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SUMMARY

The Flight Systems Development branch of the U.S.

Army's Avionics Research and Development Activity
(AVRADA) and NASA Ames Research Center have

developed for flight testing a Computer Aided Low-Altitude

Helicopter Flight (CALAHF) guidance system. The

system includes a trajectory-generation algorithm which
uses dynamic programming and a helmet-mounted display

(HMD) presentation of a pathway-in-the-sky, a phantom

aircraft, and flight-path vector/predictor guidance

symbology. The trajectory-generation algorithm uses

knowledge of the global mission requirements, a digital

terrain map, aircraft performance capabilities and precision

navigation information to determine a trajectory between
mission waypoints that seeks valleys to minimize threat

exposure. This system has been developed and evaluated

through extensive use of piloted simulation and has

demonstrated a "pilot centered" concept of automated and

integrated navigation and terrain mission planning flight

guidance. This system has shown a significant

improvement in pilot situational awareness, and mission

effectiveness as well as a decrease in training and

proficiency time required for a near terrain, nighttime,

adverse weather system.

AVRADA's NUH-60A STAR G]ystems Testbed for Avionics
Research) helicopter has been specially modified, in house,

for the flight evaluation of the CALAHF system. The near-

terrain trajectory generation algorithm runs on a multi-

processor flight computer. Global Positioning System

(GPS) data are integrated with Inertial Navigation Unit

(INU) data in the flight computer to provide a precise

navigation solution. The near-terrain trajectory and the

aircraft state information are passed to a Silicon Graphics

computer to provide the graphical "pilot centered"

guidance, presented on a Honeywell Integrated Helmet And

Display Sighting System (IHADSS). This paper presents

the system design, piloted simulation, and initial flight
test results.

_TRODUCTION

The complexity of rotorcraft missions involving

operations close to the ground in nap-of-_e-earth (NOE)
flight for long periods of time result in high pilot

workload. This is especially true for single-pilot vehicles.

such as was originally intended for RAH-66 Comanche. In

order to allow a pilot more time to perform mission-

oriented tasks, some type of automated system capable of

performing guidance, navigation, and control functions is

needed. Automating NOE flight is extremely challenging
due to the advances necessary in several technology areas

such as terrain flight guidance, obstacle detection, and
obstacle avoidance. NASA's Ames Research Center and the

U.S. Army's Avionics Research and Development Activity

(AVRADA) have joined to develop these technologies and

flight test systems and concepts that have the greatest

potential for improved low-altitude and NOE rotorcraft

flight operations [1].

Currently, rotorcraft operating in threat areas achieve low-

level, maneuvering penetration capability during night-

time and adverse weather conditions through the use of a

combination of technologies such as terrain-following

OF) radar systems, forward looking infrared sensors and

night vision goggles [2]. TF systems were initially

developed for fixed-wing tactical and strategic aircraft and

provide vertical commands which can be displayed on a

flight director for manual flight or fed to the flight control

system for automatic flight. The extension of TF
capability to include lateral maneuvering by taking

advantage of on-board digital terrain data is commonly

referred to in the literature as Terrain Following/Terrain

Avoidance OF/TA) [3]. Within the last few years TF/TA

algorithms have been modified to suit the requirements of

rotorcraft [4,5]. Research at NASA Ames has concentrated

on incorporating these algorithms into an operationally

acceptable system, referred to as the Computer Aiding for

Low-Altitude Helicopter Flight (CALAHF) guidance system

[6]. Several piloted simulations of the CALAHF guidance

system have been conducted to develop the system and

pilot interface and to evaluate pilot tracking performance

and situational awareness under various flight and

environmental conditions. Based on the system

performance and pilot acceptance demonstrated during the

third simulation the CALAHF concept was befieved ready

for flight evaluation, both as a first step in initiating

NASA's automated NOE flight research and as a standalone

Capability to meet the operational military requirements for

covert low-altitude penetration. This resulted in an

agreement between NASA-Ames and the U.S. Army

AVRADA for a joint flight experiment in the AVRADA

NUH-60A STAR (_stems Testbed for Avionics Research)

helicopter. Validation of the NASA-developed CALAHF
system is being carried out on the NUH-60A STAR

helicopter. This paper reviews the system concept,

simulation effort, test aircraft integration, and the initial

series of flight tests.
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Figure I CALAHF system block diagram

CALAHF SYSTEM DESCRIPTION

A functional block diagram of the CALAHF flight system is
shown in Fig. 1. The three major components: (1) the
trajectory-generatlon algorithm, (2) trajectory coupler, and
O) displayed information are discussed below.

Trajectory Generation Algorithm

The primary guidance is provided by a valley-seeking,
trajectory generating algorithm based on a forward-
chaining dynamic-programming technique originally
developed for the U.S. Air Force [8]. Significant
modifications were made to the original guidance algorithm

to adapt it for manual rotorcraft operations. These
modifications are discussed in extensive detail in references

[4,9], thus the algorithm is described only briefly here.
The algorithm uses mission dependent information, i.e
mission waypoints, and Defense Mapping Agency digital
terrain elevation data combined with aircraft performance

parameters and state information, e.g., maximum bank
angle, maximum cllmb and dive angles, maximum pull up
and push over load factor, and set-clearance altitude (desired
trajectory altitude above the ground) to compute an optimal
path between mission waypuints.

The trajectory generation algorithm uses a decoupled
procedure in which the lateral and vertical trajectory
solutions are determined independently to obtain an
optimal trajectory. In this decoupled procedure, the lateral
ground track is first determined by assuming that the
aircraft canmaintain the vertical set-clearance altitude. The

vertical trajectory is then calculated using aircraft normal
load factor and flight path angle as maneuver constraints to
maintain the aircraft at or slighdy above the vertical set
clearance as determined from the digital terrain map and the
lateral ground track.

The lateral path is calculated using a tree structure of
possible two-dimensional trajectories by using discrete
values of aircraft bank angle. Assuming constant speed and
coordinated flight (zero sideslip), each discrete bank angle
produces a possible path which in combination forms a tree
of possible paths (Fig. 2). In this implementation, the

bank angle cont_l has five discrete values that are used for
the trajectory calculation (0, + 1/3 maximum bank angle, ±
maximum bank angle). The number of possible paths is
reduced to a reasonable level by pruning. Pruning the tree
after three to four levels of branching gives the best mix of
branch generation and computational speed based upon
results from non-real-time computer simulations.

After the tree structure of possible paths has been

propagated through the entire patch length, the cumulative
cost (J) of all surviving branches are compared, and the
path with the lowest cost is selected as the optimal
trajectory. The cost function J used to determine the
optimal trajectory is

J= _di.1,30 Hi2 + f(Di)c0Dx 2 + _A_Pi) 2 (1)

where H i is the altitude above sea level at node i, D i is the

lateral distance from reference path (as defined by s

straight line between waypoints) at node i, _ is the TF/TA

ratio, f(D) is a dead band on the lateral deviation cost, Au/i

is the error between reference and command heading at node

i and a isthe heading weight.

The main parameters in this performance measure are the
termsrepresenting altitude H and reference-path deviation
D. The cost-functional, when driven by these two terms,
allows lateral maneuvering to seek lower altitude terrain by
the cost reduction from H; excessive deviation from the

reference path is controlled by increasing cost due to D.

The TF/rA ratio _ allows blending of these two terms to
obtain a desired balance between vertical and horizontal

maneuvering. The f(D) and a(A_Pi) 2 terms were added to

reduce undesirable oscillations in the trajectory about the

nominal path that are caused by the bank-angle
quantization. The f(D) eliminates the need for precise

following of the reference path and the a(A_/i)2 term

provides a penalty for changing the heading from that
given by the reference path. These two terms were added as
a result of experience gained in piloted simulations to make
the trajectory-generation algorithm emulate pilot control
strategies for 1ow-aititude maneuvering flight. The

2
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Figure 2 Trajectory Tree gencradon

trajectory-generation algorithm, as defined above, is

designed to compute guidance for a patch which is the area

in front of the aircraft's present location. The patch width
is the maximum lateral deviation allowed by the algorithm.

and the length is the flight preview distance. The

algorithm is computationally intensive; for a
representative patch length of 30 sec and maximum lateral

deviation of 1 km the computational cycle is

approximately 4 to 5 sec for a modern (I to 2 MIP) flight

computer. Although the trajectory is updated every cycle

time, the updates are blended in such a way that a pilot sees

a continuous path and the updates are imperceptible to him

The optimal trajectory is passed to the trajectory coupler.

The trajectory is represented by 30 discrete instances of

commanded aircraft-inertial state (position, velocity and

acceleration) as we]] as commanded bank, heading and

vertical flight-path angles at l-sec intervals.

Pilot Display Guidance

The guidance and control information is given to the pilot
on a helmet mounted display (HMD) in the format shown

in Fig. 3. The HMD format is a mixture of screen, body,
and inertially referenced symbols. The screen referenced

symbols include: a heading tape (023°), engine torque (

45%), airspeed (63 kts), radar altitude ( 105 ft), and ball and

slip indicator and are fixed to a location on the HMD

display. The body referenced symbols are the aircraft nose

( > < ), and the flight-path vector/predictor which move in

relation to the pilots head position relative to the nose and

aircraft's flight path vector. AII remaining symbols are

inertia]]y referenced and are positioned on the display

symbolically in the exact position and orientation as

dictated by their world coordinates. The primary situational

information is presented to the pilot with an inertially

stabilized flight-path vector/predictor symbol predicting

the rotorcraft location 4 seconds ahead, and is represented

by the circular aircraft icon with attached airspeed flight

director tape. The situational information presented on the

HMD in Fig. 3 indicates the pilot is turning right with a

slight descent as indicated by the flight-path

vector/predictor below the horizon, and is looking

•approximately along the longitudinal axis of the aircraft as

indicated by the position of the aircraft nose symbol.

The trajectory information is displayed on the HMD using a

pathway-in-the-sky and a phantom aircraft. The pathway

symbols represent a three-dimensional perspective of the

inertial position and heading of the discretized trajectory.

The phantom aircraft, displayed as a delta-winged aircraft
represents the instantaneous position along the trajectory

that is 4 seconds ahead of the pilot's aircraft. By

positioning the flight-path vector symbol on the phantom

aircraft, the pilot will track the desired trajectory. In Fig.

3, the HMD symbols are presenting a climbing right turn.

The pathway is 30 meters (roughly two rotor diameters)
wide at the bottom and parallel to the horizon with vertical

projections that are canted at a 45 ° angle; the width at the

top is 60 meters. The depth of the path is 15 meters below

the intended trajectory; thus when flying a level straight-

line commanded path, the pilots used the analogy of

traveling in a full irrigation canal for describing the

pathway symbols. Fig. 3 shows a pathway configuration
of 7 lines.

Now, we refer to the guidance presented in this fashion as

"pilot centered" for the following reasons. First, the

presentation allows the pilot to choose the accuracy to

which he wishes to track guidance. For example, a pilot

can track the phantom aircraft with an intentional vertical

bias much like he does when flying formation in near-

terrain flight, using pilotage techniques he learned from his
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first multi-aircraft terrain flight mission. Another reason

is the pathway symbology allows the pilot to predict well

in advance the maneuvers of the phantom aircraft and

determine the pilotage technique most comfortable. This

display presentation philosophy is different than

traditional "flight director" guidance where the pilot is
required to null needles acting as a human autopilot reacting

to error signals. Using flight directors pilots often refer to

themselves as "meat-servos" and have to trust that the

system is operating properly. With the "pilot centered"

guidance the pilot no longer has to completely trust the

system and can use more of his own judgement in the

pilotage of his aircraft.

envelope. Eighteen guest and evaluation pilots from

NASA, DOD and U.S. indusu'y flew the system, giving

highly favorable feedback on the system development.
The evaluation pilots were able to manually track the HMD

guidance through various combinations of terrain, speeds,

and weather representative of system use. The guidance can
be followed with low pilot workload without detracting

from his awareness of the outside world. The pilot was

able to combine the guidance with his visual senses to

optimize the mission success in varying weather/threat
conditions.

AIRCRAFT SYSTEM DESCRIPTION

PILOTED SIMULATION

There have been five piloted simulations dedicated to the

development and evaluation of the computer aiding for low-

altitude helicopter flight guidance concepts [5,6,7]. The
simulationswere conducted atNASA Ames Research Center

on the six-degree-of-freedom Vertical Motion Simulator

(VMS). The VMS provides extensivecockpit motion for

use in evaluating handling qualities associated with

advanced guidance and con¢ol concepts for existingand

proposed aircraft. The first three simulations were
dedicated to concept development of the CALAHF system

[5,6]. Re final two simulations were conducted in direct

support of the joint NASA/U.S. Army flight test program

[7]. In the fifth simulation. 5 NASA and Army project

pilots flew over 300 simulation data runs evaluating and

defining the system throughout the proposed flight test

The U.S. Army and NASA Ames Research Center have

started an extensive flight test program of the CALAHF

system. The aircraft that is being used for the program is

the Army's NUH-60A (STAR) helicopter, Fig. 4. The

STAR has been extensively modified to serve as a research

aircraft for the U.S. Army [10] and provides digital control

and display of all cockpit functions through five

multifuncdon displays (MFD) via a 1553B network. The

system is referred to as the Army Digital Avionics System

(ADAS). Integrated into the ADAS MFD's is the

capability to monitor and control the engines, avionics,

circuit breakers, and flight information. ADAS also

provides automated secondary systems, checklists,
cautlon/advisory information, and emergency notification

and procedure. Due to this unique architecture, the NUH-60

STAR lent itself very well to the integration of the

CALAHF system.



Figure4 NUH-60A STAR helicopter

Figure 6 NUH-60,a STAR cockpit configuration & pilot with IHADSS

5



155;3 Bus

I "r1I AHRS

Wdeod Si,_o. _'"" .VME
Switch J"J Graphics '"

I I

vo./l\ ,..° II.o
Panel i

_/\(HMB) I Tracker _v_ I" '/ -- v._o\_ !
/ V,d_ \ I I 1,_Bu,I ,It _--'1

Digital Route p IIII[FL'RI [l,,.a°°.,ll11 ,.s,_ CDU 1
I RS2:32

Figure 5 NUH-60A STAR systems diagram

Figure 5 is a block diagram the CALAHF system, as

implemented in the STAR. The heart of the system is a

general purpose Motorola 68020 based multiprocessor

Versa Module Eurocard (VME) computer running a "real-

time" operating system. The CALAHF software was

rewritten at Ames to include all of the conceptual changes

and to be compatible with the VME computer. Connected
to the VME on a 1553B network are a Collins RCVR-OH

Global Positioning System (GPS) receiver, a Litton LN-39

Inertial Navigation Unit (INU), a Honeywell Integrated

Helmet Mounted Display and Sighting System (IHADSS), 3

programmable Collins Control and Display Units (CDU),
and an IBM PS2 computer. Also connected to the VME is a

Silicon Graphics 4D/120 via a fiber optic SCRAMNet

network, and an 386 AT personal computer via a serial line.

The VME is also connected to the ADAS system as a remote
terminal on its 1553B network. This allows access to

airdata, engine performance data, and radar altimeter dam.

The VME computer runs the guidance algorithm, integrated

navigation, mission plan storage, network control, and

overall system software. The VME provides the aircraft

state, mission plan, digital terrain elevation data (DTED),

and guidance algorithm control data to generate the

trajectory output. The VME then stores the trajectory and

passes it as well as the current aircraft state information to

the Silicon Graphics at a synchronous 20 Hz rate through

the SCRAMNet interface for pilot display. Control of the

CALAHF system is through the CDUs located both in the

pilots console and engineers station. The CDUs allow

mode control, selection of CALAHF flight and display

parameters, and mission plan editing.

The navigation integration includes a P-Code GPS to

provide high accuracy positional data, and an INU to

provide high rate aircraft state information. The

navigation software f'dters and smooths the GPS and INU

data providing a continuous output for pilot display. The

navigation software on the VME receives the aircraft state
data from the GPS at 1 Hz and the INU at 32 Hz via the

1553B. The filters difference the 1 Hz positional

information from the GPS and the corresponding INU

information to determine latitude, longitude and altitude

corrections. The corrections are then ramped back into the

]NO at 8 Hz rate. Thus the navigation solution for the INU

has the accuracy of P-Code GPS in near continuous time (32

Hz).



The helmet mounted display system includes the IHADSS

and the Silicon Graphics computer. The IHADSS provides
the actual helmet display device and the head positioning

data, Fig 6. The Silicon Graphics workstation is the

symbol generator containing the software that generates
the display symbology shown previously in Fig. 3. The

Silicon Graphics computer provides display symbology to
the IHADSS via an RS-170 video interface.

A color digitized paper map of the flight test area is

generated by an 386 AT PC and presented in the cockpit on
a sunlight readable color monitor manufactured by Smith

Industries. Superimposed on the map is the current mission

plan, helicopter position and the guidance trajectory. The

map allows the pilot to maintain a global mission

perspective. An automated mission planning and

replanning capability is provided by an IBM PS2

computer[ 11].

The NUH-60A STAR helicopter has a self contained data

recording capability. Aircraft state sensor information

such as latitude, longitude, altitude, pitch, roll, yaw,

airspeed, radar aititude, pilot control inputs, and ground

speed are recorded on a VME battery backed-up memory

board. Which is transferred to digital tape upon mission

completion. The computed trajectory information as well

as pilot tracking performance are also recorded. This

digital information is recorded at the 20 Hz system rate.
Video information from an aircraft nose mounted FUR

Systems, FLIR 2000 Forward Looking Infrared (FUR)

system with superimposed HMD symbology is recorded on

a video tape recorder (VTR). Aircraft communications are
also recorded on the VTR.

FLIGHT EVALUATION

A flight test evaluation of the CALAHF system has just

initiated its data collection phase with the first data

collection flight on July 22, 1992" conducted in a rugged,

mountainous, uninhabited region just south of Carlisle,

Pennsylvania, USA. A DMA data base for the area,

covering 77°45 ' to 77000 , West longitude by 39°45 ' to
40015 , North latitude was obtained for the evaluation. The

terrain is fairly rugged with hills ranging from 1S0 to 760

meters throughout the test range. A series of waypoints

connected by straight lines were selected as the flight test

course. Fig. 7 shows the predesignated route of flight

superimposed with an actual trajectory flown by the test

aircraft over a contour map of the test area.

Five pilots representing the U.S. Army from AVRADA and

NASA at Ames Research Center were selected for the flight

test. Each of the pilots participated in the simulation

program and has a wide range of fligh, experience in

conventional, research and tactical flight regimes. For the

flight tesL the project pilot was seated in the left seat and a

safety pilot was in the right seat of the aircrafL The project

pilot's sole function was to fly the aircraft using II-IADSS

and the CALAHF symbology. The safety pilot was

responsible for overall aircraft control, communications,
and any other necessary cockpit function. The flight

engineer, seated aft, was responsible for data collection and

overall project control.

The two primary objectives of this initial flight test phase

were: 1) establish the functionality of the CALAHF system

in terms of its accuracy in tracking a vertical terrain profile

and horizontal viability of its flight path trajectory, and 2)
evaluate the test pilots ability to track the CALAHF

symbology. Each of the 5 pilots flew the baseline flight

test matrix shown in Table 1, providing a wide array of

tracking performance data. The the runs were started with

the trajectory guidance information displayed on the

IHADSS along the first leg of the reference course. The

task was to track, precisely and safely, the flight path

vector/predictor end phantom aircraft. Pilot and system

tracking performance in the vertical and horizontal axis

were measured by comparison of the trajectory generated by

the guidance algorithm with the actual trajectory flown by
the pilots. A typical run was approximately 20 to 30

minutes long. The test pilot flew no more than three

consecutive runs, thus eliminating variations in flight

performance due to fatigue. The data collected during the

flight test were compared with the piloted simulation data
discussed earlier.

RESULTS AND DISCUSSION

The system has flown a limited subset of the full test

matrix. The results presented here will focus on the

functional aspects of the CALAHF system.

Shown in Fig. 7 is a contour map of the flight test area

south of Carlisle, Pennsylvania, USA. The mission

waypoints, nominal reference path and a sample flight test

prof'de are shown on the map. It can be seen that the

CALAHF system followed the mission plan but utilized

terrain features to maintain a lower altitude profile

whenever possible.

Fig. 8 shows a typical flight in the vertical axis. Both
aircraft aifitude (commanded and actual) as well as terrain

(predicted and actual) are presented. The predicted terrain is

determined by the aircraft's precision navigation system

and the digital terrain database, and the actual terrain as

determined by the aircraft's radar altimeter and its GPS

derived mean sea level position. The CALAHF system

tracked the predicted terrain reasonably well, however,

there are sections where the predicted terrain and actual
terrain differ on the order of 60-90 meters. The database

accuracy is a major issue with any database-derived

guidance system. The effect of terrain discrepancies can be

reduced in three possible ways. The first is to fly the

system at an altitude greater than 90 meters above the

ground. A second approach is feedback radar altimeter

information into the vertical trajectory to compute a

vertical bias. This approach is thoroughly discussed in

[12] where a Kalman filtered was used to integrate radar
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Table 1 Engineering Evaluation Test Matrix

Flight Airspeed Set-Clear Max Bank MaxClimb
Plan (knots) Altitude (deg) (deg)

(fl AGL)

Lead A/C Pathway TFTA
Time 10 lines Ratio

(sec) Pac-Man

Carlisle 80 300 20 6
Carlisle 80 300 20 6
Carlisle 40 300 20 6
Carlisle 110 300 20 6
Carlisle 80 300 30 6
Carlisle 80 300 20 9
Carlisle 80 300 20 6
Carlisle 80 300 20 6
Carlisle 80 300 20 6
Carlisle 80 300 20 6

Carlisle 80 150 RAE* 20 6
Carlisle 80 100 RAE* 20 6

*RAE is Radar Altimeter Enhanced based upon refer_ce [12]

4 10 lines TF

4 10 lines TFTA .1
4 10 lines TFTA .1
4 10 lines TFTA .1
4 10 lines TFTA .1
4 10 lines TFTA .1
3 10 lines TFTA .1
5 10 lines TFTA .1
4 Pac-Man TFTA .1
4 10 lines TFTA0.5
4 10 lines TFTA .1
4 10 lines TFrA .1

altimeter, precision navigation and digital terrain data for
improved vertical performance. The algorithra presented in
[12] was validated with actual flight data in an off-line
analysis and the results suggest a 15 meters set clearance
may be used subject to obstacle avoidance limitatious. The
final improvement would be to obtain a more accurate
terrain database. For the initial test, the set clearance was

limited to 90 meters, the radar altimeter feedback system
will be integrated in the near future, and the U.S. Army in
cooperation with the U.S. Air Force are currently mapping
the test area m produce a higher accuracy terrain database.

As well as overall system performance, such as mission
completion and terrain usage, consideration needs to be
made for the pilots ability to track the system. The lateral,
vertical, and terrain tracking performance for a few
representative test configurations are shown in Fig. 9.
The figure shows the mean and 1-sigma tracking error for
four of the configurations tested to date. Also shown in the
figure are corresponding results from piloted simulations
using the CALAHF system. Flight test and simulation
results are consistent in lateral tracking performance with
less than ±10 meters 1-sigma deviation from the
commanded trajectory as shown in Fig. 9(a). The notable
exception is the flight at 60 knots. At 60 knots the test
aircraft's flight control system transitions between

heading hold and turn coordination requiring more pilot
compensation. Even at 60 knots the pilots tracked the
system within 20 meters (or approximately 1 rotor
diameter) 1-sigma of the desired trajectory.

For the initial flight test runs vertical pilot tracking
performance was much worse than simulator performance.
This is attributed to two factors. The small over shoots at

terrain peak crossings (Fig. 8) were attributed Coy the
pilots) to a coupling effect of airspeed, power, and altitude
during climb up one hill side and reduction of power to
descend down the backside. The pilots felt that on these

initial flight tests, they were not able to track these
reversals fast enough. The second factor is that the pilots
may still be on the learning curve for the flight system as
opposed to the simulation results. Even with these two
factors the vertical tracking performance is within ±15
meters 1 sigma from the desired flight path as seen in Fig.
9CO).

Fig. 9(c) is the statistical variation of the difference
between radar altitude and set clearance over a particular test
run. Some variation is expected as seen from the
simulation data. Also, the CALAHF system does not
require the pilot to match every bump in the terrain and a
climb performance limitation is imposed on the system.
These factors though are overwhelmed by the terrain errors
discussed earlier causing a three fold increase in terrain
tracking variation as compared to simulation data in the
rugged flight test area.

CONCLUSIONS

A low-altitude, covert terrain following/terrain avoidance
guidance algorithm for helicopter operations has been
developed and flight tested on a NUH-60A helicopter.
Initial evaluation of the data reflect that the guidance
system could be used reasonably well to track a
predesignated course using the terrain for masking in the
horizontal and vertical axis. However, the inaccuracy in
the DMA database (compared to the actual terrain) mandated
a clearance altitude of at least 90 meters in rugged terrain.
As DMA data become more accurate and radar altimeter

information is fully utilized, the present clearance altitude
may be lowered to 15 meters. The pilots were able to
follow the computer-aided flight guidance symbology with
relative ease and precision.

Comparison of flight and simulation data shows good
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correlation for lateral tracking performance but significant

increase in vertical tracking deviations. The major reason

for this increase is that airspeed, power and altitude

changes seemed to be more highly coupled in the aircraft

than during simulation. Another reason is the current

analysis is based upon the initial data collected and may

not reflect the relative growth in pilot learning as does the
simulation data.

Pilot feedback from these initial flights indicates that the

guidance system can be followed with low pilot

compensation and with minimal distraction from his

general situational awareness. This system allows the

pilot to combine guidance information with his visual
senses to optimize the successful accomplishment of the

mission. The Computer-Aiding for Low-Altitude

Helicopter Hight System has matured through extensive

use of piloted simulation, integration into the NUH-60A

STAR helicopter, and recent flight test and evaluation in

the rugged terrain of Carlisle Pennsylvania. Future flight

tests will include the use of operational pilots from U. S.

Army line units using the system in terrain flight
missions.
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