunnel, was commissioned in May 1982. References 1 and 2 describe the operational characteristics of this facility along with some of its special features. Until recently, this elaborate research test facility was still using the microprocessor systems that were designed using 1970's type of computer technology. Five of these microprocessors that were used to control and regulate Mach number, temperature, pressure, fan speed, and test section configuration have been recently replaced with 1990's computing technology. The many recent technological advances and innovations that have taken place in computers has helped initiate the changeover to this newer equipment. A noteworthy amount of these advances have also occurred in personal computers (PC's). Among these is the capability for high frequency computation at greater signal bit resolution while simultaneously realizing decreasing costs and significantly increased reliability. Currently, a PC clone (12 Mhz CPU, EGA video, with a hard disk, and an eight channel digital-to-analog converter) computer has been operating Langley Research Center's 0.3-meter cryogenic wind tunnel since 1988 (reference 3). This system has now been operating very efficiently for several thousand hours without any major down time. Rarely has board level replacement been necessary, but when it was once required, quick low cost repairs resulted.

To address the need for a real-time display of NTF safety operational information, and to better understand the existing
safety microprocessor code for future enhancement purposes, it was decided to research the application of an advanced high-speed personal computer for use as a potential replacement for the existing NTF tunnel safety microprocessor. The system consisted of a high speed 386-chip personal computer, 16-bit analog-to-digital, and digital input/output hardware. A second PC was used as a signal generator (reference 4) to provide inputs for software checkout, and display evaluation of the simulated safety microprocessor. Results as well as the source code listing of those operational tests are presented here.
SYMBOLS

ALPHAB Bottom test section wall position, degrees
ALPHAT Top test section wall position, degrees
BETABF Bottom far-side model support wall position, degrees
BETABN Bottom near-side model support wall position, degrees
BETATF Top far-side model support wall position, degrees
BETATN Top near-side model support wall position, degrees
CD Radial distance between model support wall pivot point
 and corresponding reentry flap tip, inches
DISABE Pitch limit disable logic switch
GAMABF Bottom far-side reentry flap position, degrees
GAMABN Bottom near-side reentry flap position, degrees
GAMAFS Far-side vertical wall reentry flap position, degrees
GAMANS Near-side vertical wall reentry flap position, degrees
GAMATF Top far-side reentry flap position, degrees
GAMATN Top near-side reentry flap position, degrees
MACHSQ Mach number squared
PRATO Ratio of total to static pressure (XPRES/PSTAT)
PSTAT Static pressure, psi
QCOMP Computed tunnel dynamic pressure, psi
RHO Density, lbm/cubic inch
ROL Arc sector roll angle, degrees
XGVA Inlet guide vane angle, degrees
XNBF Angle between bottom far-side model support wall and
 its pivot-to-reentry flap tip radius, degrees
XNBN: Angle between bottom near-side model support wall and its pivot-to-reentry flap tip radius, degrees
XNTF: Angle between top far-side model support wall and its pivot-to-reentry flap tip radius, degrees
XNTN: Angle between top near-side model support wall and its pivot-to-reentry flap tip radius, degrees
XPRES: Total pressure, psi
XPSP: Pitch hydraulic pump swash plate position, percent
XQDIAL: Tunnel dynamic pressure thumbwheel limit, psi
XSTRDM: Pitch angle thumbwheel negative limit, degrees
XSTRDP: Pitch angle thumbwheel positive limit, degrees
XSTRUT: Current arc sector pitch angle, degrees
(α): Test section wall angle, degrees
(α)': Arc sector pitch angle, degrees
(β): Model support wall angle, degrees
(γ): Angle between the model support wall and its pivot-to-reentry flap tip radius, degrees
(γ)': Angle between the model support wall and the reentry flap, degrees
Δ: Increment
DISCUSSION

General Comments

Until recently, microprocessor computing capability used at the NTF was approximately twenty years behind the current state-of-the-art computer industry. Devices that were used for control algorithm calculations were based on 1970's microprocessor technology which consisted of compiled software code with floating point hardware executing at a speed of approximately 100 milliseconds per control loop. All executable code resided in non-volatile read-only EPROM-based memory. Eight-bit analog-to-digital converters, which were the standard for that time period, have been recently replaced with 16-bit devices to increase input resolution. Process feedback generation was created by reading analog signals by way of analog-to-digital converters while display information was created by digital output devices. For operational purposes, a clocked/watch dog timer interrupt structure was used in this earlier microprocessor system. Control algorithm execution was periodic at a fixed clock frequency which was checked every period to ensure correct cycle time for self-diagnostic purposes. This execution time was slowed somewhat due to continuous memory sharing by an internal communication controller module. Memory accesses to/from these locations were interleaved between the communication controller and the main microprocessor controller.
Because of hardware and software difficulties with these older microprocessors as well as recent decreases in costs and technical advances in computing technology, it was necessary to replace this older equipment. While much of the old hardware architecture has changed, the software has remained the same. A research activity was initiated to investigate the potential of simulating the NTF's safety microprocessor algorithms in a present day low-cost high speed (386 micro-chip) off-the-shelf personal computer, and explore the capability of such a device for PC-based safety control and display. This effort was also directed at assessing the existing software and eventually modifying selected areas of code to more nearly match the tunnel testing envelope. It was especially desirable to generate and explore the benefits of a real-time display of tunnel safety operational information.

Figure 1 is a schematic of equipment used for this study while figure 2 is a photograph of this same hardware. The hardware-in-the-loop simulator, itself PC based, was used to generate signals introduced to the safety micro simulation via the analog wiring box. These input signals were subsequently used to drive the various test alarms/alerts which will be discussed in greater detail later. The base addresses for the three a-to-d boards (DT-2801/5716A) as well as the base addresses for the two DIO boards (DT-2817) of the safety micro are shown in figure 1. Each of these DIO boards have four port registers (ref. 5). For the study, one DIO board was configured
for accepting inputs while the other was setup to send alarm
discretes which simulate relay signals to the programmable ladder-
logic sequencers. There are three such sequencers currently used
at the NTF. Sequencers are used to prevent inadvertent damage to
equipment if improper operational sequences are attempted. The
first DIO board (base address H228) was configured such that two
ports were dedicated for accepting simulated pitch thumbwheel
limits (plus and minus) while the other two ports were used
additively to generate the tunnel dynamic pressure alarm limit.
The second board (base address H250) was configured strictly for
handling relay discrete outputs intended for sequencer specific
alarm action. The four discrete alarms selected for output were as
follows:

1) Tunnel dynamic pressure exceeding the thumbwheel
 limit (+17.6 psi).
2) Arc sector pitch angle exceeding the plus (+16.0
deg.) and minus (-8.0 deg.) thumbwheel limits.
3) Model support walls bottom nearside/farside not in
 synchronous operation (absolute difference in near
 and far angles greater than 0.24 deg.).
4) Test section wall bottom/model support wall bottom
 nearside/reentry flap bottom nearside collision (see
 figure 3).

The number of alarm outputs thus generated was restricted to four
due to a limited number of slots available in the selected
computer. These alarms were selected as representative of those
used in the NTF. Any of the other conditions could have been chosen for output. If this microprocessor were to be actively used for tunnel safety monitoring, it would be necessary to free up an additional computer slot and include another DIO board so as to accommodate other alarm outputs. All safety alerts of the program however are visually presented on the display screen.

The initial phase of this study consisted of coding all safety micro algorithms in the desk top PC. The QuickBasic code (ref. 6) thus developed paralleled the general format of the existing safety microprocessor Fortran 77 software. A basic difference between the two sets of codes was that the PC software executed in the same manner as the old micro software but without using subroutine calls. In effect, the PC code is an in-line layout of the original microprocessor software allowing efficient updating and development. Appendix A contains the commented simulator source code listing.

PC software coding began with the input of known conversion constants and values of equipment physical limits, cosine's of angles as well as analog-to-digital and digital input/output device base addresses. After the input of constants, the analog-to-digital boards were set up for reading the analog signals from simulated field transducers generated by the input simulator. A total of nineteen inputs were thus brought into these converters. A status check on the registers of the a-to-d boards as well as the digital I/O boards was performed to ascertain if a fatal board error had occurred. Because of the total number of signals, the
use of three a-to-d boards (DT-2801/5716A), and two DIO boards (DT-2817) was required to complete this simulation. It was these feedback signals and calculations using these inputs which were tested to ensure that no equipment violations occurred while operating the tunnel. Signals thus introduced were converted into real engineering numbers by directing them through calibration equations, and these current values were then printed to the screen for display. Figure 4 is the display (in an unalarmed state) used for demonstration purposes in this simulation. The maximum and minimum operational ranges for the particular equipment or variable are shown to the immediate right. These values were overwritten in bright red in the event of an alarm situation. The current value of the variable in question is displayed immediately to the left within the parentheses. Various alerts corresponding to the different software/hardware tests are shown later as examples. At the bottom right are four zero digits. Each individual digit cycles between 0 and 1 corresponding to the particular digital port selected for outputting an alarm signal. From left to right, the digits correspond to "TUNNEL Q EXCEEDED", "STRUT THUMBWHEEL VALUE EXCEEDED", "MODEL SUPPORT WALL NOT IN SYNC", and "TEST SECTION WALL BOTTOM/MODEL SUPPORT WALL BOTTOM FAR/REENTRY FLAP BOTTOM FAR WILL COLLIDE" alarms.

After conversion to engineering units of the incoming data, one of the first calculations performed in the program was the determination of the radius arm "CD" of figure 3. This is commented as subroutine "CALCD" in the software listing of
Appendix A. For the displaced model support wall and reentry flap, this is the distance from the tip of the reentry flap to the pivot point of the model support wall. Four separate calculations are performed to account for the top far and nearside reentry flaps as well as the bottom near and farside flaps. Subsequent to this, the angles "XNTF, XNTN, XNBF, and XNBN" formed by the model support walls and the respective radius arms "CD" previously determined were computed. These parameters were computed in subroutine "CALN", and then used in "TEST 02" to prevent test section walls from colliding. Collision was avoided by maintaining the proper distances between the top and bottom test section walls and the model support walls as well as the distance between the test section walls and the reentry flaps. This test will be derived and discussed further in the software logic.

In order to prevent exceeding the tunnel Mach number of 1.25 and the operational tunnel dynamic pressure \((1/2*RHO*V^2)\), two separate computations were required. The square of the tunnel operational Mach number was determined in "MACHIN" by using the ratio of total to static pressure. If this was violated, then a warning was printed to the screen. Following this, the computed dynamic pressure was determined and later compared to a set of thumbwheel input values that were brought in through the digital input ports. These inputs correspond to the desired upper limit of tunnel operational dynamic pressure. Likewise, if a violation of dynamic pressure occurred, a red colored warning was written to the screen. This will be shown later in "TEST 07" of the software.
The various tests programmed within the safety micro are referred to as TEST 01, TEST 02, TEST 03, TEST 05, TEST 06, TEST 07, TEST 10, and TEST 11. All of these tests were exercised in the simulation except TEST 05 which has been deactivated in the tunnel software. Its description is given below. As can be seen, some of the tests numbers are missing. This was a result of the evolutionary knowledge gained with tunnel operation, and experience. The following is a brief discussion of each of the various software tests.

Software Logic

TEST 01 examines the test section top and bottom wall angular positions relative to zero i.e. parallel to the tunnel centerline. Figure 3 provides a sideview of the bottom test section moveables of the NTF. The sign convention selected for the moveables was such that angular movement away from the tunnel centerline was considered positive while toward the centerline was negative. The exception to this convention was the angle (γ) which was considered to always be positive. The dashed lines represent the angular movement of these devices which are housed inside of the test section. If either of the walls was not within ±0.02 degrees of zero position, a warning was created. This test prevents model access housings from being accidentally extended into the test section unless the top and bottom walls are very near their zero position. Figure 5 shows the alarms if either the top or bottom test section walls was greater than or equal to $+0.02$ degrees. Similarly, figure 6 constitutes the warnings if they were less than
or equal to -0.02. It should be noted that in either case an error of 0.001 degrees has caused the alert/alarm conditions to occur. This gives an idea of the accuracy of this simulation.

TEST 02 is a two-part test used to prevent the test section walls, and model support walls, or reentry flaps from colliding. There were two separate calculations within this main test. These equations are developed here for future reference. Figure 3, as mentioned earlier, provides the sideview, dimensions, and angular travel of the test section movables.

The first part of this test calculates the clearance of the downstream end of the test section wall and the upstream end of the model support wall. A safety interlock was initiated whenever this clearance, \(Y_B - Y_A \) (from the sideview), became less than or equal to 0.5 inches. This clearance was initially two inches, but due to knowledge gained during operations, it was reduced.

From the figure, the test section wall angle \(\alpha \) can be either positive or negative while the model support wall angle \(\beta \) is defined to be negative while traveling toward the stream flow. Likewise, it is clear that:

\[
Y_A = a + 300 \sin (\alpha)
\]

and:

\[
Y_B = b + 132 \sin (\beta).
\]

Therefore, substituting these into the safety criteria we get:

\[
b + 132 \sin (\beta) - (a + 300 \sin (\alpha)) \leq 0.5
\]
or

\[
b - a + 132 \sin (\beta) - 300 \sin (\alpha) \leq 0.5.
\]

We see in the figure, that \(b - a = 9.276 \) inches which happens to be
the distance between the pivot points of the test section wall and
the model support wall. Since the angles α, and β will be
small, $\sin(\beta) = (\beta)$ (in radians), and $\sin(\alpha) = (\alpha)$ (in radians). Consequently, the first equation of this two part test becomes:

$$9.276 + 132 (\beta) - 300 (\alpha) \leq 0.5 \text{ in.}$$

In programming terms, this becomes:

$$\text{TEST2}(1) = KCL + KLENBD \times X - (KLENA \times Y).$$

The value of TEST2(1) is then compared to 0.5, and an alarm was
created if this was less than or equal to 0.5.

Since there are four model support walls (top farside and
nearside and bottom farside and nearside), this calculation must be
performed four times in order to examine the four possible situa-
tions.

The second criteria of TEST 02 ensures that the leading edges
of the four reentry flaps do not get any closer than 0.5 inches to
the downstream end of the upper and lower test section walls. As
before, this criteria was reduced to 0.5 inches from two inches due
to numerous alarms experienced during shakedown. This portion of
the test was seen to be vastly more complex trigonometrically than
the first part due to the changing lateral distance described by
the reentry flaps and model support walls during movement.

Mathematically, in terms of the symbols of figure 3, the alarm
condition can be expressed as:

$$\text{YA1} - \text{YC} \leq 0.5 \text{ in.}$$

If, at anytime during movement, the left side of the equation
becomes less than or equal to 0.5 inches, the microprocessor must
alarm by setting the appropriate relay logic in the sequencer. Again from figure 3, it can be seen that:

\[
\sin (\beta - (\gamma)) = \frac{YC}{CD}
\]
or
\[
\sin (-1(-\beta + \gamma)) = \frac{YC}{CD}.
\]

Since \(\sin (-\text{angle}) = -\sin (\text{angle}) \), we can write:

\[-\sin (-\beta + \gamma) = \frac{YC}{CD}.
\]

For small angles, \(\sin (-\beta + \gamma) = (-\beta + \gamma) \), and therefore

\[YC = -CD (-\beta + \gamma).
\]

The above is true for small angles expressed in radians. By definition (\(\beta \)), was restricted to having negative values of 0 to -4.5 degrees. Because the voltage from the model support wall sensor in the tunnel gives a positive voltage, a negative sign is affixed by way of calibration within the microprocessor.

From the above, CD and (\(\gamma \)) are the only two unknowns, but they were determined as shown below.

By the law of cosines for the triangle CBD in figure 3, we see that:

\[CD^2 = BD^2 + CB^2 - 2(BD)(CB) \cos (180 - \gamma).
\]

Substituting the constants \(BD^2 = 132^2 = 17424 \), \(CB^2 = 60^2 = 3600 \), and solving for CD we get:

\[CD = \sqrt{(17424 + 3600 - 2(132)(60) \cos (180 - \gamma))}\]

or

\[CD = \sqrt{(21024 + 15840 \cos (180 - \gamma))}.
\]

Since \(\cos (180 - \gamma) = -\cos (\gamma) \), the above is expressed as:

\[CD = \sqrt{(21024 + 15840 \cos (\gamma))}.
\]

In program variable form, this becomes:

\[CDX = \text{SQRT (KCD1 + KCD2 * INTCOS)}
\]
where \(\text{INCTCOS} = \cos (\gamma) \).

In order to find \(\delta \), we used the law of sines which gives:

\[
\frac{CD}{\sin(180 - \gamma)} = \frac{CB}{\sin(\delta)}.
\]

Since CD was determined from above and CB = 60 in.,

\[
\delta = \sin^{-1}\left(\frac{60}{CD} \sin(180 - \gamma)\right)
\]

or

\[
\delta = \sin^{-1}\left(\frac{60}{CD} \sin(\gamma)\right)
\]

because \(\sin(180 - \gamma) = \sin(\gamma) \). For the top nearside model support wall, this was written in the program as:

\[
\text{XNTF} = \delta \times \text{KRAD}
\]

where KRAD = 0.017432 radians per degree.

The angles \(\alpha \) and \(\theta \) (always negative by definition) are known and since we can solve for CD and \(\delta \) from the above equations, the only unknown is L. This can be calculated by again studying figure 3. It is obvious that the distance X1 will change as a function of the reentry flap and model support wall positions and consequently so will L.

It remains now only to derive an expression that will take into account this variation. By looking at the figure, it can readily be seen that:

\[
\tan(\alpha) = \frac{L}{(432 - X1)}
\]

where \(X1 = CD \cos(-\beta + \gamma) = CD \cos(-1(\beta + \gamma)) \). Since the \(\cos(-\text{angle}) = \cos(\text{angle}) \), \(X1 = CD \cos(\beta + \gamma) \).

Therefore:

\[
L = (432 - CD \cos(\beta + \gamma)) \tan(\alpha).
\]

For small \(\alpha \), the \(\tan(\alpha) = \alpha \) (in radians) and the \(\cos(\beta + \gamma) \approx 1 \) since \(\beta + \gamma \) is a very small angle. Consequently:
\[L = (432 - CD) \alpha \] (in radians).

Once again from the figure:

\[YA1 = 9.276 - L. \]

After substituting \(L \), the above becomes:

\[YA1 = 9.276 - (432 - CD) \alpha. \]

Previously, we saw that:

\[YC = -CD (-\beta + \eta). \]

Inputting these last two equations into the alarm criteria i.e.

\[YA1 - YC \leq 0.5, \]

we get:

\[9.276 - (432 - CD) \alpha - (-CD (-\beta + \eta)) \leq 0.5 \]

or

\[9.276 + CD (-\beta + \eta) - (432 - CD) \alpha \leq 0.5. \]

Because the sensors only provide positive voltages, the negative sign on \(\beta \) was introduced inside the microprocessor by way of the calibration curve. Thus this equation becomes:

\[9.276 + CD (\beta + \eta) - (432 - CD) \alpha \leq 0.5 \text{ in.} \]

In programming terms, this becomes:

\[\text{TEST2}(2) = KCL + CDTF \times (X + XNTF) - (KSTA36 - CDTF) \times Y \]

where \(X \), \(XNTF \) and \(Y \) must be in radians. Since there are top and bottom test section walls as well as near and farside model support walls and reentry flaps, this computation was also performed four separate times.

Figure 7 shows the alarms that have been created to warn of impending collision of the top and bottom test section walls with their respective model support walls, and reentry flaps. At the bottom right of this figure is shown the digital value of 0 0 0 1.
The value of one in this position corresponds to setting true of the alarm logic for "TSWB/MSWBF/REFBF COLLIDE" previously mentioned.

In order to ensure that the model support walls are always within 0.24 degrees of one another, TEST 03 constantly computes the absolute angular difference between the bottom nearside and farside model support walls. Additionally, this same absolute difference is compared to 0.24 degrees for the top nearside and farside model support walls. In event that this limit was exceeded, a red warning message ("MSW NOT IN SYNC") was printed to the screen. This warning is commonly shared by both bottom and top model support walls. Figures 8, and 9 show this warning displayed at the very bottom of the screen. A comparison of the model support walls present values shows how closely the alarm occurs after exceeding the 0.24 difference. Additionally, since the third digit in figure 9 is unity, this port was outputting to the sequencer for alarm action for the bottom walls. Because of a shortage of output ports, this could not be done for the top model support walls.

TEST 05 is a simple software check of the two independent side wall reentry flap positions. The code routinely checks to ensure that the angles of the side flaps were not less than or equal to zero degrees. This precludes near and farside flap extension into the flow stream. Initially, these side flaps were intended to be used with slotted side walls of the test section. These slotted walls have not been installed at the NTF, and consequently the side flap actuators are locked in a safe position and are not normally
moved during aerodynamic testing. This test remains in software, however, for future use. Figure 10 gives the two simulation warnings obtained in the event of a position violation.

The fundamental objective of TEST 06 was to prevent any striking or interference between the model arc sector strut and the top or bottom tunnel model support walls of the test section. The complexity of this test is best understood by a brief derivation of these two similar equations. Before undertaking this task, an understanding of how safety margins for the arc sector, and the model support walls were determined is necessary. It was known that the arc sector hydraulic shuttle actuator would require 0.125 seconds to achieve the failsafe position for stopping the arc sector, and 0.33 seconds would be required for the ladder-logic sequencer to respond to an interference condition. A 10 percent margin was added to the sum of these times which yields approximately 0.5 seconds for halting the interference situation. Since the arc sector was assumed to travel at 4 degrees per second, 2 degrees (4 deg/sec X 0.5 sec) of pitch margin was desired. Likewise, a value of 0.15 degrees (0.3 deg/sec X 0.5 sec) was used for the model support wall margin of safety. Reference 7 was used to obtain a better understanding of the operation of this part of the program. A plot of model support wall travel versus the arc sector angular motion (figure 11) along with the designed margins of safety (dashed-lines) is provided here for clarity. The 0.15 degree MSW offset dictated that the top and bottom MSW/Arc sector safety lines must be parallel to the interference lines, and by
simply offsetting by this amount the desired margin of safety was achieved. Additionally, inorder to achieve the maximum pitch operating range, and larger safety margins for faster movements, the 2 degree pitch safety margin was included in the arc sector pump stroker position which is proportional to arc sector velocity. Therefore, the top and bottom safety margin equations were derived to be functions of these two offsets as is shown below.

From figure 11, these are linear equations through the offset points \((X_1,Y_1)\), and \((X_2,Y_2)\) which can be expressed as:

\[
(Y - Y_1)/(Y_2 - Y_1) = (X - X_1)/(X_2 - X_1)
\]

where for the top:

\[
X_1 = (-11.5 + \Delta \alpha_i) \quad X_2 = (-10.33 + \Delta \alpha_i)
\]

\[
Y_1 = (+0.15) \quad Y_2 = (-4.5 + 0.15) = -4.35
\]

and for the bottom:

\[
X_1 = (19 - \Delta \alpha_i) \quad X_2 = (15 - \Delta \alpha_i)
\]

\[
Y_1 = (+0.15) \quad Y_2 = (-4.5 + 0.15) = -4.35.
\]

By letting \(X = (\alpha_i)\) (the current arc sector pitch angle, deg), and \(Y = (\beta)\) (the model support wall angle, deg) and after considerable algebraic manipulation, the top MSW/Arc sector safety margin equation becomes:

\[
4.5(\alpha_i - \Delta \alpha_i) + 1.17\beta = -51.57. \quad (1)
\]

Similarly, the bottom MSW/Arc sector safety equation is:

\[
4.5(\alpha_i + \Delta \alpha_i) - 4\beta = 84.9 \quad (2)
\]

The constants shown above (-51.57 and 84.9) are the values that the computed left side of equations (1), and (2) were tested against in
TEST 06. If at anytime, the left side of equation (1) was less than or equal to -51.57 or the left side of equation (2) was greater than or equal to 84.9, then a strut-to-MSW interference warning was created for the top or bottom respectively. During real tunnel operations, test section movement would be halted until the situation is corrected. Figure 12 graphically shows the physical relationship of the test section hardware to the established limits.

While the implementation of this simulation was progressing, a C of F effort was begun at the NTF. Among the numerous improvements for increased tunnel production was the replacement of the existing arc sector hydraulic system with a new variable volume high pressure power pack. Because of this, the swash plate signal of the old system had to be eliminated. Consequently, a suitable signal had to be found because TEST 06 software uses the swash plate signal for its checks. While trying to commission this new system, data from the spool position was recorded and analyzed. This signal was found to be free of noise and would require a minimum of software change in the safety microprocessor so as to continue to prevent interference between the arc sector and the top or bottom model support walls. The signal is currently used at the facility, but has not been incorporated in this simulation until more on-line experience has been acquired. Figures 13, and 14 show the red colored alarms for this condition.

TEST 07 consists of a number of simple tests that are particularly interesting to safe tunnel operation. The first of
these determines whether current arc sector pitch angle has exceeded preselected positive or negative pitch thumbwheel limiting values. A disable switch provides a method whereby the pitch limits can be ignored so that these limits may be changed while the tunnel is online. The software to accomplish this has been included in this simulation. In a similar manner, the calculated value of tunnel dynamic pressure (Q) was compared against a preselected thumbwheel value of dynamic pressure. Both dynamic pressure and pitch thumbwheel limits were introduced into the simulation by way of the DIO board (H228) that was configured for input only. Mach number squared was then compared to the square of the maximum allowable Mach number (1.25). The next part of this test assesses the voltage status of the strut angle, static pressure, total pressure, and static pressure range code sensors. If voltages are not maintained within acceptable upper or lower bounds, alerts are activated. Figures 15, and 16 are provided to show these alerts. Attention is now called to the first two unity digits at the lower right of the figure 15. Both "TUNNEL Q EXCEEDED" and "STRT THM'WL XEE'ED" have been made to activate thereby setting the corresponding DIO board (H250) output ports to one. Figure 16 shows the static pressure sensor voltage range check on the lower end. A similar check was performed on the upper end of the sensor, but was not activated nor shown here. Figures 17, and 18 show the upper and lower checks of the static pressure range switching code that was performed. The switching code must remain within 3.00 and 4.50 volts so as not to disrupt operations.
The numerical values just to the left of the alarm messages give an indication of the values creating the alert activation. In either case, a difference of 0.01 volts has resulted in tripping of the alarm.

There are two parts to TEST 10. Its first part is to calculate the difference between the upper far side test section model support wall and the corresponding reentry flap, and compare that difference to 15.0 degrees. If the difference is greater than 15.0 degrees, then an alarm was directed to the sequencer which halts operation. This is repeated for the lower near, and far side reentry flaps as well. Figure 19 shows the reentry flap values to be set to 15.003, 15.008, 15.006, and 15.009. The small differences (model support wall angle minus the reentry flap angle) of 0.003, 0.007, 0.005, and 0.009 degrees are causing the alerts of this condition. The second part of this short test examined the two upper and two lower reentry flap positions. If the specified reentry flap position was less than +0.1 degrees, then it was going into the tunnel slipstream, and was alarmed. Figure 20 is provided to show the occurrence of these alerts for farside and nearside top and bottom reentry flaps. The current values of 0.098 were deliberately set to demonstrate the small difference (0.001) needed for alarm activation.

The final test (TEST 11) of this program scans the model roll angle transducer and compared that to ensure that the preselected roll thumbwheel maximum, and minimum limits (+275 or -95 degrees) were not exceeded. Inside the tunnel, input sensor data for this
test is derived from a highly accurate inductive type roll resolver. Since this test has not been functional during windtunnel operations, it was not activated or exercised in this simulation. The software, however, has been programmed, and can be immediately implemented if desired.

System Evaluation

To evaluate the utility of the system, several tunnel operators were given the opportunity to operate, analyze and comment on the overall effectiveness, usefulness, and potential of this system. Generally speaking, all operators responded in the affirmative that during tunnel operations such a real-time on-line device would be of benefit especially during the trouble shooting mode of alarmed conditions. Furthermore, it was indicated that because of past difficulties in positively identifying safety operational culprits, latching software should be developed as part of this effort. At a minimum, this code should provide day/time information as well as hold the troublesome condition on screen thereby allowing correlation with other corroborating data ensuring rapid correction. A hardcopy printout of this should be generated as well. This information should not be deleted from the screen until operators have properly identified, and are convinced of the validity of the alert. Only then would resetting of the computer/display be allowed.

In the event that this system is adapted at the NTF, these suggestions would be given further consideration and certainly require evaluation during tunnel operations.
CONCLUDING REMARKS

A computer simulation of the safety microprocessor at Langley Research Center's National Transonic Facility was developed and verified. The objective of this brief study was to demonstrate the utilization of a low-cost state-of-the-art high-speed personal computer combined with digital input/output hardware for computation of complex tunnel safety algorithms. Software code comprising this system was checked by employing a setpoint signal generator which itself was a PC-based device capable of driving the simulator through its various safety tests. Each alarm/alert check residing within the code was systematically exercised and verified. A real-time display was also created which provided operational alarms, and alerts along with current tunnel equipment positional information. As per evaluation by several NTF operators, this display has potential for providing rapid on-line trouble shooting and warning capability providing that alarm correlation time is made available on the display. Additionally, operators indicated that the computer/display must not be reset until the source of the alert could be positively identified otherwise utility would be lost. This would necessarily require a latching routine that would hold the alarmed condition for trouble shooting purposes. Throughout this task, the PC was found to require relatively little hardware and programming experience for setup. Additionally, this 386-based computer system was found to be highly reliable, very accurate, and capable of extremely high frequency operation (about 50 milliseconds per
program cycle).
REFERENCES

Figure 1. PC-based Safety Microprocessor Simulation.
Figure 2. - PC-based safety simulation.
Figure 3. - Side view of the test section (bottom).

-0.5<=α<=1.0
0 to -4.5 for β
0 to +15 for γ

η is always positive

ANGULAR SIGN CONVENTION:
AWAY FROM STREAM IS POSITIVE

CB = REENTRY FLAP DISPLACED
BD = MODEL SUPPORT WALL DISPLACED
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEC:</td>
<td>-0.001</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSMT POS, DEC:</td>
<td>-0.002</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSWB POS, DEC:</td>
<td>-0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEC:</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTN POS, DEC:</td>
<td>0.002</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEC:</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEC:</td>
<td>0.002</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEC:</td>
<td>0.118</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEC:</td>
<td>0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEC:</td>
<td>0.122</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEC:</td>
<td>0.120</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>31.413</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA:</td>
<td>47.899</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>0.800</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>14.884</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 4. - Basic display in unalarmed state.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(-0.001)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSWB POS, DEG:</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSMTF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMTN POS, DEG:</td>
<td>(0.002)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBN POS, DEG</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG</td>
<td>(0.119)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>(31.410)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA:</td>
<td>(47.988)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.001)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.893)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 5. - Test section top and bottom walls relative to positive limit position (TEST 01).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(0.004)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>(-0.021)</td>
<td>TSWTC = NEG ZERO LIM</td>
<td></td>
</tr>
<tr>
<td>TSWB POS, DEG:</td>
<td>(-0.021)</td>
<td>TSWBC = NEG ZERO LIM</td>
<td></td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTN POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG:</td>
<td>(0.002)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFIF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFIN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFIF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>(0.116)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAI(PI2647), PSIA:</td>
<td>(31.407)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PIOT(PI2615), PSIA:</td>
<td>(47.908)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.800)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.801)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.095)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 6. - Test section top and bottom walls relative to negative limit position (TEST 01).
<table>
<thead>
<tr>
<th></th>
<th>PRESENT VALUE</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(0.003</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSMT POS, DEG:</td>
<td>(-0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSMB POS, DEG:</td>
<td>(0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSMTF POS, DEG:</td>
<td>(-2.668</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMTH POS, DEG:</td>
<td>(-2.669</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBF POS, DEG:</td>
<td>(-2.669</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBN POS, DEG:</td>
<td>(-2.668</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.118</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>(0.122</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>(0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PI2647), PSIA:</td>
<td>(31.410</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTO1(PT2615), PSIA:</td>
<td>(47.918</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.004</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.801</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.100</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 7. - Top and bottom test section walls relative to model support walls and reentry flaps (TEST 02).
<table>
<thead>
<tr>
<th></th>
<th>PRESENT VALUE</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(0.001)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSMT POS, DEG:</td>
<td>(-0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSNB POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>(-0.241)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTN POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>(0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG</td>
<td>(0.002)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.125)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFEB POS, DEG:</td>
<td>(0.119)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>(0.118)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PI2647), PSIA:</td>
<td>(31.414)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PIOT(PI2615), PSIA:</td>
<td>(47.927)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.801)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.104)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

MSH NOT IN SYNC 0 0 0 0

Figure 8. - Top model support walls synchronization (TEST 03).
<table>
<thead>
<tr>
<th></th>
<th>PRESENT VALUE</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(0.001)</td>
<td>+19.0</td>
<td>-11.8</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>(-0.013)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSBM POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWIF POS, DEG:</td>
<td>(0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWIF POS, DEG:</td>
<td>(0.002)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSBFB POS, DEG:</td>
<td>(-0.241)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSBMBN POS, DEG</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFIF POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFIFN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>(31.406)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA:</td>
<td>(47.899)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.800)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.801)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.101)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 9. - Bottom model support walls synchronization (TEST 03).
<table>
<thead>
<tr>
<th>Description</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(0.000)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>(-0.004)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSWB POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>(-0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTN POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>(0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBW POS, DEG:</td>
<td>(-0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REBFN POS, DEG:</td>
<td>(0.122)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>(29.306)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA:</td>
<td>(44.635)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.799)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(13.101)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

FS--SIDE REF IS 0.0 OR NEG
NS--SIDE REF IS 0.0 OR NEG

Figure 10. - Side reentry flaps relative to zero limit (TEST 05).
Figure 11. - Model support wall/arc sector operating envelope.
WALL- STRUT INTERFERENCE
INEQUALITIES

\[4.5 \alpha_i + 1.17 \beta \geq -51.58 \]
\[4.5 \alpha_i - 4\beta \leq 84.9 \]

Figure 12.- Model support wall/arc sector interference limits.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(-9.902)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSTM POS, DEG:</td>
<td>(0.001)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSBF POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSMTF POS, DEG:</td>
<td>(0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>(-0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG:</td>
<td>(0.002)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>(31.406)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOT(PT2615), PSIA:</td>
<td>(47.081)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.800)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(14.076)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 13. - Top model support wall/arc sector interference (TEST 06).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>19.311</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSMT POS, DEG:</td>
<td>-0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSBM POS, DEG:</td>
<td>0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSW1F POS, DEG:</td>
<td>0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSW1N POS, DEG:</td>
<td>0.002</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>-1.780</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG</td>
<td>-1.780</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFIF POS, DEG:</td>
<td>0.119</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>0.123</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>0.122</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG</td>
<td>0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(P12647), PSIA:</td>
<td>31.411</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(P12615), PSIA:</td>
<td>47.099</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>0.000</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>14.085</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

0 0 0 0

SIMSHB INIT'NC

Figure 14. - Bottom model support wall/arc sector interference (TEST 06).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG</td>
<td>16.005</td>
<td>SIRT IHM'WL XEE'ED</td>
<td></td>
</tr>
<tr>
<td>TSAT POS, DEG</td>
<td>-0.001</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TMWB POS, DEG</td>
<td>0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG</td>
<td>-0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTH POS, DEG</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG</td>
<td>0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG</td>
<td>0.120</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG</td>
<td>0.119</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG</td>
<td>0.123</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG</td>
<td>0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(P2647), PSIA</td>
<td>31.407</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOT(P2615), PSIA</td>
<td>142.448</td>
<td>TOTAL PRESS SEN'R OUT RGE</td>
<td></td>
</tr>
<tr>
<td>ROLL ANGLE, DEG</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.</td>
<td>1.644</td>
<td>TUNNEL MACH NO. EXCEEDED</td>
<td></td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>59.394</td>
<td>TUNNEL Q EXCEEDED</td>
<td></td>
</tr>
</tbody>
</table>

Figure 15. - Additional alerts (TEST 07).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>-0.001</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWI POS, DEG:</td>
<td>-0.001</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSWB POS, DEG:</td>
<td>0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWIN POS, DEG:</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBK POS, DEG:</td>
<td>-0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>0.117</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>0.121</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBN POS, DEG:</td>
<td>0.123</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>-0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA:</td>
<td>41.041</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>0.000</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>0.000</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 16. - Additional alerts continued (TEST 07).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(-0.001)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>(-0.001)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSWB POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>(-0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWTN POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG:</td>
<td>(-0.000)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.118)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>(0.123)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFRN POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAR(PT2647), PSIA:</td>
<td>(14.989)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOT(PT2615), PSIA:</td>
<td>(27.197)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.963)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(9.724)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

0 0 0 0

2.99 RANGE CODE (FOR PSTAR) OUT OF RGE

Figure 17. - Additional alerts continued (TEST 07).
<table>
<thead>
<tr>
<th>Description</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>(-0.003)</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSMT POS, DEG:</td>
<td>(-0.003)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSMB POS, DEG:</td>
<td>(0.000)</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSMTF POS, DEG:</td>
<td>(0.000)</td>
<td>0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWLT POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBF POS, DEG:</td>
<td>(0.001)</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSMBN POS, DEG:</td>
<td>(0.001)</td>
<td>0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG:</td>
<td>(0.120)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFTN POS, DEG:</td>
<td>(0.122)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFFB POS, DEG:</td>
<td>(0.122)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFFB POS, DEG:</td>
<td>(0.121)</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA:</td>
<td>(22.334)</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOT(PT2615), PSIA:</td>
<td>(35.848)</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>(0.000)</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>(0.051)</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>(11.327)</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

4.51 RANGE CODE (FOR PSTAT) OUT OF RGE

Figure 18. - Additional alerts concluded (TEST 07).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG:</td>
<td>-0.002</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSWT POS, DEG:</td>
<td>-0.001</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSBW POS, DEG:</td>
<td>0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG:</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSHYN POS, DEG:</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSWBF POS, DEG:</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSBHN POS, DEG:</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFIF POS, DEG:</td>
<td>15.003</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFINF POS, DEG:</td>
<td>15.000</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBF POS, DEG:</td>
<td>15.006</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>REFBNF POS, DEG:</td>
<td>15.009</td>
<td>+15.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PSTAT (PT2647), PSIA:</td>
<td>29.292</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI (PT2615), PSIA:</td>
<td>44.653</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG:</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.:</td>
<td>0.000</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>13.124</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 19. - Top and bottom model support walls to reentry flap angular position (TEST 10).
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Present Value</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUT ANG, DEG</td>
<td>0.000</td>
<td>+19.0</td>
<td>-11.0</td>
</tr>
<tr>
<td>TSNT POS, DEG</td>
<td>-0.015</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>TSWB POS, DEG</td>
<td>0.000</td>
<td>+1.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>MSWTF POS, DEG</td>
<td>-0.000</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBN POS, DEG</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>MSWBF POS, DEG</td>
<td>0.001</td>
<td>+0.0</td>
<td>-4.5</td>
</tr>
<tr>
<td>REFTF POS, DEG</td>
<td>0.099</td>
<td></td>
<td>REFTF IN SLP'REAM</td>
</tr>
<tr>
<td>REFTN POS, DEG</td>
<td>0.099</td>
<td></td>
<td>REFTN IN SLP'REAM</td>
</tr>
<tr>
<td>REFBF POS, DEG</td>
<td>0.099</td>
<td></td>
<td>REFBF IN SLP'REAM</td>
</tr>
<tr>
<td>REFBN POS, DEG</td>
<td>0.099</td>
<td></td>
<td>REFBN IN SLP'REAM</td>
</tr>
<tr>
<td>PSTAT(PT2647), PSIA</td>
<td>29.311</td>
<td>+57.9</td>
<td>+14.7</td>
</tr>
<tr>
<td>PTOI(PT2615), PSIA</td>
<td>44.626</td>
<td>+135.0</td>
<td>+14.7</td>
</tr>
<tr>
<td>ROLL ANGLE, DEG</td>
<td>0.000</td>
<td>+275.0</td>
<td>-95.0</td>
</tr>
<tr>
<td>MACH NO.</td>
<td>0.799</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>TUNNEL Q, PSI</td>
<td>13.091</td>
<td>+53.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 20. - Top and bottom/near-side and far-side reentry flap angular position (TEST 10).
'BEGIN MICRO 002 SIMULATION
'JAN 25, 1992
'THIS READS IN THE SYSTEM CONSTANTS AND VALUES FROM THE ANALOG-TO-DIGITAL
'CONVERTER AND RETURNS WITH A REAL SET OF DATA.
CLS
CLEAR
SCREEN 9
COLOR 14
'DEFINE THE A/D CONSTANTS
DIM VOLTS, A(8), B(8), C(8), DATA.VALUE(9)
DIM COSX(31), COSY(31), COSSLP(31), ISNX(13), ISNY(13), ISNSLP(13)

COMMAND.WAIT = &H4
WRITE.WAIT = &H2
READ.WAIT = &H5
CSTOP = &HF
CCLEAR = &HI
CADIN = &HC

'NUMBER OF CONVERSIONS
FACTOR# = 32768
RANGE = i0
GAIN = 1
GAIN.CODE = 0
SCALE = RANGE / FACTOR# / GAIN

'DEFINE "INITIAL" PROGRAM CONSTANTS
KCFS = .04256
KCL = 9.276
KLENBD = 132!
KLENA = 300!
KSTA36 = 432!
KBC = 60!
K180 = 180!
KCD1 = 21024!
KCD2 = 15840!
KQ1 = .7
KQ2 = 1!
KQ3 = .5
K45 = 4.5
K117 = 1.17
K40 = 4!
RANKIN = 459.67
COSX(1) = 0!
COSX(2) = 3!
COSX(3) = 6!
COSX(4) = 9!
COSX(5) = 12!
COSX(6) = 15!
COSX(7) = 18!
COSX(8) = 21!
COSX(9) = 24!
COSX(10) = 27!
COSX(11) = 30!
COSX(12) = 33!
COSX(13) = 36!
COSX(14) = 39!
COSX(15) = 42!
COSX(16) = 45!
COSX(17) = 48!
COSX(18) = 51!
\text{\textbf{COSX(19) = 54!}}
\text{COSX(20) = 57!}
\text{COSX(21) = 60!}
\text{COSX(22) = 63!}
\text{COSX(23) = 66!}
\text{COSX(24) = 69!}
\text{COSX(25) = 72!}
\text{COSX(26) = 75!}
\text{COSX(27) = 78!}
\text{COSX(28) = 81!}
\text{COSX(29) = 84!}
\text{COSX(30) = 87!}
\text{COSX(31) = 1E+30}

\text{\textbf{COSY(1) = 1!}}
\text{COSY(2) = .99863}
\text{COSY(3) = .99452}
\text{COSY(4) = .98769}
\text{COSY(5) = .97815}
\text{COSY(6) = .96593}
\text{COSY(7) = .95106}
\text{COSY(8) = .93358}
\text{COSY(9) = .91355}
\text{COSY(10) = .89101}
\text{COSY(11) = .86603}
\text{COSY(12) = .83867}
\text{COSY(13) = .80902}
\text{COSY(14) = .77715}
\text{COSY(15) = .74314}
\text{COSY(16) = .70711}
\text{COSY(17) = .66913}
\text{COSY(18) = .62932}
\text{COSY(19) = .58779}
\text{COSY(20) = .54464}
\text{COSY(21) = .5}
\text{COSY(22) = .45399}
\text{COSY(23) = .40674}
\text{COSY(24) = .35837}
\text{COSY(25) = .30902}
\text{COSY(26) = .25882}
\text{COSY(27) = .20791}
\text{COSY(28) = .15645}
\text{COSY(29) = .10453}
\text{COSY(30) = .05234}
\text{COSY(31) = 1E+30}

\text{\textbf{COSSLPS(1)} = -4.5682E-04}
\text{COSSLPS(2)} = -.0013692
\text{COSSLPS(3)} = -.0022779
\text{COSSLPS(4)} = -.0031802
\text{COSSLPS(5)} = -.0040739
\text{COSSLPS(6)} = -.0049564
\text{COSSLPS(7)} = -.0058254
\text{COSSLPS(8)} = -.0066783
\text{COSSLPS(9)} = -.007513
\text{COSSLPS(10)} = -.008327
\text{COSSLPS(11)} = -.0091183
\text{COSSLPS(12)} = -.0098845
\text{COSSLPS(13)} = -.010624
\text{COSSLPS(14)} = -.011334
COSSL(15) = -.012013
COSSL(16) = -.012659
COSSL(17) = -.01327
COSSL(18) = -.013845
COSSL(19) = -.014382
COSSL(20) = -.01488
COSSL(21) = -.015337
COSSL(22) = -.015751
COSSL(23) = -.016123
COSSL(24) = -.01645
COSSL(25) = -.016733
COSSL(26) = -.016969
COSSL(27) = -.017159
COSSL(28) = -.017302
COSSL(29) = -.017398
COSSL(30) = -.017445
COSSL(31) = 1!

ISNX(1) = 0!
ISNX(2) = .0349
ISNX(3) = .06976
ISNX(4) = .10453
ISNX(5) = .13917
ISNX(6) = .17365
ISNX(7) = .20791
ISNX(8) = .24192
ISNX(9) = .27564
ISNX(10) = .30902
ISNX(11) = .34202
ISNX(12) = .37461
ISNX(13) = 1E+30

ISNY(1) = 0!
ISNY(2) = 2!
ISNY(3) = 4!
ISNY(4) = 6!
ISNY(5) = 8!
ISNY(6) = 10!
ISNY(7) = 12!
ISNY(8) = 14!
ISNY(9) = 16!
ISNY(10) = 18!
ISNY(11) = 20!
ISNY(12) = 22!
ISNY(13) = 1E+30

ISNSLP(1) = 57.307
ISNSLP(2) = 57.378
ISNSLP(3) = 57.517
ISNSLP(4) = 57.729
ISNSLP(5) = 58.013
ISNSLP(6) = 58.371
ISNSLP(7) = 58.805
ISNSLP(8) = 59.32
ISNSLP(9) = 59.917
ISNSLP(10) = 60.6
ISNSLP(11) = 61.375
ISNSLP(12) = 62.247
ISNSLP(13) = 1!
'DOUBLE SAFETY INTERLOCK VALUE
K6A = .0019531#
KRAD = .017432

'LIMTS
L10 = .02
L20 = .5
L30 = .24
L50 = 0!
L61 = -51.5745
L62 = 84.9
L100 = 15!
L110A = 275!
L110 = -95!
JJ = 0
KK = 0

LOCATE 3, 27: PRINT "PRESENT VALUE MAX MIN"
LOCATE 4, 2: PRINT "STRT ANG, DEG:"
LOCATE 4, 45: PRINT "+19.0 -11.0"
LOCATE 5, 2: PRINT "TSWT POS, DEG:"
LOCATE 5, 46: PRINT "+1.0 -0.5"
LOCATE 6, 2: PRINT "TSWB POS, DEG:"
LOCATE 6, 46: PRINT "+1.0 -0.5"
LOCATE 7, 2: PRINT "MSWTF POS, DEG:"
LOCATE 7, 46: PRINT "+0.0 -4.5"
LOCATE 8, 2: PRINT "MSWTN POS, DEG:"
LOCATE 8, 46: PRINT "+0.0 -4.5"
LOCATE 9, 2: PRINT "MSWBF POS, DEG:"
LOCATE 9, 46: PRINT "+0.0 -4.5"
LOCATE 10, 2: PRINT "MSWBN POS, DEG"
LOCATE 10, 46: PRINT "+0.0 -4.5"

'OMITTED SIDE RENTRY FLAP ZERO TEST

LOCATE 11, 2: PRINT "REFTF POS, DEG:"
LOCATE 11, 45: PRINT "+15.0 0.0"
LOCATE 12, 2: PRINT "REFTN POS, DEG:"
LOCATE 12, 45: PRINT "+15.0 0.0"
LOCATE 13, 2: PRINT "REFBF POS, DEG:"
LOCATE 13, 45: PRINT "+15.0 0.0"
LOCATE 14, 2: PRINT "REFBN POS, DEG:"
LOCATE 14, 45: PRINT "+15.0 0.0"
LOCATE 15, 2: PRINT "PSTRAT(PT2647), PSIA:"
LOCATE 15, 45: PRINT "+57.9 +14.7"
LOCATE 16, 2: PRINT "PTOT(PT2615), PSIA:"
LOCATE 16, 44: PRINT "+135.0 +14.7"
LOCATE 17, 2: PRINT "ROLL ANGLE, DEG:"
LOCATE 17, 44: PRINT "+275.0 -95.0"
LOCATE 18, 2: PRINT "MACH NO.:"
LOCATE 18, 47: PRINT "1.2 0.0"
LOCATE 19, 2: PRINT "TUNNEL Q, PSI:"
LOCATE 19, 44: PRINT "+53.0 0.0"

1 'CONTINUE
'SETUP FOR A-TO-D BOARD "A" (DT2801/5716A). THESE ARE THE "A" VOLTAGES!
BASE.ADDRESS = &H2DC
COMMAND.REGISTER = BASE.ADDRESS + 1
STATUS.REGISTER = BASE.ADDRESS + 1
DATA.REGISTER = BASE.ADDRESS
GOTO 1000
6 'SETUP FOR A-TO-D BOARD "B" (DT2801/5716A). THESE ARE THE "B" VOLTAGES!
BASE ADDRESS = &H2EC
COMMAND REGISTER = BASE ADDRESS + 1
STATUS REGISTER = BASE ADDRESS + 1
DATA REGISTER = BASE ADDRESS
GOTO 2000

10 'SETUP FOR A-TO-D BOARD "C" (DT2801/5716A). THESE ARE THE "C" VOLTAGES!
BASE ADDRESS = &H2F4
COMMAND REGISTER = BASE ADDRESS + 1
STATUS REGISTER = BASE ADDRESS + 1
DATA REGISTER = BASE ADDRESS
GOTO 3000

15 'CONVERSION TO ENGINEERING UNITS
'BOARD "A", A(1) THRU A(8), &H2DC (BASE ADDRESS)
'A(1) IS GUIDE VANE ANGLE--ZT-2012
'A(2) IS STRUT POSITION--ZT-1603A
'A(3) IS PUMP SWASH PLATE--ZT-1602
'A(4) IS TSW TOP POSITION--ZT-1821
'A(5) IS TSW BOTTOM POSITION--ZT-1861
'A(6) IS MSW TOP FS POSITION--ZT-1501
'A(7) IS MSW TOP NS POSITION--ZT-1401
'A(8) IS MSW BOTTOM FS POSITION--ZT-1521

'BOARD "B", B(1) THRU B(8), &H2EC (BASE ADDRESS)
'B(1) IS MSW BOTTOM NS POSITION--ZT-1421
'B(2) IS REF TOP FS POSITION--ZT-1541
'B(3) IS REF TOP NS POSITION--ZT-1441
'B(4) IS REF SIDE FS POSITION--ZT-1581
'B(5) IS REF SIDE NS POSITION--ZT-1481
'B(6) IS REF BOTTOM FS POSITION--ZT-1561
'B(7) IS REF BOTTOM NS POSITION--ZT-1461
'B(8) IS STRUT LIMIT ARMED (DISABE)--HS-4603

'BOARD "C", C(1) THRU C(8), &H2F4 (BASE ADDRESS)
'C(1) IS PRESSURE (STATIC SIGNAL)--PT-2647
'C(2) IS TOTAL PRESSURE PO--PT-2615
'C(3) IS PRESSURE (STATIC RANGE CODE)--PT-2647

!!

'CONVERT THE A,B, & C VOLATGE VALUES TO REAL NUMBERS
XGVAX = A(1) * (6.13933) + .18551
XSTRUT = A(2) * (-3.3113) + 19.4982
LOCATE 4, 28: PRINT USING "(###.###)"); XSTRUT
XPSP = A(3) * 204.7
ALPHAT = A(4) * (.165) - .6
LOCATE 5, 28: PRINT USING "(###.###)"); ALPHAT
ALPHAB = A(5) * (.165) - .6
LOCATE 6, 28: PRINT USING "(###.###)"); ALPHAB
BETATF = A(6) * (-.49) + .2
LOCATE 7, 28: PRINT USING "(##.###)"); BETATF
BETATN = A(7) * (-.49) + .2
LOCATE 8, 28: PRINT USING "(##.###)"); BETATN
BETABF = A(8) * (-.49) + .2
LOCATE 9, 28: PRINT USING "(##.###)"); BETABF
BETABN = B(1) * (-.49) + .2
LOCATE 10, 28: PRINT USING "(##.###)"); BETABN

54
GAMATF = B(2) * (1.57) -.2
LOCATE 11, 28: PRINT USING "(#.###)"; GAMATF
GAMATN = B(3) * (1.57) -.2
LOCATE 12, 28: PRINT USING "(#.###)"; GAMATN
'THSE ARE COMMENTED OUT SINCE THEY ARE NOT USED!!!!
'GAMAFS = B(4) * (1.57) -.2
'GAMANS = B(5) * (1.57) -.2

'PRINT USING "GAMAFS IS #.#...."; GAMAFS
'PRINT USING "GAMANS IS #.#...."; GAMANS
GAMABF = B(6) * (1.57) -.2
LOCATE 13, 28: PRINT USING "(#.###)"; GAMABF
GAMABN = B(7) * (1.57) -.2
LOCATE 14, 28: PRINT USING "(#.###)"; GAMABN
DISABE = B(8)

'RANGE SELECT VOLTAGE FOR PT-2647 (STATIC PRESSURE)
OLDRGI = RANGE1
RANGE1 = C(3)
CHGI = RANGE1 - OLDRGI
SKIP1 = TRUE

IF (ABS(CHGI) < .1) THEN
 SKIP1 = FALSE
END IF

'IF AUTORANGEING IN PROGRESS, SKIP PRESSURE UPDATE FOR 3 SECONDS
IF (SKIP1) THEN
 CNTI = 1
END IF

'RESET COUNTER ON POWERUP AND DELAY (2.5 SEC'S)
IF ((CNT1 > 0) AND (CNT1 < 25)) THEN
 CNT1 = CNT1 + 1
ELSEIF ((CNT1 >= 25) OR (CNT1 < 0)) THEN
 CNT1 = 0
END IF
IF (CNT1 <> 0) GOTO i00

'DETERMINE RANGE FOR PSTAT
IF RANGE1 <= 3.5 THEN
 PSTAT = C(1) * 1.5
ELSEIF ((RANGE1 > 3.5) AND (RANGE1 <= 4!)) THEN
 PSTAT = C(1) * 4.5
ELSEIF ((RANGE1 > 4)) THEN
 PSTAT = C(1) * 15!
END IF
LOCATE 15, 28: PRINT USING "(#.###)"; PSTAT
GOTO 100

CONTINUE
'TOTAL PRESSURE FROM PT-2615
XPRES = C(2) * 29.963 - .134
LOCATE 16, 28: PRINT USING "(#.###)"; XPRES
GOTO 101

1000 'ANALOG TO DIGITAL CONVERSION SUBROUTINE. BOARD A--"A'S".
'CHECK FOR LEGAL STATUS REGISTER
STATUS = INP(STATUS.REGISTER)
IF NOT ((STATUS AND &H70) = 0) THEN
GOTO 5000
ELSE
GOTO 5001
END IF

5001 'STOP AND CLEAR THE DT-2801/5716A BOARD
OUT COMMAND.REGISTER, CSTOP
TEMP = INP(DATA.REGISTER)
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT
OUT COMMAND.REGISTER, CCLEAR
FOR I = 1 TO 8
CHANNEL = I - 1
'WRITE READ A/D IMMEDIATE COMMAND
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT

WAIT STATUS.REGISTER, COMMAND.WAIT
OUT COMMAND.REGISTER, CADIN
'WRITE A/D GAIN BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
OUT DATA.REGISTER, GAIN.CODE
'WRITE A/D CHANNEL BYTE
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
OUT DATA.REGISTER, CHANNEL
'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER AND
'COMBINE THE TWO BYTES INTO ONE WORD.
WAIT STATUS.REGISTER, READ.WAIT
LOW = INP(DATA.REGISTER)
WAIT STATUS.REGISTER, READ.WAIT
HIGH = INP(DATA.REGISTER)
DATA.VALUE# = HIGH * 256 + LOW
'LOCATE 21, 60: PRINT USING "########.#"; DATA.VALUE#
IF DATA.VALUE# > 32767 THEN
DATA.VALUE# = DATA.VALUE# - 65536
ELSE
GOTO 5002
END IF

5002 'CONTINUE

3 'CALCULATE THE A/D READING IN VOLTS
'VOLTS#=(RANGE*DATA.VALUE#)/FACTOR#/GAIN)
VOLTS# = SCALE * DATA.VALUE#
A(I) = VOLTS#
'LOCATE 1, 1: PRINT USING "###.###"; A(1)
'LOCATE 1, 10: PRINT USING "###.###"; A(2)
'LOCATE 1, 20: PRINT USING "###.###"; A(3)
'LOCATE 1, 30: PRINT USING "###.###"; A(4)
'LOCATE 1, 40: PRINT USING "###.###"; A(5)
'LOCATE 1, 50: PRINT USING "###.###"; A(6)
'LOCATE 1, 60: PRINT USING "###.###"; A(7)
'LOCATE 1, 70: PRINT USING "###.###"; A(8)

IF (I = 8) THEN
GOTO 5
ELSE
GOTO 4
END IF
4 NEXT I
2000 'ANALOG TO DIGITAL CONVERSION SUBROUTINE. BOARD B--"B'S".
'CHECK FOR LEGAL STATUS REGISTER
STATUS = INPSTATUS.REGISTER)
IF NOT ((STATUS AND &H70) = 0) THEN
GOTO 5000
ELSE
GOTO 7
END IF
7 'STOP AND CLEAR THE DT-2801/5716A BOARD
OUT COMMANDREGISTER, CSTOP
TEMP = INPDATA.REGISTER)
WAIT STATUSREGISTER, WRITEWAIT, WRITEWAIT
WAIT STATUSREGISTER, COMMANDWAIT
OUT COMMANDREGISTER, CCLEAR
FOR I = 1 TO 8
CHANNEL = I - 1
'WRITE READ A/D IMMEDIATE COMMAND
WAIT STATUSREGISTER, WRITEWAIT, WRITEWAIT
WAIT STATUSREGISTER, COMMANDWAIT
OUT COMMANDREGISTER, CADIN
'WRITE A/D GAIN BYTE
WAIT STATUSREGISTER, WRITEWAIT, WRITEWAIT
OUT DATAREGISTER, GAINCODE
'WRITE A/D CHANNEL BYTE
WAIT STATUSREGISTER, WRITEWAIT, WRITEWAIT
OUT DATAREGISTER, CHANNEL

'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER, AND
'COMBINE THE TWO BYTES INTO ONE WORD
WAIT STATUSREGISTER, READWAIT
LOW = INPDATAREGISTER)
WAIT STATUSREGISTER, READWAIT
HIGH = INPDATAREGISTER)
DATA.VALUE# = HIGH * 256 + LOW
IF DATA.VALUE# > 32767 THEN
DATA.VALUE# = DATA.VALUE# - 65536
ELSE
GOTO 8
END IF
8 'CONTINUE
9 'CALCULATE THE A/D READINGS IN VOLTS
'VOLTS# = (RANGE * DATA.VALUE#/FACTOR#/GAIN)
VOLTS# = SCALE * DATA.VALUE#
B(I) = VOLTS#
'LOCATE 2, 1: PRINT USING "###.###"; B(1)
'LOCATE 2, 10: PRINT USING "###.###"; B(2)
'LOCATE 2, 20: PRINT USING "###.###"; B(3)
'LOCATE 2, 30: PRINT USING "###.###"; B(4)
'LOCATE 2, 40: PRINT USING "###.###"; B(5)
'LOCATE 2, 50: PRINT USING "###.###"; B(6)
'LOCATE 2, 60: PRINT USING "###.###"; B(7)
'LOCATE 2, 70: PRINT USING "###.###"; B(8)

IF (I = 8) THEN
GOTO 10
ELSE
GOTO 11
END IF
11 NEXT I

3000 'ANALOG TO DIGITAL CONVERSION SUBROUTINE. BOARD C--"C'S".
'CHECK FOR LEGAL STATUS REGISTER
STATUS = INP(STATUS.REGISTER)
IF NOT ((STATUS AND &H70) = 0) THEN
 GOTO 5000
ELSE
 GOTO 12
END IF
12 'STOP AND CLEAR THE DT-2801/5716A BOARD
OUT COMMAND.REGISTER, CSTOP
TEMP = INP(DAT:REGISTER)
WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
WAIT STATUS.REGISTER, COMMAND.WAIT
OUT COMMAND.REGISTER, CCLEAR
FOR I = 1 TO 3
 CHANNEL = I - 1
 'WRITE READ A/D IMMEDIATE COMMAND
 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
 WAIT STATUS.REGISTER, COMMAND.WAIT
 OUT COMMAND.REGISTER, CADIN
 'WRITE A/D GAIN BYTE
 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
 OUT DATA.REGISTER, GAIN.CODE
 'WRITE A/D CHANNEL BYTE
 WAIT STATUS.REGISTER, WRITE.WAIT, WRITE.WAIT
 OUT DATA.REGISTER, CHANNEL
 'READ TWO BYTES OF A/D DATA FROM THE DATA OUT REGISTER, AND COMBINE
 'THE TWO BYTES INTO ONE WORD
 WAIT STATUS.REGISTER, READ.WAIT
 LOW = INP(DATA.REGISTER)
 WAIT STATUS.REGISTER, READ.WAIT
 HIGH = INP(DATA.REGISTER)
 DATA.VALUE# = HIGH * 256 + LOW
 IF DATA.VALUE# > 32767 THEN
 DATA.VALUE# = DATA.VALUE# - 65536
 ELSE
 GOTO 13
 END IF
13 'CONTINUE
14 'CALCULATE THE A/D READINGS IN VOLTS
'VOLTS#=(RANGE*DATA.VALUE#/FACTOR#/GAIN)
VOLTS# = SCALE * DATA.VALUE#
C(I) = VOLTS#
'LOCATE 3, 1: PRINT USING "###.##"; C(1)
'LOCATE 3, 10: PRINT USING "###.##"; C(2)
'LOCATE 3, 20: PRINT USING "###.##"; C(3)
IF (I = 3) THEN
 GOTO 15
ELSE
 GOTO 16

END

NEEDED

5000 'ILLEGAL STATUS REGISTER
PRINT "FATAL ERROR-ILLEGAL STATUS REGISTER VALUE!"
PRINT "STATUS REGISTER VALUE IS"; HEX$(STATUS); "HEXIDECIMAL"
PRINT : BEEP: BEEP
END

'NEED TO RESET WATCHDOG TO KEEP FROM TIMING OUT. THIS IS NOT USED IN
'THIS SIMULATION, BUT INSERTED TO KEEP IN PARALLEL WITH OLD MICRO
'SUBROUTINE "RELAYS". WILL BE ADDED LATER, BUT FOR NOW WILL PRINT TO
'THE SCREEN FOR RELAYS.
'CALL RELAYS

101 'CONTINUE
'DIALS SUBROUTINE---THIS READS IN THE SETTING OF FIVE DIFFERENT THUMBWHEEL
'SWITCHES AND CONVERTS THE SETTINGS TO REAL NUMBER VALUES USING THE
'DT-2817 BOARDS WITH FOUR DIGITAL I/O PORTS PER BOARD

'DEFINE THE DIGITAL I/O CONSTANTS---SEE "DT-2817 USER MANUAL"
'CONTROL REGISTER WITH FACTORY BASE ADDRESS
CONTROL.REGISTER% = &H228
'INPUT PORT ADDRESSES
DATA.PORT0 = &H229
DATA.PORT1 = &H22A
DATA.PORT2 = &H22B
DATA.PORT3 = &H22C

'ALL PORTS SET FOR INPUTS (&H0=0000)
OUT CONTROL.REGISTER%, &H0
'READ THE INPUT PORTS
PORT.VALUE.READ0 = INP(DATA.PORT0)
PORT.VALUE.READ1 = INP(DATA.PORT1)
PORT.VALUE.READ2 = INP(DATA.PORT2)
PORT.VALUE.READ3 = INP(DATA.PORT3)
DATA.VALUE(1) = PORT.VALUE.READ0 / 10
DATA.VALUE(2) = PORT.VALUE.READ1
DATA.VALUE(3) = DATA.VALUE(1) + DATA.VALUE(2)
DATA.VALUE(4) = PORT.VALUE.READ2
DATA.VALUE(5) = PORT.VALUE.READ3
'THIS IS THE SIMULATED DIALED-IN THUMBWHEEL VALUE FOR XQDIAL!
XQDIAL = DATA.VALUE(3)
'LOCATE 20, 27: PRINT USING "####.####"; XQDIAL
'THIS IS THE SIMULATED DIALED-IN THUMBWHEEL VALUES FOR THE
'POSITIVE AND NEGATIVE PITCH LIMITS---XSTRDP & XSTRDM
XSTRDP = DATA.VALUE(4)
XSTRDM = (-1) * DATA.VALUE(5)
'LOCATE 21, 54: PRINT USING "+###.#"; XSTRDP
'LOCATE 20, 55: PRINT USING "###.#"; XSTRDM

GOTO 6001

6001 'CONTINUE
XROLDP = 275!
XROLDM = -95!
'PRINT USING "XROLDM IS ###.#"; XROLDM
'PRINT USING "XROLDP IS ###.#"; XROLDP

'ENCDIN SUBROUTINE---THIS READS IN THE SETTINGS OF THE MODEL ROLL
'ANGLE (IN A FIVE CHARACTER BCD CODE FROM DIO PORTS). FOR NOW SET
'ROL TO A VALUE.
'ROL = D(2) * 10000 + D(3) * 1000 + D(4) * 100 + D(5) * 10 + D(6)
'ANGLE = (ROL / 100) - 35.4
ANGLE = 0!
LOCATE 17, 28: PRINT USING "(###.###)"; ANGLE

'CALCD SUBROUTINE(GAMATF, CDTF, IC(1))---THIS CALCULATES THE RADIUS ARM "CD" (LE
'FLAP TIP TO MODEL SUPPORT WALL PIVOT FOR TOP AND BOTTOM REF'S) AS A FUNCTION
'OF THE ENTRY FLAP ANGLE, GAMA FOR TOP AND BOTTOM REF'S.
DAT = GAMATF
'BEGIN INDEX SUB
J = 15 'THIS IS IC(1)
IF DAT >= COSX(J) THEN
2001 'CONTINUE
IF DAT >= COSX(J + 1) THEN
J = J + 1
GOTO 2001
END IF
ELSE
3001 'CONTINUE
IF J = 1 THEN GOTO 201
J = J - 1
IF DAT < COSX(J) THEN GOTO 3001
END IF
'END INDEX SUB
201 INTCOS = COSY(J) + (GAMATF - COSX(J)) * COSSLP(J)
CDTF = SQR(KCD1 + KCD2 * INTCOS)

'CALCD SUBROUTINE (GAMATN, CDTN, IC(1))
DAT = GAMATN
'BEGIN INDEX SUB
J = 15 'THIS IS IC(1)
IF DAT >= COSX(J) THEN
202 'CONTINUE
IF DAT >= COSX(J + 1) THEN
J = J + 1
GOTO 202
END IF
ELSE
203 'CONTINUE
IF J = 1 THEN GOTO 204
J = J - 1
IF DAT < COSX(J) THEN GOTO 203
END IF
'END INDEX SUB
204 INTCOS = COSY(J) + (GAMATN - COSX(J)) * COSSLP(J)
CDTN = SQR(KCD1 + KCD2 * INTCOS)

'CALCD SUBROUTINE (GAMABF, CDBF, IC(2))
DAT = GAMABF
'BEGIN INDEX SUB
J = 15 'THIS IS IC(2)
IF DAT >= COSX(J) THEN
4001 'CONTINUE
IF DAT >= COSX(J + 1) THEN
J = J + 1
GOTO 4001
END IF
ELSE
5003 'CONTINUE
 IF J = 1 THEN GOTO 303
 J = J - 1
 IF DAT < COSX(J) GOTO 5003
END IF
'END INDEX SUB
303 INTCOS = COSY(J) + (GAMABF - COSX(J)) * COSSLP(J)
CDBF = SQR(KCD1 + KCD2 * INTCOS)

'CALCD SUBROUTINE (GAMABN, CDBN, IC(2))
DAT = GAMABN
'BEGIN INDEX SUB
 J = 15 'THIS IS IC(2)
 IF DAT >= COSX(J) THEN
304 'CONTINUE
 IF DAT >= COSX(J + i) THEN
 J = J + 1
 GOTO 304
 END IF
 ELSE
305 'CONTINUE
 IF J = 1 THEN GOTO 306
 J = J - 1
 IF DAT < COSX(J) THEN GOTO 305
 END IF
'END INDEX SUB
306 INTCOS = COSY(J) + (GAMABN - COSX(J)) * COSSLP(J)
CDBN = SQR(KCD1 + KCD2 * INTCOS)

'CALN SUBROUTINE (GAMATF, NTF, XNTF, CDTF, IC(3), IS(1))
'THIS CALCULATES THE ANGLE "NU" FORMED BY THE MODEL
'SUPPORT WALL AND THE RADIUS ARMS CDTF, CDTN, CDBF, AND CDBN
DAT = 90! - GAMATF
'BEGIN INDEX SUBROUTINE
 J = 15 'THIS IS IC(3)
 IF DAT >= COSX(J) THEN
8000 'CONTINUE
 IF DAT >= COSX(J + i) THEN
 J = J + 1
 GOTO 8000
 END IF
 ELSE
8002 'CONTINUE
 IF J = 1 THEN GOTO 8001
 J = J - 1
 IF DAT < COSX(J) THEN GOTO 8002
 END IF
'END INDEX SUBROUTINE
8001 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! * INTCOS / CDTF
'BEGIN INDEX SUBROUTINE
 J = 5 'THIS IS IS(1)
 IF DAT >= ISNX(J) THEN
8003 'CONTINUE
 IF DAT >= ISNX(J + i) THEN
 J = J + 1
 GOTO 8003
 END IF
 ELSE
8005 'CONTINUE
IF J = 1 THEN GOTO 8004
J = J - 1
IF DAT < ISNX(J) THEN GOTO 8005
END IF
'END INDEX SUBROUTINE
8004 NTF = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNTF = NTF * KRAD

'CALN SUBROUTINE (GAMATN, NTN, XNTN, CDTN, IC(3), IS(1))
DAT = 90! - GAMATN
'BEGIN INDEX SUB
J = 15 'THIS IS IC(3)
IF DAT >= COSX(J) THEN
8006 'CONTINUE
8006 IF DAT >= COSX(J + 1) THEN
J = J + 1
GOTO 8006
END IF
ELSE
8007 'CONTINUE
8007 IF J = 1 THEN GOTO 8008
J = J - 1
IF DAT < COSX(J) THEN GOTO 8007
END IF
'END INDEX SUB
8008 INT = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! * INT / CDTN
'BEGIN INDEX SUB
J = 5 'THIS IS IS(1)
IF DAT >= ISNX(J) THEN
8009 'CONTINUE
8009 IF DAT >= ISNX(J + 1) THEN
J = J + 1
GOTO 8009
END IF
ELSE
8010 'CONTINUE
8010 IF J = 1 THEN GOTO 8011
J = J - 1
IF DAT < ISNX(J) THEN GOTO 8010
END IF
'END INDEX SUB
8011 NTN = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNTN = NTN * KRAD

'CALN SUBROUTINE (GAMABF, NBF, XNBF, CDBF, IC(5), IS(3))
DAT = 90! - GAMABF
'BEGIN INDEX SUB
J = 15 'THIS IS IC(5)
IF DAT >= COSX(J) THEN
8012 'CONTINUE
8012 IF DAT >= COSX(J + 1) THEN
J = J + 1
GOTO 8012
END IF
ELSE
8013 'CONTINUE
8013 IF J = 1 THEN GOTO 8014
J = J - 1
IF DAT < COSX(J) THEN GOTO 8013

62
END IF
'END INDEX SUB
8014 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! / INTCOS / CDBF
'BEGIN INDEX SUB
J = 5 'THIS IS IS(3)
IF DAT >= ISNX(J) THEN
8015 'CONTINUE
 IF DAT >= ISNX(J + 1) THEN
 J = J + 1
 GOTO 8015
 END IF
ELSE
8016 'CONTINUE
 IF J = 1 THEN GOTO 8017
 J = J - 1
 IF DAT < ISNX(J) THEN GOTO 8016
END IF
'END INDEX SUB
8017 NBF = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNBF = NBF * KRAD
'CALN SUBROUTINE (GAMABN, NBN, XNBN, CDBN, IC(5), IS(3))
DAT = 90! - GAMABN
'BEGIN INDEX SUB
J = 15 'THIS IS IC(5)
IF DAT >= COSX(J) THEN
8018 'CONTINUE
 IF DAT >= COSX(J + 1) THEN
 J = J + 1
 GOTO 8018
 END IF
ELSE
8019 'CONTINUE
 IF J = 1 THEN GOTO 8020
 J = J - 1
 IF DAT < COSX(J) THEN GOTO 8019
END IF
'END INDEX SUB
8020 INTCOS = COSY(J) + (DAT - COSX(J)) * COSSLP(J)
DAT = 60! / INTCOS / CDBN
'BEGIN INDEX SUB
J = 5 'THIS IS IS(3)
IF DAT >= ISNX(J) THEN
8021 'CONTINUE
 IF DAT >= ISNX(J + 1) THEN
 J = J + 1
 GOTO 8021
 END IF
ELSE
8022 'CONTINUE
 IF J = 1 THEN GOTO 8023
 J = J - 1
 IF DAT < ISNX(J) THEN GOTO 8022
END IF
'END INDEX SUB
8023 NBN = ISNY(J) + (DAT - ISNX(J)) * ISNSLP(J)
XNBN = NBN * KRAD
'MACHIN SUBROUTINE---CALCULATE THE TUNNEL MACH NUMBER
PRATO = XPRES / PSTAT
IF (PRATO < 1!) THEN
 GOTO 24
ELSE
 GOTO 25
END IF
24 PRATO = 1!
25 MACHSQ = (5! * (PRATO ^ .28571 - 1!))

'PRINT USING "PRATO IS #.###"; PRATO
MACH = SQR(MACHSQ)
LOCATE 18, 28: PRINT USING "(#.###)"; MACH

'CALQ SUBROUTINE---CALCULATE THE OPERATIONAL TUNNEL "Q" FROM THE
'COMPUTED MACH NUMBER AND THE MEASURED PRESSURE
QCOMP = XPRES * (KQ1 * MACHSQ / (1! + .2 * MACHSQ) ^ 3.5)
LOCATE 19, 28: PRINT USING "(###.###)"; QCOMP

'PERFORM THE INTERLOCK TESTS

'TEST 01---THIS ROUTINE TESTS TO ENSURE THAT THE TOP AND BOTTOM
'TEST SECTION WALLS ARE BOTH WITHIN +/- 0.02 DEGREES OF THEIR ZERO
'POSITION BEFORE "PERMISSION" IS GRANTED TO INSERT OR REMOVE
'THE MODEL ACCESS HOUSINGS. NO INTERFERENCE ALLOWED. IF BOTH TOP
'AND BOTTOM WALLS ARE WITHIN LIMIT, THE "PERMISSIVE" SEQUENCER RELAY
'IS DRIVEN.

'COMPARE THE TSW TOP AND BOTTOM ANGLES WITH THEIR LIMIT AND SET
'FLAG FOR SEQUENCER OUTPUT TRUE IF ALPHA (TSW) TOP OR BOT
'IS >= +0.02 OR <= -0.02. L10 = 0.02
IF (ALPHAT >= L10) THEN
 FLAG25(3) = 0
 GOTO 26
ELSE
 FLAG25(3) = 1
 GOTO 555
END IF
26 COLOR 12
LOCATE 5, 45: PRINT "TSWT>= PLUS ZERO LIM"
LL = 1
GOTO 27
555 COLOR 14
IF (LL = 1) THEN
 GOTO 271
ELSE
 GOTO 27
END IF
271 LOCATE 5, 45: PRINT ""
 LL = 0
LOCATE 5, 46: PRINT "+1.0 -0.5"
27 IF (ALPHAT <= -L10) THEN
 FLAG25(3) = 0
 GOTO 28
ELSE
 FLAG25(3) = 1
 GOTO 301
END IF
28 COLOR 12
LOCATE 5, 45: PRINT "TSWT<= NEG ZERO LIM"
LLL = 1
GOTO 29
301 COLOR 14
IF (LLL = 1) THEN
 GOTO 302
ELSE
 GOTO 29
END IF
302 LOCATE 5, 45: PRINT "
LLL = 0
LOCATE 5, 46: PRINT "+1.0 -0.5"
29 IF (ALPHAB >= L10) THEN
 FLAG25(3) = 0
 GOTO 30
ELSE
 FLAG25(3) = 1
 GOTO 311
END IF
30 COLOR 12
LOCATE 6, 45: PRINT "TSWB>= PLUS ZERO LIM"
LLLL = 1
GOTO 32
311 COLOR 14
 IF (LLLL = 1) THEN
 GOTO 312
 ELSE
 GOTO 32
 END IF
312 LOCATE 6, 45: PRINT "
LLLL = 0
LOCATE 6, 46: PRINT "+1.0 -0.5"
GOTO 32
32 IF (ALPHAB <= -L10) THEN
 FLAG25(3) = 0
 GOTO 361
ELSE
 FLAG25(3) = 1
 GOTO 362
END IF
361 COLOR 12
LOCATE 6, 45: PRINT "TSWB<= NEG ZERO LIM"
LLLLL = 1
GOTO 364
362 COLOR 14
 IF (LLLLL = 1) THEN
 GOTO 363
 ELSE
 GOTO 364
 END IF
363 LOCATE 6, 45: PRINT "
LLLLL = 0
LOCATE 6, 46: PRINT "+1.0 -0.5"
364 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAT, BETATF, XNTF, CDTF, FLAG24(1))
'THIS ROUTINE TESTS THE DISTANCES BETWEEN DIFFERENT
'WALL SECTIONS TO ENSURE AGAINST WALLS COLLIDING. THE TEST HAS TWO
'SEPARATE PARTS WHICH MUST BE SATISFIED.
'TEST 2.1---ENSURES THAT THE DISTANCE BETWEEN THE TSW AND MSW IS >= 0.5
'INCHES.
'TEST 2.2—ENSURE THAT THE DISTANCE BETWEEN THE TSW AND REF IS >= 0.5 INCHES. IF EITHER PART IS NOT SATISFIED, PRINT A MESSAGE.

FLAG24(1) = 0
X = BETATF * KRAD
Y = ALPHATF * KRAD

'TEST SECTION WALL TOP—MODEL SUPPORT WALL TOP FAR SIDE. L20 = 0.5!
TEST2(1) = KCL + KLENBD * X - (KLENA * Y)
TEST2(2) = KCL + CDTF * (X + XNTF) - (KSTA36 - CDTF) * Y

LOCATE 20, 2: PRINT USING "(###.##)"; TEST2(1)
LOCATE 20, 12: PRINT USING "(###.##)"; TEST2(2)
'IF THE TEST VALUE IS LESS THAN ITS LIMIT PRINT TO SCREEN (SET A FLAG LATER)
IF ((TEST2(1) <= L20) OR (TEST2(2) <= L20)) THEN
 FLAG24(1) = 1
 COLOR 12
 LOCATE 21, 2: PRINT "TSWT/MSWTF/REFTF COLLIDE"
 GOTO 368
ELSE
 GOTO 369
END IF

368 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAT, BETATN, XNTN, CDTN, FLAG24(1))
FLAG24(1) = 0
X = BETATN * KRAD
Y = ALPHATN * KRAD
TEST2(1) = KCL + KLENBD * X - (KLENA * Y)
TEST2(2) = KCL + CDTN * (X + XNTN) - (KSTA36 - CDTN) * Y
LOCATE 20, 2: PRINT USING "(###.##)"; TEST2(1)
LOCATE 20, 12: PRINT USING "(###.##)"; TEST2(2)
'IF THE TEST VALUE IS LESS THAN ITS LIMIT PRINT TO SCREEN
IF ((TEST2(1) <= L20) OR (TEST2(2) <= L20)) THEN
 FLAG24(1) = 1
 COLOR 12
 LOCATE 22, 2: PRINT "TSWT/MSWTN/REFTN COLLIDE"
 GOTO 366
ELSE
 GOTO 367
END IF
367 COLOR 14
 LOCATE 22, 2: PRINT ""
366 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAB, BETABF, XNBF, CDBF, FLAG24(3))
FLAG24(3) = 0
X = BETABF * KRAD
Y = ALPHABF * KRAD
'TEST SECTION WALL BOTTOM—MODEL SUPPORT WALL BOTTOM FAR
TEST2(1) = KCL + KLENBD * X - (KLENA * Y)
TEST2(2) = KCL + CDBF * (X + XNBF) - (KSTA36 - CDBF) * Y
LOCATE 20, 2: PRINT USING "(###.##)"; TEST2(1)
LOCATE 20, 12: PRINT USING "(###.##)"; TEST2(2)
IF TEST2(1) <= L20 OR TEST2(2) <= L20 THEN
 FLAG24(3) = 1
COLOR 12
LOCATE 23, 2: PRINT "TSWB/MSWBF/REFBF COLLIDE"
GOTO 371
ELSE
GOTO 372
END IF
372 COLOR 14
LOCATE 23, 2: PRINT ""
371 'CONTINUE

'TEST 02 SUBROUTINE (ALPHAB, BETABN, XNBN, CDBN, FLAG24(3))
FLAG24(3) = 0
X = BETABN * KRAD
Y = ALPHAB * KRAD
TEST2(1) = KCL + KLENBD * X - (KLENA * Y)
TEST2(2) = KCL + CDBN * (X + XNBN) - (KSTA36 - CDBN) * Y
'LOCATE 20, 2: PRINT USING "(###.##)"; TEST2(1)
'LOCATE 20, 12: PRINT USING "(###.##)"; TEST2(2)
IF TEST2(1) <= L20 OR TEST2(2) <= L20 THEN
FLAG24(3) = 1
TMR = 1
COLOR 12
LOCATE 20, 25: PRINT "TSWB/MSWBN/REFBN COLLIDE"
GOTO 373
ELSE
GOTO 374
END IF
374 COLOR 14
LOCATE 20, 25: PRINT ""
TMR = 0
373 'CONTINUE

'TEST 03 SUBROUTINE---THIS ROUTINE TESTS TO SEE IF
' (1) NS AND FS BTM MSW ARE IN SYNC
' (2) NS AND FS TOP MSW ARE IN SYNC
'CALCULATE THE ABSOLUTE DIFFERENCE IN NEAR AND FAR ANGLES--COMPARE
'THE DIFFERENCE WITH THE LIMIT AND SET THE FLAG TRUE IF THE LIMIT IS
'EXCEEDED. L30=0.24!
IF (ABS(BETABN - BETABF) >= L30) THEN
BMSWS = 1
ELSE
BMSWS = 0
END IF
IF (ABS(BETATN - BETATF) >= L30) THEN
TMSWS = 1
ELSE
TMSWS = 0
END IF
IF (BMSWS OR TMSWS) THEN
FLAG24(4) = 1
GOTO 44
ELSE
FLAG24(4) = 0
GOTO 441
END IF
44 COLOR 12
LOCATE 21, 31: PRINT "MSW NOT IN SYNC"
GOTO 45
441 COLOR 14
LOCATE 21, 31: PRINT " "
45 'CONTINUE

'TEST 05 SUBROUTINE---THIS ROUTINE TESTS TO ENSURE THAT THE ANGLE OF THE
'SIDE RENTRY FLAPS ARE NOT LESS THAN OR EQUAL TO 0.0 DEGREES. IF EITHER
'OF THE SIDE RENTRY FLAP POSITIONS IS 0 OR NEGATIVE, A FLAG IS SET FOR
'OUTPUT TO THE SIDE WALL INTERFERENCE SEQUENCER INTERLOCK.
'CHECK FAR SIDE AND NEAR SIDE, SIDE REF ANGLES AND SET FLAG TRUE IF <= 0.0.
'L50 = 0.0!
IF (GAMAFS <= L50) THEN
 GOTO 46
ELSE
 GOTO 47
END IF
46 FLAG242 = TRUE
COLOR 12
'LOCATE 20, 25: PRINT "FS--SIDE REF IS 0.0 OR NEG"
47 'CONTINUE
IF (GAMANS <= L50) THEN
 GOTO 48
ELSE
 GOTO 49
END IF
48 FLAG242 = TRUE
COLOR 12
'LOCATE 21, 25: PRINT "NS--SIDE REF IS 0.0 OR NEG"
49 FLAG242 = FALSE
'CONTINUE

'TEST 06 SUBROUTINE---THIS ROUTINE TESTS THE DISTANCE BETWEEN
'THE STRUT AND THE MSW TO ENSURE THEY DO NOT COLLIDE. THIS
'TEST HAS TWO PARTS--TEST 6.1 FOR THE TOP MSW CLEARANCE AND TEST
'6.2 FOR THE BOTTOM MSW.
'CHECK IF STRUT IS ABOVE OR BELOW LEVEL
'THE TOP MSW CLEARANCE AND TEST 6.2 FOR THE BOTTOM MSW.
'CHECK IF THE STRUT IS ABOVE OR BELOW LEVEL
FLAG16(3) = 0
FLAG16(4) = 0
IF (XSTRUT < 0!) THEN
 IF (BETATF <= BETATN) THEN
 BETA6 = BETATF
 ELSE
 BETA6 = BETATN
 END IF
 'COMPUTE THE STRUT VELOCITY (USING PSP)
 KS = K6A * XPSP
 KC = K117
 STRFLG = 1
ELSE
 'TEST 6.2, STRUT-BOTTOM MSW COMPARE NEAR & FAR SIDES FOR LARGEST BETA.
 'BETA IS ALWAYS NEGATIVE
 IF (BETABF <= BETABN) THEN
 BETA6 = BETABF
 ELSE
 BETA6 = BETABN
 END IF

68
END IF

'CONTINUE--COMPUTE THE STRUT VELOCITY (USING PSP)
KS = K6A * XPSP
KC = -K40
STRFLG = 0
END IF

'COMPUTE THE INTERFERENCE VALUE
STM = K45 * (XSTRUT - KS) + KC * BETA6

IF (STRFLG) THEN
STMSWT = STM
'CHECK THE INTERFERENCE VALUE AGAINST THE NEGATIVE LIMIT (L61 = -51.5745)
IF (STMSWT <= L61) THEN
FLAG16(3) = 1
COLOR 12
LOCATE 22, 31: PRINT "STMSWT INTRF’NCE "
ELSE
COLOR 14
LOCATE 22, 31: PRINT " "
END IF
ELSE
STMSWB = STM
'CHECK THE INTERFERENCE VALUE AGAINST THE POSITIVE LIMIT (L62 = +84.9)
IF (STMSWB >= L62) THEN
FLAG16(4) = 1
COLOR 12
LOCATE 23, 31: PRINT "STMSWB INTRF’NCE"
ELSE
COLOR 14
LOCATE 23, 31: PRINT " "
END IF
END IF

'TEST 07 SUBROUTINE--THIS ROUTINE TESTS TO INSURE THAT THE QCOMP OF THE
'TUNNEL DOES NOT EXCEED THE Q THUMBWHEEL VALUES OR THE STRUT POSITIVE
'OR NEGATIVE THUMBWHEEL VALUES. ALSO, IT TESTS TUNNEL MACH NUMBER SQUARE
'AGAINST 1.5625 (I.E. M = 1.25). IT ALSO CHECKS FOR SENSOR SIGNAL
'OUT-OF-RANGE FOR STRUT, PSTAT, PTOTAL, AND RANGE CODE (FOR PSTAT).
FLAG16(2) = 0
'IF (DISABE > 4!) THEN, IGNORE MODEL PITCH THUMBWHEEL LIMITS!!!
IF (DISABE > 4) THEN
GOTO 65
ELSE
GOTO 651
END IF

651 'CONTINUE
IF (XSTRUT >= XSTRDP OR XSTRUT <= XSTRDM) THEN
FLAG16(2) = 1
STRTMW = 1
COLOR 12
LOCATE 4, 45: PRINT "STRT THM’WL XEE’ED"
GOTO 64
ELSE
GOTO 65
END IF
65 COLOR 14
LOCATE 4, 45: PRINT "+19.0 -11.0"
STRTMW = 0
64 'CONTINUE

IF (QCOMP >= XQDIAL) THEN
 FLAG16(2) = 1
 GOTO 66
ELSE
 GOTO 671
END IF
66 COLOR 12
LOCATE 19, 44: PRINT "TUNNEL Q EXCEEDED"
 TQ = 1
 GOTO 67
671 COLOR 14
IF (TQ = 1) THEN
 GOTO 672
ELSE
 GOTO 67
END IF
672 LOCATE 19, 44: PRINT ""
 TQ = 0
LOCATE 19, 44: PRINT "+53.0 0.0"
67 'CONTINUE

'LIMIT TUNNEL MACH NUMBER
IF (MACHSQ >= 1.5625) THEN
 FLAG16(2) = 1
 COLOR 12
 LOCATE 18, 41: PRINT "TUNNEL MACH NO. EXCEEDED"
 GOTO 68
ELSE
 GOTO 69
69 COLOR 14
LOCATE 18, 41: PRINT "1.2 0.0"
END IF
68 'CONTINUE

'SIGNAL RANGE CHECK
IF (A(2) < .05 OR A(2) > 9.45) THEN
 FLAG16(2) = 1
 COLOR 12
 LOCATE 4, 45: PRINT "SRT SEN’R OUT RGE"
 PS = 1
 GOTO 557
71 COLOR 14
IF (PS = 1) THEN
 GOTO 558
ELSE
 GOTO 557
END IF
LOCATE 4, 45: PRINT " "
PS = 0
LOCATE 4, 45: PRINT "+19.0 -11.0"
557 'CONTINUE

IF (C(1) < .1 OR C(1) > 10!) THEN
 FLAG16(2) = 1
 GOTO 72
ELSE
 GOTO 73
END IF
72 COLOR 12
LOCATE 15, 45: PRINT "PSTAT SEN’R OUT RGE"
PSS = 1
GOTO 731
73 COLOR 14
IF (PSS = 1) THEN
 GOTO 732
ELSE
 GOTO 731
END IF
732 LOCATE 15, 45: PRINT " "
PSS = 0
LOCATE 15, 45: PRINT "+57.9 +14.7 "
731 'CONTINUE

IF (C(2) < .35 OR C(2) > 4.7) THEN
 FLAG16(2) = 1
 GOTO 74
ELSE
 GOTO 761
END IF
74 COLOR 12
LOCATE 16, 44: PRINT "TOTAL PRESS SEN’R OUT RGE"
GOTO 75
761 COLOR 14
LOCATE 16, 44: PRINT "+135.0 +14.7 "
75 'CONTINUE

'SENSOR RANGE CODE CHECK FOR PSTAT
IF (C(3) < 3! OR C(3) > 4.5) THEN
 FLAG16(2) = 1
 GOTO 76
ELSE
 GOTO 77
END IF
76 COLOR 12
LOCATE 23, 42: PRINT "RANGE CODE (FOR PSTAT) OUT OF RGE"
LOCATE 23, 35: PRINT USING "###.##"; C(3)
GOTO 766
77 LOCATE 23, 35: PRINT "
766 'CONTINUE

'IF NO ERROR CONDITION, THE RESET FLAG16

 FLAG16(2) = 0

'TEST 10 SUBROUTINE---THIS ROUTINE CALCULATES THE DIFFERENCE BETWEEN
'BETA (MSW NS & FS) AND GAMA (REF NS & FS) AND COMPARES THE ANGLE
'WITH A LIMIT VALUE OF L100 (L100 = 15.0 DEG). IF THIS ANGLE IS EXCEEDED
'THE FLAG IS SET TRUE.
'CALCULATE THE ANGULAR DIFFERENCE BETWEEN GAMATF AND BETATF---COMBINED TWO
'CALLS TO TEST 10 INTO ONE!

FLAG25(1) = 0

IF ((GAMATF - BETATF) >= L100) THEN
 FLAG25(1) = 1
 COLOR 12
 LOCATE 7, 46: PRINT "MSW/REFTF ANG X'C'ED"
 GOTO 781
ELSE
 GOTO 782
782 COLOR 14
 LOCATE 7, 46: PRINT "+0.0 -4.5
END IF

781 'CONTINUE

IF (GAMATF <= .1) THEN
 FLAG25(1) = 1
 GOTO 80
ELSE
 GOTO 801
END IF

80 COLOR 12
 LOCATE 11, 45: PRINT "REFTF IN SLIP'REAM"
 GTF = 1
 GOTO 81

801 COLOR 14
 IF (GTF = 1) THEN
 GOTO 802
 ELSE
 GOTO 81
 END IF

802 LOCATE 11, 45: PRINT "
 GTF = 0
 LOCATE 11, 45: PRINT "+15.0 0.0"

81 'CONTINUE

IF ((GAMATN - BETATN) >= L100) THEN
 FLAG25(1) = 1
 COLOR 12
 LOCATE 8, 46: PRINT "MSW/REFTN ANG X'C'ED"
 GOTO 82
ELSE
 GOTO 83
END IF

83 COLOR 14
 LOCATE 8, 46: PRINT "+0.0 -4.5
END IF

82 'CONTINUE

IF (GAMATN <= .1) THEN
 FLAG25(1) = 1
 GOTO 84
ELSE
 GOTO 851
END IF

84 COLOR 12
 LOCATE 12, 45: PRINT "REFTN IN SLIP'REAM"
 GTN = 1
 GOTO 85

851 COLOR 14
IF \(\text{GTN} = 1 \) THEN
GOTO 852
ELSE
GOTO 85
END IF

852 LOCATE 12, 45: PRINT "
\text{GTN} = 0
LOCATE 12, 45: PRINT "+15.0 0.0"

85 'CONTINUE

'SECOND CALL TO TEST 10
FLAG25(2) = 0
IF ((\text{GAMABF} - \text{BETABF}) \geq \text{L100}) THEN
FLAG25(2) = 1
COLOR 12
LOCATE 9, 46: PRINT "\text{MSW/REFBF ANG X'C'ED}"
GOTO 86
ELSE
GOTO 87
END IF

87 COLOR 14
LOCATE 9, 46: PRINT "+0.0 -4.5 "

86 'CONTINUE

IF (\text{GAMABF} \leq .1) THEN
FLAG25(2) = 1
GOTO 88
ELSE
GOTO 891
END IF

88 COLOR 12
LOCATE 13, 45: PRINT "\text{REFBF IN SLP'REAM}"
\text{GBF} = 1
GOTO 89

891 COLOR 14
IF (\text{GBF} = 1) THEN
GOTO 892
ELSE
GOTO 89
END IF

892 LOCATE 13, 45: PRINT "
\text{GBF} = 0
LOCATE 13, 45: PRINT "+15.0 0.0"

89 'CONTINUE

IF ((\text{GAMABN} - \text{BETABN}) \geq \text{L100}) THEN
FLAG25(2) = 1
COLOR 12
LOCATE 10, 46: PRINT "\text{MSW/REFBN ANG X'C'ED}"
GOTO 90
ELSE
GOTO 91
END IF

91 COLOR 14
LOCATE 10, 46: PRINT "+0.0 -4.5 "

90 'CONTINUE

IF (\text{GAMABN} \leq .1) THEN
FLAG25(2) = 1
GOTO 92

73
ELSE
 GOTO 931
END IF

92 COLOR 12
LOCATE 14, 45: PRINT "REFBN IN SLP'REAM"
 GBN = 1
 GOTO 93

931 COLOR 14
IF (GBN = 1) THEN
 GOTO 932
ELSE
 GOTO 93
END IF

932 LOCATE 14, 45: PRINT ""
 GBN = 0
 LOCATE 14, 45: PRINT "+15.0 0.0"

93 'CONTINUE

'TEST 11 SUBROUTINE--THIS TESTS THE MEASURED MODEL ROLL ANGLE TO INSURE
'THAT THE ROLL ANGLE DOES NOT EXCEED +275 OR -95.0 DEGREES. IF THIS IS
'EXCEEDED, A FLAG IS SET FOR OUTPUT TO THE SEQUENCER INTERLOCK.

'COMPARE THE ROLL ANGLE WITH ITS PLUS AND MINUS LIMITS, AND SET A FLAG
'TRUE IF LIMITS ARE EXCEEDED. L110A = +275 DEG, L110 = -95 DEG.

FLAG25(4) = 0
IF (ROLPOT >= L110A) THEN
 FLAG25(4) = 1
ELSEIF (ROLPOT <= L110) THEN
 FLAG25(4) = 1
END IF

IF (FLAG25(4) = 1) THEN
 COLOR 12
 LOCATE 17, 44: PRINT "ROLL ANG X'C'ED"
 GOTO 96
ELSE
 GOTO 97

97 COLOR 14
LOCATE 17, 44: PRINT "+275.0 -95.0"
END IF

96 'CONTINUE
JJS = JJ + 1
JJ = JJS

'LOCATE 22, 55: PRINT USING "#####"; JJ

'DEFINE THE DIGITAL I/O CONSTANTS--SEE "DT-2817 USER MANUAL"
'CONTROL REGISTER WITH FACTORY BASE ADDRESS
CONTROL REGISTER% = &H250
'OUTPUT PORT ADDRESSES
DATA.PORT6 = &H251
DATA.PORT7 = &H252
DATA.PORT8 = &H253
DATA.PORT9 = &H254
'ALL PORTS SET FOR OUTPUT (&HF=1111)
OUT CONTROL REGISTER%, &HF
DATA.VALUE(6) = TQ
DATA.VALUE(7) = STRTMW
DATA.VALUE(8) = TMR
DATA.VALUE(9) = BMSWS
'OUTPUT TO THE PORTS
OUT DATA.PORT6, DATA.VALUE(6)
OUT DATA.PORT7, DATA.VALUE(7)
OUT DATA.PORT8, DATA.VALUE(8)
OUT DATA.PORT9, DATA.VALUE(9)
'READ BACK DATA THAT WAS OUTPUT ON THE PARTICULAR PORT
PORT.VALUE.READ(6) = INP(DATA.PORT6)
 XYZ = PORT.VALUE.READ(6)
PORT.VALUE.READ(7) = INP(DATA.PORT7)
 WXYZ = PORT.VALUE.READ(7)
PORT.VALUE.READ(8) = INP(DATA.PORT8)
 VWXYZ = PORT.VALUE.READ(8)
PORT.VALUE.READ(9) = INP(DATA.PORT9)
 UVWXYZ = PORT.VALUE.READ(9)
LOCATE 21, 54: PRINT USING "##"; XYZ
LOCATE 21, 56: PRINT USING "##"; WXYZ
LOCATE 21, 60: PRINT USING "##"; VWXYZ
LOCATE 21, 58: PRINT USING "##"; UVWXYZ

GOTO 1
A brief study was undertaken to demonstrate the feasibility of using a state-of-the-art off-the-shelf high speed personal computer for simulating a microprocessor presently used for windtunnel safety purposes at Langley Research Center's National Transonic Facility (NTF). Currently, there is no active display of tunnel alarm/alert safety information provided to the tunnel operators, but rather such information is periodically recorded on a process monitoring computer printout. This does not provide on-line situational information nor permit rapid identification of safety operational violations which are able to halt tunnel operations. It was therefore decided to simulate the existing algorithms and briefly evaluate a real-time display which could provide both position and trouble shooting information.