IN-SPACE ASSEMBLY AND CONSTRUCTION TECHNOLOGY PROJECT SUMMARY

INFRASTRUCTURE OPERATIONS AREA
OF THE OPERATIONS TECHNOLOGY PROGRAM

June 26, 1991

Office of Aeronautics, Exploration and Technology
National Aeronautics and Space Administration
Washington, D.C. 20546

OPERATIONS TECHNOLOGY INFRASTRUCTURE OPERATIONS

In-Space Assembly and Construction

OBJECTIVES
- Programmatic

Develop and Demonstrate an In-Space Assembly and Construction Capability for Large and/or Massive Spacecraft

SCHEDULE
- 1993: Automated panel installation on truss
 Complete welding vacuum facility
- 1994: Demonstrate precise 2-D crane positioning
- 1995: Demonstrate automated "orbital" welding
- 1997: Controlled slewing of 3-D space crane
- 1998: Precise positioning of large component
- 1999: Automated construction of curved antenna

RESOURCES
- 1991: $0.3M
- 1992: $0.0M
- 1993: $2.0M
- 1994: $4.0M
- 1995: $7.0M
- 1996: $8.0M

PARTICIPANTS

- Langley Research Center
 Space crane
 Positioning control
 Passive damping
 Active damping
 Suspension systems
 Automated construction
- Marshall Spaceflight Center
 Automated welding
IN-SPACE ASSEMBLY AND CONSTRUCTION ENHANCES FUTURE MISSIONS PLANNING FLEXIBILITY

Launch vehicles ® component masses and sizes

Assembly Options and Infrastructure

Missions ® Total Mass and Volume

General On-Orbit Construction and Assembly Capability Required

Maximum number of mission options and planning flexibility

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS

IN-SPACE ASSEMBLY AND CONSTRUCTION

TECHNOLOGY NEEDS

THE IN-SPACE ASSEMBLY AND CONSTRUCTION TECHNOLOGY PROGRAM WILL SUPPORT THE NEED TO BUILD, ON ORBIT, THE FULL RANGE OF SPACECRAFT REQUIRED FOR THE MISSIONS TO AND FROM PLANET EARTH, INCLUDING:

EARTH-ORBITING PLATFORMS
• EARTH OBSERVATION SYSTEM (PLATFORMS
• PRECISION RADIOMETER & ANTENNAE
• EVOLUTIONARY SPACE STATION

LUNAR TRANSFER VEHICLES
• AEROSHADE CONSTRUCTION
• SPACECRAFT COMPONENT ASSEMBLY

MARS TRANSFER VEHICLES
• SPACECRAFT COMPONENT ASSEMBLY
• NTR: BACKBONE TRUSS & RADIATOR CONSTRUCTION, UTILITIES WELDING
• SEP: SOLAR ARRAY CONSTRUCTION
IN-SPACE ASSEMBLY AND CONSTRUCTION

TECHNOLOGY CHALLENGES/APPRAOCH

• TECHNOLOGY DEVELOPMENT CHALLENGES:
 • REDUCE LIMITATIONS ON SPACE VEHICLE SIZES AND CONFIGURATIONS IMPOSED BY LIMITED ETO LAUNCH CAPABILITY AND/OR ON-ORBIT OPERATIONS REQUIREMENTS

• SPECIFIC CHALLENGES INCLUDE:
 - ACCURATELY POSITION LARGE SPACECRAFT COMPONENTS
 - ASSEMBLY TWO OR MORE LARGE COMPONENTS TO FORM SPACECRAFT
 - CONSTRUCT DISCRETE SINGLE-POINT JOINTS
 - CONSTRUCT DISCRETE MULTI-POINT JOINTS
 - CONSTRUCT CONTINUOUS "LINE" JOINTS
 - AUTOMATE ASSEMBLY AND CONSTRUCTION OPERATIONS
 - ANALYZE AND SIMULATE ALL ASSEMBLY AND CONSTRUCTION OPERATIONS

• TECHNOLOGY DEVELOPMENT APPROACH
 • SURVEY MISSIONS FOR ISAAC NEEDS AND REQUIREMENTS
 • DEFINE FUNDAMENTAL GENERIC CAPABILITIES NEEDED
 • DEFINE FOCUS PROBLEMS AND ASSOCIATED EXPERIMENTS
 • DEVELOPE METHODS AND HARDWARE FOR ACCOMPLISHING ISAAC PROCESSES
 • PERFORM EXPERIMENTS WHICH VALIDATE ISAAC METHODS

IN-SPACE ASSEMBLY AND CONSTRUCTION FACILITY CONCEPT
OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS
IN-SPACE ASSEMBLY AND CONSTRUCTION

STATE-OF-THE-ART ASSESSMENT

• GENERAL ASSESSMENT: EXTENSIVE NEUTRAL BUOYANCY EXPERIENCE IN SIMULATED ZERO-G CONSTRUCTION OF LARGE SPACE TRUSSES. VERY GOOD CORRELATION WITH FLIGHT DATA (ACCESS). NO EXPERIENCE IN THE AREAS OF ON-ORBIT ASSEMBLY (AUTOMATED) OR AUTOMATED (TELEROBOTIC) CONSTRUCTION

• DETAILED ASSESSMENT:
 • NO VALIDATED DESIGN-FOR-CONSTRUCTION METHODS
 • NO SYSTEM EXISTS FOR RAPIDLY & PRECISELY POSITIONING LARGE/MASSIVE SPACECRAFT COMPONENTS (FOR ASSEMBLY)
 • CONCEPTS EXIST FOR LIGHTLY MECHANICAL LOADED JOINTS (ACCESS, SSF), HOWEVER, NO CONCEPTS EXIST FOR HEAVILY LOADED JOINTS
 • LIMITED EXPERIENCE WITH ZERO-G WELDING (SKYLAB, SOVIET UNION), HOWEVER, NO EXPERIENCE WITH AUTOMATED ZERO-G VACUUM WELDING FOR CONSTRUCTION OR ASSEMBLY APPLICATIONS ON ORBIT

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS
IN-SPACE ASSEMBLY AND CONSTRUCTION

STATE-OF-THE-ART ASSESSMENT

DETAILED ASSESSMENT (CONCLUDED):

• AUTOMATED CONSTRUCTION OF A LIGHTLY LOADED TRUSS IN A HIGHLY STRUCTURED ENVIRONMENT WITH NO ON-ORBIT EFFECTS INCLUDED (ASAL). NO EXPERIENCE WITH AUTOMATED ASSEMBLY OR CONSTRUCTION IN AN UNSTRUCTURED ENVIRONMENT INCLUDING PATH PLANNING, COLLISION AVOIDANCE, AND FACILITY INFRASTRUCTURE FLEXIBILITY.
Positioning and Construction Devices Performance Objectives

<table>
<thead>
<tr>
<th>Performance Requirement</th>
<th>CURRENT S.O.A. (RMS)</th>
<th>LUNAR</th>
<th>MARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulator Reach</td>
<td>15 m</td>
<td>30 m</td>
<td>100 m</td>
</tr>
<tr>
<td>Component Mass</td>
<td>14,500 kg (ret.) 30,000 kg (dep.)</td>
<td>75,000 kg 150,000 kg</td>
<td></td>
</tr>
<tr>
<td>Placement Accuracy</td>
<td>± 2 inches</td>
<td>± 1 inch</td>
<td>± 1 inch</td>
</tr>
<tr>
<td>Tip Force</td>
<td>15 lbf</td>
<td>50 lbf</td>
<td>150 lbf</td>
</tr>
<tr>
<td>Damping</td>
<td>< .5%</td>
<td>> 5.0% (5 modes)</td>
<td>> 5.0% (5 modes)</td>
</tr>
<tr>
<td>Max. tip velocity</td>
<td>0.2 ft/sec</td>
<td>0.4 ft/sec</td>
<td>0.6 ft/sec</td>
</tr>
<tr>
<td>Maintenance Interval</td>
<td>After each flight</td>
<td>> 1 year</td>
<td>> 1 year</td>
</tr>
<tr>
<td>Required environment</td>
<td>Highly structured taught points</td>
<td>Unstructured path planning</td>
<td>Unstructured path planning</td>
</tr>
<tr>
<td>Operation</td>
<td>Teleoperated</td>
<td>Telerobotic</td>
<td>Telerobotic</td>
</tr>
</tbody>
</table>

Space Crane

The capability to position and control spacecraft components precisely and safely during assembly will be achieved by developing a structural space crane type arm, having multiple articulating joints for dexterity, and that can ultimately be operated in an automated mode.

Features

- Strength to move and control large spacecraft components safely
- Passive and active "stiffness" to maintain a stable and secure position
- Highly controllable large angle motion with dynamic control for stable trajectories
- Passive and active vibration damping to achieve required precision
- Reconfigurable/adaptable geometry to reduce the amount of required on-orbit infrastructure
- Scaleability (larger or smaller sizes) for a variety of applications
- Robustness and reuseability for long life

\[NASA \]

MS9-5
SPACECRAFT COMPONENT POSITIONING
AND ASSEMBLY TEST-BED

Active Suspension System → Actuators
Crane → Payload
Rotary Joint → End Effector
Payload Storage Pallet

SPACE CRANE ARTICULATING JOINT TEST BED FABRICATED
Erectable Truss Hardware
Predictability is excellent

Static Testing Y-Deflection
Reference Truss

Dynamic Testing

First three analytical frequencies:
6.77 Hz, 7.02 Hz, and 24.42 Hz

Improved Linear Actuators
Reduce test bed backlash by 57 percent

Articulating Joint Test Bed (AJTB)

Articulating Joint Detail

Improved actuators

Original actuators

0.21 in backslash

1 load cycle

0.09 in

3 load cycles
AUTOMATED STRUCTURES ASSEMBLY LABORATORY

AUTOMATED CONSTRUCTION TECHNOLOGY DEVELOPMENT & DEMONSTRATION TEST-BED

Robot arm with panel end effector
Pallet with panels
Pallets with truss struts
Robot carriage for X and Y motion
Turntable
JOINING METHODS PERFORMANCE OBJECTIVES

<table>
<thead>
<tr>
<th>PERFORMANCE REQUIREMENT</th>
<th>CURRENT S.O.A.</th>
<th>LUNAR</th>
<th>MARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>2000 lbf (SSF)</td>
<td>Up to 50,000 lbf</td>
<td>Up to 150,000 lbf</td>
</tr>
<tr>
<td>Connection time</td>
<td>0.3 min/strut (ACCESS)</td>
<td>0.3 - 5.0 min/strut (mechanical) Welding: TBD</td>
<td>0.3 - 5.0 min/strut (mechanical) Welding: TBD</td>
</tr>
<tr>
<td>Durability</td>
<td>> 5 years (SSF)</td>
<td>> 5 years</td>
<td>> 10 years</td>
</tr>
<tr>
<td>Connection method</td>
<td>Manned EVA (ACCESS, SSF)</td>
<td>Automated/EVA (mix)</td>
<td>Automated/EVA (mix)</td>
</tr>
</tbody>
</table>

ERECTABLE JOINT FAMILY AVAILABLE FOR EFFICIENT AEROBRAKE TRUSS DESIGN
WELDED JOINTS - CLASSIFICATION
(Basic Advantages)

- TUBULAR STRUT
 - High Strength, Low Mass
 - Low Dimensional Accuracy Requirements
 - Simple Welding Mechanism

- PIPES/DUCTS
 - Hermetic Seal
 - Simple Welding Mechanism

- SKIN/TANK
 - Hermetic Seal

- SEMI-MONOCOQUE STRUCTURES
 - High Strength, Low Mass
 - Low Dimensional Accuracy Requirements

- REPAIR/CONTINGENCY (Manual)
 - Flexibility

OPERATIONS TECHNOLOGY: INFRASTRUCTURE OPERATIONS
IN-SPACE ASSEMBLY AND CONSTRUCTION

CURRENT PROGRAM: ACCOMPLISHMENTS

ACCOMPLISHMENTS

- Load/displacement testing of 1st and 2nd generation space crane linear actuators completed

- Space crane maximum allowable tip velocity established using strut buckling loads

- 1st. generation heavily loaded 4-inch diameter erectable aerobrake joint developed

- Automated construction of the complete 102-member flat tetrahedral truss structure successfully completed

- Vacuum plasma welding experiments conducted

- Aerobrake hexagonal heatshield panel construction tests completed
CURRENT PROGRAM: FY 91/92 PLANS

FY 91/92 PLANS (FUNDING FOR FY 92 = $0)

- Perform space crane kinematic and dynamic simulations
- Upgrade space crane articulating joint test hardware and perform dynamic tests
- Redesign heavily-loaded erectable joints and perform static tension failure tests
- Demonstrate automated installation of flat antenna panels onto flat truss
- Complete welding vacuum manipulation facility

OTHER DEVELOPMENT EFFORTS

- LaRC BASE R&T
 - EVA construction of precision curved truss with panels
 - Automated Structures Assembly Laboratory (ASAL)
- NO OTHERS
ISAAC TECHNOLOGY ROADMAP/SCHEDULE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSEMBLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Articulating joint test-bed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td>Kinematics/Dynamics</td>
<td>Assembly & Construction Test-bed operations</td>
<td>On-orbit facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-D space crane</td>
<td>Reqs. (Lunar)</td>
<td>Design</td>
<td>Hardware fab</td>
<td>Suspension system</td>
<td>Req. (Mars)</td>
<td>Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly experiment</td>
<td>Reqs. & concept</td>
<td>Controls</td>
<td>End-effector reqs</td>
<td>Hardware integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat truss/panels</td>
<td>Automated panel installation</td>
<td>Unstructured environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna</td>
<td>Reqs. & concept</td>
<td>Hardware fab</td>
<td>Carriage, arm and effector fab</td>
<td>Auto. const. rigid base</td>
<td>Auto. const. flexible base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding (utilities)</td>
<td>Complete vacuum facility</td>
<td>Utility concept</td>
<td>Hardware fab</td>
<td>Automated orbital weld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONCLUDING REMARKS

- Design-for-Construction/Assembly Must be Emphasized From the Very Beginning of the Spacecraft Design Process

- Having a Basic Generic Set of In-Space Assembly and Construction Capabilities Available Will
 - Give Mission Planners and Spacecraft Designers a Great Deal of Flexibility
 - Minimize the Amount of In-Space Infrastructure and Resources Required to Build Spacecraft on Orbit

- Spacecraft Design Costs can be Reduced by Using Available and Developed ISAAC Capabilities, Methods, and Hardware