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ABSTRACT

This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system
dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault
injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to
dependability evaluation in the three phases of a system’s life: design phase, prototype phase, and operational phase.
Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a
classification of research methods or study topics is outlined, followed by the discussion of these methods or topics as

well as representative studies.

The statistical techniques introduced include the estimation of parameters and confidence intervals, probability
distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique
used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers elec-
trical-level, logic-level, and function-level fault injection methods as well as representative simulation environments
such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation
fault injection methods as well as several software and hybrid tools including FIAT, FERRARI, HYBRID, and FINE.
The discussion of measurement-based analysis covers measurement and data processing techniques, basic error char-
acterization, dependency analysis, Markov reward modeling, software dependability, and fault diagnosis. The discus-
sion involves several important issues studied in the area, including fault models, fast simulation techniques, work-

load/failure dependency, correlated failures, and software fault tolerance.
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I. INTRODUCTION

In computer science more than in physical sciences, the experimenter must decide what to consider and what to
ignore in data gathering and analysis, sometimes without the benefit of prior information or easily available intuition.
How to obtain general models from experiments or measurements made in a particular environment is by no means
clear. This paper discusses the current research in the area of experimental analysis of computer system dependability.

The discussion centers around methodologies, major developments, and major directions of the research in the area.

Experimental evaluation of the dependability of a system can be performed at different phases of the system’s
life. In the early design phase, CAD (Computer-Aided Design) environments are used to evaluate a design via simu-
lations, including simulated fault injections. Fault injection simulations can be used to investigate the effectiveness of
fault tolerant mechanisms, to evaluate system dependability, and to provide timely feedback to system designers.
However, simulations need accurate input parameters and the validation of output results. These should be estimated
based on previous measurement-based analysis. In the prototype phase, a system runs under controlled workload con-
ditions, and controlled fault injections are used to evaluate the system behavior under faults. Fault injections on real
systems can provide information about the process from fault occurrence to system recovery, including error latency,
propagation, detection, and recovery (reconfiguration may be involved). But fault injection can only study artificial
faults, and it cannot provide some dependability measures such as MTBF (Mean Time Between Failures) and avail-
ability. In the operational phase, a direct measurement-based approach can be used to measure systems in the fieid
under real workloads. The collected data contain a large amount of information about naturally occurring
errors/failures. Analysis of such data can provide understanding of actual error/failure characteristics and insight into
analytical models. Although measurement-based analysis is useful for evaluating real systems, it is limited to detected
errors. Further, conditions in the field can vary widely from one system to another, casting doubt on the statistical

validity of the results. Thus, all three approaches are complementary and essential for accurate dependability analysis.

in the design phase, fault injection simulations can be conducted at different levels: the electrical level, the logic
level, and the function level. The objectives of simulated fault injection are to determine dependability bottienecks,
the coverage of error detection/recovery mechanisms, the effectiveness of reconfiguration schemes, the system TTF

(Time To Failure) distributions, reliability, availability, performance loss, and other dependability measures. The



resulting feedback of simulations can be extremely useful in cost-effective redesign of a system. In this paper, we dis-

cuss different techniques used in fault injection simulations. We also introduce different levels of simulation tools.

In the prototype phase, while the objectives ot physical fault injections are similar to those of simulated fauit
injections in the design phase, the methods are radically different because real fault injection and monitoring facilities
are involved. Physical fault injections can be conducted at the hardware level (logic or electrical) or at the software
level (code or data corruption). Further, heavy-ion radiation techniques can also be used to imject faults and stress a
system. Instrumentations used in fauit injection experiments are illustrated using real examples, including several

fault injection environments.

In the operational phase, the measurement-based approach needs to address issues such as how to monitor com-
puter errors and failures and how to analyze measured data to quantity system dependability characteristics. Although
there is extensive research on methods for the design and evaluation of fault tolerant systems, litte is known about
how well these strategies work in the field. A study of production systems is valuable not only for accurate evaluation
but also tor identifying reliability bottlenecks in system design. Several issues in measurement-based analysis, includ-
ing workload/failure dependency, modeling and evaluation based on data, software dependability in the operational

phase, and fault diagnosis are addressed.

Results of measurement-based analysis discussed in this paper are based on over 100 machine-years of data
gathered from IBM, DEC, and Tandem systems. The evaluation methodology discussed includes: the use of the mea-
sured hardware and software error data to jointly characterize the interdependence between performance and depend-
ability, correlation analysis to quantify correlated failures and their impact on dependability, Markov reward modeling
of measured data to evaluate the loss of system service due to errors and failures, and algorithms that use on-line error

logs to pertorm automatic fault diagnosis and failure prediction.

Betore discussing methodologies and developments for each of the three phases discussed above, we present an
overview of the relevant statistical techniques used in this area. The techniques cover the estimation of parameters
and confidence intervals, distribution characterization including function fitting, and multivariate analysis methods
including clustering analysis, correlation analysis, and factor analysis. Importance sampling, a statistical technique to

accelerate Monte Carlo simulation, is also introduced. These techniques are later used in the discussion of analysis of



data obtained from fault injections or measured from operational systems.

In discussing the experimental analysis approaches used in the three phases, a wide range of dependability
issues, including error latency, error propagation, error detection, error recovery, error correlation, workload/error
dependency, availability, reliability, performability, and reward rate, are addressed. In addition to presenting method-
ologies and major developments in each of these phases, we also critique the relative merits and research issues for
different approaches. Most evaluation techniques introduced are illustrated via case studies of their uses on actual

systems.



II. STATISTICAL TECHNIQUES USED IN THE AREA

In this section, we will introduce several statistical techniques commonly used in the analysis of data collected
from fault injections and operational systems and used in simulation. The techniques discussed are not intended to be
comprehensive. For a comprehensive study of statistical methods, the reader is referred to the advanced texts of
statistics [Kendall77], [Dillon84]. In particular, we will discuss parameter estimation, distribution characterization,
and multivariate analysis techniques. Most of these techniques are widely used in every phase of the experimental

evaluation of dependability.

2.1. Parameter Estimation

The most important characteristics of a random variable are its distribution, mean, and variance. In practice,
means and variances are usually unknown parameters. Thus, how to estimate these unknown parameters from data

needs to be addressed.

2.1.1. Point Estimation

Point estimation is often used in experimental analysis, such as the estimation of the detection coverage from
fault injections and the estimation of MTBF (mean time between tailures) from field data. Each fault injection and
each failure occurrence can be treated as an experiment. The following theory is based on the assumption that all

experiments are independent and have the same underlying distribution.

Given a collection of n experimental outcomes X1, X3, X, Of a random variable X, each x; can be considered

as a value of a random variable X;. These X;'s are independent of each other and identical to X in distribution. The

set { X}, X5, ..., X,,} is called a random sample of X. Our purpose is to estimate the value of some parameter 6 (6
could be E[X] or Var[X]) of X using a function of X, X,, .., X,. The function used to estimate 6,
8 =6(X), Xa,...,X,), is called an estimator of 6, and 6(x), x5, ..., x,) is said to be apoint estimate of 6.

An estimator 4 is called an unbiased estimator of 6, it E[6] = 6. The unbiased estimator that has the minimum
variance, i.e., it minimizes Var(§) = E[(6 - 9)2] among all 8’s, is said to be the unbiased minimum variance estimator.

[t can be shown that the sample mean



X= X,‘ (21)

1

S|
.M=

1s the unbiased minimum variance linear estimator of the population mean g, and the sample variance

3 (X, - X)? 22)
=1

15, under some mild conditions, an unbiased minimum variance quadratic estimator of the population variance o-. If

an estimator 6 converges in probability to 6, i.c.,

lim P(|6(X,,X,,....,X)~0126)=0, (2.3)
n—oo

where ¢is any small positive number, it is said to be consistent.

A. Method of Maximum-Likelihood

If the functional form of the p.d.f. of the variable is known, the maximum likelihood is a good approach to
parameter estimation. In many cases, approximate functional forms of empirical distributions can be obtained (to be
discussed in Section 2.2). For example, the software TTR (Time To Error) in two measured distributed operating sys-
tems was shown to have an hyperexponential distribution (see Section 5.3). In such cases, the maximum likelihood

method can be used to determine distribution parameters.

The idea of the maximum likelihood method is to choose an estimator based on the assumption that the
observed sample is the most likely to occur among all possible samples. The method usually produces estimators that

have minimum variance and consistence properties. But if the sample size is small, the estimator may be biased.

Assuming X has a p.d.f. (probability distribution function) f(x16), where 6 is an unknown parameter, the joint

p.d.f. of the sample { X, X-, ..., X,,},

L) = __I'Ilf(x,-le) (2.4)
is called the likelihood function of 6. If 8(x,x3,...,x,) is the point estimate of 6 that maximizes L(8), then
6(X(, X;,..., X,) is said to be the maximum likelihood estimator of 6.

Now we use an example to illustrate the method. Let X denote the random variable "time between failures” in a

computer system. Assuming X is exponentiaily distributed with an arrival rate 4, we wish to estimate A from a random



sample { X, X5, ..., X,;}. By Equation (2.4),

n —Aix,»
L(A) = _1_11/1e‘“f =A"e S

How do we choose an estimator such that the estimated A maximizes L(A)? An easier way is to find the A value
that maximizes InL(1), instead of L(A). This is because the A that maximizes L(A) also maximizes InL(1), and InL(1)

is easier to handle. In this case we have

InL{A)=nin(A)- A Z": X; .

=]
To find the maximum, consider the first derivative

n

dlinL(A
dlnL) n g
d/l A i=1
The solution of this equation at zero,
- n
A= —,
2 x

is the maximum likelihood estimator for A.

B. Method of Moments

Sometimes it is impossible to find maximum likelihood estimators in closed form. For instance, it is difficult to

maximize the following p.d.f. of the gamma distribution G(x8)

a-] —x/8

MNa)o®

in estimating o and 6, because of the existence of the gamma tunction ['(r). The gamma distribution is often found

glx) =

useful for characterizing interval times in the real world. It will be shown in Section 5.3 that the software TTE in a
measured single-machine operating system fits a multi-stage gamma distribution. In such cases, the method of
moments can be used if an analytical relationship between the moments of the variable and the parameters (o estimate
can be found.

To introduce the method of moments, We first bring out the concepts of sample moment and population

moment. The k-th (k=1,2,...) sample moment of the random variable X is defined as



1~
m=—-3 XF, (2.5)
N o=t
where X, X, ..., X, are a sample of X. The k-th population moment of X is just E[ X*].

Suppose there are k parameters to be estimated. The idea of the method of moments is to set the first & sample
moments equal to the first £ population moments which are expressed as the unknown parameters, and then to solve
these & equations for the unknown parameters. The method usually gives simple and consistent estimators. However,
some estimators may not have unbiased and minimum variance properties. The following example shows details of
the method.

Consider the above gamma distribution example. We wish to estimate o and 6, based on a sample

{X|.X,5,..., X,} from a gamma distribution. Since X ~ G(, 8), we know
Elx]=a8, E[x’|=ab’+ab.

The first two sample moments, by definition, are given by

~ 12 —~
m; = _\’,,-=X, mZ:—Zx,»"=S“+X .
n

S| -
™=

I

Setting m, = E[X] and m, = E[X?] and solving for @ and 9, we obtain

il 2,

- e
-5, 4=

These are the estimators for & and 6 from the method of moments.

2.1.2. Interval Estimation
So far our discussion is limited to the point estimation of unknown parameters. The estimate may deviate from
the actual parameter value. To obtain an estimate with a high confidence, it is necessary to construct an interval esti-

mate such that the interval includes the actual parameter value with a high probability. Given an estimator 4, if

P@-e <8<b+e)=f, (2.6)
the random interval (6 — e, 8 + ¢;) is said to be 100x/% confidence interval for 6, and fis called the confidence coef-

Jficient (the probability that the contidence interval contains 6).



A. Confidence Intervals for Means

In the following discussion, the sample mean ¥ will be used as the estimator for the population mean. As men-
tioned before, it is the unbiased minimum variance linear estimator for . We first consider the case in which the sam-
ple size is large. By the central limit theorem, X is asymptotically normally distributed, no matter what the population
distribution is. Thus, when the sample size n is reasonably large (usually 30 or above, sometimes at least 50 if the
population distribution is badly skewed with occasional outliers), Z = (X — u)/( Si/n) can be approximately treated as
a standard normal variable. To obtain a 1004% confidence interval for g, we can find a number z,, from the N 0,1

distribution table such that P(Z > z,p) = o/2, where a=1- 4. Then we have

X-pu
P(=24pn < === < 24 =1l-a.
(—2an2 S/\/Z< n) o

Thus, the 100(1 — @)% confidence interval for i is approximately

- S
p< Rt 20— . X))

n

I the sample size is small (considerably smaller than 30), the above approximation can be poor. In this case, we

X S <

vall \/-II =
consider two commonly used distributions: normal and exponential. If the population distribution is normal, the ran-
dom variable T = (X — p)/(S/Jn) has a Student t distribution with n— 1 degrees of freedom. By repeating the same

approach performed above with a t distribution table, the following 100(1 — @)% confidence interval for 4 can be

obtained:

X—titan % <pu<X+t, 1..n \% , (2.8)
where 1,_,..n is a number such that P(T > 1, .«n) = ad2. Theoretically, Equation (3.8) requires that X have a normal
distribution. However, we will show later that the estimator is not very sensitive to the distribution of X when the
sample size is reasonably large (15 or more).

If the population distribution is exponential, it can be shown that z> = 2nX/u has a chi-square distribution with
2n degrees ot trcedom. Thus, the chi-square distribution table should be used. Because the chi-square distribution is
not symmetrical about the origin, we need to find two numbers, xzz,,; l—ar and xzz,,-_a/?_, such that P( ,{2 < ng,,.vl_,,,z) =

o2 and P2 > le,,ia/g) = «f2. The obtained 100(1 — «)% confidence interval for x 1s



— on i
nX <u< —i . (2.9)

x22n;a/2 x22n:l—al2

B. Confidence Intervals for Variances

The estimation of confidence interval for variances is more complicated than that for means, because the sample
variance cannot be simply approximated by a unique distribution (such as normal distribution) regardless of the popu-
lation distribution. However, irrespective of the population distribution, ”ll_)nl Var[$?] = 0. Thus, a good confidence
interval can be expected as long as the sample size n is large. Next, our discussion will be focused on the two com-

monly used distributions: normal and exponential.

If X is normally distributed, the sample variance $? can be used to construct the confidence interval. It is known
that the random variable (n — 1)$%/02 has a chi-square distribution with n — 1 degrees of freedom. To determine a
100(1 ~ )% confidence interval for o?, we follow the procedure for constructing Equation (3.9) to find the numbers

xz,,_l; 1—ar2 and xz,,_l;a,z from the chi-square distribution table. The confidence interval is then given by

(n-DS* . (n-1)8?
2 <o < 3 .
X n-1.a”2 X n~1;1-af?

(2.10)

Similar to Equation (2.8), our experience shows that this equation is not restricted to the normal distribution when the

sample size is reasonably large (15 or more).

If X is exponentially distributed, Equation (2.9) can be used to estimate the confidence interval for o~, because
for the exponential random variable, o2 equals 4. Since all terms in Equation (2.9) are positive, we can take square

tor them. The result gives a 100(1 — )% confidence interval for o*:

2711? ) P ZJIX P
(= ) <o < (——)° . (2.11)
X marn X oml-an

C. Confidence Intervals for Proportions

Often, we need to estimate the confidence interval for a proportion or percentage whose underlying distribution
is unknown. For example, we nay want to estimate the confidence interval for the detection coverage after fault injec-

tion experiments. In general, given n Bernoulli trials with the probability of success on each trial being p and the

9



number of successes being ¥, how do we find a confidence interval for p? If n is large (particularly when np > 5 and
n(1~p) 25 [Hoggd3]), Y/n has an approximately normal distribution, N(u,0%), with = p and o = p(1 - p)in.
Note that ¥/n is the sample mean which is an estimate of u or p. By Eq. (2.7), the 100(1-)% confidence interval for

pis

t ZanVp( - piin. (2.12)

This equation can be used to determine the number of injections required to achieve a given confidence interval

2|~

for an estimated fault detection coverage. Let n represent the number of fault injections and ¥ the number of faults
detected in the n injections. Assume that all faults have the same detection coverage, which is approximately p. Now

we wish to estimate p with the 100(1-a)% confidence interval being e. By Eq. (2.12), we have

e=z,n\Vp(1-p)in. (2.13)

Solving the equation for n:

2
= fn PP (2.14)
4

where 7 is the number of injections required to achieve the desired confidence interval in estimating p.

For example, assume detection coverage p = 0.6, confidence interval e = (. 05, and confidence coefficient

1 —a =90%. Then the required number of injections is

1. 645%%0. 6x0. 4
= =260
" 0.052

2.2. Distribution Characterization

Mean and variance are important parameters that summarize data by single numbers. Probability distribution
provides more information about data. Analysis of distributions can help one understand data in detail as well as the
underlying models. For example, it the waiting times in all states of a transition model are exponential, then the model
1s a Markov model. Otherwise, it is a semi-Markov model. We will discuss cmpirical distribution functions and func-

tion fitting in this subsection.

10



2.2.1. Empirical Distribution

Given a sample of X, the simplest way to obtain an empirical distribution ot X is to plot a histogram of the
observations. The range of the sample space is divided into a number of subranges called buckets. The lengths of the

buckets do not have to be the same. Assume that we have £ buckets, separated by xg, xy, ..., xi, for the given sample

k
with the size of n. In each bucket, there are y; instances. Obviously, the sample size n is Y, v;. Then, y;/n is an esti-

=1
mation of the probability that X takes a value in bucket i. We will call the histogram an empirical probability distri-
bution function (p.d.t.) of X. It is easy to construct the following empirical cumulative distribution function (c.d.f.)

from the histogram.

0, X< X

Fin=1{ 3 % X Sx<x (2.15)
I=1
19 .rk S X

The key problem in plotting histograms is determining the bucket size. A small size may lead to a large varia-
tion among buckets so that the characterization of the distribution cannot be identified. A large size may lose details of
the distribution. Given a data set, it is possible to obtain very different distribution shapes by using different bucket
sizes. One guideline is that if any bucket has less than five instances, the bucket size should be increased or a variable
bucket size should be used. By our experience, 10 to 50 buckets are appropriate in most cases, depending on the sam-

ple size. We will call the histogram constructed from data the empirical distribution.

2.2.2. Function Fitting

Analytical distribution functions are useful in analytical modeling and simulations. Thus, it is often desirable to
fit an analytical function to a given empirical distribution. Function fitting is not a trivial task and relies on certain
knowledge of statistical distribution functions. The procedure given in the following is based on our experience.
Given an empirical distribution, the first step is to make a good guess of the closest distribution function(s) by observ-
ing the shape of the empirical distribution. The second step is to use a statistical package such as SAS to obtain the
parameters for a guessed function by trying to fit it to the empirical distribution. The third step is to perform a signifi-

cance test of the goodness-of-fit to see if the fitted function is acceptable. If the function is not acceptable, we have to

1n



go to step 2 to try a different function.
Now we discuss step 3 — significance test. Assume that the given empirical c.d.f. is F,, defined in Eq (2.15),
and the hypothesized c.d.f. is F(x) (obtained from step 2 in the above). Our task is to test the hypothesis
Hol Fk(X) = F(X).
There are two commonly used goodness-of-fit test methods: the chi-square test and the Kolmogorov-Smirnov

test. We now briefly introduce the two methods.

A. Chi-Square Test
The chi-square test assumes the distribution under consideration can be approximated by a multinomial distribu-
tion, which usually stands. Let

p,~=F(x,»)—F(x,~_l), i=1,...,k
where p; is the probability that an instance falls into bucket i. If we define
P[xi_]SX;<_ri]=pi, i=1,...,k,
then X;, X, ..., X, have a muitinomial distribution which is equivalent to the original distribution F(x). Thus, for a
sample size of n, the expected instances falling into bucket / is np;, by the above distribution. The sum of error

squares divided by the expected numbers

k (v, np 2
Oi=npi)” (2.16)
i=] np;

is 4 measure of the “closeness" of the observed number of instances, y;, to the expected number of instances, np;, in

Q-1 =

bucket i. If g,_, is small, we tend to accept Hy. The "smallness" can be measured in terms of statistical significance if
we treat g, as a particular value of the random variable Qk-1. It can be shown that if 7 is large (np; 2 1), Q,_; has an
approximate chi-square distribution with & — 1 degrees of freedom, y2(k —1). If Hy is true, we expect that ¢,_, falls
Into an acceptable range of Q- so that the event is likely to occur. The boundary value, or critical value. of the
acceptable range, z2(k — 1) is chosen such that

POt > yalk-Dl=a
where & is called the significance level of the test. Thus, we should reject H, if Guor > 22k~ 1). Usually, « is cho-

sen to be 0.05 or 0.1.

12



B. Kolmogorov-Smirnov Test

The Kolmogorov-Smimov test is a non-parametric method in that it assumes no particular distribution for the
variable in consideration. The method uses the empirical c.d.f., instead of the empirical p.d.f., to perform the test,
which is more stringent than the chi-square test. The Kolmogorov-Smimov statistic is defined by

Dy, = sup J1F (x) = F(x)l], (2.17)
where sup, represents the least upper bound of all pointwise differences |F +(x) = F(x)l. In calculation, we can choose
the midpoint between x;_; and x;, fori=1,..., k, to obtain the maximum value of | F;(x;) — F(x)l. Itis seen that D,
is a measure of the closeness of the empirical and hypothesized distribution functions. It can be derived that D, sub-
mits to a distribution whose c.d.f. values are given by the table of Kolmogorov-Smirnov Acceptance Limits [Hogg831.
Thus, given a significance level o, we can find the critical value d, from the table such that

P[Dy>d)=a.
The hypothesis Hy is rejected if the calculated value of D, is greater than the critical value d,. Otherwise, we accept

Hy.

2.3. Multivariate Analysis

In reality, measurements ar¢ usually made on more than one variable. For example, a computer workload mea-
surement may include usages on CPU, memory, disk, and network. A computer failure measurement may collect data
on multiple components. Multivariate analysis is the application of methods that deal with multiple variables. These
methods, including clustering analysis, correlation analysis, and factor analysis to be discussed, identify and quantity

simultaneous relationships among muitiple variables.

2.3.1. Clustering Analysis

Clustering analysis is useful for characterizing workload states in computer systems by clustering similar points
in resource usage. Assume we have a sample of p variables with a size of 7. We call each instance in the sample a
point, which consists of p values. Clustering analysis identifies similar points and clusters them into groups (clusters).

Let x; = (Xi1» Xi2, - - Xjp) denote the ith point of the sample. The Euclidean distance between points i and j,
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R e i
is usually used as a similarity measure between points ; and ;.

There are several ditferent clustering algorithms. The goal of these algorithms is to achieve small within-cluster
variation relative to the between-cluster variation. A commonly used algorithm is the k-means clustering algorithm.
The algorithm partitions a sample with p dimensions and # points into k clusters, Cy, Cy, ..., Ci. Denote the mean, or
centroid of the C ; by X;. The error component of the partion is defined as

E=3 ¥ I x-%12. (2.18)

j=l ieC;

The goal of the k-means algorithm is to find a partition that minimizes E.

The clustering procedure is as follows: Start with groups each of which consists of a single point. Each new
object is added to the group with the closest centriod. After a point is added to a group, the mean of that group is
adjusted to take the new point into account. After a partition is formed, search for another partition with smaller E by

moving points from one cluster to another cluster until no transter of a point results in a reduction in £.

2.3.2. Correlation Analysis

Correlation analysis can be used Lo quantify error or workioad dependency between two components in a sys-

tem. The correlation coefficient, Cor(X,, X3), between the random variables X, and X, is defined as

Cor(X,, X,) = ELXi “;“:XZ"”Q)] (2.19)
12

where x4 and u, are the means of X 1 and X,, and g, and 03 the standard deviations of X 1 and Xy, respectively. If we
use o to denote the correlation coefficient, then p satisfies —1 < p < 1. The correlation coefficient is a measure of the
linear relationship between two variables, When | p|= 1, we have X, = aXy + b, where b>0 it p = 1, or b<0 if p=-1.
In this extreme case, there is an exact linear relationship between X 1 and X,. When | Al #1, there is no exact linear
relationship between X, and X,. In this case, p measures the goodness of the linear relationship X, = aX,+ b

between X| and X,. Usually, a p value of 0.5 or above is considered reasonably high.
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Given random variables, X;, X,, and X, and correlation coefficients between each pair, o5, 23, and py3, we
know these variables are related each other by py2, p23, and py3. Since X, is related to X, and X, is related to X5, a
partial dependence between X, and X3 may be due to X,. The partial correlation coefficient defined below quantifies

this partial dependence.

Pran = P13~ P12P23
TN =)= pr)

Partial correlation coefficient can be considered as a measure of the common relationship among the three variables.

(2.20)

If a random variable, X, is defined on time series, the correlation coefficient can be used to quantify the time
serial dependence in the sample data of X. Given a time window Atf > 0, the autocorrelation coefficient of X on the

time series ¢ is defined as
Autocor(X, At) = Cor(X(1), X(t + At)) , 2.21)

where 1 is defined on the discrete values (Ar, 24t, 3At, ...). In this case, we treat X(r) and X(r + At) as two different
random variables and the autocorrelation coefficient is actually the correlation coetficient between the two variables.

That is, Autocor(X, Ar) measures the time serial correlation of X with a window At.

2.3.3. Factor Analysis

The limitation of correlation analysis is that the correlation coetficient can only quantify dependency between
two variables. However, dependency may exist within a group of more than two variables or even among all variables.
The correlation coetficient cannot provide information about this multiple dependency. Factor analvsis is one of sta-
tistical techniques to quantify multi-way dependency among variables. The method attempts to find a set of unob-
served common factors which link together the observed variables. Consequently, it provides insight into the underly-
ing structure of the data. For example, in a distributed system, a disk crash can account for tailures on those machines
whose operations depend on a set of critical data on the disk. The disk state can be considered to be a common factor

for failures on these machines.

Let X =(xy,...,x,) be a normalized random vector. We say that the k-factor model holds for X if X can be

written in the form
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X=AF+E (2.22)
where A=(4;) (i=1,...,p; j=1,...,k) is a matrix of constants called factor loadings, and F = (fy,..., f;) and
E =(e,...,e;) are random vectors. The elements of F are called common Jactors, and the elements of £ are called
unique factors (error terms). These factors are unobservable variables. It is assumed that all factors (both common and

unique factors) are independent of each other and that the common factors are normalized.

Each variable x; (i = 1,..., p), can then be expressed as

and its variance can be written as

2
=1

is called the communality and represents the variance of x; which is shared with the other variables via the common

factors. In particular Ay = Cor(x;, f;) represents the extent to which x; depends on the jth common factors. The sec-

ond part, y;, is called the unigue variance and is due to the unique factor e;; it explains the variability in x; not shared

with the other variables.

2.4. Importance Sampling

Importance sampling is a statistical method to reduce sampling size while keeping estimates obtained trom the
sample at a high level of confidence [Kahn53]. The method has been recently used to reduce the number of runs in
Monte Carlo simulations for evaluating computer dependability [Goyal92] [Choi92]. In the following, we first give
an overview of the method and then discuss its applications in the Monte Carlo simulation of discrete-time Markov

chains (DTMC’'s).
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2.4.1. Overview of the Method

Assume that a random variable X has p.d.f. f(x) and that ¥ = h(X) is a function of X. Our goal is to estimate

the expected value of Y,

4o
6 = E[Y] = E[h(X)] = f h(x) f(x)dx , (2.23)
through sampling. That is, we generate a sample {x;, xa,...,x,} according to f(x), therefore generating
{¥1, va,.-., ¥»}, and then calculate
- - 12 12 _
f=Y=-— i= - h(x;) .
n l=Zl Yi n =y (r )

It may be very expensive lo generate a statistically significant sample of X. For example, if v; = #(x;) =0 for
most generated x;, we may need an extremely large size of sample to estimate ¢ with a high level of confidence. How-
ever, if we can make the rare x;’s which are "important” for estimating 8 be much more frequently selected in sam-
pling while keeping the estimate unbiased, the sample size will be greatly reduced. This is the basic idea of the impor-
tance sampling method.

To do importance sampling, we change the p.d.f. of X from f(x) to g(x) such that those x's which are of impor-
tance in our parameter estimation have higher occurrence probabilities in g(x). We use X’ to represent the variable

which has p.d.f. g(x"). By Eq. (2.23), we have

400 +oo +oo
f(x)
- - A - (224
o L h(x) f(x)dx L W) oy 800 L R(OA(X)g(x)dx , )
where
A = L2 (225)
g(x)

is called likelihood ratio. Let Y’ = h(X)A(X), then Eq. (2.24) becomes

6= L y'g(x)dx = E[Y’] . (2.26)

Thus, instead of sampling from f(x) to estimate the expected value of Y, the experiment is changed to sampling
from g¢(x") to estimate the expected value of Y’. That is, we generate a sample {x], ¥5,..... v, } according to g(x",

therefore generating { yi, y3,-..., y,}, and then calculate
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- 1¢
=Y =—- Z y: = ; 2 h(x,’)A()c:) .

The variance of the above estimator is

Foo 2
Var(Y") = E[(Y’ - 8)"] = J' KD yax - 6
—  g(x)
To achieve the minimum variance, we should have
h )
g(x) = L)éfg .

But 6 is the unknown parameter to estimate. A heuristic is that the shape of g(x) should follow the shape ot i(x) f(x)

as closely as possible.

2.4.2. Applications in DTMC Simulation

In many cases, the operation of a computer system can be modeled by a DTMC (Discrete Time Markov Chain)
[Trivedi82]. If the built DTMC is very large (such that it exceeds the available storage) or the functional simulation
(simulation of the execution of machine instructions, algorithms, etc.) is used above a DTMC, the Monte Carlo simu-
lation method is perhaps the only feasible way to solve the model. In dependability models, system failures are usually
rare events with extremely small probabilities. In order to obtain statistically significant results, large simulation runs
are required, which can be very time consuming. In such a case, importance sampling can be used to reduce simula-
tion runs, usually by orders of magnitude.

Assume we have a DTMC (Y s 2 0} with a set of states {S,, S5, ..., S,,) and a transition matrix [p;}. For
each simulation run, we have apath x; = §; , S;, ..., S;, . The occurrence probability of path x; is [Goyal92]

P(X;) = pi Pisi, " Piy_yiv »

where each pj; is an element in [p;]. All possible paths constitute the probability space of a random variable: X =
{x1, x5 X3, -+ ).

To reduce simulation runs, we change the transition probability matrix trom [p;;] to [p;;] such that thosc paths
which are of importance in our dependability evaluation are more likely to be sampled. After the change, the occur-

rence probability of path x; is
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P/(%) = Py Pligiy """ Pl -
Assume the dependability measure to evaluate is & = E[#(X)]. Then & can be estimated using 4 sample,

{x), X2, ..., X}, Obtained from simulations by

EES WESIEO) (2.27)

i=}

where

P(xl‘) _ Pi.,Pioi, Tt pik-lik

(x) _ PiaPisy " P (2.28)
P(x;)  Pi,Pi, " Pii

Alx) =

The remaining question is how to determine [pj;}. Several heuristics called failure biasing have been proposed
in the literature [Lewis84] [Goyal92]. Here we introduce one of the commonly used heuristics. Assume that in state
S;, transitions out of the state go to either a set of failure states, F (e.g., the system sutters one more component fail-
ure), or a set of recovery states, R (e.g., the system recovers from a component failure). (S; itself can be treated as

either in F or in R.) It is obvious that we have

Zpij+szj=1-
JER

jeF

Define a parameter b such that pj;'s satisfy

L=b, L=1-b.
j§Fp} j§R Py (2.29)
Then we determine each pj; in state S; by
b USE
pi; =94 keF ' . (2.30)
(1-b)—=—  JjER
k§R Pix

The parameter b is usually chosen to be 0.5 [Goyal92]. Since the sum of the original probabilities to failure
states is often very small, by Eq. (2.29), the selection of b can significantly increase these probabilities, thus making

these transitions much more likely to occur in simulations.
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11. DESIGN PHASE

In the early design phase of highly reliable systems, simulation is an important experimental means tor pertor-
mance and dependability analysis. Compared to analytical modeling, simulation has the capability to model complex
systems in detail without being restricted to assumptions made in analytical modeling to keep the model mathemati-
cally tractable. Thus, simulation is able to provide more accurate dependability evaluation than analytical models.
Simulations tor dependability analysis can be performed by injecting faults in the system under study at the electrical
level, the logic level, and the function level. Dependability issues studied usually include but are not limited to: 1)
fault propagation, 2) fault latency, and 3) fault impact such as coverage, reliability, availability, and performance loss.

Figure 3.1 shows fault injections at the different levels.

Electrical-level fault injection simulation is usually used to emulate transient faults by changing the electric cur-
rent and voltage inside the circuits. The faulty current and voltage may cause errors in logic values at the gate level.
The gate-level errors may then propagate to other functional units and output pins of the chip. It has been reported
that transient fauits account for more than 80% of the failures in computer systems [Siewiorek78], [Iyer86]. These
faults result from physical causes such as power transients, capacitive or inductive crosstalk, or cosmic particle inter-
ventions [Yang92]. Electricai-level simulation can be used to study the impact of transient faults from the physical

Figure 3.1. Simulated Fault Injections at Different Levels

Fault Injection

Electrical-Level Logic-Level Function-Level
Change Current Stuck-atQ or 1 Change CPU Register
Change Voltage Inverted Fault Flip Memory Bit, etc.

Electrical Logic Functional
Circuits Physical Gates Logic Units
Process Operation

20



level, but since the simulation has to track the propagation of faults from circuits to gates, to functional units, and

eventually out to the pins, it can be very time consuming and memory bound.

For this reason, logic-level fault injection simulation applies abstractions of physical fault models to logic gates
to study large VLSI, even computer systems. Commonly used fault models include stuck-at-0, s;uck-at-l, and
inverted fault. These models are considered to be representative of faults at the gate level. Although simulation at the
logic level ignores the physical processes underlying gate faults, it still needs to trace the impact of gate-level taults to
higher levels. For the same reason that electrical-level simulation cannot be effectively used to study large VLSI sys-

tems, logic-level simulation cannot effectively study large computer systems.

Function-level fault injection simulation is usually used to study dependability teatures of large computer or
network systems. Faults are injected into various components of the system under study. Functional fault models are
used in the simulation, while detailed processes of fault occurrence at lower levels are ignored. Functional models rep-
resent the manifestation of faults at the lower levels and are extracted from results obtained from electrical-level or
logic-level fault injections or from field measurements. For example, "flipped memory bit" and "CPU register error”
are two typical fault models. Analytical dependability models of computer systems are usually built at this level.
Compared to analytical models, simulation is capable of representing detailed architectural features, real fault condi-

tions, and inter-component dependencies, thereby providing more accurate and believable results.

There are several common issues for fault injections at all levels. The first issue is that given fault models (e.g.,
one bit flip in memory) and types (e.g., transient fault), where do we inject faults? A simple way is to randomly
choose a location from the injection space (e.g., all gates in a VLSI chip or all memory bits). This scheme is easy to
implement, but many faults may have similar impact (e.g., all faulty bits in an ALU may have the same effect) and
many faulty locations may not be exercised. Another way is to inject faults only to representative locations which
have different impact, or only to representative workload areas. This approach can be used to study fault impact in

terms of locations or workloads.

The second issue involves workloads. The impact of faults on system dependability is workload-dependent.
Hence it is important to analyze a system while it is executing representative workloads. These workloads can be real

applications, selected benchmarks, or synthetic programs. If the goal of study is to investigate fault impact on a
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mission task, the real applications running in the mission may be used in the simulation. If the research goal is to
study tault impact on general workloads, several representative benchmarks may be selected for the simulation. If we
want to exercise every functional unit and location in the simulation, both real applications and benchmarks may not
be appropriate. In this case, synthetic workloads can be designed for achieving the goal. The workload issue turther
complicates simulation models and increases simulation time. It is necessary to develop ways to represent realistic

workloads while still maintaining reasonable simulation times.

The third issue is simulation time explosion which occurs when: 1) too much detail is simulated such as model-
ing physical processes in fault injections at the electrical level, and 2) extremely small failure probabilities require
large simulation runs to obtain statisticaily significant results (the theory is discussed in Section 2.1). Several tech-
niques, including mix-mode simulation [Saleh90] [Choi92], importance sampling [Goyal92] [Choi92], hybrid simula-
tion [Bavuso87], [Goswami93al, and hierarchical simulation [Goswami92] have been used to tackle the time explo-

sion problem.

Table 3.1 summarizes features and representative studies in simulated fault injections at different levels. We will

discuss these studies in the following three sections.

Table 3.1. Summary of Simulated Fault Injections

Category Electrical Level Logic Level Function Level
Approach || Alter electrical current Inject stuck-at or inverted | Inject faults to CPU,

and voltage in circuits faults to logic gates memory, [/O devices, etc.
Target VLSI chip VLSI chip Computer system
Under Software running Computer system Network system
Study on the chip Software Software

Fault simulation [ Yang92] | BDX930 [McGough81] Trace-driven [Chillarege871
Studies HA1602 [Duba88] BDX930 [Lomelino86] NEST [Dupuy90]

FOCUS [Choi92] IBM RT PC [Czeck91] DEPEND [Goswami92]

REACT [Clark93]

3.1. Simulated Fault Injection at the Electrical Level

There are several reasons for performing fault injections at the electrical level. First, the tault injection at this

level can be used to study the impact of physiéal causes which lead to faults and errors. Secondly, it has been pointed
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out by previous studies [Banerjee82], [Beh82] that simple stuck-at fault models do not represent some types of faults.
Thirdly, some circuits are of a mixed analog/digital nature which cannot be tully characterized by logic-level tault
models. Thus, there is a growing need for fault simulators which can handle electrical transient faults and permanent

physical failures for the purposes of both circuit testing and dependability evaluation.

The basic simulation methodology used in fault injections at the electrical level is the mixed-mode method in
which the fault-free portions of the circuit are simulated at the logic level while the faulty portions of the circuit are
simulated at the electrical level [Saleh90]. Figure 3.2 illustrates the method. A simple CMOS AND gate with buffered
output is drawn in the figure. The dotted boxes indicates normal voltage waveforms for the circuit and the dashed
boxes contain waveforms resulting from a transient injection at the location marked by X. Notice that waveforms

within the electrical-level analysis behave in an analog fashion, but are discrete in the logic-level analysis.

Figure 3.2. [lustration of Fault Injection at Electrical Level
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A representative mixed-mode fault simulator is SPLICEI] [Saleh84]. The electrical analysis in SPLICE1 is
based on the method of iterated Gming analysis (ITA) which incorporates a nonlinear relaxation method with event-
driven selective tracing. [TA has been shown to be accurate and fast (can provide a speed-up of up to two orders of
magnitude). The logic analysis in SPLICE1 is performed using a relaxation-based method including MOS-oriented
models. Recently, more advanced techniques, such as the concurrent mixed-mode simulation of permanent faults and

the dynamic mixed-mode simulation of transient faults have been developed [Yang92].

We now discuss two studies in the electrical-level fault injection. Both use SPLICE1 as the fault simulation
engine. The first is a case study of the impact of different levels of current transients on a microprocessor-based chip.
The second is a fault injection tool which integrates fault injection engine, tracing facility, and graphical and statistical

analysis packages into a user environment.

3.1.1. Simulation of a Microprocessor-Based Chip

One of the studies in this field was an experimental analysis of susceptibility of a microprocessor-based jet
engine controller to upsets caused by current and voltage transients through simulated tault injections [Duba88]. The
target system for the study was an HA 1602, a microprocessor-based digital jet-engine controller designed by Hamilton
Standard for commercial aircraft and made available to NASA Langley AIRLAB. SPLICE1 was chosen for the fault
simulation in the study. A number of enhancements to SPLICE1 were made to facilitate the fault injection simula-

tions.

The parameters used in the simulations were extracted from those used in the HA1602 design and circuit fayout.
The application code running on the simulated processor was chosen such that all the tunctional units at which tran-
sient fault injections were made were exercised. Fault injections were made at seven randomly chosen nodes in six
functional units. For each node, current transients were injected at five ditterent charge levels: 0.5, 1.0, 2.0, 3.0, and
4.0 pico Coulombs. Each charge level was injected at five different time-points during the execution of the application

code sequence. This amounted to over 1000 fault injections/simulations.

The error data was generated by comparing each faulted simulation with a fault-tfree simulation. An error event

was defined as either a logic state change or a voltage level change large enough to cause a node o be faulted at a
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Table 3.2. Severity of Injected Transient Faults

Error Category Occurrences  Percentage  Charge Threshold
Injected Transients 1050 100.0 30pC
Logic Upsets 437 41.6 3.0pC
Latched Error 60 5.7 3.0pC
Pin Errors 59 5.6 3.0pC

future time. Error events were classified as three categories: 1) logic upsets — voltage transients large enough to con-
stitute logic level errors, 2) latched errors — errors in the first-level latches, and 3) pin errors — errors at the chip /O
pins. The overall results from the experiments are shown in Table 3.2. It can be seen that the injected transients have a
41.6% chance of causing a logic upset (no errors), a 5.7% chance of resulting in a latched error (a latent error in the
circuit), and 5.6% chance of error propagating to pins. The other 47% of the injected transients have no impact on the
processor. Thus, only 11% of all injected transients cause either a permanent change in circuit behavior or affect the
external environment. The table shows that transients below 3.0 pico-Coulombs have no significant impact on the cir-

cuit.

The study also investigated the impact of current and voltage transients occurring in the ditferent functional
units of the processor. An ALU transient was found to most likely result in logic upsets and pin errors. Further, the
analysis of variance (ANOVA) technique was used to quantify the sensitivity of pin-level errors to error activity in the
different functional units. The results of ANOVA are shown in Table 3.2, which indicate that the output pin errors are

most sensitive to error activity in ALU.

3.1.2. FOCUS — A Chip-Level Simulation Environment

FOCUS is a simulation environment, developed at University of [llinois, for fault sensitivity analysis ot IC
chips [Choi92]. In the environment, a range of user-specified faults are automatically injected at the circuit level. and
fault propagation is measured at the gate and higher levels. Figure 3.3 depicts the overall experimental environment.
The environment takes as input a net-list of the hardware description of the system and converts it into a simulation
model. SPLICET is used as the fault simulation engine. The importance sampling technique, which has been intro-

duced in Section 2.4, is used in FOCUS to accelerate simulations.
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Figure 3.3. FOCUS Experimental Environment
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The fault injection process is implemented as a run-time modification of the circuit, whereby a current source is

added to a target node,! thus altering the voltage level of the node over the time interval of the injected current wave-
form. The experimental environment allows both transient and permanent (single or multiple) fault injections. Since
the injected current source is specified as 4 mathematical function, the resulting transients can be of varying shapes
and duration. For example, electrical power surge, in-chip alpha particle intervention, lightning, and bridging faults
can be modeled. The user can control the location of a fault, the time and duration of a fault, and the shape of the cur-
rent source.

The tracing facility monitors all switching activities in the target system, including fault propagation through
cach gate or transistor, for all processed events. The trace data for each event consists of the time of the event, the

hierarchical node name, and the new and previous voltage levels (for electrical nodes) or logic levels (for logic nodes).

'A node is defined as a point in a conductive interconnection between electrical and/or logical clements.
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The graphical analysis facility 18 used to visualize the error activity in different functional units of the processor
and the fault propagation on the major interconnects and at the external pins. The statistical analysis tools provide
impact analysis of the target system and generate necessary models to depict the fault behavior in the system (e.g.,, /IO
pin error distribution, latch error distribution, and internal fault propagation model).

The application of FOCUS is illustrated by studying a target system. The target system is a MiCToprocessor
used in commercial aircraft for real-time control of jet-engine functions. The 16-bit MiCroprocessor consists of six
major tunction units: ALU, control, decoder, muitiplexer, countdown, and watchdog, as shown in Figure 3.4. The sys-
tem incorporates a variety of fault tolerant design features at different levels, including software checks, parity checks,
memory test, and error counting. The objective of the study 1s tO investigate the impact of charge-level transients on
Jatch, pin, and functional levels.

Nearly 80 instruction cycles (90300 nanoseconds) of the application code were executed on the target system

during each simulation run. The application code was carefully selected to ensure that all of the functional units were

Figure 3.4. The Target Microprocessor System
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Table 3.3. Impact of Transients Injected to the Target System

Type Injections Involved | Percent of Total Injections | Resultant Errors
First-Order Latch Errors 470 224 2149
Second and Higher-Order Latch Errors 120 57 1829
First-Order Pin Errors 255 12.1 1168
Second and Higher-Order Pin Errors 90 43 839
Functional Errors 193 9.2 747

executed. A total of 2100 simulations were performed for obtaining stable results. During the simulation, all nodes
(including all latches and external I/O pins) in the circuit were monitored and processed. Table 3.3 summarizes the
overall impact of transients in the range 0.5 to 9.0 picoCoulombs. In the table, a first-order error is defined as one
which occurs during the first clock cycle following a transient fault injection; second and higher-order errors are those

occurring during the second and subsequent clock cycles.

Figure 3.5 shows the propagation of the latch errors in time. In the figure, the x-axis represents the clock cycles
from the fault injection time, and the y-axis represents the total latch error count for each clock cycle. It can be seen
that, given a certain number of latch errors in the first clock cycle, the number of latch errors degenerates significantly
until the fourth clock cycle. At approximately the fifth clock cycle, the number of errors rapidly multiplies. This is
because at this time, the error signal enters a unit with a large number of latches and high fan-out, ¢.g., the ALU regis-
ters. After the sixth cycle, the number of errors degenerates significantly until finally disappearing after the eighth
cycle. Thus, the impact of latch errors lasts at most up to 8 clock cycles from the time of fault injection.

Figure 3.5. Latch Error Occurrence in Time
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3.2. Simulated Fault Injection at the Logic Level

Simulated fault injection at the logic level is similar to that at the electrical level in that they are both circuit-
level simulations. The difference is in the fault models used. In the electrical-level injection, physical fault models are
used, while in the logic-level injection, logic fault models are used. Logic-level fault simulation uses abstract logical
models for both faults and circuit functions to evaluate the behavior of a system. In contrast to the evaluation of the
physical models used in the electrical-level simulation, logic-level simulations perform binary operations that repre-
sent the behavior of a given device. They take binary input vectors and to evaluate the output of the device for a given
input pattern. Each signal in the circuit is represented by a member in a set of boolean values depicting the steady
state conditions of the physical circuit. For example, set {1,0,X} is often used to describe high, low, and unknown
voltage values for logic gates. Fault injection at this level simply forces a node to either stuck-at-1 or stuck-at-0, or it
inverts a logic value. Fault injection location and time can be set arbitrarily. Hence, with logic simulation, one
obtains outputs with discrete values and possibly with some approximate timing information. Typically, outputs of the

taulty and non-faulty systems are compared to determine whether a fault has been detected.

For MOS technology, a gate-level logic simulator is inadequate to handle circuits containing pass transistors,
ratioed logic, buses, and other features that exhibit bidirectional signal flow and/or charge-sharing eftects. To handle
such transistor networks without resorting to expensive electrical-level analysis, switch-level simulation is proposed in
[Bryant84]. Switch-level analysis allows bidirectional signal flow and difterent levels of signal strengths. For exam-
ple, a discrete set {0,1,..,9} can be used to model different signal strengths or voltage levels. At this level, transistor-

level fault modeling can also be incorporated easily.

Fault simulation has been widely used for evaluating the coverage of a given set of test vectors for testing man-
ufacturing defects in a chip. Typically a set of test vectors generated either by an automatic test pattern generator
(ATPG) randomly, or manually is submitted to the fault simulator in order to decide how many faults can be detected
by the test vectors. In this case, the generated test vectors become workloads or inputs to the system. In the begin-
ning of such a simulation, a stuck-at fault is injected, and the faulty circuit is simulated while a given test is applied at
the primary inputs of the circuit. A similar run is performed again without any fault injection. The logic values at the

primary outputs of the faulty circuit are then compared to the outputs of the fault-free run to determine if there is any



difterence in the outputs. If the injected fault altered logic values at the outputs compared to the clean run, then the
fault is assumed to be detected. If a fault is detected, there is no reason to continue the simulation for that specified
fault. The process of test generation and tault simulation 18 iterated until satistactory fault coverage (the percentage of
faults detected of all theoretically detectable faults) is achieved. This application has been widely used in industry to

evaluate and assist test generation [Ruehli83] [Rogers85].

The use of fault simulation to perform dependability analysis at the design phase, and thus avoid the high cost
of an additional redesign/modification iteration after the finalized design is submitted for fabrication is an ongoing
research effort. New techniques are being introduced to perform fault sensitivity analysis of very large circuits. The
simulation approach permits determination of a chip’s fault sensitivity during the design stage. Through simulated
fault injection and subsequent fault propagation at the logic level, itis possible to identify critical bottlenecks in reha-
bility. To characterize a highly dependable VLSI systems, we need to evaluate, simultaneously, the fault behaviors of

all components and their combined behavior.

For the dependability analysis of a system either stuck-at or transient faults can be simulated. Stuck-at faults
can be simulated using conventional logic-level fault simulators that are widely available. A stuck-at-fault injection is
performed by forcing the state of a node to a specified value for the entire simulation duration. By selectively trac-
ing/detecting a set of internal and external nodes, fault propagation can be monitored. Fault behavior in a system can

be modeled and analyzed through studying the fault propagation trace.

Transient fault injection 1s more complicated than stuck-at fault injection. Transient faults are injected by alter-
ing the logic values of the target node momentarily during the simulation. For example, the output of a gate 1s set 1o 1
while it should normally be (0. This faulty logic is forced on the output for a specified time period. Logic-level tran-
sient injection can be pertormed in two different ways. The above "bit-flip" effect can be performed on the combina-
tional part of the circuit using a Gming simulator. The created “pulse” can then propagate and become latched.
Another way is to change the state of a machine by flipping a bit in a register or 4 memory element in the system.
These approaches, however, may not reflect the actual device-level transient behavior at the logic level. because &

transient can propagate in multiple paths and result in more than one latch error.
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To evaluate system dependability based on realistic fault models, a fault-dictionary approach can be taken
[Choi93]. A fault-behavior dictionary generated trom electrical-level fauit analysis can be used as a fast look-up ‘table
for a logic-level concurrent or parallel fault-injection simulation. First, an electrical-level fault-behavior dictionary for
a given chii) can be generated by extensive fault simulations. In this step, gates around the fault-injection location are
extracted, and a subcircuit consisting of these gates is formed. This subcircuit is exercised by exhaustively applying
all input combinations while fault injection is performed. Faulty behavior at each of the subcircuit outputs 18 analyzed
and recorded in a dictionary. The resulting entry in the dictionary consists of the input vector, fault-injection time, and
fault location. Second, concurrent run-time fault injections of the generated logical error at the subcircuit level using
the fault dictionary can be performed. The concurrent simulator is used to propagate, in a single simulation pass, the

effects of the injected errors.

Both transient and permanent faults can be injected using switch-level or gate-level logic simulation. The over-

all simulation approach for fault injections at the logic level consists of the following steps:
(1)  Obtain the net-list of a design and devise appropriate simulation models to emulate the given design.
(2)  Simulate the model using a logic-level simulator.
(3) During the simulation, run a given workload depicting the application or test software (by applying test vec-
tors to the primary inputs).
(4)  Save the behavior of the system under fault-free conditions by tracing all the changes in the evaluated logic
events of monitored nodes for comparison with the subsequent fault-injection runs.

(5)  Run the same workload again and inject a fault to a selected node during the simulation period and trace.

For a stuck-at fauli: Force the state of the selected node to either 1 (for stuck-at-1 fault) or 0 (for stuck-at-0

fault) and evaluate the circuit. Hold the state to stuck-at fault value throughout the simulation.

For a transient fault: Force the state of the selected node to a logic value that is the reverse of the normal state
(i.e., force a 0 if the normal state is a 1, and vice versa). Hold the state to the reverse value on the node tor one
or more clock cycles. Let the fault effect propagate by evaluating the circuit with the corrupted logic state.

Release the forced state when a new signal/event arrives at that node.
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(6) Monitor the behavior of the system under fauit conditions.

(7) Compare the traces from the faulty and fault-free runs and identify the differences to determine where and

when the fault has propagated.

(8) Use collected statistical measurements to determine dependability parameters (e.g., detection coverage) and

the fault impact (e.g., minor program error or system failure).

The above fault injection steps should be repeated a large number of times for a given workload. If the experi-
ment is intended to estimate single measures (e.g., detection coverage), the number of injections required for achiev-
ing a given confidence interval can be determined using Eq. (2.14). If the experiment purpose is to obtain distributions
(e.g., error latency distribution), the fault injections should not be stopped until the constructed distribution is stable,
i.e., the two consecutive distributions constructed are not different statistically. Importance sampling can be used 0

significantly reduce simulation runs.

Two early studies in fault injections at this level took a digital avionic miniprocessor, BDX-930, as the target
system. The first study investigated the impact of fauits at gates and pins on the output results of programs, with
emphasis on the fault latency and fault coverage issues [McGough81]. The second study investigated error propaga-
tion trom the gate level to the pin level [Lomelino86]. A recent study explored the behavior of transient faults which
occur during the normal execution of a processor [Czeck91]. The study quantified taults that can be emulated by soft-
ware-implemented fault injections (to be discussed in Section 4.2). We discuss these studies in the following two sub-

sections.

3.2.1. Study of Bendix BDX-930

An early study in this field was the simulated fault injection to the Bendix BDX-930, a digital avionic minipro-
cessor, to investigate fault latency and coverage [McGough81]. The BDX-930 was composed of bit-slice processors
(AMD2901) and was used in a number of flight control avionic systems. Fault tolerance was achieved by replication
of the processing and voting in software. A gate-level emulator of the BDX-930 was developed tor this study. The run

speed of the emulator was 25,000 times slower than the BDX-930 when hosted on a PDP-10.
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The methodology used in the study was: Given a software program running on the processor, inject a single
stuck-at or inverted fault at a gate or pin selected randomly and observe the time to detection, assuming that a detec-
tion occurs whenever there is a difference between the outputs of the faulty and fault-free processors executing the
same program. The experiment was repeated 600 to 1,000 times to construct an empirical latency distribution. Six
different programs were selected to repeat the above experimental procedure. In addition, a typical avionic flight con-

trol system self-test program was written for this study and executed to determine fault detection coverage.

Results showed that most detected faults were detected in the first repetition of the program. Subsequent repeti-
tions did not significantly increase the propagation of detected faults. A large percentage of faults (about 60% for the
gate-level faults and 30% for the pin-level faults) remained undetected after as many as eight repetitions of the pro-
gram. The fault coverage of the self-test program was found to be 87% for the gate-level faults and 98% for the pin-

level faults.

The above study emphasized the impact of faults at gates and pins on the output results of programs. Another
study on the Bendix BDX-930 computer investigated error propagation from the gate level to the pin level
[Lomelino36]. In this study, a single AMD2901 processor chip in the BDX-930 was selected for fault injection and
error data collection. The processor was simulated using an event-driven, gate-level logic simulator developed at
NASA Langley [Migneault85]. The simulator was driven by a self-test program, developed for the BDX-930, which

provides a high probability of detecting error activity.

In the simulation, the single stuck-at fault model was applied to 150 selected gates for fault injection. The gates
were distributed throughout the nine function units of the AMD2901. Error data was collected by first simulating a
fault-free circuit, then simulating the circuit with a single injected fault, and finally comparing the two simulation out-
put for obtaining ditterences. Four sets of simulation experiments, consisting of 150 simulations per set, were con-
ducted. Results showed that 78.7% of faults produced error propagation detected within the chip and 66.7% of taults
produced errors that propagate to the output pins, within the first 100 clock cycles. The error distribution at the output
pins was found (0 be sensitive to the locations of faults. The results also showed that the error activity increases with

the increase of concurrent microinstruction activity.
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3.2.2. Study of IBM PC RT

In [Czeck91], a simulation model of the IBM RT PC was used to inject transient, gate-level faults for exploring
the behavior of transient faults which occur during the normal execution of a processor. The emulated hardware tunc-
tional units in the processor included: instruction prefetch buffer (IPB), microinstruction fetch (MIF), data fetch and
storage (DFS), ALU and shifter (ALU), and ROMP storage channel interface (RSCI). Both original error detection
mechanisms (EDM) which reside in the IBM RT PC (such as illegal instruction traps and memory access violation)
and additional error detection mechanisms which are provided in this study for evaluating their effectiveness (such as

timeout and control flow monitoring) were included in the simulation model.

Figure 3.6 shows possible error manifestations after a fault injection. In the figure, minor errors are differences
in the internal processor state between the faulty and fault-free simulation runs, which have not been detected by an
EDM. Monitoring errors are those which are uncovered by the "duplicate and compare” EDM which monitors bus
addresses and data. Severe errors are those resulting in the change of a microinstruction and the instruction address
registers, which lead to a change in the control flow of the program. Fatal errors have triggered a system resident
EDM and caused an abnormal termination of the application task. Results overdue occurs when the task executes
longer than a predetermined time limit and the execution is halted. Overwritten means that the injected tault does not

manifest to a minor error or 4 minor error is overwritten by correct data.

Figure 3.6. Error Manifestations in the IBM PC RT Simulation Model
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Three workloads were selected for this study: an iterative matrix multiplication, a recursive Fibonacci program,
and an iterative Fibonacci program. These workloads were considered to be representative of the characteristics of
instruction set architectures and diversity in program structure. For each workload and each fault location, 1000 faults

were injected. Following is the method of the experiments:

(1)  For each workload, the fault-free behavior of the workload is extracted from the internal state of the processor

and saved for comparison during the subsequent fault injection experiments.

(2) A tault location is selected such that the fault in the location has a high probability of producing an error and

locations for different injections do not yield the same error behavior.

(3)  The fault injection time is set to the start of the workload execution. The fault injection time will be advanced

by one cycle for each successive fault injection experiment.
(4)  The fault is injected for a duration of one clock cycle at the location and time selected.

(5)  For each successive clock cycle, the internal processor state of the faulty processor is compared with that

obtained in step 1. Differences are recorded for ott-line analysis.

(6)  The faulty behavior is monitored at each clock cycle until the program execution is completed or a severe

error causes the monitor to cease.

(7)  The simulation run is restarted at step 3 and the time of next fault injection will be advanced by one clock

cycle.

Results of the study include: 40% to 55% of injected faults do not produce an error. Among the faults that mani-
fest to errors, approximately 2/3 of them can be emulated by the software-implemented tault injection approach (to be
discussed in Section 4). The other 1/3 of these faults manifest to errors in CPU components (e.g., microinstruction
control registers) that are not accessible to software, At the system level, the tault behavior showed a strong depen-
dency on the workload structure and instruction sequencing rather than the instruction mix. Error detection latency
was found to follow a Weibull distribution with a decreasing detection rate. The distribution represents (wo error
occurrence processes: a fust process in which fault manifestation and error propagation occur within a small time win-

dow and a slow process in which dormant faults and errors are activated gradually by the workload.
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3.3. Simulated Fault Injection at the Function Level

Function-level fault injection simulation is used to study complete computer and network systems rather than
the components of which they consist. These studies typically consider the hardware, the software, their interactions,
and the inter-dependence between the various components of the system. There are at least five issues in developing

functional simulation models at the system level.

The first is a lack of well-established system level fault models. This is partly due to the second issue: a large
and varied component domain. At the gate level, the basic components are gates with single functions and well-
defined interconnections. At this level, it is possible to establish a fault model, such as the single stuck-at fault model
which can be consistently applied to all gates to model their fault behavior. At the system level, the basic components
include CPUs, communication channels, disks, software systems and memory. The components have complex inputs,
perform multiple functions, have varied physical attributes (e.g. hardware and software) and complex interconnec-
tions. In addition to the diversity of the components that make up a system, two similar components (such as two
CPUs) can have different functions and behavior. This makes it difficult to establish a single fault model that can be

applied consistently to all components.

For this reason, various types of fault models are required and will depend upon the type of component being
injected. The fault models are functional fault models that simulate system-level manifestations of gate-level faults.
For instance, a single bit-flip is typically used to simulate a memory or register fault. Various fault models can be
used for communication channels. Messages traversing the channel can be corrupted or destroyed, or the channel can
be made inoperative. A fault in a processing node can be modeled as a service interrupt caused by CPU, memory,
disk, or software faults in the node. More detailed fault models for a processor or other system components can be
derived from lower-level simulations using the fault-dictionary approach discussed in Section 3.2. For instance, a
gate-level simulation of a processor can be injected with faults while executing a typical workload. The ettect of the
faults on the workload can be stored in a fault dictionary that contains, for each gate-level fault injected, the types of
cffects and the probability of these effects. This dictionary can then serve as a fault model for system level simula-

tions.
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The third issue, which is especially significant when simulating large, complex systems, is the effort and time
required to develop a functional simulation model. For fault injection studies and dependability analysis, two factors
contribute to this. One is the time and effort needed to describe the detailed functionality of the system components.
The other is the time and effort required to inject faults, initiate repairs, abort, reschedule and synchronize events, and
maintain a whole host of fault statistics. As the number of components in the system becomes large, a well-
formulated, structured, and automated approach is needed to contend with the complexity. A solution is to have a tool
which includes a library of software "objects” that provide the skeletal framework needed to conduct simulated fault

injection studies and that can be easily customized to meet user specific needs.

The fourth issue is the impact of the software on system dependability. Dependability studies have tended to
focus on a system’s hardware components. But as the hardware becomes more reliable, the software component is
becoming a more dominant tactor [Gray90]. The effectiveness of functional detection and repair schemes depend
upon several application-speciﬁc measures such as detection latency and error propagation times. In order to study
the impact of the software on system dependability, methods are needed that allow the designer to incorporate the
application into the overall dependability study. Thus, the simulation tool should permit the execution of actual user
programs.

The fifth issue, and extremely important one, is simulation time explosion. This occurs when the system mod-
eled has very smail failure probabilities requiring large simulation runs to obtain statistically significant results. This
is especially a problem with functional simulation because its primary benefit is detailed modeling, which further con-
(ributes to simulation time explosion. Different acceleration techniqués are used at the system level to reduce simula-
tion time explosion. Hierarchical and hybrid simulation methods have been shown to be very effective [GoswamiY2]
[Goswami93al. The basic approach of these techniques is to: 1) break down a large, complex model into simpler sub-
models, 2) analyze submodels individually, 3) combine the results from step 2 to build a simplified system model, and
4) analyze the system model to obtain the solution. If the models in step 1 and step 3 are both simulation models, the
approach is called hierarchical simulation. If the models in step 1 are simulation models and the model in sStep Jisan
analytical model, the approach is called hybrid simulations. As long as the interactions among the subsystems are

weak, this decomposition approach provides valid results. The approach is ideally suited for dependability analysis
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because dependability models can usually be broken into two submodels — g faylt Occurrence submodel and an error

handling submodel — whose interactions are typically weak. Figure 3.7 illustrates the approach.

pre-defined by a set of probabilities and distributions. Functional simulation tools not only use stochastic modeling,

they also permit behavioral modeling, which does not require that the effect of the faults be pre-defined.

destroy and corrupt fields of the status messages sent to the CPU maintaining the database. Faults are also mjected

Figure 3.7. Hierarchical Simulation
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Figure 3.8. Distributed System Executing Load Balancing Software
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into the CPU containing the load-balancing software, (0 ¢1ase its database. The effect of these faults is to corrupt the
ad-balancing software. 1f a purely probabilistic modeling

database and impair the placement decisions made by the lo

tool were used for this study, the user would have to pre-specify:

. the probability thata tault will corrupt the database,

. how each fault will corrupt the database,

. which portions of the database will be corrupted,

. the extent of corruption, and

. how each corruption will impair the placement decision made by the load-balancing software.

Needless to say, these tactors arc extremely difficult to obtain without executing actual software. Because
are the results of (and not inputs to) the fault injection experi-

DEPEND executes actual software, these parameters

e types of faults injected need to be specified. Thus, DEPEND can identify

ment. Only the fault arrival rates and th
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the failure mechanisms, obtain failure probabilities, and quantity the effect of faults. It can be used to pick out the key

features that must be modeled and help to determine and specify both the structure of, and the parameters to, analyti-
cal models.

A single distinguishing feature between probabilistic modeling and behavioral modeling is brought out by one
of the results of this study (details of all the results can be found in [Goswami93b]). The study helped to uncover a
design teature of the software that caused erratic increases in system response time only when status messages were
destroyed. Once the software was modified, the erratic increase in response time ceased. Clearly, such results cannot

be obtained with analytical modeling tools.

An additional advantage of functional simulation tools is that they allow the use of any type of TTF distribu-
tions. Unlike analytical modeling, in which only a few types of distributions are commonly used for the tractability of

models, the simulation method can handle any form of distribution, empirical or analytical.

An early study used a trace-driven simulation approach to analyze error latency [Chillarege87]. The approach is
based on sampled data of physical memory activity gathered, through hardware instrumentation, from a computer sys-
tem running normal workloads. The data are then used for a trace-driven simulation in which faults are inserted into
the trace to emulate fault occurrence and error discovery processes in the system. The approach provides a means to

study error latency in memory systems under real workloads.

In recent years, several function-level simulation tools that can be used for fault injections have been or are
being developed. NEST, DEPEND, and REACT are three representative tools. REACT, a software testbed that per-
forms automated life testing of a variety of multiprocessor architectures through simulated fault injections. is being
developed at the University of Massachusetts [Clark93]. Several system, workload, and fault/error models, which are
representative of multiprocessor architectures and conditions, are embedded in the testbed. The tool can be used to
evaluate system reliability and availability metrics. Preliminary versions of the software have been reported to be suc-

cessfully employed in several studies of multiprocessor systems [Clark93].

NEST is a function-level testbed that specializes in modeling and evaluating distributed network systems
{Dupuy90]. Although the tool is not designed for fault injections, users can make node or link failures by deleting or

adding nodes and links or changing their teatures while the simulation is running. DEPEND, developed at the
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University of Illinois, exploits the properties of the object-oriented paradigm to provide a general-purpose, system-
level dependability analysis tool that can evaluate various types of fault tolerant architectures {GoswamiY2]. The
object-oriented feature of DEPEND makes the tool capable of modeling multiple levels of functional units to meet a

wide range of applications. The next two subsections discuss NEST and DEPEND, respectively.

3.2.1. NEST — A Network Simulation Testbed

The NEtwork Simulation Testbed (NEST) is a graphical environment, running on the UNIX system, for model-
ing, executing, and monitoring distributed network systems and protocols [Dupuy90]. Using a set of graphical tools
provided by NEST, the user can develop simulation models of communication networks. The model includes node
functions (e.g., routing protocols) and communication link behaviors (e.g., packet loss or delay features), typically
coded in C. These user procedures are linked with run-time routines embedded in NEST and executed by the NEST
simulation server. The user can reconfigure modeled network system through graphical interaction or programming.

Built-in graphical tools allow users to programming custom monitors to observe the simulation results on-line.

Figure 3.9 shows the overall architecture of NEST. NEST consists of a simulation server and several client
monitors. The simulation server is responsible for running simulations. The generic client monitors are used to config-
ure simulation models and control their executions. The custom client monitors are used to observe simulation behav-
ior and display resuits. Clients can reside on separate machines so that the server is dedicated to time-consuming sim-

ulations.

Node functions are used to model distributed communicating processes running at network nodes (e.g., proto-
cols and database transactions). NEST executes node processes and their communication calls using a set of embed-
ded primitives for sending, broadcasting, and receiving packets. The motion of a packet over links is simulated by
passing it through the link functions. Link functions are used to model the behavior of communication links (e.g.,
packet loss and link jamming). Link functions are also used to monitor and collect performance statistics of link traf-
fic. The simulation server schedules the execution of the node and link processes to meet the delay and timing speci-

fied by the user.
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Figure 3.9. Overall Architecture of NEST
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The user can create and modity a network description (node and link functions and connections) using the
NEST graphical tools. Once the user has defined a simulation scenario, it is sent to the simulation server to be exe-
cuted. One of NEST’s key features is its ability to reconfigure a scenario during the simulation run. The user may
delete or add nodes and links (thus failures can be emulated) or change their features while the simulation is running.
The impact of these changes may be instantly observed and interpreted. Such dynamically reconfigured simulations

can be used to study the impact of node/link failure and recovery on the modeled network system.

3.2.2. DEPEND — A System Dependability Analysis Environment

DEPEND is an integrated design and fault injection environment [Goswami92]. It provides facilities to rapidly
model fault tolerant architectures and conduct extensive fault injection studies. It is ideally suited tor evaluating spe-

cific fault tolerant mechanisms, detailed fault scenarios such as latent errors, and software behavior due to hardware
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faults. It is a functional, process-based [Kobayashi78], [Schwetman86] simulation tool. The system behavior is
described by a collection of processes that interact with one another. A process-based approach was selected for sev-
eral reasons. It is an effective way to model system behavior, repair schemes, and system software in detail. It facili-
tates modeling of inter-component dependencies, especially when the system is large and the dependencies are com-
plex, and it allows actual programs to be executed within the simulation environment. Both hierarchical and hybrid

simulation techniques have been used in DEPEND.

DEPEND exploits the properties of the object-oriented paradigm, specifically, modular decomposition and mod-
ular composability [Meyer88], to model different levels of components and to implement a variety of fault models.
Modular decomposition consists of breaking down a problem into small elements, whereas modular composition
favors production of elements that can be freely combined with each other to provide new functionality. If, for
instance, the fault injection process is divided into two elements or objects: an object that determines when to inject
and interrupt the system, and an object that determines the response (o a fault (the fault model), then the two criteria
are met. The first object is common to all fault injection methods. It encapsulates the various mechanisms used to
determine the arrival time of a fault and interrupt the system. The second object is the fault model and is specific to
the component being injected and the type of fault injection study. The two are combined via function calls. Thus, by
specitying different fault model objects, one injector object can be used for all types of fault injections. Key objects,
such as the injector object, are designed to be parameterized. That is, the user can specity various fault arrival distri-
butions or trace files. This same approach is used to model components that are similar but not identical; common
aspects are encapsulated in an object which then invokes other objects to provide more specific functionality. Further-
more, because users can specity specific behaviors (e.g. their own fault model objects), the tool is not limited to any

predefined set of fault models or component types.

A library of objects that provide the skeletal foundation necessary to model an architecture and conduct simu-
lated fault-injection experiments is provided. This reduces the development time and effort needed to build simulation
models. In addition to decomposition, composition, and parameterization, the concept of inheritance [Meyer88]
makes it possible to provide a library with a minimum set of objects that can be readily specialized to model a wide

gamut of different architectures and fault injection experiments. With inheritance, users can inherit the properties of
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Table 3.4. Some Objects Provided in DEPEND

Name Type Description
Active_elem Elementary | Simulates a basic server. Several disciplines: first come
first serve, round robin, etc.
Injector Elementary | Injects faults using distributions, trace files and workloads.
Checksum Elementary | Computes checksums.

Fault Report Elementary | Compiles and displays fault statistics.

Voter Elementary | Simulates a basic voter with timeout.

Server Complex Simulates a server with spares. Three policies: no spare, graceful
degradation, stand-by sparing. Automatic repair and reconfiguration

Link Complex Simulates communication channels. Several fault types: link dead
packet corruption, packet loss, and user defined faults.

NMR Complex Simulates dual self-checking, triple-modular redundant and
N-modular redundant components.

Fault Manager | Complex Simulates software fault management schemes. Logs faults
and shuts off components which exceed their fault threshold.

an existing object and develop more specialized objects with minimum effort. Table 3.4 briefly describes some of the
major objects in the DEPEND library. Elementary objects provide basic functions, such as injecting faults and com-
piling statistics. Complex objects created trom several elementary objects simulate fundamental components found in
most fault tolerant architectures such as CPUs, self-checking processors, N-modular redundant processors, communi-

cation links, voters, and memory.

The steps required to develop and execute a model are shown in figure 3.10. The user writes a control program
in C++ using the objects in the DEPEND library. The program is then compiled and linked with the DEPEND
objects and the run-time environment. The model is executed in the simulated parallel run-time environment. Here,
the assortment of objects including the fault injectors, CPUs, and communication links execute simultaneously to sim-
ulate the functional behavior of the architecture. Faults are injected and repairs are initiated according to the user’s

specifications, and a report containing the essential statistics ot the simulation is produced.

DEPEND allows users to specify different fault models. In addition, DEPEND provides detault fault routines
for each object to minimize user design time. For instance, the default fault model for a communication medium sim-
ulates the etfects of a noisy communication channel. Fields in the messages passed along the communication link are

actually corrupted or the message is destroyed.
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Figure 3.10. The Depend Environment
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The fault injector is a fundamental object of DEPEND (Figure 3.11). It encapsulates the mechanism for inject-
ing faults. To use the injector, a user specifies the number of components, the TTF distribution tor each component,
and the fault subroutine that specifies the fault model. In addition to user-specified distributions, the injector provides
constant time, exponential, hyperexponential, and the Weibull distributions. The injector also provides a workload-
based injection scheme that varies the fault arrival rate based on a specified workload. The user provides a workload
function, a set of workload states, and an exponential fault arrival rate for each state. For example, the workload func-
tion may be the utilization of a server. With this approach, the fault arrival rate will fluctuate with the utilization of the
server. The fault injector will periodically poll the workload function to update a state transition diagram to maintain
a history of the workload behavior. This history is used to inject a large number of fauits during peak workload condi-
tions and tewer faults when the workload is low. This technique models the workload/failure dependency observed in

{lyer80] and [Castillo81].

In addition to executing actual C++ and C programs, DEPEND provides an abstract software modeling environ-
ment to simulate program behavior during the early design stages when actual code does not exist. The environment
represents application programs by decomposing them into graph models consisting of a set of nodes, a set of cdges

that probabilistically determine the flow from node to node, and a mapping of the nodes to memory. The graph
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Figure 3.11. The Fault Injector Object
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models are then mapped to virtual memory and executed while errors are injected into the program’s memory space.
The environment provides application-dependent parameters, such as detection and propagation times, and permits
meaningful application-dependent evaluation of function- and system-level error detection and recovery schemes.
This environment has been used to analyze memory-scrubbing schemes within the context of application programs
{Goswami93c]. The application-dependent coverage values obtained were compared with those obtained by tradi-
tional schemes that assume uniform or random memory access patterns. The coverage values obtained using the tradi-
tional approach were found to be up to 100% larger than those obtained with the software graph model. The findings
demonstrate the need for application-dependent evaluation — especially when evaluating the dependability of applica-
tion-specific systems.

DEPEND has been applied to evaluate several computer systems. In [Goswami91l] and [Goswami92],
DEPEND was used to simulate the UNIX-based Tandem Integrity S2 fault tolerant system and evaluate how well it
handles near-coincident errors caused by correlated and latent faults. Issues such as memory scrubbing, reintegration
policies, and workload-dependent repair time were evaluated. The accuracy of the simulation model was validated by

comparing the results of the simulations with measurements obtained from fault injection experiments conducted on a
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production Tandem Integrity S2 machine. DEPEND has also been used to study the CMS5 connection machine, the
Parsytec high-performance computer being developed by the European Esprit project, the Space Station Data Manage-

ment System, and the computing element of the Hubble Telescope.
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IV. PROTOTYPE PHASE

In the prototype phase of the development of fault tolerant systems, physical fault injection can be used to eval-
uate fault, error, failure, and fault tolerance characteristics of the developed systems. Normally, fault injection can be
applied only to fault tolerant systems, because the injected faults, if activated, would almost always crash the target
system without fault tolerant mechanisms. However, fault injection can also be used in non-fault-tolerant systems if
the system control flow can be well traced and the system state information can be obtained when it crashes because

of injected faults.

A fault injection environment typically contains the following components: target system, controller and moni-
tor, fault injector, data collector, and data analyzer, as shown in Figure 4.1. The target can be a VLSI chip, a computer
system, or a network system. When faults are injected into the target, either benchmarks or synthetic workloads
should be running on the target to emulate real workloads. The controller is a special software program, sitting on the
target or on another computer, which controls the overall fault injection experiments. The fault injector implements
fault injections into the target. The monitor keeps track of normal and abnormal executions of the workload and initi-
ates data collection whenever necessary. The data collector and analyzer perform on-line data collection and oft-line

data processing and analysis, respectively.

Figure 4.1. Components in a Fault Injection Environment

Controller
Monitor
Fault Tar get Data
Injector !!ru: D"l:lm] ": g I Collector

Data
Analyzer

48



Table 4.1. Categories of Fault Injections

Category Hardware-Implemented Software-Implemented Radiation-Induced
Approach Inject faults to IC pins Inject faults to components Inject faults by applying
by hardware instrumentation | by special software radiation rays to target
Advantages No disturbance to workload | Flexibility Can induce transient faults
High time resolution Low cost inside IC evenly
Disadvantages || Limited access points Workload disturbance Fault injection points
High cost Low time resolution are uncontrollable
FTMP [Lala83] Accelerated Injection [Chillarege89] | Z-80 [Cusick85]
FTMP [Shin84], [Shin86] FIAT [Segall88], [Barton90] MC6809E [Karlsson89]
Studies FTMP [Finelli87] FERRARI [Kanawati92] MC680YE [Gunneflo89Y]
MESSALINE [Arlaty0] HYBRID [Young92]
FINE [Ka093]

The fault injector can be implemented by hardware, software, or radiation. Correspondingly, fault injection can
generally be divided into three categories: hardware-implemented (or hardware) fault injection, software-implemented
(or software) fault injection, and radiation-induced (or radiation) fault injection. Table 4.1 lists teatures and represen-
tative studies in these categories. The monitor can also be implemented by hardware, software, or both (hybrid). If
the fault injector is implemented by software and the monitor is implemented by hardware or by both hardware and
software, the system is called a hybrid fault injection environment. The following three sections discuss in detail each

type of fault injection.

4.1. Hardware-Implemented Fault Injection

Hardware-implemented fault injection is a method of introducing faults in the hardware of a computer system
with the aid of additional hardware instrumentation. The method is well suited for studying dependability characteris-
tics which require high time resolution, such as fault latency in the CPU, which cannot be easily achieved by other
fault injection methods. For example, the occurrence of software-implemented faults is restricted by the system clock
(i.e, the injections must occur synchronously). Detections are similarly restricted by the system clock, unless an exter-

nal hardware monitor is used. Two main techniques are used to accomplish hardware-implemented fault injections.

The first approach involves the use of active probes attached to the desired hardware injection points. The cur-

rents through these injection points can be altered, thereby influencing the corresponding logic values. The types of
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faults attainable with probes are usually limited to stuck-at faults. However, it is also possible to introduce bridging

faults by placing the probes across multiple hardware points. Care must be taken with the use of active probes that

the first method uses active probes which are external to the target system, this method mtroduces additional hard-
ware, which becomes part of the target system. The most common approach requires the interpolation of a socket
between a chip and the circuit board. This socket has the Capability to inject stuck-at faults Or open fauits, where the
chip pin is essentially tri-stated. In addition, more complex logical faults can be forced onto these pins. For instance,
the pin signals can be inverted, or ANDed or ORed with adjacent pin signals or even with previous signals on the
same pin.

[n theory, the domain of possible injection locations is limited only by the physical constraints of the target sys-
tem that prevent the introduction of probes or other hardware. Since the target System is usually 4 complete prototype
computer system, fault injection below the chip pin level is impractical. Thus, the focus of most injections are the
pins of chips. In addition, active probes can be attached to certain circuit board locations, such as buses or other sig-

nal lines.

In addition to the range of possible injection locations, a major concern of any fault injection environment is the
fault types or models that are available. We have already discussed some types of faults achievable with probes and
sockets: stuck-at, open, bridging, or complex logical functions, Another important aspect of tault types is the dura-
tion of the fault, which can be either permanent, transient, or intermittent. Permanent faults are simply held on the
injection point until an error detection occurs. In contrast, transient faults are placed on the injection point only for an

active period, after which they are removed. Thus, the possibility exists that the transient fault may never even be

ble of creating any of the three temporal fault types.
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In the following, we will discuss two representative hardware-implemented fault injection environments: FTMP

{Lala83] and MESSALINE [Arlat89).

4.1.1. FTMP

Several studies in this area centered around the fault tolerant multiprocessor (FTMP) fault injection instrumen-
tation [Lala83], [Shin86], [Finelli87]. FTMP is a computer architecture which evolved over a 10-year period in con-
nection with several critical acrospace applications [Hopkins78]. The architecture was designed to have a failure rate
of the order of 107!° per hour. The basic blocks of the architecture are independent processor-cache modules and
memory modules which communicate through redundant buses. The modules are dynamically grouped into several
TMR triads or assigned to spare status. Jobs can be scheduled to any processor triad. All transactions between proces-
sor modules and memory modules in a triad are voted bit-by-bit. When a fault occurs, the faulty module is isolated
and the faulty triad reconfigured. Fault detection, diagnosis, and recovery are handled in such a way that application

programs are not involved.

Figure 4.2 shows the diagram of the FTMP fault injection instrumentation developed at the Charles Stark
Draper Laboratory [Lala83], [Finelli87]. In an FTMP computer, there are several line replaceable units (LRUs), each
containing a processor, clock generator, power subsystem, and bus interface circuits. LRU #3 is constructed tor con-
nection of the fault injector. All chips in LRU #3 are connected to sockets which allow them to be removed for inser-
tion of the fault injection implant. Each fault injection implant contains circuitry which can interrupt and reconnect
the pins in the sockets. Several different types of taults, such as stuck-at-0 and stuck-at-1, can be injected into the pins
by the implants. These implants are controlled by a VAX 11/750 computer. A special version of the system configura-
tion control (FSCC) program running in the FTMP communicates with the fault injection software (FIS) running in

the VAX 11/750 through one of the FTMP I/O ports and a 1553/UNIBUS data link.

Faults are normally injected on one pin at a time. When an injection occurs, the FIS program chooses a fault and
a pin, applies the fault to the pin, and records the injection time. Once the FTMP detects and identifies the fault and
reconfigures the system, it sends this information along with the time of each event back to FIS. Upon receiving the

information, FIS removes the fault by restoring the pin to its normal state and notifies the FTMP. The FTMP then puts
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Figure 4.2 FTMP Fault Injection Environment
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the victim module back into an active state and notifies FIS that it is ready for another fault injection. This process is

repeated after a random delay.

In the experiments conducted at the Charles Stark Draper Laboratory [Lala83], a total of 21,055 faults were
injected, and 17,418 (83%) were detected. All of the detected faults were identified correctly, and the system subse-
quently recovered successtully from each of these faults by replacing the faulty module. That is, the coverage in the

FTMP was 100%, which validated the FTMP architecture and implementation.

Another study using the FTMP fault injection instrumentation was reported in [Shin84], with emphasis on the
investigation of fault latency. Results showed that the hazard rate of fault latency is monotonically decreasing. Two
distributions with monotonically decreasing hazard rates, Weibull and gamma distributions, were then used to fit the
experimental results. The study also investigated the effect of fault latency on the probability of having multiple fauits.

[t was shown that there exists an optimal fault latency in minimizing the multiple fault probability.

Later, fault injection experiments on the same instrumentation were conducted at the NASA Langley Research
Center [Finelli87] to investigate two issues: fault sampling methods and fault recovery distributions. For each fault
injection, two choices must be made: the fauit location (pins) and the fault type (stuck-at-1, stuck-at-0, inverted signal,
etc.). Thus, the possible fault set, or the collection of all different injected faults, can be very large. Exhaustive fault

mjection is costly and time consuming. It is necessary to find appropriate sampling methods to reduce the time and
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cost of testing. The study compared the effects (detection behavior) of ditferent faults and grouped these faults into
several subsets according to the similarity in their effects. The results showed that the effects are not homogeneous
across the fault set. This indicates that stratified sampling methods, based on the fault subsets, should be developed for

fault injection. The study also showed that the fault recovery time is not exponentially distributed.

4.1.2. MESSALINE

MESSALINE [Arlai90] is a flexible, pin-level fault injection tool that has been developed at LAAS-CNRS in
Toulouse, France. The general architecture of MESSALINE and its environment is given in Figure 4.3. The injec-
tion, activation, and collection modules are implemented in hardware on an Intel 310 microcomputer. The software

management module resides on a Macintosh II computer, which provides a flexible user interface.

The fault injection mechanism for MESSALINE uses active probes and socket insertion. Thus, fault types such
as stuck-at, open, bridging, and complex logical functions can be injected. Because the duration and trequency of
taults can be controlled, the fault injector can introduce permanent, transient, and intermittent faults. Signals collected

from the target system can provide feedback to the injector. Also, a device is associated with each injection point to

Figure 4.3. General Architecture of MESSALINE
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sense when and if each fault is activated and produces an error. MESSALINE has facilities to mject up to 32 different
injection points simultaneously.

The application of MESSALINE has been shown in two experiments involving (1) a subsystem of a centralized,
computerized interlocking system (called PAI) for railway control applications and (2) a distributed system corre-

sponding to an implementation of the dependable communication system of the ESPRIT Deita-4 Project.

In the case of the PA[ system, permanent stuck-at-0, Stuck-at-1, and open circuit faults were injected to various
memory and CPU chips. The results indicated that CPU errors were more difficult to detect than memory errors. The
error detection mechanisms were analyzed individually, and it was discovered that the diagnosis software accounted
for most of the error coverage. The elimination of hardware detection would have decreased the overall coverage by

less than 3%,

The distributed communication system was injected with intermittent stuck-at-0 and stuck-at-1 faults, The
actual faults were injected into the network attachment controllers (NAC), which provide the connection for each node
to the local area network. Results showed that over 67% of all crrors cause the injected NAC to be correctly identified
and extracted. Also, 24% of the errors did not cause a detectable error. Thus, in over 91% of the mjections, the dis-
tributed system was able to correctly handle the error. These experiments demonstrate the utility and flexibility of the

MESSALINE fault injection tool.

4.2, Software-Implemented Fault Injection

While hardware-impiemented faylt injections require special hardware instrumentation and interface to circuits
of the target systems, software-implemented faylt injection provides a cheap and easy-to-control methodology. In
software-implemented fault injections, no extra hardware instrumentation is needed, and users can choose fault loca-
tions in both hardware and software components accessible to machine instructions. In addition, software defects can
only be emulated using the software approach by changing code. Several techniques have been proposed to emulate

different types of hardware and software faults through software-implemented fault injections.

Software-implemented fault injection is done by changing the contents of memory or registers, based on some

fault models, to emulate the occurrence of hardware or software faults. Hardware taults can lead (o software errors
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and aftect sottware executions (hardware-induced software errors). These faults can occur in CPU, memory, bus, and
networks. They may cause the system to execute incorrect instructions, access incorrect data, and produce incorrect
results. By software faults, we mean software design/implementation defects (e.g., incorrect initialization of a vari-
able or failure to check a boundary condition), and they may change software states to unexpected states. If software

data is corrupted by either hardware or software faults, we call them software errors.

At least two issues need to be addressed for software fault injections. The first is that when a fault is injected to
a memory location or a register, who owns the memory location or which process is running on the processor. In
other words, what is the target of the fault injection? The second issue is what fault models should be used to simulate
hardware and software faults. We have discussed hardware fault models at function level in Section 3.3, Like hard-

ware models, software models should be built based on engineer experience and field measurements.

Several fault models and implementation techniques are listed in Table 4.2. All these techniques are similar in
that they change program or memory words. To inject software faults, the text segment needs to be modified. Some
typical software faults are: a variable is used before it is initialized; a module’s interface is defined or used incorrectly,
statements are in the wrong order or omitted [Sullivan91]. As a result of executing faulty sottware code, the data seg-
ment may he corrupted, causing software errors. Software errors can also be directly injected by changing the data
segment.

When the software approach is used to emulate hardware faults, the faults are normally of transient nature. For

example, the faulty bits in memory or CPU registers can be overwritten by subsequent instructions. However, the

Table 4.2. Techniques Used for Software Fault Injection

Type Method

Software Fault || Modify the text segment of the program.

Software Error || Modify the data segment of the program.

Memory Fault Flip memory bits of the program.

CPU Fault Use a trap to modify the memory area of the saved CPU registers.

Bus Fault Use traps before and after an instruction to change the instruction or data
used by the instruction and then restore them after the instruction is executed.

Network Faults | Modify or delete transmission messages.
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software approach can be used to emulate permanent faults by repeatedly injecting the same fault to a location when-
ever there is an access to the location. For example, to emulate a permanent stuck-at-0 fault at a particular bit in a
memory word, the bit is changed to 0 after every write operation to the word. To emulate a permanent stuck-at-1 fault
at a bus address line, the corresponding bit in the effective address (in the program counter or in a CPU register) 15 set
to one before any access to the bus. It is obvious that the emulation is expensive, involving the monitoring and execu-

tion of many extra instructions.

Unlike hardware-implemented fault injections which are difficult to gear toward specific workload areas, soft-
ware fault injections can be targetted toward user applications, the operating system, or both. If the target is user
applications, the fault injector can be inserted into user applications or can be an extra layer between the user applica-
tions and the operating system. If the target is the operating system, the fault injector has to be embedded in the oper-

ating system, because it is very difficult to add an extra layer between the machine and the operating system.

Although the software-based approach is very flexible, it has some restrictions. First, the approach cannot inject
faults into locations not accessible to software. We have mentioned in Section 3.2 that approximately 1/3 of errors
produced in logic-level fault injections cannot be emulated through the sottware approach [Czeck91]. Secondly, the
software instrumentation may disturb the workload running in the target system and even change the structure of orig-
inal software. A careful design can alleviate the perturbation to the workload. Another disadvantage is the low time
resolution of the approach, which may cause fidelity problems. For the long latency faults, such as memory faults, the
low time resolution may not be a problem. For the short latency faults, such as bus and CPU faults, the approach may
fail to capture the error behavior (e.g., propagation). This problem can be solved by using a hardware monitor, i.c., the
hybrid approach [Young92]. The hybrid approach combines the versatility of software-implemented injection and the

accuracy of hardware monitoring. It is well suited for measuring extremely short latencies.

There have been several studies using the software-based approach. In [Chillarege89), a failure acceleration
method is used to inject the overlay software faults into an IBM commercial transaction processing system. In the fail-
ure acceleration method, fault injections are designed such that the fault/error latency is decreased and the probability
of a fault causing a failure is increased. An overlay occurs when a program writes into an incorrect arca. It is estimated

that about 1/3 of software errors can be mapped into the overlay model [Chillarege89]. The study quantified the

56



Table 4.3. Comparison of Software-Implemented Fault Injections

Tool FIAT FERRARI HYBRID FINE
[Segall88] [Kanawati92] [Young92] [Kao93]
Hardware || PCRT SPARC Tandem S2 | Sun
Injection O.S. 0sS. 0.S.
Target User User User User
Monitor Software Software Hybrid Software
Fault Memory Memory Memory Memory
types CPU CPU CPU CPU
Communication | Bus Cache Bus
Control flow Software
To Detection Detection Detection Detection
evaluate Latency Latency Latency Propagation
Recovery Recovery

immediate impact and potential hazards (which may cause a catastrophic failure in the future) of the injected faults.

In recent years, interest in developing software-implemented fault injection tools has increased. Several envi-
ronments have been published in literature: FIAT [Segall88], FERRARI [Kanawati92], HYBRID [Young92], and

FINE [Ka093]. Table 4.3 lists teatures of these tools, which will be discussed in the following subsections.

4.2.1. FIAT

A number of tault injection studies at Canegie Mellon University centered around FIAT (Fault Injection Auto-
mated Testing), a software-implemented fault injection environment [Segali88], [Barton90], [Czeck91]. The FIAT
hardware implementation consists of IBM RT PCs connected by a token ring network. The FIAT software structure is
divided into two parts: Fault Injection Manager (FIM) and Fault Injection REceptor (FIRE). FIM is a global control
program responsible for all phases of the experiment. FIRE, under the control of FIM, collects the experimental
results and sends appropriate information to FIM for oft-line analysis. Figure 4.4 shows the process of a typical fault
injection experiment.

FIAT has been used to study the impact of faults on the application workload level [Barton90]. Two representa-
tive programs, a matrix multiplication task and a selection sort task, were chosen as application workloads. To

achieve fault tolerance, each task is executed on two difterent processors and results are compared. Three fault types
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Figure 4.4. Typical Fault Injection Experiment in FIAT
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were injected in the experiment: zero-a-byte, set-a-byte, and two-bit compensating. The zero-a-byte or set-a-byte sets
a consecutive 8 bits anywhere within a 32-bit word to zero or one. The 2-bit compensating complements 2 bits in a
word such that the parity code would not detect it as an error. Faults were injected into all locations within a workload,

with a total of over 130,000 faults injected.

Results showed that there are a limited number of system-level fault manifestations. The mean error detection
coverage for different workloads and fault types is around 50% to 60%. Error detection latency was found to follow a
normal distribution. This result conflicts with those presented in [Shin86], [Finelli87], where the latency was shown
to tollow either gamma, Weibull, or log-normal distributions. This difference may be explained by the differences in
the experimental environment and detection mechanisms. In [Shin8&6], [Finelli87], the hardware-implemented fault
injection technique is used, and the resolution of detection time is on the order of milliseconds, while the time resolu-

tion of the software-implemented FAIT is on the order of seconds, which may skew the results.
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4.2.2. FERRARI

FERRARI (Fault and ERRor Automatic Real-time Injector), another software-implemented fault injection envi-
ronment, was recently developed at the University of Texas at Austin [Kanawati92]. The purpose of the development
of FERRARI was to evaluate complex systems by emulating most hardware faults in software. It was implemented on
SPARC workstations in an X-window environment. FERRARI consists of four software modules: 1) the initializer
and activator, 2) the user information, 3) the fault and error injector, and 4) the collector and analyzer. These four

modules are controlled by the manager module which coordinates the operation of the four modules.

The initialization and activation module prepares the target program tor fault injection by extracting its informa-
tion, such as the starting address, the program size, and the execution time. The user information module receives
experiment parameters provided by the user, such as experiment mode, fault and error types, and dependability mea-
sures to obtain. The fault and error injection module is responsible for injecting different types of transient or perma-
nent faults, such as address line fault, data line fault, and fault in condition code flags. The data collection and analy-
sis module records experiment results, such as information about error detection, error latency, and failures, and it

determines statistics of these measures at the end of the experiment.

To demonstrate the capabilities of FERRARI and to study the behavior of the target system under faulty condi-
tions, over 600,000 fault injection runs were conducted on SUN4 SPARC workstations under different applications.
Results showed that the error coverage is highly dependent on the fault type. The highest coverage was obtained when
errors were injected in the task memory image. This is because the injected errors are likely to be exercised repeatedly
if the corrupted instructions are in a loop. An important finding is that a considerable number of undetected errors are
those that corrupted input/output routines and system libraries. These routines may tend to be ignored when error

detection techniques are embedded in the user code.

4.2.3. HYBRID

A major drawback of the above purely sottware-implemented fault injection environments is the low resolution
of detection time. If the error detection mechanism is implemented with hardware, the time resolution is greatly

enhanced. This approach is used in the hybrid tault injection environment developed at the University of [llinois at
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Urbana-Champaign [Young92]. The hybrid environment combines the versatility of software injection and the accu-
racy of hardware monitoring. It is well suited for measuring extremely short error latencies, and the introduced over-
head is minimal so that error propagation and control flow are not significantly atfected by the presence of instrumen-
tation.

In the hybrid environment, faults are injected via software, and the impact is measured by both software and
hardware. Figure 4.5 illustrates the subsystems that make up the environment. It consists of a fault injection system,
a hybrid monitor system to measure the effects of injected faults, and a supervisory system to automate the measure-
ments. The hybrid monitor system is further divided into a hardware monitor and a software monitor. Figure 4.6
illustrates how these systems are physically situated. The fault injector and software monitor execute on the rest sys-
tem, while the supervisor program executes on the control host. Probes attach the hardware monitor to the
address/data backplane of the test system so that the monitor can analyze and record the signals generated. Communi-
cation between the supervisor and the hardware monitor takes place over an RS-232 or GPIB connection.

Figure 4.5. Hybrid Fault Injection Environment
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Figure 4.6. Physical Layout of Hybrid Fault Injection System
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The function of the environment is to perform experiments that repeatedly inject faults and record observations.
The environment introduces faults into the test system during the execution of a targer program, measures the effects
of that fault, and returns the test system to conditions present prior to fault injection. These operations form a single
observation loop. Faults can be injected into any location that has a physical address, e.£., CPU registers, cache, local
memory, mass storage, and network controllers. Faults can also be injected into locations allocated to a single, exe-

cuting user program or even into the kernel, and propagation can be characterized down to the instruction level.

The fault injection environment was used to study dependability characteristics of a Tandem Integrity S2 tault
tolerant computer system [Jewett91). High degrees of accuracy in measuring latency (within 20ns) were obtained.
Measurements of the sensitivity of different instructions to faults indicated a 5% chance that a faulted MIPS RISC
instruction will not fail when executed. Modeling of muiti-level error propagation showed that error detections were
due to multiple corruptions of state in as many as 57% of reads from wrong addresses and 37% of writes to wrong
addresses. The median latency associated with error detection by an individual CPU was on the order of 10 s, and
the median delay between detection and the start of CPU shutdown was on the order of 100ms. Kernel fault injection

studies show that a fault in the kernel is 2.6 times as likely to bring down a CPU as a fault elsewhere.

4.2.4. FINE

FINE is a UNIX-based fauit injection environment developed at the University of Illinois at Urbana-Champaign
[Kao93). The significance of FINE is twofold. First, it is the first tool that can inject software faults as well as hard-
ware errors. Second, it is the first tool built for tracing fault propagation among software modules. The software
faults that can be injected by FINE include initialization (missing or incorrect), assignment (missing or incorrect),
condition check (missing or incorrect), and function (incorrect) faults. FINE can also mject hardware errors such as
CPU (ALU, shifter, opcode decoder, or registers), memory (text segment or data segment), and bus errors (address

lines or data lines).

Figure 4.7 shows the FINE environment. FINE consists of a fault injector, a software monitor, a workload gen-
erator, a controller, and several analysis utilities. The fault injector and software monitor are embedded in the kernel

so that faults can be injected there and their propagation can be monitored. Fault injection is implemented by
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Figure 4.7. The FINE Environment
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modifying the system trap handling routines, so the fault injector can be considered an extra layer between the operat-
ing system and the machine. The software monitor traces the execution flow and key variables of the kernel. Soft-
ware probes are inserted into functions in the kernel to record the execution flow and the values of arguments and key
variables. The synthetic workload generator issues various system calls to activate injected faults. The distribution of
generated system calls can be specified by users to emulate real workloads or to deliberately accelerate the activation
of injected faults. The controller assigns experiment specifications to the fault injector and the monitor, and it initiates
experiments. The analysis utilities provide assistance in analyzing fault propagation. The target of the study is the
UNIX kemnel, a non-stopped, highly parameterized, complex service program with high impact and a broad spectrum

of workloads.

Experiments on SunOS 4.1.2 (on a SPARCstation IPC) were conducted by applying FINE to investigate tault

propagation and to evaluate the impact of various types of taults. Results showed that memory faults and software
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faults usually have a very long latency, while bus fauits and CPU faults tend to crash the system immediately. Nearly
90% of detected errors are detected by hardware. About half (47%) of the detected errors are data errors. these data
errors are detected when the system tries to access an area it has no privilege to access. In the software fault propaga-
tion, incorrect control flow is the major impact for the first level of propagation, while data corruption is the major
impact for the subsequent propagation. Analysis of fault propagation among the UNIX subsystems revealed that only

about 8% of faults propagate to other UNIX subsystems.

4.3. Radiation-Induced Fault Injection

Neither hardware-implemented nor software-implemented fault injections have a way to produce transient faults
at random locations inside ICs. Radiation-induced fault injections provide such a capability. One way to do this is to
expose the chip to the heavy-ion radiation from a Caliform‘um252 (Cf252) source [Gunneflo89], [Karlsson89]. The
heavy ions emitted trom the source are capable of creating transient faults when they pass through a depletion region
in the IC. One advantage of this method is that it can produce transient faults at random locations evenly and can
cause either a single bit flip or multiple bit flips. This leads to large variation in the errors seen on the output pins of
the IC.

In the fault injection experiments reported in [Gunneflo89], [Karlsson89], the Cf 2

method was used to investi-
gate error coverage and detection latency for error detection schemes for the MC6809E 8-bit microprocessor. The
intention of the experiments was to characterize the effects of transient faults that originate inside a CPU. The
MCG680YE is fabricated in NMOS, a technology sensitive to heavy ion radiation. The error detection schemes under
study are suitable for implementation with a watchdog processor that checks the behavior of the main processor on the

external bus. The developed experimental system is called FIST (Fault Injection system tor Study of Transient fault

effects). Figure 4.8 shows the FIST diagram.

The heavy-ion radiation is implemented by using a commercially available 37x10° Becquerel (1 uC;) Cf252
source. The Cf*%? source is mounted inside a vacuum chamber together with a small computer system. One of the sys-
temn boards is placed on a mechanical fixture movable in three dimensions for accurate positioning of the CPU beneath

the Cf**? source. The system has two MC6809E CPUs which operate synchronously using the same clock. One CPU
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Figure 4.8. FIST Diagram
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is exposed to heavy-ion radiation. The other is used as a reference to detect errors via comparison on the output from
the two CPUs. When errors are detected by the comparison logic, the logic analyzer is trig gered to record the external

bus signals. The monitoring computer is responsible for data acquisition and control of experiments.

A fault injection experiment is conducted in the following way. Before the experiment starts, the monitoring
computer fetches from the host computer a load file which contains the test program to be executed. The test program
is then loaded from the monitoring computer to the MC6809E system. After the loading, the test program is started
with a "go" command from the monitoring computer. When a mismatch is detected, the monitoring computer tetches

the recorded error data tfrom the logic analyzer and the error flip-flops in the MC680YE system and transfers them to
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the host computer. Finally, the MC6809E system is reset, and the test program is reloaded for the next experiment.

It was found from fault injection experiments that 78% of all errors affected control flow (i.e., caused the pro-
cessor to diverge from the correct sequence) and 17% caused errors in data. Results also showed that 30% of all
errors were multiple bit errors on the output pins, although the origin of each of these errors was only one single heavy
ion. The error recordings obtained from the experiments were also used as input to simulation models of different
error detection mechanisms to evaluate these error detection mechanisms without implementing them. The coverage
of several detection mechanisms was investigated. It was found that the best mechanism was the one that detects
access to the memory outside permitted areas and that the combination of two mechanisms gave a better coverage
than any one mechanism alone. It was also found that the type of the test program had a considerable influence on the

results of error detection mechanisms.
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V. OPERATIONAL PHASE

many possible sources of errors, including untested manufacturing faults and software defects, wearing out of devices,
transient errors induced by radiation, power surges, or other physical processes, operator errors, and environmental
factors. The occurrence of errors is also highly dependent on workloads running in the system. A distribution of oper-

ational outages from various eIror sources for several major commercial Systems are reported in [ Siewiorek92).

To understand dependability characteristics of a complex computer system, there is no better way than measur-
ing real systems and analyzing the measured data, Here, measuring real systems means monitoring and recording
naturely occurring errors and failures in the system while it is running under user workloads, Analysis on such mea-
surements can provide valuable information on actual error/failure behavior, identify system botdenecks, obtain

dependability measures, and verify assumptions made in analytical models,

Given field error data collected from a real System, a measurement-based study consists of four steps, shown in

Figure 5.1: 1) data processing, 2) model identification and measure acquisition, 3) model solution if necessary, and 4)

sion. To ensure that the analysis is not biased by repeated observations of the same problem, all error entries which
have the same error type and occur within a short time interval (e.g., S minutes) of each other should be coalesced in
data processing. Thus, the output of this step is a form of coalesced data in which errors and failures are identified.
This step is highly dependent on the measured system. Coalescing algorithms have been proposed in [Tsao83],

[Tyer86], | Hanseny2].

Step 2 includes identifying appropriate models (such as Markov models) and acquiring measures (such as
MTBFs and TBF distributions) from the coalesced data. Several models have been proposed and validated using real
data, such as the workload-dependent cyclostat.ionary model in [Castillo81], the workload hazard model in [Tyer82a],
and the correlation models in [Tang92a). Statistical analysis packages such as SAS [SAS85] or measurement-based

dependability analysis tools such as MEASURE+ [Tang93b] can be used to perform this analysis. Step 3 solves these
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Figure 5.1. Measurement-Based Analysis
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models to obtain some other measures (such as reliability and transient reward rates). Dependability and performance
modeling and evaluation tools such as SHARPE [Sahner87] can be used in this step. The most creative part is step 4,
the human analysis of models and measures obtained from data. New results are produced in this phase. For example,
reliability bottlenecks can be identified from analysis of error/failure statistics, and workload/failure dependency can
be concluded by analysis of models. However, analysis methods may vary significantly from one study to another,

depending on research goals.

Measurement-based dependability analysis of operational systems has evolved significantly over the past 15
years. These studies addressed one or more of the following issues: basic error characteristics, dependency analysis,
modeling and evaluation, software dependability, and fault diagnosis. The following paragraphs give a brief overview

of these studies, which are listed in Table 5.1.

Early studies in this field investigated transient errors in DEC computer systems and found that more than 95%
of all detected errors are intermittent or transient errors {Siewiorek78], [McConnel79]. The studies also showed that
the inter-arrival time of transient errors follows a Weibull distribution with a decreasing error rate. This distribution
was later shown to fit the software failure data collected from an IBM operating system [Iyer85b]. A recent study of
failure data from three different operating systems showed that TTE (time to error) can be represented by a multi-
stage gamma distribution for the measured single-machine operating system and by hyperexponential distributions for

the measured distributed operating systems [Lee93al.

Studies of dependency between workload and failure in early 1980s, based on measurements trom IBM [But-

ner80] and DEC [Castillo81] machines, revealed that the average system failure rate is strongly correlated with the
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Table 5.1. Measurement-Based Studies of Computer System Dependability

Category Issues Studies
Data Analysis of time-based tuples {Tsao83], [Hansen92]
Coalescing Clustering based on type and time [Iyer86], [Lee91], [Tang93a]

Basic Transient taults/errors [Siewiorek78], [McConnel79Y], [Iyer86]
Error Error/failure bursts [Iyer86], [Hsueh87], [Tangy3a]
Characteristics | TTE/TTF distributions [McConnel79], [lyer85b}, [Lee93a]

Hardware tailure/workload dependency [Butner80], [Castillo81], [Iyer82a)
Dependency Software failure/workload dependency [Castillo82], [Iyer85b], [Mourad87]
Analysis Correlated failures and impact [Tang90], {Wein90), [Tang92a]
Two-way and multi-way failure dependency [Dugan91], [Lee91], [Tang91]
Modeling Performability model for single machine [Hsuehd8}
and Markov reward model for distributed system [Tang93a]
Evaluation Two-level models for operating systems [LeeY3a)
Error recovery [Velardi84], [Hsueh87]
Software Hardware-related & correlated software errors [Iyer85a], [Tang92b], [Lee93a]
Dependability | Software fault tolerance [Gray90], [Lee92], {LeeY3b]
Software detect classification [Sullivan91], (Sullivan92]
Fault Heuristic trend analysis [Tsa083], [Lin90]
Diagnosis Statistical analysis of symptoms [Iyer90]
Network fault signature [Maxion90a], [MaxionY0b]

average workload on the system, The effect of workload-imposed stress on software was investigated in [Castillo82]
and [Iyer85b]. Recent analyses of DEC [Tang90], [Wein90] and Tandem [LeeY1] multicomputer systems showed that
correlated failures across processors are not negligible, and their impact on availability and reliability are significant

[Dugan91], [Tang91], [Tang92al.

In [Hsueh88], analytical modeling and measurements were combined to develop measurement-based reliabil-
ity/performability models using data collected from an IBM mainframe. The results showed that a semi-Markov pro-
cess is better than a Markov process for modeling system behavior. Markov reward modeling techniques were further
applied to distributed systems [Tang93a] and fault tolerant systems [Lee92], to quantify performance loss due to
errors/failures for both hardware and software. A census of Tandem system availability indicated that software faults
are the major source of system outages in the measured fault tolerant systems [Gray90]. Analyses of field data from
different software systems investigated several dependability issues including the etfectiveness of error recovery

[ Velardi84], hardware-related software errors [Iyer85al, correlated software errors in distributed systems [Tang92b],
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software fault tolerance [Lee92), [Lee93b], and software defect classification [Sullivan91], {Sullivany2]. Measure-
ment-based fault diagnosis and failure prediction issues were investigated in [Tsao83], (Iyer90], [Lin90], [Max-

ion90a], [Maxion90b].

In the following subsections, we discuss issues and representative studies involved in measurements, data pro-
cessing, preliminary analysis of data, dependency analysis, modeling and evaluation, sottware dependability, and fault

diagnosis.

5.1. Measurements

There are numerous theoretical and practical difficulties associated with making measurements. The question of
what and how to measure is a difficult one. A combination of installed and custom instrumentation has been used in
most studies. From a statistical point of view, sound evaluations require a considerable amount ot data. In modemn
computer systems, especially in fault tolerant systems, failures are rare. To obtaining meaningful data for such sys-
tems, measurements must be made for a considerably long period of time, or sometimes the measured system must be

exposed to high-stress conditions.

In an operational system, only detected errors can be measured, because an error is known only if it is detected.
There are basically two ways to make measurements: on-line automatic logging and human manual logging. Many
large computer systems such as IBM and DEC maintrames provide error-logging software in the operating system.
The software records error reports from different subsystems, such as memory or disk subsystems, and other system
events, such as reboots and shutdowns. The reports usually include information about the location, time, and type of
the error, the system state at the error time, and sometimes error recovery (e.g., retry) information. The recorded
reports are stored in a permanent system file chronologically. The main advantage of the on-line automatic logging is
its ability to record a large amount of information about transient errors and to provide details of automatic error
recovery processes, which cannot be done manually. Disadvantages are that information can be lost when a system
fails too quickly for error messages to be recorded, and that an on-line log does not include information about the

cause and propagation of the error or about off-line diagnosis.
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Table 5.2 shows a sample of extracted error logs from a VAXcluster multicomputer system. Often, meanings of
arecord in the logs can ditfer between versions of the operating system and between machine models. Error detection
and recording routines may be written and modified over time by different people. For example, a careful study of
VAX error logs and discussion with the field engineers indicate that the operating System on different VAX machine
models may report the same type of error into different categories. Thus, it is necessary to distinguish these errors in

the subsequent error classification (to be discussed in Section 5.2).

Table 5.2. A Sample of Extracted Error Logs from a VAXclustert

Entry System ID Logging Time Subsystem & Unit Interpretation

5815 Earth 20-DEC-1987 20:23:13.22 /O, HO$DU AS1: Disk drive error

7005 Earth 4-JAN-1988 11:45:07.12 /0, H3SMUAI: Tape drive emror

12979 Europa 8-JAN-1988 14:14:28.63 CI, EURSPAAD: Path #0 went from good to bad

13005 Europa B-JAN-1988 16:23:17 .41 CI, EURSPAAO: Error logging datagram received

13734 Europa 19-JAN-1988 17:31:30.74 Cl. EURSPAAQ: Virtual circuit timeout

3260 Mercury 24-DEC-1987 04:54:52.06 Memory, TR #2 Corrected memory error

10939 lupiter 1-APR-1988 09:57:39.40 Unknown Device

14209 Jupiter 16-MAY-1988 13:37:04.97 CPU, SBI Unexpected read data fault

13941 Mars 25-FEB-1988 02:13:20.25 CPU, IBOX Machine check

20937 Mars I18-APR-1988 16:46:39.75 BugCheck Bad memory deallocation request size or address
27958 Mars 14-MAY-1988 20:57:46.48 BugCheck Insufficient nonpaged pool to remaster locks
37790 Saturn 20-JUL-1988 18:51:49.15 BugCheck Unexpected system service exception

 The sample is intended to illustrate the different types of errors logged. Therefore, the entry numbers are not consecutive.

Since the information provided by on-line error logs may not be complete, it is valuable to have operator logs
compensate the missing information in on-line logs. Whenever possible, measurements should include both on-line
and operator logs. A good operator log should include information about tailure diagnosis, component replacement,
hardware and software update, etc. It is not €asy 1o maintain an accurate and complete operator log. Unremitting

efforts must be made for 2 substantial period in obtaining measurements.

5.2. Data Processing

Usually, on-line logs contain a large amount of redundant and irrelevant information in various formats. Thus,
data processing must be performed to obtain usetul, classified information and put it into a flat forma that will facili-
late the subsequent analyses. The first step of data processing is error classification, which classifies errors in the
measured system into a number of types based on the subsystems and components in which they occur. There is no

uniform error classification, because different systems have ditferent hardware and software architectures. But some
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Table 5.3. Major Error Types in VAXcluster

System Type Description
CPU CPU or bus controller errors
Hardware | Memory | Memory ECC errors
Disk Disk, drive, and controller errors

Network | Local network and controller errors

Control Problems involving program flow control or synchronization
Sottware Memory | Problems referring to memory management or usage
/O Inconsistent conditions detected by 1/O management routines

error types, such as CPU, memory, and disk errors, are seen in most systems. Table 5.3 lists an error classification

(major error types) for VAXcluster systems [Tang92b], [Tang93a].

After error classification, the following data processing can be broadly divided into two steps: dara extraction
and data coalescing. Dala extraction selects useful entries such as error and reboot reports (throwing away useless
entries such as disk volume change reports) from the log file and transtorms them into a flat format. The design of the

flat format depends on the necessity of the subsequent analyses. The following is a possible format;

entry number logging time error type device id. other fields

In on-line error logs, a single fauit in the system can result in many repeated error reports in a short period of
time. To ensure that the subsequent analyses will not be biased by these repeated reports, entries which correspond to
the same problem should be coalesced into a single event. A commonly used coalescing algorithm [Iyer86] is merging
all error entries which have the same error type and occur within a AT interval of each other into a ruple. The algo-
rithm is as follows:

IF <error type> = <type of previous error>
AND <time away from previous error> < AT
THEN <put error into the tuple being built>

ELSE <start a new tuple>

A tuple reflects the occurrence of one or more errors of the same type in rapid succession and can be repre-

sented by a record containing at least the following fields | Tsao83], [TangY3b]:
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(1) tuple_id — identification of the tuple

(2) no_entry — number of error entries in the tuple

(3)  start_time — logging time of the first entry in the tuple
(4) end_time — logging time of the last entry in the tuple
(5) err_type — error type of the tuple

Different systems may need ditferent time intervals in data coalescing. A recent study on this issue [Hansen92]
defined two types of mistakes that can be made in data coalescing: collision and truncation. A collision occurs when
the detection times of two faults are close enough (within AT) such that they are combined into a tuple. A truncation
occurs when the time between two reports caused by a single fault is greater than AT such that the two reports are split
into different tuples. If AT is large, collisions are likely to occur. If AT is small, truncations are likely to occur. The
study found that there is a threshold of time intervals beyond which collisions are rapidly increased. Based on this
observation, the study proposed a statistical models which can be used to select an appropriate time interval to reduce
collisions. According to our experience, collision is not a big problem if the error type and device information is used
in data coalescing as shown in the above coalescing algorithm. Truncation is usually not considered to be a problem
{Hansen92]. There are techniques {Iyer90}, {Lin90] which deal with this problem and which are used tor fault diagno-

sis and failure prediction (to be discussed in Section 5.7).

5.3. Preliminary Analysis

Once coalesced data is obtained, basic dependability characteristics of the measured system can be identified by
a preliminary statistical analysis. Commonly used measures in the analysis include error/failure frequency, [TE or
I'TF distribution, and crror/failure hazard rate function. In the following discussion, data tfrom a VAXcluster system

[TangY3a] is used to illustrate analysis methods.

5.3.1. Basic Statistics

Although it is not difficult, it is important to first obtain basic statistics such as frequency, percentage, and prob-

ability trom the measured data. These statistics provide a basic picture of the measured system. Often, dependability
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Table 5.4. Error/Failure Statistics for the VAXcluster

Error Failure Recovery

Category -
Frequency | Percentage Frequency | Percentage Probability
I/O 25807 92.87+0.30 105 42.86+6.20 || 0.996+0.001
Machine 1721 6.19+0.28 5 2.04£1.77 || 0.970+0.002
Sottware 69 0.25+0.06 62 25314544 || 0.101+0.071
Unknown 191 0.69+0.10 73 29.80+5.73 || 0.618+0.069
All 27788 100.0 245 100.0 0.991+0.001

bottlenecks can be identified by analysis on the statistics. Table 5.4 shows the error/failure statistics for the measured
VAXcluster. In the table, /O errors include disk, tape, and network errors. Machine errors include CPU and memory
errors. Software errors are software-related errors. The 95% confidence intervals for the percentage and probability
estimates shown in the table are calculated using the method discussed in Section 2.1 for estimating confidence inter-

vals for proportions. Two bottlenecks can be identified trom the table.

First, the major error category is I/O errors (93%), i.e., errors from shared resources. This category of error has
a very high recovery probability (0.996). However, these errors still result in nearly 43% of all failures. This result
indicates that, although the system is generally robust to the impact of I/0 errors, the shared resources still constitute a
major reliability bottleneck due to the sheer number of errors. An improvement in such a System may require using an

ultra-reliable network and a disk System to reduce the raw error rate, not Just providing high recoverability.

Secondly, although software errors constitute only a small part of all errors (0.3%), they result in significant fail-
ures (25%). This is because software errors have a very low recovery probability (0.1). This software fatlure estima-
ton is conservative because there are significant unknown failures (30%). Some of these unknown failures could he

attributed to software problems. Thus, software-related problems are severe in the measured system.

5.3.2. Empirical TTE Distributions and Hazard Rates

TTE/TTF probability distributions and error/failure hazard rates are commonly used to investigate how errors
and failures occur across time. It is relatively casy to obtain empirical TTE/TTF distributions trom data. Figure 5.2
shows the empirical TTE distribution function, f(1), tor a measured VAXcluster system [TangY3a]. Notice that the

logarithmic coordinate is used for f(1) because of the big contrast between the largest and smallest values. It is seen
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that about 67% of the TBEs are less than one minute. Most of these instances are "time between errors of two differ-
ent machines” because errors of the same type occurring within a five minute interval of each other on the same
machine have been coalesced into a single error event. This fact implies that errors are likely to occur on the difterent
machines in the measured system within a very short period of time.

The hazard rate characterizes error/tailure intensity on time series. It can be considered to be the probability
that an error (failure) will occur within the coming unit of time, given that no error (failure) has occurred since the
start of the system or the last error (failure) occurrence. The mathematical definition of the hazard rate [Ross83] is as

follows:

Prierror in (1, t+dt)} _f
Prino errorsin (0, 1)) dt ~ 1-F(t)

h(t) = (5.D

Figure 5.3 shows the empirical failure hazard rates computed from the VAXcluster failure data. The high hazard
rate near the origin, i.e., the high probability that the second failure will occur within a short time after a failure occur-
rence, indicates that failures in the VAXcluster tend to occur in bursts. The most likely for a second failure is the first
two hours after a failure occurrence. Failure bursts have been observed by many studies [Iyer86], [Hsueh87],
[Bishop88]. Actually, in an early study of transient errors [McConnel79], the Weibull distribution with a decreasing

failure rate identified for the interarrival time of failures caused by transient errors implicated the existence of failure

bursts.
Figure 5.2. VAXcluster Empirical TTE Distribution Figure 5.3. VAXcluster Failure Hazard
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5.3.3. Analytical TTE Distributions

A realistic, analytical form of TTE distributions is essential in modeling and evaluating computer system
dependability. Often, for simplicity or due to lack of information, TTEs are assumed to be exponentially distributed
[Arlat90b], [Laﬁde84]. Early measurement-based studies found that the Weibull distribution with decreasing failure
rate is representative of the time between failures (TBF) in a measured DEC computer system [McConnel79] and a
measured IBM operating system [Iyer85b]. A recent comparative study of the dependability of the Tandem
GUARDIAN, VAX VMS, and IBM MV operating systems showed that the software TTE in a single machine can be
represented by a multi-stage gamma distribution and the software TTE in multicomputers can be represented by a

hyperexponential distribution [Lee93a]. In this section, we discuss these two types of distributions.

Betore presenting the analytical TTE distributions, we first explain how a TTE distribution is obtained from a
multicomputer system, because both measured GUARDIAN and VMS were running on multicomputer systems. In
the measured multicomputer systems, all machine members are working in a similar environment and running the
same version of the operating system. If the whole system is treated as a single entity in which multiple instances of
an operating system are running concurrently, then every software error on all machines can be sequentially ordered
and a distribution can be constructed. The constructed TTE distribution reflects the software error characteristics for

the whole system. We will call this distribution the multicomputer software TTE distribution.

Figure 5.4. IBM MVS Software TTE Distribution
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Figure 5.5. VAXcluster Software TTE Distribution Figure 5.6. Tandem Software TTH Distribution

12 12
SO = e + gy d,e S =adje ™ + ayi,e M

08 @, =0.67 4,=0.20 08 2,=087 4,=0.10
10 %=033  1,=275 f) =013 1,=2.78

.04 044

.00 T = T . .00 r r 7 ;

0 5 10 15 20 25 0 5 10 15 20 25
t (days) t (days)

Figures 5.4 to 5.6 show the analytical TTE or TTH (Time To Halt) distributions fitted using SAS for the three
measured systems. All the three empirical distributions failed to fit simple exponential functions. The fitting was
tested using the Kolmogorov-Smimov or Chi-square test (see Section 2.2) at a 0.05 significance level. The two-phase
hyperexponential distribution provided satisfactory fits tor the VAXcluster and Tandem multicomputer software TTE
distributions. An attempt to fit the MVS TTE distribution to a phase-type exponential distribution led to a large num-

ber of stages. As aresult, the following multi-stage gamma distribution was used:

f)y= i a;g(t; o, 57)
=1

where a; 20, Y a; =1, and

i=1

r<s,

0
t e, s5)= 1
& (t = 5)* ™9 t>s.

T(a)
[t was found that a 5-stage gamma distribution provided a satistactory fit.

Figures 5.5 and 5.6 show that the multicomputer software TTE distribution can be modeled as a probabilistic
combination of two exponential random variables, indicating that there are two dominant error modes, The higher
error rate, A, with occurrence probability ,, captures both the error bursts (multiple errors occurring on the same
operating system within a short period of time) and concurrent errors (multiple errors on difterent instances of an

operating system within a short period of time) on these systems. The lower error rate, 4,, with occurrence
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probability «,, captures regular errors and provides an inter-burst error rate.

Error bursts can be explained as repeated occurrences of the same software problem or as multiple effects of an
intermittent hardware fault on the sottware. Actually, software error bursts have been observed in laboratory experi-
ments reported in [Bishop88]. The study showed that, if the input sequences of the software under investigation are
correlated (rather than independent), one can expect more "bunching” of failures than those predicted using a constant
failure rate assumption. In an operating system, input sequences (user requests) are highly likely to be correlated.

Hence, a defect area can be triggered repeatedly.

5.4. Dependency Analysis

Many underlying dependencies exist among measured parameters and components, such as the dependency
between workload and failure rate and the dependency among failures on different components. Understanding such
dependency is important for improving system dependability and developing realistic models. In this regard, the
workload/failure dependency issue was studied in the early 1980s and the correlated failure issue was investigated

recently.

Dependency between workload and failure was addressed in two approaches: statistical quantification of the
dependence between workload and failure rate (Butner80], [Iyer85b] and stochastic modeling of failures as functions
of workload [Castillo81]. Both demonstrated the strong correlation between workload and failure rate. This result
indicated that dependability models cannot be considered representative unless the system workload is taken into
account. Based on this result, several workload-dependent analytical models have been proposed [Meyer}38], [Aup-

perle89], (Dunkel90].

Recent measurements on VAXclusters [Tang90], [WeinY0] and Tandem machines [Lee91] found that correlated
failures are not negligible in distributed systems. Further studies showed that even a small correlation can have big
impact on system dependability [Dugan91], [Tang91], [Tang92a]. It was also shown that neither traditional models
assuming failure independence nor those few models believed to take correlation into account are representative of the

actual occurrence process of correlated failures observed in the measured systems [Tang93b].
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In the following three subsections, dependency analysis is illustrated through three examples: 1) using a work-
load hazard model to analyze the dependency between workload and software failures in an IBM 3081 system, 2)
using the correlation analysis method to analyze the two-way dependency between errors on two ditferent machines
in a VAXcluster system, and 3) using the factor analysis method to analyze the multi-way dependency among failures

on multiple processors in a Tandem fault tolerant system.

5.4.1. Workload/Failure Dependency

An early study [Castillo81] introduced a workload-dependent cyclostationary model to characterize system fail-
ure processes. The basic assumption is that the instantaneous failure rate of a system resource can be approximated by
a function of the usage of the resource considered. The model was applied to a PDP-10 machine running a modified
version of the standard TOPS-10 operating system. It was shown that the TTF distribution predicted by the model and

the one observed from the real system have an extremely good fit.

In [lyer82a), a load hazard model was introduced to measure the risk of a failure as the system activity
increases. The proposed model is similar to the hazard rate defined in Eq (5.1). Given a workload variable X , the load

hazard is defined as

(x) = Pr| failure in load interval (x, x + Ax)| g

~ Prlno failure in load interval (0, x)] Ax 1 - G(x) (-2

where g(x) is the p.d.f. of the variable "a failure occurs at a given workload value x" and G(x) is the corresponding

c.d.f. That is,
&(x) = Pr{ failure occurs| X = x] = —Zf% (5.3)
X
where [(x) is simply the p.d.f. of the workload in consideration:
l{x)=Pr[X=x], (54)

and f(x) is the joint p.d.f. of the system state (failure state or non-failure state) and the workload:

f(x)= Prl failure occurs & X = x]. (5.5)
A constant hazard rate implies that failures are occurring randomly with respect to the workload. An increasing

hazard rate on the increase of X implies that there is an increasing tailure rate with increasing workload.
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Figure 5.7. Workload Hazard Plots for the [BM 3081 System
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The load hazard model was applied to the software failure and workload data collected from an IBM 3081 sys-
tem running the VM operating system. Based on the collected data, [(x), f(x), g(x), and z(x) were computed for

each workload variable. Figure 5.7 shows the z(x) plots for three selected workload variables:

(1) OVERHEAD — ftraction of CPU time spent on the operating system;

(2) PAGEIN — number of page reads per second by all users;

(3)  SIO (Start I/O) — number of input/output operations per second.

The regression coefficient, R?, which is an effective measure of the goodness of fit, 1s also provided in the figure.

The hazard plots show that the workload parameters appear to be acting as stress factors, i.e., the failure rate
increases as the workload increases. The eftect is particularly strong in the case of the interactive workload measures
OVERHEAD and SIO. The correlation coefficients of 0.95 and 0.91 show that the failure closely fit an increasing load
hazard model. The risk of a failure also increases with increased PAGEIN, although at a somewhat lower correlation
(0.82). Note that the vertical scale on these plots is logarithmic, indicating that the relationship between the load haz-
ard z(x) and the workload variable is exponential, i.e., the risk of a software failure increases exponentially with

increasing workload.

5.4.2. Two-Way Dependency

It was mentioned in Section 2.3 that the correlation coetficient can be used to quantity the linear dependence
between two variables. When errors/failures on two components are related, the correlation coefficient between the

two components is a good measure of such dependence. The question is how to obtain it {rom measured data.
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The first step in correlation analysis is building a data matrix based on the measured data. Assume that there are
n components in the measured system and the measured period is divided into m equal intervals of At (e.g., 5 min-
utes). An mxn data matrix can then be constructed in the following way. The n columns of the matrix represent the n
components in the measured system. The m rows of the matrix represent the m time intervals. Element (i, j) of the
matrix is set to the number of errors occurring within interval i on component j. Column j can be regarded as a sam-

ple of the random variable, X;, which represents the state of component j in the system.

The second step is calculating correlation coefficients using Eq. (2.19) based on the data matrix. Each time, we
pick up two columns (X; and X;) to calculate Cor(X;, X;). This step can be automated by using a statistical package
such as SAS. Table 5.5 lists the average correlation coefficients of the 21 pairs of machines in a VAXcluster for dit-
ferent types of errors and failures [Tang93a). Generally, the error correlation is high (0.62) and the failure correlation
is low (0.06). Disk and network errors are strongly correlated, because the processors in the system heavily use and

share the disks and the network concurrently.

Table 5.5. Average Correlation Coefficients for VAXcluster Errors

Error Failure
All | CPU | Memory | Disk | Network | Software All
0.62 | 0.03 0.01 0.78 0.70 0.02 0.06

5.4.3. Multi-Way Dependency

[f errors/tailures on more than two components are related, the correlation coetficient is not enough to quantity
the dependence among these components, i.e., muiti-way correlation. In such a case, the factor analysis method intro-
duced in Section 2.3 can be used to uncover the underlying multi-way correlation. In this subsection, the application

of factor analysis is illustrated using the processor failure data collected from a Tandem fault tolerant system [Lee91].

Similar to the correlation analysis discussed above, the first step is building an mxn data matrix based on mea-
surements, where n is the number of components in the system. The measured Tandem system is an 8-processor mul-
ticomputer, t.e., n is 8. The At used is 30 minutes. The element (i, j) of this matrix has a value of 1, if processor j

halts during the i-th time interval; otherwise, it has a value of 0. The j-th column of the matrix represents the sample
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Table 5.6. Factor Pattern of the Tandem Processor Halts

Processor || Factor 1 | Factor2 | Factor 3 | Factor4 || Communality
1 0.997 -0.004 -0.069 0.023 1.00
2 0.000 0.000 0.000 0.000 0.00
3 0.061 0.012 0.853 -0.133 0.75
4 0.001 0.999 -0.011 0.021 1.00
5 0.982 -0.000 0.188 -0.018 1.00
6 -0.001 0.447 -0.005 0.009 0.20
7 0.047 -0.002 0.862 0.506 1.00
8 -0.007 0.762 0.090 0.641 1.00
Var. 1.965 1.781 1.519 0.685
Var. % 24.6 223 19.0 8.6

halt history of processor j, while the i-th row of the matrix represents the state of the eight processors in the i-th time

interval. The matrix is thus called a processor halt matrix.

The second step is performing factor analysis by applying the SAS procedure FACTOR to the processor halt
matrix. The results are shown in Table 5.6. The numbers in the middle of the table are tactor loadings, and the last
column shows communality. The bottom two rows show the amount of variances explained by the common factors

and their percentages to the total variance.

According to [Dillon84], factor loadings greater than 0.5 are considered to be significant. However, in reliabil-
ity analysis, factor loadings lower than 0.5 can be significant. The results show that there are four common factors.
Factor 1 captures the dependence between processor 1 and processor 5 and accounts for 24.6% of the total variance.
Factor 2 captures the multi-way dependence among processors 4, 6, and 8, although the contribution of processor 6 is
small (0.447%, i.e., 20% of its variance is explained by this factor). Factor 2 explains 22.3% of the total variance. Fac-
tor 3 captures the dependence between processor 3 and processor 7, and contributes 19% to the total variance. Factor 4
captures the dependence, although it is lower (with factor loadings 0.506 and 0.641), between processor 7 and proces-

sor 8, and accounts tor 8.6% of the total variance.

5.5. Markov Reward Modeling

Many natural and social phenomena can be modeled by Markov or semi-Markov stochastic processes
[Trivedi82]. In computer area, Markov process is one of the most frequently used models in performance and depend-

ability evaluation. Compared to combinatorial models, Markov models have several advantages, such as the ability to
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handle time-dependent failure rate, performance degradation, and interactions among components. In the area of ana-
lytical modeling of computer systems, pertormability models [MeyerJ80], [MeyerJ92], availability models {Goyal87],
and Markov reward models [Reibmang9], [Trivedi92] have all been addressed during the past 15 years. However, how
to apply these techniques t0 measured data is still not clear. Assumptions made in building analytical models also

need to be validated by measurement-based analysis.

In analytical analysis, Markov models are built based on some assumptions (such as independent failures on dit-
ferent components) using individual component parameters (such as failure and recovery rates). The evaluated results
are highly dependent on input parameters and model assumptions. In measurement-based modeling, Markov models
are identified from data and therefore called measured models [Tang93b). No additional assumptions (more than the
Markov property) are made in the construction of models. The measured models provide the best evaluation for real
systems as well as insight into the development of representative analytical models. Thus, it is valuable to identify
appropriate models from measured data. Measurement-based Markov reward modeling techniques are illustrated

through a system model generated for a VAXcluster and a software model generated for an IBM operating system.

5.5.1. Modeling of a Distributed System

The data used for the modeling was collected from a DEC VAXcluster system, consisting of seven machines,
for 250 days [Tang93a). For this system, an error was defined as an abnormality in any component of the system. If
an error led to a termination of service on a machine, it was defined as a failure. A failure was identified by a reboot

following one or multiple error reports.

A. Model Construction

Since the measured VAXcluster has seven machines, an 8-state Markov error model is constructed. The eight
states, Eq, E|, ..., and E, are defined such that E; represents the state wherein i machines observe errors at the same
time (the time granularity is chosen to be 1 second). For example, state E,, represents that none of the machines expe-
riences errors, i.., the VAXcluster is in the normal (error-free) state; state E- represents that all the machines experi-

ence errors. At any measured time, the VAXcluster is in one of these states.
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The transition probabilities for the 8-state model is estimated from the error event data. Given that the system is

in state /, the probability that it will go to state j, p;, is calculated as follows:

observed number of transitions from E; to E j
D= — (5.6)
observed number of transitions out of E;

Table 5.7 shows the transition probabilities calculated from the VAXcluster error data. Based on the table, an
error propagation model can be obtained by calculating the probability that the system goes from state £, (i =1, ..., 6)
to any of the lower states (E,_y, ..., Ey) and the probability that it goes from E; to any of the higher states (£, ...,
E7). These probabilities are easily determined by summing all the row elements to the left of element (i, i), and all
row elements to the right of element (i, i) in the tables. The error propagation model is shown in Figures 5.8. An
interesting error propagation characteristic is uncovered with this model. Notice that the transition probabilities to
higher states (numbers in the upper line) tend to increase as the state increases. That is, once an error domain encom-
passes more than one machine, the probability of the domain involving more machines increases. In such situations,
error containment can become increasingly difficult.

Table 5.8 shows the mean holding time, the total holding time in the measured period, and the occupancy proba-
bility in each state for the model. It is seen from the table that £, has the longest mean holding time (2.31 minutes)

Table 5.7. Transition Probability for the VAXcluster Error Model

State E, E, E, E, E, Es Es E;
E, 000 | 891 | .084 | .014 | 004 | 002 | .002 | .003
E, .824 | 000 | .145 | .023 | 004 | .003 | .001 | .000
E, 239 | 594 | 000 | .118 | .035 | .009 | .004 | .001
E, 126 | 211 | 401 | .000 | 227 | 024 | .009 | .003
E, 079 | 147 | 102 | 422 | .000 | 205 | .034 | .01l
E; 058 | 115 | 054 | 073 | 367 | .000 | .315 | .018
Eg 070 | 081 | 024 | 016 | 073 | 406 | 000 | .331
E,; 25 ) (104 | 000 | 021 | 036 | .161 | 552 | .000

Figure 5.8. An Error Propagation Model for the VAXcluster
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Table 5.8. Holding Time (HT) & Occupancy Probability for the VAXcluster Error Model

State | Mean HT (min.) | Total HT (hr.) | Occ. Prob.
E, 22.39 5578.89 0.9298
E, 1.27 347.42 0.0579
E, 0.40 29.24 0.0049
E, 0.56 14.07 0.0023
E, 1.07 15.13 0.0025
E; 0.40 3.37 0.0006
Es 0.73 4.50 0.0007
E, 231 7.38 0.0012

among all error states. Clearly, when all seven machines are atfected by errors, the system takes the longest time to
recover. The occupancy probabilities provide evidence that errors on different machines (i.e., errors in the higher
states) are related. It is found that the measured occupancy probabilities for the higher states (E; to E) are quite dif-
ferent from the occupancy probabilities analytically determined assuming error independence. For example, we con-
sider the occupancy probability for E. By Table 5.8, the measured occupancy probability tor £ is 0.0012. Assuming
that errors on different machines are independent, we can easily determine the occupancy probability for this state to
be at most 0. 027, where 0.02 is the highest error occurrence probability among the seven machines. That is, the mea-

sured value is higher than the calculated value by at least eight orders of magnitude.

B. Reward Analysis

Markov models can be used to conduct reward analysis [Trivedi92] to quantify the loss of service due to errors
and failures. The key step is to define a reward function which characterizes the performance loss in each degraded
state. For a multicomputer system, a generic reward function can be defined for both a single machine and the whole

system. Given a time interval AT (random variable), a reward rate tor the system in AT is determined by
r(AT) = W(AT) / AT, (5.7

where W(AT') denotes the usetul work done by the system in AT and is calculated by

AT in normal state
W(AT) =SAT —nt  in error state (5.8)
0 in failure state

where n is the number of raw errors (error entries in the log, see Section 5.2) in AT and is the mean recovery time for
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a single error. Thus, one unit of reward is given for each unit of time when the system is in the normal state. In an
error state, the penalty paid depends on the recovery time the system spends in that state, which is determined by the

linear function AT-nrt (normally, AT > nz, if AT < ntz, W(AT) is set to 0). In a failure state, W(AT) is by definition
Zero.

Applying Eq. (5.8) to the VAXcluster, the reward rate formula has the following form:
7
r(AT)= 3, W (AT) /(7 x AT), (5.9)
k=1

where W,.(AT) denotes the useful work done by machine & in time AT. Here all machines are assumed to contribute
an equal amount of reward to the system. For example, if three machines fail when the system is in £, the reward rate

18 4/7.

The expected steady-state reward rate, Y, can be estimated by [Trivedi92)

1
Y=

~|

3 r(Ar)ar; (5.10)
Ar;eT

where T is the summation of all At j s (particular values of AT) in consideration. If we substitute r from Eq. (5.9) and
let AT represent the holding time of each state in the error model, ¥ becomes the steady-state reward rate of the VAX-
cluster, which is also an estimate of system availability (performance-related availability). If we substitute r from Eq.
(5.9) and let AT represent the time span of the error event for a particular type of error, ¥ becomes the steady-state
reward rate of the system during the event intervals of the specified error. Thus, (1 - ¥) measures the loss in pertor-
mance during the specified error event. Note that it is possible that there are tailed machines when the system is in an

Table 5.9. Steady-State Reward Rate for the VAXcluster

T 0.1 ms Ims 10 ms 100 ms
Y | 0995078 | 0.995077 | 0.995067 0.994971

Table 5.10. Steady-State Reward Rate for Each Error Type in the VAXcluster

CPU Memory Disk Tape Network | Software
0.14950 | 0.99994 | 0.61314 | 0.89845 | 0.56841 0.00008
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error state. Since the model is an empirical model based on the error event data (of which the failure event data is a

subset), the information about errors and failures of all machines for each particular Ar ; can be obtained from the data.

The steady-state reward rate for the VAXcluster was computed with 7 being 0.1, 1, 10, and 100ms. The results
are given in Table 5.9. The table shows that the reward rate is not sensitive to = This is because the overall recovery
time is dominated by the failure recovery time, i.e., the major contributors to the performance loss are failures, not
non-failure errors. In the range of these r values, the VAXcluster availability is estimated to be 0.995. Table 5.10
shows the steady-state reward rate tor each error type (7 = 1 ms) for the VAXcluster. These numbers quantify the loss
of performance due to the recovery from each type of error. For example, during the recovery from CPU errors, the
system can be expected to deliver approximately 15% of its full performance. During the disk error recovery, the aver-
age system performance degrades to nearly 61% of its capacity. Since software errors have the lowest reward rate

(0.00008), the loss of work during the recovery from software errors is the most significant.

5.5.2. Modeling of an Operating System

The modeled operating system is the IBM MVS system running on an IBM 3081 mainframe [Hsueh87]. The
measurement period is one year. A Markov model is developed using data collected from the system to describe error
detection and recovery inside an operating system. The MVS is a widely used [BM operating system. Primary fea-
tures of the system are reported to be efficient storage management and automatic software error recovery. The MVS
system attempts to correct software errors using recovery routines. The philosophy in the MVS is that for major sys-
tem functions, the programmer envisages possible failure scenarios and writes a recovery routine tor each. [t 1\ how-

ever, the responsibility of the installation (or the user) to write recovery routines for applications.

Recovery routines in the MVS operating system provide a means by which the operating system prevents a total
loss on the occurrence of software errors. When a program is abnormally interrupted due to an error, the supervisor
routine gets control. If the problem is such that turther processing can degrade the system or destroy data, the supervi-
sor routine gives control to the recovery termination manager (RTM), an operating system module responsible tor
crror and recovery management. It a recovery routine is available for the interrupted program, the RTM gives control

to this routine before it terminates the program. The purpose of a recovery routine is to tree the resources kept by the
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tailing program, to locate the error, and to request either a retry or the termination of the program.

More than one recovery routine can be specified for the same program. If the current recovery routine is unable
to restore a valid state, RTM can give control to another recovery routine, if available. This process is called percola-
tion. 'I'he.percolation process ends if either a routine issues a valid retry request or no mMOre recovery routines are
available. In the latter case, the program and its related subtasks are terminated. If a valid retry is requested, a retry is
attempted to restore a valid state using the information supplied by the recovery routine and then give control to the
program. For a retry to be valid, there should be no risk of error recurrence and the retry address should be properly

specified. An error recovery can result in the following four situations:
(1) Resume op (resume operation) — The system successfully recovers from the error and returns control to the
interrupted program.
(2)  Task term (task termination) — The program and its related subtasks are terminated, but the system does not
fail.
(3)  Job term (job termination) — The job in control at the time of the error is aborted.

(4)  System failure — The job or task, which was terminated, is critical for system operation. As a result of the

termination, a system failure occurs.
A. Mode!l Construction

The states of the model consists of eight types of error states (see Table 5.11) and four states resulting from
error recoveries. Figure 5.9 shows the model. The normal state represents that the operating system is running error-
tree. The transition probabilities were estimated from the measured data using Eq. (5.6). Note that the system tailure
state is not shown in the figure. This is because the occurrence of system failure was rare, and the number of observed
system failures was statistically insignificant.

Table 5.11 shows the mean waiting time characteristics of the normal and error states in the model. Note that the
waiting time distribution of the normal state is the TTE distribution. It has been shown in Section 5.3.3 that this distri-
bution is not simply exponential (a multi-stage gamma distribution), so the model is a semi-Markov model. In the

table a multiple software error is defined as an error burst consisting of more than one type of software error. The
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Figure 5.9. MVS Software Error/Recovery Model

To
Normal
State

colation

average duration of a multiple error is at least four times longer than that of any type of single error which is typically
in the range of 20 to 40

seconds, except for DLCK (deadlock) and OTHR (others). The average recovery time from a
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program exception is twice as long as that from a control error (21 seconds versus 42 seconds). This is probably due

to the extensive software involvement in recovering from program exceptions.

An error recovery can be as simple as a retry or as complex as requiring several percolations before a successful
retry. The problem can also be such that no retry or percolation is possible. Figure 5.9 shows that about 83.1% of all
retries are successful. The figure also shows that the operating system is able to recover from 93.5% of [/O and data
management errors and 78.4% of control related errors by retries. These observations indicate that most I/O and con-
trol related errors are relatively easy to recover trom, compared to the other types of errors such as deadlock or storage
errors. Also note that "no percolation” occurs only in recovering from storage management errors. This indicates that

storage management errors are more complicated than the other types of errors.

Table 5.11. Mean Waiting Time

State # Observations | Mean Waiting Time (Sec.) | Standard Deviation
Normal (Error-Free) 2757 10461.33 32735.04
CTRL (Control Error) 213 21.92 84.21
DLCK (Deadlock) 23 4.72 22.61
I/O (/O & Data Management Error) 1448 25‘.05 77.62
PE (Program Exception) 65 42.23 9298
SE (Storage or Address Exception) 149 36.82 79.59
SM (Storage Management Error) 313 3340 95.01
OTHR (Other Type) 66 1.86 12.98
MULT (Multiple Software Error) 481 175.59 252.79

B. Model Evaluation

The steady-state measures evaluated trom the model is listed in Table 5.12. The definitions of these measures

are given in [Howard71].
(1)  Transition probability (x;) — probability that the transition is to state j, given a transition to occur
(2)  Occupancy probability (®;) — probability that the system occupies state j at any time point
(3)  Mean recurrence time (@ ;) — mean recurrence time of state j

The occupancy probability of the normal state can be viewed as the operating system availability without degra-

dation. The state transition probability, on the other hand, characterizes error detection and recovery processes in the
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operating system. Table 5.12(a) lists the state transition probabilities and occupancy probabilities for the normal and
error states. Table 5.12(b) lists the state transition probabilities and the mean recurrent times of the recovery and
result states. A dashed line in the table indicates a negligible value (less than 0.00001). Table 5.12(a) shows that the
occupancy probability of the normal state in the model is 0.995. This indicates that in 99.5% of the time the operating
system is running error-free. In the other 0.5% of time the operating system is in the error or recovery states. In more
than half of the error and recovery time (i.e., 0.29% out of 0.5%) the operating system is in the multiple error state.
The average reward rate for all software error and recovery states is estimated from data to be 0.2736. Based on this
reward rate and the occupancy probability for all error and recovery states shown in the tabie (0.005), the steady-state

reward loss in the modeled MV can be evaluated to be 0.00363.

By solving the model, it is found that the operating system makes a transition every 43.37 minutes. Table
5.12(a) shows that 24.74% of all transitions made in the model are to the normal state, 24.73% to error states
(obtained by summing all the s for all error states), 25.79% to recovery states, and 24.74% (o result states. Since a
transition occurs every 43 minutes, it can be estimated that, on the average, a software error is detected every 3 hours
and a successful recovery (i.e., reaching the "resume op" state) occurs every 5 hours. Table 5.12(b) also shows that
more than 40% of software errors lead to Job or task terminations which cause the loss of service to users. However, a
tew of these terminations lead to system failures. This result indicates that recovery routines in MVS are effective in

avoiding system failures but are not so effective in avoiding user job terminations.

Table 5.12. Error/Recovery Model Characteristics

Normal Error State
Measure State CTRL DLCK /O PE SE SM OTHR MULT
r 0.2474 | 0.0191 0.0020 | 0.1299 0.0060 0.0134 0.0281 0.0057 | 0.0431
o 0.9950 || 0.00016 - 0.00125 | 0.000098 | 0.000189 | 0.00036 - 0.002913
(a)
Recovery State Resultant State ﬂ
Measure Retry Percolation | No-Percolation || Resume Op. | Task Term. | Job Term.
i1 0.1704 0.0845 0.0030 0.1414 0.0712 0.0348
| Bthr.) | 425 8.55 241.43 5.11 10.16 20.74
(b)
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5.6. Software Dependability

A great deal of research has been performed in the area of software reliability during the development phase.
Different models have been proposed (reviewed in [Musa87]) to characterize the reliability growth of the candidate
software through this phase. In general, these models can be divided into two classes. The first assumes that the fail-
ure rate is a function of the number of remaining defects in the software. Imperfect debugging and uncertainty in the
projected number of initial defects have also been modeled [Goel85]. The second class of models does not depend on
the knowledge of the number of the remaining defects [Littlewood80]. The failure rate is assumed to be a random
variable and the software reliability model involves two stochastic processes. Although most models perform well

within their own contexts, their performance varies significantly from one data set to another.

The operational phase of a mature software is much different from the development phase. In the operational
phase, a typical situation involves frequent changes and updates installed either by system managers or by vendors.
Often, without notification to the installation management, the vendor will install a change (patch) to fix a fault found
at some other installation. In a sense, the system being measured represents an aggregate of all such systems being
maintained by the vendor. In addition, software reliability in the operational phase is also attributed to workload
effects, hardware problems, and environmental factors. Thus, software reliability in the operational phase cannot be
characterized by simply applying analytical models proposed for the development phase.

Studies dealing with software dependability issues for the operational phase have also evolved over the past 15
years. Software TTE distributions (Section 5.3), dependency between software failure and workload (Section 5.4), and
modeling of software error/recovery processes (Section 5.5) have been discussed in previous sections. In this section,
several other issues, including error interactions (i.e., hardware-related and correlated software errors), software tault

tolerance, and software defect classification are discussed.

5.6.1. Error Interactions

When software is running in a complex system, interactions between hardware and software, and interactions
among multiple processors can cause software error scenarios that cannot been seen during testing. I[nvestigation of

such error scenarios is helptul for understanding characteristics of software errors in operational systems. In the
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following, two kinds of such error scenarios are discussed: hardware-related software errors, which are a result of
interactions between hardware and software, and correlated software errors, which are a result of interactions among

processors through software protocols.

A. Hardware-Related Software Errors

In [Iyer85a], software errors related to hardware errors were described as hardware-related software errors.
More precisely, if a software error (tailure) occurs in close proximity (within a minute) to 4 hardware error, it is called
a hardware-related software (HW/SW) error (failure). There are several causes of hardware-related sottware errors.
For instance, a hardware error, such as a flipped memory bit, may change the software condition, resulting in a soft-
ware error. Therefore, even though it is reported as a software error, it is actually caused by faulty hardware. Another
possibility is that the software may fail to handle an unexpected hardware problem such as an abnormal condition in
the network communication. This can be attributed to a software design flaw. Sometimes, both the hardware error

and the sottware error are symptoms of another, unidentified problem.

Table 5.13 shows the tfrequency and percentage of hardware-related software errors/failures (among all software

errors/tailures) measured from an IBM 3081 system [Iyer85b] and two VAXclusters [Tang92b]. In the IBM system,

error-handling times (high recovery overhead). The system failure probability for the HW/SW errors is close to three
times that for software errors in general. The VAXcluster data shows that most hardware errors involved in HW/SwW
CIrors are network crrors (75%). This indicates that the major sources of hardware-related software probiems in the
measured VAXclusters are network-related hardware or software components. This is a unique feature in the multi-

tomputer system, where processes highly rely on intercommunications through the network.

Table 5.13. Hardware-Related Software Errors/Failures

Category HW/SW Errors HW/SW Failures
Measures Frequency | Percent Frequency | Percent
IBM/MVS 177 11.4 94 328
VAX/VMS 32 189 28 214
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B. Correlated Software Errors

When multiple instances of a software system interact with each other in a multicomputer environment, the
issue of correlated failures should be addressed. Several studies [Tang90), [Wein90], [Lee91] found that significant
correlated processor failures exist in the measured multicomputer systems. Correlated software failures are also found
in the VAX VMS and the Tandem GUARDIAN operating systems [Lee93a). The data showed that about 10% of soft-
ware failures in the measured VAXcluster and 20% of software halts in the measured Tandem system occurred on
multiple machines concurrently. To understand how correlated software failures occur, it is instructive to examine a

real case in detail.

Figure 5.10 shows a scenario of correlated software failures. In the figure, Europa, Jupiter, and Mercury are
machine names in the VAXcluster. A dashed line represents that the corresponding machine is in a failure state. At
one time, a network error (netl) was reported from the CI (Computer Interconnect) port on Europa. This resulted in a
software failure (softl) 13 seconds later. Twenty-four seconds after the first network error (netl), additional network
errors (net2,net3) were reported on the second machine (Jupiter), which was followed by a software failure (soft2).
The error sequence on Jupiter was repeated (netd,net5,s0ft3) on the third machine (Mercury). The three machines
experienced software tailures concurrently for 45.5 minutes. All three software failures occurred shortly after network

errors occurred, so they were network error related. Further analysis of the data revealed that the network-related

Figure 5.10. A Scenario of Correlated Software Failures

netl softl reboot
Europa _H ___________________________________________________ +_
13 sec. 47.83 min.
net2 net3 soft2 reboot
Jupiter _| | | b e +_
! 24 sec. ! 9 sec. ! 10 se?l 47.33 min.
net4 nets soft3 reboot

Mercury _| ’ | Lo +—}__
! 60 sec. ! ! 45.5 min. 4

78 sec. ! 11 sec.

Note:  softl, soft2, soft3 — Exception while above asynchronous system traps delivery or on interrupt stack.
netl, net3, net5 — Port will be re-started.  net2, netd — Virtual circuit timeout.
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software of the VAX/VMS is a potential software bottleneck in terms of correlated failures.

The higher percentage of correlated software failures in the Tandem system can be attributed to the architectural
characteristics of the system. In the Tandem system, a single software fault can cause halts of two processors on
which the primary and backup processes (see Section 5.6.2) of the faulty software are executing. It the two halted
processors control a disk which includes files needed by other processors on the system, additional software halts can
occur on these processors. (In the Tandem system, a disk can typically be accessed by two processors via dual-port

disk controllers.) This explains why there is a higher percentage of correlated software failures in the Tandem system.

Note that the above scenario is a multiple component failure situation not expected in general system design,
which assumes failure independence. Even the Tandem fault tolerant system is not designed explicitly to guard
against this situation. Generally, correlated failures can stress recovery and break the protection provided by the fault

tolerance.

5.6.2. Software Fault Tolerance

While hardware fault tolerance techniques have been used successfully, the issue of sottware fault tolerance is
still not well addressed. Major approaches for software fault tolerance rely on design diversity [Avizienis84], [Ran-
dell75]. But these approaches are usually inapplicable to large operating systems because of immense cost in devel-
oping and maintaining the sottware. However, some fault tolerance techniques not explicitly designed for tolerating
software faults can provide a certain amount of software fault tolerance. Understanding such techniques is important
for designing good approaches to improving software dependability. The Tandem GURDIAN system, running on the

single-failure tolerant multicomputer system, is a good target for such evaluations.

The Tandem GUARDIAN operating system is a message-based distributed system built for on-line transaction
processing [Bartlett78]. High availability is achieved via single-failure tolerance techniques including the process-
puair approach. For each user program, there are two processes — a primary process and a backup process — execut-
ing the same program on two processors. During normal operation, the primary process performs all operations for the
user, while the backup process passively watches message flows. The primary process periodically sends checkpoint
messages to its backup. When the primary process detects an inconsistency in its state, it fails fast, and the backup

process takes over the responsibility of the primary process. This approach can tolerate transient software errors,
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which will usually not be repeated by reexecuting the process.

A study of operating system fault tolerance achieved by the single-failure tolerance techniques implemented in a
Tandem multiprocessor system was reported in [Lee92]. The measured system had 16 processors and was working in
a high-stress environment. The data source was the processor halt log maintained by the GUARDIAN system for a
period of 23 months. The effect of the built-in fault tolerance mechanisms on software availability was evaluated by
reward analysis. Two reward functions were defined in the analysis. In the definition, { represents the system state in
which there are i failed processors, and 7 represents the total number of processors in the system. The first function
(SFT) reflects the fault tolerance of the Tandem system. In this function, the first processor halt does not cause any
degradation. For additional processor halts, the loss of service is proportional to the number of processors halted. The
second function (NSFT) assumes no fault tolerance. The difference between the two functions allows evaluation of

the improvement in service due to the built-in fault tolerance mechanisms,

SFT (Single-Failure Tolerance);

1 | ifi=0
r=d1=-"2 it 0<i<n (5.13)
n
0 it i=n
NSFT (No Single-Failure Tolerance):
ri=1-2  0<i<n (5.14)
n

Based on the above reward tunctions, the expected steady-state reward rate, i.e., the ¥ in Eq. (5.10), was evalu-
ated for software, non-software, and all halts. The results are given in Table 5.14. The bottom row shows the
improvement in service time (i.e., reduction in reward loss) due to the fault tolerance. It is seen that the single-failure
tolerance in the measured system reduces the service loss due to software halts by 89% and due to non-sottware halts
by 92%. This clearly demonstrates the etfectiveness of the implemented fault tolerance mechanisms against software
tailures as well as non-software failures. The table also shows that software problems account for 30% of the service
loss in the measured system (with SFT). Although the system was working in a high-stress environment, the overall

reward loss is small (10™ with SFT). This reflects the high availability of the fneasured system.
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Table 5.14. Loss of Service Caused by Halts in the Tandem System

l Measure Software | Non-Software Allj
B t - || 00062 00205 7

0026 ’
Percent 232 76.8 100
u -v || 00007 00016 .ooog!
SFT

Percent 304 69.6 IOH
leprovement 89% 92% 91% (

NSFT

5.6.3. Software Defect Classification

In recent studies of software defects reported from the IBM MVS operating system [Sullivan91] and two IBM
large database Mmanagement systems, DB2 and IMS [Sullivan92], a software defect classification scheme was pro-
posed. The scheme uses three concepts — error type, defect Iype, and error trigger — 1o classify software faults and
errors. The error type classifies the low-level programming mistakes that lead to software failures. The defect type is
a higher-level classification that distinguishes design mistakes, coding mistakes, and administrative mistakes. The
error trigger is related to the running environment; jt distinguishes several ways that defective code which was not

executed during testing could be executed at the customer site. Tables 5.15 to 5.17 list major categories generated

Table 5.15. Major Categories of Error Types

Error Type Description
Allocation Management | A module uses a memory region after deallocating it.
Copying Overrun The program copies data past the end of a buffer,

Data Error The program produces or reads wrong data.

Interface Error A module’s interface is defined or used incorrectly.

Memory Leak The program never deallocate memory it obtained from the system.
Pointer Management A variable containing the address of data is corrupted.

Statement Logic Statements are executed in the wrong order or are omitted.
Synchronization An error occurs in locking or synchronization code,

Uninitialized Variable A variable is used before it is initialized.

Undefined State The system goes into a state the designers did not anticipate.
Wrong Algorithm The program works but uses a wrong algorithm.
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Table 5.16. Major Categories of Defect Types

Defect Type Description T

Function A program’s functionality is missing, incomplete, or incorrect.

Data Strucv/Algorithm A data structure or algorithm has a design flaw.

Assignment/Checkjng A coding mistake involves variable assignment or validation.

Interface Errors are discovered in the interaction between components.

Timing/Synchronization Errors occur in the management of shared or real-time resources.

Build/Package/Merge Errors occur in version control or roll-up of fixes.

Table 5.17. Major Categories of Error Triggers

Error Trigger Description
Workload Unusual workload conditions such as a user request with unexpected parameters.
Bug Fixes A bug introduced when an earlier bug was fixed.
Client Code Errors caused by propagation from application code running in protected mode.j
Recovery/Exception Probiems in error recovery and exception handling. j
Timing Errors caused by an unanticipated sequence of events. —I

from the data under the three criteria.

The studies compared the error type, defect type, and error trigger distributions of the three products (DB2,
IMS, and MVS) and found that the three product’s distributions differ significantly. However, they have some com-
mon characteristics, such as the mode “undefined state." The studies also investigated the impact of software defects
on system availability for the MVS operating system. A comparison between overlay defects (defects that corrupt a
program’s memory) and non-overlay defects demonstrated that the impact of an overlay defect is much higher. Bound-

ary conditions and allocation Mmanagement were found to be the major causes of overlay defects.

5.7. Failure Prediction

Fault diagnosis and failure prediction are of significance for maintaining highly reliable systems. Measurement-
based studies have shown that it is possible to predict future failures based on the current and historical on-line error
information. Several heuristic and statistical approaches have been proposed. The heuristic approach extracts charac-

teristics of anomalous events, such as error reports [Lin90] or performance anomalies [Maxion90a}, and relates them

97



to failures or taults by heuristic rules or signatures. The statistical approach uses statistical techniques to quantify rela-
tionships among system error states defined on the basis of error rates and recognizes failure patterns using the quanti-
fied relationships [Iyer90]. In the following, we discuss two typical approaches: 1) failure prediction based on the

heuristic trend analysis of error logs and 2) failure prediction based on the statistical analysis of error symptoms.

5.7.1. Prediction Based on Heuristic Trend Analysis

This approach is based on the observation that a system usually experiences a period of intermittent errors
before a hard failure occurs. The Symptoms of intermittent errors can be used to predict impending tailures. The early
study of this approach showed qualitatively that the frequency of error tuples was correlated to system failures, based
on measurements tfrom a DEC disk subsystem [Tsao83]. Later, a heuristic trend analysis method, the dispersion trame
technique (DFT), was developed [LinY0]. DFT determines the relationship among errors by examining their closeness
in time and space.

Two concepts are used in DFT: dispersion frame (DF) and error dispersion index (EDI). A DF is defined as the
interval between two successive errors of the same type. The EDI is defined as the number of error occurrences fol-
lowing the previous DF during the interval of one half of the previous DF or the DF before the previous DF. Each DF
is applied to the following two errors. A high EDI implicates that the errors following the DF used to measure the

EDI are highly correlated. DFT consists of five heuristics rules developed from field experience:
(1) 3.3 rule: The two consecutive EDIs obtained by applying the same frame are at leab:t 3.

(2) 2.2 rule: The two consecutive EDIs obtained by applying two successive frames are at least 2.
(3)  2in 1 rule: A frame is less than 1 hour.

(4)  4in I rule: Four errors occur within a 24-hour frame.

(5) 4 decreasing rule: There are four monotonically decreasing frames, and at least one frame is half the size of its
previous frame.
Figure 5.11 demonstrates an example, including some activated heuristics, of DFT. In the figure, the top line
Tepresents the time scquence of five error occurrences (1, ..., 5) in a particular device, DFT is activated when 2 frame

size less than 168 hours (1 week) is encountered. Assume that all the frames in the figure fall into this threshold. Each
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Figure 5.11. Dispersion Techniques

1 2 3 4 5
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4 decreasing
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frame is applied to the following two errors by putting its center to the time points of the two error occurrences. For
example, DF(1,2) is applied to errors 2 and 3, DF(2,3) is applied to errors 3 and 4, etc. An upward arrow represents a

failure warning issued under the above heuristic rules.

DFT was applied to the data collected from 13 public-domain file servers in Camegie Mellon University over a
22-month period. Among 16 hard failures examined, DFT predicated 15, with 5 false alarms. That is, the successful
prediction rate is 93.7%. This results shows that DFT is very effective when coupled with good system instrumenta-

tion. The disadvantage of this approach is that different systems may require different heuristics and parameters.

5.7.2. Prediction Based on Statistical Analysis

The objective of this approach is to recognize intermittent failures through statistical analysis and testing on
recorded error data. The approach starts by identifying key error patterns potentially symptomatic of failure occur-
rences and then refines these patterns by scanning the rest of the data in stages for similar error patterns. At each stage,

the similarity is statistically tested. The approach is illustrated by the flowchart in Figure 5.12.

In the first stage, data coalescing is performed on the raw data to eliminate redundant reports. The output of this
stage is error records (tuples) characterized by error siares (error type, machine condition, etc.). Next, all error
records occurring within a small time interval (15 minutes) are identified as error groups. Error groups represent peri-
ods of high error activity (error bursts). Experience has shown that when System errors occur in bursts of 4 relatively

high crror rate, the errors are often related. In the second stage, statistical analysis and hypothesis testing are
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Figure 5.12. Automatic Recognition of Persistent Failures
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performed on each error group to determine whether a valid correlation exists among its members (error records).
Randomly formed groups in which members are statistically independent are rejected. Thus, the original error groups
consisting of records among which relationships can exist are refined to the validated error groups consisting of

records among which relationships do exist.
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Relationships can exist aCross error groups, i.c., a single cause can give rise to a persistent error and thyg foster
multiple error groups within a short time. In the third stage, the output groups from the second Stage are examined to
recognize related error groups and to eliminate stray error records. Several concepts are introduced for the analysis in

this stage. An error eveny is defined as the coliection of error &roups occurring within a given period (e.g., 24 hours)

in an event. Figure 5.13 illustrates an event and its symptom set. The event is composed of three groups: Gy, G, and
G;. The error states in these groups are Iepresented by Ay, ..., 4,. Two Symptoms are extracted from these error states:
81 which consists of A; and A,, and $5, which consists of As and Ag. Thus, 37 and S, constitute the symptom set for
this group.

Further, three simple rules are used in the fourth stage to recognize related events and to group them ingo sets
Called super events, The rules ensure that the €Vents so grouped will have sutficiently common structure to permit

testing for correlation. Two events are grouped into a super event if they satisty any one of the following criteria: 1)

another event, or 3) if they are single-group events, then they have at least two error states in common. Figure 5.14

Figure 5.13. Derivation of an Event's Symptom Set
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Figure 5.14. Construction of Super Events
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illustrates how super events are constructed. There is no time restriction when these rules are applied to the event
data. When a super event is created, a corresponding super symptom set is also created. The Super symptom set starts
with just the symptoms of the first event of that super event. As another event is added, set intersection is performed
between its symptom set and each of the symptom sets already in the super event. All intersections are then added to

the super event set.

In each of the above stages, statistical analysis and hypothesis testing are performed to validate the correlations
among members in the formed groups or sets. The super events derived in the final stage can be used by service engi-
neers to judge potential failures. This methodology was applied to the on-line error log files trom two CYBER Sys-
tems, and the results were compared to the log of failures and repair maintained by the system statt, In nearly 85% of
the cases, the engineers were directly able to confirm that the validated Super events corresponded 1o real system prob-
lems. The evaluation was made both on the basis of their experience and trom their field maintenance logs. For the
remaining 15% of the cases, the engineers agreed that a problem had existed, but that its manifestation was not severe

enough to be noticed by their analysis.
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6. CONCLUSION

In this paper, we discussed methodologies and advances in the area of the experimental analysis of computer
system dependability. The discussion covered three fields: simulated fault injection, physical fault injection, and mea-
surement-based analysis of operational systems. The approaches used in the three fields are suited, respectively, to the
dependability evaluation in the three phases of a system’s life: design phase, prototype phase, and operational phase.
Before discussing these fields, we introduced several statistical techniques used in all fields. For each field, we pro-
posed a classification of research approaches or topics. Then we presented detailed methodologies and representative

studies for each of these approaches or topics,

The statistical techniques introduced included the estimation of parameters and confidence intervals, probability
distribution characterization, several multivariate analysis methods, and importance sampling. For simulated fault
injections, we covered electrical-level, logic-level, and function-level simulation approaches as well as representative
simulation environments, such as FOCUS and DEPEND. For physical fault injections, we discussed hardware, soft-
ware, and radiation fault injection methods as well as several software and hybrid tools, including FIAT, FERRARI,
HYBRID, and FINE. For measurement-based analysis of operational systems, after an introduction to measurement
and data processing techniques, we presented methods used and representative studies in basic error characterization,
dependency analysis, Markov reward modeling, software dependability, and tault diagnosis. The discussion covered
several important issues previously studied, including workload/failure dependency, correlated failures, and software

fault tolerance.

Fault injection simulations can be used lo investigate the effectiveness of key design features of fault tolerant
systems and to provide timely feedback to system designers. Generally, most dependability measures (except input
parameters such as failure and recovery rates) can be obtained from simulations. However, simulations need accurate
input parameters and the validation of output results, which come from physical fault injections and measurement-
based analysis. Fault injection on real systems can produce information about error latency, error detection, error
propagation, error recovery, and system reconfiguration, but it can only study artificial faults and cannot produce some
dependability measures, such as MTBF and availability. Measurement-based analysis of operational systems under

real workloads can provide valuable information on actual failure characteristics and insight into analytical models.
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This type ot analysis provides a means to study naturally occurring errors and all measurable dependability metrics,
such as failure and recovery rates, reliability and availability. However, the analysis is limited to detected errors. Fur-
ther, conditions in the field can vary widely from one system to another, casting doubt on the statistical validity of the

results. Thus, all three approaches are complementary and essential for accurate dependability analysis.

Significant progress has been made in all the three fields over the past 15 years, especially in the recent 5 years
during which several dependability analysis tools have been developed. Increasing attention is being paid to: 1) com-
bining analytical modeling and experimental analysis and 2) combining system design and evaluation. In the first
aspect, state-of-the-art analytical modeling techniques are being applied to real systems to evaluate various depend-
ability and performance characteristics. Results from experimental analysis are being used to validate analytical mod-
els and to reveal practical issues that analytical modeling must address to develop more representative models. In the
second aspect, dependability analysis tools are being combined with each other and with other CAD tools to provide
an automatic design environment which incorporates multiple levels of joint evaluation of functionality, performance,
dependability, and cost. Software failure data trom testing and operational phases are also providing teedback to the
software design, improving software reliability. Further interesting studies and advances in this area can be expected

in the near future.
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